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Introduction Impressive advances in Reinforcement Learning on fully observable domains, thanks
in part to Deep Learning techniques, have caused a growing interest in solving partially observable
domains due to their success on ATARI games. These domains are typically modeled as Partially
Observable Markov Decision Processes (POMDPs) [6], which are well-known to be hard to solve
due to uncertainty as a result of stochastic transitions, partial observability, and unknown dynamics.

While the work on Deep Learning using Recurrent Neural Nets (RNNs) on POMDPs is promising,
their sample inefficiency and lack of addressing the exploration-exploitation trade-off encourages
the search for complementing methods. Here we look at Bayesian model-based approaches, which
promise the optimal solution to this fundamental issue of the Reinforcement Learning.

The Bayesian RL (BRL) idea is to maintain a probability distribution over the possible dynamics of
the POMDP and current state, and devise a action picking policy with respect to that distribution,
explicitly reasoning over the uncertainty of the agent. In order to do so, BRL methods assume some
parametrization of the dynamics and maintain a distribution over the unknown parameters. The
iPOMDP [4, 5], for example, views the model as an infinite Hidden Markov Model (iHMM) and
specifies the prior with a hierarchical Dirichlet Process (HDP). Other work models the posterior of the
dynamics in continuous POMDPs as a Gaussian Process Dynamical Model (GPDM) [3], assuming
Gaussian stochasticity. These, and others, provide methods for maintaining distributions over models
over time in a principled manner.

Few of these approaches, however, directly address the question of how to then select actions with
respect to the posterior, instead relying on simple and expensive look-ahead searches consisting
of full-Bellman updates of small horizons (such as [11] where the depth of the tree is 1). In our
previous work, we extend the Monte-Carlo Tree Search (MCTS) family of solutions to two BRL
formulations [7, 8]. Unfortunately, due to the lack of scalable alternatives, no baseline planner was
available as comparison.

In this work we summarize and extend the analysis from previously published work by designing a
Thompson-Sampling inspired baseline planner (TSI). In contrast to our approach, this baseline does
not consider the full distribution, but plans with respect to a single sample. Our experiments show
that such an approach is inferior, demonstrating the need of exploiting the powerful representation
that is provided by BRL methods.

Bayes-Adaptive models Here we focus on the discrete Bayes-Adaptive models [8, 12, 10]. The
Bayes-Adaptive models consider the dynamics of the domain (either tables or Bayes Nets) as part of
the hidden state, and can be seen as POMDPs where the (hyper-) state consists of both the current state
and the dynamics of the domain. A domain independent dynamics function governs the transitions
from one belief to the other (given actions and observations). Effectively, the problem of learning
in a POMDP has been cast as a planning problem in a bigger POMDP with the state space being a
cross product of the underlying POMDP’s state and model space. Here we consider both the tabular
BA-POMDP and factored FBA-POMDP [8] that describes the model as a Bayes Net.
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MCTS Monte-Carlo Tree Search [1, 2] has had much publicity recently due to their successful
application in solving Go [13]. It is an approach to do online planning, which attempts to pick the
best action for a current situation by simulating interactions with the environment. The interactions
are represented as a tree, which is grown through ‘simulations’ with the environment, assuming there
is some black-box environment simulator available (representing the POMDP dynamics). It was
successfully applied in various settings, including ones with partial observability [14].

Realizing that BA-POMDP casts the learning problem as a (bigger) POMDP planning problem, recent
work has also applied MCTS to those models [7, 8], showing that one may circumvent updating the
model-belief parameters during simulations by simply sampling a model at the root (root-sampling).

Empirical analysis We experiment on 3 different domains: a gridworld inspired problem, an
extended tiger problem [6, 7] and a collision avoidance domain [9]. In addition to our method, which
applies MCTS on the full posterior belief, we consider a Thompson-Sampling inspired (TSI) baseline
planner. This planner first samples a single state and model from the belief, then assumes those are
the true state and model, and applies MCTS. The difference in the two approaches is that our method
considers the uncertainty of the belief explicitly, whereas TSI plans with respect to a single sample.

In the gridworld problem the agent’s task is to navigate from the bottom-left corner of a 2-dimensional
grid to a goal cell, that is observed at the start of the episode. Whereas most cells are relatively easy
to move over, some ‘sink-cells’ cause the agent to have a low probability of successfully leaving. The
problem is to identify the cells the agent should avoid given noisy observations of its current location,
potentially exploiting the fact that these are independent of the goal cell. The extended tiger problem
extends the traditional domain with 7 additional irrelevant binary state features, which increases the
state space by a factor of 27 but keeps the same dynamics complexity. In the collision avoidance
problem the agent pilots an airplane while flying from one side of a 2-dimensional grid and must
avoid a moving obstacle. The obstacle is only perceivable with a noisy sensor, and its movement is
unknown.
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Figure 1: Average return on the gridworld (left), collision avoidance (middle) and extended Tiger
(right) problem, the shaded areas indicate the the 95% confidence interval.

Our method consistently outperforms TSI on all domains, demonstrating the utility of reasoning
directly over the posterior as opposed to a single sample (see results in fig. 1). The most eye-catching
results are on Tiger, where TSI fails completely. This reveals the true nature the planner, as the
assumption of being in a particular state leads to the policy of opening a specific door, and corresponds
to a large negative reward half of the time. This domain also exhibits a large amount of independent
relations, and as a result only our method on the FBA-POMDP approach, which identifies and
exploit the structure, is able to learn a satisfying solution. Gridworld, on the other hand, is the least
discriminating domain, most probably because the optimal policy is similar between similar states
and environments, leading to a lower loss when the wrong state or model is sampled.

Future work In this work we extended empirical evaluation on two BRL approaches by designing
a more naive Thompson-Sampling inspired planner. As opposed to previous work, this planner does
not exploit the complete knowledge available, and performs significantly worse, demonstrating the
need of exploiting the knowledge that BRL methods provide. Since essentially any BRL method for
discrete spaces may be coupled with MCTS, it would be interesting to see how well that theory holds
up in practice on other approaches and how it affects the tree. For example, MCTS relies on quick
simulations and thus only works in practice if a step in the state-model space is efficient.
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