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PREFACE

I’'m glad that I can finally present to you the final work of my master in Mechanical Engineering. This thesis started out at
Motek Medical, where the original goal was to create an algorithm able to detect gait events on data coming from the Rysen
[1] in rehabilitation setting. I would like to thank them for their original idea and their support throughout the initial phase
of my thesis. Unfortunately, due to the COVID-19 pandemic we were not able to do the experiments that were planned (the
experiment plan is included in appendix [A). As such, we started looking at alternatives in the form of existing data sets, on
which we would be able to benchmark acceleration-based and position-based gait detection algorithms. Several data sets were
considered and analysed, but none were usable for our use case (for an overview of the data sets that were considered and the
reason they were discarded, we would like to refer you to appendix [B). The data set by Mundt [2]] finally offered us a path
to continue and I would like to thank her for her willingness to share the data set and generously answer all of my questions.

This work has taught me invaluable lessons, in writing, analysis and perseverance. None of it would have been possible
without my supervisor, Prof. Dr. Ing. H. Vallery, to whom I would like to express my gratitude for her valuable insights and
unrelenting support. In the end, we’ve successfully managed to benchmark and compare the acceleration-based algorithms,
create position-based gait event detection methods, show their performance improvement and propose a method for detecting
left and right steps. In short, showing that the full gait cycle can adequately be monitored with nothing more than tracking the
upper-body position. I hope that one day, parts of this work might be used to improve the RYSEN again, completing the circle...

Youp Mickers, November 21st, 2020
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One Step At a Time: Newly Proposed Gait Event Detection Using
Position Benchmarked Against Existing Acceleration-Based Methods

Youp Mickers

Abstract—Gait event detection allows for insight into one’s gait
pattern, an invaluable aid in rehabilitation. Current methods
often rely on measured acceleration and rarely on position
measurements [3]-[6]. In this paper we propose 4 novel gait
detection methods based on the position of the Center of Mass
(one approach being causal and thus suitable for real-time use)
and compare them to 4 existing state-of-the-art acceleration-
based methods. All algorithms are benchmarked on an existing
data set (overground walking, 23 participants, 1772 steps),
comparing the detection rate, false positive rate and the mean
and (intra- and interparticipant) standard deviation of the timing
error for Heel Strikes and Toe-Offs. We show that position-based
algorithms give well-balanced results and are able to outperform
the acceleration-based algorithms in all five metrics. Additionally,
we propose and compare several methods for detecting left and
right steps, thereby enabling quantification of the full gait cycle.

Keywords: Gait Event Detection | Gait Phase Analysis |
Acceleration-based | Position-based | Toe-Off | Heel Strike

I. INTRODUCTION

Gait contains a wide variety of information, both in every-
day life and in the clinical setting and as such it can give us
insight in a person’s health. Baker [7]] identified four reasons
for gait analysis: diagnosis of a disease or injury, to assess the
severity of a disease or injury, to monitor the progression of a
disease or injury and to monitor the effect of an intervention
or treatment. Additionally, knowing the precise progress of
the gait cycle allows one to use this information in AR/VR
(Augmented/Virtual Reality) applications or specialized bal-
ance exercises, such as disturbing a person at a specific phase
of their gait cycle.

Knowing the current phase within the gait cycle through a
straightforward method greatly improves its usability. Where
Inertial Measurement Units (IMUs) are often used for this
purpose, position-based methods have received less attention.
Position measurements are often less noisy and we expect
better accuracy due to this. Alternatively, they might be easier
to obtain due to the specific setup (such as in the case of
the RYSEN [[1]]). The European counterpart to GPS, Galileo,
already offers sub-cm positioning to paying customers and
systems with similar levels of precision focused on indoor
environments are becoming available as well and might replace
currently used motion capture systems in the nearby future.

A literature research revealed that the most sought-after
events for gait analysis in the clinical setting were the Heel
Strike (HS) and the Toe-Off (TO) (see figure . Algorithms
extracting these events from upper-body acceleration exist [[3]]—
[6]]. To the authors’ knowledge, no such algorithms have been
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Fig. 1. Overview of the gait phases in healthy gait [8] (©2016 IEEE, reused
with permission)

proposed yet relying on position measurements of the upper-
body. Position-based detection might offer superior perfor-
mance, as position measurements tend to contain less noise
than acceleration measurements. Additionally, it is a first
step towards algorithms that fuse position and acceleration
information.

The goal of this paper was therefore to come up with one
or more algorithms which are able to detect steps based on the
position pattern of the Centre of Mass (CoM). Additionally,
the constraint can be made that such an algorithm is causal,
allowing use in on-line (possibly real-time) scenarios. To fully
quantify the gait, a method classifying steps as either left
or right is also proposed (the algorithms are explained in
appendix [C). The following research questions are defined and
will be answered:

o How do the acceleration-based algorithms perform com-
pared to one another?
o Is it possible to create a position-based algorithm to
accurately quantify the gait cycle?
— Can position-based algorithms improve gait event
detection compared to acceleration-based methods?
— Is such a method possible whilst being causal?

o Is a position-based algorithm’s performance sensitive to
the marker placement?

We will propose four algorithms, referred to as pos-AP,
pos-Vert, pos-Fused and pos-RT (pos-RT being causal). Their
performance will be compared to four existing state-of-the-
art acceleration-based algorithms, by Zijlstra [3]], Gonzalez
[4], McCamley [5] and Shin [6] (see appendix @] for more
details), based on the metrics defined in section The



performance will be benchmarked on an existing data set,
shared by Mundt [2]. Note that of the acceleration-based
algorithms, only the one by McCamley detects Toe-Offs. In
addition to the detection of the gait events, a mechanism is
proposed to label each step as either a left or a right step
(the process of which will be referred to as side detection).
This information allows for a reasonable view of the temporal
characteristics of one’s gait.

II. METHOD
A. Proposed algorithms

The proposed algorithms will be shortly introduced here.
For a more extensive explanation, the reader is referred to
appendix [C]

1) Pos-AP: Pos-AP is based on the velocity in the anterior-
posterior direction for the HS, assuming the forward velocity
reaches a maximum at the moment of HS. A minimum in the
AP acceleration is considered a TO.

2) Pos-Vert: Pos-Vert is based on the assumption that the
CoM vertical movement resembles a sinusoid, reaching its
lowest point at the moment of HS in normal gait. TO is de-
tected by finding the minimum vertical acceleration following
a HS.

3) Pos-Fused: Pos-Fused was created to mitigate the high
number of false positives stemming from the pos-AP algo-
rithm. It does this by running both pos-AP and pos-Vert and
only reporting a HS if this is found by both algorithms, then
taking the timing of the HS by pos-AP. TO is detected by the
minimum in AP acceleration following a HS.

4) Pos-RT: Pos-RT is created to be causal and thus applica-
ble in online situations. A maximum in the AP velocity is taken
as HS (with the added heuristic that the AP acceleration was
sufficiently positive over the previous samples). TO is taken
as the zero-crossing of the AP acceleration from positive to
negative.

5) Side Detection: Two versions of side detection are
proposed, both based on the modeling of the mediolateral
swaying motion as an (inverted) pendulum. By looking at the
cumulative value of the signal over the preceding samples we
can see whether the velocity or acceleration is predominantly
in one direction, which it turn allows for classifying the steps.

B. Existing algorithms

The existing algorithms will be shortly introduced here. For
a more extensive explanation, the reader is referred to appendix
D

1) McCamley: McCamley [5] is based on the acceleration
in the vertical direction. The signal is integrated and then
differentiated using a Gaussian Wavelet Transform (GWT),
effectively smoothing the signal, after which the minima are
taken as HS. After a further differentiation using GWT, the
maxima are taken as TO.

2) Zijlstra: Zijlstra [3]] was one of the first algorithms
detecting HS using upper-body acceleration measurements. A
low-pass filtered (2 Hz) version of the AP signal is used,
with the peak preceding each zero-crossing (from positive to
negative) being taken as a HS.

3) Shin: Shin [6] is the only causal acceleration-based
algorithm and the only algorithm not requiring separated
acceleration components, instead using the magnitude of the
total acceleration. The total acceleration is smoothed (using
a sliding window summation) and then differentiated, after
which each zero-crossing (negative to positive) is taken as a
HS.

4) Gonzalez: Gonzalez [4] is based on Zijlstra and thus
relies on the AP signal. It adds some further heuristics based
on the vertical acceleration.

C. Outcome measures

As mentioned, we are primarily interested in two types of
events; heel strikes and toe-offs. For both of them, we will
assess the quality of their detection based on five metrics,
being the detection rate (also known as sensitivity), false
positives rate, the mean (absolute) error in milliseconds and
the variance of the timing error (intra- and inter-participant).

1) Detection rate: The detection rate (also known as the
sensitivity) is defined as the ratio of the number of correctly
detected events to the number of total events. An event is
considered to be correctly detected if the absolute error is
smaller than 300 ms. A higher detection rate is considered
positive.

2) False positive rate: The false positive rate is defined as
the ratio of the number of false positives to the total number
of events. The often used counterpart of sensitivity, specificity,
cannot be used directly here, as there are no negative events
in the traditional sense. This concept is used instead. A false
positive is defined as being more than 300 ms from an
event, or if multiple events are detected for an event (with
each extraneous event counting as one false positive). It is
favourable to have a low false positive rate.

3) Timing (mean and variance): The timing metrics that
are of interest are considered to be the mean error and the
standard deviation of the error. This results in effectively
two variances; intra-participant (how much do the timing
errors differ within a single participant) and inter-participant
(how consistent is the mean timing error between different
participants). In case multiple detected events are within the
window that is considered matching (being false positives),
the timing of the detected event closest to the actual event
is taken. A low Mean Absolute Error (MAE) is considered
desirable, as are low variances.

D. Comparisons

Comparing the algorithms will be done according to follow-
ing benchmarking strategies. For all comparisons, the steps of
each participant will be grouped as a single case. All metrics
are thus calculated per person, with the exception of the effect
of gait velocity.

1) Asymmetric performance acceleration-based methods:
During the exploratory phase it was found that the asymmetric
attachment of the IMU results in a noticeable performance
difference between left and right steps. As such, it was decided
that the results will be shown as a whole and additionally
separated per side. In order to make the comparison between



acceleration-based and position-based algorithms (as the latter
does not depend on an asymmetrically located marker) fairer,
all graphs will show the performance for left/right steps
separately, as well as combined.

2) Performance heel strike detection: All algorithms will
be compared on their performance of the heel strike detection.
A heel strike is defined as correctly detected if the absolute
error is below 300 ms (based on a minimum step duration of
0.6 seconds [9]]).

3) Performance toe off detection: The algorithms that de-
tect toe-offs (all four position-based algorithm and McCam-
ley), will be compared on their performance of the toe-off
detection. A TO is defined as correctly detected if the absolute
error is below 300 ms (based on a minimum step duration of
0.6 seconds [9]]).

4) Performance side detection: The side detection is a
binary classification (left or right) and the metric used will
be the number of events correctly classified. That is, for each
heel strike, we run the algorithm (described in appendix [C)
to detect whether it is a left or a right step. The number of
correctly classified steps is then divided by the total steps.
As the number of steps on each side will be roughly equal
and their classification can be considered equally important
(misclassifying right steps is no worse than misclassifying left
steps), it is not necessary to apply a weighting, or use concepts
akin to the Fl-score [[10]. This is done for the approach based
on the mediolateral velocity and for the approach based on
the mediolateral acceleration, acquired by differentiating the
position respectively once and twice. Both approaches will be
tested at 5 different durations, being 100, 150, 200, 250, and
300 ms, resulting in a total of 10 conditions.

5) Effect of gait velocity: According to the original paper
the data set is split over 5 gait velocities (every participant has
10 trials per velocity), at 0.8 m/s, 1.1 m/s, 1.4 m/s, 1.7 m/s
and 2.0 m/s (& 10%). To measure the effect of gait velocity
on the performance of the algorithm, each velocity will be
handled as a separate condition and metrics will be calculated
per velocity instead of per participant.

The information stating which gait velocity was aimed at
was however not included in the data set. Efforts to extract
this information using the displacement of certain markers
over time also did not lead to a conclusive and accurate
categorization and as such, this comparison will be skipped.

6) Robustness to marker attachment: The robustness of the
position-based algorithms to the exact location of the marker
will be benchmarked by comparing the performance on the
virtual marker representing the CoM to a marker further away
from the CoM. The marker that will be used is located on the
RASI (indicated in figure [2).

E. The Dataset

The dataset was shared by Mundt [2] and contains 1112
trials of 23 participants (12 female, 28.146.0 years, 72.3+12.7
kg, 1.774£0.07 m) walking a 10m walkway. For an overview
of other data sets that were considered and the reason they
were discarded, we would like to refer you to appendix

Fig. 2. Overview of the marker and accelerometer locations. The red (front)
and blue (back) dots represent the MoCap markers, the green boxes the
attached IMUs. The blue cross is the virtual point created by taking the middle
of the two directly adjacent markers. The red circled marker is the RASI and
used for testing the robustness to marker location (by Mundt, licensed under
CC BY 4.0) [2].

1) Marker and IMU attachment:
following measurements are available;

From each trial, the

o tri-axial acceleration at 5 points (tri-axial IMUs)
 position of 28 markers (motion capture)
o tri-axial force data from zero, one or two force plates

The IMUs were positioned on the left and right shank, left
and right knees and the left hip and sampled at 100 Hz (as
shown in figure [2), meaning IMU that is used is not attached
symmetrically, like the MoCap markers that are tracked.
The markers are located according to an anatomical model
based on the recommendations of the International Society
of Biomechanics (ISB) [11] and the motion capture system
(VICON™ MX F40, Oxford, UK) is sampling at 100 Hz.
The CoM is taken as the middle between the RPSI and LPSI
marker.

2) Data processing: The number of force plates varies
between trials and every force plate captures a single step,
meaning that every trial contains zero, one or two steps.
In total, the set contained 1772 steps and after an initial
exploratory phase analysing the suitability of the data set, the
set was divided into 894 steps for the analysis phase (with
which the algorithms were developed) and 878 steps for the
validation phase. This division ensured the algorithms were
not tuned specifically to the data set and was done by using
the random method from the Python Numpy-package by;

o Sorting all trials first by subject, then by trial number
(both ascending)
o Seeding Numpy.random
np.random.seed(101)
o Assigning the sorted items a number (0 or 1) using
np.random.randint(2)
« Splitting the items in the analysis (0) and control group
ey
All signals were synchronized according to the method
described in the original paper [2]. Those signals were then fed
to the algorithms, with no filtering applied for the acceleration

with 101 using



and position data and 6 Hz low-pass filtering applied for the
force plates.

3) Golden standard extraction: The ground truth of the
events was extracted from the force plates, and as such is
independent from both the motion capture and the acceleration
measured by the IMUs. For the heel strike extraction, the
following methodology is used: The peak value of the force is
detected, after which the moments where the value first reaches
10% and 90% of this peak are taken (thresholds commonly
used to define the rise time). The moment of heel strike is
then defined as the middle of these moments. For the toe-off
event extraction, the moment where the signal drops to 10%
of the peak again is taken.

F. Statistical analysis

Four differences will be statistically investigated for their
significance, all at the p<0.05-level. This will be done us-
ing the three timing-related metrics, being the mean timing
error, the intra-participant variance and the inter-participant
variance. These metrics will be considered as having a normal
distribution, an assumption we will inspect visually and test
using a Shapiro-Wilk test. After this a pair-wise Welch’s t-test
[12] (thereby incorporating potentially unequal variances) will
be done for the mean timing error and the intra-participant
variance, while the inter-participant variance will compared
using a Bartlett test [[13]]. We will apply a standard Bonferroni
correction to minimize the chance of making a type I error,
meaning a difference is considered statistically significant
when a p-value lower than 0.0167 is found.

The following four comparisons will be examined for their
significance:

o Left steps vs. right steps for the acceleration-based algo-

rithms

o Comparison HS detection between pos-Fused/pos-RT and

the acceleration-based methods

o Comparison TO detection between pos-Fused/pos-RT and

the acceleration-based methods

o Virtual CoM marker vs RASI marker position-based

algorithms

III. RESULTS

In this section, the first paragraph will analyze the asym-
metric performance of the acceleration-based algorithms, after
which the second and third paragraph will treat the detection
of heel strikes and toe-offs in all algorithms. Side detection is
treated in the fourth paragraph, while the fifth paragraph will
analyze the robustness of the position-based algorithms.

A. Asymmetric performance acceleration-based methods

As can be seen in figure [3] the asymmetric attachment
of the IMU results in a noticeable performance difference
between left (red) and right (blue) steps for the acceleration-
based algorithms (the IMU is positioned on the left hip). As
such all subsequent graphs will, in addition to the combination
(purple), also show both separately. This will allow for a fairer
comparison between acceleration-based and position-based
algorithms (the latter depends on a symmetrically located
virtual marker).

B. Performance heel strike detection

Looking at the acceleration-based algorithms in figure [3|
it is immediately visible that Gonzalez [4], detects only
slightly more than half of the heel strikes for most par-
ticipants (49.7£13.0%). Shin has a higher detection rate
(99.4£1.3%), but also generates a higher amount of false
positives (24.4£9.6%). Both Zijlstra and McCamley have high
detection rates and low false positive rates. McCamley has
a slightly higher detection rate (99.7+£0.8% vs 97.243.6%),
a smaller MAE (Mean Absolute Error) (-3.14+18.7 ms vs
-32.3+£16.3 ms), and a lower intra-participant variance for
the error (std: 56.3+13.6 ms vs 58.2+14.2 ms), but Zijlstra
generates a lower number of false positives (3.9+4.6% vs
1.5+2.2%).

The non-causal position-based algorithms outperformed the
acceleration-based algorithms on most metrics. Pos-AP has
the second-lowest inter-participant variance at 7.81 ms (and
lowest intra-participant variance, 14.74 ms), but generated a
large number of false positives (33.7£7.6%). The pos-Vert
generates a very low number of false positives (0.904+2.2%),
but has a higher variance. The pos-Fused manages to combine
their properties, while also having a superior MAE, although
the (intra-participant and inter-participant) variance is slightly
higher than for pos-AP.

Finally, the causal position-based algorithm pos-RT per-
forms well on detection rate and timing (having the lowest
MAE and the second-lowest intra-participant variance). This
is at the cost of a slightly higher false positive rate (3.55+6.49
%).



False Positives/Detection Rate HS

— . B
McCamley — 4 B a
—== v @R
] e
Zijlstra . - l-.
el —
e et
Shin —T = =l
E——— -
s —m ———
£  Gonzalez o — T —
£ P e ——— — S
=,
=
o
o — [l
< pos AP —— |
—_— L]
-t .t
pos Vert ---l -|
' '
1 LRy
pos Fused | I-l
1 . -1
- -m '
pos RT . I-. -I
—= -
1 0.5 00 0.5 1
False positive rate detection rate
Mean Timing Error/Mean Std HS
— — A =8
McCamley —TH T+ 3 an
—_— —_—_T— . R
» —Cc =
Zijlstra - - —{ T
—— —_——
= — ———
Shin —TH —l— =
—— ———— .

—_——
£ Gonzalez D—-—l .
£ —_—
=
=
o
=g ~m- o .
< pos AP l-l-i l.-| .
-0 = =
—m— . —m— .
pos Vert l.]—l
—a— —a—
—— . —m—
pos Fused l-u—i I—.-l
—=— —==—
—a- -
pos RT +h -
] -
-200 —100 ) 100 4] 50 100 150

Error (in ms) Std (in ms)

Fig. 3. Comparison of all position-based and acceleration-based algorithms
for HS. In the top row, the false positive rate and detection rate. The bottom
row shows the mean timing error and the std of the timing error

C. Performance toe off detection

Of the acceleration-based algorithm, only McCamley in-
cludes TO detection as can be seen in figure 4 For the
non-causal position-based algorithms a comparable situation
arises as with the HS detection. Pos-AP has a lower variance,
but generates a large number of false positives. Again, the
pos-Fused manages to combine the properties of the pos-
AP and pos-Vert. The position-based algorithms outperform
McCamley on most metrics and shift the mean error from
79.3£24.3 ms to -0.81+34.8 — 48.28£8.83 ms.

Looking at pos-RT, the detection rate is high (99.1£2.33%),
albeit a relatively high false positive rate is observed
(7.2£9.0%). The timing is interesting, having the highest
MAE of all position-based algorithms (48.3+8.83 ms) and
simultaneously the lowest inter-participant variance of all
algorithms (8.83 ms).
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D. Performance side detection

In figure [5]it can be seen that velocity-based side detection
has higher classification rates over a longer period (300 ms
results in a 98.8-99.5% correct rate), although there is little
difference with the 200 ms (98.0-99.6%) and 250 ms (98.4-
99.7%) situation. On the other hand, acceleration-based side
detection has higher classification rates when a shorter period
is used (100 ms results in a 79.4-83.2% correct rate). Compar-
ing the two, velocity-based side detection classify more steps
correctly than acceleration-based detection.
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E. Robustness to marker attachment

In order to test whether the proposed algorithms are robust
to the exact location of the markers, they are run on one of
the other markers attached to the pelvis (RASI, located on
the front right). It can be seen (figure [6) that the position-
based algorithms still work and have comparable detection
and false positive rates, with the exception of an increase in
the false positive rate for pos-RT (going from 3.55+6.49% to
21.249.7%). The timing of the errors tells a different story
and a strong asymmetry arises between left and right steps.
Interesting to note is the timing error of the left step for pos-
AP, which shows both a very low mean error and a lower
variance (intra-participant and inter-participant) for the RASI
marker than for the central marker (a similar pattern is seen
with right steps and the LASI marker).
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Fig. 6. Comparing the robustness of the algorithms by using a marker located
further from the CoM (RASI). In the top row, the false positive rate and
detection rate. The bottom row shows the mean timing error and the variance
of the timing error

FE. Statistical analysis

In this section 4 comparison are evaluated for their statistical
significance. A result is found to be significant at p<0.05-level
and involves 3 metrics, meaning the required p-value is set to
0.0167 after a Bonferroni-correction.

1) Left vs. right steps: Looking at table[[T]in appendix [E]it is
visible that for 3 acceleration-based algorithms (the exception
being Gonzalez), there are significantly different results for
left vs. right steps. This is in all cases due by the mean error,
although Zijlstra additionally has a significantly different inter-
participant variance between left and right steps.

2) Performance heel strike detection: From table [ITl] in ap-
pendix [E] it can be seen that there is a significant difference in
performance between all 28 algorithm pairs. In 22 pairs this is
caused by the mean errors, in 24 pairs by the intra-participant
variance and in 17 cases by the inter-participant variance.



Comparing pos-Fused with the acceleration-based methods we
can see that the mean error and intra-participant variance are
significantly different from all acceleration-based algorithm,
and the inter-participant variance from Gonzalez. For pos-
RT, all three metrics (mean error, intra- and interparticipant)
variance are significantly different from all acceleration-based
algorithms, with the exception of the inter-participant variance
with McCamley.

3) Performance toe-off detection: From table in ap-
pendix [E] it can be seen that there are significant differences in
performance in TO detection for 9 out of 10 algorithm pairs,
the exception being Pos-AP vs Pos-Fused. For 7 pairs this is
caused by the mean error, for 6 pairs by the intra-participant
variance and 6 pairs show significant differences in the inter-
participant variance. Comparing pos-Fused and pos-RT with
the only acceleration-based algorithm (McCamley), we can
see that for both on all three metrics the differences can be
considered statistically significant.

4) Performance marker location: Comparing the perfor-
mance of the position-based algorithms on the virtual CoM vs.
the asymmetric RASI marker, table[V]in appendix [E] shows the
performance can be considered significantly different based on
the intra-participant variance for all 4 algorithms. None of the
other differences in metrics can be considered significant at
the p<0.05-level.

IV. DISCUSSION
A. Research questions

Using the results we will now answer the defined research
questions.

How do the acceleration-based algorithms perform com-
pared to one another?
Of the acceleration-based algorithms, Shin and Gonzalez are
largely unsuitable for general use. Gonzalez due to the low
detection rate, Shin due to high number of false positives.
McCamley and Zijlstra would be advisable, depending on
the exact needs of the application. McCamley has a better
detection rate, a lower mean error and lower variances. Addi-
tionally, McCamley is also able to extract heel strikes. Zijlstra
has a slightly lower false positive rate, which might be more
favourable in certain applications.

Is it possible to create a position-based algorithm to accu-
rately quantify the gait cycle?
Position-based methods were able to detect both gait events
(HS and TO) that were considered necessary. Additionally,
position-based methods were able to classify steps as either left
or right, scoring >98% with all algorithms, when the velocity,
300 ms-method is used. This means the full gait cycle can
indeed be quantified using position-based methods.

Can position-based algorithms improve gait event detection
compared to acceleration-based methods?
In general, the position-based algorithms show great potential
and outperform the acceleration-based algorithms on all met-
rics. Especially the increased consistency is remarkable. Both
within a participants and between participants, the variance is
much lower, which is arguably more important than the mean
timing error (as the latter is easily corrected for in off-line
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applications). Pos-AP can be considered unsuitable due to the
high amount of false positives, but its timing error indicate
anterior-posterior movements might still be the most precise,
as was also shown in the literature review. A way is needed to
remove false positives, as is done in pos-Fused, improving the
false positive rate, at the cost of a small increase in variance.
For the TO, similar patterns are seen as with HS. We can
conclude that pos-Fused is able to detect gait events better
than acceleration-based methods.

Is such a method possible whilst being causal?
Pos-RT is causal and shows good results for HS, although the
false positive rate is somewhat higher than for the non-causal
position-based methods (and comparable to the acceleration-
based methods). The performance on TO results in a similar
number of false positives and the mean error is relatively high
compared to other position-based algorithms, but the (inter-
and intra-participant) variance shows good consistency. The
side detection proposed is also causal.

Is a position-based algorithm’s performance sensitive to the
marker placement?
From the results it can be seen that the position-based
algorithm are still able to detect gait events with a high
accuracy when an asymmetric marker location is used. The
performance in timing is somewhat degraded, but we have
shown that the position-based algorithms performances are
robust to a strongly asymmetric (RASI) attachment, albeit with
a decreased performance in timing.

B. Real-time usage

An important boundary condition for real-time usage of an
algorithm is causality. As three of the algorithms (pos-AP, pos-
Vert, pos-Fused) rely on bidirectional filtering for their anal-
ysis, they depend on future values, making them non-causal.
Pos-RT relies on a rolling average over 5 samples, followed
by a peak detection over 5 samples (in both directions). As
such, the delay is 10 samples (100 ms at the 100 Hz sampling
rate used), which would be usable in a real-time context. We
expect this delay could be further improved, for example by
increasing the sampling rate, or by further tuning the peak
detection.

The side detection relies only on past values and does not
apply any form of peak detection. This makes the necessary
delay 0 ms and means it can be used in real-time.

C. Force Plate Filtering

The force plate data has been (bi-directionally) low-pass
filtered, smearing the signal somewhat. As a result of this
limitation in the data set, the average rise time (going from
10% to 90% of the maximum force) over all steps is 12.8
samples (128 ms). This is relatively large and results in an
uncertainty in extracting the exact moment of the gait events.
The effect is largest in the mean error, as this could “shift”
the results of all algorithms. The spread of the means (inter-
participant) and the standard deviation (intra-participant) are
not affected though and it can be seen that position-based
algorithms tend to perform more consistent from them.



D. Location marker vs. IMU

An important issue with the data set is the asymmetric
attachment of the IMU versus the symmetric position of the
virtual marker. From the results it can clearly be seen that steps
on the opposite side of the IMU are generally detected better,
affecting both detection rate and timing error, the extent of this
effect varying with the algorithms. Although we try to com-
pensate for this by comparing both the average and best-case
scenarios for the acceleration-based algorithms, there is simply
no way to know if the acceleration-based algorithm would
have performed better with a more symmetric attachment. In
the opposite sense, we have shown that the position-based
algorithms performances are robust to a strongly asymmetric
(RASI) attachment.

E. Further Research

This is to author’s knowledge the first time gait event
detection is done using position-based methods. For further
applications, for example in rehabilitation, several aspects can
be explored further.

1) Dynamic Thresholding: A strategy that is used often
is thresholding, in which an event is not considered if the
signal does not have a certain minimum (or maximum) value.
This threshold varies between persons and over different gait
velocities (peak acceleration values for example vary greatly
with gait velocity [14]), making it unfeasible to pick one value
which works over a range of conditions. A solution is dynamic
thresholding, as applied by Yang [[15], in which the threshold
value is based on the maximum value encountered over the
previous n samples. This approach is promising, especially in
steady-state gait, but the current data set is not feasible to test
this on. This due to the fact that often the data signal only
extends a short time before the registered gait events, giving
no possibility to accurately set the dynamic threshold. Still,
we expect the concept could be used to improve the proposed
algorithms.

2) Pos-AP asymmetric attachment performance: An inter-
esting result of pos-AP is the increase in timing accuracy when
the marker is placed asymmetrical. Steps on the opposite side
of the marker attachment are detected with the lowest variance
of all measured conditions (algorithm, marker position, step
side) and a very low mean error. This could certainly be
explored further and a method relying on two markers (RASI
and LASI), might be used to improve the algorithm further.

3) Effect of gait velocity: As stated, the original goal was
to also compare the performance at various gait velocities as
this effects the gait characteristics [[15]], but this information
is lacking from the data set. Still, further research should
be done to asses the robustness of the various algorithms.
In revalidation applications, it might make sense to choose
algorithms that are strong with lower gait velocities, as this is
likely to occur.

4) Gait Pathologies and Use in Revalidation: The data
set contains only normal walking on a flat plane, which
can reasonably be assumed to have reached steady-state. For
further use in medical settings, the algorithms could further be
validated on a variety of gait pathologies (see also appendix [A])
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and non-transient gait. Examples of the latter would include
starting walking from standstill, people performing exercised
walks, or people being disturbed at specific moments in their
gait cycle.

V. CONCLUSION

In this paper, we have shown that a single marker tracking
the position of the CoM can be used as a viable alternative
to an accelerometer for the detection of gait events. Four
algorithms were proposed and their performance on the dataset
was compared, with position-based algorithms outperforming
acceleration-based algorithms on key parameters. Additionally,
side detection was found to be reliable, meaning the entire
gait cycle can be accurately monitored using position-based
measurements.

Within the acceleration-based methods Gonzalez and Shin
are considered generally unsuitable; Gonzalez due to the low
detection rate (49.7+13.0%) and Shin due to the high false
positive rate (24.4£9.6%). McCamley seems the best overall
method here, with Zijlstra being a close second with different
strengths.

Four position-based methods are proposed; pos-AP, pos-
Vert, pos-Fused (combining the aforementioned two) and a
causal pos-RT. Pos-Fused shows great overall potential, with
a detection rate of 98.8% and being the only algorithm with a
0.0% false positive rate. On the timing, it outperforms 3 of the
4 acceleration-based algorithms in mean error and has both a
lower intra- and interparticipant variance than all acceleration-
based algorithms. Pos-AP has slightly lower (inter- and intra-
participant) variances in mean error, but at the cost of a
high false positive rate. Pos-RT proves reliable for real-
time settings; again, 3 of the 4 acceleration-based algorithms
are outperformed in mean error and all acceleration-based
algorithms in both intra- and interparticipant variance.

In detecting TO, the position-based algorithms also sur-
passes acceleration-based methods (McCamley being the only
one detecting TO, at 98.5% with 13.7% FP). Pos-Fused again
manages to merge the advantages of pos-Vert and pos-AP,
detecting 98.8% of the events at a 0.37% false positive rate
(the lowest of all algorithms). Pos-RT detects 99.1% with 7.2%
false positives. On the timing, both pos-Fused and pos-RT
report a lower mean absolute error and much smaller intra-
and inter-participant variances than McCamley.

Side detection was examined and shown to work correctly
with all four position-based algorithms. In the end the velocity-
based method, derived by differentiation, over the previous
300 ms proved the most accurate (98.8-99.5% correct rate).
Velocity-based provided higher accuracy with longer times,
while acceleration-based profited from shorter times.

The proposed algorithms were shown to be relatively robust
to the positioning of the marker, although timing precision
was lower for the (strongly) asymmetrical attachment. The
exception to this was the pos-AP algorithm, whose precision
showed a remarkable increase for the timing of steps on the
opposite side.

Concluding, full gait cycle quantification using position-
based methods is feasible and potentially superior to
acceleration-based methods.
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APPENDIX A
ORIGINAL EXPERIMENT PLAN

A. Data Collection

Biometric information. Both the length and the weight of
the person will be recorded.

Time series will be collected of the following variables:

IMU in the slingbar: linear acceleration

IMU in the slingbar: angular rate

Sensor in the slingbar: absolute angle between the sling-
bar and the room (direction the patient is facing)
Internal RYSEN data: force in the cables

Internal RYSEN data: position of the slingbar, calculated
from the lengths of the cables

Marker positions: using a motion capture system.

All time series will be collected by D-Flow at rates of up to
1000Hz. D-Flow will also handle the synchronization of the
signals.

B. Walking patterns

Several walking patterns are planned throughout the room
in order to get a good estimate of the RYSEN’s influence.
Due to the weight being carried by the cables, which are at
different angles depending on the location in the room, the
exact forces experienced by the patient might vary. As such,
both breadthwise strides and lengthwise strides are considered.
The Zigzag walking is meant to emulate typical usage of the
RYSEN within the rehabilitation process. All courses will be
created using flat circles or small cones, further clarified using
arrows applied on the floor if necessary.
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Fig. 7. Different walking patterns through the room. From left to right: (A)
Zigzag walking (B) Random walking (C) Breadthwise strides (D) Lengthwise
strides

C. Gait types

Several types of gait are considered for the experiment,
meant to approximate various forms of pathological gait.
Testing how robust the algorithms are to atypical forms of
gait, which are often encountered during rehabilitation. We
are interested in asymmetric forms of gait (such as a dragging
leg), or gait with low accelerations (as most algorithms from
literature are acceleration-based). Examples of the latter would
be careful walking, which we intend to test by having the
participant walk with a full glass of water or a table-tennis
ball on a spoon. ”Shuffling walk”, often seen in patients with
Parkinson disease, is also a form of gait which tends to have
low accelerations.

Normal walking

Careful walking

Dragging leg

Shuffling walk (Parkinsonian gait)

APPENDIX B
OTHER DATASETS

During this project, several other data sets were considered
and examined. We will shortly introduce them and explain
why they were deemed unsuitable for this purpose.

A. Internal Motek dataset

As mentioned during the introduction, the project started out
as a gait detection project for the RYSEN. During preliminary



runs of the experiment, it was found out that the RYSEN
had a sampling issue which resulted in data being sampled
irregularly. Instead of the supposed 1000 Hz, a sampling rate
closer to 25 Hz was experienced, with a large variance in
frame size (the longest frames being up to 200 ms). When we
eventually managed solved this issue together with their team,
we were no longer able to do experiments with participants
due to the pandemic. As such we turned our efforts to existing
data that was collected by Motek over the years.

It was noted that all internal data that was collected by
the RYSEN suffered from this issue. Several smoothing,
interpolating and filtering techniques were tried, but we were
not able to get accurate signals to run the algorithms on.

B. Perturbed walking dataset

The perturbed walking data set by Moore [16] contains
treadmill walking by 15 subjects at 3 speeds. Each trial
consists of 120 seconds of normal walking, followed by
480 second of “walking while being longitudinally perturbed
during each stance phase with pseudo-random fluctuations in
the speed of the treadmill belt” (for a total of ;5000 gait cycles
of unperturbed and 20000 gait cycles of perturbed walking). It
contains marker data from 47 markers, sampled by an Osprey
camera motion capture system at 1000Hz. Additionally, two
6 DoF force plates are located under the walking area of the
R-Mill treadmill, giving the ground truth.

No acceleration data was available, so we tried to estimate
the acceleration using double differentiation of a marker’s
position (including the THEAD marker, the SACR marker
and the point between the RPSIS and LPSIS marker). The
measurments were noisy, and differentiation often exacerbates
noise. This meant we had to either work with very noisy
acceleration estimates, or a signal that was so heavily filtered
that it contained filtering artifacts such as oscillations. In the
end it was decided that a good comparison between position-
based and acceleration-based algorithms was not possible this
way.

C. MAREA Gait Database

The MAREA Gait database [17] is a data set containing
free and treadmill walking of 20 participants (12 males and 8
females, average age: 33.4 £ 7 years, average mass: 73.2 +
10.9 kg, average height: 172.6 £ 9.5 cm). 11 of the participants
completed the indoor treadmill protocol, which consists of:

e 10 minutes of flat walking (4.0 km/h - 8.0 km/h, in
increments of 0.4 km/h)

o 12 minutes of sloped walking at self-selected speed (with
a slope of 5, 0, 10, 0, 15 and O degrees, 2 minutes each)

« 6 minutes of walking at a self-selected pace (3 minutes
walking, 3 minutes running)

Ground truth is based on insole forceplates, as the shoes
were instrumented with piezo-electric force sensitive resistors
(FSRs), fixed at the extreme ends of the sole. 3 IMUs, located
at the navel, left wrist and left ankle provide acceleration
measurements. The database is not open source, but access
can be requested and will be granted for academic research.

While we got several of the algorithms running on the
data set, we eventually noted unexpected discrepancies in our
results. Upon further inspection, it seemed that the signals
(acceleration measurements and the force plate data) were not
precisely synchronized with respect to one another. The shift
(which we estimate to be up to 100 ms) seemed to be non-
constant even within a single trial. The authors did not respond
to our request for clarification. As such, we decided that it was
not possible to reasonably compare the algorithms on this data
set.

APPENDIX C
PROPOSED ALGORITHMS

Four algorithms are proposed in this paper; one based only
on the anterior-posterior component of the marker position
(AP algorithm), one only on the vertical component of the
marker position (vertical algorithm) and one fusing both
components (fused algorithm). Finally, one causal algorithm
will be proposed (RT algorithm).

A. Pos-AP algorithm

« Filter SHz second-order Butterworth filter.

« Differentiate once, giving the velocity in the anterior-
posterior direction.

« Any maximum in the velocity is considered a heel strike.

« Differentiate once more, giving the acceleration in the
anterior-posterior direction.

o Any minimum in the acceleration is considered a toe-off.

B. Pos-Vert algorithm

« Filter 5SHz second-order Butterworth filter.

« Any minimum in the vertical position is considered a heel
strike.

« Differentiate twice, giving the acceleration in the vertical
direction.

o For every heel strike, the first minimum in the vertical
acceleration following it is considered a toe-off.

C. Pos-Fused algorithm

o Run the AP-algorithm.

o For each HS that is found by the AP-algorithm, if a HS
is also found within 120 ms by the vertical algorithm,
consider it a Heel Strike.

o For each HS, the first minimum in the anterior-posterior
acceleration following it is considered a toe-off.

D. Pos-RT algorithm

o Take the sum over 5 previous samples of the anterior-
posterior position (box window).

e Any maximum peak with prominence 5 is taken as a
potential heel strike.

« Differentiate the anterior-posterior position twice, result-
ing in the acceleration.

o Take the sum over 20 previous samples of the anterior-
posterior acceleration (box window).



Any potential peak were the rolling mean of the acceler-
ation is larger than 5 is taken as a heel-strike.

For each HS, the moment the rolling mean of the ac-
celeration crosses from positive to negative is taken as a
TO.

E. Left/Right detection

The detection method is the same for all proposed algo-

rith
bas

ms, and consists of the following steps. For the velocity-
ed flavour:
Differentiate the medio-lateral position, resulting in the
medio-lateral velocity.
For each HS, integrate the medio-lateral velocity over the
preceding X ms.
If the result of this integration is negative, the HS is
considered to be part of a right step. If the result is
positive, the HS is considered to be a left step.
Differentiate the medio-lateral position twice, resulting in
the medio-lateral acceleration. For the acceleration-based
flavour:
For each HS, integrate the medio-lateral acceleration over
the preceding X ms.
If the result of this integration is positive, the HS is
considered to be part of a right step. If the result is
negative, the HS is considered to be a left step.

APPENDIX D
ALGORITHM DESCRIPTIONS

A. Moe-Nilssen (removing gravity component)

The algorithm by Moe-Nilssen [18] is a well-known algo-

rith

m to remove the static component from an IMUs signal.

The resultant acceleration is the true acceleration, so without

the
the

gravity component. The algorithm does this by assuming
gravity constant is known and the IMU is mainly in the

upright position, assumptions that generally hold when the
IMU is attached to a walking human. The algorithm was used
by all subsequent algorithms, with the exception of Shin.

B. Zijlstra

C.

(31
Filter the Anterior-Posterior acceleration using a 2 Hz
Low-Pass filter (4th order Butterworth).
Each zero-crossing from positive to negative is a Heel
Strike.
The actual moment of Heel Strike is taken as the peak
immediately preceding the zero-crossing.

Gonzalez

[4]. This method
Filter the Anterior-Posterior acceleration using a 2 Hz
Low-Pass filter (11th order FIR).
Each zero-crossing from positive to negative is a possible
Heel Strike.
Numerically approximate the positive area preceding the
zero-crossing. In case it is smaller than the defined
threshold, discard the possible event.
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o The same area used to calculate the threshold (so between

D.

the two zero-crossings), is considered the search space for
the Heel Strike. A peak is considered the moment of Heel
Strike if the following conditions are met:

Vertical acceleration is higher than gravity.

The peak occurs before the vertical acceleration
reaches 99% of its local maximum value.

If several peak satisfy these conditions the peak
closest to the zero-crossing is selected.

Shin
(6l
Take the norm of the total acceleration in all 3 directions:

Aporm = \/ai +a‘724 +(L§

Employ the sliding window summation over 0.2 seconds
(at a sampling rate of 100 Hz, N would be 20):

k

Z Gporm (t)

t=k—N+1

SWS(k) =

Employ the acceleration differential technique:
a(k) = SWS(k+ N) - SWS(k)

The zero-crossing from negative to positive of this signal
is taken as the moment of Heel Strike.

E. McCamley

[5] Based on Continuous Wavelet Transform

Vertical acceleration is integrated.

The resulting signal is differentiated a Gaussian Contin-
uous Wavelet Transform ().

The minima of this signal were taken as the Heel Strike
The signal is differentiated once more using a Gaussian
Continuous Wavelet Transform ().

The maxima of this signal are taken as the Toe-Off.

APPENDIX E
P-VALUES STATISTICAL ANALYSIS



p-value

Algorithm Mean Intra-participant Inter-participant
McCamley | 0.00000 0.26216 0.04248
Zijlstra 0.00000 0.12263 0.00332
Shin 0.00000 0.08186 0.99157
Gonzalez 0.13730 0.02083 0.60892

TABLE II
P-VALUES OF THE COMPARISONS BETWEEN LEFT AND RIGHT STEPS FOR ACCELERATION-BASED ALGORITHMS, COMPARING MEAN TIMING ERROR
(WELCH’S T-TEST), INTRA-PARTICIPANT VARIATION (WELCH’S T-TEST) AND INTER-PARTICIPANT VARIATION (BARTLETT TEST FOR VARIANCE).
P-VALUES BELOW 0.0167 (0.05/3) ARE CONSIDERED SIGNIFICANT AND ARE PRINTED IN BOLD.

Algorithm | McCamley Zijlstra Shin Gonzalez Pos-AP Pos-Vert Pos-Fused Pos-RT
McCamley | Mean 0.00000 0.00000 0.00000 0.03643 0.61240 0.01010 0.02570
Intra 0.65000 0.21047 0.00002 0.00000 0.00000 0.00000 0.00000
Inter 0.53716 0.68419 0.00328 0.00013 0.80459 0.19210 0.00001
Zijlstra 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000
0.40937 0.00005 0.00000 0.00000 0.00000 0.00000
0.83291 0.00048 0.00103 0.38814 0.48788 0.00008
Shin 0.00000 0.00000 0.00000 0.00008 0.00000
0.00047 0.00000 0.00000 0.00000 0.00000
0.00095 0.00052 0.51349 0.36646 0.00004
Gonzalez 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000
0.00000 0.00665 0.00004 0.00000
Pos-AP 0.01026 0.00000 0.00000
0.00000 0.00005 0.02290
0.00006 0.00796 0.45322
Pos-Vert 0.04870 0.12519
0.00025 0.00000
0.12208 0.00000
Pos-Fused 0.30212
0.01305
0.00086

TABLE III

P-VALUES OF THE PAIR-WISE COMPARISONS BETWEEN ALGORITHMS FOR HS, COMPARING MEAN TIMING ERROR (WELCH’S T-TEST),
INTRA-PARTICIPANT VARIATION (WELCH’S T-TEST) AND INTER-PARTICIPANT VARIATION (BARTLETT TEST FOR VARIANCE).

Algorithm McCamley Pos-AP Pos-Vert Pos-Fused Pos-RT
McCamley | Mean 0.00000 0.00000 0.00000 0.00001
Intra 0.00000 0.65799 0.00000 0.00000
Inter 0.01003 0.10051 0.00799 0.00001
Pos-AP 0.03358 0.81537 0.00000
0.00000 0.89851 0.12736
0.00005 0.93284 0.04313
Pos-Vert 0.02541 0.00000
0.00000 0.00000
0.00004 0.00000
Pos-Fused 0.00000
0.08667
0.05215

TABLE IV

P-VALUES OF THE PAIR-WISE COMPARISONS BETWEEN ALGORITHMS FOR TO, COMPARING MEAN TIMING ERROR (WELCH’S T-TEST),
INTRA-PARTICIPANT VARIATION (WELCH’S T-TEST) AND INTER-PARTICIPANT VARIATION (BARTLETT TEST FOR VARIANCE). P-VALUES BELOW 0.0167
(0.05/3) ARE CONSIDERED SIGNIFICANT AND ARE PRINTED IN BOLD.

| p-value
Algorithm Mean Intra-participant Inter-participant
McCamley | 0.29986 0.00000 0.32283
Zijlstra 0.11368 0.00788 0.52989
Shin 0.12309 0.00000 0.69552
Gonzalez 0.87261 0.00040 0.96757

TABLE V
P-VALUES OF THE COMPARISONS BETWEEN THE VIRTUAL COM MARKER AND THE RASI MARKER FOR POSITION-BASED ALGORITHMS, COMPARING
MEAN TIMING ERROR (WELCH’S T-TEST), INTRA-PARTICIPANT VARIATION (WELCH’S T-TEST) AND INTER-PARTICIPANT VARIATION (BARTLETT TEST
FOR VARIANCE). P-VALUES BELOW 0.0167 ARE CONSIDERED SIGNIFICANT.
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