

Delft University of Technology

A Deep Reinforcement Learning Approach to Configuration Sampling Problem

Abolfazli, Amir ; Spiegelberg, Jakob ; Anand, Avishek ; Palmer, Gregory

DOI
10.1109/ICDM58522.2023.00009
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE International Conference on Data Mining (ICDM)

Citation (APA)
Abolfazli, A., Spiegelberg, J., Anand, A., & Palmer, G. (2023). A Deep Reinforcement Learning Approach to
Configuration Sampling Problem. In L. O’Conner (Ed.), Proceedings of the 2023 IEEE International
Conference on Data Mining (ICDM) IEEE. https://doi.org/10.1109/ICDM58522.2023.00009

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICDM58522.2023.00009
https://doi.org/10.1109/ICDM58522.2023.00009

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

A Deep Reinforcement Learning Approach to
Configuration Sampling Problem

Amir Abolfazli
L3S Research Center

Hannover, Germany

abolfazli@l3s.de

Jakob Spiegelberg
Volkswagen AG

Wolfsburg, Germany

jakob.spiegelberg@volkswagen.de

Gregory Palmer
L3S Research Center

Hannover, Germany

gpalmer@l3s.de

Avishek Anand
Delft University of Technology

Delft, Netherlands

avishek.anand@tudelft.nl

Abstract—Configurable software systems have become increas-
ingly popular as they enable customized software variants. The
main challenge in dealing with configuration problems is that
the number of possible configurations grows exponentially as the
number of features increases. Therefore, algorithms for testing
customized software have to deal with the challenge of tractably
finding potentially faulty configurations given exponentially large
configurations. To overcome this problem, prior works focused
on sampling strategies to significantly reduce the number of
generated configurations, guaranteeing a high t-wise coverage.
In this work, we address the configuration sampling problem by
proposing a deep reinforcement learning (DRL) based sampler
that efficiently finds the trade-off between exploration and
exploitation, allowing for the efficient identification of a minimal
subset of configurations that covers all t-wise feature interactions
while minimizing redundancy. We also present the CS-Gym,
an environment for the configuration sampling. We benchmark
our results against heuristic-based sampling methods on eight
different feature models of software product lines and show that
our method outperforms all sampling methods in terms of sample
size. Our findings indicate that the achieved improvement has
major implications for cost reduction, as the reduction in sample
size results in fewer configurations that need to be tested.

Index Terms—reinforcement learning, configuration sampling,
software testing

I. INTRODUCTION

Configuration sampling (CS) is an important problem in

production and engineering companies that use software prod-

uct lines (SPLs) to enable customized software variants to the

requirements of users – like a customized vehicle, consumer

electronics, and software products, to name a few. Each prod-

uct of an SPL is defined by a unique set of features called a

configuration. The set of all features and the constraints among

features defines a feature model [1]. Specifically, solving a

configuration sampling problem can help identify defects in

software product lines (SPLs) by selecting a small set of

configurations to test specific features and their interactions.

Efficiently identifying faulty configurations is not only

an essential step in the software development lifecycle for

ensuring the reliability and performance of software systems

but also a strategic initiative that can lead to substantial cost

savings for organizations by reducing debugging time and

maintenance costs [2].

By testing a representative sample of configurations, the

aim is to reveal any potential defects or errors that may

arise from the interaction between different features. However,

a large configuration space could have over a quadrillion(
> 1015

)
configurations, and exhaustively enumerating all

configurations for testing is simply infeasible.

To reduce such a large search space, prior works have

focused on sampling strategies to significantly reduce the

number of generated configurations. A family of such methods

is called t-wise coverage samplers taking into account t-wise

combinations of features that account for interaction failures

occurring when two or more features interacting cause the

program to reach an incorrect result [3]. Their objective is to

achieve a high t-wise coverage, whereby all combinations of

t features are covered by at least one configuration in the set.

However, achieving 100% coverage may not be feasible for

large configuration spaces [4]. In practice, it is well-known

that most failures are triggered by only one (t = 1) or two

features (t = 2) [3].

Despite the success of recent sampling algorithms in iden-

tifying numerous faulty test cases, they often generate an

excessively large sample size, which poses challenges for

expert software testers [5]. This inefficiency in dealing with

a vast number of test cases highlights the need for a method

that can effectively discover all faulty configurations covering

all t-wise feature interaction pairs while generating a smaller

number of test cases for examination [6].

Existing approaches use different sampling techniques – like

greedy techniques [4], [7]–[10], local search techniques [11]–

[13], population-based techniques [14]–[16], manual selection

techniques [17], or feature interaction and coverage based

techniques [18]–[21]. However, most of these approaches are

top-down approaches and are limited by their reliance on

hand-crafted heuristics, which may not be able to capture the

full complexity of the configuration space. This can lead to

suboptimal performance or a large sample size that is not

minimal [19].

Our main idea in this paper is to attempt to solve the

configuration sampling problem by using deep reinforcement

learning (DRL) to learn more sophisticated representations of

the configuration space. We claim that DRL has the potential to

drastically reduce the search space required for configuration

sampling, resulting in smaller sample sizes. In the setting

of the configuration sampling problem, our environment is a

highly configurable system, and the feedback is the perfor-
mance of the system under a particular configuration.

1

2023 IEEE International Conference on Data Mining (ICDM)

DOI 10.1109/ICDM58522.2023.00009

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

M
in

in
g

(I
C

D
M

) |
 9

79
-8

-3
50

3-
07

88
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

M
58

52
2.

20
23

.0
00

09

979-8-3503-0788-7/23/$31.00 ©2023 IEEE

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

Our proposed approach involves using a t-wise sampling

algorithm to generate an initial solution for the problem

and subsequently training an auto-encoder model to derive

state embedding for the given set of configurations. Due to

the variable nature of the configurations at different time

steps and the potential for an exceedingly large number of

configurations, it is necessary to employ a condensed vector

representation of the state at each time-step. We use the

Branching Dueling Q-Network (BDQ) [22] to handle large

multi-dimensional discrete action spaces. To optimize the

sampling process, we limit the number of actions taken to

only those with a net positive effect on configuration coverage.

Specifically, if the addition of a configuration covers at least

one feature interaction pair not previously covered, or if the

removal of a configuration does not decrease the number of

covered feature interaction pairs from the previous time-step,

the action is deemed ‘applicable’ and performed accordingly.
In contrast to existing combinatorial approaches, our RL-

based approach adds or removes configurations based on

their coverage at different time steps. The RL-agent learns

to make the best decision at each time-step using a state

representation that includes the current configurations. This

differs from heuristic-based methods that consider all possible

feature interaction pairs upfront and may not be as effective

at generating optimal configurations. Our methodology seeks

to balance the trade-off between efficiency and coverage to

improve the quality of software products developed using

SPLs.
We conduct extensive experimental studies on eight real-

world feature models and three baselines. We see that our

proposed methodology outperforms existing heuristic-based

sampling algorithms on various feature models of software

product lines (SPLs). First, We show that our approach can

significantly reduce the sample size from the initial solution

generated by the t-wise combination sampler to a greater

extent than other methods. Furthermore, our approach can

rapidly converge to small sample sizes. However, the episode

at which the optimal sample size is reached varies depending

on the specific feature model of the SPL being tested. These

findings indicate the effectiveness of our approach in improv-

ing the efficiency and effectiveness of configuration sampling

in SPLs, which can ultimately lead to higher-quality software

products.
The contributions of this work are summarized as follows:

• We propose a DRL-based method for the configuration

sampling problem that takes input from the initial set

of configurations generated by the t-wise sampler and

finds a minimal set of configurations whose size is smaller

than that of the state-of-the-art heuristic-based sampling

algorithms.

• We present a Gym-based configuration sampling envi-

ronment that takes input as a feature model of software

product lines in the format of a CNF formula or a DI-

MACS file and provides all the functionalities that DRL

methods dealing with multi-dimensional action spaces

can be directly applied.

The rest of this paper is organized as follows. Section II

gives an overview of related work. Section III gives the

background on configuration sampling and RL. In Section IV,

we introduce our RL-based approach to configuration sam-

pling problem. Section V describes our experiment setup.

We discuss our results in Section VI, and conclude with

suggestions for future work in Section VIII.

II. RELATED WORK

Configuration sampling. Existing approaches use different

sampling techniques – like greedy techniques [4], [7]–[10],

local search techniques [11]–[13], population-based techniques

[14]–[16], manual selection techniques [17], or feature interac-

tion and coverage based techniques [18]–[21]. However, most

of these approaches are top-down approaches and are limited

by their reliance on hand-crafted heuristics, which may not be

able to capture the full complexity of the configuration space.

This can lead to suboptimal performance or a sample size that

is not minimal [19].

The recent work [23] suggests that the greedy and meta-

heuristic techniques are more often used and compared to other

techniques.

Deep reinforcement learning for combinatorial optimiza-
tion. Reinforcement learning has been used to solve many

combinatorial optimization problems, including the Traveling

Salesman Problem [24], [25], Maximum Cut Problem [26]–

[29], Bin Packing Problem [30]–[32], Boolean Satisfiability

Problem [33], Minimum Vertex Cover Problem [29], [34], and

Maximum Independent Set [26], [35]. However, to the best of

our knowledge, RL has never been applied to the configuration

sampling problem.

Deep reinforcement learning for large multi-dimensional
action spaces. To address large multi-dimensional dis-

crete action spaces in reinforcement learning, [36] pro-

poses the Wolpertinger policy architecture, which combines

DDPG with an approximate nearest-neighbor method, en-

abling logarithmic-time lookup complexity relative to the

action space cardinality. For scalability with increasing action

dimensions, [37] combines DQN [38] with independent Q-

learning, where each agent independently learns its own state-

action value function. Xiong et al. in [39] propose the pa-

rameterized deep Q-network (P-DQN) for discrete-continuous

hybrid action spaces, extending DQN with deterministic policy

for continuous actions. However, P-DQN is not applicable to

environments with discrete-discrete hybrid action spaces [40].

[22] introduces the Branching Dueling Q-Network (BDQ), an

approach for handling high-dimensional discrete or continuous

action spaces using Q-learning, featuring a shared decision

module followed by multiple network branches for each action

dimension, allowing linear growth in the number of network

outputs with degrees of freedom.

In this work, we utilize BDQ for its efficient handling of

multi-dimensional action spaces and integration of dueling

networks’ benefits, resulting in enhanced state-action value

estimation and policy learning, making it apt for the configu-

ration sampling problem.

2

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

III. BACKGROUND

A. Reinforcement Learning

The reinforcement learning (RL) problem is typically mod-

eled by a Markov decision process (MDP), formulated as a

tuple (S,A, p, r, γ), with a state space S , an action space A,

and transition dynamics p (s′ | s, a) [41]. At each discrete time

step, the agent performs an action a ∈ A in a state s ∈ S ,

and transitions to a new state s′ ∈ S based on the transition

dynamics p (s′ | s, a), and receives a reward r (s, a, s′). The

action a is applicable within the state s if p(s′|s, a) > 0 and

inapplicable if p(s′|s, a) = 0. The goal of the agent is to

maximize the expectation of the sum of discounted rewards,

also known as the return Rt =
∑∞

i=t+1 γ
ir (si, ai, si+1),

which weighs future rewards with respect to the discount
factor γ ∈ [0, 1), determining the effective horizon. The agent

makes decisions via a policy π : S → P(A), which maps a

given state s to a probability distribution over the action space

A. For a given policy π, the value function is defined as the

expected return of an agent, starting from state s, performing

action a, and following the policy Qπ(s, a) = Eπ [Rt | s, a].
The state-action value function can be computed through the

Bellman equation of the Q function:

Qπ(s, a) = Es′∼p [r (s, a, s
′) + γEa′∼πQ

π(s′, a′)] . (1)

Given Qπ , the optimal policy π∗ = maxa Q
∗(s, a), can be

obtained by greedy selection over the optimal value function

Q∗(s, a) = maxπ Q
π(s, a). For environments confronting

agents with the curse of dimensionality, the value can be es-

timated with a differentiable function approximator Qθ(s, a),
with parameters θ.

DQN [42] uses deep neural networks to approximate the

Q-function. To improve convergence and performance, DQN

incorporates experience replay, which reduces correlations

between different training samples, and uses the target Q-

network, stabilizing the target Q-value.

Let Qθ denote the Q-function parameterized by θ, DQN

computes the target Q-value yDQN
t as follows:

yDQN
t = r + γmax

a′
Qθ (s

′, a′) . (2)

Double DQN (DDQN) [43] improves the performance of

DQN by addressing the problem of overestimation of Q-

values. DDQN decouples action selection and Q-value esti-

mation when calculating the target Q-value yDDQN
t . In BDQ,

the action is selected using the current Q-network Qθ while the

target Q-value is estimated using the DQN’s target Q-network

Qθ′ , as follows:

yDDQN
t = r + γQθ′

(
s′, argmax

a′
Qθ (s

′, a′)
)
. (3)

Dueling DQN improves DDQN by using a dueling archi-

tecture [44]. The dueling network comprises two streams: a

scalar state-value estimation stream and an advantage function

estimation stream, separating the task of learning the Q-

function into learning the value and advantage functions. This

split facilitates more efficient identification of the correct

action during the policy evaluation, as the network can learn

the goodness of the states without the need to learn the value of

each action for each state. Dueling DQN computes the target

Q-value yDuelingDQN
t as follows:

yDuelingDQN
t = V (s)+

(
A(s, a)− 1

|A|
∑
a′

A (s, a′)

)
. (4)

The Branching Dueling Q-Network (BDQ) [22] integrates

the dueling network architecture into the action branching

framework, resulting in improved performance. Combining the

dueling architecture with action branching is particularly bene-

ficial for learning in environments with large action spaces, as

the dueling architecture can rapidly identify redundant actions

and achieve better generalization by learning a common value

for a wide range of similar actions.

In order to adapt the dueling architecture into action branch-

ing network, BDQ distributes the representation of the (state-

dependent) action advantages on the several action branches,

meanwhile, adding a single additional branch for estimating

the state-value function. Similar to the dueling architecture,

the advantages and the state value are combined, via a special

aggregation layer, to produce estimates of the distributed

action values. For the aggregation method, the BDQ locally

subtracts each branch’s mean advantage from its sub-action

advantages, prior to their summation with the state value.

For an action dimension d ∈ {1, . . . , N} with |Ad| = n
discrete sub-actions, the individual branch’s Q-value at state

s ∈ S and sub-action ad ∈ Ad is expressed in terms of

the common state value V (s) and the corresponding (state-

dependent) sub-action advantage Ad (s, ad) by:

Qd
θ (s, ad) = V (s) +

⎛
⎝Ad (s, ad)− 1

n

∑
a′
d∈Ad

Ad (s, a
′
d)

⎞
⎠ .

(5)

For generating the temporal-difference (TD) targets for the

DQN updates, BDQ uses the mean operator:

yBDQ
t = r + γ

1

N

∑
d

Qd
θ′

(
s′, argmax

a′
d∈Ad

Qd
θ (s

′, a′d)

)
, (6)

where Qd
θ′ denotes the branch d of the target network Qθ′ .

In BDQ, the loss function is defined as the expected value

of the mean squared TD error across the branches:

L = E(s,a,r,s′)∼D

[
1

N

∑
d

(yd −Qd (s, ad))
2

]
, (7)

where D denotes a prioritized experience replay buffer and a
denotes the joint-action tuple (a1, a2, . . . , aN).

B. Configuration Sampling

Configuration sampling (CS) is an NP-hard problem that is

a well-known special case of the set cover problem [45], that

is a combinatorial testing technique used to efficiently select a

subset of configurations to test, while ensuring that all possible

t-wise interactions among the features are covered. The main

3

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

goal is to identify and test the most significant interactions,

reducing the testing effort and resources needed, while main-

taining high defect detection rates. CS can be viewed as a

bipartite graph, with the configurations represented by vertices

on the left side, the feature interaction pairs represented by

vertices on the right side, and edges representing the coverage

of pairs by configurations. The task is then to find a minimal

subset of configurations (left-vertices) that covers all of the

feature interaction pairs (right-vertices). The illustration of

the configuration sampling problem using a bipartite graph

is shown in Figure 1.

C1

C2

C3

C4

C5

Con gurations Feature interaction pairs

(a)

C1

C2

C3

C4

C5

(b)

Figure 1. (a) Illustration of the configuration sampling problem as a bipartite
graph. The goal is to find a minimal subset of configurations (vertices on the
left side) that covers all the feature interaction pairs (vertices on the right
side). (b) Example: configurations C1, C2, and C3 together cover all the
feature interaction pairs P1 to P8. By removing any of these configurations,
maximum coverage cannot be achieved. Adding configurations C4 and C5
just increase the sample size as the pairs that they cover (P5, P6, and P7)
have already been covered by C1 and C3.

Configuration sampling methods typically take as input a

feature model and generate a list of configurations (i.e., a sam-

ple). Therefore, in the following, we provide the basic notion

of feature models and configurations as well as configuration

sampling problem.

Feature models. A feature model delineates all the elements

of a SPL along with their interdependencies. Formally, it is

defined as a tuple (F ,D), consisting of a set of features F
and a set of dependencies D. In the model, every feature is

represented by a distinct integer value, ranging from 1 to n
(i.e., F = {1, . . . , n}), where n signifies the total number of

features in the model. Dependencies within a feature model

are expressed as clauses of a propositional formula in CNF.

Each dependency in D corresponds to one such clause (i.e.,

D = D1, . . . , Dm), with m denoting the total number of

clauses. A clause is defined as a set of literals, where a literal

can be either a number from F (i.e., a positive literal) or a

negated number from F (i.e., a negative literal), representing

the selection and deselection of a particular feature in a

configuration, respectively. We define the function L that

provides the set of literals for a feature set of a feature model,

L(F) = {−n, . . . ,−1, 1, . . . , n}.
Configurations. A configuration, C, is a selection of fea-

tures from a feature model, and is formally defined as a set

of literals, such that C ⊆ L(F) with ∀l ∈ C : −l /∈ C. When

a literal appears in a configuration, it determines the status

of the corresponding feature as either selected (in the case

of a positive literal) or deselected (in the case of a negative

literal). A configuration is referred to as complete when it

includes all features (|C| = |F|); otherwise, it is considered

partial. A configuration satisfies a clause in D if it includes

at least one literal from that clause. On the other hand, if

a configuration contains all the complementary literals of a

clause, it contradicts the clause and, subsequently, the entire

feature model. In cases where a configuration contradicts one

or more clauses, it is considered invalid. A configuration is

considered valid if it allows for the satisfaction of all clauses

within a feature model: ∃;C′ ⊇ C : ∀D ∈ D : C ′ ∩ D 	= ∅.
A valid configuration can be partial and does not necessarily

have to satisfy every clause. It is considered valid as long as

the addition of more literals to the configuration enables the

satisfaction of all clauses.

Simple t-wise Combination Coverage. For a given set

of configurations with n features, simple t-wise combination

coverage represents the fraction of t-wise combinations cov-

ered by these configurations. The result of a t-wise interaction

sampling is a configuration sample SC , which is a set of valid

configurations (i.e., SC = {C1, C2, . . .}). In a complete t-wise

interaction sample (i.e., 100% t-wise interaction coverage) ev-

ery valid interaction (i.e., not contradicting the feature model)

is a subset of at least one configuration. An interaction I is

represented by a set of exactly t literals and is considered valid

if the partial configuration containing only this set of literals

is also valid. We define the set of all valid feature interaction

pairs as I = {I|I ⊆ F , |I |= t, ∀fi, fj ∈ I,−fi /∈ I; i 	= j}.
Definition of configuration sampling problem. Let F

denote a set consisting of n features, SC denote the set of

all possible configurations involving these features, and I
denote the set of all valid feature interaction pairs. The primary

objective of configuration sampling is to identify a minimal

subset of configurations, denoted by S∗ ⊆ SC , which ensures

coverage of all t-wise feature interactions I while minimizing

the size of S∗. More precisely, the objective is to guarantee

the presence of every feature interaction pair I ∈ I in at least

one configuration within S∗, while minimizing the size of S∗.

4

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

IV. PROPOSED METHOD

In this section, we present our method for the configuration

sampling problem by first providing the Markov decision pro-

cess (MDP) formulation and then describing our reinforcement

learning approach for handling configuration sampling.

A. MDP formulation for configuration sampling

State space S . A state represents the current sample
which is defined as the current subset of valid config-

urations. Thus, state space S is defined as the power

set of valid configurations of the feature model that are

generated by t-wise sampling algorithm and given as

input to the our method: S = P (SC) = {C | C ⊆ SC}.
Initial state s0. s0 ∈ S can be defined as the empty set, or

a given set of valid configurations. For the first episode,

we consider a set of valid configurations generated by

t-wise sampling algorithm [46]. For the next episodes,

we first find the feature interaction pairs that have been

covered the least in the previous episode and their cor-

responding covering configurations will be considered as

the initial state (initial subset of configurations) for the

next episode.

Action space A. An action is defined as a two-element

tuple where the first action dimension determines whether

a configuration is added to, or removed from the current

sample, and second action dimension corresponds to the

number of the configuration which is added or removed:

A = {(a1, a2) | a1 ∈ {1, 2}, a2 ∈ {1, 2, 3, . . . , |SC |}}
= {1, 2} × SC

(8)

An action a = (a1, a2) is only performed if it is

applicable as shown in Algorithm 1. This implies that

adding a new configuration is contingent upon covering a

new feature interaction that has not already been covered

by the existing configurations in the current sample (i.e.,

current state). Similarly, removing an existing configura-

tion is subject to ensuring that the removal does not result

in any new uncovered feature interaction pairs.

Transition function p. The state transition function

defines the result of applying the action a within the

state s (set of configurations), leading to a new successor

state s′ that can be either a new set of configurations

where a configuration has been added/removed or the

same state s if the action tuple a is not applicable in

state s: p : S ×A→ S.

Reward function r. At each time-step t, if the action a
is applicable within the state s, then the agent receives a

positive reward +1, otherwise, a negative reward -1. The

reward function is defined as follows:

r(a, s) =

{
1, if is_applicable_action(a, s)

−1, otherwise
(9)

where the function is_applicable_action is presented in

Algorithm 1.

Terminal state. A state is a terminal state if the config-

urations within that state cover all the feature interaction

pairs. In other words, we reach a terminal state when we

achieve 100% coverage.

B. RL-based Approach to Configuration Sampling

State embedding. The first step is to embed the state infor-

mation using an embedding function Φ. This process involves

mapping the raw state information to a fixed low-dimensional

vector representation with the size ζ that can capture the

essential features of the state. In our case, we use an auto-

encoder with hyperbolic tangent activation function as the

embedding function. Therefore, given a set of configurations

SC , our embedding function is defined as Φ : SC → [−1, 1]ζ .

Training branching dueling Q-network (BDQ). The training

begins by feeding state (embedding of a subset of configura-

tions) to the network. The shared representation module then

extracts features from the input state. These extracted features

are then decomposed into the state value and state-dependent

action advantages for each independent branch. Each branch

corresponds to a specific dimension of the action. The Q-

values for each action dimension are computed by combining

the state value and action advantages using a dedicated aggre-

gation layer. To form joint-action tuples, the argmax function

is applied to concatenate the sub-action branches.

We consider a two-dimensional action space Ad where

d ∈ {1, 2} with |A1| = 2 discrete sub-actions for the first

dimension and |A2| = |SC | discrete sub-actions for the second

dimension. Action dimensions 1 and 2 correspond to the action

type (add/remove) and the configuration number, respectively.

The Q-value at state s ∈ S and sub-action a1 ∈ Ad is

calculated using Equation 10 as follows:

Q1
θ (s, a1) = V (s) +

(
A1 (s, a1)− 1

|A1|
∑

a′
1∈A1

A1 (s, a
′
1)
)
.

(10)

Similarly, the Q-value at state s ∈ S and sub-action a2 ∈ Ad

is calculated using Equation 11 as follows:

Q2
θ (s, a2) = V (s) +

(
A2 (s, a2)− 1

|A2|
∑

a′
2∈A2

A2 (s, a
′
2)
)
.

(11)

The temporal-difference (TD) target for BDQ agent is

calculated as follows:

yBDQ
t = r + γ

[
1

2
Q1

θ′

(
s′, argmax

a′
1∈A1

Q1
θ (s

′, a′1)

)

+
1

2
Q2

θ′

(
s′, argmax

a′
2∈A2

Q2
θ (s

′, a′2)

)] (12)

Finally, the loss function is defined as the expected value

of the mean squared TD error across the branches:

L = E(s,a,r,s′)∼D

[
1
2

(
yBDQ
t −Q1

θ (s, a1)
)2

+ 1
2

(
yBDQ
t −Q2

θ (s, a2)
)2

]
.

(13)

The architecture of our RL-based method is shown in

Figure 2.

5

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

Configurations

Embeddings of Configurations

State

F
e
a
tu

re
s

State Embedding

Branching Dueling Q-Network

State Embedding

E
m

b
e
d
d
in

g
 F

u
n
c
ti
o
n

(A
u
to

e
n
c
o
d
e
r)

t-wise sampler Feature model

Advantages

Action Dimension 1

Advantages

Action Dimension 2

Q-values

Action Dimension 1

Q-values

Action Dimension 2

argmax

argmax
a1

a2

Action Tuple

Sh
ar

ed
 R

ep
re

se
nt

at
io

n

State Value

Figure 2. Architecture of our proposed method. For the given feature model, t-wise sampler is first used to generate a set of valid configurations. The
generated configurations are then passed to the embedding function to learn embeddings of the configurations. The shared representation module then extracts
features from the input state. These extracted features are then decomposed into the state value and state-dependent action advantages for each independent
branch. Each branch corresponds to a specific dimension of the action. The Q-values for each action dimension are computed by combining the state value
and action advantages using a dedicated aggregation layer. To form joint-action tuples, the argmax function is applied to concatenate the sub-action branches.

Algorithm 1 is_applicable_action(a, s)

1: Input: Action tuple a = (a1, a2); state s.

2: Output: Action applicability at state s.

3: Initialize: is_applicable = False; action_type = a1;

configuration c = a2
4: up = get_uncovered_pairs(s)
5: cp = get_pairs_covered_by_configuration(c)
6: if action_type == 1 then

// adding the configuration c
7: if cp ∩ up 	= ∅ then
8: S.add(c)
9: is_applicable = True

10: else if action_type == 2 then
// removing the configuration c

11: if cp ∩ up = ∅ then
12: S.remove(c)
13: is_applicable = True

return is_applicable

RL-based configuration sampling. Algorithm 2 shows the

pseudocode for our proposed RL-based method for configura-

tion sampling. The algorithm takes as input a feature model

F , a t-wise sampler, the parameter t, a branching dueling

Q-Network (BDQ) agent, the number of episodes, maximum

time-steps, an embedding function Φ, an embedding size ζ,

and a configuration sampling environment. It returns a minimal

subset of configurations S∗.

The algorithm starts by initializing an empty set, denoted as

S∗, to serve as the initial state. Subsequently, it generates an

initial solution employing the t-wise coverage sampler, setting

the best_sample_size to the size of this initial solution. Dur-

ing the iteration of the algorithm through the specified number

of episodes, the BDQ agent selects an action tuple at each

time-step within an episode, and the environment performs

a step using the action tuple if applicable, transitioning to a

new state and receiving a positive reward. If the action tuple

is not applicable, the agent remains in the same state and

receives a negative reward. This information is recorded as a

transition item, after which the agent is trained using the stored

transitions. Subsequently, the next state is embedded using the

embedding function, and the current state is updated to the

next state. Upon the completion of an episode or reaching

the maximum time-steps, the algorithm assesses whether the

current state’s size is smaller than the best sample size. If

this condition is met, the best sample size and the subset

of configurations, SF , are updated. Ultimately, the algorithm

returns the subset of configurations exhibiting 100% coverage,

denoted as SF .

C. Gym-based configuration sampling environment

Our Gym-based Configuration Sampling environment (CS-

Gym) takes as input a feature model as a DIMCAS file

or a CNF formula, and the parameter t and employs a t-
wise sampler. CS-Gym is designed to be compatible with

any deep reinforcement learning algorithm that supports multi-

dimensional action spaces. It consists of four functions:

• __init__: This function initializes the state space and

action space for the given feature model, generates an

initial set of configurations using t-wise sampler, and

generates all the possible feature interaction pairs.

• step: This function takes as input an action tuple and

returns a transition item based on the applicability of the

given action tuple within the current step.

• reset: This functions resets the environment and sets

the initial state of next episode to the smallest subset

6

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 RL-based Algorithm for Configuration Sampling

1: Input: Feature model F ; t-wise coverage sampler

tw_sampler, parameter t, branching dueling Q-Network

(BDQ) agent; number of episodes n_episodes; maximum

time-steps max_ts; embedding function Φ, embedding

size ζ; configuration sampling environment env.

2: Output: A minimal subset of configurations S∗.

3: Initialize: S∗ = ∅;

4: initial_solution = tw_sampler(F , t)
5: best_sample_size = |initial_solution|
6: state_embedding = Φ(initial_solution, ζ)
7: for i=1, ... n_episodes do
8: state, done = env.reset(), False
9: state = state_embedding(state)

10: for j=1, ..., max_ts do
11: action_tuple = agent.act(state)
12: next_state, reward, done =

env.step(action_tuple)
13: agent.store(state, action_tuple, reward,

next_state, terminal)
14: agent.train()
15: next_state = state_embedding(next_state)
16: state = next_state
17: if done or j mod max_ts == 0 then
18: if |state| < best_sample_size then
19: best_sample_size = |state|
20: S∗ = state
21: break

return S∗

of configurations, so that the agent can more efficiently

converge to the optimal solution (the minimal subset of

configurations).

• render: This function reports relevant information about

the behavior of the environment that has been collected

so far, and visualizes the sample size and the coverage

of the sample over the episodes in real-time.

V. EXPERIMENTAL SETUP

In this section, we formulate the research questions, describe

the baselines, and feature models used for our experiments.

Research questions. We consider the following three research

questions (RQs):

• RQ-1: Given an initial solution generated by t-wise

sampler to the RL-based sampler, how much does the

RL-based sampler reduce the sample size?

• RQ-2: How does the RL-based sampler compare to state-

of-the-art heuristic-based sampling algorithms in terms of

sample size?

• RQ-3: How early does the RL-based sampler converge

to the minimal sample size and how does it compare the

minimal sample size found by the best heuristic method?

Baselines. We consider the following heuristic-based sampling

algorithms as the baselines:

• Chvatal [47] is a greedy algorithm in which the combi-

nations of features are generated to be considered during

the sampling process. The configurations are added to the

Table I
THE FEATURE MODELS WITH THE NUMBER OF FEATURES AND

CLAUSES/DEPENDENCIES IN THEIR CORRESPONDING CNF FORMULA.

Feature Model # Features # Clauses

BerkeleyDBC 18 29

Dune 17 16

JavaGC 39 105

JHipster 45 104

lrzip 20 63

Polly 40 100

VP9 42 104

X264 16 11

sample set in a greedy manner, and each added configu-

ration should cover at least an uncovered combination.

• ICPL [48] is an algorithm for generating covering arrays

for large-scale feature models. It is built on the Chvatal al-

gorithm [47] with additional performance improvements.

• YASA [19] is a greedy sampling algorithm that starts

with an empty sample and then iterates over all t-wise

interactions one at a time. For each, either a new partial

configuration with the features of the interaction is added

to the sample or the features are added to an existing

configuration. YASA enhances the basic algorithm by

applying different heuristic and caching methods.

Feature models. We evaluate our approach using eight feature

models from real-world systems, commonly used in recent

works, that are listed in Table I and described below.

• BerkeleyDB: An embedded database library providing

efficient low-level data management.

• Dune: A build system designed for OCaml/Reason

projects, focusing on simplicity and fast build times.

• JavaGC: Garbage Collection system of the Java virtual

machine, responsible for automatic memory management.

• JHipster: A platform for generating, developing, and

deploying Spring Boot + Angular/React/Vue web appli-

cations and microservices.

• lrzip: A compression utility handling large files due to

its ability to handle long-distance redundancies.

• Polly: A domain-specific language in LLVM for express-

ing high-level, optimizable loop structures.

• VP9: An open-free video coding format.

• X264: A free software library for encoding video streams

into the H.264/MPEG-4 AVC compression format, known

for its efficiency and quality.

Evaluation metrics. We consider the metrics sample size and

coverage (i.e., the number of feature interaction pairs covered

by configurations); however, we report only sample size as, in

our case, each episode of environment ends when we achieve

100% coverage.

Evaluation of RL-based sampler For the training phase,

all configurations generated by the t-wise sampling algorithm

are considered at the initial state and the RL-based sampler

finds a minimal subset of those configurations by progressively

reducing the sample size. However, for the evaluation phase,

we consider an empty set (empty sample) at the initial state

7

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

and use the learned policy to sample the next configurations

based on the current configurations in the sample. For all the

experiments, we consider t-values 2 and 3.

Parameter tuning. Hyperparameters of our method are se-

lected by grid search and listed in Table II.

Table II
HYPERPARAMETERS OF OUR RL-BASED SAMPLER.

Parameter Description Value
n_episodes_training Number of episodes for training 1000

n_episodes_evaluation Number of episodes for evaluating 100

max_ts Maximum number of time-steps 2000

gamma Discount factor 0.99

optimizer Optimizer RMSprop

eta Learning rate for the RMSprop optimizer 0.0005

lambda Weight decay (L2 penalty) for the RMSprop optimizer 0.0001

buffer_type Replay buffer Prioritized

buffer_size_max Replay buffer size 1M

buffer_min_size Minimum size of the replay buffer before training begins 1000

alpha Parameter determining how much prioritization is used 0.6

beta Parameter representing the importance-sampling weight 0.1

beta_increase_steps Number of steps over which beta is linearly increased to 1 50000

batch_size Number of experiences to sample from the replay buffer 64

replays Number of batches to train on after each step 1

shared_size Size of the layers in the shared part of the network (512, 512)

branch_size Size of the layers in the branched part of the network (128, 128)

activation_func Activation function Leaky ReLU

epsilon_start Starting value of epsilon for the epsilon-greedy 1.0

epsilon_decay_steps Number of steps over which epsilon is linearly decayed 20000

epsilon_min Minimum value that epsilon can reach after decay 0.1

new_actions_prob Probability of choosing a new random action at each step 0.05

tau Parameter for soft update of target network parameters 0.01

Implementation. All the experiments were conducted on

DGX-Station (NVIDIA DGX-1) under Ubuntu 22.10, and

implemented in Python 3.10. The experiments for t = 2 and

t = 3 took around 10 hours and 3 days, respectively. The code

and datasets are available on GitHub1.

VI. RESULTS

A. Reduction of sample size from the initial solution

To address the RQ-1, we compare the the sample sizes

generated by a t-wise sampler and our RL-based sampler on

eight feature models (BerkeleyDBC, Dune, JavaGC, JHipster,

lrzip, Polly, VP9, and X264) and two different t-values: 2 and

3. The bar charts in Figure 3 show that the RL-based sampler

consistently achieves a high percentage of reduction across

all feature models and both t-values 2 (left subplot) and 3

(right subplot). Table III provides the percentage reduction for

each feature model and t-value. The results suggest that the

percentage reduction in sample size increases as the value of

t increases for all feature models. More precisely, increasing

the level of interaction between features, as measured by the

value of t, can result in a greater reduction in sample size

while maintaining the ability to detect faulty test cases. This

is particularly beneficial because larger sample sizes can lead

to increased costs in terms of the time and resources required

to execute and analyze the tests.

B. Performance of RL-based Sampling Algorithm

To address the RQ-2, we compare the sample sizes achieved

by the RL-based sampler and three state-of-the-art heuristic-

based sampling algorithms for different feature models and

1https://amir-abolfazli.github.io/RLSampler/

Figure 3. Reduction of sample size from initial solution generated by t-wise
sampler compared to the sample size generated by RL-based sampler for the
considered feature models.

Table III
PERCENTAGE REDUCTION IN SAMPLE SIZE FOR RL-BASED SAMPLER

COMPARED TO t-WISE SAMPLER.

Feature Model t = 2 t = 3

BerkeleyDBC 91.96 94.16
Dune 94.03 96.12
JavaGC 95.52 97.77
JHipster 97.49 98.95
lrzip 92.5 81.97
Polly 96.27 98.38
VP9 96.63 98.64
X264 93.33 94.68

t-values, and present the results in Table IV. We consider

1M time-steps (1K episodes, each with 10K time-steps). The

percentage reduction in sample size compared to the best

result among the other algorithms is also provided (in green

parentheses). In all cases, the RL-based sampler achieves the

smallest sample size among all the algorithms, demonstrating

its effectiveness in reducing the sample size while achiev-

ing 100% t-wise coverage. Generally, the RL-based sampler

achieves a higher percentage reduction in sample size when

t=2 compared to t=3. In addition, the results indicate that the

RL-based sampler is effective in reducing the required sample

size for testing even as the number of pairs increases with

higher values of t.

C. Convergence of RL-based sampler to minimal sample size

To address the RQ-3, we analyze the convergence behavior

of our RL-based approach on eight feature models of software

product lines and compare our results with the best heuristic-

based sampler (i.e., the heuristic-based sampler with the small-

est sample size reported in Table IV). We evaluate the RL-

based sampler on 200K time-steps (100 episodes, each with

2K time-steps) and report the average sample size generated

over 10 different runs with randomly chosen seeds.

In Figure 4, blue and orange lines correspond to the sample

sizes generated by RL-based sampler with the t-values 2

and 3, respectively. Similarly, the black and brown dashed

lines correspond the smallest sample sizes generated by the

heuristic-based samplers, respectively. Figure 4 shows that our

approach can rapidly converge to small sample sizes. However,

8

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

Table IV
SAMPLE SIZES OF OUR RL-BASED SAMPLER COMPARED TO

HEURISTIC-BASED SAMPLING ALGORITHMS ON EIGHT FEATURE MODELS

FOR TWO t-VALUES (2 AND 3). THE SMALLEST SIZE IS MARKED IN BOLD

AND SECOND SMALLEST SAMPLE SIZE IS DENOTED BY (+). THE

PERCENTAGE OF REDUCTION IN SAMPLE SIZE FOR OUR RL-BASED

SAMPLER, COMPARED TO THE BEST HEURISTIC-BASED METHOD, IS

SHOWN IS GREEN.

Feature Model t # Pairs Sample Size
Chvatal ICPL YASA RL-based Sampler

BerkeleyDBC
2 529 21 21 20 (+) 18 (↓ 10%)

3 5020 59 (+) 60 59 (+) 54 (↓ 8%)

Dune
2 472 14 14 13 (+) 12 (↓ 7%)

3 4264 39 38 34 (+) 31 (↓ 8%)

JavaGC
2 2399 52 53 48 (+) 42 (↓ 14%)

3 51457 216 (+) 217 217 188 (↓ 13%)

JHipster
2 3151 38 40 37 (+) 32 (↓ 13%)

3 74032 127 (+) 129 127 (+) 126 (↓ 0.78%)

lrzip
2 619 22 23 19 (+) 18 (↓ 5%)

3 5832 55 55 49 (+) 44 (↓ 10%)

Polly
2 2402 39 42 38 (+) 33 (↓ 13%)

3 51618 184 (+) 187 189 125 (↓ 32%)

VP9
2 2695 41 40 38 (+) 34 (↓ 10%)

3 61850 182 185 177 (+) 130 (↓ 26%)

X264
2 387 15 15 12 (+) 10 (↓ 20%)

3 3155 34 30 (+) 31 27 (↓ 10%)

the episode at which the minimal sample size is reached varies

depending on the specific feature model of the SPL being

tested. For the feature model BerkeleyDBC, RL-based sampler

outperforms the heuristic-based methods with t = 2. Our

method also significantly outperforms heuristic-based methods

on the feature modes JavaGC, VP9, and Polly, with t = 3,

and has competitive performance compared to heuristic-based

methods on the feature models JavaGC, lrzip, VP9, JHipster,

Polly, and X264, with t = 2, and similarly on feature models

BerkeleyDBC, lrzip, Dune, JHipster, and X264, with t = 3.

VII. DISCUSSION AND FUTURE WORK

Applying deep reinforcement learning to the configuration

sampling problem has shown promising results, having signif-

icant implications for cost reduction, as the reduced sample

size leads to fewer configurations to test, and subsequently

resulting in lower testing efforts and resource utilization. The

findings open up opportunities for future research in configu-

ration sampling. The heuristic methods typically identify the

minimal sample size as the final output that is considered as the

most efficient solution, where the smallest set of configurations

fully covers all t-wise feature interactions. However, in an RL

setting, in early iterations, the model might generate a smaller

sample size, which could be an optimal solution. Nonethe-

less, due to the inherent exploratory nature of reinforcement

learning, the model does not stop at this point. Instead, it

continues to explore other configurations in the search space.

Although this exploration phase is crucial for the robustness

of the learning process, it often leads to larger sample sizes. It

is important to note that there are some limitations that need

to be addressed in future research. One limitation of our work

is that the policy learned for a specific feature model may

not be directly applied to a feature model with a different

cardinality of the action space. This limitation implies that

Figure 4. The sample size of our RL-based method over 100 episodes with
10 randomly chosen seeds for the considered feature models compared to the
minimal sample size of the best heuristic-based sampler which is marked in
black and brown dashed lines t=2 and t=3, respectively.

further investigations are necessary to extend the applicability

of the DRL-based sampler to feature models with varying

action space sizes. For future work, we aim to explore the

use of multi-agent approaches for further optimization of the

configuration sampling process.

VIII. CONCLUSION

In this work, we proposed a deep reinforcement learning

based sampler that finds a minimal subset of configurations

guaranteeing 100% coverage given an initial set of config-

urations generated by t-wise sampling algorithm. We also

presented the CS-Gym, an environment for the configuration

sampling problem. Our experimental results showed that the

proposed method significantly outperforms the heuristic-based

sampling methods on eight feature models of software product

lines in terms of sample size. This improvement has substantial

implications for cost reduction, as the reduced sample size

leads to fewer configurations to test, resulting in lower testing

efforts, resource utilization, and overall testing time.

9

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

The authors gratefully acknowledge that the proposed re-

search is a result of the research project “QuBRA” granted by

the BMBF via funding code 13N16052.

REFERENCES

[1] D. Batory, “Feature models, grammars, and propositional formulas,” in
SPLC. Springer, 2005, pp. 7–20.

[2] M. Fewster and D. Graham, Software test automation. Addison-Wesley
Reading, 1999.

[3] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to combinatorial
testing. CRC press, 2013.

[4] M. Al-Hajjaji, S. Krieter, T. Thüm, M. Lochau, and G. Saake, “Incling:
efficient product-line testing using incremental pairwise sampling,” ACM
SIGPLAN Notices, vol. 52, no. 3, pp. 144–155, 2016.

[5] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 1–29, 2011.

[6] M. B. Cohen, M. B. Dwyer, and J. Shi, “Constructing interaction test
suites for highly-configurable systems in the presence of constraints: A
greedy approach,” IEEE Trans. Softw., vol. 34, no. 5, pp. 633–650, 2008.

[7] I. Abal, J. Melo, Ş. Stănciulescu, C. Brabrand, M. Ribeiro, and A. Wą-
sowski, “Variability bugs in highly configurable systems: A qualitative
analysis,” TOSEM, vol. 26, no. 3, pp. 1–34, 2018.

[8] M. Al-Hajjaji, J. Meinicke, S. Krieter, R. Schröter, T. Thüm, T. Leich,
and G. Saake, “Tool demo: testing configurable systems with featureide,”
in GPCE, 2016, pp. 173–177.

[9] P. Arcaini, A. Gargantini, and P. Vavassori, “Generating tests for
detecting faults in feature models,” in ICST. IEEE, 2015, pp. 1–10.

[10] K. Kitsawad and N. Tuntisripreecha, “Sensory characterization of instant
tom yum soup,” Applied Science and Engineering Progress, vol. 9, no. 2,
pp. 145–152, 2016.

[11] H. Eichelberger and K. Schmid, “A systematic analysis of textual
variability modeling languages,” in Proceedings of the SPLC, 2013, pp.
12–21.

[12] C. Henard, M. Papadakis, and Y. Le Traon, “Mutation-based generation
of software product line test configurations,” in SBSE. Springer, 2014,
pp. 92–106.

[13] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and
Y. Le Traon, “Bypassing the combinatorial explosion: Using similarity
to generate and prioritize t-wise test configurations for software product
lines,” IEEE Trans. Softw., vol. 40, no. 7, pp. 650–670, 2014.

[14] X. Devroey, G. Perrouin, A. Legay, P.-Y. Schobbens, and P. Heymans,
“Covering spl behaviour with sampled configurations: An initial assess-
ment,” in VaMoS, 2015, pp. 59–66.

[15] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon, “Multi-
objective test generation for software product lines,” in SPLC, 2013, pp.
62–71.

[16] R. A. Matnei Filho and S. R. Vergilio, “A multi-objective test data
generation approach for mutation testing of feature models,” JSERD,
vol. 4, pp. 1–29, 2016.

[17] R. Tartler, C. Dietrich, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Static analysis of variability in system software,” in
USENIX ATC, 2014, pp. 421–432.

[18] E. Baranov, A. Legay, and K. S. Meel, “Baital: an adaptive weighted
sampling approach for improved t-wise coverage,” in ESEC/FSE, 2020,
pp. 1114–1126.

[19] S. Krieter, T. Thüm, S. Schulze, G. Saake, and T. Leich, “Yasa: yet
another sampling algorithm,” in VaMoS, 2020, pp. 1–10.

[20] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu, “Practical pairwise
testing for software product lines,” in SPLC, 2013, pp. 227–235.

[21] J. Oh, P. Gazzillo, and D. Batory, “t-wise coverage by uniform sam-
pling,” in SPLC, 2019, pp. 84–87.

[22] A. Tavakoli, F. Pardo, and P. Kormushev, “Action branching architectures
for deep reinforcement learning,” in AAAI, vol. 32, 2018.

[23] M. Varshosaz, M. Al-Hajjaji, T. Thüm, T. Runge, M. R. Mousavi, and
I. Schaefer, “A classification of product sampling for software product
lines,” in SPLC, 2018, pp. 1–13.

[24] Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. A.
Cire, “Combining reinforcement learning and constraint programming
for combinatorial optimization,” in AAAI, vol. 35, no. 5, 2021, pp. 3677–
3687.

[25] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method for
solving vehicle routing problems,” in ICLR, 2020.

[26] K. Abe, Z. Xu, I. Sato, and M. Sugiyama, “Solving np-hard problems on
graphs with extended alphago zero,” arXiv preprint arXiv:1905.11623,
2019.

[27] T. Barrett, W. Clements, J. Foerster, and A. Lvovsky, “Exploratory com-
binatorial optimization with reinforcement learning,” in AAAI, vol. 34,
no. 04, 2020, pp. 3243–3250.

[28] S. Gu and Y. Yang, “A deep learning algorithm for the max-cut
problem based on pointer network structure with supervised learning
and reinforcement learning strategies,” Mathematics, vol. 8, no. 2, p.
298, 2020.

[29] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” NeurIPS, vol. 30,
2017.

[30] Q. Cai, W. Hang, A. Mirhoseini, G. Tucker, J. Wang, and W. Wei,
“Reinforcement learning driven heuristic optimization,” arXiv preprint
arXiv:1906.06639, 2019.

[31] L. Duan, H. Hu, Y. Qian, Y. Gong, X. Zhang, Y. Xu, and J. Wei, “A
multi-task selected learning approach for solving 3d flexible bin packing
problem,” arXiv preprint arXiv:1804.06896, 2018.

[32] D. Li, C. Ren, Z. Gu, Y. Wang, and F. Lau, “Solving packing problems
by conditional query learning,” 2019.

[33] V. Kurin, S. Godil, S. Whiteson, and B. Catanzaro, “Can q-learning
with graph networks learn a generalizable branching heuristic for a sat
solver?” Advances in NeurIPS, vol. 33, pp. 9608–9621, 2020.

[34] S. Manchanda, A. Mittal, A. Dhawan, S. Medya, S. Ranu, and A. Singh,
“Learning heuristics over large graphs via deep reinforcement learning,”
arXiv preprint arXiv:1903.03332, 2019.

[35] Q. Cappart, E. Goutierre, D. Bergman, and L.-M. Rousseau, “Improving
optimization bounds using machine learning: Decision diagrams meet
deep reinforcement learning,” in AAAI, vol. 33, no. 01, 2019, pp. 1443–
1451.

[36] G. Dulac-Arnold, R. Evans, H. van Hasselt, P. Sunehag, T. Lillicrap,
J. Hunt, T. Mann, T. Weber, T. Degris, and B. Coppin, “Deep re-
inforcement learning in large discrete action spaces,” arXiv preprint
arXiv:1512.07679, 2015.

[37] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395,
2017.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[39] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu,
T. Zhang, J. Liu, and H. Liu, “Parametrized deep q-networks learning:
Reinforcement learning with discrete-continuous hybrid action space,”
arXiv preprint arXiv:1810.06394, 2018.

[40] J. Zhang, J. Li, Y. Zhang, Q. Wu, X. Wu, F. Shu, S. Jin, and W. Chen,
“Collaborative intelligent reflecting surface networks with multi-agent
reinforcement learning,” IEEE J-STSP, vol. 16, no. 3, pp. 532–545, 2022.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[43] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proceedings of the AAAI conference on
artificial intelligence, vol. 30, no. 1, 2016.

[44] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
ICML. PMLR, 2016, pp. 1995–2003.

[45] R. M. Karp, Reducibility among combinatorial problems. Springer,
2010.

[46] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “Ipog: A
general strategy for t-way software testing,” in ECBS. IEEE, 2007, pp.
549–556.

[47] M. F. Johansen, Ø. Haugen, and F. Fleurey, “Properties of realistic
feature models make combinatorial testing of product lines feasible,”
in MODELS. Springer, 2011, pp. 638–652.

[48] M. F. Johansen, O. Haugen, and F. Fleurey, “An algorithm for generating
t-wise covering arrays from large feature models,” in SPLC, 2012, pp.
46–55.

10

Authorized licensed use limited to: TU Delft Library. Downloaded on February 09,2024 at 10:56:00 UTC from IEEE Xplore. Restrictions apply.

