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Abstract

In a high-precision system that performs measurements or tooling on a workpiece, alignment of
the tool and workpiece is of prime importance. To prevent misalignment, which leads to a loss
in accuracy and precision, unwanted vibrations in structures must be attenuated. Topology Opti-
mization (TO) is evolving as a mature design tool that provides innovative designs beyond human
creativity. This thesis focuses on developing and investigating TO methods for the limitation of re-
sponse peaks on a flat surface for suspended structures. When optimizing for multiple excitation
frequencies at multiple output points, the complexity of the problem increases, and the number of
required constraints grows manifold. Thus, for a compact formulation, there is a need for aggre-
gation of peaks in both dimensions, space, and frequency. Furthermore, the application requires
the top surface of the suspended structure to remain flat during operation. In such a scenario,
where a structure is excited harmonically, the dynamic deformations on the surface become key to
quantifying surface flatness. The incorporation of dynamic flatness measures in TO framework is
studied and implemented, and the results show that the proposed methods look promising.
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Nomenclature

List of Symbols

s design density variable
smin minimum design variable density value
ρ filtered design density variable
E Young’s modulus
ν Poisson’s ratio
ρmat material density
r filter radius
pi interpolation power
w interpolation ratio
κi stiffness element matrix scaling factor
µi mass element matrix scaling factor
Kel stiffness element matrix
Mel mass element matrix
K system stiffness matrix
M system mass matrix
ω frequency
η hysteresis damping coefficient
C system damping matrix
Z system dynamic stiffness matrix
u system displacement vector
b input force vector
c output displacement vector
G frequency transfer function
Ω eigenfrequency
Φ eigenvectors
k1,x spring 1 stiffness in x direction
k1,y spring 1 stiffness in y direction
k2,x spring 2 stiffness in x direction
k2,y spring 2 stiffness in y direction
Vf volume fraction
J number of frequencies
K number of nodes
gupp transfer function upper limit
Pm p-mean
Pn p-norm
p p-norm exponent
Sω input frequency set or band
S sum of least squares fit residuals
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Chapter 1

Introduction

1.1 Background and Motivation

In a high-precision machine that performs measurements or tooling on a workpiece, alignment of
the tool and workpiece is of prime importance. Misalignment can have various sources, such as
static or dynamic mechanical loads. Such dynamic mechanical loads can cause unwanted vibra-
tions in structures, leading to a loss of accuracy and precision. Structural vibration control has
therefore been a hot topic in academics and various engineering industries like aerospace [1, 2],
high-speed trains [3, 4], space optics [5] and other high-precision machinery [6]. The error margins
for such machines are typically minimal.

In one such example of high precision machinery (explained further in Chapter 5), the error caused
by vibrations must be in the order of nanometers or lesser. Currently, the design component, i.e.,
high accuracy positioning apparatus, is designed manually. However, manual designing in such
a scenario becomes extremely strenuous considering the complexities of different domains such
as static structural, mechanical dynamics, and thermal effects. These multi-domain requirements
may also be dependent on each other, causing coupling.

Topology Optimization (TO) has emerged as a relief and is finding its way into various applica-
tions. TO is a design tool that iteratively computes a design in a given domain, a set of boundary
conditions, and constraints to improve a particular performance metric [7]. In the given design
domain, geometry can have any shape as long as it fulfills various requirements. TO often leads
to innovative designs beyond human creativity, which are sometimes easy to understand but chal-
lenging to come up with.

Figure 1.1: Frequency response function of a structure
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INTRODUCTION

Frequency response refers to the measure of the magnitude of the output signal (response) con-
cerning a particular input signal (frequency). A frequency response function (FRF) is a complex
transfer function used to quantify this response and express a frequency domain relationship be-
tween input and output signals, as shown in Figure 1.1. When a structure is harmonically excited
at its eigenfrequencies (natural or resonant frequencies), it exhibits significantly high-frequency
responses. It is possible to mitigate such high vibration levels by designing structures with their
eigenfrequencies adjusted to avoid the working frequency bands of the machine. Various methods
have been developed and presented to maximize fundamental and higher-order eigenfrequency
to extend the operating excitation range of frequency [8]. The problem of maximizing the differ-
ence between two adjacent eigenfrequencies of a beam [9, 10] or obtaining eigenfrequencies close
to prescribed frequencies [11] have also been presented. An overview of available approaches for
optimizing eigenfrequencies has also been presented [12].

A structure may be subject to various excitation frequencies scattered over different frequency
domains in a dynamic mechanical system. A structure’s eigenfrequencies may lie in any of these
bands, and in order to avoid resonance, the resonant response needs to be optimized, and response
at several other frequencies needs to be considered. An often used method to avoid or limit struc-
tural resonance is to discretize the frequency range into lots of frequency points and then mini-
mize the vibrational amplitude of a point or some subdomains of the structure under steady-state
harmonic loading with prescribed excitation frequency and amplitude [13, 14, 15, 16, 17]. Some
research papers have also considered multi-objective optimization of structural compliance and
eigenfrequency [18, 19]. Various methodologies for minimization of vibrational performance mea-
sures have been explored [20]. Some physical and mathematical characteristics of dynamic compli-
ance have been presented, showing that it is inadequate to use as an objective function. Some other
vibration measures, such as active input power, i.e., net power dissipated by a damped vibrating
system, were suggested, which more adequately represent the dynamic behavior of structures.

Figure 1.2: Non-collocated I/O system where vibrations originating from the base and propagating
through interface connections need to be suppressed on the surface to achieve dynamic flatness

Besides the eigenfrequencies of the structure and the spectrum of input excitations, the dynamic
behavior of a structure is also determined by the geometric location of input load and output
point(s) where vibrations need to be minimized. A structure suspended from a base through some
interface connections, subject to vibrations propagating through these interface connections, is
shown in Figure 1.2. This is a non-collocated input-output (I/O) system, where external vibrations
propagating through interface connections must be minimized at some user-defined point(s) on a
flat surface.

Vibration levels must be restricted at multiple points over the entire surface for multiple out-
put cases. Applying individual constraints for each point (node) on this surface would lead to a
lengthy TO formulation. It becomes difficult for the optimizer to handle many constraints together,
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INTRODUCTION

increasing computational time. In addition, when optimizing for multiple excitation frequencies,
implementing an individual constraint per frequency again leads to an extensive formulation and
significant computational times. When both problems are considered together, i.e., optimizing for
multiple frequencies at multiple points, the problem’s complexity increases and the number of
constraints required grows manifold. Thus, peaks must first be aggregated in both dimensions,
space and frequency, and then constrained for a compact formulation. Additionally, the stiffnesses
of the interface connections between the structure and the base also influence the dynamic char-
acteristics of the system, especially the suspension modes. Optimization of these stiffnesses also
becomes crucial to such design problems.

Furthermore, the application requires the top surface of the apparatus to remain flat during opera-
tion (Chapter 5). Surface flatness is defined as the deviation in the height of the surface relative to
a reference plane over short distances in a local area [21]. When surface flatness is considered over
a larger scale, such as the entire surface, it is termed global flatness, as illustrated in Figure 1.3.
Global flatness for dynamical systems (e.g., wafer tabletop, deformable mirrors) has been chiefly
associated with control systems for flatness correction using sensors and actuators [22, 23]. In such
a scenario, where a structure is excited harmonically, the dynamic deformations on the surface
become key to quantifying surface flatness. Dynamic global flatness is a new concept that has not
yet found its way in TO context to the best of our knowledge. In this thesis, the incorporation of
dynamic flatness measures in TO framework is studied and implemented for harmonically excited
structures.

Figure 1.3: Surface flatness: the measure of deviations in the height of the surface

1.2 Research goals and Approach

As per the complexities discussed in the previous section, the objective of this MSc thesis can be
summarized in the form of research goals as follows:

1. Development and investigation of TO methods for limitation of dynamic response on a flat
surface for suspended structures, i.e., non-collocated I/O systems

2. Development and incorporation of global flatness measures in TO framework for a dynami-
cal mechanical system

In order to gain insights into the above mentioned research topics, we first explore the fields of
TO in mechanical dynamics and seek state-of-the-art techniques to solve such industrial problems
(Chapter 2). With a careful choice of methodologies and strategies presented, we look to improve
the dynamic performance characteristics of the system (Chapter 3). A base benchmark design
has been selected for comparison with generated designs as we build more complexities in the
model. Global flatness for dynamical mechanical systems is introduced and implemented in TO
framework (Chapter 4). Chapter 5 covers the case study, already briefly mentioned, of designing
the high accuracy positioning apparatus. We conclude in the final Chapter 6 with some discussion
on the results achieved and future recommendations.
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Chapter 2

Topology Optimization

Topology Optimization (TO) [24] is a material distribution method used to optimize a material
layout with a given design domain, set of boundary conditions, and constraints in order to improve
a particular performance metric. This performance metric, also known as the objective function,
can be physical quantity like mean compliance, peak stress, deflection, eigenfrequency, dynamic
response, etc., which can be maximized or minimized as per the requirements.

Figure 2.1: Topology Optimization

TO optimizes a specific design domain by determining the number, shape, and location of holes
and, thus, the connectivity of the domain structure. Known parameters during the process include
applied loads, support conditions, the volume of the structure, and the design constraints, which
in turn are used to determine the physical size and shape of the design structure.

2.1 Density based method

The density-based approach [7] is one of the most widely used methods in TO. In this approach, the
given design domain is discretized into small elements, with each element recognized by a density
variable. The mechanical properties of the finite element model are dependent on these density
variables. Each element in the design space is a material point (density 1) or a void (density 0), and
the optimization problem is converted from a discrete variable into a continuous problem. SIMP
(Solid Isotropic Material with Penalization) [25] makes use of a penalty factor that steers the
solution towards discrete 0-1 values. The intermediate density values which are unfavorable are
penalized by choosing a penalty power factor, pi, and thus forming a black and white design with
points being attributed to either density 0 or 1. To avoid the singularity of the stiffness matrix,
instead of choosing zero as the minimum density of a void, a non-zero minimum value, smin is
chosen. This ensures that the minimum value of the density of an element is independent of the
penalization factor. The SIMP method is further modified wherein the element stiffness matrix is
scaled using a combination of a linear term (weighted by w) and a part with exponent pi [26].

κi = (1− w)ρpii + wρi and µi = ρi (2.1)

where κi and µi are the scaling factors for stiffness and mass element matrices, respectively.

4



TOPOLOGY OPTIMIZATION

2.2 Method of Moving Asymptotes

The Method of Moving Asymptotes (MMA) [27] is a method for non-linear programming in struc-
tural optimization. In each iteration step, a convex sub-problem is generated and solved based on
sensitivity information at that iteration point and also some iteration history. These sub-problems
are controlled by ’moving asymptotes,’ which are instrumental in stabilization and speeding up
the process. A major advantage of using MMA is that the approximations generated are separable
and convex in nature. MMA may be a bit slower than the Optimality Criteria method but is better
suited to handle more complicated problems involving several constraints, where it has shown
excellent convergence probabilities.

2.3 Sensitivity analysis

Sensitivity Analysis is termed as understanding the effect of some independent variables on some
dependent variables or, as known in TO, calculation of derivatives of displacements with respect
to design variables. The most common method used for sensitivity analysis is the adjoint method,
where a Lagrangian is used to eliminate sensitivities of state variables which reduces computa-
tional time. For a constraint equation, the adjoint calculation is derived by adding Lagrange mul-
tipliers. By choosing the adjoint vector λ correctly, we can cause the state sensitivities du

dx to drop
out.

L(x, u) = f(x, u) + λT g(x, u)

dL
dx

=
∂f

∂x
+

∂f

∂u

du

dx
+ λT

(∂g
∂x

+
∂g

∂u

du

dx

)
=

∂f

∂x
+ λT ∂g

∂x
+
(∂f
∂u

+ λT ∂g

∂u

)du
dx

∴ dL
dx

=
∂f

∂x
+ λT ∂g

∂x
s.t.

∂f

∂u
+ λT ∂g

∂u
= 0

(2.2)

2.4 Density filter

To ensure mesh in-dependence in density based TO, various filters have been devised. Density fil-
ters redefine each element density as a weighted average of densities of mesh-independent neigh-
boring elements [28]. Thus the stiffness of a particular element would now depend on the density
of all elements in the neighborhood of that particular element. This leads to a smoothing of the
stiffness fields and refinement of the density variable. The variations in the density fields that
appear as grey scale regions can later be penalized by SIMP providing a black and white design.
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TOPOLOGY OPTIMIZATION

2.5 Dynamic modelling

Most precision mechanisms are composed of rigid bodies connected through some interface con-
nections. Such mechanisms are prone to errors in accuracy and precision due to the transfer of
vibrations from one rigid body part to another. The system’s capability to transmit motion from
one area to another, both inside the body and between connected bodies, is known as transmissi-
bility. Optimizing the transmissibility transfer function becomes imperative to limit vibrations for
such suspended structures or mechanisms.

In this work, research is focused on structures suspended from a base through some interface
connections. As shown in Figure 1.2, non-collocated I/O systems are those where input and output
are located at different places, i.e., vibrations arising from the base propagate through the interface
connections (input) and have to be optimized at some other specified user-defined points (output).
For such a system, we need a model suited for TO to understand the various factors involved in
choosing a suitable objective and constraint functions. With an initial focus on implementation and
investigation, the problem was studied in 2D (IMSYS-3D developed software in Python). Later, the
developed methodologies were implemented in 3D (IMSYS-3D developed software in C++) for the
case study in Chapter 5.

We build a model with the interface connections modeled as two springs, as shown in Figure 2.2.
We take the top layer as a non-design layer (with density variable stop = 1) since we want that
domain to be completely solid and indicate a continuous flat surface where vibrations need to be
minimized. The design variables, s, are first filtered with a spatial density filter to avoid checker-
boarding and control the length scale of the design, yielding filtered design variables ρ. To compel
the optimizer to a clear black and white design, the gray scale regions are penalized by SIMP
(Equation 2.1).

(a) Schematic of model

(b) Mesh of model

Figure 2.2: Model: TO of non-collocated I/O systems
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For the discretization, we use bi-linear quadrilateral finite elements, a 2 x 2 Gaussian quadrature,
and assume a plane strain condition. The stiffness element and the mass element matrices (Kel and
Mel) are scaled using scaling factors (κi and µi) to assemble system stiffness and mass matrices (K
and M) using scaling factors as follows:

K =

nel∑
i

κiK
(i)
el and M =

nel∑
i

µiM
(i)
el (2.3)

The dynamic equation of motion for this system with multiple degrees of freedom (DOFs) can be
written in the form as follows:

MÜ(t) +CU̇(t) +KU(t) = F(t) (2.4)

where M, C and K are the mass, damping and stiffness matrices respectively, U(t) is the row
vector containing all DOFs, and F(t) contains all external forces. U(t), U̇(t), Ü(t) and F(t) are
time-dependent and can be expressed in harmonic form as shown:

U(t) = ueιωt

U̇(t) = ιωueιωt

Ü(t) = −ω2ueιωt

F(t) = feιωt

(2.5)

We employ hysteretic damping, a form of structural damping which is proportional to displace-
ment. A damping coefficient η is used to create a complex stiffness [29].

C =
Kη

ω
(2.6)

For dynamic response, we use a steady-state system with harmonic inputs and outputs. Equa-
tion 2.4 can be substituted with harmonic forces and displacements to obtain the discretized N-
dimensional frequency domain system of equations.(

K(1+ ιη)− ω2M
)
u(ω) = bq(ω)

y(ω) = cTu(ω)
(2.7)

where u denotes the state vector capturing the displacements and deformations of the entire struc-
ture. The input vector b and output vector c describe the spatial distribution and direction of the
unit input force and the observed unit displacement, respectively, as shown in Figure 2.2a.

This can further be written into a complex frequency-dependent transfer function G(ω), denoting
transmission between the input force and output displacement.

G(ω) =
y(ω)

q(ω)
= cT

(
K(1+ ιη)− ω2M

)−1
b = cTZ(ω)−1b (2.8)

where Z(ω) is the complex symmetric N × N frequency dependent dynamic stiffness matrix. The
magnitude of G(ω) is used to obtain the amplification of harmonic amplitudes from input to out-
put.

Hysteretic damping does not affect the frequencies at which the peak amplitudes occur, so eigen-
frequencies of an undamped system can directly be used in our formulation. The undamped
eigenfrequencies Ωi and eigenvectors ϕi of the system can be calculated by solving the general
eigenvalue problem

Kϕi = Ω2
iMϕi ∀ i = 1, ..., n (2.9)
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TOPOLOGY OPTIMIZATION

The eigenvectors Φ = [ϕ1,ϕ2, ...,ϕn] are mass orthonormalized as ΦTMΦ = I.

The physical properties and variables used in the optimization problems are summarized in Table
2.1.

Table 2.1: Physical properties and variables used in the optimization problems

Parameter Description Value

E Young’s modulus 90 GPa

ν Poisson’s ratio 0.24

ρmat Density 2530 kgm−3

η Hysteretic damping coefficient 10−3

smin Minimum design value 10−3

n Number of eigenfrequencies considered 6

r Filter radius 2 elements

w Interpolation ratio 0.9

pi Interpolation power 4

p p-norm exponent 20

k1,x Spring 1 stiffness in x direction 1.74× 106 Nm−1

k1,y Spring 1 stiffness in y direction 2.70× 108 Nm−1

k2,x Spring 2 stiffness in x direction 5.00× 108 Nm−1

k2,y Spring 2 stiffness in y direction 5.00× 108 Nm−1

Mesh size 260 × 40
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Chapter 3

Vibration Suppression

This Chapter focuses on the suppression of vibrations for non-collocated I/O cases. We begin by
understanding the eigenmodes of our model and the factors influencing its eigenfrequencies. This
is succeeded by discussing possible objective functions suitable for such problems. We formulate
the TO problem based on aggregation techniques in both the spatial and frequency domain. We
conclude the Chapter with a summary of inferences drawn from each section.

3.1 Suspension modes and dynamic eigenmodes

The structure model’s (Figure 2.2) first six eigenmodes for uniform volume fraction (Vf ) 0.5 can
be seen in Figure 3.1. Taking the first three eigenmodes, which are suspension modes and the
next three dynamic eigenmodes, we study the parameters influencing its eigenfrequencies. Sus-
pension modes are the low-frequency rigid body modes that exhibit some internal deformation at
the eigenfrequency of the suspension [30]. Analytical validation of eigenfrequency values can be
found in Appendix A.

Figure 3.1: First six eigenmodes of model with uniform Vf = 0.5

9



VIBRATION SUPPRESSION

Figure 3.2: Variation in eigenfrequencies of model with respect to Vf

The first three eigenmodes are majorly suspension modes because of the springs. These eigen-
frequencies are defined by the mass of the structure and the stiffness of interface connections. In
contrast, the following three dynamic eigenmodes’ eigenfrequencies are defined by the mass and
stiffness of the structure as a whole. Variation in eigenfrequencies of the model with respect to Vf

is shown in Figure 3.2. The first three eigenfrequencies decrease when we increase the Vf from 0.1
to 1. This can be attributed to an increase in mass while the stiffness of the interface connections
remains the same, which ultimately leads to lowering these eigenfrequencies. However, the fol-
lowing three dynamic eigenmodes can be observed to have increased eigenfrequencies owing to
a comparably more significant increase in the stiffness of the structure (depending on the value of
penalty factor in SIMP) than the mass of the structure.

3.2 Optimization problem formulation

As per discussions in Section 2.5, probable objective functions under consideration for such TO
problems are:

1. Static compliance minimization

2. Transfer function minimization

3. Eigenfrequency maximization

4. Weight minimization

Since we aim to keep a flat surface, all nodes on the top surface of the structure need to be consid-
ered. In such cases, calculating static compliance at each node and forming a weighted objective
function may seem appropriate. However, it seems logical to focus on dynamic compliance-based
functions instead of static compliance to influence the dynamic characteristics of the structure.
A challenge faced with non-collocated I/O systems is that transfer function minimization is not
feasible because to minimize the transfer function, the optimizer would compel the design to not
form a connection between the input loading and output displacement points. This is because it
would prevent the input forces from acting on the structure, preventing deformations at the out-
put location points. This can be solved by making use of static compliance constraints. However,
incorporating transfer functions as a weighted objective function seems irrational. Considering
transfer functions as constraints imparts meaning to our problem wherein we optimize our design
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to suppress vibrations below a prespecified limit. Therefore, transfer functions in this work are
treated as constraints.

A reasonable choice for eigenfrequency maximization is based on mean eigenvalue [11]:

f(s) =

(
n∑

i=1

1

Ωi(s)

)
(3.1)

where n is the total number of eigenmodes considered. The interface connections control the sus-
pension modes of the structure, which in turn influence its first three eigenfrequencies. The influ-
ence of suspension modes and dynamic eigenmodes on the mean-eigenvalue objective function
is investigated in Appendix B. Suspension modes must be included in the objective function to
ensure structure formation relevant to boundary conditions. The number of flexible modes to be
included would depend on the highest frequencies of excitations the system is subjected to. In this
work, three suspension modes and three flexible modes are considered in the objective function.
We now focus on the parameters influencing optimization of suspension mode frequencies and
flexible eigenfrequencies. Three optimization formulations are considered:

Table 3.1: Optimization formulations:
1. Eigenfrequency maximization with volume constraints
2. Eigenfrequency maximization (normalized) with volume constraints
3. Eigenfrequency maximization without volume constraints

Case Objective Volume Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Ωinitial (itr. 1) Vf,initial = 0.50 315 Hz 554 Hz 797 Hz 1560 Hz 3304 Hz 5267 Hz

1
∑n

i=1
1
Ωi

0.50 < Vf < 0.60 439 Hz 626 Hz 802 Hz 2275 Hz 4253 Hz 5639 Hz

% increase 39% 13% 01% 46% 22% 07%

2
∑n

i=1
Ωinitial
Ωi

0.50 < Vf < 0.60 422 Hz 615 Hz 850 Hz 2743 Hz 5093 Hz 6920 Hz

(normalized) % increase 34% 11% 07% 76% 54% 31%

3
∑n

i=1
1
Ωi

Vf,final = 0.19 457 Hz 755 Hz 1029 Hz 2068 Hz 3286 Hz 3819 Hz

A summary of results for three optimization formulations with different objective functions and
volume constraints is tabulated in Table 3.1. The optimized designs obtained have been shown in
Figure 3.3. It can be seen from the results obtained that the higher eigenfrequencies (Ω4,Ω5,Ω6)
increase by a greater extent in case 2 because of normalization. This is because in case 1, the
objective function consists of the reciprocals of the eigenfrequencies, due to which higher eigenfre-
quencies have a comparatively lower contribution in the objective function as compared to the low
frequencies (Ω1,Ω2,Ω3). After normalization with respect to the initial values (i.e., iteration 1 val-
ues), all eigenfrequencies have equal contributions in the objective function for the first iteration.
Therefore, higher eigenfrequencies increase by a more significant margin due to normalized eigen-
frequencies. This effect could be seen in obtained optimized designs. The design in case 2 (Figure
3.3b) was observed to have more triangular and web-like structures as compared to the optimized
design of case 1 (Figure 3.3a). Such trusses are associated with stability and strength as energy is
distributed in a much more balanced manner. This is in accordance with the higher eigenmodes
requiring more rigidity and stiffness due to increased corresponding eigenfrequencies.
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(a) Case 1: Eigenfrequency maximization with volume constraints

(b) Case 2: Eigenfrequency maximization (normalized) with volume constraints

(c) Case 3: Eigenfrequency maximization without volume constraints

Figure 3.3: Optimized designs obtained from formulations shown in Table 3.1

Also, it must be understood that since the higher eigenfrequencies (Ω4,Ω5,Ω6) correspond to the
flexible modes, they depend on both the mass and stiffness of the system, which makes their op-
timization highly flexible. On the other hand, the low eigenfrequencies (Ω1,Ω2,Ω3), which cor-
respond to the suspension modes, are highly dependent on the stiffness of interface connections
which are not very flexible in the optimization. This comparatively restrains their optimization
unless the spring stiffnesses are also provided as variables to the optimizer (which is explored in
Section 3.5). For now, we will restrict our study to optimizing response at frequencies lying in the
range of higher (flexible) eigenfrequencies only.

It was observed that the lower volume constraint was active for both case 1 and case 2, which
meant that the optimizer was pushing towards lower Vf designs. The optimized design of eigen-
frequency maximization without any volume constraints (case 3) can be seen in Figure 3.3c with
a resulting Vf of 0.19. The design depicts clear truss formation to achieve maximum stiffness. It
was noticed that the optimizer pushes towards higher Vf structures when only flexible modes are
included in the objective function. However, with the inclusion of suspension modes, the opti-
mizer pushes the design towards lower Vf since eigenfrequencies are inversely proportional to the
mass of the structure (Appendix B). The mass of the structure plays a pivotal role in deciding the
eigenfrequencies of suspension modes. So, weight minimization is implicitly achieved in the mean
eigenvalue objective function when suspension modes are included. As for the choice of enforcing
a Vf constraint, it is quite subjective and would vary across applications. In this report, most for-
mulations involve the implementation of Vf constraints as it results in more evident designs which
are comparatively more rational and easier to comprehend.

Some multi-objective formulations, including the mean-eigenvalue function and transfer function,
were investigated with different weighing fractions in Appendix C. It was observed that both func-
tions act against each other; while the mean-eigenvalue function promotes structure formation, the
transfer function prevents structure formation between I/O points so that the deformations can be
minimized.
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In this thesis, application of response constraints has been studied with mean-eigenvalue as ob-
jective function along with enforcing volume constraint. This leads to the following optimization
problem which is considered throughout this chapter:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t.

∣∣Gk(ωj , s)
∣∣ ≤ gupp(ωj) ∀ j = 1, ..., J, k = 1, ...K

Vf ≥ 0.5

smin ≤ s ≤ 1

(3.2)

where
∣∣Gk(ωj , s)

∣∣ represents the response magnitude at any node k and at any excitation frequency
ωj . gupp represents the upper limit of the transfer function for specified excitation frequency. For
simplicity, we abbreviate the frequency response transfer function expression from

∣∣Gk(ωj , s)
∣∣ to

Gk(ωj). The two indices, j and k, clearly show the rapid growth in the number of constraints when
multiple nodes and frequencies are considered. This calls for aggregation strategies to aggregate
constraints in both the spatial and frequency dimensions.

The objective function value is scaled to 100 for the first iteration. The constraints are scaled such
that their first iteration values lie from 1 to 10. The termination condition for all optimizations was
convergence at design variable tolerance of 5 × 10−4. It must be further understood that, as per
our application requirements, the values obtained by our objective function are not as salient as
the obedience of constraints. The objective function for our formulation is vital in ensuring that a
structure is formed, but the constraints provide purpose and solution to our problem.

3.3 Aggregation in spatial dimension

When limiting response peaks over a flat surface, as shown in Figure 1.2, multiple local constraints
can be added to limit transfer functions at each point (node) on the surface. However, imple-
menting individual constraints for each point would lead to a very complex TO formulation, as
discussed in Section 3.3.2. Similarly, when optimizing for multiple operational frequencies, im-
plementing individual constraints per excitation frequency again leads to a very extensive TO
formulation leading to massive computational times. When both problems are combined, i.e., op-
timizing for multiple excitation frequencies at multiple points, the number of constraints required
increase manifold. Thus, there is a need for efficient aggregation of peaks in both dimensions,
i.e., spatial and frequency, which can then be employed as constraints in a much more compact
manner. Several aggregation functions are available, such as arithmetic mean, median, mode, range,
maximum, minimum etc. The main objective of an aggregation function is to deliver a single number
representing larger data most efficiently and accurately, as per the requirement.

In context with limiting response peaks, there is a need for an aggregation function that delivers
a value closest to the maximum absolute peak value of all the response peaks being aggregated.
Two aggregation functions are considered in the context of maximum size, p-mean and p-norm.

3.3.1 p-mean and p-norm

The p-mean and p-norm functions are defined as follows

Pm =

(
1

K

K∑
i=1

yi
p

) 1
p

Pn =

(
K∑
i=1

yi
p

) 1
p

(3.3)
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where Pm and Pn are p-mean and p-norm functions respectively. K is the total number of peaks to
be aggregated, p is the exponent that controls the accuracy of the aggregation, and yi is the peak of
interest being aggregated.

Both aggregation functions are known to converge to the maximum value of the data set when p
approaches infinity [31]. The p-norm function is known to overestimate the maximum value while
the p-mean function underestimates it. Thus, for a given value of p, the maximum value is always
bounded from above by the p-norm value and below by the p-mean value. When limiting peaks,
it makes sense to constrain them with an overestimated value, i.e., upper bound to determine the
maximum deformation/displacement. So, in this report, p-norm function is opted for aggregating
peaks.

A significant aspect of using these aggregation functions is that they provide sensitivity informa-
tion, which is important for gradient-based optimizers. However, it is seen that as the value of p
increases, the sensitivities of the smooth aggregation function resemble those of the max function
[32]. This affects the linearization performed by gradient-based optimizers since sensitivity infor-
mation seems to be lost for closer approximations of the max function. When updating the design
variables, the optimizer originally considers a few local constraints. However, a new set of local
constraints may stand out as critical or are violated after updating. This leads to oscillations in the
optimized design. Hence, the value of p needs to be carefully chosen; a balance must be struck
between the accuracy of approximations and sensitivities. The sensitivity of the p-norm function is
as follows:

∂Pn

∂y
=

∂

(∑
yi

p

) 1
p

∂y

=

(
yi(∑
ypi
) 1

p

)p−1

=

(
yi
Pn

)p−1

(3.4)

3.3.2 Constraining peaks individually

Consider a model with boundary conditions as shown in Figure 2.2. Input forces are applied at
the interface connections modeled as springs. We consider K points on the top surface equidistant
to each other, where responses need to be constrained at a single frequency, requiring a total of K
constraints. Consider optimization formulation as shown in equation 3.2. Operational frequency
(ωj = 3000Hz) at which response needs to be suppressed is chosen such that it lies between the first
and second flexible eigenfrequencies (Ω4,Ω5) of the structure (Table 3.1). The maximum response
of the structure at top surface at chosen working frequency when no constraints were applied was
found to be 0.46 nmN−1 (Table 3.1: Case 1, Figure 3.3a). Individual transfer function (Gk(ωj))
constraints were applied to restrict responses to 0.30 nmN−1.
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Table 3.2: Results: constraining transfer function individually at some specified points on top
surface at ωj = 3000 Hz

Case No. of points (K) / constraints Max. response peak (Gk(ωj)) Time / itr. (s)

1 None 0.46 nmN−1 1.31

2 1 0.30 nmN−1 1.90

3 2 0.30 nmN−1 2.35

4 3 0.30 nmN−1 2.87

5 4 0.30 nmN−1 3.46

6 5 0.30 nmN−1 3.69

7 6 0.30 nmN−1 4.29

8 261 0.30 nmN−1 ≈ 125

A summary of results for constraining transfer function individually at some specified points on
top surface at prespecified ωj = 3000 Hz, can be seen in Table 3.2. It can be observed that computa-
tional time per iteration increases as the number of constraints are increased. Also, it was observed
that it is strenuous for the optimizer to satisfy a large number of constraints together because some
constraints are violated at each iteration step, and convergence becomes difficult. It is to be noted
that such complications are faced in spite of only a few points considered on the top surface. If the
response on all points on the top surface is constrained, i.e., for our considered model, 261 nodes,
i.e., 261 constraints, the calculations would be very time taxing for the optimizer owing to many
constraints being handled together. It was interpolated through least squares fit (Section 4.1) and
approximated that 261 constraints would require about 125 s per iteration. This further reduces
the size of the feasible region, and still, a converged result is not guaranteed. So, aggregation of
peaks becomes crucial in the spatial dimension. The optimized design for Case 5 i.e. 4 constraints
can be seen in Figure 3.4a.

3.3.3 Aggregation of multiple peaks

When aggregating peaks in spatial dimension, for example, all the points (nodes) on a flat surface,
we require responses at each considered point (c1, c2, ..., ck) (Figure 2.2). The top layer displace-
ments or transfer functions can be aggregated to approximate the maximum response at the top
layer of the structure. The constraints can be formulated as a p-norm function of transfer functions
of nodes at the top surface

Gtop, Pn(ωj) ≤ gupp(ωj)

Gtop, Pn(ωj) =

(
K∑
i=1

Gi(ωj)
p

) 1
p (3.5)

where K is the number of nodes on top surface of the structure. For ease of understanding, we
denote Gtop, Pn(ωj) as Gtop, max(ωj).

For lower values of p (2 to 10), constraints were infeasible because of the overestimation of the
maximum. This is due to lower accuracy of approximations as when the value of p was increased,
the optimizer could restrict response at stricter constraints. Although, when value of p is increased
further, the p-norm of transfer functions is computed to zero due to smaller values of transfer func-
tion (order 1× 10−9) being raised to higher exponents (p = 50). This is called numerical underflow,
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i.e., values computed are smaller than the smallest number that can be displayed on the computer.
This is usually solved by scaling, although at the risk of loss in accuracy of sensitivities at higher
values of p. After some inspection, a value of p as 20 was observed suitable for formulations in this
work.

Table 3.3: Results: constraining p-norm of transfer function at nodes on top surface at ωj = 3000 Hz

Case No. of points (K) Response constraints Time / itr. (s)

1 4 G1,2,3,4,max(ωj) ≤ 0.3 nmN−1 1.85

2 261 Gtop, max(ωj) ≤ 0.3 nmN−1 2.03

(a) Table 3.2, Case 5: individual constraints for 4 nodes

(b) Table 3.3, Case 1: p-norm constraint for 4 nodes

(c) Table 3.3, Case 2: p-norm constraint for all nodes on top surface

Figure 3.4: Optimized designs for constraining transfer function at some specified points on top
surface at ωj = 3000 Hz

A summary of results for constraining p-norm of transfer function at nodes on top surface at pre-
specified ωj = 3000 Hz, can be seen in Table 3.3. It can be seen that there is a huge difference in the
computational times as compared to results in Table 3.2. Individually constraining four constraints
took almost 3.5 seconds per iteration, while the aggregated constraint of responses at four points
takes less than 2 seconds per iteration. The optimized designs (Figure 3.4) for both cases are the
same, validating the results.

Next, all displacements on the top surface were aggregated using p-norm and constrained. As
opposed to 125 s per iteration if all points were constrained individually, the p-norm aggregated
constraint took just about 2 s per iteration. It was observed and must be noted that for a small
number of points, the optimizer could restrict responses to much lower values, albeit at the cost
of increased amplitudes at other points on the top surface. However, when all nodes at the top
surface are considered, the responses can be restricted only up to certain values. The change in
optimized designs (Figure 3.4) from those optimized earlier could be seen as a result of restricting
responses at all points on the top surface rather than just four points. This resulted in an increase
in the number of branches in the structure connecting to the top surface.
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3.4 Aggregation in frequency dimension

Some structures may be subject to external vibrations with their excitation frequency bands lying
in the range of eigenfrequencies of the structure. In such cases, responses need to be restricted at all
the frequency points in the working frequency excitation bands apart from the eigenfrequencies of
the structure. For this, let us first understand how eigenfrequencies are modified during the opti-
mization process when constraining responses at any subject frequency close to the eigenfrequency
of the structure.

3.4.1 Constraining frequency peaks individually

Consider a model with boundary conditions as shown in Figure 2.2. Responses at top right node
on top surface (cTR) are suppressed at each individual excitation frequency (Sω = [1700, 1800, 1900,
2000] Hz) lying in the range of higher (flexible) eigenfrequencies of the structure (Ω4,Ω5,Ω6) (Table
3.1). The maximum response of the structure at top right node at chosen working frequencies when
no constraints were applied was found to be 0.6 nmN−1 (Table 3.1: Case 1, Figure 3.3a). Individual
transfer function (Gk(ωj)) constraints are applied to restrict responses to 0.1 nmN−1.

Table 3.4: Results: constraining transfer function individually at top right node

Case Constraints Ω4 (Hz) Ω5 (Hz) Ω6 (Hz)

1 GTR(1700Hz) ≤ 0.1 nmN−1 1906 ↑ 3688 6772

2 GTR(1800Hz) ≤ 0.1 nmN−1 1927 ↑ 3667 6709

3 GTR(1900Hz) ≤ 0.1 nmN−1 1768 ↓ 3763 6616

4 GTR(2000Hz) ≤ 0.1 nmN−1 1766 ↓ 3756 6466

A summary of results for constraining transfer function at TR node at subject frequencies can be
seen in Table 3.4. The FRFs of the optimized designs can be seen in Figure 3.5. It can be observed
that the fourth eigenfrequency of the structure (Ω4) is optimized to avoid the excitation frequency
at which response is constrained. For cases 1 and 2, Ω4 increases and obtains a value higher than
the excitation frequency, while for the latter two cases, the excitation frequency drops to values
lower than the excitation frequency.

The optimized designs can be seen in Figure 3.6. A truss formation characterizes the optimized
designs of the first two cases in the right part of the structure. This corresponds with the higher
value of Ω4 to impart more stability for that particular eigenmode. However, this truss starts
disappearing for the latter two cases, evidenced by a drop in the value of Ω4.
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(a) Case 1: ωj = 1700 Hz (b) Case 2: ωj = 1800 Hz

(c) Case 3: ωj = 1900 Hz (d) Case 4: ωj = 2000 Hz

Figure 3.5: FRFs for constraining transfer function at top right node individually (Table 3.4)

(a) Case 1: ωj = 1700 Hz

(b) Case 2: ωj = 1800 Hz

(c) Case 3: ωj = 1900 Hz

(d) Case 4: ωj = 2000 Hz

Figure 3.6: Optimized designs for constraining transfer function individually at top right node
(Table 3.4)
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3.4.2 Constraining multiple frequency response peaks

In the previous section, we saw how an eigenfrequency of a structure is modified or optimized
subject to constraining responses at excitation frequencies close to that particular eigenfrequency.
In this section, we examine the effects on eigenfrequencies and resonant peaks when a structure is
to be optimized for constraining responses in a set or band of excitation frequencies.

Consider a model with boundary conditions as shown in Figure 2.2. Responses at top right node
on top surface (cTR) need to be suppressed at working excitation frequencies band (Sω = [1700 :
2000] Hz) lying in the range of higher (flexible) eigenfrequencies of the structure (Ω4,Ω5,Ω6) (Table
3.1). The maximum response of the structure at top right node at chosen working frequencies when
no constraints were applied was found to be 0.6 nmN−1 (Table 3.1: Case 1, Figure 3.3a). Multiple
transfer function (Gk(ωj)) constraints are applied to restrict responses to 0.1 nmN−1.

Table 3.5: Results: constraining responses at top right node at frequency band Sω = [1700:2000] Hz

Case Constraints Ω4 (Hz) Ω5 (Hz) Ω6 (Hz) Time / itr. (s)

1 GTR(1700Hz) ≤ 0.1 nmN−1 1903 3687 6810 4.21

GTR(2000Hz) ≤ 0.1 nmN−1 Ω4 ϵ Sω

2 GTR(1700Hz) ≤ 0.1 nmN−1 1926 3682 6783 7.71

GTR(1800Hz) ≤ 0.1 nmN−1 Ω4 ϵ Sω

GTR(1900Hz) ≤ 0.1 nmN−1

GTR(2000Hz) ≤ 0.1 nmN−1

3 GTR(1700Hz) ≤ 0.1 nmN−1 No results

GTR(2000Hz) ≤ 0.1 nmN−1

GTR(Ω4) ≤ 0.1 nmN−1 infeasible

4 GTR(1700Hz) ≤ 0.1 nmN−1 1600 ↓ 3816 6739 3.91

GTR(2000Hz) ≤ 0.1 nmN−1

Ω4 ≤ 1600Hz

5 GTR(1700Hz) ≤ 0.1 nmN−1 2268 ↑ 4168 5713 2.82

GTR(2000Hz) ≤ 0.1 nmN−1

Ω4 ≥ 2000Hz

A summary of results for constraining responses at top right node at prespecified frequency band
Sω = [1700:2000] Hz can be seen in Table 3.5. The FRFs of the optimized designs can be seen in
Figure 3.7. The first case involves directly constraining peaks at the lower and upper limits of
the frequency band. As can be seen, the value of Ω4 lies inside the frequency band (Sω), which is
not desired since it will lead to high deformations when excitation frequency (ωj) is equal to the
eigenfrequency (Ω4). We study three alternatives and their efficiency to ensure that the responses
are constrained within the frequency band.

1. Inclusion of more frequency points in the given frequency band and constraining peaks at
each of these frequencies (Case 2)

2. Constraining resonant peak at eigenfrequency lying in the frequency band (Case 3)
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3. Constraining eigenfrequency to restrict its values from lying in the frequency band (Case 4
and Case 5)

Including more frequency points in the specified frequency band did help constrain responses
at each of these frequencies but was not enough to push Ω4 outside Sω. Also, since more fre-
quency points meant more solutions to a linear system of equations, the computational times were
huge. Depending on the number of frequency points, the computational time per iteration elevates
quickly.

Constraining the resonant peak at Ω4 did not produce any results as the resonant peak constraint
was infeasible. The magnitude of the transfer function at eigenfrequencies largely depends on the
type of damping model being used. The maximum response of the benchmark structure (Table 3.1:
Case 1, Figure 3.3a) was observed to be 10 nmN−1 which is 2 orders higher than the magnitude we
are constraining for. We will examine more on optimizing resonant peaks in the next Chapter (4),
but for this case, it makes sense to look at the next proposed alternative.

Constraining eigenfrequency to restrict its values from lying in the frequency band proved fruitful
as the optimizer could efficiently limit responses within the frequency band while keeping the
subject eigenfrequency (Ω4) away from the frequency band. It can be observed that implementing
eigenfrequency constraints for higher values (Case 5) proved more time efficient since it supported
the objective function of maximizing eigenfrequencies.

(a) Table 3.5, Case 1 (b) Table 3.5, Case 2

(c) Table 3.5, Case 4 (d) Table 3.5, Case 5

Figure 3.7: FRFs for constraining responses at top right node at frequency band Sω = [1700:2000]
Hz
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The final optimized designs can be seen in Figure 3.8. The output designs of Case 1 and Case 2 were
observed to be quite similar. Cases 4 and 5 resulted in absolute 1-0 designs. The disappearance of
truss formations in the right part of the structure in Case 4 can be attributed to the resulting lower
value of Ω4. Whereas the formation of extra trusses in Case 5 can be attributed to the higher value
of Ω4, providing more stiffness for that particular eigenmode.

(a) Table 3.5, Case 1

(b) Table 3.5, Case 2

(c) Table 3.5, Case 4

(d) Table 3.5, Case 5

Figure 3.8: Optimized designs for constraining responses at top right node at frequency band Sω =
[1700:2000] Hz

3.4.3 Constraining multiple peaks in spatial and frequency domain

Real-life machinery is susceptible to vibrations in a wide range of frequencies. Implementing indi-
vidual constraints per excitation frequency per node leads to a very extensive TO formulation with
massive computational times. Also, it works against the optimizer trying to handle a large number
of constraints. This section looks at aggregating peaks in both spatial and frequency dimensions.

Aggregating peaks in spatial domain using p-norm function proved fruitful with low computa-
tional times. However, aggregation of peaks in the frequency domain is highly inefficient because
of eigenfrequencies’ inflexibility to optimize. Problems with convergence are faced where a new
set of constraints are violated at each iteration when eigenfrequencies approach the subject fre-
quencies. Instead, we look for more imaginative ways to aggregate frequencies. After analyzing
the excitation frequency band and the eigenfrequencies of the structure lying in that band, it seems
a smart way to restrict eigenfrequencies from lying in the operating frequency bands by applying
eigenfrequency constraints, and frequencies can be smartly chosen from the working frequency
band to restrict responses for the entire band. The primary purpose would be to make the excita-
tion frequency band (Sω) lie between two consecutive eigenfrequencies so that responses between
the two eigenfrequencies can be efficiently restricted.

Consider a model with boundary conditions as shown in Figure 2.2. Responses at all nodes on top
surface (c1, c2, ..., ck) need to be suppressed at working excitation frequencies band (Sω = [3500 :
4500] Hz) lying in the range of higher (flexible) eigenfrequencies of the structure (Ω4,Ω5,Ω6) (Table
3.1). The maximum response of the structure at top surface at chosen working frequencies when no
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constraints were applied was found to be 0.4 nmN−1 (Table 3.1: Case 1, Figure 3.3a). Constraints
are applied to restrict responses to 0.3 nmN−1.

Table 3.6: Results: constraining responses at all nodes on top surface at frequency band Sω = [3500
: 4500] Hz

Case Constraints Ω4 (Hz) Ω5 (Hz) Ω6 (Hz) Time / itr. (s)

1 Gtop, max(3500Hz) ≤ 0.3 nmN−1 2034 3659 6023 2.85

Gtop,max(4500Hz) ≤ 0.3 nmN−1 Ω5 ϵ Sω

2 Gtop, max(3500Hz) ≤ 0.3 nmN−1 2097 3300 ↓ 5539 2.67

Gtop, max(4500Hz) ≤ 0.3 nmN−1

Ω5 ≤ 3300 Hz

3 Gtop, max(3500Hz) ≤ 0.3 nmN−1 2400 4700 ↑ 5510 2.64

Gtop, max(4500Hz) ≤ 0.3 nmN−1

Ω5 ≥ 4700 Hz

Some formulations are summarized in Table 3.6. As can be clearly seen from FRF graphs shown
in Figure 3.9, eigenfrequency constraints are effective in avoiding eigenfrequencies from lying in
the excitation frequency band. The responses for frequencies in the frequency band can then be
efficiently constrained. The final optimized designs can be seen in Figure 3.10. The disappearance
of trusses in Case 2 and the appearance of trusses in Case 3 in the left and right parts of the structure
can be largely attributed to obtained values of Ω5.

Some problems may involve wide frequency ranges of excitations, making it difficult for eigenfre-
quencies to be pushed out. For such cases, we look for optimizing responses at the eigenfrequen-
cies of the structure. This is explored further in Chapter 4.

22



VIBRATION SUPPRESSION

(a) Table 3.6, Case 1

(b) Table 3.6, Case 2 (c) Table 3.6, Case 3

Figure 3.9: FRFs for constraining responses at all nodes at top surface at frequency band Sω = [3500
: 4500] Hz

(a) Table 3.6, Case 1

(b) Table 3.6, Case 2

(c) Table 3.6, Case 3

Figure 3.10: Optimized designs for constraining responses at all nodes at top surface at frequency
band Sω = [3500 : 4500] Hz
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3.5 Interface connections stiffnesses

The interface connection stiffnesses play a pivotal role in deciding the eigenfrequencies of suspen-
sion modes of a structure. Refer to our discussions in Section 3.2, where the eigenfrequencies of
suspension modes depend mainly on the mass of the structure and the stiffness of the interface
connections, while the eigenfrequencies of flexible modes depend on the mass and stiffness of the
structure. TO works as a stiffness modulator, where the density of each element is optimized to
get the required stiffnesses at each discrete element. When optimizing the eigenfrequencies of
suspension modes, the optimizer can only control or modify the mass component of the structure
to influence the eigenfrequency. For the stiffness to be modified, it becomes essential to provide
interface connection stiffnesses as variables to the optimizer.

Consider the model shown in Figure 2.2a, where eigenfrequencies of the structure need to be max-
imized. The coefficients of the stiffnesses of the interface connections are provided as variables,
while the order of the magnitude has been kept constant. Other formulations for stiffness vari-
ables can be implemented per requirements, but we choose a more straightforward formulation
for understanding principles. The goal of the optimization (Case 2 and Case 3) is to maximize the
eigenfrequencies of the structure by providing both density and interface connection stiffnesses as
variables. In another formulation (Case 4), we try to constrain eigenfrequencies (Ω1,Ω2,Ω3) with
upper limits and see the effect on optimized stiffnesses of interface connections.

min
a,b,c,d,s

(
n∑

i=1

1

Ωi(s)

)
s.t. Vf ≥ 0.5

smin ≤ s ≤ 1

(3.6)

k1,x = a(1× 107) Nm−1

k1,y = b(1× 109) Nm−1

k2,x = c(1× 109) Nm−1

k2,y = d(1× 109) Nm−1

0 ≤ a ≤ 1

0 ≤ b ≤ 1

0 ≤ c ≤ 1

0 ≤ d ≤ 1

(3.7)

Ω2
j − β1 ≤ 0, j = 1, 2, 3 (3.8)

Table 3.7: Results: Interface connections stiffnesses as variables

Case Variables k1,x k1,y k2,x k2,y Ω1 Ω2 Ω3

(Nm−1) (Nm−1) (Nm−1) (Nm−1) (Hz) (Hz) (Hz)

1 s 1.74e+6 2.70e+8 6.40e+8 2.70e+8 383 646 795

2 s, k1,x, k1,y 9.99e+6 9.99e+8 6.40e+8 2.70e+8 403 694 1206

3 s, k1,x, k1,y, k2,x, k2,y 9.99e+6 9.99e+8 9.99e+8 9.99e+8 639 893 1402

4 s, k1,x, k1,y, k2,x, k2,y 7.81e+6 3.07e+8 4.81e+8 6.97e+8 400 600 800
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Table 3.7 gives a summary of results for formulations discussed. In Case 1, we optimize density for
maximum eigenfrequencies (Ω1,Ω2,Ω3) with spring stiffnesses constant. When spring 1 stiffnesses
(k1,x, k1,y) are provided as variables (Case 2), we observe an increase in the eigenfrequencies of
suspension modes with the spring 1 stiffnesses achieving maximum values. When both spring
1 and spring 2 stiffnesses (k1,x, k1,y, k2,x, k2,y) are provided as variables (Case 3), we see a further
increase in the eigenfrequencies with all four stiffnesses achieving maximum values. In Case 4,
we limit the values of eigenfrequencies of suspension modes with upper limits. We observe that
the stiffnesses obtain some specific values instead of maxing out. Figure 3.11 shows the optimized
designs for the four formulations.

(a) Case 1

(b) Case 2

(c) Case 3

(d) Case 4

Figure 3.11: Optimized designs for interface connections stiffnesses as variables (Table 3.7)

We have already discussed how the eigenfrequencies of a structure are changed when optimizing
response at a particular frequency. With the spring stiffnesses offered as variables to the optimizer,
it is possible to optimize response for frequencies lying in the range of low eigenfrequencies, i.e.,
suspension modes, since, along with mass, stiffnesses can also be optimized to influence the subject
eigenfrequencies. One may question that the spring stiffnesses would be maxed out during the
optimization process for eigenfrequency maximization. We saw in Section 3.4.1 how a particular
eigenfrequency obtained a lower value than the subject working frequency when constraining
responses. Providing interface connections stiffnesses as variables and optimizing responses at
some frequencies could very well lead to designing high pass and low pass filters where vibrations
below or above a specified cut-off frequency are attenuated.
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3.6 Conclusion

This Chapter aimed to investigate and develop TO methods to suppress vibrations on a flat surface
for suspended structures. Based on discussions in this Chapter, some conclusions can be drawn
out and summarized as follows:

1. For non-collocated I/O systems, transfer functions should be considered as constraints to im-
part meaning to TO formulation. Mean-eigenvalue is implemented as the objective function.

2. Influence of suspension and flexible modes on the objective function is inspected. Suspen-
sion modes must be included to ensure structure formation relevant to boundary conditions,
while flexible modes can be chosen based on the highest frequency bands of excitations.

3. It was observed that the inclusion of suspension modes in the objective function compels
the optimizer to push towards lower volume structures. Thus, weight minimization is im-
plicitly achieved in the mean eigenvalue objective function, and volume constraints can be
incorporated into the formulation as per requirements.

4. To optimize response at frequencies lying in the range of eigenfrequencies of suspension
modes, stiffnesses of interface connections must be provided as variables to the optimizer
along with the density variable. This is because eigenfrequencies of suspension modes de-
pend on the mass of the structure and the stiffness of interface connections.

5. Aggregating response peaks at a single frequency in spatial domain using p-norm function
proved very effective and efficient. Aggregation reduced computational times by 47% for
four peaks and approximated 98% for 261 peaks as per our model.

6. Aggregation of peaks in the frequency domain using p-norm function was proved infeasible.
Frequency is fundamentally different from space which makes it difficult for aggregation.
When frequency response peaks are aggregated using p-norm function, the optimizer com-
pels eigenfrequencies lying in the frequency band to approach the subject frequencies, which
are marked with convergence issues. Though, aggregating resonant peaks using p-norm func-
tion is quite feasible (Appendix D), where convergence issues are avoided.

7. To restrict frequency responses, it is efficient and effective to apply transfer function con-
straints at lower and upper limits of the frequency band and eigenfrequency constraints to
avoid them from lying in the frequency band. Problems involving wide frequency ranges
of excitation make it difficult for the eigenfrequencies to be optimized and pushed out of
the operating frequency bands. For such problems, we look for optimizing response at the
subject eigenfrequencies, which is explored further in Chapter 4.
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Chapter 4

Dynamic Global Flatness

In Chapter 3, we investigated how to limit or constrain vibration levels at some or all points (nodes)
on a flat surface for a non-collocated I/O system. However, apart from limiting responses, some
applications require the surfaces to remain flat for precise functioning. One such example can be
seen in the form of MEMS (Microelectromechanical systems) deformable mirror, where adaptive
optics are used to correct for various aberrations induced by the environment and imperfections in
fixed optics used in these instruments [23]. For such applications, relative displacements between
nodes are more critical than their individual displacements. In this Chapter, we study surface
flatness and its measures and later incorporate it into our TO framework.

Surface flatness is defined as the deviation in the height of the surface relative to a reference plane
over short distances in a local area [21]. When this measure is considered over a larger scale, such
as the entire surface (of a platform or a stage), it is termed global flatness, as illustrated in Figure
1.3. Local flatness is assessed to find minor gaps or imperfections on the slab, whereas global
flatness is controlled to discover more significant deformations, like bending. Global flatness is
defined for static systems, mainly from a manufacturing point of view. While, for dynamical, i.e.,
moving systems, it has been mostly associated with control systems where sensors and actuators
are employed for flatness measurement, and correction [22].

When talking about global flatness, modifying mode shapes comes into the picture automatically.
A strategy was proposed for synthesizing desired eigenfrequencies, and eigenmode amplitudes
at certain points of the structure [33]. A method was developed to modify existing mode shapes
to desired ones using modal assurance criterion [34]. An approach was also presented for tai-
loring user-defined vibration modes to design functionally graded piezoelectric transducers [35].
However, it was observed that only certain parts of an eigenmode shape could be user-defined
or prespecified. Therefore, tailoring mode shapes are practical when designing actuators where
response needs to be maximized at specific points on the structure, i.e., some part of the eigen-
mode shape is maximized according to its desired dynamic response, as opposed to other regions
which remain unspecified because of their undesirable dynamic response. Thus, this method re-
sults in increased response at some points on the structure at the cost of reducing responses at
other points. This might be effective for local flatness problems, but as per our needs, suppression
of relative vibration amplitudes globally at all points on the top surface is highly unlikely through
this approach.

For a dynamically moving surface to remain flat, ideally, the nodal displacements of the surface
should remain in the same phase, i.e., their phase must be synchronized. Apart from their phase
synchronization, the flatness of the surface must be ensured with a flatness fit. Thus, we look for
measures that can directly influence the relative displacements of each point on the top surface of
the structure. One such method is the Least Squares Method [36], which is discussed in detail in
Section 4.1.
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Consider our model from previous chapter (Figure 2.2). When excited at its 4th eigenfrequency, the
structure undergoes deformation as shown in Figure 4.1a. The displacements of top surface nodes
are in the form of complex values (u(ω)). When restricting responses at some or all points on a
flat surface, the magnitude of u(ω) is used to obtain the amplitude of displacements. However,
using the magnitude of u(ω) for least squares fit (LSF) to incorporate dynamic flatness poses com-
plexities. Figure 4.1b shows the magnitude of displacements |u(ω)| of top layer nodes when the
structure is excited at operational frequency, ωp equal to Ω4, which is the first flexible eigenmode.
The nodal displacements (from b to c) which are out of phase with other nodal displacements (from
a to b and c to d) become absolute when the magnitude of u(ω) is considered. Thus, employing an
LSF on magnitudes of displacement is meaningless as important phase information is lost when
absolute values are considered.

(a) Deformation of model structure at ωp = Ω4

(b) Magnitude and phase of utop(Ω4) (c) Real and imaginary components of utop(Ω4)

Figure 4.1: Problem faced with employing LSF on magnitude of displacement |utop(Ω4)|

Therefore, to ensure the global dynamical flatness of a surface, the phase difference of each node
is crucial to the problem. Apart from employing a flatness fit, i.e., LSF on the nodal displacements,
one must also ensure that all nodal displacements are synchronized in phase. We begin by un-
derstanding the least squares method, its sensitivities, and how it is essential to our problem for
flatness fit.
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4.1 Least Squares Method

The least squares method is probably one of the most popular and oldest techniques in statistics.
The least squares express the variance in the dependent variable as a function of the independent
variable. Refer to Figure 4.2, where displacements of a surface are plotted along the domain of
the surface. The least squares method minimizes the sum of squared deviations, i.e., residuals,
to obtain the least squares fit. The least squares method further quantifies the deviations in the
observed values from the fitted curve. Relative to our problem, we look to minimize (constrain)
the sum of squared deviations in displacements of top surface nodes to employ a flatness fit.

Figure 4.2: Surface flatness: the measure of deviations in the height of the surface through least
squares method

Let us assume our least square fit linear model in matrix form is given by

y = Xb+ e (4.1)

where

y =


y1
.
.
.
yn

 , X =


1 x21 ... xk1
. . ... .
. . ... .
. . ... .
1 x2n ... xkn

 , b =


b1
.
.
.
bk

 , e =


e1
.
.
.
en

 (4.2)

In the n x k matrix X = (xji), the first index j(j = 1, ..., k) refers to the variable number (in
columns) and the second index i(i = 1, ..., n) refers to the observation number (in rows). Here b
is a k x 1 vector of unknown parameters, and e is an n x 1 vector of unobserved disturbances, i.e.,
residuals, which can be computed by the means of

e = y −Xb (4.3)

To determine the least squares estimator, we write the sum of squares of the residuals (a function
of b) as

S(y,b) =
∑

e2i = eTe = (y −Xb)T(y −Xb)

= yTy − yTXb− bTXTy + bTXTXb
(4.4)

The least squares estimator is obtained by minimizing S(b). Therefore, we set ∂S
∂b equal to zero

∂S

∂b
= −2XTy + 2XTXb = 0 (4.5)

which gives us
XTXb = XTy (4.6)
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Solving this for b, we get
b = (XTX)−1XTy (4.7)

provided that the inverse of XTX exists, which means matrix X should have rank k. For the
formulations in this work, we employ a linear least square fit, i.e., the value of k is 2.

For the computation of design sensitivities, we need to determine how the sum of squares of the
residuals S(b) varies with the displacements y.

∂S

∂y
= 2e

∂e

∂y
= 2

(
y −Xb

)(
1−X

∂b

∂y

)
(4.8)

where
∂b

∂y
= (XTX)−1XT (4.9)

Therefore,

∂S

∂y
= 2

(
y −Xb

)(
1−X(XTX)−1XT

)
= 2

(
y −Xb

)(
1−X

b

y

)
=

2

y
(y −Xb)2

=
2

y
eTe

(4.10)

4.2 Problem formulation

As per our discussions in the introduction, to ensure the global dynamical flatness of a surface,
there are two challenges we face:

1. Top surface nodal displacements should remain in the same phase, i.e., their phase must be
synchronized.

2. LSF can not be applied to the magnitude of displacements of the top surface since crucial
phase information is lost when absolute values are considered.

The displacement of a particular node k can be expressed in complex form as shown:

uk(ω, t) = ℜ(uk) + ℑ(uk) (4.11)

The magnitude and phase of the displacement of node k are as follows:

|uk(ω)| =
√

ℜ(uk)
2 + ℑ(uk)

2

ϕk = tan−1

(
ℑ(uk)

ℜ(uk)

) (4.12)
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Having a closer look at the real and imaginary components of the top surface displacements, when
the structure is excited at its 4th eigenfrequency (u(Ω4)), the imaginary parts (order 1 × 10−8) are
more significant than the real parts (order 1× 10−9) which result in huge phase differences as can
be seen in Figure 4.1c. For phase synchronization, it is essential to constrain the imaginary parts, so
their values are comparatively lower than the real ones. This will ensure that the maximum phase
difference between top surface nodal displacements is within the specified limit.

Phase constraint (gphase):
Pn

(
ℑ(utop(ω))

)
Pn

(
ℜ(utop(ω))

) ≤ γ (4.13)

where Pn is the p-norm function used to compute the smooth maximum of real and imaginary parts
of displacement. By restricting the phase difference, we ensure that all points on the top surface
move together in the same phase (ideally). Additionally, for the surface to maintain its flatness, we
employ LSF to constrain the shape of amplitudes of displacement. By application of phase con-
straint, the imaginary component values are reduced to achieve lower phase differences. There-
fore, the real components (now more significant than imaginary components) determine the ampli-
tude of displacement and shape of structure when excited harmonically. Therefore, we implement
the LSF on the displacement’s real components to constrain the structural response’s shape.

LSF constraint (gfit):
S
(
ℜ(utop(ω))

)
≤ α (4.14)

Let us consider our benchmark design (Table 3.1: Case 1, Figure 3.3a). The response (top layer
displacements) of the structure at ωp = 3000Hz is shown in Figure 4.3. The response of the structure
at ωp = Ω4 is shown in Figure 4.4.

(a) Magnitude and phase of utop (b) Real and imaginary components of utop

Figure 4.3: Top layer displacements of benchmark design at ωp = 3000Hz
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(a) Magnitude and phase of utop (b) Real and imaginary components of utop

Figure 4.4: Top layer displacements of benchmark design at ωp = Ω4

When the structure is excited at ωp = 3000Hz, the imaginary components (order 1 × 10−13) are
much lower as compared to the real components (order 1× 10−10) which result in desirable phase
differences (either 180◦ or -180◦) as far as dynamic flatness is considered. While, when the structure
is excited at its 4th eigenfrequency (ωp = Ω4), the imaginary parts (order 1× 10−8) are greater than
the real parts (order 1 × 10−10) which result in huge undesirable phase differences. Therefore, for
achieving dynamic flatness at operating frequencies other than eigenfrequencies, only the shape of
the real parts needs to be constrained. While, for operating frequencies (ωp = Ω), both shape and
phase need to be constrained to achieve dynamic flatness.

Based on these considerations, a TO problem for achieving dynamic global flatness at a particular
working frequency (ω) can be formulated as follows:

min
s

(
n∑

i=1

1

Ωi(s)

)

s.t.
Pn

(
ℑ(utop(ω))

)
Pn

(
ℜ(utop(ω))

) ≤ γ

Sℜ(utop(ω)) ≤ α

Vf ≥ 0.5

smin ≤ s ≤ 1

(4.15)

For simplicity, we further abbreviate the phase constraint shown in Equation 4.13 as gphase and LSF
constraint shown in Equation 4.14 as gfit. For formulations in this work, value of γ was chosen as
0.10 to keep imaginary components 1

10

th of the real components. Value of α was chosen as 1×10−10.
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4.3 Results

We apply the TO formulation as given in Equation 4.15 to achieve dynamic global flatness at 4th

eigenfrequency (Ω4) of the structure. The objective function value is scaled to 100 for the first
iteration. The constraints are scaled such that their first iteration values lie from 1 to 10. The
termination condition for all optimizations was convergence at design variable tolerance of 1 ×
10−4. The convergence plot for the dynamic flatness constraints, i.e., the LSF constraint and phase
constraint, can be seen in Figure 4.5.

Figure 4.5: Convergence plot: dynamic flatness constraints

(a) Magnitude and phase of utop (b) Real and imaginary components of utop

Figure 4.6: Top layer displacements of optimized design at ωp = Ω4

The top layer displacements: absolute, real, and imaginary components of the optimized design
can be seen in Figure 4.6. The effect of the constraints was as desired, the top layer displacements
(absolute values) were found to be in accordance with a flat surface. The phase constraint made
sure that all the points on the top surface were moving together (phase 180◦ or −180◦). The LSF
constraint constrained the shape of the top surface to ascertain its flatness. The kink in absolute
values in Figure 4.6a could be seen as a result of negative values becoming absolute when the
magnitude is considered.
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(a) Benchmark design without constraints

(b) Optimized design with dynamic flatness constraints

Figure 4.7: Comparison of benchmark and optimized designs

Figure 4.8: Benchmark design: motion when excited at ωp = Ω4

Figure 4.9: Optimized design: motion when excited at ωp = Ω4

The original (benchmark) and the optimized design of the structure can be seen in Figure 4.7.
The optimized design was observed to have thicker branches on the right side of the structure to
impart greater stability at the top surface. Also, the disappearance of trusses on the left side of the
structure could be attributed to a reduction in contractions in that region to keep the top surface
flat. The benchmark design structure (Figure 4.8) and the optimized structure when excited at
ωp = Ω4 (Figure 4.9) exhibit motion as shown. The top surface could be observed to remain flat as
the structure undergoes deformation. The flatness of the surface could be improved by choosing
much stricter values of α.
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4.4 Discussion

Figure 4.10a shows the FRF of the benchmark design (Table 3.1: Case 1, Figure 3.3a) and Figure
4.10b shows the FRF of the optimized design. As can be seen, no peaks are recorded at the opti-
mized eigenfrequency (Ω4). It seems like the eigenfrequency is transparent; it exists but with no
observed influence at FRF.

Let us consider the reduced response expression from the modal decomposition method [37].

Gi =
N∑
k=1

cTϕkϕ
T
kb

Ω2
k(1 + ιη)− ω2

i

(4.16)

where N is the total number of modes, and other terms are as described earlier in subsection 2.5.
The structure’s response at the 4th eigenfrequency can be expressed as a sum of contributions from
individual eigenmodes.

G4 =

N∑
k=1

cTϕkϕ
T
kb

Ω2
k(1 + ιη)− Ω2

4

(4.17)

As discussed above, the structure’s response is not affected by the contribution of 4th eigenmode.
In other words, the contribution of the 4th eigenmode on the structure’s response at 4th eigenfre-
quency is close to zero.

cTϕkϕ
T
kb

ιηΩ2
4

≈ 0 (4.18)

The numerator (cTϕkϕ
T
kb) of this term is called Modal Participation Factor (MPF). The MPF deter-

mines how dominantly a given eigenmode contributes to the dynamic response of the structure.
Modes with higher MPF get the most excited and largely determine the structural response at a
particular operational frequency.

cTϕkϕ
T
kb ≈ 0

∴ cTϕk ≈ 0 and/or ϕT
kb ≈ 0

(4.19)

This shows that the input and output forces are decoupled and orthogonal to each other. In other
words, the input force does not excite the subject eigenmode (i.e., the 4th eigenmode), therefore not
causing any output displacement.

(a) Benchmark design (Case 1) (b) Optimized design (Case 3)

Figure 4.10: Comparison of FRFs of structure (Table 4.1)
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Table 4.1: Results: Dynamic Global Flatness

Case Case 1 Case 2 Case 3 Case 4

Operating frequency (ωp) 3000 Hz Ω4 Ω4,Ω5

Constraints No constraints gfit ≤ α gfit ≤ α gfit ≤ α

gphase ≤ γ gphase ≤ γ

Maximum deviation

@ ωp = 3000Hz 0.45 nmN−1 0.36 nmN−1 ↓ - -

@ ωp = Ω4 89.76 nmN−1 - 0.80 nmN−1 ↓ 0.82 nmN−1 ↓

Ω1 440 Hz 438 Hz 445 Hz 440 Hz

MPF -0.002431 -0.004674 ↑ -0.006044 ↑ -0.005762 ↑

Ω2 627 Hz 628 Hz 633 Hz 631 Hz

MPF 0.027378 0.026385 ↓ 0.030387 ↑ 0.028129 ↑

Ω3 802 Hz 778 Hz 776 Hz 772 Hz

MPF -0.044327 -0.031090 ↓ -0.032179 ↓ -0.029659 ↓

Ω4 2330 Hz 2211 Hz 2172 Hz 1998 Hz

MPF 0.018330 -0.000163 ↓ 0.000012 ↓ 0.000016 ↓

Ω5 4220 Hz 3918 Hz 3567 Hz 3483 Hz

MPF -0.008336 -0.001941 ↓ 0.005143 ↓ 0.000070 ↓

Ω6 5576 Hz 5745 Hz 5467 Hz 5624 Hz

MPF 0.001423 0.009876 ↑ 0.002984 ↑ 0.013019 ↑

The MPF of the first six eigenmodes for different formulations is summarized in Table 4.1. It can
be observed that the MPF of Ω4 for Case 3 and Ω4,Ω5 for Case 4, respectively, drop down signif-
icantly, demonstrating lower modal participation of those eigenmodes. It can be noticed that the
MPF of eigenmodes neighboring to optimizing frequency (operating frequency) decreases while it
increases for those farther away. This implies that the imaginary components were optimized to
reduce MPF for subject eigenfrequency, while for eigenmodes farther away, the imaginary compo-
nents increase, increasing their MPF. We can intuit that the imaginary components remain constant
for a particular damping model. It can only be optimized to increase/decrease for particular eigen-
frequencies, which is then characterized by a corresponding decrease/increase in imaginary com-
ponents of other eigenfrequencies (depending on the distance from the subject eigenfrequency).

It was also observed that the maximum response peak at the optimized eigenfrequency is consid-
erably reduced (by two orders of magnitude) by implementing global flatness constraints. Thus,
response peak minimization can be considered an implicit result of achieving dynamic global flat-
ness. This can be attributed to the fact that to keep the surface flat, the optimizer limits or sup-
presses vibrations at the top surface by decreasing imaginary components. This method effectively
reduces responses at eigenfrequencies that can not be pushed out of the excitation frequency band
Sω.
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DYNAMIC GLOBAL FLATNESS

4.5 Conclusion

This Chapter aimed to develop and investigate the TO approach to ensure the dynamic global
flatness of vibrating structures. The results indicate that, indeed, applying a phase constraint to
restrict the phase differences between top surface nodes and LSF constraint on real displacement
components produced desired results. Some conclusions can be summarized as follows:

1. The response of a structure at eigenfrequency is characterized by huge imaginary compo-
nents compared to the real components. This results in huge phase differences. Thus, for
dynamic flatness, phase difference needs to be constrained along with constraining the shape
of the real part.

2. It was observed that the FRFs of the optimized designs showed no peaks at the optimized
eigenfrequency. The eigenfrequency seems to exist but has no observed influence on the
structure’s response. The response is continuous without any disturbances, from the previ-
ous eigenfrequency onto the next one. This is because the design is optimized to decouple
input and output forces, i.e., input forces have no effect on the structure’s response at the
subject eigenfrequency, which makes the MPF of that particular eigenmode approximately
zero.

3. The maximum response peak at the optimized eigenfrequency was reduced considerably (by
two orders of magnitude) by implementing global flatness constraints. This can be attributed
to the fact that to keep the surface flat, the optimizer limits or suppresses vibrations at the
top surface. This method effectively reduces responses at eigenfrequencies that can not be
pushed out of the excitation frequency band Sω.

4. The phase constraint and LSF constraint in this work has been applied to global flatness
problems but may also be used for local flatness problems.
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Chapter 5

Case Study

As a typical example of a high-tech application, consider a high precision positioning system. The
motion stage must be positioned very precisely with respect to a reference. The working principle
of the system is schematically illustrated in Figure 5.1a. The IFM beam is directed to the tilted
(45-degree angle) mirror side surface, which enables out-of-plane (z) position measurement. This,
however, requires that the IFM beam is returned to the IFM system by a dedicated reference mirror,
i.e., the high accuracy positioning apparatus, that is attached to the bottom of the Metro(logy)
Frame (MF). The reference mirror is the focus of this case study.

(a) IFM system

(b) reference mirror assembly

Figure 5.1: Conceptual illustration of IFM system and reference mirror assembly
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As shown in Figure 5.1b, the reference mirror is attached to the MF through leaf spring flexures and
a pivot joint. A damping element and a heat sink have been assembled with the reference mirror for
dynamic and thermal stability. This is a multiple input multiple output (MIMO) case, i.e., several
loading factors are present in the system in the form of vibrations from MF and thermal loading
effects. The reflective surface of the mirror must remain flat throughout and must not deform.
The MF and the reference mirror should, in theory, produce a rigid body. To summarize, the
reference mirror must meet strict specifications in terms of static and dynamic qualities, interface
connections and stiffnesses, and mechanical stresses caused by temperature variations. This makes
the design problem very complex, with multiple objectives and constraints.

5.1 Design Objective

A list of main specifications of reference mirror is given in Table 5.1. A fixed design domain has
been given. The position error due to various contributions has been mentioned. This includes
the dynamic contribution from vibrations induced by MF onto the reference mirror and thermal
contribution from various sources of heat. The global flatness of the entire reflecting surface of
the reference mirror must be ensured. Eigenfrequency limits have also been given to avoid nat-
ural frequencies of the reference mirror from lying in the frequency bands of incident excitation
frequencies.

S. No. Specification

1 Position error due to reference mirror displacement w.r.t MF (nm)

1.1 Dynamics contribution (nm)

1.2 Thermal contribution (nm)

2 Global flatness (residual after fit in nm)

3 Eigenfrequency limits (Hz)

4 Functional mirror size (mm)

Table 5.1: Main specifications of reference mirror

5.2 Preliminary results

The 3D design model for the reference mirror for TO is shown in Figure 5.2. The top layer of the
reflecting surface (red region) is modeled as a non-design layer with a density one since we want
that domain to be completely solid to prevent deformations. The design domain is depicted in the
grey region, while the blue region depicts void areas. The stiffness of interface connections, i.e.,
leaf springs and pivot joint, is modeled as per the given system. The first eight eigenmodes of the
model are shown in Figure 5.3.
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Figure 5.2: 3D model for TO of reference mirror

Figure 5.3: Eigenmodes of model (L-R: 1st to 8th)
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Eigenfrequency maximization:

min
s

(
n∑

i=1

1

Ωi(s)

)
Vf ≥ 0.5

(5.1)

Figure 5.4: Optimized design for eigenfrequency maximization

Eigenfrequency maximization with p-norm peak constraint for all nodes at top surface:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t. Gtop,max(ωp, s) ≤ gupp(ωp)

Vf ≥ 0.5

(5.2)

Figure 5.5: Optimized design for eigenfrequency maximization with p-norm peak constraint for all
nodes at top surface
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Chapter 6

Closure

6.1 Conclusion

The aim of this study was to develop and investigate TO methods for the suppression of vibrations
on the surface of a suspended structure and achieving dynamic flatness globally on the surface. A
non-collocated I/O system with suspended springs was modeled in TO framework, and possible
objective functions and constraint functions were analyzed. With the research presented, some
inferences can be drawn out.

The influence of suspension modes and flexible modes on the objective function was inspected.
Suspension modes need to be included to ensure the formation of structure relevant to boundary
conditions, while flexible modes can be chosen based on the highest frequency bands of excitations.
Also, the inclusion of suspension modes in the objective function compels the optimizer to push
towards lower volume structures. Thus, weight minimization is implicitly achieved in the mean
eigenvalue objective function. Volume fraction constraints can be incorporated in the formulation
as per requirements.

Aggregating response peaks at a single frequency in spatial domain using p-norm function proved
very effective and efficient. Aggregation reduced computational times by 47% for four peaks and
approximated 98% for 261 peaks as per our model. On the other hand, aggregation of peaks in
the frequency domain using p-norm function was proved infeasible. Frequency is fundamentally
different from space which makes it difficult for aggregation. When frequency response peaks are
aggregated using p-norm function, the optimizer compels eigenfrequencies lying in the frequency
band to approach the subject frequencies, which are marked with convergence issues. Though,
aggregating resonant peaks using p-norm function is quite feasible where convergence issues are
avoided. To optimize responses at frequencies lying in a frequency band, it is efficient and effec-
tive to apply transfer function constraints at lower and upper limits of the frequency band and
constrain the subject eigenfrequencies to avoid them from lying in the frequency band.

For wider frequency bands where it is infeasible to push eigenfrequencies out of the bands, the
response at the eigenfrequency of a structure is inspected. The resonant response of a structure is
characterized by huge imaginary components as compared to the real components. The imaginary
parts can be constrained, which reduces the response of the structure and also aids in achieving
dynamic flatness. With the incorporation of the phase constraint on the top layer and constraining
the shape of the real parts of displacements by the least squares fit function, the dynamic global
flatness of a suspended surface experiencing vibrations can be obtained. The maximum response
peak at the optimized eigenfrequency was reduced considerably (by two orders of magnitude) by
implementing phase and LSF constraints. The MPF factor of the subject eigenfrequency reduced
considerably to approximately zero. This is because the design is optimized to decouple input
and output forces, i.e., input forces have no effect on the response of the structure at the subject
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eigenfrequency. The phase constraint and LSF constraint in this work has been applied to global
flatness problems but may well be used for local flatness problems too.

6.2 Recommendations

Looking forward, there are several interesting research topics that may serve as extensions to work
presented in this thesis:

• Using mean-eigenvalue as an objective function poses some complexities with regard to flex-
ibility in the optimization of a particular eigenfrequency. Frequency response constraints
might compel the optimizer to lower a particular eigenfrequency while the mean eigenvalue
objective function acts opposite by increasing eigenfrequencies. Alternate objective functions
could be implemented to better suit the requirements as per application.

• For the aggregation of peaks using p-norm function, using higher values of p improves the
accuracy of the approximation. This decreases the accuracy of sensitivities since the resulting
function is not smooth anymore, which leads to oscillations in optimized designs. It might
be interesting to look at the sensitivities of the sensitivities of p-norm function to establish a
robust framework for choosing the value of p maintaining a balance between the accuracy of
approximations and sensitivities.

• Response at the eigenfrequency of the structure highly depends on the type of damping
model implemented. As per requirements, improved damping models may be implemented
to improve the accuracy of results. Some recommended damping models are Rayleigh damp-
ing and Voigt / Maxwell damping models [38].

• The thickness of the non-design layer can be optimized to obtain optimal damping at the top
layer as per design specifications. Related to this, a damping material can also be modeled
in the design domain to improve response in a peak limitation context. Effective material
placement with different damping properties can be used to obtain much improved results
[39, 40].

• Formulations for dynamic global flatness in this work focus on optimizing the phase of all
nodes at the top surface to 180◦ or −180◦. More advanced formulations may be worked out
where deviation in phase difference between nodes is restricted to ensure synchronization.

• Formulations for dynamic global flatness can be extended to incorporate surface straightness
(2D) or surface parallelism (3D), i.e., to optimize for the suspended structure’s top surface
to stay parallel to the base. This could be utilized for designing wafer table tops that are
subjected to vibrational disturbances and must remain flat for efficient functioning.
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Appendix A

Eigenfrequency validation

Consider the model mesh shown in Figure 2.2b. The first flexible eigenfrequency of the struc-
ture (Figure A.1) was validated through analytical calculations. The eigenfrequency of a simply
supported beam is as follows:

Ω1 =
π2

l2

√
EI

m
(A.1)

where E is the Young’s modulus, I is the second moment of area or the area moment of inertia,
and m is the mass per unit length of the beam. I and m can be calculated as follows:

I =
bh3

12

m =
ρV

l
= ρ

lbh

l
= ρbh

(A.2)

The values of E and ρ are defined in Table 2.1. Values of l, b and h are defined in the model mesh.

Analytically calculated Ω1 = 6703 Hz

Python model (Vf = 1) Ω1 = 6479 Hz

Error = 3.46 %

Figure A.1: First eigenmode of the model (Vf = 1)
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Appendix B

Influence of suspension and flexible
eigenmodes on mean-eigenvalue

Influence of suspension modes and flexible eigenmodes on the structure formation was investi-
gated when mean-eigenvalue is implemented as the objective function. Table B.1 shows the differ-
ent formulations and Figure B.1 shows the optimized designs as obtained.

Table B.1: Optimization formulations: influence of suspension and flexible eigenmodes on mean-
eigenvalue

Case Objective Volume Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

Ωinitial (itr. 1) Vf,initial = 0.50 315 Hz 554 Hz 797 Hz 1560 Hz 3304 Hz 5267 Hz

1
∑3

i=1
1
Ωi

0.50 < Vf < 0.55 449 Hz 642 Hz 832 Hz 1970 Hz 3168 Hz 4346 Hz

% increase 43% 16% 04% 26% -04% -18%

2
∑6

i=4
1
Ωi

0.50 < Vf < 0.55 361 Hz 585 Hz 768 Hz 3118 Hz 5697 Hz 8140 Hz

% increase 34% 15% -04% 100% 72% 55%

3
∑6

i=1
1
Ωi

0.50 < Vf < 0.55 448 Hz 643 Hz 832 Hz 2309 Hz 3690 Hz 5212 Hz

% increase 39% 13% 01% 46% 22% 07%

Some observations are listed below:

1. Lower Vf constraint is active for optimizations involving suspension modes since eigenfre-
quencies of these suspension modes is inversely proportional to the mass of the structure.

2. Upper Vf constraint is active when only flexible eigenmodes are included in the mean-
eigenvalue objective function. This is because with higher Vf , stiffness of structure increases.
This increase is comparatively greater than the increase in the mass of the structure (depend-
ing on the value of penalty factor in SIMP).
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(a) Case 1: Eigenfrequency maximization with only suspension modes

(b) Case 2: Eigenfrequency maximization with only flexible eigenmodes

(c) Case 3: Eigenfrequency maximization with both suspension and flexible eigenmodes

Figure B.1: Optimized designs obtained from formulations shown in Table B.1

3. It can be observed from Figure B.1b that when only flexible eigenmodes are considered in
the objective function, a structure is formed in accordance with the eigenmodes considered.
However, this structure is irrelevant to the given boundary conditions i.e. interface connec-
tions. It can be observed that there is no linkage between the structure and left spring.

4. When suspension modes are included in the objective function, the optimized design formed
is very much relevant to the given boundary conditions. Therefore, suspension modes must
be included in the mean-eigenvalue objective function to ensure structure formation relevant
to boundary conditions. While, the flexible eigenmodes can be included as per the working
excitation frequencies system is subjected to.
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Appendix C

Multi-objective formulations

Some multi-objective formulations involving mean-eigenvalue and transfer function were imple-
mented and investigated. The multi-objective formulation is as shown below:

min
s

(
α

efobj

efinitial
+ β

tfobj

tfinitial

)
s.t. gstc ≤ γ

Vf ≥ 0.5

smin ≤ s ≤ 1

(C.1)

where efinitial and tfinitial are 3.91× 10−7 and 5.13× 10−11 respectively. Different weighing fractions
α and β are chosen as below. gstc is the static compliance constraint where γ is 2 × 10−8. efobj and
tfobj are as shown below:

efobj =
n∑

i=1

1

Ωi(s)

tfobj =
∣∣Gk(ωj , s)

∣∣ (C.2)

Table C.1: Multi-objective formulations: mean-eigenvalue function and transfer function

α β efobj tfobj

0.1 0.9 2.87× 10−7 5.26× 10−12

0.2 0.8 2.87× 10−7 3.13× 10−12

0.3 0.7 2.86× 10−7 1.76× 10−12

0.4 0.6 2.86× 10−7 3.65× 10−13

0.5 0.5 2.86× 10−7 7.53× 10−12

0.6 0.4 2.86× 10−7 4.59× 10−13

0.7 0.3 2.86× 10−7 1.32× 10−12

0.8 0.2 2.88× 10−7 1.53× 10−12

0.9 0.1 2.87× 10−7 1.41× 10−12

50



MULTI-OBJECTIVE FORMULATIONS

Table C.1 shows final values of efobj and tfobj as obtained through different multi-objective formula-
tions with varying weighing fractions. Figure C.1 shows resulting optimized designs for different
formulations. It was observed that irrespective of weighing fraction α, efobj saturated to a value
of 2.86 × 10−7. This is because the model was optimized to maximum eigenfrequencies for each
case. However, it was observed that using higher values of α promoted structure formation which
resulted in better convergence in optimized designs. This is because the tfobj acts against the efobj
and prevents structure formation between I/O points so that deformations can be minimized.

(a) α = 0.1, β = 0.9 (b) α = 0.2, β = 0.8

(c) α = 0.3, β = 0.7 (d) α = 0.4, β = 0.6

(e) α = 0.5, β = 0.5 (f) α = 0.6, β = 0.4

(g) α = 0.7, β = 0.3 (h) α = 0.8, β = 0.2

(i) α = 0.9, β = 0.1

Figure C.1: Optimized designs: multi-objective formulation
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Appendix D

Aggregation of resonant peaks using
p-norm

Aggregation of resonant peaks using p-norm function was investigated. Peaks were initially con-
strained individually and results were compared after aggregation.

TO formulation for individual constraints:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t.

∣∣GTR(Ωj)
∣∣ ≤ gupp ∀ j = 4, 5, 6

(D.1)

TO formulation for aggregated constraints:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t. GTR, max(Ωj) ≤ gupp ∀ j = 4, 5, 6

(D.2)

It was observed that aggregation of resonant peaks using p-norm function proved to be quite ef-
fective. This is because the eigenfrequencies are more flexible to optimize with the absence of
operating frequencies from TO formulation. It was observed that computational times of aggre-
gated formulations were similar to those of individual constraints. This is because the number of
solutions required for the linear system of equations were same.
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AGGREGATION OF RESONANT PEAKS USING P-NORM

(a) Benchmark design

(b) FRF

(c) Individual constraint at TR node at Ω4

(d) FRF

(e) Individual constraints at TR node at Ω4,Ω5

(f) FRF

(g) Individual constraints at TR node at Ω4,Ω5,Ω6

(h) FRF

(i) Aggregated constraint at TR node at Ω4,Ω5,Ω6

(j) FRF

Figure D.1: Optimized designs and FRF: Aggregation of resonant peaks using p-norm
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Appendix E

Peak limitation w.r.t. input spectrum

Figure E.1: Input vibrations to a structure

(a) Benchmark design (b) Optimized design w.r.t input spectrum

Figure E.2: Optimizing the FRF of the structure w.r.t. input spectrum

(a) Benchmark design (b) Optimized design w.r.t input spectrum

Figure E.3: Optimizing the FRF of the structure w.r.t. input spectrum - top to bottom: (1) input
frequency spectrum, (2) FRF of the structure, (3) Effective FRF of the structure
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Appendix F

Global dynamic flatness: random
excitation frequency

Global dynamic flatness constraints were applied for a random operational frequency (ωp = 3000
Hz). The TO formulation is as shown below:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t. gfit(ωp) ≤ α1

(F.1)

(a) FRF of optimized design

(b) Magnitude and phase of utop (c) Real and imaginary components of utop

Figure F.1: Global dynamic flatness at ωp = 3000 Hz
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Appendix G

Global dynamic flatness: two consecutive
eigenfrequencies

Global dynamic flatness constraints were applied for two consecutive eigenfrequencies (Ω4,Ω5).
The TO formulation is as shown below:

min
s

(
n∑

i=1

1

Ωi(s)

)
s.t. gfit(Ω4) ≤ α1

gphase(Ω4) ≤ γ1

gfit(Ω5) ≤ α2

gphase(Ω5) ≤ γ2

(G.1)

(a) Benchmark design (b) Optimized design with flatness constraints

Figure G.1: Comparison of FRFs of structure

56


	Abstract
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Research goals and Approach

	Topology Optimization
	Density based method
	Method of Moving Asymptotes
	Sensitivity analysis
	Density filter
	Dynamic modelling

	Vibration Suppression
	Suspension modes and dynamic eigenmodes
	Optimization problem formulation
	Aggregation in spatial dimension
	p-mean and p-norm
	Constraining peaks individually
	Aggregation of multiple peaks

	Aggregation in frequency dimension
	Constraining frequency peaks individually
	Constraining multiple frequency response peaks
	Constraining multiple peaks in spatial and frequency domain

	Interface connections stiffnesses
	Conclusion

	Dynamic Global Flatness
	Least Squares Method
	Problem formulation
	Results
	Discussion
	Conclusion

	Case Study
	Design Objective
	Preliminary results

	Closure
	Conclusion
	Recommendations

	Bibliography
	Eigenfrequency validation
	Influence of suspension and flexible eigenmodes on mean-eigenvalue
	Multi-objective formulations
	Aggregation of resonant peaks using p-norm
	Peak limitation w.r.t. input spectrum
	Global dynamic flatness: random excitation frequency
	Global dynamic flatness: two consecutive eigenfrequencies

