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Abstract 

In this study the influence of Li substitution on the piezoelectric performance of lead free 

K0.5Na0.5NbO3 (KNN)-epoxy composites is explored. Cuboid KNN piezoceramic 

particles modified with 0 to 12 mol.% of Li are prepared via a double calcination 

technique. The KNN-based particles are dispersed at 10 vol.% in an epoxy matrix to 

develop both random and dielectrophoretically structured composites. While the 

dielectric constant of these composites appears almost independent of Li content, the 

piezoelectric charge constant of structured composites peaks before the polymorphic 

phase transition, at 3 mol.% of Li. The enhanced energy harvesting capabilities of these 

composites make them an interesting choice for flexible energy generators.  



 

1 Introduction  

Research into flexible piezoelectric materials is on the rise for their potential for strain 

driven energy harvesting and integration into and onto flexible and wearable 

electronics.
1,2

 Most commercial piezoelectrics are based on ceramics which contain lead 

atoms in their crystal structure, yet for environmental reasons, lead free materials are 

preferred.
3,4

 Of the lead free ceramics, those based on the morphotropic phase boundary 

(MPB) composition [K0.5Na0.5]NbO3 (KNN) doped with Li are a promising candidate for 

energy harvesting due to their high Curie temperature (around 400 ◦C), enabling use at a 

wide range of temperatures, and favorable electrical properties.
3,4

 As in many 

piezoelectric ceramics, compositions near the phase transition at 

[K0.5Na0.5](0.94)Li0.06NbO3 (KNLN6) lead to the best piezoelectric properties.
 4–7

   

The influence of Li substitution on the piezoelectric and dielectric properties of 

KNN based ceramics has been investigated extensively.
4–11

 In monolithic ceramics Li 

substitution increases the grain size and the Curie temperature, TC [◦C], while 

simultaneously lowering the orthorhombic to tetragonal transition temperature TO−T 

[◦C].
4–7

 A wide range of electrical and mechanical properties have been reported for 

KNN ceramics doped with Li.
4–11

 Despite favorable piezoelectric performance, KNN 

based ceramics are plagued by variations in the volitalization and segregation of the 

alkali elements inducing compositional inhomogeneity
8
 and the formation of a secondary 

tetragonal tungsten bronze (TTB) phase
9
, resulting in abnormal grain growth (AGG).

10
 



Minor adjustments to the processing scheme change the behavior of the alkali elements 

and contribute to the ultimate performance of the sintered ceramic.
4,8

 Due to the cuboid 

morphology of the grains KNN based ceramics are notoriously difficult to sinter into 

dense ceramics. Faster heating rates
9
, inert atmospheres

11
, and long isothermal holds

10
 

have been reported to inhibit the formulation of strongly facetted cuboid grains, aiding 

densification.  

A number of flexible lead free piezoelectric materials based on a composite of KNN 

based particles randomly dispersed in a polymer matrix have been developed for piezo- 

electric energy harvesting.
12-18

 The chosen KNN fillers are identical to the compositions 

developed for optimal properties in ceramics, doped with sintering aids, at or near a 

polymorphic phase transition (PPT) or MPB. Additionally, these piezoelectric composites 

require a relatively high volume content of ceramic filler (from 30 vol.% for nanowires 

up to 85 vol.% for particles) to attain sufficient performance. Besides the volume fraction 

of filler, piezoelectric performance in electroceramic-polymer composites is affected by: 

(i) the electrical properties of the filler and matrix, (ii) the size and morphology of the 

filler, and (iii) the spatial distribution of the filler.
19-22

 In KNN based ceramics (i) and (ii) 

are not independent variables, and altering one (via compositional substitution or 

processing conditions) will necessarily affect the other.
4–11

 The spatial distribution can be 

controlled by choosing an appropriate composite processing scheme, like 

dielectrophoretic structurization.
23,24

 Applying a dielectrophoretic alignment field on lead 

based piezoelectric fillers inside an uncured polymer matrix leads to a significant 

improvement of the piezoelectric performance in composites containing only 10 vol.% of 

filler compared to randomly dispersed composites.
25

 Switching to lead free KNLN6 



further improves the performance of structured composites, due to the inherent electrical 

properties of the filler and the cuboid nature of the particles.
26

 However, it is clear from 

the literature that MPB compositions do not always lead to the best performance in 

piezoelectric composites.
21,24,27

  

Due to the variance in reported KNN based ceramic properties, it is unclear at 

which amount of Li substitution in KNN the peak performance in piezoelectric properties 

of composites can be established. Hence, in the present work we will investigate 

composites based on near PPT [K0.5Na0.5](1−x)LixNbO3 (KNLN) particles specifically 

prepared for embedding in an epoxy matrix and study the effect Li content has on particle 

morphology, piezoelectric performance and energy harvesting potential.  

2 Experimental 

Five piezoceramic powders were synthesized via solid state reaction with compositions 

of [K0.5Na0.5](1−x)LixNbO3 (x = 0, x = 0.03, x = 0.06, x = 0.09 and x = 0.12). 

Stoichiometric proportions of the >99% pure oxides NaCO3, K2CO3, Li2CO3, and Nb2O5 

(obtained from Sigma Aldrich) were immersed in cyclohexane and milled in glass jars 

with 5 mm yttria-stabilized ZrO balls. A two step calcination scheme was employed to 

obtain cuboid particles.
26

 Each KNLN powder was calcined at 1050 ◦C for 3 hours 

(heated with a rate of 5 ◦C/min), milled for 5 hours, and calcined again at 950 ◦C for 20 

hours (heated with a rate of 1 ◦C/min). To break apart loose aggregates, the calcined 

powders were ultrasonicated for 1 hour and sieved through a 63 μm mesh. All KNLN 

powders were dried overnight at 150 ◦C, and stored under vacuum at room temperature 



before processing into composites.   

Composite disks were prepared by mixing the KNLN powders in Epotek epoxy 

302-3M (Epoxy Technology Inc., Billerica (MA), USA) with a particle volume of 10 %. 

This optically clear epoxy has been extensively studied as a matrix for 

dielectrophoretically structured composites
24-26

, and has a relatively high dielectric 

constant, ε33 [−], of 5.3 at room temperature. The theoretical density of each KNLN 

powder, calculated from the mass of the unit cell over the unit cell volume, was used to 

calculate the appropriate mixing ratio for each composite. The KNLN particles were 

mixed with diglycidyl ether of bisphenol-A (DGEBA) resin for 5 min at 2500 rpm in a 

SpeedMixer (Hauschild, DAC 150 FVZ, Hamm, Germany). Then the multi-functional 

aliphatic amine hardener poly(oxypropyl)-diamine (POPD) was added to the KNLN-resin 

mixture and mixed again for 5 min at 2500 rpm. The uncured composite was degassed in 

a vacuum for 10 min, mixed for 5 min at 2500 rpm to ensure homogeneous distribution 

of the particles, and poured into a prepared Teflon mould with circular 14 mm diameter 

cutouts. Al foil sheets of 50 μm thickness were applied on either side of the mould to act 

as the electrodes for dielectrophoresis (DEP). Flat samples were formed by clamping the 

mould between two steel plates. To induce dielectrophoretic structuring an electric field 

of 1 kV mm
−1

 was applied at an optimal frequency, ranging from 600 Hz to 1.2 kHz, 

using a function generator (Agilent, 33210A, Santa Clara (CA), USA) in tandem with a 

high voltage amplifier (TREK, Model 609E-6, Lockport (NY), USA) at room 

temperature. The leakage current, peak to peak voltage and phase angle of the DEP field 

were monitored with an oscilloscope (Tektronix Inc., DSOX2002A, Berkshire, UK). 

After 1 hour at room temperature the composites were cured on a hot plate (IKA, C-



MAG HS7, Staufen, Germany) at 50 ◦C in 3 hours, keeping the DEP field applied. 

Random composites were prepared analogously, without application of an electric field. 

Next, the composites were ejected from the mould and polished to ensure good contact 

with electrodes. After post-curing at 120 ◦C for 1 hour, gold electrodes were applied on 

either side with a sputter coater (Balzers Union, SCD 040, Liechtenstein). The samples 

were poled in a rapeseed oil bath (Julabo, SE Class III, 12876, Seelbach, Germany) at 80 

◦C and 11 kV mm
−1

 for 30 min with a DC high voltage amplifier (Heinzinger, PNC 

30000, Rosenheim, Germany) and cooled to room temperature while still applying the 

electric field. The composite samples were aged for at least 24 hours before piezoelectric 

and dielectric measurements took place.  

X-ray diffraction (XRD) (Bruker D8 Advance X-ray diffractometer, Bruker AXS 

Inc., Karlsruhe, Germany, using Co-Kα with EVA software) was used to analyze the 

crystal structure. UnitCell
28

 was used to calculate the lattice parameters from the 

identified peaks. Particle morphology and spatial distribution of the KNLN particles in 

the random and structured composites were recorded with a field-emission scanning 

electron micro- scope (SEM) (JEOL, JSM-7500F, Nieuw Vennep, the Netherlands). 

Particle size was measured in aqueous solution via laser diffraction (Beckman Coulter 

LS230, Beckman Coulter Nederland B.V., Woerden, the Netherlands) and from SEM. 

The piezoelectric charge constant, d33 [pC/N], of the composites was measured with a 

PM300 Berlincourt type piezometer (Piezotest, London, United Kingdom). The 

capacitance, C [pF], and dielectric loss, tan δ [−], were measured at 1 kHz and 1 V with 

an LCR (Agilent, 4263B, Santa Clara (CA), USA). The ε
T

33 was derived from the 

capacitance. Thickness mode electromechanical coupling coefficients, kt [%], and 



mechanical quality factors, Qm [−], were determined by the IEEE resonance method using 

an impedance analyzer (Agilent, HP4194A, Santa Clara (CA), USA). 

3 Results  

3.1 Structural characterization  

The X-ray diffraction patterns of the double calcined KNLN powders are presented in 

Figure 1, normalized to the highest intensity peak. A single phase orthorhombic 

perovskite phase was observed in the undoped KNN and 3 mol.% Li specimens. 

Increasing the amount of Li beyond 3 mol.% results in the development of a minor 

secondary phase, indexed as K3Li2Nb5O15 (ICDD:52-0157) with a non-perovskite 

tetragonal tungsten bronze (TTB) structure. The development of the TTB phase has been 

attributed to the volatilization (of K) and segregation (of Na and Li) of the alkali elements 

during the prolonged post calcination.
7,10,29

 At 6 mol.% Li, a coexistence of a tetragonal 

and orthorhombic phase could be expected, but the specimen tends towards an 

orthorhombic crystal structure presumably due to loss of Li to the TTB phase. The KNN 

specimens doped with 9 and 12 mol.% of Li display a tetragonal crystal structure. Figure 

1b shows a magnification of the 2θ range running from 36◦ to 39◦, where the inversion in 

peak splitting due to Li can be clearly seen.  

3.2 Particle morphology  

Double calcination of the KNLN particulate with 20 h of annealing at 950 ◦ C, by slowly 

heating at 1 ◦ C/min, has lead to the formation of cuboid particles (Figure 2). Small 



cuboid particles on the order of 0.5 to 1.0 μm with strongly facetted edges have 

developed in the undoped KNN. Doping with Li increases the size of the cuboid particles. 

At 6 mol.% of Li the particle size decreases slightly, and some columnar shaped particles, 

likely TTB phase, on the order of 0.5 μm are observed. At 9 and 12 mol.% the cuboid 

particles develop serrated, roughened edges around facetted surfaces, and many of the 

particles have fractured. It is difficult to distinguish whether the clusters of cuboid grains 

have sintered together to form aggregates or are free flowing from SEM alone. Therefore, 

the particle size was measured in aqueous solution via laser diffraction. However, since 

the particles tend to agglomerate, the particle dispersion was not representative of the 

actual particle size distribution.  

3.3 Composite microstructure  

In Figure 3 the cross-section of the composite microstructures of the KNLN particulates 

processed into both random and structured composites at 10 vol.% of filler are shown. It 

is immediately clear that the double calcination of the KNLN particulates has lead to 

aggregation of particles. Even so, the dispersion of the primary particles and aggregates is 

relatively homogeneous in both random and structured composites. Comparing the 

microstructure of random composites to structured, it is clear that the application of the 

dielectrophoretic structuring field has induced the KNLN particles to align into chains 

parallel to the direction of the electric field. Chains of primary particles are interspersed 

with large aggregates. Compositions with a larger relative volume of primary particles 

(the undoped KNN and 12 mol.% of Li) more clearly show the formation of chain like 

structures in the direction of the applied electric field, compared to their random 



counterparts.  

 

3.4 Dielectric properties  

The variation of the dielectric constant and dielectric loss of the KNLN-epoxy 

composites is shown in Figure 4 as a function of Li content. In structured composites, the 

dielectric constant trends upward with Li. Any variation in dielectric properties or 

morphology of the particles has no effect on the dielectric constant in random 

composites, which remains at a flat constant around 8.5. The dielectric loss of the 

composites is below 5 %, and the trends with respect to Li content are in line with the 

dielectric constant. Structuring of the KNLN particles has marginally increased the 

dielectric constant and loss over all Li contents. The dielectric loss remains unchanged 

after 1 year stored at ambient conditions, indicating that encapsulation of the KNLN 

particles in the composites appears to inhibit the moisture absorption commonly reported 

for Li-doped KNN ceramics.  

3.5 Piezoelectric properties  

The influence of Li content on the piezoelectric charge constant of 10 vol.% KNLN-

epoxy composites is presented in Figure 5. The piezoelectric charge constant is 

dependent on the phase structure, and higher on the orthorhombic side. In random 

composites this translates to a relative constant of 5 pC/N on the orthorhombic side, and 2 

pC/N for the tetragonal compositions. The properties are improved by dielectrophoretic 

structuring of the KNLN particles, and a peak in piezoelectric charge constant can be 



identified at 3 mol.% of Li with 19.4 pC/N.  

In application as a sensor or an off-resonance energy harvester, the piezoelectric 

voltage constant, g33 [mV.m/N], and figure of merit, d33·g33 [pm
3
/J], of the KNLN-epoxy 

composites are of the utmost importance. The g33 is calculated via: g33 = d33/(ε
T

33 · ε0), 

where ε0 is the permittivity of free space and the ε
T

33 is measured at 110 Hz. These 

figures are presented as a function of Li content in Figure 6. The maximum values 

obtained in random composites are 68 mV.m/N and 0.43 pm
3
/J with undoped KNN, 

while for structured com posites the maximum attained values are 181 mV.m/N and 3.5 

pm
3
/J, at 3 mol.% Li. The magnitude and position of the maximum g33 value in structured 

composites depends on the stiffness ratio of the piezoelectric phase over the polymer 

phase, and it is likely that higher values could be obtained at lower particle volume 

fractions, while increases in d33·g33 could be expected at slightly higher volume 

fractions.
25,26

 

The piezoelectric performance of the structured orthorhombic KNLN composites 

could also be studied via frequency response analysis, due to the relatively high attained 

d33 (Figure 5). The materials properties are summarized in Table 1, where each value is 

the average of three samples per Li content, with dimensions of 9 mm in diameter and 

approximately 1 mm thickness. The mechanical loss factor, Φ, is evaluated from the 

resonance peak in the frequency dependence of the real part of the impedance, Z′, via Φ = 

(f1 − f2)/fpeak, where f1 and f2 are the frequencies at which the impedance is equal to Z′
peak

 

/√2. The mechanical quality factors follow from the relation Qm = 1/Φ. The kt was 

evaluated from the following equation, where fs and fp are the series and parallel 



resonance frequencies.
30 

𝑘𝑡 =
𝜋

2

𝑓𝑠

𝑓𝑝
𝑡𝑎𝑛 (

𝜋

2

Δ𝑓

𝑓𝑝
)       (1) 

For materials with high mechanical losses, the IEEE recommends approximating 

∆f from the following equations, directly from the minimum, fm, and maximum resonance 

frequencies, fn, via a figure of merit ‘M’.
30,31  

 

Δ𝑓 = (𝑓𝑝 − 𝑓𝑠) ≈
𝑓𝑛−𝑓𝑚

√1+
4

𝑀2

       (2) 

𝑀 =
1

2𝜋𝑓𝑠𝑅1𝐶0
≈

1

2𝜋𝑓𝑚(𝐶0+𝐶1)|𝑍𝑚|
       (3) 

The sum of C0 and C1 (representing the capacitance of the parallel and series 

branch of the equivalent circuit of the piezoelectric material near resonance) is equivalent 

to the static capacitance measured below the fundamental resonance, at 1 kHz. R1 is the 

resistance of the series branch of the equivalent circuit and |Zm| is the impedance 

minimum at resonance. Finally, the frequency constant, 𝑁𝑡
𝐷  [Hz.m], was calculated 

from  𝑁𝑡
𝐷 = 𝑓𝑝 ∙ 𝑡 , where t [mm] is the sample thickness, leading to the longitudinal 

velocity Ct [m/s] equal to 2𝑁𝑡
𝐷.  

 

  



4 Discussion  

From the above results we can propose the following processes take place in the studied 

electroceramic-polymer composites. Substituting Li in MPB cuboid KNN particles 

increases the particle size, but leads to the formation of a secondary non-perovskite 

phase. The presence of the TTB phase in the KNLN composites with 6 to 12 mol.% of Li 

lowers the effective amount of polarizable volume, decreasing performance in 

composites. At 3 mol.% of Li no such TTB phase is discernible from XRD. While the 

coarsening and necking between the particles at 9 and 12 mol.% of Li is considered to be 

related to the well studied lower temperature of the liquid phase formation in these 

compositions
4,7

, the decrease in particle size at 6 mol.% of Li would indicate a change in 

the particle formation mechanism. The observed fracturing of the high Li content 

particles may be attributed to the high degree of tetragonality leading to high strains 

during cooling, and could signal a secondary mechanism of decreased performance in 

composites. In the particle size range observed from SEM (from 1.0 μm in the undoped 

KNN to >5 at 9 and 12 mol.% Li) we would expect to see a dependency of the d33 of 

random composites on particle size.
21,22

 The absolute value of the d33 is also higher than 

one would expect at 10 vol.% of filler from existing models for monodisperse particles in 

a dilute medium.
20

 This suggests that the observed aggregates dominate the performance 

in random composites, regardless of the variance in electrical properties of the filler as a 

function of Li content. Structuring the KNLN particles in an epoxy matrix has enhanced 

the d33 and ε
T

33 with respect to random composites, and previous work at the PPT
26

, 

showing that dielectrophoretic structurization is a robust method of improving 



piezoelectric performance in composites. Figure 4 suggests that the dielectric constant 

increases with Li content, except at 6 mol.% where the particle size decreases slightly. 

Since larger particles lead to fewer polymer interfaces per aligned chain
23

, we suggest the 

increase in dielectric constant is a particle size effect. Similar to random composites, the 

d33 of the structured orthorhombic composites outperforms tetragonal compositions. Yet 

there is a peak at 3 mol.% of Li, not evident from the results of random composites. In 

structured electroceramic-polymer composites the morphology and size of the particles 

will affect the efficiency of chain formation due to dielectrophoresis and degree of 

poling.
24,25,32

 And it has been demonstrated that particle size distribution is a key factor in 

the chain formation of structured composites.
33

 The significant decrease in polymer 

interfaces in structured composites allows the inherent electrical properties of the filler to 

somewhat overcome the aggregate dominated behavior observed in random composites. 

Even though the piezoelectric charge constant of the particles at 6 mol.% Li outperforms 

3 mol.% Li, the reduction in polymer interfaces due to the larger particle size results in a 

better performance at 3 mol.% in composites. Furthermore, since the aim of the work is 

to enhance energy harvesting potential, the reduction in the dielectric constant, in the 3 

mol.% Li composites after poling can compensate for the inherently lower d33 of the 

composition.
5
 The peak in performance observed at 3 mol.% of Li can then be attributed 

to the increase in primary particle size, supplemented by aggregates which enhance 

overall performance via reduced inter-particle distance. To examine the energy 

harvesting potential of the KNLN based composites, a comparison of the piezoelectric 

performance of the composites from this study is drawn with piezoelectric materials from 

the literature in Table 2. The piezoelectric composites are ranked according to the volume 



fraction of active material. To attain a d33, kt, and figure of merit similar to what we have 

demonstrated for 10 vol.% structured KNLN3-epoxy in random composites, a 

combination of high volume fractions of active material, large particle sizes and high 

dielectric constant polymer matrices are necessary.
22,34-36

 In lead free composites based 

on KNN, similar properties have only been reported for 1-3 composites, or volume 

contents of active material over 0.7.
15-17

 While the figure of merit of the KNLN3 

composite approaches that of the KNN bulk ceramic, an order of magnitude lower than 

PZT ceramics, the performance is similar to pure PVDF and its copolymers at 

significantly reduced dielectric loss.  

 

5 Conclusions  

This work demonstrates that a significant improvement of the piezoelectric properties of 

electroceramic polymer composites can be achieved by dielectrophoretic alignment of 

KNLN particles with a wide distribution in particle size over lead containing composites. 

A peak in performance of structured composites was identified in KNN doped with 3 

mol.% of Li, a single phase orthorhombic composition with cuboid particle morphology. 

There are indications that it is the combination of favorable electrical properties and 

particle morphology at [K0.5Na0.5](0.97)Li0.03NbO3 leading to the peak in piezoelectric 

performance. Compared to 0 and 6 mol.% larger particle sizes have been attained, 

lowering the amount of polymer interfaces per chain. Although a lower homogeneity of 

the composite microstructure is attained, the performance at 10 vol.% is now such that 

the electromechancial coupling can be measured via frequency response analysis. Due to 



the enhanced piezoelectric energy harvesting figure of merit, d33·g33, composites based on 

these materials are an interesting choice for flexible energy generators and within the 

competitive realm of PVDF and its copolymers.  
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Table 1: Electromechanical properties of 10 vol.% structured orthorhombic KNLN-epoxy 

composites from the thickness mode resonance.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Li M kt Qm N
D

t Ct 

[x] [-] [%] [-] [Hz.m] [m/s] 

0.00 0.93 13.6 21 1211 2422 

0.03 0.97 26.8 15 1376 2751 

0.06 0.95 15.0 25 1217 2433 



Table 2: Performance of reported piezoelectric materials compared to this work.  

Active material Acti
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25 
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Figure 1: XRD patterns (a) of [K0.5 Na0.5 ](1−x)LixNbO3 (KNLN) (x = 0, x = 0.03, x = 

0.06, x = 0.09 and x = 0.12), and (b) a magnification of the range 36◦ to 39◦ 2θ. 

 

 

 

 

 

 



Figure 2: Micrographs of the two-step calcined KNLN particles (at 2000x (left) and 

10000x (right) magnification), with increasing Li content: (a) undoped KNN, (b) 3 

mol.%, (c) 6 mol.%, (d) 9 mol.% and (e) 12 mol.%.  

 



Figure 3: Micrographs of the cross-section of 10 vol.% KNLN-epoxy composites 

(magnification 200x) with (a) Undoped KNN, (b) x = 0.03, (c) x = 0.06, (d) x = 0.09, (e) 

x = 0.12. The ‘R’ and ‘S’ stand for random and structured composites, respectively.  

 



Figure 4: Variation of the dielectric constant (a) and the dielectric loss (b) of random and 

structured KNLN-epoxy composites due to Li dopant. The lines are a guide for the eye.  

 

 

 

 



Figure 5: Variation of the piezoelectric charge constant due to Li dopant in random and 

structured KNLN-epoxy composites. The lines are a guide for the eye.  

 

Figure 6: Piezoelectric voltage constant (a) and figure of merit (d33 · g33) (b) of random 

and structured 10 vol.% KNLN-epoxy composites versus Li content. The lines are a 

guide for the eye.  



 

 

Figure 7: Raw frequency response (phase angle and impedance) of a structured KNLN3- 

epoxy composite. 

 

  


