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A life cycle costing approach for discounting in age and interval replacement 
optimisation models for civil infrastructure assets

M. van den Boomen, R. Schoenmaker and A.R.M. Wolfert

Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

ABSTRACT
Civil infrastructure assets, such as roads, locks, bridges, treatment plants and storm surge barriers, are often 
characterised by long service lives and corresponding technical life cycles. When life cycles are long, the time 
value of money plays a role in asset management decision-making on capital investments and operation 
and maintenance expenditures. In this paper, a new life cycle costing (LCC) approach for discounting in 
two classes of maintenance optimisation models is developed. These models are the age replacement 
model and the interval replacement model. Three well-known LCC techniques, which are the present 
worth, the capital recovery and the capitalised equivalent worth, are combined and used to develop a 
stepwise methodology. This methodology is validated with the few case-specific mathematical equations 
that exist in the literature. The advantage of using this alternative LCC approach is its applicability and 
flexibility for reliability and maintenance engineers. The resulting LCC method builds on well-known LCC 
formula and enhances the understanding of the inclusion of discounting principles in reliability models. 
Understanding these principles makes the method flexible. Practitioners can extend or adapt the method 
to changing circumstances, such as additional cash flows and altering reliability modelling.

1.  Introduction

The international standard on infrastructure asset management 
(ISO, 2014) and the British Institute of Asset Management (IAM, 
2015) both stress the importance of life cycle cost optimisation 
at a desired service level. The application of infrastructure life 
cycle costing (LCC) in practice is supported worldwide by several 
standards and guidelines. Good examples hereof are provided by 
the U.S. National Highway Federation (FHWA, 2017), who pre-
sents a whole range of reports and case studies, including support-
ing software. Other examples are given by the U.S. Department 
of Energy (DOE, 2014), the U.S. Transportation and Research 
Board (NCHRP, 2003), the World Road Association PIARC 
(PIARC, 2017) and the International Standards Organisation 
(ISO, 2008). The guidelines stress the importance of a probabil-
istic approach and dealing with uncertainty in LCC analyses, an 
area that is in development.

Probabilistic LCC for maintenance optimisation is of impor-
tance for asset owners, asset managers and service providers. In 
general, fundamental probabilistic cost optimisation in main-
tenance strategies is widely covered in the literature on relia-
bility engineering but often lacks discounting of costs. The cost 
of failure is set against the cost of preventive maintenance to 
find optimised preventive or corrective maintenance strategies. 
An overview of fundamental probabilistic maintenance and 
replacement cost optimisation models is provided by Jardine 

and Tsang (2013) and Campbell, Jardine, and McGlynn (2011). 
In our paper, the focus is on two of these optimisation models: 
the age replacement and interval replacement models.

The fundamental probabilistic models provide a quick esti-
mate for optimised preventive replacement (or major overhaul) 
intervals considering a trade-off between corrective and preven-
tive replacement costs. The value of these generic optimisation 
models is their ease and broad applicability for practitioners to 
establish a long-term asset planning for similar types of assets, in 
addition to more case-specific and advanced probabilistic LCC 
analyses. However, the fundamental probabilistic maintenance 
cost optimisation models hardly include discounting of costs. 
Discounting accounts for the time value of money. The time value 
of money gains in importance when maintenance or replacement 
intervals cover more than a few years, which is often the case for 
civil infrastructure assets. To allow for fair comparison of life 
cycle costs of different optimisation strategies, future costs are 
to be converted to their present values.

Although, LCC concepts are well-known, LCC analyses are 
still far from satisfactory in many fields in practice. Korpi and 
Ala-Risku (2008) only found 55 international LCC cases studies 
suitable for analysis out of a total of 205 potential articles. The 
authors concluded an overall unsatisfactory level of the execu-
tion of LCC analyses and specifically addressed the deterministic 
nature of most LCC case studies. Similar conclusions were drawn 
in a small-scale study on the quality of LCC analyses in the Dutch 
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types of infrastructure assets to predict and optimise life cycle 
costs. Instead, focus is put on discounting life cycle costs in exist-
ing and fundamental maintenance optimisation models, using 
the concepts of equivalent annual cost (EAC) and the capital 
equivalent worth, which will be explained in Section 2. This alter-
native LCC approach for discounting in age and interval replace-
ment models has not yet been elaborated on in the literature.

From an engineering asset management point of view, there 
is an interest in a more generalised, rather quick and flexible 
approach that allows for discounting in different types of fun-
damental maintenance optimisation models. Instead of the 
derivation of a unique set of mathematical formulas for a spe-
cific maintenance optimisation problem, three LCC techniques 
are used in combination and in a specific order to arrive at the 
required results. This stepwise LCC approach is demonstrated 
in two fundamental maintenance optimisation models: the age 
replacement model and the interval (block) replacement model. 
In the age replacement model, an asset is replaced upon failure 
or at a preventive replacement interval, whichever comes first. In 
the interval replacement model, an asset is replaced upon failure 
and at a preventive replacement interval.

The reason for selecting the age and interval replacement models 
for developing this alternative LCC method is twofold. First, the 
existence of mathematical formulas for discounting in age and 
interval replacement models allows for validation of the alternative 
LCC approach. A second reason is their ease and quick applicability 
in practice for infrastructure assets with long life cycles and periodic 
major overhauls. An inventory of different maintenance policies 
over the last 50 years still denotes the popularity of these models 
(Asis, Subhash Chandra, & Bijan, 2011). The models are used in 
practice by organisations that own and/or maintain infrastructure 
assets with long life cycles, for instance, for the interval estimation 
of the conservation of steel lock gates (age replacement), the block 
replacement of street lighting luminaires (interval replacement) 
and the revisions, major overhauls or replacements of hydraulic 
cylinders (both age and interval replacement).

One may argue that the age and interval replacement opti-
misation models are based on oversimplifications on the failure 
behaviour of assets and forecasts of future expenditures. An addi-
tional argument is that preventive age and interval replacement 
models ignore the benefits to be gained by measures directed 
at life time extension, risk reduction and postponement of the 
actual replacement. Periodic age and interval replacement opti-
misation is just one of the alternatives for optimised life cycle 
management of infrastructure assets. The value of age and inter-
val replacement optimisation models is not the actual decision 
for a preventive or corrective replacement. These short-term and 
mid-term decisions are made based on actual condition moni-
toring and technical state combined with detailed LCC analyses 
which are commonly referred to as a defender (the existing asset) 
and challenger (the alternative option) analyses. In these types 
of LCC analyses is investigated whether the postponement of a 
replacement justifies the cost of measures like major overhauls 
or renovations to keep an asset some additional years in service. 
(Blank & Tarquin, 2012; Newnan, Lavelle, & Eschenbach, 2016; 
Park, 2011; Sullivan, Wicks, & Koeling, 2012).

The discounted age and interval replacement models are 
also not a substitute for the more advanced probabilistic life 
cycle optimisation models as referred to in the aforementioned 

public water sector (van den Boomen, Schoenmaker, Verlaan, & 
Wolfert, 2016). Herein, only 10 suitable case studies for analysis 
were identified. The study primarily addressed common mis-
takes found in the execution of the investigated LCC case studies, 
which were all deterministic in nature.

Fundamental probabilistic maintenance optimisation mod-
els deal with uncertainty, however, hardly with the discounting 
of costs. The inclusion of the time value of money complicates 
the calculations. Mathematical solutions for discounting in 
specific fundamental maintenance optimisation models have 
been provided by only a few authors. Fox (1966) demonstrated 
a mathematical relationship for discounting in age replacement 
models. Chen and Savits (1988) established mathematical dis-
counted cost relationships for both age and block replacement 
policies and the relation between them. Rackwitz (2001) incor-
porated discounting in a renewal model for structural failures 
with systematic reconstruction. van Noortwijk (2003) derived 
a formula for calculating the present value over an unbounded 
time horizon in age replacement optimisation models as input 
for a condition-based lifetime extension model. Practical impli-
cations were shown in several papers, for example, in an article 
by van Noortwijk and Frangopol (2004). Van der Weide, Suyono, 
and van Noortwijk (2008) extended these results to other types 
of discounting such as hyperbolic and generalised hyperbolic 
discounting in renewal processes. Mazzuchi, van Noortwijk, 
and Kallen (2007) reviewed mathematical decision models to 
optimise time-based and condition-based maintenance intervals. 
The results were later extended to the derivation of formulas for 
calculating the discounted costs in combined condition-based 
and age-based optimisation models (Van der Weide, Pandey, & 
van Noortwijk, 2010).

These papers all have in common the derivation of mathemat-
ical formulas for discounting of costs for explicit and case-specific 
types of maintenance optimisation models. Other case-specific 
literature combines advanced probabilistic deterioration models 
with discounted life cycle costs for structure and infrastructure 
assets. For example, Frangopol, Lin, and Estes (1997) developed 
an approach for optimising inspection and repair intervals based 
on discounted costs, related to the maximum allowable service 
life of a bridge. Furuta, Frangopol, and Nakatsu (2011) extended 
the work of Frangopol et al. (1997) to allow for the inclusion 
of more variables, like different combinations of inspection 
techniques, by developing multi-objective mathematical algo-
rithms to find the minimum discounted life cycle costs. Almeida, 
Teixeira, and Delgado (2015) developed degradation algorithms 
using Markov matrices for bridges and discounted the costs over 
medium- and long-term finite time horizons. An extension to a 
discounted renewal approach is provided by Kumar and Gardoni 
(2014). These authors developed mathematical equations to cal-
culate model variables such as repair time and age, as a function 
of the system’s reliability and, discounted expenditures over a 
finite time horizon.

All these studies have a strong focus on developing case-
specific probabilistic deterioration models. The total discounted 
costs of preventive and corrective measures over the allowable 
service life are hereafter minimised to arrive at optimised inter-
vention intervals (inspection, preventive maintenance, repair, 
partial replacement). The focus of current study is not on devel-
oping advanced probabilistic deterioration models for specific 
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literature. Within their field of application, the value of using 
age and interval replacement strategies is that the models pro-
vide quick and easy long-term costs and interval estimates as 
input for the overall long-term asset and maintenance planning. 
The models also support the decision where successive detailed 
probabilistic LCC analyses are most effective. Even with simpli-
fications, the probabilistic generic age and interval replacement 
models provide accurate results for the objectives they are used 
and meant for.

In this paper, three areas of expertise are merged: reliability 
engineering, engineering economics (LCC analysis) and infra-
structure asset management. Terminology differs between and 
within these fields. The terminology used in this paper follows 
the best common denominator of the herein stated literature. The 
focus in this paper is on cost optimisation models. In the mainte-
nance optimisation models covered in this paper, yearly benefits 
are considered to be non-differential for different scenarios and 
are therefore left out of the equations. Salvage values are also left 
out in the method development. The reason is that salvage values 
are cash flows that become available when an asset is sold at the 
end of its life (Brealey, Myers, & Allen, 2011, p. 131). In general, 
civil infrastructure assets have long service lives, even longer 
functionalities and are often replaced or renewed at the end of 
their service lives. Most infrastructure assets cannot be sold.

Occasionally, infrastructure assets may have some scrap or 
recycling values but these are frequently negligible compared 
to the renewal costs. Another common situation is that worn-
out parts (without salvage values) are periodically renewed. In 
that case, an infrastructure asset will never be fully replaced. 
Infrastructure assets do have demolition costs which are often 
included in the renewal costs. Demolition costs are mostly not 
differential in a sequence of continuous renewals for age and 
interval replacement strategies. For these reasons, salvage values 
are left out in development of the alternative LCC approach and 
demolition costs are considered to be part of the new investment 
costs. However, the LCC approach developed in this paper is 
flexible, and allows for easy separate inclusion of salvage values 
or demolition costs.

The outline of this article is as follows: first, three generic LCC 
techniques, which are the present worth, the capital recovery 
and the capitalised equivalent worth, will be explained. This is 
followed by a stepwise approach on how to use these three LCC 
techniques in combination for discounting in age and inter-
val replacement optimisation models. After this, the article is 
divided into two parts: one for age replacement modelling and 
one for interval (block) replacement modelling. For each part, 
the fundamental optimisation model without discounting will 
be shortly reviewed. Hereafter, the LCC techniques will be used 
to include discounting in the fundamental maintenance opti-
misation models. The results will be validated using the mathe-
matical discounted cost relationships found in the literature on 
an example. The paper ends with overall conclusions on using 
an LCC approach for discounting in fundamental maintenance 
optimisation models.

2.  LCC techniques and method development

For the inclusion of the time value of money in both the age 
replacement model and the interval (block) replacement model, 

three LCC techniques are of immediate interest: the so-called 
single payment present worth factor, the equal payment series 
capital recovery factor and the capitalised equivalent worth. 
These will be explained briefly. The terminology used follows 
the stated literature.

The single payment present worth factor (P/F, i, t) transforms 
a future value F to its present value P and is given by (Park, 2011, 
p. 105; Sullivan et al., 2012, p. 114):

 

where i is the real interest or discount rate [–] and t is the time 
of occurrence [time].

The functional notation (P/F, i, t) reads as follows: find the 
present value P, given the future value F, the discount factor i and 
the time of occurrence t. Both t and i are generally expressed (but 
not necessarily), respectively, in years and discount rate per year.

The present worth factor is used for standard discrete dis-
counting and is, for commonly used interest rates, compara-
ble with and close to continuous exponential discounting. 
Continuous exponential discounting is frequently used in the 
literature that demonstrates mathematical derivations for the 
inclusion of the time value of money in maintenance optimisa-
tion models. In the latter case, a continuous discount function 
e−it is used instead of the present worth factor. General infla-
tion is implicitly incorporated using an inflation-free discount 
rate (real discount rate). Many considerations can be made on 
discount rate estimations and fluctuations in time. In general, 
the discount rate in cost models should at minimum cover the 
long-term weighted average cost of capital of an organisation. 
The methodology described in this paper allows for a flexible 
handling of discount rates if required.

The second factor of interest is the equal payment series 
capital recovery factor or annuity factor (A/P, i, t). This factor 
transforms a present value into the EAC over a chosen number 
of time units t, generally years. The EAC is analogous to A. The 
capital recovery factor is given by (Park, 2011, p. 121; Sullivan 
et al., 2012, p. 124):

 

Here, (A/P, i, t) reads as: find A (analogous to EAC) given a pres-
ent value P, a discount rate i and a number of time units t. An 
interesting, important and often forgotten feature of the EAC is 
that the EAC of one life cycle equals the EAC of any number of 
repeating life cycles assuming identical replacements and identi-
cal life cycle costs (Blank & Tarquin, 2012, p. 151; Newnan et al., 
2016, p. 181). Therefore, the EAC of one life cycle is the same as 
the EAC of an infinite number of replacement cycles, under the 
given assumptions.

The third expression of interest is the capitalised equivalent 
worth (CW). The capitalised equivalent worth equation converts 
the EAC of one life cycle to the present value of an infinite num-
ber of replacement cycles (Park, 2011, p. 255; Sullivan et al., 2012, 
p. 187):

 

(1)(P∕F, i, t) =
1

(1 + i)t
,

(2)(A∕P, i, t) =
i(1 + i)t

(1 + i)t − 1
.

(3)CW =
EAC

i
.
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with a practical example and validated with the dedicated math-
ematical equations found in the literature. Step 3 considers the 
(expected) cycle length. As will be explained in Section 3, the 
expected cycle length of an age replacement interval is a weighted 
average of the probability of a corrective cycle length in the case 
of failure and the probability of a preventive cycle length in the 
case of no failure. The cycle length in an interval replacement 
model is per definition given by the length of a preventive cycle, 
which will be explained in Section 4.

The total EAC of step 5 gives the basis for comparison of 
an age or interval replacement strategy with another age of 
interval replacement strategy. The optimum is found at the 
minimum total EAC. Following the same principles as shown 
in Figure 1, one can add time-dependent operation and main-
tenance expenditures without searching for another dedicated 
mathematical formula.

There is one important limitation that is hardly mentioned in 
the literature and textbooks. The age and interval replacement 
models, with or without discounting, assume a repeatability of 

The capitalised equivalent worth factor i−1 is found by letting t 
approach infinity in the recursive formula of the capital recovery 
factor (Park, 2011, p. 255; Sullivan et al., 2012, p. 187):
 

The basic concept of these LCC techniques is not new but the 
application of them in a specific order and in combination to 
arrive at discounted maintenance optimisation models has not 
been elaborated on before in the literature or textbooks on LCC, 
maintenance optimisation, engineering economy and infrastruc-
ture asset management. Uncertainty is hardly covered in the text-
books on LCC (engineering economy), and discounting of costs 
is hardly covered in the textbooks on reliability engineering. The 
framework in Figure 1 depicts how these three LCC techniques, 
are used in combination for the inclusion of the time value of 
money in age and interval replacement models. In Sections 3 
and 4, this approach will be expressed in formulas, demonstrated 

(4)lim
t→∞

(P∕A, i, t) = lim
t→∞

(1 + i)t − 1

i(1 + i)t
=

1

i
.

Figure 1. LCC approach to include the time value of money in the age and interval replacement models.
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literature, early by Barlow and Proschan (1965, p. 95), chapter 
3) and, more recently, for example, by Jardine and Tsang (2013, 
pp. 48–55). In its basic form, the economic optimum is found by 
minimising the expected total costs per unit of time. In formula 
(Jardine & Tsang, 2013, p. 51):

 

where:
c(t) 	�  expected total costs per unit of time for interval [0,t] 

[currency/unit of time]
t  	 time [unit of time]
Cf  	 corrective replacement costs or failure costs [currency]
R(t)  	 reliability [–]
Cp  	 preventive replacement costs [currency]
M(t)  	� the mean of the failure probability density function 

from t = [0,t] [unit of time]

The numerator of this equation expresses the expected total 
costs per cycle length, which is given by the probability of a 
failure multiplied by the corrective replacement costs and the 
probability of no failure multiplied by the preventive replacement 
costs. The denominator expresses the expected cycle length E(L), 
which is a weighted average of the probability of a corrective cycle 
length in the case of failure and the probability of a preventive 
cycle length in the case of no failure:

 

M(t) is, according to usual statistics, defined as follows (Jardine 
& Tsang, 2013, p. 51):
 

where:
M(t) � the mean of the failure probability density function 

from t = [0,t] [unit of time]
f(t)    failure probability density function [–]
R(t)   reliability function [–]

For practical reasons, the failure probability density function is 
assumed to be 0 at t = 0.

3.2.  Discounted age replacement optimisation model 
with use of the LCC techniques

In this section, the time value of money is included in the funda-
mental age replacement model (Equation (5)). Hereby, the LCC 
techniques and approach described in Section 2 are used. Two 
situations are dealt with: ending a repeating cycle with a preven-
tive replacement and starting a repeating cycle with a preventive 
replacement. The reason for doing so is that the mathematical 
equations in the literature all end a repeating cycle with a pre-
ventive replacement, while in practice a maintenance engineer 
would like to start a cycle with a preventive replacement.

(5)c(t) =
Cf ⋅ (1 − R(t)) + Cp ⋅ R(t)

M(t) ⋅ (1 − R(t)) + t ⋅ R(t)
,

(6)E(L) = M(t) ⋅ (1 − R(t)) + t ⋅ R(t).

(7)M(t) =

t

∫
0

t ⋅ f (t)dt

1 − R(t)
,

the costs of a replacement cycle. If this repeatability assumption 
does not hold, neither approach can be used. The repeatability 
assumption will not hold if, for example, an asset is replaced by 
another alternative with a different cost and/or failure probability 
density profile. This may be the case when replacement options 
are prone to technology development.

These limitations do not automatically refute (discounted) age 
and interval replacement models for civil infrastructure assets. 
There are many situations where the age and interval replacement 
models provide good estimates for an initial investment decision 
and the long-term asset planning. Changing cash flow patterns of 
replacement cycles due to technology developments, for instance, 
a new type of asphalt, are often not that deviant for civil infra-
structure assets with long life cycles. Furthermore, deviations 
frequently occur after decennia and the discounting process 
mutes the deviations. The argument here is that the applicabil-
ity of discounted age and interval replacement models should 
be checked on the presence of an approximated repeatability 
assumption of replacement cycles, something that is not well 
stated in the literature.

3.  Age replacement model

This section addresses the age replacement model. After a short 
review of the fundamental age replacement model without dis-
counting, the LCC approach as described in Section 2 is demon-
strated. Two situations are dealt with: ending and starting a cycle 
with a preventive replacement. Hereafter, a dedicated mathemat-
ical formula that includes discounting of costs over an infinite 
time horizon is presented. A practical example is used to compare 
the mathematical equation with the LCC techniques. After this, 
the results will be discussed and conclusions formed.

3.1.  Fundamental age replacement model without the 
time value of money

In an age replacement model an asset is replaced correctively 
upon failure or preventively at a certain replacement interval, 
whichever comes first. As an example, Figure 2 depicts the cash 
flow development of an age replacement model with a preventive 
replacement interval of three years. Here, it is assumed that the 
initial investment I0 equals a preventive replacement costs Cp. 
The cost of a corrective replacement is given by Cf. The failure 
probability density function is designated with f(t). The reliability 
function R(t) is defined by 1 −

t∫
0

f (t)dt.
An age replacement model searches for the optimum of a 

preventive replacement interval, given a certain failure prob-
ability density function and corrective and preventive replace-
ment costs. Age replacement models are well described in the 

Figure 2.  Cash flow diagram of an age replacement policy for a preventive 
replacement interval of three years.
Note: Three full cycles and an initial investment are shown.
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Step 2: Calculate the present value of one life cycle.
Using the present worth factor (P/F, i, t), the present value of 

the expected total replacement costs of the first cycle are given by:
 

Equation (8) can also be written as follows:
 

Step 3: Calculate the EAC over the expected cycle length.
The expected cycle length E(L) is calculated according to 

Equation (6). The EAC of a cycle is found by using the capital 
recovery factor (A/P, i, t) (Equation (2)) where t is equal to the 
expected cycle length E(L):

 

Under the assumption of identical replacements and repeating 
life cycle costs, the EAC of one life cycle equals the EAC of an 
infinite number of life cycles.

Step 4: Calculate the EAC of the initial investment over infinity.
The initial investment costs I0 = Cp are equally distributed 

over an infinite time horizon by using the capitalised equivalent 
worth (Equation (3)).

 

Step 5: Calculate the total EAC over infinity.
The total EAC of the age replacement strategy concerned 

is given by EAC
total

= EACE(L) + EACI
0

. The optimum is found 
by minimising the EACtotal of different age replacement 
strategies.

3.2.2.  Alternative 2: beginning a repeating cycle with a 
preventive replacement Cp
In subsection 3.2.1, a repeating cycle of cash flows was iden-
tified after instalment of a new asset with investment costs I0. 
The investment costs were converted to EAC over an infinite 
time horizon and added to the EAC of the cycles. In practice, a 
maintenance engineer would prefer to start an asset’s life cycle 
with a preventive maintenance or initial investment. To show 
the deviations, the discounted age replacement model that starts 
with a preventive replacement will be presented.

Step 1: Identify repeating life cycle costs.
A repeating pattern that starts with a preventive replacement 

can also be derived from Figure 2 by dividing the initial invest-
ment (or preventive replacement) I0 = Cp with probability 1 into 
a part Cp R(t) and a part Cp (1 – R(T)). This is shown in Figure 4.

Step 2: Calculate the present value of one life cycle.
The present value of the replacement costs of the first cycle 

are now given by:
 

(8)Pcycle = Cf ⋅

T
∑

t=1

(P∕F, i, t)f (t)

+ Cp ⋅ (P∕F, i,T) ⋅

(

1 −

T
∑

t=1

f (t)

)

.

(9)Pcycle =
Cf ⋅ f (1)

(1 + i)1
+

Cf ⋅ f (2)

(1 + i)2
+ ... +

Cf ⋅ f (T)

(1 + i)T
+

Cp ⋅ R(T)

(1 + i)T
.

(10)EACE(L) = (A∕P, i,E(L)) ⋅ Pcycle,

(11)EACI
0

= I
0
⋅ i.

(12)
Pcycle = Cf ⋅

T
∑

t=1

(P∕F, i, t)f (t) + Cp ⋅

(

1 −

T
∑

t=1

f (t)

)

.

3.2.1.  Alternative 1: ending a repeating cycle with a 
preventive replacement Cp
Step 1: Identify repeating life cycle costs.

A repeating pattern of cash flows is identified in Figure 2 by 
taking the initial investment I0 = Cp with probability 1 out of the 
cash flow development, as shown in Figure 3. If the asset fails 
in this example at t = 1, 2 or 3, it will be replaced correctively. 
If the asset has not failed at the end of t = 3, it will be replaced 
preventively. The total probability of a replacement cycle is 1. 
Because of the repeatability assumption, only the present value 
and EAC of one cycle needs to be calculated for derivation of the 
present value and EAC for repeating cycles up to infinity (Blank 
& Tarquin, 2012, p. 151; Newnan et al., 2016, p. 181).

Figure 3.  Cash flow diagram of an age replacement policy for a preventive 
replacement interval of three years, ending with a preventive replacement.
Note: Three full cycles are shown. The initial investment is fully excluded from the repeating 
life cycle costs.

Figure 4.  Cash flow diagram of an age replacement policy for a preventive 
replacement interval of three years, starting with a preventive replacement.
Note: Three full cycles are shown. The initial investment is partly excluded from the repeating 
life cycle costs.
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where:
α 	�  discount factor defined as 1

(1+i)
 with i as inflation free 

discount rate
t  	 time, often expressed in years [unit of time]
T  	 preventive replacement time [unit of time]
Cp  	 preventive replacement costs [currency]
Cf  	 corrective replacement costs or failure costs [currency]
f(t)  	 failure probability density function [–]

Note that αt in Equation (16) is equal to the present worth 
factor in Equation (1). The numerator of Equation (16) expresses 
the discounted costs of one cycle length and is equal to Equation 
(8). It is further observed that the preventive replacement costs 
Cp are discounted with αT at the end of a replacement interval 
and not at the beginning.

The denominator of Equation (16) transfers the dis-
counted costs of one cycle length to the total discounted 
costs over an infinite time horizon by assuming continu-
ous repeatability of the first cycle. The denominator of 
Equation (8) follows from a mathematical derivation where 
van Noortwijk (2003) uses Feller (Feller, 1950, chapter 13). 
Transformation to an infinite time horizon is practical for 
reasons of comparison. It is, for example, not justified to 
compare the total discounted costs of a cycle of 10 years with 
the total discounted costs of a cycle of 15 years. However, if 
both cycles are repeated to infinity, the same time basis of 
comparison is created. The expected total discounted costs 
over an infinite time horizon in Equation (16) excludes the 
initial investment costs. These can be added. In that case, 
Equation (16) is extended to:

 

where I0 represents the initial investment costs at t = 0.

(16)

lim
n→∞

E(K(n, �)) =

Cf ⋅

�

T
∑

t=1

�
t
⋅ f (t)

�

+ Cp ⋅ �
T

�

1 −
T
∑

t=1

f (t)

�

1 −

��

T
∑

t=1

�
t
⋅ f (t)

�

+ �
T

�

1 −
T
∑

t=1

f (t)

��

,

(17)

lim
n→∞

E(K(n, �)) = I
0
+

Cf ⋅

�

T
∑

t=1

�
t
⋅ f (t)

�

+ Cp ⋅ �
T

�

1 −
T
∑

t=1

f (t)

�

1 −

��

T
∑

t=1

�
t
⋅ f (t)

�

+ �
T

�

1 −
T
∑

t=1

f (t)

��

,

There is no need for discounting Cp as in this approach Cp of the 
first cycle occurs at t = 0. Equation (12) can also be written as:
 

Step 3: Calculate the EAC over the expected cycle length.
The expected cycle length is unchanged, as the probabilities 

and interval times of a preventive cycle and corrective cycle are 
unchanged. Again, the expected cycle length is calculated accord-
ing to Equation (6). The EAC of a cycle is found using the capital 
recovery factor (A/P, i, t) (Equation (2)), where t is equal to the 
expected cycle length E(L):

 

Step 4: Calculate the EAC of the initial investment over infinity.
The rest of the term of the initial investment costs Cp (1 – 

R(T)) is equally distributed over an infinite time horizon using 
the capitalised equivalent worth (Equation (3)):

 

Step 5: Calculate the total EAC over infinity.
The total EAC of the age replacement strategy concerned is 

given by EAC
total

= EACE(L) + EACrest_term_I
0

. The optimum is 
found by minimising the EACtotal of different age replacement 
strategies.

Summarising: The differences between the LCC approaches 
with a preventive replacement at the end or beginning of a cycle 
are, respectively:

• � Discounting or no discounting of Cp for the first cycle;
• � Distributing the entire initial investment I0 or the part Cp 

(1 – R(T)) over an infinite time horizon.

Both approaches will be demonstrated with an example in 
Section 3.4.

3.3.  Mathematical equation for discounted age 
replacement optimisation found in the literature

Chen and Savits (1988); Fox (1966) and van Noortwijk (2003) 
established mathematical relationships for discounting in a 
fundamental age replacement model. Apart from differences in 
mathematical expressions, these relationships do not differ from 
each other. The expression of van Noortwijk (2003) will be used 
in this article, slightly adapted for reasons of uniform notations.

The expected total discounted costs of an age replacement 
interval, assuming identical replacements over an infinite time 
horizon E(K(n,α)), are written as follows (van Noortwijk, 2003):

(13)Pcycle =
Cf ⋅ f (1)

(1 + i)1
+

Cf ⋅ f (2)

(1 + i)2
+⋯ +

Cf ⋅ f (T)

(1 + i)T
+ Cp ⋅ R(T).

(14)EACE(L) = (A∕P, i,E(L)) ⋅ Pcycle,

(15)EACrest_term_I
0

= Cp ⋅ (1 − R(T)) ⋅ i.

Table 1. Discounted age replacement model: results calculated on a yearly basis (discrete).

Approaches to discounted age replacement 
models Optimum [y] EAC [€] CW = P∞ [€] R(T) (%)
Discounting with LCC techniques alternative 1 12 € 3,586 € 71,716 96
Discounting with LCC techniques alternative 2 12 € 3,587 € 71,734 96
Discounting with mathematical Equation (17) 12 € 3,586 € 71,717 96
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a certain time, which is the reason for a horizontal asymptote 
in graphs 5, 6 and 7. However, as the capital recovery factor 
(A/P,i,E(L)) for the time span considered is close to (A/P,i,t), 
the distortion is small and from a practical point of view hardly 
significant. A sensitivity analysis supports this statement in the 
previous example. Increasing the standard deviation, decreasing 
and increasing the Cp/Cf-ratio and increasing the interest rate 
would not lead to differences in optimised preventive replace-
ment intervals. Slight differences in EAC may occur.

3.4.  Practical example comparing discounted age 
replacement calculations

For comparison, a slightly adapted example of van Noortwijk 
(2003) is used. It concerns the maintenance of a cylinder on 
an existing swing bridge. The cost of preventive and corrective 
replacements are, respectively, € 30,000 and € 100,000. The initial 
investment is equal to the cost of a preventive replacement. The 
failure of the cylinder is modelled with a normal probability 
distribution with a mean of 15 years and a standard deviation of 
1.5 years. The inflation-free discount rate is 5% per year.

A discrete approach on a yearly basis is used to perform the 
calculations. These were checked with more accurate discrete 
computations on a monthly basis. The differences were marginal 
from a practical point of view. The computations are made for 
the situations: (1) discounting with use of the LCC techniques 
and ending an interval with a preventive replacement, (2) dis-
counting with use of the LCC techniques and starting an interval 
with a preventive replacement and (3) discounting with use of 
mathematical Equation (17). The results of the calculations on a 
yearly basis are given in Table 1. The discrete failure probability 
density function is presented in Figure 5. The graphs that contain 
the age replacement interval calculations on a yearly basis are 
shown in Figures 6–8. The EAC of the mathematical equation of 
van Noortwijk (2003) is obtained using the capitalised equivalent 
approach (Equation (3)) on Equation (17); that is, the EAC of the 
present value E(K(α, n)) is obtained by multiplying this present 
value by the interest rate i.

3.5.  Discussion of results

The first observation is the marginal differences between the 
mathematical Equation (17) and the use of the LCC techniques. 
The three calculations give nearly identical outcomes. All cal-
culations arrive at the same economic optimum for the pre-
ventive replacement interval. The EAC only slightly differs. The 
slight difference between calculations 1 and 3 (Figures 6 and 8)  
is explained by the mathematical transform that is used in 
Equation (17).

The difference between LCC alternatives 1 and 2 (Figures 6  
and 7) is more difficult to explain. From a LCC perspective, sce-
narios 1 and 2 should arrive at the same results for the total EAC 
because the total cash flows in Figures 3 and 4 do not differ from 
each other. The difference is explained by the influence of the 
expected cycle length (the denominator of Equation (5)) when 
calculating the EAC of a cycle. Instead of distributing the present 
value of one cycle over a preventive replacement interval, the 
present value is distributed over the expected cycle length, which 
is a weighted average of the probability of a preventive cycle 
length and the probability of a corrective cycle length.

The initial investment, however, is converted to EAC over 
an infinite time horizon using the capitalised equivalent worth. 
The capitalised equivalent worth does not consider expected 
cycle lengths. Thus, there is a distortion that disappears when 
the expected cycle length is replaced by the length of a preventive 
replacement cycle. From a reliability point of view, this would not 
be acceptable, as the expected cycle length is bounded by the fail-
ure probability function. The total probability of a replacement 
is always 1 for a cycle. There is no probability of survival after 

Figure 5. Failure probability density function f(t).

Figure 6. Age replacement with discounting using LCC techniques and ending an 
interval with a preventive replacement (subsection 3.2.1).

Figure 7. Age replacement with discounting using LCC techniques and beginning 
an interval with a preventive replacement (subsection 3.2.2).
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where:
c(t) 	�  expected total costs in interval [0, t]/length of interval 

[currency/unit of time]
t  	 time [unit of time]
Cp  	 preventive replacement costs [currency]
Cf  	 corrective replacement costs or failure costs [currency]
H(t)  	 the expected number of failures between t = [0, t] [–]

For block replacement, the number of assets m is added:
 

The number of assets is not relevant for the optimisation 
question. For practical reasons, m is assumed to be 1 in this 
paper.

The difficulty in the interval replacement model is the deter-
mination of the renewal function H(t) and its derivate h(t), which 
expresses the expected number of failures per unit of time, often 
year. The renewal density function h(t) is needed for discounting 
on a yearly (or other time unit) basis, which will be demonstrated 
in subsection 4.2. The renewal density function h(t) is given by 
Barlow and Proschan (1965, p. 50):

 

where f(k)(t) is the k-fold convolution of the probability density 
function f(t) with itself. Suppose that an asset fails according to 
a certain probability density function f(t). An asset can only fail 
once. A failure will lead to a full replacement by an identical asset 
with the same probability density function f(t) that will start at 
the time of replacement. The probability functions move along 
the time axis and are combined to find the k-fold convolution. 
The expected number of failures in time [0, t] is given by:
 

4.2.  Discounted interval replacement optimisation model 
with use of the LCC techniques

Including the time value of money in the fundamental interval 
replacement model is done with the LCC techniques explained in 
Section 2. Again, two alternatives will be demonstrated, ending a 
repeating cycle with a preventive replacement (subsection 4.2.1) 
and beginning a repeating cycle with a preventive replacement 
(subsection 4.2.2). The reason for demonstrating two alternatives 
is that the mathematical equations found in the literature (see 
Section 4.3) all end repeating cycles with a preventive replace-
ment. For comparison between using the LCC techniques and 
mathematical equations, the same cash flow pattern should be 
used. From a practical point of view, a maintenance engineer 
would prefer to consider the first instalment as the start of a 
cycle. Therefore, two alternatives are demonstrated with the use 
of the stepwise LCC approach.

(19)c(t) = m ⋅

[

Cp + Cf ⋅H(t)

t

]

.

(20)h(t) =

∞
∑

k=1

f (k)(t),

(21)H(t) =

t

∫
0

h(t)dt,

A second observation concerns the reliability at the economic 
optimum. In this example, the economic optimum is found at 
12 years. The reliability at that point is approximately 96%. One 
could argue whether an organisation or maintenance depart-
ment would accept 96% reliability, for example, for critical assets. 
Optimised replacement costs are not the only replacement crite-
rion and should always be viewed in a broader context.

4.  Fundamental interval or block replacement model

A second fundamental model in the field of maintenance opti-
misation is the interval (block) replacement model. In this case, 
an asset is correctively replaced upon failure and preventively 
at a certain interval. This type of maintenance optimisation is 
often found in combination with asset groups. The entire group 
(block) is preventively replaced at a certain interval. In between, 
corrective replacements of individual assets are carried out when 
assets fail. First, the interval (block) replacement model without 
discounting is reviewed. Then, the LCC techniques presented in 
Section 2 are used to include the time value of money into the 
interval (block) replacement model. Hereafter, two mathemat-
ical equations for discounting of costs in interval replacement 
models are shown. Finally, the LCC approach and mathemati-
cal approach are demonstrated with an example, compared and 
discussed.

4.1.  Fundamental interval replacement model without 
the time value of money

The interval replacement model searches for the optimum pre-
ventive replacement interval given preventive replacement costs 
Cp, corrective replacement costs Cf and a renewal function H(t). 
The renewal function expresses the total number of failures in 
an interval given a failure probability density function f(t) and 
constant renewal at failure with identical assets. The interval 
replacement model is described by Barlow and Proschan (1965, 
p. 95). In this paper, the expression of Jardine and Tsang (2013, 
p. 41) is used to describe the model:
 

(18)c(t) =
Cp + Cf ⋅H(t)

t
,

Figure 8.  Age replacement with discounting using mathematical Equation (17). 
An interval ends with a preventive replacement. Transformation to EAC conform 
Equation (3).
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The initial investment costs I0 = Cp are equally distributed 
over an infinite time horizon using the capitalised equivalent 
worth (Equation (3)):

 

Step 5: Combining the EAC’s of step 3 and 4 gives the total EAC of 
the strategy concerned.

The total EAC of the interval replacement strategy concerned 
is given by EAC

total
= EACL + EACI

0

. The optimum is found by 
minimising EACtotal of different interval replacement strategies.

4.2.2.  Alternative 2: beginning a repeating cycle with a 
preventive replacement Cp
Instead of ending an interval with a preventive replacement, one 
could start an interval with a preventive replacement. This is 
considered to be more realistic from a maintenance perspective.

Step 1: Identify repeating life cycle costs.
An even faster result is obtained by starting each repeating 

cycle with a preventive replacement Cp. In that case, there is no 
need to distribute the initial investment I0 = Cp. The repeating 
cash flows are illustrated in Figure 10.

Step 2: Calculate the present value of one life cycle.
The present value of the expected total costs of a cycle is now 

calculated as follows:
 

Step 3: Calculate the EAC of one life cycle.
The present value of a cycle is again distributed over the cycle 

length L = [0,T] using the capital recovery factor (A/P, i, t) with 
t = T:

 

(25)EACI
0

= Cp ⋅ i.

(26)Pcycle = Cp + Cf ⋅

T
∑

t=1

(P∕F, i, t) ⋅ h(t).

(27)EACL = (A∕P, i,T) ⋅ Pcycle

4.2.1.  Alternative 1: ending a repeating cycle with a 
preventive replacement Cp
Step 1: Identify repeating life cycle costs.

The initial investment and repeating cycles are presented in 
Figure 9. The renewal density function for the expected number 
of failures per year is represented as h(t) (Equation (20)).

Step 2: Calculate the present value of one life cycle.
The present value of the expected total costs of a cycle is cal-

culated using the present worth factor (P/F, i, t) according to 
Equation (1):

 

This could also be written as follows:
 

Step 3: Calculate the EAC of one life cycle.
The present value of a cycle is now distributed over the cycle 

length L = [0, T] by using the capital recovery factor (A/P, i, t) 
with t = T:

 

Under the repeatability assumption, the EAC of a cycle is equal 
to the EAC of repeating cycles up to infinity.

Step 4: Calculate the EAC of the initial investment over infinity.

(22)Pcycle = Cf ⋅

T
∑

t=1

(P∕F, i, t) ⋅ h(t) + Cp ⋅ (P∕F, i,T).

(23)Pcycle =
Cf ⋅ h(1)

(1 + i)1
+

Cf ⋅ h(2)

(1 + i)2
+⋯ +

Cf ⋅ h(T)

(1 + i)T
+

Cp

(1 + i)T
.

(24)EACL = (A∕P, i,T) ⋅ Pcycle.

Figure 9.  Cash flow diagram of an interval replacement policy for a preventive 
replacement interval of three years, ending with a preventive replacement.
Note: Three full cycles are shown. The initial investment is fully excluded from the repeating 
life cycle costs.

Figure 10. Cash flow diagram of an interval replacement policy for a preventive 
replacement interval of three years, beginning with a preventive replacement.
Note: Three full cycles are shown. The initial investment is fully included in the repeating life 
cycle costs.
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compared to the mathematical equations for interval replace-
ment optimisation by means of an example.

4.4.  Practical example comparing discounted interval 
replacement calculations

The example of the maintenance of a hydraulic cylinder from 
subsection 3.4 is used. A practical application is the interval 
replacement optimisation of hydraulic cylinders at the Dutch 
Eastern Scheldt storm surge barrier. For the example and demon-
stration purposes, the number of assets (m) in Equation (19) is 
set at one at 1 as this will not influence the optimised replacement 
interval. The costs of preventive and corrective replacements are, 
respectively, € 30,000 and € 100,000. The initial investment is 
equal to the costs of a preventive replacement. The failure of 
the cylinder is modelled with a normal probability distribution 
with a mean of 15 years and standard deviation of 1.5. The infla-
tion-free discount rate is 5% per year.

Discrete computations are made on a yearly basis (Table 2) 
and checked with more accurate discrete computations on a 
monthly basis. In this example, the results do not differ much 
from a practical point of view. Only slight differences in the order 
of magnitude of a few months were found. The renewal density 
function h(t) is calculated as the sum of the first to tenfold con-
volution of f(t) and shown in Figure 11. The k-fold convolution 
of a normal probability density function is obtained using math-
ematical rules (DasGupta, 2010, p. 203). For a probability density 
function f(t) with a normal distribution having a mean μ1 and a 
standard deviation σ1, the twofold convolution h(2)(t) of f(t) with 
itself is again a normal distribution with a mean μ2 = μ1 + μ1 and 

a standard deviation �
2
=

√

�
2

1
+ �

2

1
. Even so, let h(3)(t) = h(2)(t)  ∙ 

f(1)(t) then h(3)(t) is a normal distribution function with a mean 

μ3 = μ2 + μ1 and a standard deviation �
3
=

√

�
2

2
+ �

2

1
.

The interval cost optimisation graphs on a yearly basis are 
presented in Figures 12–14 for the approaches: (1) discounting 
with the use of LCC techniques and ending an interval with a 
preventive replacement, (2) discounting with use of the LCC 
techniques and beginning an interval with a preventive replace-
ment and (3) discounting with the use of mathematical Equation 
(29) with a correction for the initial investment. The mathemat-
ical Equation (29) gives the present value over an infinite time 
horizon. This is transformed to EAC using the capital equivalent 
worth approach (Equation (3)).

4.5.  Discussion of results

A first observation is that the differences between discounting 
with mathematical Equation (29) and the LCC approach are mar-
ginal. There is no need for a sensitivity analysis here, as these 
findings are not surprising. The continuous discount function e–it 

Because of the validity of the repeatability assumption, the EACL 
already provides a basis for comparison between various preven-
tive replacement intervals and gives the required result. Steps 4 
and 5 are redundant, as the initial investment I0 = Cp is already 
taken into account in the EAC of a cycle.

4.3.  Mathematical equations for discounted interval 
replacement optimisation found in the literature

Chen and Savits (1988) developed a mathematical relationship 
for the expected total discounted costs over an infinite time hori-
zon for an interval (block) replacement model that is given by:
 

where JB represents the expected total discounted costs from t = 
[0, ∞] for repeating cycles with a preventive replacement interval 
T. i is the discount rate. The integral represents the sum of the 
yearly discounted costs of one cycle. The factor e-it approximates 
the present worth factor (P/F,i,t) and Q represents yearly costs. It 
is observed in the literature that Chen and Savits (1988) discount 
the preventive replacement costs Cp at T, the end of a preventive 
replacement interval. The initial investment is not taken into 
account in this mathematical model.

A nearly similar mathematical relationship is established by 
Mazzuchi et al. (2007):

 

where E(K(T,i)) is the expected total discounted costs over an 
infinite time horizon of a continuous repeating cycle, E(N(T,i)) is 
the expected number of discounted failures in a preventive replace-
ment interval [0, T], T is the preventive replacement time and i is 
the discount rate. In the terminology used in this paper, E(N(T, i)) 
in the numerator of Equation (29) is explained as 

∑T

t=1 e
−it

⋅ h(t), 
where h(t) is the renewal density function. From a LCC perspec-
tive, it is not common to use the term discounted failures, as the 
term discounting is reserved for monetary values. However, from 
a mathematical perspective, there is no difference, as in this case 
Cf ⋅ E(N(T , i)) = Cf ⋅

∑t

0
e−it ⋅ h(t) =

∑t

0
e−it ⋅ Cf ⋅ h(t).

It is again noticed that Mazzuchi et al. (2007) discount the 
preventive replacement costs at the end of a cycle. The initial 
investment is not included in this model.

Chen and Savits (1988) and Mazzuchi et al. (2007) have in 
common that the numerators of Equations (28) and (29) calcu-
late the present value of one cycle, and the denominator trans-
forms this present value into the present value over an infinite 
time horizon. In the following subsection, the LCC approach is 

(28)
JB =

T∫
0

e−itdQ(t)

1 − e−iT
,

(29)lim
t→∞

E(K(T , i)) =
Cf ⋅ E(N(T , i)) + Cp ⋅ e

−iT

1 − e−iT
,

Table 2. Discounted interval replacement model: results calculated on a yearly basis (discrete).

Approaches to discounted interval replacement models Optimum [y] EAC [€] CW = P∞ [€] H(T)
Discounting with LCC techniques alternative 1 12 € 3,669 € 73,376 0.04
Discounting with LCC techniques alternative 2 12 € 3,669 € 73,376 0.04
Discounting with mathematical Equation (29) 12 € 3,660 € 73,197 0.04
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The factor 1

1−eit
 in Equation (29) represents a continuous func-

tion for the transformation of the present value of one cycle to 
the present value of an endless stream of these cycles. Using the 
discrete LCC techniques, this transformation is achieved by com-
bining the capital recovery factor (A/P, i, t) and the capitalised 
equivalent worth (CW). The continuous transformation and the 
discrete transformation approximate each other:
 

Therefore, there is not much difference in computations in using 
the mathematical formula 29 or the LCC techniques.

A second observation is that LCC alternatives 1 and 2 give 
the same results. In scenario 1, an interval ends with a preventive 
replacement, and the initial investment I0 = Cp is compensated 
for afterwards. In scenario 2, an interval begins with a preventive 
replacement, and there is no need to compensate for an initial 
investment, as it is already incorporated in the first cycle. The 
total cash flows, however, are identical, and there is no distortion 
due to an expected cycle length as was seen in the age replace-
ment modelling in Section 3. Therefore, it is not surprising that 
the results of scenarios 1 and 2 are identical.

The last observation concerns H(t) for the optimised pre-
ventive replacement interval. H(t) approximates 0.04 failures 
per interval of 12 years. From an economical point of view, one 
should not accept more expected failures. This is explained by the 
relatively high corrective replacement costs and the characteris-
tics of the probability density function f(t). H(t) is the cumulative 
density function of h(t) , which is shown in Figure 11, while h(t) 
is constructed by calculating the 10-fold convolution of f(t) with 
itself. It is observed that in the previous example, the second 
and higher convolutions of f(t) do not influence the economic 
optimum, which suggests that situations exist where h(t) can well 
be approximated by f(t). However, a higher standard deviation of 
f(t) would increase the influence of the renewal density function.

Compared to age replacement models, discounting in inter-
val replacement models is not difficult because of the absence 
of an expected cycle length. In the case that the initial invest-
ment equals the cost of a preventive replacement, there is no 
need to distribute an initial investment over an infinite time 
horizon because one can start a calculation with a preventive 

(31)
1

1 − e−it
≈

(A∕P, i, t)

i
=

i(1 + i)t

(1 + i)t − 1
⋅

1

i
=

(1 + i)t

(1 + i)t − 1
.

used in Equation (29) is comparable to the discrete present worth 
factor (P/F, i, t). For normally used interest rates, the following 
approximation is valid:
 

(30)e−it ≈
1

(1 + i)t
.

Figure 13.  Interval replacement with discounting using LCC techniques and 
beginning an interval with a preventive replacement (subsection 4.2.2).

Figure 14.  Interval replacement with discounting by the use of mathematical 
Equation (29) (Mazzuchi et al., 2007) with a correction for the initial investment 
and transformation to EAC conform Equation (3).

Figure 11. Renewal density function h(t): expected number of failures per year. The 
time axis is stretched to show the impact of the convolutions.

Figure 12. Interval replacement with discounting using LCC techniques and ending 
an interval with a preventive replacement (subsection 4.2.1).
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replacement. The difficulty in the interval replacement model 
lies in the determination of the renewal density function h(t) 
and/or the renewal function H(t), irrespective of discounting.

5.  Conclusions

The authors developed a stepwise and flexible LCC approach 
for discounting in age and interval replacement models for civil 
infrastructure assets and validated the new approach by com-
paring the results with case-specific formulas. Age and interval 
replacement optimisation strategies support the long-term asset 
and maintenance planning of organisations that operate and 
maintain these infrastructure assets. Some typical examples for 
the application of these models are the conservation of steel lock 
gates, the replacements of street light luminaires and the major 
overhauls or replacements of hydraulic cylinders.

Life cycles of civil infrastructure assets are often long. 
Therefore, the time value of money should be incorporated. 
Discounting in fundamental probabilistic maintenance optimi-
sation models is hardly covered in the literature on engineering 
economy and reliability engineering. For instance, just a few 
authors developed dedicated mathematical formulas for the 
fundamental and popular age and interval replacement mod-
els (Chen & Savits, 1988; Fox, 1966; Mazzuchi et al., 2007; van 
Noortwijk, 2003). These mathematical formulas were used for 
validation of the developed LCC approach.

The LCC approach builds on well-known LCC techniques 
which are the present worth, the capital recovery and the capital-
ised equivalent worth. The LCC techniques are used in a specific 
order, and combined with reliability formula. The advantage of 
this stepwise LCC approach is that it enhances the understand-
ing of discounting principles, their constraints and their field of 
applicability, for reliability and maintenance engineers in prac-
tice. In addition, the stepwise LCC approach explicitly takes the 
initial investment into account and allows for easy adaptation 
and extension when conditions change, for instance, changing 
cash flow patterns or reliability profiles.
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