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Abstract 

 
In recent years the AEC industry has started implementing more and more new technologies. 

Still, the adoption process is very slow. One of the crucial steps during the building designing 

phase is a justification of design according to previously defined requirements. That process is 

still manual to a large extent, therefore unnecessarily time-consuming and prone to errors. The 

need for automation of requirements compliance checking has been rising in recent years, and 

the science community presented various approaches for automation. Still, most of the 

proposed methods are overly complex and represent a black-box approach, which means that 

the designer can not understand how the software performs the check. Also, it requires that the 

designer is highly skilled in programming, which is not common. Another limitation of current 

methods is focus on only one type of requirements, most often geometry related. Finally, most 

of the concepts focus only on the first step of automated compliance checking, which is 

transferring requirements into computer-readable scripts. Therefore, there is a need for a new 

approach that can cover automation of compliance checking in general, use white box-approach 

so that designer can understand the process and cover different types of requirements. The rise 

in popularity of parametric design and tools like Grasshopper, Dynamo opens the possibility 

to overcome some of the limitations present in the current methods. Also, the possibility of 

using requirements management software to have the process fully organized supports the 

belief in automating compliance checking. The fundamental objective of this project is to 

explore the possibilities of automating the requirements verification for a building design by 

using requirements management software to systematically structure the requirements and 

Grasshopper to generate the rules, which afterwards can be verified. To achieve this objective, 

the project was divided into three main parts. First, the conceptual framework for automated 

code checking is developed, explaining each step in the process to the details. Afterwards, the 

system architecture of the prototype tool was explored, and instructions for scripting the tool 

were given. Finally, after the tool was scripted, it was tested on a real building model. During 

the testing, the tool showed some evident strengths, but also it has particular weaknesses. 

 

From the literature review and analysis of Building Decree 2012, the two main types of 

requirements are explained, the functional and performance requirement. Since the functional 

requirements are qualitative and can not be quantified, that category is not suitable for checking 

with the approach proposed in this project. Therefore, the focus was on performance 

requirements. The central part of the project is the creation of a framework for automated 

compliance checking. The five steps are defined, and for each step is explained what it is and 

how to achieve it. The five steps are:  

1.) Requirements defining and logical structuring into RMS 

2.) Interpretation of requirements 

3.) Building model preparation 

4.) Checking phase 

5.) Reporting phase 

 



iv 

 

After the theoretical basis is set, the modelling of the tool is elaborated. Firstly, the 

requirements for the tool are set. Afterwards, the system architecture is explored, and finally, 

instructions for scripting the tool are developed. The tool must be fast, robust and easily 

extensible, which means that by following the instructions, new functions should be added 

easily. Furthermore, the system architecture of the tool consists of four main components: 

designer, computational engine, visualiser and requirements management software. Lastly, 

instructions for scripting the tool depends on the type of function, which can be: basic function, 

reporting function or method for determination. 

 

After the prototype tool is scripted, it is tested on a real building model, and it shows clear 

advantages compared to other approaches or manual work, still, it also has some disadvantages. 

Test of the tool proved that the Visual programming language environment is a great platform 

for developing a white-box approach for automated compliance checking. Also, testing on the 

real-world building model shows that a five-step approach for automated testing of building 

design works and can be used. Lastly, the test shows that the proposed system architecture and 

instructions for scripting the tool can result in a well-operating tool.  

 
The biggest strengths of the presented approach are speed, a wide variety of checks that can be 

covered and the fact that the designer does not have to be skilled in general programming. On 

the contrary, the most important weaknesses are the limited range of Grasshopper functions 

that complicate the scripting of some methods for determination. In addition, the tool is 

dependent only on Karamba3D models for the structural domain, and the tool requires big help 

from a designer to perform checks.  

 

Finally, recommendations for future research are given, and these are: 

 

• Continue with the research of automatically deconstructing requirements by using machine 

learning techniques 

• Standardize the vocabulary and logic for defining requirements 

• Explore the methods for the automation of the script building in Grasshopper 

• Explore how to connect Grasshopper with BIM software 

• Explore methods for semantic enrichment of building models 

• Test the scalability of the tool with a large number of requirements 

• Explore how to develop a visual detection of failed requirements in Rhino 

• Explore the implementation of the automated compliance checking 
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1. Introduction  
 

Before diving into the project directly, it is necessary to explain the motivation for conducting 

this project and the problems of the existing solutions. 

 

1.1. Motivation 

 

The adoption of new technologies in the AEC industry is very slow. While society and other 

industries are taking advantage of information technology, the AEC industry struggles with the 

transformation (Coenders and Rolvink, 2014). For many years the two most important 

technologies were the Finite Element Method (FEM) software for structural analysis and 

Computer-Aided Design (CAD) software for communication of the design. Building 

Information Modeling (BIM) started replacing CAD in recent years, enabling better 

communication and new opportunities because models contain much more data. However, the 

complete process from initial designing to building the structure is not supported by appropriate 

technology and methodology. Although digital tools are used for a variety of tasks, the 

justification of the chosen design is still a very manual process. Due to the absence of integrity 

and digitisation of building design justification, it appears that the industry is unable to profit 

from the information that might be saved and explored if the process is automated and digitised. 

The automation of compliance checking could potentially deliver benefits in the form of 

financial gain, but also an increase in structural safety as automated procedures can be used to 

apply checks and codified experience to designs that transcend the knowledge of a single 

human designer (Coenders and Rolvink, 2014). 

One of the emerging digital technologies in the AEC industry is parametric design using 

software like Grasshopper or Dynamo, visual programming languages. Programmes are 

created by dragging components onto the canvas instead of writing complex codes, making it 

more straightforward for architects and structural designers who are not skilled in classic 

programming. Using these technologies would be possible to digitise even the previously 

mentioned code checking, which is now a significant problem. Most previous researches in this 

field required the designer to be a highly skilled programmer or use a black-box approach 

without understanding what is happening during the verification process. The idea of using 

Grasshopper arose as a potential solution to these problems. Also, Grasshopper offers the 

possibility to check the requirements during the designing process continuously.  

This project will explore the possibilities to automate the checking of the building design 

requirements by using Grasshopper. 

 

1.2. Automated code checking – state of the art 

 

The general requirements that every building must fulfil are given in documents released by 

the national bodies. Usually, these are building codes and decrees, which consist of many 

checks that have to be taken into account. Logically, the building design must be checked to 
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fulfil all these requirements. On top of that, there is a large number of requirements from all 

stakeholders. Nevertheless, even though we are in the 21st century, code compliance checking 

is still a very manual process. 

Firstly, during the project's design stage, architects, structural designers, engineers, fire safety 

engineers etc., are doing manual checks of drawings and calculations. Later, after submitting 

all documents to authorities, the officers also do some of the checks manually. Of course, a 

process like that, with very limited automation involved, is error-prone and unnecessarily 

laborious (Preidel and Borrmann, 2016). Moreover, as the complexity of the projects is 

growing, the number of requirements follows that trend, resulting in a more demanding 

compliance checking process (Rao 2021).  

Many researchers tried to find a more efficient way of building design justification through 

automated code checking. The software which performs automated compliance checking is not 

modifying the building design, it just assesses a building’s design related to the requirements 

(Nawari 2019.). The main results of such software are a pass or a fail grade for the proposed 

design (Eastman et al., 2009). Furthermore, a tool like that can be developed for three different 

platforms: a) as a plug-in for designing software, which allows the designers to do the check 

whenever they wish; b) as an independent application that runs parallel with a designing 

software; or c) as a web-based application that can accept design documents from a variety of 

sources, which is the most suitable for authorities (Eastman et al., 2009). This project is focused 

on the first group, and the checking platform is imagined as a plug-in for designing software, 

in this case, Grasshopper.  

In 2009. Eastman et al. wrote a paper about state of the art in automated rule-checking. In that 

paper, they explained the principles of automated code checking, and it has served as a starting 

point for almost all research projects in the following years. According to them, there are four 

main stages of the automated rule-checking process (Eastman et al., 2009): 

 

Stage 1: Requirement interpretation and logical structuring into rules 

This includes defining the requirements and afterwards transferring them into the computer-

readable rules, which can be checked. Until now, that is the most complex and most researched 

part of the rule-checking process.  

 

Stage 2: Building model preparation 

In this step, all necessary data from the building model are extracted. Until now, almost all 

researchers have been using Industry Foundation Classes (IFC) models. That is because it is 

independent and supported by all BIM design tools.  

 

Stage 3: Rule execution phase 

In this step, the previously prepared data from the building model are compared to the rules 

from stage 1. 

 

Stage 4: Reporting of results 

This step is essential because all checks must be documented. Also, this is the least complex 

part of the process. 
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These four steps are extended and serve as a basis for developing a framework in this project. 

In recent years many researchers have been trying to come up with a general solution for 

automation of the compliance checking. It is difficult to provide a complete solution to the 

problem due to the wide extent of the rules involved (Solihin, Dimyadi and Lee, 2019). All 

proposed solutions are based on defining a Domain Specific Language (DSL), which would be 

able to express the domain requirements into computer-readable rules. The internal DSL and 

external DSL are the two main categories in which all projects could be separated (Solihin, 

Dimyadi and Lee, 2019).   

 

For the purpose of the internal DSL, some already existing language is used as a basis, and it 

is then extended and adapted to get a domain-specific language. The most important internal 

DSL are: Semantic Web Rule Language (SWRL), in which a series of semantic web triplets is 

used to define a rule (W3C, 2004); Lua script, which is being used in a commercial application 

FORNAX to program rules by using its APIs based on C++ (NovaCityNets, 2016);  SPARQL 

Inferencing Nation (SPIN) is another internal DSL which combines query languages, rule-

based systems and concepts from object-oriented languages to define rule language based on 

the Semantic Web and rule-based system such as DROOLS; in this category also fall mvdXML 

(Chipman, Liebich and Wiese, 2015), BPMN (Dimyadi et al., 2016), LegalRuleML, RuleML 

(Solihin, Dimyadi and Lee, 2019), which are all languages based on XML. The wide variety 

of resources and available tools is an advantage of being a part of the larger community and 

standardized languages, which encourages the use of internal DLS’s. Contrary, those base 

languages are not developed specifically for the construction domain and BIM, and that 

imposes extra work to twist or extend the language to fit BIM needs. This results in many 

additional steps and very weird syntax in the end (Solihin, Dimyadi and Lee, 2019).  

 

On the other hand, the external DSL is designed explicitly for the purpose of BIM base code 

checking, and therefore it is usually more compact, concise and feels more natural in defining 

the rules. The main problem of external DSL is that the user has to learn new syntax, and it 

requires its own custom parser (Solihin, Dimyadi and Lee, 2019). In the literature, several 

external DSL’s can be found: BERA (Lee, 2011); KBIM that uses meta-programming concept 

(Park, Lee and Lee, 2016), QL4BIM (Daum and Borrmann, 2013); BIMRL (BIM Rule 

Language) that combines built-in support for spatial operators, SQL based query language and 

function extensions (Solihin, 2015); the approaches that use visual programming languages can 

also be classified as external DSL. On top of Domain-Specific Languages, there are other tools 

proposed for automating the rule checking, such as Natural Language Processing (NLP) that 

uses AI to analyze the requirements and transfer them directly into computer-executable rules 

(Zhang and El-Gohary, 2017); there is also manual markup method used in RASE, which 

analyzes the semantics of requirements and transforms the rules into IFC constraint model 

(Hjelseth and Nisbet, 2011). The comparison and specific limitations of all the methods 

mentioned above can be found in (Solihin, Dimyadi and Lee, 2019). 

  

As is already mentioned, the basic way of translating rules into a code checking system is 

manual implementation by software developers. Unfortunately, that results in inaccessibility 

to codes for third parties, which means it can not be verified. This is called a “black box” 
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approach (Nisbet et al., 2008). The problem with that approach is a lack of trust from the 

domain experts and dependence on software developers, making it less responsive to changes 

in regulatory documents. Nevertheless, the majority of proposed automated code checking 

systems use the black-box approach. One of the first and most known is CORENET e-

PlanCheck from Singapore, which is able to check compliance with fire-safety rules and 

barrier-free access (Solihin, 2004). The main component of the system is the FORNAX library 

which has been developed and maintained by a private company (Preidel and Borrmann, 2016). 

Therefore, a detailed look at the checking process is restricted, which is already described as 

the biggest setback. Another example is the Solibri Model Checker, which is also the most 

advanced and used application for code checking. Most of the proposed methods use an 

ontology-based approach for the representation and checking of the rules. Still, that approach 

has many constraints: primary, as it is previously mentioned, the translation of the rules into an 

ontological representation is too complex for domain experts; secondary, the ability of the 

resulting systems to represent semantically higher constructs is very restricted. So, some 

complex geometric and topological regulations, which usually take a big portion of codes, 

cannot be checked (Preidel and Borrmann, 2016). 

Consequently, there is a need for the development of a code representation language which is: 

 

1.) Easy to use for domain experts who are not software developers 

 

2.) Capable for the processing of non-geometric but also complex geometric requirements 

 

(Preidel and Borrmann, 2015) were among the first who tried to overcome these issues by 

introducing Visual Code Checking Language (VCCL). Instead of using the classic approach, 

they used graphic notation to represent the rules of a code in a human and machine-readable 

language. They presented the syntax and semantics of its major components. Of course, many 

issues must be solved in future work. The usual critics of Visual Programming Language are 

that more complex rules will result in an unclear and messy script, which can not be read by 

the user anymore.  To face that, the authors applied few instruments like the nesting approach, 

the control flow elements and the embedded UI controls. A few years after, Korean authors 

(Kim et al., 2017) developed the KBim Visual Language (KBVL) by using a similar approach. 

They first analyzed sentences from regulation documents and classified the components of each 

sentence into three categories: (1) building objects, (2) methods for checking and (3) reference 

and delegation information according to sentence relation (Kim et al., 2017).  The visual 

components of KBVL are systematized using that semantic structure. Also, the components 

pool of building-related items and methods is defined, which reduce errors that may happen if 

the user must define methods manually. 

By analyzing the literature, it can be seen that the focus is on developing a platform that will 

be able to check geometry related requirements. The requirements about structural safety, 

energy efficiency and other types do not get a lot of attention.  
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1.3. Visual programming language 

 

In recent years, Visual Programming Languages have been on the rise in the field of building 

design. The definition of a visual language would be “a formal language with a graphical 

notion”. In other words, instead of textual codes, the modular system of signs and rules is 

developed by using visual elements (Myers, 1990; Hils, 1992; Schiffer, 1998). The graphical 

notation makes the interpretation of the codes much easier and faster for humans, and proof for 

that can be found in cognitive psychology, which says that for the processing of the visual 

information brain can use two hemispheres instead of only one. Furthermore, the complex 

processing structures are presented as a flow of information, that is why it is usually said that 

Visual Programming Language has a flow-based nature (Preidel and Borrmann, 2016).  

 

The most widely used Visual Programming Language software in the building design industry 

are the plug-ins Grasshopper for Rhinocers3D and Dynamo for Revit. These were initially 

developed for 3D parametric modelling, but their capabilities extended significantly by the 

activity of a third-party community that is creating many additional plug-ins. The fact that 

Dynamo is operating only in the Revit environment gives a big advantage to the Grasshopper 

in the field of code checking. The openBIM approach is very desirable to allow all designers 

to work with the tool, regardless of the BIM software they use.  

The Visual Programming Language environment can solve the problem of the black-box 

approach in automated code checking, which is necessary to get the trust of the designers. If 

the tool for automated code checking is developed correctly, the user should be able to 

understand and inspect every step of the process. Knowing that the designer is responsible for 

his design, it is particularly important to get a complete insight into the compliance checking 

process. In reality, that makes the process semi-automated instead of fully automated, but for 

now, it is inevitable to involve the user at some steps of the compliance process. 
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2. Problem definition  
 

After detecting the problems in the automated compliance checking field, the plan for the 

project has to be set. This chapter discusses the research objective, research question, scope, 

and methodology used. 

 

2.1. Research objective 

 

As explained in previous sections, code compliance still depends to a large extent on manual 

checking by designers or authorities. Therefore, there is a strong need to find a solution for 

automated compliance checking. The rise of Visual Programming Languages popularity 

between architects and designers opens the opportunity of using it for revolution in 

requirements verification. In addition, the possibility to use the requirements management 

software supports the belief for the possibility of improvement. 

 

Therefore, the fundamental objective of this project is to explore the possibilities of automating 

the requirements verification for a building design by using a requirements management 

software to systematically structure the requirements and Grasshopper to generate the rules, 

which afterwards can be verified.  

 

2.2. Research question 

 

The main research question of this research project is:  

“How can manual verification of design requirements be automated by using a 

requirements management software and Grasshopper?” 

To answer this question, a few sub-questions will be asked. 

 

1.) Which requirements should building design fulfil?  

Before focusing on specific requirements, it will be looked into all requirements that 

building design should fulfil. For that, it is necessary to look into the Building Decree 

2012. After defining all requirements that building design has to fulfil, the project will 

focus on verifying only a few requirements to prove the concept. 

 

2.) How to approach automated testing of building design? 

This question is driving the development of a conceptual framework for automated 

compliance checking. The particular steps have to be defined, and then specific 

procedures and instructions inside each step must be examined. 

 

3.) How can Grasshopper verify the requirements? 

After structuring the requirements in requirements management software, it must be 

figured out what is the best way to generate the script in Grasshopper which can perform 

the checks.  
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4.) How does the tool work in practice? 

After the tool is finished, it should be tested to prove the concept. Sweco will provide 

the test case. 

 

After answering these four sub-questions, it should be possible to answer the main question 

and make a prototype script that can check the codes for a given design. 

 

2.3. Research Scope 

 

Since the verification of requirements is an extremely broad topic, the project's scope and 

restrictions have to be set to stay on the path during the whole research process. The main goal 

of this thesis is to deliver a framework for automated compliance checking and proof of the 

concept tool, which is not a fully developed tool ready for wide use. Also, many possible 

features are discussed, which could be added in the future, but not all of these are implemented 

in this project. The implemented ones show the possibilities, but the fully developed tool would 

not be limited to only these functions. This project is not focused particularly on one of the four 

steps of automated compliance checking, which was the typical approach in other research 

projects. Most of these projects focused on the analysis of requirements and developing specific 

methods for transferring the requirements into computer-readable rules. Since many papers are 

already related to that specific step, this project scope is zoomed out and focused on a more 

general approach to the whole process. The specifics of this project is adding verification 

tracking and abilities of Grasshopper, as a Visual Programming Language, to the scope. 

Another unique detail of the project is not focusing on geometric requirements only but 

including other types such as structure related rules. Some scientists have focused already on 

structural or energy-related requirements, but in a very isolated manner and not combined with 

all other categories. Finally, the prototype tool has particular limits introduced due to time 

restrictions, but it does not affect the project's validity. The main limitations of the prototype 

are that it works only on steel structures and the ability to check seven specific requirements. 

At the end of the project, all these limitations are discussed to determine the impact of each 

one.  

 

2.4. Methodology  

 

This section presents the methodology used in the project to fulfil its objective and answer all 

research questions. The section will describe only the main steps. More details can be found in 

the previous Chapter 2.2. under the title Research question. The project is mainly divided into 

three parts:  

• Phase 1: Defining the framework for automated code checking. First, it is important to 

understand the problems related to automating the compliance checking. In order to retrieve 

this data, it is necessary to do a literature study. After the issue is explored, then by 

brainstorming, the potential solution can be derived in the form of a conceptual framework 

for automated rule checking. Therefore exploration of the building requirements (sub-

question 1) and development of the framework for automated compliance checking (sub-
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question 2) are in focus during Phase 1. This part aims to standardize and semi-automate 

the requirements management part of the process, which precedes the verification. Also, 

the goal is to set the theoretical foundations for modelling the prototype tool. 

• Phase 2: Developing the system architecture and instructions for scripting the verification 

tool in the Grasshopper and finally scripting it (sub-question 3). This is the central part of 

the project where automation will become a reality. Here, a mix of research-led and design-

led approaches will be used. The first one is following the classic scientific methods, trying 

to analyse everything in the deep and then developing solutions, while the second approach 

is driven by proposing a solution and taking users as partners involved in the design 

process. The project will be used to determine what users require from the tool, and then a 

proposal for the framework can be deduced. Afterwards, during the scripting of a prototype 

tool, the focus will be on a design-led approach, which will be used to improve the tool 

iteratively in response to users feedback. 

• Phase 3: Testing the proposed framework and scripted tool to examine its effectiveness in 

practice and propose recommendations for future applications. The tool will be tested on a 

real project provided by Sweco (sub-question 4). 

 

The research strategy is summarized in the figure below: 

 

 
Figure 1 Research strategy and relation with sub-questions and output 
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3. The structure of the building requirements 
 

Every building has to fulfil a large number of requirements given from various sides. During 

the project, there are two main groups of requirements according to the timing of a project. 

First, while the building is still only a concept on paper, it must fulfil design requirements. 

Later, when the construction starts, it must meet construction requirements. In Figure 2, this 

can be seen. 

 
Figure 2. Project requirements (Kamara, Anumba and Evbuomwan, 2000) 

The design requirements are in the interest of this project. These are the requirements for design 

which are a translation of the client needs, but also site and regulatory requirements. Table 1 

summarizes all the requirements and their description. 

 

Table 1. The types of requirements in a project (Kamara, Anumba and Evbuomwan, 2000) 

Type of 

requirements 
Meaning 

Client Requirements of the client that describe the facility that satisfies their business 

need. Incorporates user requirements and those of other interest groups. 

Site These describe the characteristics of the site on which the facility is to be built 

(e.g. ground conditions, existing services, etc.). 

Environmental These describe the immediate environment (e.g. climatic factors) surrounding the 

proposed site for the facility. 

Regulatory Building, planning, health and safety regulations, and other legal requirements 

that influence the acquisition, existence, operation, and demolition of the facility. 

Design These are the requirements for design which are a translation of the client needs, 

site and environmental requirements. They are expressed in a format that 

designers can understand and act upon. 

Construction These are the requirements for actual construction that follow from the design 

activity. 
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This project will zoom more deeply into design requirements, mainly from the regulatory and 

client group. The way in which building codes are given is one of the obstacles to the 

automation of compliance checking. For instance, regulatory documents often reference other 

sources, which means they are not self-contained. Also, codes often refer to knowledge that all 

experts should be familiar with, but such data is not always represented in a formal expression. 

Furthermore, a deep understanding of the field is required from the user of codes (Nawari and 

Alsaffar, 2015). On top of that, heuristics and experience are required to decide when to look 

into other referenced standard and when to proceed based on presumed compliance. To 

summarize, the negative attributes of the building provisions are (Nawari, 2018): 

- Inconsistent usage of terminologies 

- Subjectivity 

- Exceptions, various interrelationships, and complexity of code structuring 

 

Every country has its own law referring to a supreme regulatory document which prescribes 

the mandatory conditions that every building design must fulfil. In the Netherlands, that is the 

Building Decree 2012. Any work related to refurbishing, building, demolishing, or occupying 

a building, must comply with the Building Decree 2012. This decree contains the technical 

regulations that represent the minimum requirements for all structures in the Netherlands. 

Decree usually refers to specific codes in which are given methods to determine performance. 

For example, how to exactly determine strength, acoustic isolation, fire-safety etc. 

 

The way in which the regulations are given in Building Decree 2012 can be divided into: 

- The form of the regulations 

- The object level of a rule 

 

The regulations can be given in three different forms, related to their subjectivity and way of 

verifying. The first type is functional requirements, which are qualitative and indicate which 

goals the building has to fulfil, but without giving a concrete way to do it or how to measure 

the compliance. One example is: “A proposed structure shall be such that fire and smoke 

cannot develop quickly”. (Building Decree 2012, Article 2.68)   

The second form is performance requirements, which are more detailed and quantifiable. It 

consists of a quantified limit value and unambiguous determination method, which often refers 

to some other codes. An example of a performance requirement is: “The part of a side of a 

structural component which adjoins outdoor air and is located higher than 13 m shall comply 

with fire class B as determined in accordance with NEN-EN 13501-1.” (Building Decree 2012, 

Article 2.70). The first part of the sentence gives the limit, while the second part refers to the 

code describing the determination method.  

The third form is presence requirements, which are in fact performance requirements indicating 

that a certain “something” must be present for a particular use function.  
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Furthermore, the important aspect of the regulations is the object levels for which the 

conditions are given. These objects are ‘bodies’ that have to fulfil requirements. The following 

object levels can be distinguished: 

1.) Parcel (consisting of buildings, open yard and grounds) 

2.) Construction work 

3.) Usage functions 

4.) Space 

5.) Construction element 

6.) Installation 

7.) Material 

8.) Act of usage (such as placing furnishing elements and storing goods) 

 

By analysing the Building Decree, seven main groups of requirements can be extracted, of 

which each has few subgroups. These are: 

1.) Safety 

1.1) The strength of a building 

1.2) The fire safety 

1.3) The safety in use 

1.4) Burglar resistance 

2.) Health 

2.1.) Soundproofing 

2.2.)  Moisture resistance 

2.3.)  Ventilation  

2.4.)  Harmful conditions 

2.5.)  Daylight 

3.) Usability 

3.1.)  The residential area and living space 

3.2.)  Sanitary areas 

3.3.)  Building accessibility 

3.4.)  Outdoor storage and outdoor space  

3.5.)  Installation location for the sink, cooking, heating, and hot water appliance 

3.6.)  Parking space for bicycles 

4.) Energy efficiency and environment 

4.1.)  Energy performance 

4.2.)  Thermal insulation 

4.3.)  Airtightness 

4.4.)  Environmental performance limit 

5.) Installations  

5.1.)  Presence of artificial lighting 

5.2.)  Electricity, gas and heat supply 

5.3.)  Water supply 

5.4.)  Sewage system 

5.5.)  Fire safety installations 

5.6.)  Accessibility of building for disabled 
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5.7.)  Preventing common crime 

5.8.)  Safe maintenance of the building 

6.) Use 

6.1.)  Fireproof use 

6.2.)  Safe use of escape routes 

6.3.)  Other provisions 

7.) Build and demolish 

7.1.)  Construction work procedure 

7.2.)  Demolition work procedure 

7.3.)  Safety and limitation of a nuisance for the environment 

 

The first five groups are related to design requirements, while the sixth describes the proper 

use of the building, and the seventh is related to safety during construction works. 

 

Another important group of requirements for this project are the ones provisioned by the client. 

Those usually follow some established methods to compose design brief, but which differ per 

company. Often, the semantics of the requirement do not have any particular logic that is 

followed while defining it. Usually, they are expressed in human language, based on experience 

and adaptability of the human mind, but that enhance the complexity of transforming 

requirements into computer-readable rules.  

 

Another possible classification of requirements is given by Nawari (Nawari, 2018), and it has 

four main categories: 

1.) Conditional clauses – easy to transfer into formal rules directly from the textual document. 

Requirements that are quantifiable and have all standard features. 

2.) Contents clauses – requirements that cannot be transformed into False or True expressions. 

Those rules are normally utilized for descriptions and definitions, for example, the 

definition of high-rise building, firewall, smoke evacuation etc. 

3.) Ambiguous clauses – subjective clauses, which usually have words such as about, close to, 

relatively, maybe etc. 

4.) Dependant clauses – complex requirements that are consisted of more sub-requirements. 

One section or sub-requirement is reliant on compliance of other clauses. 

 

As mentioned in the project's scope, the type of requirements and how to automatically transfer 

each clauses category into a computer-readable script is not explored in depth. There has been 

a significant amount of research on that topic, but here only the general idea of input 

requirements into requirements management software manually will be given. Furthermore, 

this project will cover performance requirements only because it would not be possible to verify 

the functional requirements by using a Visual Programming Language. The main reason for 

that is the inability to quantify the functional requirements. 
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4. Framework for automated code checking 
 

In this chapter, the conceptual framework for automated code checking is explained. This 

framework describes the general idea of the proposed method. As a basis for developing a 

framework, four steps of automated code checking presented by Eastman et al. (Eastman et al., 

2009) are used. The process is a little bit extended, and one extra step is introduced, therefore 

the five steps are: 

1) Requirements defining and logical structuring into RMS 

2) Interpretation of requirements 

3) Building model preparation 

4) Checking phase 

5) Reporting phase 

 

The difference between the framework proposed in this project and Eastman’s is introducing 

the defining of requirements and concept of requirements management software in a story. The 

first step of Eastman’s framework is a requirements interpretation and logical structuring into 

rules. This step is divided into two, and in the new first step is added requirements management 

software which enables verification tracking during the whole process. Also, requirements 

defining, collecting, and grouping is addressed in that first step. Approach from this project 

emphasises the entire process of compliance checking from defining the requirements to 

checking it and tracking the verification, which is addition on other projects that only focus on 

the pure checking part.  

 

Five sub-chapters indicate five steps of the automated rule checking process.  

 

4.1. Requirements defining and logical structuring into RMS 

 

The first step of the process is divided into two sub-steps. Firstly, requirements have to be 

defined and collected, afterwards in the second sub-step, they are input in requirement 

management software in a logically structured way. 

 

4.1.1. Requirements defining  

 

Requirements defining and logical structuring is the first step of automated code checking, but 

in fact it cannot be fully automated. A certain level of manual effort is required from the 

designer. Collecting all requirements has to be done by a designer in charge of that specific 

requirements group. Afterwards, all these requirements should be grouped and put in some 

requirements management software, and there are two main reasons why the specific separation 

is necessary. 

The first reason is to be better organized and make the verification process easier to track. If 

only one infinite list is used, the designer cannot focus only on the part he is interested in, and 

some conditions can be skipped easily.  
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The second reason why it is necessary to have a few groups of requirements is to make the 

structure of the Grasshopper tool clearer and more user friendly. Different groups use different 

functions for the verification. For instance, some conditions need to check the distance between 

two objects, and some check whether the beam's bending strength is sufficient. The structure 

of the scripts that must be built in Grasshopper for checking these two are different, so the 

grouping of the requirements can be done in a way that similar verification functions are used. 

 

Designing a building is a very complex process in which many roles are involved. In this 

project, four specific roles are used for explaining the concept of grouping the requirements. 

Those four roles are: the architects, the structural engineers, the building physics related 

designers and designers for services. Following that separation of work, it would be logical to 

group the requirements in the same way. So, the groups are: architectural requirements, 

structural requirements, building physics related requirements and services requirements. By 

using these four groups, each designer is only working with a list of conditions that he is 

interested in, and others are not disturbing him. Also, the Grasshopper tool can then have four 

independent parts, of which each can be adapted to the specifics of the group. Still, each part 

will be based on the same framework and use some basic functions shared by all of the groups. 

Moreover, each category will perform checks on different object levels, which require different 

building model preparation process per category, but that will be explained in the third step. It 

is important to mention that these groups can be separated differently in an actual project, 

maybe based on some other roles, but the concept of grouping to keep the process more 

organized is the same. Still, the proposed separation should be able to cover a large number of 

requirements because the chosen roles are the standard and main ones in every project. In this 

project it will be shown that different types of requirements can be covered, by using examples 

from architectural and structural domain. Examples of other requirement groups will not be 

explored in deep due to time restrictions. 

 

The first group is architectural requirements, which are mainly focused on the spatial 

configuration of the building design. From the name, it is evident that the architects have the 

main interest in this group, but the functions defined in this group will be helpful for others as 

well. So, this serves as a base category, which everyone should be able to use. Some of the 

functions needed to check code compliance for this category are the minimum and maximum 

distance, length, height, area and similar geometric related functions. The one example for this 

category could be: “A bathroom space as referred to in Article 4.18. shall have a floor area of 

at least 1,6 m2 and a width of at least 0.8 m.” (Building Decree 2012, Article 4.19(1)). 

The second group is structural requirements which consist of all the conditions prescribed for 

the load-bearing structure. Consequently, all roles related to the load-bearing structure should 

use this category. These could be structural engineers, structural designers, fire-safety 

engineers and even façade designers when designing the load-bearing structure for the façade. 

The functions used here are specific to the content and are more in calculation forms like 

bending resistance, shear or any similar check depending on the chosen material. The main 

requisite for structures from the Building Decree is given in a functional form, and it is: “A 

load-bearing structure shall not collapse, during the designed useful life referred to in NEN-

EN 1990, under the fundamental combinations of loads as referred to in NEN-EN 1990.“ 
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(Building Decree 2012, Article 2.2.). But it refers to Eurocodes in which are given methods to 

quantify the requirements and assess the performance of the design. 

The requirements related to building physics form the third category. Usually, there are five 

building physics fields: Heat, Air, Moisture, Light and Acoustics, and this requirement category is 

reserved for experts from these areas. Therefore, the functions needed to check code compliance 

are very diverse, and some of them are energy performance coefficient, lighting intensity, minimum 

noise protection and many more. One representative of this group can be: “An exterior partition of 

a staying area, toilet space or bathroom space shall have a heat resistance as determined in 

accordance with NEN 1068 at least equal to the value given in Table 5.1.“ (Building Decree 2012, 

Article 5.3(1)). 

In the last group are assigned all requirements related to services. The electricity, heating and water 

system designers are the target group for it. The functions required for code checking are very 

diverse to be able to cover those complex fields. Some of the functions needed for the Grasshopper 

tool are nominal pressure, presence of emergency lights, voltage requirements and many more. The 

example of provision from Building Decree is: “A proposed gas supply shall comply with: NEN 

1078 for a nominal operational pressure not exceeding 0.5 bar and NEN-EN 15001-1 for a nominal 

operational pressure exceeding 0.5 bar but less than 40 bar.“ (Building Decree 2012, Article 

6.9(1)). 
In the following Table 2 is shown the summary of analysis based on roles who are using them 

and the type of functions that are needed.  

 

Table 2. The characteristics of different groups of requirements 

  Architectural req. Structural req. Building physics req. Services req. 

Roles using it Architect 

Structural 

engineer 

Fire safety 

designer 

Façade designer 

Climate designer 

Acoustics designer 

Electricity 

designer 

Water supply 

designer 

Heating system 

designer 

Type of 

functions 

needed for 

verification 

Spatially related 

functions: 

Min. and max 

distance 

Length 

Height 

Structural 

calculations: 

Bending 

resistance 

Shear resistance 

Torsion resistance  

Energy performance 

coeff. 

Thermal resistance 

Lightning intensity 

Minimum noise 

protection 

Presence of 

emergency lights 

Nominal pressure 

Voltage 

requirements 

 

4.1.2. Logical structuring into requirements management software 

The process of putting the requirements into requirements management software is going 

parallel with grouping and collecting. Regardless of which requirements management software 

is used, the type of data that has to be input is always the same. So, there is a need for a 

standardized table or template for input to ensure that all the necessary data are collected. The 

standardized table should have seven main columns, which represents: 
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1.) Object 

This is the “substance” that has some property that has to be checked. In Chapter 3 are 

listed all object levels or types of objects that can be distinguished from the Building 

Decree. For example, the object can be a whole building whose area should be checked 

or a concrete beam with sufficient bending strength. In the case of the presence 

requirements, the object is the thing that must contain the property. 

 

2.) Property 

The property is an attribute or quality of an object that is being checked. In other words, 

it has to match some predetermined value or range of values. For instance, if a building 

must have more than 100 m2 of area, then the area is the property that has to fulfil the 

requirement of 100 m2. In case of presence requirements, the property is a thing that 

has to be contained in an object. 

 

3.) Limiting operator 

The limiting operator determines the required relation between the property and the 

limit value. There are five basic limiting operators: Greater than (>), less than (<), equal 

(=), greater than or equal to (≥), less than or equal to (≤). 

 

4.) Limit value 

The limit value is a target value that the property has to fulfil. 

 

5.) Unit of measurement 

The unit of measurements is fundamental to define to get correct results. A number 

without a unit of measure does not have any meaning. In the case of the presence 

requirement, the unit of measurement is “property”. So, for example, if the rule is that 

the kitchen must have two power outlets, then the power outlet is property but also the 

unit of measurement. 

 

6.) Determination method 

The determination method is an extra column that is not necessary for all requirements. 

For example, if the area has to be checked, there is no need to specify the determination 

method because that is something fundamental and understandable to everyone. But, if 

the shear strength of a concrete beam has to be checked, then some document in which 

the method is explained should be provided. In this case, the EN-1992-1-1. This is 

important for the building of a code in visual programming language environment later. 

 

7.) Conditions 

The column with the conditions is necessary to have in order to define more complex 

requirements, which are constructed from two or more requirements that have specific 

relations. It is essential to decompose the one big requirement into a set of more small 

ones and then, after putting them in requirements management software, connect it with 

AND, OR, IF and THEN operators. For instance, in a requirement: ”a floor which is 

more than 13 m above an adjacent floor, grounds or water, shall have a floor partition with 
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a height of at least 1.2 m as measured from the floor.„(Building Decree 2012, Article 

2.8(2)) it is first necessary to check one condition before checking the main requirement. 

So, here the condition is that floor is more than 13 m above an adjacent floor, ground or 

water, which has to be defined as a requirement which IF is TRUE THEN the core 

requirement of the article should be checked. In this case, that would be is the height of the 

partition at least 1.2 m. 

 

The example of a template is shown in Table 3 in which is analysed the Article 2.8(2) from 

Building Decree 2012. 

 

 

Table 3. Template for the input of requirements into requirements management software 

Rule 

nr. Object Property 

Limiting 

operator 

Limit 

value 

Unit of 

measurement 

Determination 

method Conditions 

1.1 Floor 
Distance 

from 
ground 

≥ 13 m 

The distance 
measured from 

the ground, 
water or 

adjacent floor 

  

1.2 
Floor 

partition 
Height  ≥ 1.2 m 

Height 
measured from 

the floor 

IF 1 TRUE, 
THEN 
check 

 

4.2. Interpretation of requirements 

 

The second step in an automated code checking process is the interpretation of the 

requirements. After collecting all of the requirements, it is necessary to build the computer-

readable code in a visual programming language, which is then used to perform the checks. 

This step is very complex to automate, therefore it will be divided into two phases. The first 

phase is still manual to a large extent because the designer has to build the code by using 

previously defined functions in a Visual Programming Language environment. After the 

science develops more reliable methods based on natural language processing or some other of 

the proposed principles, the code building can be fully automated. So that would be the second 

phase. 

 

4.2.1. Phase 1: Manual code building 

 

In the first phase, the “scripting” part will be still done manually by a designer who wants to 

check specific requirements. Scripting, in this case, means dragging onto a canvas and 

connecting functions that a software developer has already defined. This means that the 

designer must understand the logic of the requirement, which functions to use and in what order 

to connect them. This approach can be classified as a white-box approach, but it becomes a 

black-box at some point. While a designer can see all functions and the flow of the checking 

process, which is the characteristic of the white-box approach, at the same time, he must use 

previously defined functions that he cannot manipulate. So, from that, it is visible that the 
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black-box approach is necessary for simplicity at some point. For instance, to check the 

maximum distance between two objects, the function maxdistance has to be developed, which 

is a very complex process, and the designer is not interested in it. He must have it ready for 

use. Of course, the designer must trust these previously defined functions. Figure 3 shows 

graphically how the deeper level of one predefined function looks like, and it represents the 

part inaccessible to the designer. 

 

 
Figure 3 Internal structure of predefined function which is not accesible to designer 

To have a well functioning tool, it is necessary to predefine a few categories of functions: 

      

- Methods for determination (role-specific): This category covers the role-specific 

methods for determining compliance with the codes. The four presented groups of 

requirements use very diverse determination methods, so the functions must be 

developed in cooperation with a specialist from specific roles. Also, the structure of 

these functions and how they operate are very different, so it is desirable to have four 

divided parts of the Grasshopper tool, each for one requirement group. 

For example, the structural part needs functions that can calculate and check the 

bending strength of the beam, or deflection, while building physics related part needs a 

function for the thermal resistance of the wall. Furthermore, more geometric related 

functions are needed for the architectural group. 
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- Reporting functions: The functions that can be used for generating stand-alone 

reports; usually PDF outside of the Grasshopper environment 

- Basic functions: It is necessary to have basic methods which enable the proper 

functioning of the tool. These functions are mainly already defined in Grasshopper and 

serve for calculations, defining objects, properties, limits and relations. These include: 

• Logical functions: operators such as Boolean values, And, Or, If, Then 

• Mathematical functions: basic calculation operators (Plus, Minus, 

Product, Division) and set operators (Union, Intersection, Complement, 

Difference) 

• Geometric-Topological functions: spatial predicates returning a 

Boolean value including topological predicates (Equal, Disjoint, Touch, 

Overlap, Contains, Within), geometric predicates (CloserThan, 

FartherThan) and directional predicates (Above, Below); geometric 

evaluation operators (ShortestDistance, MaximalDistance…) 

(Borrmann, Hyvärinen and Rank, 2009) 

• Objects: Functions for defining objects are important for the building 

model preparation stage. The designer must be able to extract and define 

an object whose properties have to be checked. 

• Property: Property functions are similar to object functions and have the 

same purpose. The only difference is that these are the subject of 

checks. 

• Limiting operators: The basic limiting operators are already defined in 

the Grasshopper environment. 

 

 

If the designer has all of these functions already defined, he should just follow the logic of the 

requirement and connect the appropriate functions to perform the check. The specific 

instructions and examples are given in the second part of the research. 

The logic and development process of all these functions is too broad for consideration in this 

research. Only a few functions required for the test case will be explained more deeply in the 

following chapters. 

 

4.2.2. Phase 2: Automated code building 

 

The second phase of the script building would be automated, which means that software would 

be able to read the tables from requirements management software and then generate the script 

for code checking.  

For automatic translation, many concepts are developed, and the most recent ones are based on 

semantics and syntax analysis of codes which are then implemented in natural language 

processing (NLP) scripts. That type of software is still not developed to a level when it can 

operate without problems. The main reason for that is the nature of the requirements, which 

are written in human language, and to a large extent, based on experience and adaptability of 

the human mind. Therefore, there is no standardized specific logic behind all requirements, 
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making it very hard to implement it in some natural language processing software. 

Furthermore, even when science succeeds in overcoming these obstacles, it is important that 

the designer can act and manipulate the script in Grasshopper, enabling the white-box 

approach. The functions used are the same as in the previously explained manual process. 

 

4.3. Building model preparation 

 

Before performing the checks, all required information must be extracted from the building 

model. In the past, while 2D drawings were still the main subject of communication, the most 

crucial property of the drawings was that they must be visually correct and to have included 

various information needed for rule checking. After the development and spread of BIM-based 

software, this has changed. The objects that are being checked now consist of more data, like 

type and properties. For instance, an object that looks like a staircase but is defined from small 

slabs will not be interpreted as a staircase in software. It has to be converted to a stair object 

by assigning some of the stair properties such as riser, tread, run etc. Therefore, the building 

models nowadays must fulfil much stricter prerequisites than earlier drafts (Eastman et al., 

2009). 

The building model preparation process in a Grasshopper tool has to be developed in two 

phases. In the first phase, only Grasshopper building models can be used, while in the second 

phase, the tool should be able to handle inputs from a variety of BIM software which opens 

much more space for usage. In this project focus will be on phase 1. 

 

4.3.1. Phase 1: Checks on Grasshopper models 

 

The first phase would be to work only on models that are being developed in a Grasshopper 

environment. That kind of tool is easier to make because it does not need to communicate with 

a variety of other software to get all the required data. It is possible to make a tool that only 

uses Grasshopper models due to a large number of plug-ins for Grasshopper, which allows a 

different type of analysis of the building design.  

Depending on the requirement group, building model preparation differs significantly. Also, 

the separate model views should be used to derive the specific data and to extract required 

elements or objects, which is also proposed by Han et al.(Han, Kunz and Law, 1998). Almost 

all research until now followed this approach.  

In general, there are three model preparation steps: 

1.) Acquiring data from the already existing model – The first step in the building 

model preparation is acquiring data from an already existing model. These are the 

general data about objects and their properties related to geometric, materials, 

quantities etc.  

2.) Assigning new data to existing models – In some cases, it is necessary to give extra 

input to the model to make it suitable for performing specific checks. For example, 

the use functions of the room are maybe not specified in the original model, and 

they are necessary for some checks. Furthermore, sometimes it is necessary to 

define borders between some objects, rooms, use functions etc. 
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3.) Performing additional analysis for role-specific checks – This step requires different 

approaches for a different group of rules. For instance, to check the design's 

structural integrity, it is necessary first to run some FEM software and get the data 

like stresses and deformations. Only after the collection of this information it is 

possible to perform the checks. A variety of plug-ins for Grasshopper have to be 

used for this part of the building model preparation. Of course, each role uses its 

own plug-ins, making this step hard to tackle without input from role experts. 

 

4.3.2. Phase 2: openBIM – checks on models from different BIM sources 

 

In the second phase, the Grasshopper tool should be enriched with the possibility to 

communicate with various third-party software and check the models made outside of its 

environment. As in phase 1, these software differ per specific requirements group and roles. 

Some of the basic software that should be involved are BIM-based programs for architects, like 

Revit, Allplan; structural FEM software like Diana, Robot, Scia, etc. For the other two groups, 

software most used by the designers should be included as well. One of the leading problems 

is proper data transfer from software to software. All these uses different data languages and 

structures, which makes the connection difficult. 

 

4.4. Checking phase 

 

The checking phase is a stage in which the Grasshopper script is run, and the computer is 

performing calculations to get the results. Manual work is not present here, and the designer 

only has to wait for the report.  

The checks can be performed whenever the designer wishes to verify something, it is only 

important to go through the first three steps of the process to ensure that all required data are 

prepared. So, this could be used during the designing process to verify the chosen solutions 

immediately, but of course, it can be used only in the end as well, which is more suitable for 

regulatory bodies.  

The designer or officer must have complete trust in this step, so the functions and the tool must 

be adequately tested. Just a tiny mistake in the checking phase could ruin the tool’s reputation. 

 

4.5. Reporting of the results 

 

The last step of the automated rule checking process is a reporting of the results. Satisfactory 

design conditions must be separated from those that failed to fulfil the limits.  

 

There are some general rules that the reporting part of the tool must have. In the report, specific 

objects and properties must be related to the requirement, so if the condition is not fulfilled, it 

can be detected which object missed the goals. For example, there are many beams in the 

building, so the one that fails must be easily indicated. The tool should have the option to place 

the camera view on the object that did not satisfy the requirement, which improves the 

effectiveness of the communication.  
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Furthermore, the specific design and look of the report depend on the requirements group which 

is being reported. Also, it depends on reporting requirements from a regulatory body to a large 

extent. It may even be necessary to show the calculation steps and assumptions used in a 

process for some provisions. Therefore, the specific report design must be developed in 

collaboration with role-specific designers and according to regulatory requirements for the 

reports. 

  



23 

 

5. Modelling of the tool 
 

Before the actual modelling of the tool, it is necessary to define a scripting procedure and 

structure of the functions. This chapter starts with describing the objectives and requirements 

which the tool for automated testing of building design must fulfil. Afterwards, all parts of 

system architecture are explained, how they work and communicate among themselves. The 

final chapter gives instructions for developing the functions of the tool in Grasshopper’s 

environment.  

 

5.1. Functional requirements for the tool 

 

The first step in developing a tool is setting up the functional requirements that a well-

functioning tool must have. Here are shown only general functional requirements. Many more 

detailed requirements are specific to a certain part of the tool, but these are not in this project's 

scope. For example, when the real tool will be developed, there will be conditions on how the 

report should look like, which checks the tool must be able to perform etc.   

 

Speed 

 

One of the crucial properties that the tool for automated testing of building design must have 

is a reasonable speed to perform the checks. The definition of reasonable time spent on checks 

changes depending on the purpose of the checks and who is performing them. Suppose the 

checks are performed only at the end of the designing process, like in a case of a regulatory 

body. In that case, the speed can be lower than if the designer uses the tool for continuous 

checking of building design. The speed of the checks is also important when a large number of 

checks has to be verified because considerable computational power is required for it. Many 

techniques can be used to increase the speed of the script, and that will be elaborated in one of 

the next chapters. 

 

Robustness for the input data 

 

The robustness of the tool is an important property that a developer must strive for while 

developing the tool. This means that the functions should be able to work with different types 

of data. More specifically, the tool should be able to perform checks on many types of buildings 

with different types of materials and geometric shapes. For instance, the function for 

verification of minimum distance between two objects must perform the check no matter are 

these objects defined in a Grasshopper as curves, surfaces or points. More precisely, the tool 

must not be dependent on a particular type of data that is being input.  
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Extensibility 

 

The tool must be structured in a way that the database of functions can be extended easily 

following the same logic and without making a fundamental modification in a tool’s structure. 

If the designer understands the proposed framework and logic of the tool, he should be able to 

add new functions for verification and then, if necessary, develop even the functions specific 

for the design that is being verified. 

 

5.2. System Architecture  

 

The system architecture of the tool for automated testing of building design consists of four 

main parts. The central part is a computational engine operating in a visual programming 

language environment, which serves as a tool for building and running scripts for verification. 

The next important component is the designer, who is the user of the tool and serves as an 

intelligent manual force to support the work of the computational engine because the latter is 

not able to acquire and process all necessary data on its own. Another component of the system 

is the requirements management software which serves for collecting and structuring all 

requirements. Finally, the visualiser makes the last segment of the system. It serves as a support 

for communication between designer and computational engine. In Figure 4, the conceptual 

map of system architecture is shown.  

 

 
Figure 4 Four elements of a system architecture 

 

All these four fundamental segments are repeatedly used during the verification process. To 

completely understand how the tool functions, it is necessary to zoom in on each of the five 

steps proposed in the framework and analyse which of the basic segments and software are 

used. Also, the data flow between steps must be examined.  

 

1. Requirements defining and logical structuring into RMS 

 

The two main components that operate in the first step of the process are designer and 

requirements management software. The designer’s responsibility is to collect all the 

requirements and input them in requirements management software by using a standardized 

table. The data put in requirements management software are words, numbers, and relational 

operators, representing the meaning of the requirement. The specific categories used in the 
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table are explained in Chapter 4.1.1. For this project, Microsoft Excel served as an improvised 

requirements management software. The initial idea was to use Briefbuilder as requirements 

management software, but since the API between Grasshopper and Briefbuilder has not yet 

been developed, it was left for later research. The requirements management software is used 

for storing, organizing requirements and tracking the verification process. After the 

requirements are put in requirements management software, they are sent to the computational 

engine, which is, in this case, visual programming language-based software Grasshopper. In 

this project, data as rule number, limiting value, limiting operator and units are sent 

automatically from the Excel table to Grasshopper. If the Briefbuilder had been used, the table 

would have been converted into a json file that can be manually imported in the Grasshopper 

environment. Later, in phase 2, the API between requirements management software and the 

computational engine should be developed to ensure automated and continuous communication 

between system architecture components.  

 

2. Interpretation of requirements 

 

In the second step, the communication between the designer and the computational engine 

takes place. The designer uses predefined functions to interpret data from the requirements 

management software table and make a logical script that is performing verification. This step 

relies on the designer’s intelligence and ability to interpret the logic of the requirement 

correctly. Also, the computational engine reads the data obtained previously from requirements 

management software to get the limiting values. The limiting values are expressed in number 

format, both float and integer. For some checks, the limiting value is not expressed in quantified 

value immediately, therefore the function has to calculate it. In that case, the function has 

already a built-in method for the determination of the limiting value. An important remark is 

to ensure that units of measurements are the same in the requirements management software 

table and Grasshopper model.  

The main functions that the designer has to connect in Grasshopper in this step are the method 

for determination, relational arguments between two requirements in case of the complex 

requirement and assigning the appropriate number to the requirement. The input of the 

requirement number in the method for determination must match a certain number in 

requirements management software. By assigning that number, the function can get the limiting 

value, limiting operator and units from the requirements management software table. After 

choosing an appropriate method for determination, the designer has to define which data must 

be prepared and acquired in the next step of the process  

 

3. Building model preparation 

 

In the building model preparation step, the designer communicates with the computational 

engine, more precisely with Grasshopper and its plug-ins, to input all necessary data in the 

method for determination function. In this step, different types of data flow through the system. 

As previously explained in Chapter 4.3.1, the building model preparation consists of three 

steps. The first step is acquiring data from the already existing model when the designer selects 

the objects from the Grasshopper model and then connects it to the method for determination 
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function, which can read its properties. The second step is assigning new data to an already 

existing model, and here the type of data that is input depends on the check. It can be some 

geometric property, integer, float, string etc. For example, to verify the bending resistance of 

the beam, the designer must input the appropriate partial factor for materials. Lastly, the third 

step is performing additional analysis for role-specific checks. This step is necessary to perform 

to get the data that the tool is not able to calculate on its own, therefore it needs help from a 

designer. The type of data obtained from this step varies per check, but most often, it is a 

number that describes the checked property and is compared to the limiting value afterwards. 

For instance, to verify the already mentioned bending resistance, the tool must get data from 

structural analysis. The structural analysis should be performed during the designing phase, so 

it should already exist in the script. Therefore, the designer does not have to make it specifically 

for the verification process but only to connect appropriate data from it to the method for 

determination function. 

After all necessary data are prepared by the designer and sent to the method for determination 

function, the tool is ready for performing verification. 

 

4. Checking phase 

 

The checking phase is a step in which is involved only the computational engine. It processes 

all acquired information and performing the checks. The most important property of this step 

is to have a reasonable operational speed. After the checks are completed, the Grasshopper 

script in this step produces a string with the value Pass or Fail, which indicates compliance 

with the requirement. Subsequently, the string with compliance is being sent to the last step of 

the process. 

 

5. Reporting phase 

 

The last step in the automated code checking process is a reporting of the verification process. 

As previously described, this step depends a lot on the purpose of the report and the body that 

issues it. In general, the computational engine in this step gets the string with a Pass or Fail 

value related to the requirement number. Then it has to process and structure the compliance 

in a way that suits the designer the best. In some requirements, additional data are sent from 

step 4 to step 5, such as calculations for structural checks, but the processing part is similar. 

The computational engine also has to communicate with the visualiser to make the indication 

of the failed objects easier.  

Another aspect that is interesting for the future is communication between computational 

engine and requirements management software. After the Grasshopper performs the checks, it 

should also send the string with Pass or Fail value to the requirements management software 

to have the fully automated process. This is the main reason for choosing MS Excel as a 

requirements management software because it is simple to synchronize it with Grasshopper. 

On the contrary, if Briefbuilder had been used, then communication between Grasshopper and 

Briefbuilder would not have been possible due to missing API. 
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The visualisation of the software used and data flow between steps is shown in Figure 5.  

 

 
Figure 5 The components used and data-flow per each step of the process 

 

5.3. Instructions for developing Grasshopper functions 

 

In Chapter 4.2.1, the three groups of predefined functions that are necessary to be developed 

for the code checking process are given and explained. These are: Methods for determination, 

Reporting functions and Basic functions. As is already mentioned, these functions have to be 

developed by a software developer and ready for use by a designer.  

 

The fact that requirements do not have any standardised logic and differ a lot per requirements 

group makes it very hard to define standardised instructions or template how to develop these 

methods for determination. Nevertheless, there are some general rules applicable to all 



28 

 

requirements that must be followed to make a tool with sufficient speed, robustness, and 

extensibility. The instructions for making predefined functions will be given per each function 

group. 

 

5.3.1. Basic functions: Objects, Properties, Limiting operators etc. 

 

The first group to be observed are basic functions that contain objects, properties, limiting 

operators and other logical, mathematical and geometrical functions. They will be explained 

together at once because these functions are mostly already available in the Grasshopper 

environment. Therefore, they do not have to be developed specifically for this project. 

Grasshopper has an extensive library of functions divided into few categories: Params, Maths, 

Sets, Vector, Curve, Surface, Mesh, Intersect, Transform. These categories contain all 

necessary functions to select objects, define relations between them, manipulate the lists, set 

limiting operators etc. In other words, all data preparation and selection can be made with 

functions from Grasshopper. The functions for defining and calculating the value of properties 

are also already in Grasshopper or in plug-ins for it. As an example, it can be used the standard 

check for bending resistance of the steel beam. In order to verify the check, bending action has 

to be compared to the bending resistance of the beam. In this case, bending action is a property 

that has a particular value. The value can be derived from the structural analysis made by some 

of the plug-ins for Grasshopper, like Karamba or Kiwi. This example gives an insight into how 

plug-ins for Grasshopper can be used to define properties and their values in the script.  

The functions for synchronization of requirements management software and Grasshopper 

script can also be classified as basic functions. It is crucial to have two-way communication 

between requirements management software and Grasshopper to ensure continuous verification 

tracking. Those functions are highly dependent on the requirements management software 

used, and API with Grasshopper must be developed. Since this is not part of the compliance 

checking, further instructions will not be given for it, and it is left for programmers and 

developers of requirements management software to work on it. 

Another essential function to have is the one for connection of complex requirements. The 

concept of complex requirements is explained in Chapter 4.1.2. That function can be scripted 

using GHPython. It just has to check if the output of the first sub-requirement is True or False 

and subsequently send the appropriate information to the next check, which depends on the 

compliance of the previous one.  Also, this function must store the data about all sub-

requirements to have it in one place, enabling generating the report fast. But, function for 

complex requirements is not in the focus of this project because no complex requirements are 

used, therefore it has not been scripted nor explained to the details.  

Considering all of that, it can be concluded that the designer who is performing the checks must 

have a good understanding of the Visual programming language environment, especially its 

functions and logic of operating script.  
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5.3.2. Methods for determination 

 

The central part of the verification script is a method for determination. That is a predefined 

function made separately and uniquely for each check. All other methods are used to collect 

data and feed the method for determination, which is then processing that data, performing 

calculations, and finally comparing the real and limiting value.  

Figure 6 shows the concept of the method for determination component in the Grasshopper 

environment. On the left side are inlets that serve to input the data into the component, while 

on the right side are outlets that send out the processed information after the check is performed.  

 

 
Figure 6. Concept of the method for determination function in Grasshopper 

 

Figure 6 also shows which are standard inlets that every method for determination must 

contain. These are: 

 

- Rule nr: each method for determination must have an inlet for rule number because all 

requirements have one, and it must flow through the whole process to track which 

requirements are already verified and do they pass or fail. Rule nr must be input as a 

float number. The reason why it is a float and not integer lies in the fact that many 

requirements are composed of a few sub-requirements. In that case, all sub-

requirements have a number consisted of the main requirement number and, after the 

decimal point, the number of that sub-requirement, which always starts from 1 for each 

requirement. The example can be seen in Table 3. 

 

- Objects: the inlet for one or more objects is reserved for a specific object whose 

property is checked. In this inlet can go a wide variety of data depending on the specific 

check, but most often that is an object in Grasshopper consisted of points, curves and 

surfaces.  
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- Additional data: another inlet on the input side is for the additional data required for 

performing the checks. The example shown in Figure 6. has only one inlet for additional 

data, but in reality, that depends on the specific check. Some methods for determination 

do not need any additional data, while some need a few of them. For example, the 

additional data could be results from structural analysis or specific partial factors that 

the designer must define.  

 

- Limiting value: the inlet for limiting value is not mandatory for all methods for 

determination component. It will often be there, and then it takes a number in a float or 

integer form. In cases where the limiting value is unknown, it has to be calculated or 

determined inside the method for determination. Therefore, it needs additional data 

which are input previously, and the type of data varies per check. For instance, that 

situation is seen in most structural checks, where limiting value is a resistance that 

depends on many factors and has to be calculated inside the component. This is 

explained more in deep later in the text.  

 

- Limiting operator: the input for the limiting operator is one of the fundamentals. The 

designer must input or from requirements management software can be acquired the 

limiting operator, which is then set between limiting value and value of the property. 

Afterwards, the script can determine is that correct or not.  

 

- Boolean: the last inlet which every method for determination component must have is 

an input for Boolean value. The method for determination is run once when it receives 

the true value from the Boolean inlet. This is an important inlet to have in order to 

handle more complex requirements consisted of two or more sub-requirements. After 

the first sub-requirement is checked, depending on its result, the second sub-

requirements will be run or not. In the case of complex requirements, the Boolean value 

is obtained from an “IF-THEN” function. 

 

Furthermore, in the same Figure 6, standard outlets are shown that every method for 

determination function should contain. These are: 

 

- Details: the first output is reserved for details that are specific for each method for 

determination. From that outlet, a component can send the various type of data that are 

calculated inside it. This largely depends on the type of requirement. For example, if 

the component for verifying maximal distance is used, the details outlet can give the 

value of distance that is being compared to the limiting value. Furthermore, if structural 

requirement is observed, then the outlet can provide some steps of calculation procedure 

for limiting value. 

 

- Compliance: the most important data given by the method for determination 

component is compliance with a requirement. The second outlet serves for that purpose 

and it provides Pass or Fail string.  
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- Rule nr: the last outlet of the component gives a rule number, which is the same one 

as entered the component. 

 

An important remark is that every inlet works with a specific type of data, and the designer 

must take care while using the component to input appropriate data. In Figure 7 is marked in 

red the description that software gives to the user when the mouse cursor is placed on top of 

the inlet’s name. 

 
Figure 7. The specification of general description and data type used(bool) for a particular inlet 

 

After defining standardised input and output parameters, the internal structure of the method 

for determination components must be examined. The method for determination functions can 

be separated into two main groups, for which will be given a general outlook of the internal 

structure. The two groups are: methods that calculate the value of the property or action; and 

the second methods that calculate the limiting value. All components from both groups 

compare the value of the property and limiting value after the calculation part.  

 

The first group are methods that calculate the value of the property or action. The important 

attribute of this group is that the limiting value is input as a quantified number and then the 

method calculates or determine the value of the specified property. In this group would go most 

of the geometric related checks. In geometric checks, the limits are prescribed before, but the 

real value from the model has to be determined and then compared to the limit. There are three 

specific parts of the script for components from this group: 

 

- Data filter: a large number of checks must have the data filter part of the script, in 

which the type of input data is being detected and depending on that, the further 

procedure is determined. To give an example, it can be used a check for determining 

the distance between two objects. The objects can be given as a point, curve or surface, 

and the method must determine the distance regardless of the object type that is input. 

The exact way of calculating the distance depends on which object type is being 

analysed, so the developer must think of all possible options and develop a mini script 

for each option inside the big script. In case that method for determination has to work 

with only one type of data or the procedure is the same for any type, then the data filter 

part of the script is not present.  
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- Calculation/determination part: the central part of the script is a part that calculates 

the value of the property. The developer must strive to come up with an optimal solution 

for a script. This is important in order to fulfil one of the most important requirements 

for the tool, speed. Also, the developer must come up with solutions for all realistic 

types of data that could enter the component.  

 

- Comparison part: the final part of the script inside the method for determination 

components is a comparison part. Logically, in this final stage, the script compares the 

value of the property, calculated in the previous step, with a limiting value received by 

the designer or requirements management software table directly. Finally, the results of 

the comparison are handed to component outlets. 

 

The second group are methods that calculate the limiting value. The important attribute of 

this group is that the value of the property is input as a quantified number, and then the method 

calculates the limiting value. In this group would go most of the structurally related checks. In 

structural checks, the action values are calculated by using some plug-ins prior to entering the 

method for determination, and then inside the method, the resistance of the element is being 

determined. There are three specific parts of the script for components from this group: 

 

- Data processing part: the first part of the script inside the method for determination 

components is a data processing part. For performing a calculation, it is necessary to 

have a large amount of adequately structured data. While developing the component, 

the developer should strive for a solution in which the designer has to do the least 

amount of work possible. The perfect solution is the one in which the designer input 

the required data, and the component can structure the data itself properly for later 

usage. This can be achieved with no problems by restricting the type of input data. For 

instance, if the component is restricted to working only with the Karamba plug-in, then 

the designer can just connect the Karamba model, and the component can easily read 

and structure all required data. But, in that case, the designer is forced to use the 

Karamba plug-in for FEM analysis, which may not suit his preferences. So, there is a 

trade-off between the robustness of input data and level of automation or precisely the 

designer’s involvement. 

 

- Calculation part: the central part of the script is a part that calculates the limiting 

value. Most often, for this part developer must use a specific procedure prescribed in a 

particular code, for example, Eurocode. Therefore, the developer must analyse the 

required documents and find an appropriate determination procedure or get help from 

a specialist in the field. Formulas for the assessment should be input by the GHPython 

component, which is able to perform all calculations.  

 

- Comparison part: the final part of the script inside the method for determination 

components is a comparison part. Logically, in this final stage, the script compares the 

value of the property received from a designer with a limiting value calculated in a 

previous step. Finally, the results of the comparison are handed to component outlets. 
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Regardless of which method for determination is being scripted, the developer must strive for 

the optimal solution. Also, for each check, it has to be decided what is the perfect ratio of 

manual work from the designer and the robustness of component with performing speed. If the 

designer derives all data manually before sending it to the component, then the computational 

engine does not have much work and can perform the check very fast. But in that case, the 

designer has made a lot of effort. Since the project's goal is to automate the process as much as 

possible, the large involvement of the designer is not desirable. Contrary, if the designer only 

connects the model to the method for determination and does not specify everything in detail, 

then it will take much more time for the computational engine to perform the check. Therefore, 

while developing the method for determination, it has to be tested which speed can be achieved 

with the least involvement of the designer, and then in few iterations, the optimal solution can 

be found. The speed of each check is very important in a situation where tens or hundreds of 

checks will be verified simultaneously. 

 

Before scripting, the designer should make a plan and a structure for developing the script 

inside the component. For that reason, a template Table 4 is created. This table serves as a 

starting point for a designer to specify which additional input data are needed and for which 

data type each input must be scripted. After the input and output are described, then designer 

in the last row can explain how the script works and its purpose. 
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Table 4. The template for describing the method for determination 

Name of the method for determination 

    Data type Description 

Input  

Rule nr     

Objects     

Additional data     

Limiting value     

Boolean     

Output 

Details     

Compliance     

Rule nr     

Description of 

script's operation 
   

 

 

After the method for determination is finished, the developer must give it a logical name and 

write a one-sentence description that explains what is doing that exact method for 

determination. This information must be specified in the Grasshopper environment, so that 

designer can simply understand every component. In Figure 8 is shown how that should look 

in general, and in Figure 9 is shown how that looks like for one already existing Grasshopper 

component. 
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Figure 8.The general example of component's description 

 

 
Figure 9. The component for determining Area and its description 

 

 

 

 

5.3.3. Reporting functions 

 

The last group of functions necessary for the tool’s operation are the ones that enable generating 

the report of the check outside of the Grasshopper environment. The type of the report and 

details in it depend on the specific requirement and for what purpose it is used. Since reporting 

is specific for each situation, it is hard to give general instructions for scripting those functions. 

Therefore, the developer must find the best way of reporting ‘on the spot’ for each purpose, 

and further instructions will not be given inside this project. 
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6. Developing of Grasshopper functions – examples 
 

This chapter explains the path of developing the two functions of the prototype tool and how 

the functions operate. The first function is geometry related, and it is one where the method for 

determination calculates the value of the property or action. The second function is a structural 

check for flexural buckling, where the method for determination calculates the limit value. To 

test the framework and prototype tool, the additional functions for verifying requirements are 

developed. These are:  

 

 The functions in which script is determining the value of the property: 

- Distance between objects 

- Intersection of objects 

- Minimum height of the object 

 

 The functions in which script is determining limiting value: 

- Bending check on steel profiles 

- Axial force check on steel profiles 

- Bending + axial check on cross-section level 

- Flexural buckling check 

 

During the scripting of the tool few plug-ins for Grasshopper were used, and these are: 

 

Karamba3D 

Karamba3D is a parametric structural engineering tool that provides accurate analysis of spatial 

trusses, frames and shells (Karamba3D, 2021). It is finite element software fully embedded in 

the Grasshopper, which enables real-time analysis of the structures. Karamba3D enables the 

easy combination of parametrized geometric models, FEM calculations and optimization 

algorithms from other plug-ins. In this project, it is used for the verification of structural 

requirements. 

 

GHPython 

GHPython is the Python interpreter component inside the Grasshopper environment that allows 

to execute dynamic scripts of any type (Food4Rhino, 2021a). It enables using many Python 

and .Net modules and libraries inside the Grasshopper. In this project, it is mainly used for 

working with data (structuring, extracting etc.). 

 

Pterodactyl 

Pterodactyl is an open-source plug-in for Grasshopper created for the purpose of generating 

custom documents, reports, articles etc. (Food4Rhino, 2021b). It enables updating the 

documents in real time. In this project, it is used for generating structural reports. 
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TT Toolbox 

TT Toolbox is a plug-in for Grasshopper made by CORE Studio, and it has a wide range of 

functions (Food4Rhino, 2021c). The most important function for this project is the connection 

of Microsoft Excel with Grasshopper, which is used to read the requirements table and write 

the compliance in it after performing the checks. 

 

6.1. Distance between two objects 

 

The function for comparing the distance between two objects to a limiting value is a basic 

example of a function in which the script calculates the value of the property, in this case, the 

value of the distance. Figure 10 below shows the input and output parameters of the function, 

these are the standardized ones as explained in Chapter 5.3.2. Working with this function is 

very simple, and the designer has to input the main object and other objects from which the 

distance has to be checked, rule number and Boolean value to run the script. The limit value, 

limiting operator and units are taken from requirements management software immediately, in 

a way that the designer has to input requirement number into the method and then it 

automatically acquires the assigned values. In practice, inlets for Limitvalue and Limitingop 

are combined into one, together with units, and then the excel table is directly connected into 

it. In Figure 10. this was separated to show all input data. 

 

 
Figure 10. Distance between objects function 

The internal structure of the method is shown in Figure 11. The structure is divided into three 

specific parts explained in the previous chapters. The first part is a Data filter that determines 

the object type and sends it to the appropriate part of the script in the calculation step. The 

object type can be point, curve, surface or brep and the procedure for calculating the distance 

between any of these two objects differs per type of object and its combinations. For the data 

filer and comparison part, the GHPython is used. The details of the script are shown in 

Appendix A. After a certain part of the calculation script is triggered, it calculates the distance 

and sends it to the comparison part, where the distance is compared to the limit value.  
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Figure 11. The internal structure of the function for determining a distance between objects 

During the scripting, the main problem arose because Grasshopper does not have a function 

for measuring the distance between two surfaces. Nevertheless, there is a solution to find that 

distance, but it is not exact and relies on dividing the surfaces into many points and working 

with distances between them. Unfortunately, by following that procedure certain level of 

measurement error must be accepted. Furthermore, the error can be lowered by increasing the 

density of the points, but then the tool's speed falls radically because it has to determine millions 

of distances. That shows the tool depends on Grasshopper’s abilities, and the developer must 

actively strive to find faster and more simple solutions while scripting.   

 

In Table 5, a description of the function is shown by using the standard table defined in previous 

chapters. 
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Table 5. Description of the function for determining a distance between objects 

Name of the method for determination 

    Data type Description 

Input  

Rule nr Float  

 The number which is assigned to 

the same rule in requirements 

management software 

MainObject 
 Point, Curve, 

Surface, Brep 

 The main object from which the 

distance is measured 

Object2 
 Points, Curves, 

Surfaces, Breps 

 Objects whose distance from the 

main object is measured 

Limitvalue  Float 

 The value of the border distance 

assigned to that rule in 

requirements management 

software 

Limitingop 
String (<, >, ≤ 

or ≥) 

The limiting operator assigned to 

that rule in requirements 

management software 

Boolean True or False  

 The Boolean Toggle function 

from GRASSHOPPER. When 

True, then check is run. 

Output 

Details 
 Strings and 

floats 
  

Compliance 
 String (Pass or 

fail) 

It says if the requirements 

satisfied  

Rule nr  Float 

The number which is assigned to 

the same rule in requirements 

management software  

Description of 

script's operation 

The script first determines the input combination of object types (Main 

object type + Object2 type). According to that, it makes appropriate lists 

with combinations and sends them to a part of the script which 

calculates the distance between exactly these two types of data. After 

the distances between MainObject and all Object2 are found, then the 

minimal is chosen and compared to Limitvalue.  

 

 

 

6.2. Flexural buckling 

 

The function for verifying the system members on flexural buckling is a basic example of a 

function in which the script determines the limiting value, in this case, the maximal value of 

the axial force in the element. Figure 12 below shows the input and output parameters of the 

function, these are the standardized ones as explained in Chapter 5.3.2. Working with this 

function is very simple, and the designer has to input only rule number, analysed model from 

Karamba and Boolean value to run the script. As it is already defined, in this project the tool is 

operating only with Karamba models. For the simplicity of the prototype tool and due to time 

restrictions, the function is limited to only steel I and H profiles from Eurocode. That does not 

make a difference in the tool’s structure or approach, more profiles would have only added 
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extra lines of the code in the data processing part of the script. Therefore, the addition would 

not have given any extra value for proving the framework. 

 

 
Figure 12. Method for checking flexural buckling 

The internal structure of the method is shown in Figure 13. The structure is divided into three 

specific parts explained in the previous chapters. The first part is Data processing which is 

extracting the data from the Karamba model and structuring it in a usable way. Karamba by 

default, gives the bunch of data in the form of strings appended in a list, so the script must first 

locate and take out the required information. More on this is given in Appendix A. After the 

data are prepared, it is sent to the second and third part of the script, which are combined into 

one GHPython function. The second part is a calculation, and the third is the comparison part. 

The calculation part is scripted by using the appropriate formulas from Eurocode by 

transferring them in GHPython’s lines of code. This check refers to Eurocode 1993-1-1 6.3 

(EN-1993-1-1, 2005). After the maximal axial force in the element is calculated by following 

the formulas from the code, the determined value is compared to the previously calculated 

value of the force in the member. The calculation of real force values in the element is part of 

the building model preparation step. The details of the script are shown in Appendix A. 
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Figure 13. The internal structure of the function for verifying the flexural buckling 

The structural checks like this one for flexural buckling are very similar in general and should 

not be too complex to script. The exception with steel are checks for lateral-torsional buckling 

and beam-column buckling in which the shape of the moment diagram between braces is 

important. In that case, the developer must come up with solutions to determine where braces 

are positioned and find out the shape of the moment diagram between them, which would 

probably require defining the segments of the moment diagram in a mathematical expression. 

Furthermore, in some more detailed checks, for example, on reinforcement level, new problems 

would arise due to limitations of the Grasshopper. But again developer would maybe be able 

to come up with an innovative solution. 
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In Table 6, a description of the function is shown by using the standard table defined in previous 

chapters. 

 

Table 6. Description of the function for verifying the flexural buckling 

Name of the method for determination 

    Data type Description 

Input  

Rule nr Float  

 The number which is assigned to 

the same rule in requirements 

management software 

Model 

Previously 

analysed 

Karamba model 

 The model which is analysed in 

the building model preparation 

step 

Boolean True or False  

 The Boolean Toggle function 

from Grasshopper. When True, 

then check is run. 

Output 

Details 
 Strings and 

floats 

Details about the utilisation of the 

elements  

Compliance 
 String (Pass or 

fail) 

If the axial force in the element is 

lower than maximal allowed 

according to the formulas, then 

the result is Pass. Contrary, the 

result is fail.  

Rule nr  Float 

The number which is assigned to 

the same rule in requirements 

management software  

Description of 

script's operation 

The script first extracts the data about all steel profiles used in a model. 

Afterwards, it determines the class of the cross-section. Then the 

calculation according to EC3 formulas is performed for each element to 

get the maximal force in it. Finally, the actual force in the element is 

compared to maximal to verify the design. 

 

 

 

6.3. Functions for synchronization of Microsoft Excel and Grasshopper 

 

The synchronization of MS Excel and Grasshopper is achieved by using the TT Toolbox plug-

in, which already has a built-in function that reads the Excel table and imports it in the 

Grasshopper environment. The example of the component is shown in Figure 14. The 

component imports the whole table, therefore it is necessary to have a GHPython component 

inside the method for determination which extracts specific data needed for the check. Those 

are rule number, limiting operator, limiting value and units. 
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Figure 14. Component for importing Excel table into Grasshopper 

The next component that had to be scripted is “Writing compliance in excel”. The input 

parameters are shown in Figure 15 and the inside structure of the component in Figure 16. 

It is important to input the exact file path and worksheet in which compliance has to be written. 

The third inlet is ContentFromColumns, and there has to be input Columns output of the 

component for reading the Excel table. This is necessary in order to determine in which row to 

write the compliance for specific requirement. Other input parameters are very logical, and 

these are compliance, rule number and Boolean value for running the function. Inside the 

function, two components from TT Toolbox are used WriteOptions and Write to Excel. Also, 

two GHPython components are used to determine the exact row number in which compliance 

has to be written.  

 

 
Figure 15. Component for writing compliance in excel 
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Figure 16. Inside structure of the component for writing compliance in excel 

 

6.4. Reporting function 

 

The final function that had to be developed is the one for generating the report. The input 

parameters of the function are shown in Figure 17 and the internal structure in Figure 18. The 

input parameters are Time in which time and date components from Grasshopper has to be 

input; Rule number; specific text to be written in the report and file path where to save it. In 

the Text inlet, already structured text has to be input, therefore inside the method for 

determination should be generated text for the report. The Details output in each method for 

determination is reserved for that, which has been already explained in chapter 5.3.2. The inside 

structure of the reporting function consists of three components from the Pterodactyl plug-in: 

Heading, Create Report and Save Report. Before that, one GHPython component is used to 

generate the Heading of the report.  

 

 
Figure 17. Input parameters for the Reporting function 
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Figure 18. Inside structure of the function for generating the report 
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7. Pilot study 
 

To validate the tool, it has to be tested on a real building model. Even though it has been tested 

continuously during the scripting phase on some mini models, the complete test is crucial for 

deriving a conclusion. The main validation strategy is to run the tool on different models, with 

emphasis on the main building model, which is explained in the following chapters. If the tool 

is able to verify different types of buildings, objects and requirements in a reasonable time, 

then it can be considered functional. Still, it is very hard to define reasonable time, so this has 

to stay a little bit qualitative and dependent on designer’s impression. Nevertheless, to provide 

first approximation of time saved by using the tool, the tool is compared to manual 

requirements checking in a very basic way. 

 

7.1. Test-case 

 

The building model used for the final test is provided by SWECO and represents building 

related to the energy sector. The model is shown in Figure 19. 

 

 
Figure 19. The model of the building used for a test case 

 

The model of the building can be divided into a few categories of elements that are important 

for us. These are concrete walls and slabs, steel beams and columns, power boxes, cables, and 
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piles. All of these are involved in at least one check. The list of requirements for this building 

is given in Table 7. 

 

 

 

Table 7. List of requirements input in a standardized table 

Rule 

nr. 
Object Property 

Limiting 

operator 
Limit value 

Unit of 

measurement 

Determination 

method 

description 

1.1 Room Height  > 2.4 m Height 

2.1 First Box 

Distance from 

TRANSVERSAL 

wall 

> 1 m 

Distance 

between two 

objects 

3.1 Piles 
Intersection with 

cables 
= 0 Intersections   

4.1 

Steel 

beams 

and 

columns 

Utilization - 

bending 
≤ 1 - 

EC 1993-1-1 

6.2.5. 

5.1 

Steel 

beams 

and 

columns 

Utilization - 

compression 
≤ 1 - 

EC 1993-1-1 

6.2.4. 

6.1 

Steel 

beams 

and 

columns 

Utilization - 

bending + axial 
≤ 1 - 

EC 1993-1-1 

6.2.9. 

7.1 

Steel 

beams 

and 

columns 

Utilization - 

flexural buckling 
≤ 1 - 

EC 1993-1-1 

6.3.1. 

 

Seven requirements have to be checked, and these match seven methods for determination 

developed for the tool. The first three requirements are related to the model's geometry, and 

others are in a structural domain.  

 

In order to get impression of the time saved by using the tool developed in a project, the time 

needed for checking these seven requirements manually has to be compared to time needed for 

verification by the tool. After these seven requirements are checked, few changes has been 

made in the building design and then the time spent for both option has to be checked again. 

Also, for the verification by the tool two version must be checked. One in which the script has 

to be built from scratch and second where part of the script has been already built, which could 

be in case of standard projects. 
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7.2. Results 

 

It was important to go through each of the five steps of automated compliance checking to test 

the tool. Firstly, the requirements are input into requirements management software by using 

the standardized table. Microsoft Excel served as a replica of requirements management 

software because it is convenient for storing tables and communicating with Grasshopper. The 

standardized table from Excel is the same as the one previously shown in Table 7.  

 

Afterwards, the script for code checking is generated manually. The script for checking 

requirement 2.1., which determines if the distance between the last box and transversal wall is 

larger than 1.0 m, is shown in Figure 20.  

 

 
Figure 20. Script for code checking 

The script consists of the three main parts indicated in Figure 20. The first part is a component 

that enables the communication between Excel and Grasshopper. The data about requirements 

number, limiting values, limiting operators and units of measurements are taken from the table 

and input in the second part of the script, which is the method for determination. The method 

is fed by all necessary data that is collected during the building model preparation step. Inside 

the method for determination, the calculation is performed, and compliance with a rule from 

the table is confirmed or not. Afterwards, the compliance is sent to the third part of the script, 

enabling communication between Grasshopper and Excel but in other direction than in step 

one. In the third step, compliance is written in the Excel table, and the example can be seen in 

Figure 21. The green field with a checkmark is used for the successfully fulfilled requirements, 

while the failed ones are presented by crossmark on the red field. 
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Figure 21. Table of requirements with updated compliance 

The proof that requirement 2.1. is fulfilled can be checked by looking at the “Details” output 

of the method for determination. The information about actual distance is given there, and it is 

1.06 m while the limit value is 1.0 m. Figure 22 shows how that looks in the Grasshopper 

environment. 

 
Figure 22. Details of the requirement 2.1. 

Another aspect of the code which has to be checked is synchronization between Excel and 

Grasshopper. If the limit value in Excel changes, it must be automatically updated to 

Grasshopper, and a check must be performed again. Also, if the object's attributes in 

Grasshopper are changed, the check has to be performed automatically and update the new 
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compliance in a table. The test showed that synchronization is perfect, and Figure 23 shows 

changed compliance in an Excel table after the limit value is set to 1.5 m instead of 1.0 m. 

 

 
Figure 23. Updated compliance after the limit value has been changed 

 

The last part of the tool that must be checked is a reporting function. It was tested on a 

requirement 7.1. The „Details“ output from the method for determination is input in reporting 

function, then the report is generated and saved in a document outside of the Grasshopper 

environment. Figure 24 shows the report. 
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Figure 24. Report for requirement 7.1. 

 

After the tool's functionalities were tested, the comparison of the time spent on checks 

between manual verification and the tool was done. Table 8 shows the comparison of the time 

spent on checks. The manual verification of the requirements took 8 minutes and 45 seconds, 

while the first verification by the tool took 11 minutes and 30 seconds. So, in this case, 

manual verification was significantly faster. Then, the test was performed on the same 

example, but part of the script has already been defined, which is the case in some 

standardized projects. Then, the tool performed checks in 5 minutes and 30 seconds, which 

means it saved 3 minutes and 15 seconds on these few requirements.  
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Table 8. Comparison of time spent on checks in case of manual verification and verification by the tool 

  
Manual 

verification 

Verification 

by tool (from 

scratch) 

Verification 

by tool (partly 

built code) 

Required time 

(min) 
08:45 11:30 05:30 

 

After the first test of the time saved, a few changes have been made on the building model, 

and then the time spent on checks has been tracked. The results are shown in Table 9. The 

manual verification took 4 minutes and 15 seconds, while verification by the tool took only 

10 seconds. Here is shown the real strength of the tool. Once the script has been built, the tool 

can perform all checks continuously and instantly. Finally, when both tests are combined, the 

manual verification spent 13 minutes, while the tool needed 11 minutes and 45 seconds to 

perform the checks. 

 

Table 9. Comparison of time spent on verification after a few changes have been made on the model 

  
Manual 

verification 

Verification 

by tool  

Required time 

(min) 
4:15 0:10 

 

 

7.3. Impressions from the testing 

 

This section gives the impressions from the test of the previously explained model. Firstly, the 

operation of the tool is discussed based on the three functional requirements given for it. 

Afterwards, the impact of the designer and computational engine on the process were 

discussed. Finally, the difference between designer and developer is explained. 

 

 

Speed 

 

The tool is very fast in general. The time saved by using the tool instead of manual verification 

is significant if the designer is skilled in the Grasshopper environment. The important feature 

of the tool is that the designer can choose an acceptable ratio of speed and level of automation. 

An example is a check for requirement 3.1, which says that cables should not intersect with the 

piles. There are 96 cables and 17 piles in the model. If the designer chooses to check each cable 

with a pile close to it one by one, the tool can calculate one combination in 5 milliseconds, but 

the designer has to spend some time extracting the appropriate cable and pile; and repeat that 

for all piles or cables. A different approach would be to input all cables and piles in the method 

for determination at once and let the tool perform all 1632 (96 cables x 17 piles) iterations. The 
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tool needs around 35 seconds for that, which seems a lot, especially if the designer is sitting in 

front of the desktop and waiting. Nevertheless, the time spent on manual work for selecting 

and extracting all important cables and piles must be included in the first option. The test of 

time saved also showed that tool has a big advantage if it is used in standardized project, when 

script does not have to be built every time from scratch. Also, the tool is advantageous if some 

changes are made on the design, because it can perform checks instantly when the script is 

already built. This is showed in a small test, but in a real projects which are very complex and 

have a lot of iterations, then the tool shows its real strength and purpose.  

 

Robustness 

 

The tool's robustness depends on the developer, more precisely on the limitations introduced 

by the developer. While scripting, it was specified what type of data could be used for each 

check, and the aim was to cover as many situations as possible. The testing was successful, and 

the tool was able to operate with all types of data from the model. Still, the model has to be 

prepared and adjusted for the tool. For example, the Karamba model had to be developed to 

perform structural checks because the methods for determination work only with the Karamba 

model, and other FEM software or plug-ins are not compatible. Also, it is advisable to test the 

tool on more models to ensure that the specific method for determination covers a wide variety 

of data types that can be used. 

 

Extensibility 

 

The extensibility of the tool’s structure is tested already during the scripting phase. All 

functions needed for the regular operation of the tool were successfully developed by following 

the proposed structure and instructions given in Chapter 5.3. It is expected that anyone can 

create new functions, especially methods for determination, by following the exact instructions 

and by that adjusting the tool to personal needs. 

 

Designer 

 

The designer who serves as a manual intelligent force is a crucial component of the system’s 

architecture. The test proved that the designer must be familiar with the Visual programming 

language environment and the building model. The tool's operation is very dependent on the 

designer’s skills and ability to input appropriate data in the methods. For example, in 

requirement 2.1. (min distance between the first box and transversal wall must be 1.0 m) it is 

essential to extract and select the exact box and wall that are within the scope of this 

requirement. Therefore, the designer must know where these are stored in the script. That 

would make the use of the tool a little bit more complex for a third party, for instance, 

regulatory bodies, because the person who uses it should first get familiar with the model, 

which takes some extra hours. Moreover, that forces the designer to make a clearer script which 

could take more time initially, but in the long run, it results in a more organized process. 
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Computational engine 

 

During the scripting, it has become evident that the tool is very dependent on the Grasshopper’s 

abilities. There are many checks for which developers must find a solution to check them 

because Grasshopper still does not have the functions to cover it. Also, Grasshopper dictates 

the speed of the verification process, which is already explained with an example of 

requirement 3.1. Moreover, in this test, only seven checks were performed simultaneously, and 

Grasshopper had minor lagging because of requirement 3.1. Therefore, the question of the 

tool’s speed when more requirements are input is fundamental to investigate. There are 

hundreds of requirements for a building in real projects, and it is not clear how Grasshopper 

would cope with that. 

 

Developer vs Designer 

 

The work is separated into two main roles in the automated code checking process, which can 

sometimes interfere. The first role is a developer of the functions. The developer is a highly 

skilled expert in Grasshopper and general programming (Python), who can script the functions 

for checking and make a tool by following the instructions given in this report. In practice, that 

person could be the company's employee who is designing the building or an employee of the 

company that owns the software for code checking. In the first scenario, every company has its 

own software or one open-source plug-in that can be adjusted or extended for the project's 

purpose. While in the second scenario, all tool development is performed by a software 

developing company, and the company that designs the building can only use the tool without 

adapting it. But, this could be classified as a black-box approach similar to what has already 

been on the market in software like Solibri, FORNAX etc. 

The second role is a designer who is the user of the tool. He just needs to connect appropriate 

components to check the requirements. If the designer is skilled enough, he could also be a 

developer who adapts the tool to the project's specifics.  
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8. Discussion 
 

This chapter discusses the motivation for starting this project, what has been done in it, and 

afterwards, the strengths and weaknesses of the tool are covered. Furthermore, assumptions 

and limitations are mentioned and what would have been different if some different decisions 

had been taken. Finally, contributions of this research are pointed. 

 

8.1. Vision 

 

The adoption of the new technologies in the AEC industry is very slow. While society and 

other industries are taking advantage of information technology, the AEC industry is struggling 

with the transformation (Coenders and Rolvink, 2014). Although digital tools are used for a 

variety of tasks, compliance checking is still a very manual process. Since there are many 

benefits related to code checking automation, many researches were conducted in the field. 

But, until now, no one succeeded to develop a general approach that could cover all steps of 

code checking. Also, all proposed methods have the problem that designers must be highly 

skilled in classic programming or use completely black-box solutions. The black-box approach 

is not preferable because the designer can not adjust the tool to his specific needs and can not 

understand how the check is performed. Therefore, there was a need to come up with a new 

solution. The rise of the popularity of visual programming languages and parametric design 

between designers opens the possibility to automate the compliance checking by using 

softwares like Grasshopper or Dynamo. Visual programming is substantially easier than classic 

programming, and a designer who works in one of these softwares is skilled enough to build a 

script for code checking. Also, it has a certain level of transparency which is necessary for a 

designer to understand the flow of the script. Furthermore, the Visual Programming Language 

environment is very responsive to changes in requirements because new checks can be added 

easily. Another advantage is the possibility of continuous checking during the designing phase. 

This project tries to set a general framework for automated testing of building design and 

develop a prototype tool which shows the capabilities of that approach today. 

 

 

8.2. What has been done? 

 

The main objective of this project was: 

 

“The fundamental objective of this project is to explore the possibilities of automating the 

requirements verification for a building design, by using requirements management 

software to systematically structure the requirements and Grasshopper to generate the 

rules which afterwards can be verified.” 

 

To achieve this objective, the project was divided into three main parts. First, the conceptual 

framework for automated code checking is developed, explaining each step in the process to 

the details. Afterwards, the system architecture of the prototype tool was explored, and 
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instructions for scripting the tool were given. Finally, after the tool was scripted, it was tested 

on a real building model. During the testing, the tool showed some evident strengths, but also 

that it has particular weaknesses. 

At the beginning of the project, one research question was set, which was then divided into 

four sub-questions. The main research question was: 

 

“How can manual verification of design requirements be automated by using Requirements 

management software and Grasshopper?” 

 

The conclusions regarding the four sub-questions are discussed below: 

 

1.) Which requirements should building design fulfil?  

 

Before focusing on specific requirements, it was looked into all requirements that building 

design should fulfil. For that, it was necessary to look in Building Decree 2012. After careful 

literature review, the requirements were divided into two main categories based on the form in 

which they were given: functional and performance requirements. The functional requirements 

are qualitative and indicate which goals the building has to fulfil, but without providing a 

concrete way how to do it or measure. The second group consist of quantifiable performance 

requirements, and these were in the scope of this project. The functional requirements are not 

suitable for verification by using Visual programming language due to its qualitative nature, 

which can not be adequately quantified. Also, it was drawn from the literature that requirements 

are not standardized nor following some specific logic. They are instead based on the 

experience and adaptability of the human mind. 

 

2.) How to approach automated testing of building design?  

 

The four-step approach for automated compliance checking given by the Eastman was used as 

a basis for answering this question. The framework is expanded, and one extra step is added 

before the procedure proposed by Eastman. Also, each step is explored separately, and new 

ideas and approaches are proposed. The five steps are as follows.  

Firstly, the requirements must be collected, grouped, and input in requirements management 

software. That step is called Requirements defining and logical structuring into RMS. The 

groups of the requirements are necessary to have a better-organized process. In this project 

proposed classification followed the separation of the roles in the project, and it was geometric, 

structural, building physics and services requirements. But, this is not strict and can be adjusted 

based on the preferences of the team. Furthermore, the requirements should be input in the 

requirements management software through the standardized table that has seven columns: 

Objects, property, limiting operator, limit value, unit of measurement, determination method 

and conditions. 

The second step is the Interpretation of the requirements. In this step, the designer builds a 

Grasshopper script with previously defined functions. He is transferring the logic of 

requirement from requirements management software into a script. There are few categories of 

functions necessary to be predefined: basic functions, methods for determination and reporting 
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functions. Afterwards, when natural language processing or any of the other proposed methods 

comes to a higher level, this step can be fully automated. 

Thirdly, all required data must be extracted from the model in a Building model preparation 

step. This project worked only with Grasshopper models. There are three steps in model 

preparation: acquiring data from an already existing model, assigning new data to existing 

models, and performing additional analysis for role-specific checks. In the future, 

communication with third-party software must be established, which would enable working 

with BIM models. 

The fourth step is the Checking phase. This is the step in which Grasshopper is running a script, 

and it is crucial that this step is trustworthy. 

The last step is the Reporting phase. The most important for this step is to adapt the report's 

design to the needs of the specific roles.  

Following these steps should result in a well-functioning process of automated compliance 

checking, which is proven through answering the following questions. 

 

3.) How can the tool verify the requirements? 

 

The answer to this question is structured in three sections. Firstly, it was necessary to define 

the requirements which the tool has to fulfil. Afterwards, the system architecture had to be 

explored and finally, instructions for scripting the tool had to be developed.  

The three main requirements that the tool has to fulfil are speed, robustness and extensibility. 

It is important to focus on achieving these requirements while scripting the tool. 

Next, the system architecture consists of four main parts: requirements management software, 

designer, computational engine, and visualiser. Each of these has a specific role in one or more 

of the five steps of automated compliance checking. 

The part of the answer on the third sub-question is answered by giving instructions on how to 

script all types of predefined functions that are needed for the operation of the tool. The three 

groups of predefined functions are: basic functions, methods for determination and reporting 

functions. The basic functions were briefly explored because these are ones already existing in 

the Grasshopper environment. The methods for determination are the central part of the script, 

and the focus was on instructions for developing this group. All methods for determination 

have a standardized structure of the script, and it consists of three parts: the data processing 

part, calculation part, and comparison. Finally, reporting functions were the last in scope, and 

these are straightforward. By following the proposed rules, the developer should be able to 

deliver a well functionating tool that can check many types of requirements. 

 

4.) How does the tool work in practice? 

 

To answer this question, it was necessary to test the tool on a real-world case. SWECO provided 

the building model for testing, and it was a building related to the energy sector. The seven 

requirements were defined, and the whole procedure proposed in the framework was applied 

to these requirements. The test was successful and proved that a well-functioning tool could be 

developed by following the proposed framework and instructions for scripting. Of course, the 

test brought up some of the advantages and disadvantages of the proposed framework and 
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prototype tool. The main benefits are the time saved on verification, the wide range of 

requirements that can be covered by this method, and finally, the designer does not have to be 

highly skilled in classic programming. Still, the process requires a lot of manual work because 

some steps can not be automated right now, also the tool is very dependant on the Grasshopper 

abilities, which do not have all functions necessary to perform the verification of all possible 

requirements. Finally, the tool can only work with Grasshopper models, which is not enough 

and the possibility to work on BIM models is necessary. 

 

8.3. Impressions – strengths and weaknesses 

 

After testing has been conducted, it can be concluded that the tool works properly, but it showed 

particular strengths and weaknesses. 

 

Strengths 

 

• Time saving: Significantly less time is spent on verification of requirements than in a 

situation when everything is manually checked and tracked. This becomes even more useful 

during designing a building while the designer is constantly making changes. With this 

tool, compliance with requirements can be checked almost instantly during the whole 

designing process. Of course, as already mentioned, to perform some checks, a little more 

time is needed (30 - 40sec), but that is negligible, taking into account a large amount of 

data that has to be checked. The test showed that tool can have big value in a standardized 

projects when the script is already built partly, and in projects which require a lot of 

iterations. On top of that, additional value from higher level of safety in the projects must 

be added plus time saved on rework. In both aspects automated tool outweighs the manual 

verification which is error prone. 

 

• Covers a wide variety of requirements: Due to a large third-party community of 

Grasshopper users and many plug-ins for specific purposes, many unique requirements can 

be checked. For example, all previous researches were based only on geometry-related 

requirements and just a few on one or two specific requirements in the structural (Dhillon 

and Rai, 2017), building physics domain (Seghier, Ahmad and Lim 2019) or fire safety 

domain (Kinclova et al., 2020). But, by following the framework and instructions proposed 

in this project, it should be possible to cover a wide variety of requirements. There are many 

plug-ins for Grasshopper that are calculating features related to building physics or 

structural domain. Moreover, in the research is shown that both geometry related and 

structure related requirements could be covered. By using some other approaches proposed 

in previous projects, that would not be possible. 

 

• The designer does not have to be skilled in programming: By following the proposed 

approach and using Grasshopper, the designer does not have to be highly skilled in 

programming. It is true that if he wants to take the role of the developer as well to adapt or 

extend the tool, he has to be highly skilled in Grasshopper, but that should not be a big 
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problem. With the rise of parametric design and the popularity of Grasshopper, the 

assumption is that designers will become more skilled in it with time. Also, for performing 

the checks, only basic knowledge of Grasshopper is necessary. In other researches, the 

designer must be highly skilled in programming or can use black-box solutions in which 

he can not adjust anything to a specific situation. Therefore, the approach proposed in this 

project solves both problems. 

 

Weaknesses 

 

• Still a lot of manual work: The code checking as proposed in this project is still manual 

to a large extent. The designer has to build a script by using predefined functions, but also 

it has to input a lot of extra data that are not contained in the model. The problem here is a 

deficient level of details in Grasshopper models. Therefore the ability to import BIM 

models in the Grasshopper environment or perform the checks on some BIM platforms is 

crucial for broader tool usage. 

 

• Tool dependent on Karamba: For checking the structural requirements current version of 

the tool works only with Karamba. That means it can only verify buildings that are analysed 

by using Karamba for FEM analysis. Luckily, Karamba is the most widely used FEM tool 

in the Grasshopper environment. Currently, it would be tough to enable checking models 

from FEM software outside of the Grasshopper environment.  

 

• At this moment, Grasshopper does not have all functions necessary to perform all 

checks: Even though Grasshopper offers a variety in types of checks that could be 

performed, it still can not cover all checks. For example, Grasshopper does not have 

functions for determining the distance between two surfaces, and the designer has to come 

up with some unorthodox solution if he wants to check that. But, with the rise of its 

popularity, more functions should be added or scripted, specially for code checking. Still, 

that would require a very high knowledge of programming. 

 

8.4. Assumptions and limitations 

 

• Grasshopper was used as a visual programming software: At the beginning of the 

project, the preliminary decision was to choose a Grasshopper as a Visual Programming 

Language environment for scripting the tool. Since it is a crucial component of the system’s 

architecture, it is understandable that the tool is very dependent on the Grasshopper’s 

abilities. Firstly, the time spent on the checks depends on how fast can Grasshopper run the 

script and perform all calculations. This became clear in the check for finding an 

intersection between two objects when the time for one check surged over 30 seconds 

because 96 cables were checked against 17 piles. Also, the tool is restricted by the functions 

that are already developed in Grasshopper. For example, Grasshopper does not have an 

option for determining the distance between two surfaces, which narrows down the 

operating area of the tool. 
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Instead of Grasshopper, some other Visual Programming Language software could be used, 

for example, Dynamo. The advantage of Dynamo is its connection with Autodesk products, 

like Revit and Robot. Many designers use Revit and Robot, and for them, it would make 

sense to have a verification tool scripted in Dynamo. Also, objects taken from Revit have 

many properties written in themselves already, so the designer does not have to assign them 

only for the verification process. Still, the fact that Dynamo is operating only in the Revit 

environment gives a significant advantage to the Grasshopper in the field of code checking. 

The openBIM approach is very desirable to allow all designers to work with the tool, 

regardless of the BIM software they use. Furthermore, Grasshopper is more reliable than 

Dynamo, which still has a lot of bugs during operation. 

 

• Karamba 3D was used as a FEM software: Karamba3D plug-in has been chosen as a 

FEM tool used in a building model preparation step for structure-related checks. There were 

other options, and one of them is Kiwi3D, but Karamba3D is the most widely used plug-in 

for structural FEM analysis in Grasshopper and has the most abilities. If some other plug-

in had been chosen, the script inside the methods for determination would have been 

different, but the main structure and three standard parts would have been present again. 

Karamba3D has not yet been developed to the level of FEM software like Robot, Diana, 

RFEM, therefore the possibilities for checks are restricted due to its abilities. For example, 

Karamba3D is not a perfect plug-in for analyzing concrete structures, which makes the 

verification of concrete structures significantly more complex than steel. With the time and 

growth of Grasshopper’s popularity, Karamba3D should evolve and improve its abilities, 

making more space for verification of different kinds of requirements. 

 

• The tool works with steel I and H sections only: In the previous paragraph, it is 

mentioned that Karamba3D is significantly better suited for operating with steel than any 

other type of structure. Therefore, due to time restrictions, the tool is limited to working 

with steel I and H profiles that are Class 1,2 or 3. To prove the concept, this was detailed 

enough, but for everyday usage, the tool has to be extended. Adding other types of profiles 

or materials would not bring extra value to this project because the framework and 

instructions can be proven even with the chosen limitations. Following the instructions for 

scripting, the functions and framework for automating the verification process should be 

possible to include almost any other type of structure or profile in the tool. Of course, there 

are limitations imposed by the Grasshopper’s and Karamba’s abilities, but that has been 

covered already. 

 

• Microsoft Excel was used instead of any commercial requirements management 

software: In this project, Microsoft Excel is used instead of BriefBuilder or any other 

requirements management software. The functions for synchronizing Grasshopper and 

Excel already exist, while API between Grasshopper and BriefBuilder or any other 

requirements management software has not been developed yet. That does not affect the 

project largely because it was possible to use the same standardized table in Excel as it 

would be in any requirements management software. Moreover, some project managers 
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even use Excel as an requirements management software. The programming of API 

between Grasshopper and requirements management software would have taken a lot of 

time and would not have given this project a lot of extra value. 

 

• The prototype tool can only perform seven checks: For this project, only seven 

requirements were covered. The three requirements are geometry related, while four are 

verifying structural checks. This was enough to prove that concept works. It is shown that 

following the instructions for scripting and framework makes it possible to make a properly 

working tool and automate the verification process partly. Still, it is advisable to include 

even more checks in the prototype tool to test the scalability. It is still unknown how fast 

the tool would be with a large number of requirements running at the same time. 

 

• A standardized table for the breakdown of requirements is not suitable for all types 

of requirements: It should be possible to deconstruct a large portion of building design 

requirements by using the standardised table. Still, it is expected that some requirements 

would not suit it. The main reason for that is a lack of standardized logic of requirements, 

which are written in human language and for the human mind, which is adaptable and learns 

from experience. Nevertheless, a large portion of requirements can be handled with this 

table, especially while the designer is the one who is building the code manually. After the 

tool becomes able to construct the script automatically, then it will be maybe necessary to 

find a better way of deconstructing the requirement. But also, if NLP methods become very 

advanced, perhaps the designer would not have even to deconstruct the requirement into 

pieces. 

 

8.5. Contributions of this research 

 

The major contributions from this research are highlighted below: 

 

• Developed the general framework for automated compliance checking in five steps and 

explained how to approach each step in detail. 

• Gave instructions for scripting the tool for automated code checking in a Grasshopper 

environment 

• Scripted the prototype tool for checking three geometry related and four structure related 

requirements 

• Tested current possibilities for automation of code checking 

• Set a base for future research in the field 

• Gave detailed recommendations for future research on the topic 
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9. Conclusions 
 

This project has been conducted to develop an improved approach to automation of building 

design verification, focussing on creating a framework for automated compliance checking and 

modelling a prototype tool in the Visual Programming Language environment to prove the 

approach. This study has led to the following conclusions: 

 

 

• By analysing the Building Decree 2012 and literature related to requirements management 

in the construction industry, it can be concluded that there are two main types of 

requirements: functional and performance. Also, it is shown in the project that performance 

requirements are suitable for verification with the proposed approach due to its quantitative 

nature. On the contrary, functional requirements are not quantifiable and therefore can not 

be checked with tools modelled in a visual programming language. 

 

• Testing on the real-world building model shows that a five-step approach for automated 

testing of building design works and can be used. Still, a framework used in this project 

has a significant amount of manual work, and extra steps must be taken to reach the fully 

automated process.  

 

• Testing the prototype tool on a building model shows that the proposed system architecture 

and instructions for scripting the tool can result in a well-operating tool. The system 

architecture must have four components: designer, computational engine, requirements 

management software and visualiser. 

 

• The test showed that a prototype tool with clear advantages over manual compliance 

checking can be scripted by using Grasshopper. The biggest strengths of the presented 

approach are speed, a wide variety of checks that can be covered and the fact that the 

designer does not have to be skilled in general programming. 

 

• The prototype tool also has some weaknesses that came up during the testing. The most 

important are the limited range of functions in Grasshopper that complicates scripting of 

some methods for determination, tool is dependent only on Karamba3D models for the 

structural domain, and the tool requires help from a designer to perform checks. 

 

• Test of the tool proved that the Visual programming language environment is a great 

platform for developing a white-box approach for automated compliance checking.  

 

 

To conclude, this project showed how to approach the automation of the compliance checking 

from the perspective of both designer and developer of the tool. Both the steps of automated 

compliance checking and instructions on how to achieve it were given. Due to a large number 

of requirements and different building designs, it would be tough to develop one general 
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solution that works for every building and scenario. Still, this project gave a general approach 

that can result in a higher level of automation for design justification. This project serves as a 

starting point for future researches in the field, and with further effort, the future of the 

automated testing of building design is bright.  
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10. Recommendations 
 

 

This project presents the first study of a proposed framework and prototype tool for automated 

compliance checking. Concluding that it is a feasible approach with a lot of potential, areas for 

further investigation will be given. In the recommendations, the structure from the framework 

will be followed, therefore the next moves for each step of the framework will be presented. 

 

Step 1: Requirements defining and logical structuring into RMS 

 

Continue with the research of automatically deconstructing requirements by using 

machine learning techniques: 

Since there is already much research in this area, the recommendation is to continue until 

automation is reached. The most promising techniques are based on machine learning methods, 

and therefore focus should be on these. Especially because requirements are written in a non-

standard logic based on human language, the tool must be adaptable, which rule-inferencing 

methods do not provide. Another essential aspect to explore is how to construct the 

requirements management software table. More precisely, which categories are needed to cover 

as many requirements as possible and that the tool can automatically disassemble the rule in 

those categories. 

 

Standardize the vocabulary and logic for defining requirements: 

Furthermore, a big move would be to standardize the project vocabulary and logic of 

requirements. Different companies and stakeholders use different terms for expressing their 

provisions. Standardization in that sense would make automation significantly easier. In the 

final stage of development, the designer would only have to write the requirement as it is given, 

and the tool would be able to break it down and put in requirements management software. 

 

Step 2: Interpretation of requirements 

 

Explore the methods for the automation of the script building in the Grasshopper: 

Currently, the transformation of requirements from the requirements management software 

table into Grasshopper script is a manual process. The next step would be to explore methods 

to automate script building.  

The tool must use machine learning or rule-inferencing methods to read the requirements 

management software table and recognize which functions to use and how to connect them. Of 

course, to synchronize requirements management software and Grasshopper, the appropriate 

two-way API must be developed. 

Two extra areas must be explored before automating this step: a sufficient level of details in 

the model and more standardized terms for the definition of requirements, as proposed in the 

previous step. A sufficient level of details is a part of the building model preparation step and 

will be explained there, but it is evident that for automated script building, the tool needs 
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identifications of every object and all data related to it. If that is missing, the designer must 

input the data manually and connect the appropriate object to the script.  

 

Step 3: Building model preparation 

 

Explore how to connect Grasshopper with BIM software:  

The first recommendation is to research the implementation of the openBIM approach into 

Grasshopper.  

This is of crucial importance to have a tool for wide usage because the majority of  

designers prefer to use one of the BIM software for making a model and making an extra 

Grasshopper model would be unnecessarily time-consuming. Furthermore, Grasshopper 

models lack much data included in the BIM model, which makes the life of a designer harder. 

In the Grasshopper designer must input those missing data manually. Therefore, enabling the 

checking on BIM models from other software would give this idea potential commercializing 

value. The potential solution could be the use of cloud-based platforms such as Packhunt.io, 

which enables the communication between different software and Grasshopper.  

 

Explore methods for semantic enrichment of building models: 

The second recommendation in this step is exploring the methods for semantic enrichment of 

models. An example of such research is the work of Bloch and Sacks (Bloch and Sacks, 2018), 

who compared machine learning and rule-based inferencing for the semantic enrichment of 

BIM models. Since BIM models usually lack some data, it would be helpful to have a method 

to add those data automatically. That particular paper explores how the software can recognize 

the room's function on its own, without the designer’s input of borders and functions for each 

room. For the rule checking, this could have immense value and save a lot of time that the 

designer has to give for providing all the details about the building. From that research, it seems 

that machine learning is a better option for this particular purpose, but there are other situations 

in which rule-based inferencing is more feasible. Therefore, for automation of code checking 

it has to be looked in all extra data that are usually needed to perform the verification, and then 

the best method for automatically assigning missing data can be explored. 

 

Step 4: Checking phase 

 

Test the scalability of the tool with a large number of requirements: 

The most important feature to investigate in the checking phase is the scalability of the tool. In 

this research, only seven requirements were run simultaneously, and one was making minor 

problems in operation. Hundreds of clauses and provisions are set for a building in the actual 

project, which means the required computational power will be much larger. Therefore, the 

research with more checks should be conducted to get an impression of the actual number of 

requirements that could be run at the same time. Furthermore, the idea of cloud computational 

power should be explored because it has a lot of potentials to increase the extent of the checks. 

Of course, with the constant development of hardware components and more optimized 

software, this remark will become less relevant. 
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Step 5: Reporting phase 

 

Explore how to develop a visual detection of failed requirements in Rhino: 

For the reporting phase, it could be explored how to visualize objects that are not fulfilling the 

requirements to make detection of those objects easier and straightforward. Since the eyes are 

one of the humans basic senses, it would be helpful to have the ability to visualize failed objects 

in the model. This should not be problematic for skilled software developers because this can 

be seen in many software. 

 

Explore the implementation of the automated compliance checking: 

The last recommendation is not related to any of these five steps but to the implementation of 

the automated code checking process in practice. Once this concept is fully developed, the 

companies will have to make some operational changes to implement it, and this has to be 

investigated. For example, some of the questions that should be answered are:  

What new roles will be needed in the designing process? (developer and its role) 

What new obligations will the designer have? (tracking the verification; one leading designer 

for verification or everyone for themselves?) 

Who takes responsibility if the code checking software made a mistake? ( depends if the 

software is open-source or developed by some company etc.) 

Is it economically feasible to implement automated compliance checking? (cost of software, 

training of staff, benefits of time saved, increased safety and less rework etc.) 

 

There are still many areas of this topic that must be further investigated, so the framework and 

ideas from this project should serve as a basis for further research. 
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Appendices 

Appendix A 
 

The details about a script for two methods for determination will be explained in this chapter. 

First, the method for checking the distance between objects is covered. Afterwards, the check 

for flexural buckling is presented. 

 

A.1. Distance between objects  

 

This method is briefly explained in chapter 6.1, but here more details will be given.  

First, the internal structure of the method is shown in Figure 25. The script has three main 

parts: data filter, calculation part and comparison part, but that is already explained in the 

central part of the report. 

 

 
Figure 25 Internal structure of the distance between objects component 

 

The data filter part has two sub-parts shown in Figure 26. The first part gets the objects between 

which distance has to be determined. Since objects could be points, curves, surfaces or breps, 

it is first necessary to determine the object’s type. The second part gets the data from the 
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requirements management software table and extracts the limit value, limiting operator and 

rule number. 

 

 
Figure 26 Data filter of the distance between objects component 

 

The GHPython code of the first two components is shown in Figure 27 and Figure 28. 

 

 
Figure 27 First component for determining object type 
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Figure 28 Second component for determining object type 

 

The GHPython code of the components for extracting the data from the requirements 

management software table is shown in Figure 29 and Figure 30. 

 

 
Figure 29 First component for extracting the data from the requirements management software table 
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Figure 30 Second component for extracting the data from requirements management software table 

 

The second part of the script consists of 12 different lines, each for one possible combination 

of object types. It is shown in Figure 31 and Figure 32. 

 

 
Figure 31 Lines for determining the distance between the different combinations of object types 
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Figure 32 Lines for determining the distance between different combinations of object types (nr 2) 

 

Finally, the third part of the script compares the calculated distance and limiting value 

obtained from the requirements management software table. The GHPython component first 

takes into account units used and then compares two values. The code is shown in Figure 33. 
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Figure 33 Comparison part of the distance between objects script 

 

A.2. Flexural buckling 

 

This method is briefly explained in chapter 6.2, but here more details will be given.  

First, the internal structure of the method is shown in Figure 34. The script has three main parts: 

data filter, calculation part and comparison part combined in one and finally reporting part; but 

that is already explained in the central part of the report. In chapter 6.2. the method is shown 

without reporting part because reporting is specific for each user and not standardized. 

Therefore, it is only shown here where specific code scripted for the purpose of this project is 

presented. 
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Figure 34 Internal structure of the flexural buckling component 

 

Firstly, the data processing part takes the data from the Karamba model, extracts it, and 

structures it in a useful way for future usage. Beside components from Karamba, it also has 

four components scripted in GHPython just for this purpose. Four components are shown in 

Figure 35. The first function extracts the cross-section type for each element, and its code is 

shown in Figure 36. The second function extracts the geometric data about steel profiles, more 

precisely the width of flange, web width, and radius. The structure of the second component is 

shown in Figure 37. The third function structures all required data to classify steel profiles, and 

its code is shown in Figure 38. Lastly, the fourth function determines the class of the cross-

section by following formulas given in Eurocode. The script for the classification of cross-

sections is shown in Figure 39. 
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Figure 35 Data processing part of the script for flexural buckling check 

 

 
Figure 36 First component of the data processing 
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Figure 37 Second component of the data processing 

 

 
Figure 38 Third component of the data processing 
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Figure 39 Fourth component of the data processing 

 

Inside the calculation part, the most important component calculates the resistance of the 

elements and then compares it to real value. The code of that component is shown in Figure 

40. 
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Figure 40 Calculation and comparison part of the flexural buckling check 

 

The third part of the script is the reporting part, which structures the data in an appropriate form 

that can then be sent through Details output to the reporting function. Three components, one 

GHPython, one Grasshopper and one from Pterodactyl, are making the script shown in Figure 

41. The detailed code of the GHPython component is shown in Figure 42. 
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Figure 41 Reporting part of the flexural buckling check 

 

 
Figure 42 Component for structuring the data for reporting 


