
GSL-Bench
High Fidelity Gas Source Localization
Benchmarking

Hajo Erwich

GSL-Bench

High Fidelity Gas Source Localization Benchmarking

Thesis report

by

Hajo Erwich

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on October 27, 2023 at 15:00

Thesis committee:

Chair: Prof. S. Hamaza

Supervisors: Dr. G.C.H.E de Croon

B. P. Duisterhof

External examiner: Dr. R.T. Rajan

Place: Faculty of Aerospace Engineering, Delft

Project Duration: November, 2022 - October, 2023

Student number: 4543696

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Hajo Erwich, 2023

All rights reserved.

Preface

Almost a year after starting this final project of the aerospace engineering master, my time at the TU Delft

has come to an end. This master’s thesis is a continuation on previous work presented by my supervisors

in 2020. They developed and tested a novel method for Gas Source Localization (GSL) named ‘Sniffy

Bug’. Unfortunately, the results from all GSL-related studies are difficult to compare due to the lack of a

standardized testing method. This is how the need for GSL-Bench materialized.

This thesis consists of three parts. The first part contains a scientific article that was submitted to the

2024 IEEE International Conference on Robotics and Automation (ICRA). In the second part of this thesis,

a literature study on GSL research is carried out to better formulate the requirements of a GSL benchmark.

The third part presents the reader with additional results, concludes this work and gives recommendations.

This project has been a great learning experience for me, especially in the context of software engi-

neering. The notable difference between code written at the start and end of my thesis emphasize this

progress. Additionally, it has helped me learn to efficiently create software pipelines larger than I had ever

done before.

I want to thank my supervisors Guido and Bart for the guidance they provided throughout this project.

They helped me focus on the important aspects and kept me on track. On a personal note, I want to thank

Tim, my friends and my family for their continued support. I could not have done it without them.

Hajo Henricus Erwich

Delft, October 2023

ii

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Research Objective . 2

1.2 Thesis Structure . 2

I Scientific Article 3

2 GSL-Bench: High Fidelity Gas Source Localization Benchmarking 4

2.1 Introduction . 4

2.2 Related Work . 5

2.3 Methodology . 5

2.4 Results . 8

2.5 Conclusion . 9

II Literature Review 11

3 Introduction 12

4 Gas Source Localization Methods 14

4.1 Bio-Inspired GSL Methods . 14

4.2 Multi-Agent GSL Methods . 14

4.3 Probabilistic GSL Methods . 18

4.4 Machine Learning GSL Methods . 19

4.5 Method Related Simulator Requirements . 21

4.6 Method Comparisons in Literature. 22

5 Robot Simulation Environments 23

5.1 General-Purpose Simulators. 23

5.2 Gas Dispersion Simulation . 24

5.3 Gas Sensor Simulation. 27

5.4 GSL Specific Simulators . 29

5.5 Conclusion and Discussion on Simulation . 30

6 Real World Experimentation 31

6.1 Current State of Experimentation . 31

6.2 Experimentation Trends . 32

6.3 Discussion on Future Experimentation . 32

7 Performance Metrics 34

7.1 Successful Runs . 34

7.2 Search Time & Steps. 35

7.3 Distance & Movement Overhead . 35

7.4 Trajectory . 35

7.5 Localization Accuracy & Error . 36

7.6 Conclusion and Discussion on Performance Metrics . 36

8 Conclusion and Discussion 37

iii

Contents iv

III Additional Results & Closure 38

9 AutoGDM+ 39

9.1 Layout Generator . 39

9.2 Wind Data Generation . 41

9.3 Gas Data Generation. 44

10 GSL-Bench 46

10.1 Additional Algorithms . 46

10.2 Motion Planning . 47

10.3 Benchmark Execution . 48

10.4 Additional Metrics. 50

10.5 Additional Algorithm Results . 50

11 Conclusion 53

12 Recommendations 54

12.1 Recommendations for Future Work . 54

12.2 Recommendations to Broaden the Scope. 55

References 60

A Useful Links 61

Nomenclature

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

C-PSO Charged PSO

CAD Computer Aided Design

CFD Computational Fluid Dynamics

CTRNN Continuous-time Recurrent Neural Net-

work

DNN Deep Neural Network

DR-PSO Detection and Responding PSO

DRL Deep Reinforcement Learning

EA Evolutionary Algorithm

EMD Earth Mover’s Distance

FNN Feedforward Neural Network

GDM Gas Dispersion Modeling

GPS Global Positioning System

GSL Gas Source Localization

GSO Glowworm Swarm Optimization

IMU Inertial Measurement Unit

LiDAR Light Detection And Ranging

LIF Laser-Induced Fluorescence

LSTM Long Short-Term Memory

M-GSO Modified GSO

ML Machine Learning

MOS Metal Oxide Semiconductor

MOX Metal Oxide

PID Photo Ionization Detector

PISO Pressure-Implicit with Splitting of Opera-

tors

PSO Particle Swarm Optimization

PSO-WU PSO with Wind Utilization

RL Reinforcement Learning

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

ROS Robot Operating System

S-PSO Standard PSO

SDK Software Development Kit

SR Success Rate

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

v

List of Figures

4.1 Simulation results of different bio-inspired algorithms by Russel et al. [7]. 15

4.2 Start formation used in [38]. 15

4.3 Polygon formation for different amount of agents [39]. 15

4.4 Comparison of S-PSO, DR-PSO and C-PSO with a dynamic (turbulent) OSL task [8]. . . . 17

4.5 Implementation of PSO-WU by use of a forbidden downwind area [45]. 18

4.6 Typical infotactic trajectory in a windy (non-turbulent) environment. The triangle and points

represent the start point and odor detections respectively [50]. 19

4.7 Schematic diagram of a localization model with a static array for a large chemical plant [53]. 20

4.8 High level flowdiagram of an evolutionary algorithm [58]. 20

4.9 Best evolved agent localizes the gas source in turbulent conditions by De Croon et al. [15]. 21

4.10 Percentages of studied papers in GSL research featuring in-category/cross-categorical

comparisons. The categories are defined as follows: bio-inspired, multi-agent, probabilistic

and machine learning. 22

5.1 Laser-induced fluorescence measurements of a turbulent plume by Webster et al. [78]. The

plume is released isokinetically close to the wall into a fully developed boundary layer. . . . 25

5.2 Three different kinds of plumes by Murlis et al. [81]. A Gaussian, time-averaged plume (a). A

meandering plume model with the distributions centered around the sinusoidal meandering

line (b). The structure of a real plume (c). 26

5.3 Filament-based plume model featuring puffs containing filaments. Within each filament, the

odor concentration (molecules) is normally distributed. Large eddies cause puff advection

(Va), while medium and small eddies in the wind field cause the filaments to mix and distort

(Vm and Vd) [25]. 27

5.4 Block diagram showing the dynamics of a simulated MOS sensor response. The phase

switch switches to the response/recovery blocks based on an increase or decrease in the

input concentration. The response and recovery dynamics are a second-order lag given by

Equation 5.3 and Equation 5.4 [10, 83]. 28

5.5 Flowchart of environment generation with AutoGDM by Duisterhof et al. [5]. 29

6.1 Dimensions of the experimental arena’s studied throughout literature. The majority of

experiments feature a rover and a smaller arena. 31

6.2 Outdoor experimental setup by Neumann et al. [85] featuring a micro UAV with a methane

source on the left side. 32

7.1 Success rates of reactive and infotaxis searching methods by Voges et al. [34]. Three

reactive strategies are tested with different concentrations of the odor source. They are:

Spiraling only (sp), arithmetic spiral & zigzagging (za), exponential spiral & zigzagging (ze). 34

7.2 Estimation error of the source location for a Bayesian grid mapping method by Ferri et al. [20]. 36

9.1 Workflow of AutoGDM+. The respective asset placers create a scene from a generated

layout. The .stl scene is used for meshing and CFD to generate wind fields and ultimately

gas dispersion data. The .usd scene is used directly with GSL-Bench in Isaac Sim. 39

9.2 Different wall options for the warehouse environment . 40

9.3 Schematic layout for the simple and complex warehouse environments. 41

9.4 Contents of the recipe text file that is created by the layout generator. In general, a recipe is

a dictionary of lists containing dictionaries of assets. The list of interior assets is used for all

purposes. 42

9.5 High resolution mesh of a shelve (a) and its corresponding mockup model (b). The mockup

models are used for the CFD and gas dispersion process. 42

vi

List of Figures vii

9.6 Cross section of meshes with different settings that slice through warehouse shelves to

highlight the effect of a localRefinement. 43

9.7 Mesh sensitivity analysis results of four different locations from the environments described

by Table 9.4. The results are consistent at locations 3 and 4. However, locations 1 and 2

show more variation in their results, probably due to the fact that they are closer to the inlet. 43

10.1 Diagram of the GSL-Bench simulation framework. The environments generated by Auto-

GDM+ are optional because GSL-Bench comes with six pre-generated environments. . . . 46

10.2 Flow diagram of the (3D) E. coli algorithm. The dashed arrow indicates omitted steps outside

the scope of this method. 47

10.3 Flow diagram of the motion planning, the gray boxes contain the trajectory generation. . . . 48

10.4 Trajectory generation and traversal loops performed in the gray boxes in Figure 10.3 . . . 48

10.5 Position (fit), velocity, acceleration and jerk references over time of a minimal jerk trajectory

in one dimension from 0m to 2.5m m generated by fitting a quintic polynomial. 49

10.6 A visualization of Python’s cProfile module showing the negligible impact the gas sensor

and anemometer on the computation time (highlighted by the red rectangle to the right of

barometer.py) . 49

10.7 Instantaneous gas concentration and MOX sensor response over time from a dung beetle

algorithm, note the rise and decay of the simulated sensor. 50

10.8 Success rate per environment for every single-agent method tested, including the addition

of the 3D E. coli algorithm. 3D E. coli has the lowest success rate overall, even lower than

its 2D variant. This might be explained by the extra dimension adding a too large search

space. 51

10.9 Average time to source for every single-agent method tested, including the addition of the

3D E. coli algorithm. Interestingly, the average time to source of the 3D E. coli algorithm is

generally shorter in environments with obstacles (3, 4, 5, 6). 51

10.10Ground tracks of the Sniffibug algorithm with agents starting at XY = 3,3; 7.5,7.5; 12,12 in

environment 1. The exploration and seeking phases of the method are clearly shown in this
plot. 52

List of Tables

1.1 Comparison of different gas dispersion environment simulators. Partly adapted from [25,

26]. ∗Automatic execution of multiple experiments and generation of performance metrics. 2

9.1 Layout generator parameters . 40

9.2 Warehouse environment generation parameters . 40

9.3 Meshing parameters. These example parameters provide consistent mesh results. 42

9.4 Mesh sensitivity analysis parameters. *The gas dispersion simulation expects a uniform cell

size, but also works with meshes containing some local refinement. 43

9.5 CFD Solving parameters . 44

9.6 Gas dispersion simulation parameters . 45

10.1 GSL method categories and possible options . 47

viii

1
Introduction

Gas Source Localization (GSL) is a challenging subject matter within the robotics community. Unfortunately,

no established simulated benchmark currently exists to quantify the relative performance of different

approaches, see Table 1.1. From simulation to experimentation, a wide variety of GSL methods are put

to the test on different platforms such as rovers [1], unmanned aerial vehicles [2] or even autonomous

underwater vehicles [3]. Currently, emergency response to gas leaks involves humans localizing the source.

Robots can alleviate risk in such critical and dangerous tasks. In practice these robots can be employed

to locate faulty gas piping in outdoor or indoor environments. Or they may be used to identify potential

underwater pipeline leaks. Additionally, they increase safety awareness by continuously monitoring a

chemical plant or a construction site preemptively.

The difficult nature of GSL gives rise to different types of algorithms. Turbulent wind conditions in outdoor

environments complicate the detection of a gas plume [4], while the stagnant air in indoor environments

can create high local gas concentrations away from the actual source [5]. Bio inspired algorithms take

inspiration from nature, in particular the silkworm moth [6] and the dung beetle [7]. Multi-agent methods like

Particle Swarm Optimization (PSO) and its derivatives utilize multiple robots to locate the source [8, 9, 10].

In other research, probabilistic methods based on Bayesian inference [11, 12] or Hidden Markov Methods

(HMM’s) [13] try to model the possible gas distribution from the measurements, thereby estimating the

source location. Finally, with the recent increase in popularity of Machine Learning (ML), methods such

as reinforcement learning [14] and evolutionary algorithms [15] are used to approach GSL tasks. This

‘exploration’ of algorithms continues to advance the field of GSL.

Nevertheless, this progress can only be accelerated if these different methods can objectively be

compared. This poses a substantial challenge. Without an established benchmark, researchers use their

custom simulators for testing and evaluation. Simulations can differ in many ways thereby complicating

objective comparison. The implementation of the physics, especially the gas plume model, largely

influences the difficulty of the task. For example, an environment featuring a Gaussian plume model

without obstacles [16, 17] is less challenging than an environment with obstacles and a turbulent plume [8,

18]. Moreover, a large portion of research evaluates methods in a relatively small, open environment [19,

20, 21], while some include obstacles. Even if environments are comparable, the performance metrics

might still differ. Experimental repeatability can be complicated by the many environmental variables

involved [1]. Some experiments hence take part in a wind tunnel [2], [6], [22].

A widely adopted simulated benchmark can alleviate these current limitations. With simulation, re-

peatability is straightforward. Additionally, simulation offers ground-truth information and runs faster than

real-time with proper hardware and software implementation [23]. This is especially of interest to Machine

Learning (ML) algorithms as they require training. In addition to potential time savings, simulation provides

a save and cost-effective environment compared to its real-world counterpart [24].

The aim of this thesis is to develop a simulated benchmark that is accessible, features a small simulation

to reality gap and provides useful performance metrics. The specifics of these requirements are investigated

by means of a study of the literature. Concurrently, an automatic environment generation pipeline is

developed capable of providing the benchmark with complex environments featuring turbulent wind flows

and high fidelity gas dispersion data.

1

Table 1.1: Comparison of different gas dispersion environment simulators. Partly adapted from [25, 26].
∗Automatic execution of multiple experiments and generation of performance metrics.

Research
Rendering Engine

(Language/Framework)

B
e
n
c
h
m
a
rk
in
g
∗

P
h
o
to
-r
e
a
li
s
ti
c

D
im
e
n
s
io
n
a
li
ty

O
b
s
ta
c
le
s

Wind

Simulation

Gas Dispersion

Simulation

Chemical

Sensing

Wind

Sensing

PlumeSim

[27]

Player/Stage

(C++)
7 7 2D 7

Constant

Wind Field

Gaussian/

Meandering
MOX 7

Rahbar et al.

[22]

Webots Odor Simulation

(C/C++)
7 7 3D 7

Constant

Wind Field
Filament Model

Concentration

+ noise
X

Awadalla et al.

[18]

-

(MATLAB)
7 7 3D X CFD CFD Concentration 7

GADEN

[25]

Rviz

(C++, ROS)
7 7 3D X CFD Filament Model MOX, PID X

Sniffy Bug

[5]

OpenGL

(C++, Swarmulator [28])
7 7 2D X CFD Filament Model Concentration 7

Ojeda et al.

[26]

Unity

(C#, ROS)
7 X 3D X CFD Filament Model MOX, PID X

GSL-Bench
NVIDIA® Isaac Sim

(Python, Pegasus [29])
X X 3D X CFD Filament Model MOX, PID X

1.1. Research Objective
The research objective of this thesis is formulated as follows:

To objectively compare the performance of gas source localization methods by

developing a high fidelity simulated benchmark capable of evaluating the

performance of gas source localization methods in various environments.

1.2. Thesis Structure
The thesis is divided into three parts. Part I features the scientific article written for this thesis. This article

was submitted to the 2024 IEEE International Conference on Robotics and Automation (ICRA). It concisely

presents most of the work carried out for this thesis. It covers some of the related work and lays out the

structure of the procedural environment generation pipeline and the simulated benchmark. Results of

three different algorithms demonstrate the capabilities of GSL-Bench.

Part II contains the literature study carried out at the start of the thesis. This study explores different

aspects of GSL research to better formulate the requirements of the benchmarking suite. Chapter 4

elaborates on the the different GSL methods presented by research. Subsequently, simulation aspects of

GSL research such as simulation environments and gas dispersion simulation are presented in Chapter 5.

Chapter 6 continues with an overview and discussion on current and future real-world GSL experimentation.

Chapter 7 compares different performance metrics used throughout literature. Finally, the literature study

is concluded in Chapter 8.

Part III presents the reader with additional results and closing remarks. Chapter 9 elaborates on the use

and structure of the automated environment generation pipeline AutoGDM+. In Chapter 10 GSL-Bench

is explained in more detail, namely the implemented algorithms and benchmarking methods. Additional

results of GSL algorithms not featured in the paper are also presented. The thesis concludes in Chapter 11

and recommendations are given in Chapter 12.

2

Part I
Scientific Article

3

GSL-Bench: High Fidelity Gas Source Localization Benchmarking

Hajo H. Erwich1, Bardienus P. Duisterhof2, Guido C.H.E. de Croon1

Abstract— Gas Source Localization (GSL) is a challenging
field of research within the robotics community, with high-
stakes search-and-rescue applications. Existing methods vary
widely and each has its own strengths and weaknesses. Com-
parisons of different methods are limited due to the lack
of a broadly adopted and standardized testing methodology.
Existing GSL evaluations vary in environment size, wind
conditions, and gas simulation fidelity. They also lack photo-
realistic rendering for the integration of obstacle avoidance.
In this paper, we propose GSL-Bench, a benchmarking suite
that can evaluate the performance of existing GSL algorithms.
GSL-Bench features high-fidelity graphics and gas simulation,
featuring NVIDIA’s® Isaac Sim and OpenFOAM computational
fluid dynamics software (CFD). Realism is further increased
by simulating relevant gas and wind sensors. Scene generation
is simplified with the introduction of AutoGDM+, capable of
procedural environment generation, CFD and particle-based
gas dispersion simulation. To illustrate GSL-Bench’s capabili-
ties, three algorithms are compared in six warehouse settings
of increasing complexity: E. Coli, dung beetle and a random
walker. Our results demonstrate GSL-Bench’s ability to provide
valuable insights into algorithm performance.
Site: https://sites.google.com/view/gslbench/

I. INTRODUCTION

Gas Source Localisation (GSL) poses a challenging task
for robotics. From simulation to experimentation a wide
variety of GSL methods are deployed on different platforms
such as rovers [1], [2], unmanned aerial vehicles (UAVs)
[3], [4] or even autonomous underwater vehicles [5] (AUVs).
Currently, emergency response to gas leaks involves humans
localizing the source. Robots can alleviate risk in such critical
and dangerous tasks. Additionally, they can monitor a site
continuously in the case of large chemical plants.

The research field of GSL can only progress if differ-
ent methods are to be objectively compared. This poses a
substantial challenge as researchers develop and use their
custom simulators for testing and evaluation. Simulations
can differ in many ways thereby complicating objective
comparison. The implementation of the physics, especially
the gas dispersion model, largely influences the difficulty of
the task. For example, an environment featuring a Gaussian
plume model without obstacles [6], [7] is less challenging
than an environment with obstacles and a turbulent plume
[8], [9]. Moreover, a large portion of research evaluates
methods in a relatively small, open environment [10], [11],
[12], while only a few include obstacles. Even if envi-
ronments are comparable, the performance metrics might
still differ. Experimental repeatability can be complicated
by the many environmental variables involved [1]. Some

1 Delft University of Technology 2 Carnegie Mellon University.
Email: hajo erwich@live.nl

AutoGDM+

Gas Dispersion

Environment
Composition

Wind Data

GSL Algorithm

Benchmark
Definition

Metrics

Isaac Sim

Postition

Sensor Readings

Success Rate

Fig. 1. System architecture of GSL-Bench. AutoGDM+ prepares the
environments, wind and gas dispersion data. GSL-Bench performs the
specified benchmark with the supplied GSL algorithm in Isaac Sim (gas
filaments depicted as green dots), resulting in the metrics of interest.

experiments therefore take part in a wind tunnel [4], [13],
[14].

Our contribution aims to alleviate these issues by making
benchmarking more reliable, quicker, and simpler. In this
paper, we present GSL-Bench, a benchmarking suite capable
of benchmarking GSL algorithms, see Figure 1. Created with
the NVIDIA’s ® Isaac Sim [15] it features photorealistic
environments and GPU accelerated rendering and physics.
Gas and wind sensors are simulated using the same tech-
niques presented by GADEN [16], a well-established gas
dispersal simulator for ROS. Multiple simulation runs can
be performed while metrics of interest are logged. New GSL
algorithms are easily implemented in Python and do not have
to account for obstacles due to the included obstacle avoid-
ance module. Gas Dispersion Modelling (GDM) is simplified
with the introduction of AutoGDM+ which is based on its
predecessor AutoGDM [3]. AutoGDM+ automatically com-
poses environments, generates (turbulent) wind data using
OpenFOAM [17] and models the gas dispersion. Besides for
benchmarking, the automatic creation of environments is also
useful for reinforcement learning or evolutionary learning of
GSL policies. This leads to the following contributions:

1) The first Gas Source Localization benchmarking suite
featuring photo-realistic visuals with Isaac Sim and
high fidelity wind and gas simulation by AutoGDM+.
We release GSL-Bench open source for the benefit of
the community.

2) A fully automated Gas Dispersion Modeling pipeline
capable of generating multiple environments to use
with GSL-Bench or any other simulation application.

3) We demonstrate both the capabilities of GSL-Bench
and AutoGDM+ by generating environments and con-
ducting simulated experiments using existing GSL
algorithms.

II. RELATED WORK

GSL-Bench would not be how it is currently presented
without existing work. We highlight these contributions and
their respective strengths but also weaknesses that underscore
the need for GSL-Bench. Existing benchmarks and experi-
ments that inspired our work are further pointed out.

A. Simulation

Visual fidelity is crucial for robots that utilize vision for
their obstacle avoidance. We want to support robot systems
that rely on these techniques. However, the majority of
GSL research is simulated with 2D simulators lacking any
visuals such as Swarmulator [3], MATLAB [18], or a custom
simulation [19]. Wiedemann et al. used Gazebo for their GSL
simulation [20]. Gazebo is a 3D simulator that is commonly
used in conjunction with Robot Operating System (ROS) but
lacks visual fidelity [21].

The gas plume model is subject to various degrees of
fidelity aswell. A Gaussian plume model depicts the time-
averaged gas concentration as a function of location. It is
straight forward in its implementation but assumes a non-
turbulent flow and is incompatible with the presence of
obstacles [6], [7]. Variations of the Gaussian plume model
such as the meandering model was introduced by Cabrita et
al. [22] for PlumeSim, a GSL simulator in Player/Stage.

A higher fidelity dispersion model is the ‘advection-
diffusion’ model introduced by Farrel et al. [23]. In contrast
to the Gaussian model it produces different gas concentra-
tions over time for the same location and is compatible with
turbulent wind conditions. Monroy et al. [16] used this gas
model in GADEN: a 3D gas dispersion simulator for robot
applications. As GADEN’s simulations are only integrated
with Rviz, the visualization toolbox of ROS, it lacks visual
realism. It was therefore coupled with Unity, a game engine,
by Ojeda et al. [24] to combine the realistic visuals with a
high fidelity gas model.

A downside to Unity is the relative high complexity
of its API [25]. On the other hand, Isaac Sim [15] is a
designated robotics simulator featuring a Python API that
can be considered less complex. Jacinto et al. [25] created
a framework to primarily simulate aerial vehicles with Isaac
Sim: Pegasus Simulator.

B. Benchmarking

The concept of GSL-Bench is partly inspired by Avoid-
bench: a vision-based obstacle avoidance benchmarking suite
[26]. The structure of AvoidBench allows for swift imple-
mentation of one’s own obstacle avoidance algorithm and
produces meaningful metrics on the basis of some standard-
ized tests.

Research by Voges et al. [27] serves as a good example
of such tests in the context of GSL . Their work presents

a thorough comparison of various algorithms by comparing
success rate, trajectory length and deviation from the ideal
trajectory. Similarly, research by Neumann et al. [28] com-
pares three algorithms by simulation and experimentation
with meaningful metrics. However, both the environment
layouts and gas distributions used in these comparisons were
of limited complexity.

III. METHOD

To encourage the adoption of GSL-Bench our focus
is on accessibility, a small simulation-to-reality gap, and
useful performance metrics. The inclusion of pre-generated
environments and implementation of GSL algorithms with
Python aid accessibility of the benchmark. Additionally, the
combination of turbulent CFD, 3D filament gas modeling
and high-fidelity visuals makes GSL-Bench one of the most
realistic GSL simulations currently available. The bench-
marking pipeline is split into two parts; the (optional) gen-
eration of environments with AutoGDM+ and the simulated
benchmarking with GSL-Bench.

A. AutoGDM+

The workflow of AutoGDM+ consists of three compo-
nents; 1) the layout generator, 2) CFD pipeline, and 3) gas
dispersal modeling as shown by the grey boxes in Figure 2.

Layout Generator

Isaac Sim
Assets

Mockup
Assets

.stl/.obj

 Asset
 Placer

 Asset
 Placer

config.yaml

mesh recipe

scene recipe

Meshing & CFD

 GSLBench
.usd scene

.stl scene

GADEN

wind field(s)

gas dispersal

occupancy
grid

Fig. 2. Workflow of AutoGDM+. The respective asset placers create a
scene from a generated layout. The .stl scene is used for meshing and CFD
to generate wind fields and ultimately gas dispersion data. The .usd scene
is used directly with GSL-Bench in Isaac Sim.

Environment generation starts with specifying the desired
settings in a configuration file such as the type, size and the
number of environments to be generated. This allows for the
rapid generation of several variations of a given environment
type, which is advantageous for Machine Learning (ML)
applications [29], [30], [31]. Subsequently, ‘recipes’ are gen-
erated for the so-called ‘asset placers’. One asset placer di-
rectly creates a scene for GSL-Bench in the Universal Scene
Desription (.usd) format that is used throughout NVIDIA’s
® Omniverse platform. Isaac Sim’s high visual fidelity is
partly thanks to the high-resolution assets it is bundled
with. Because high-resolution assets complicate the meshing
and CFD process, corresponding ‘mockup assets’ are used
with the second asset placer implemented with Blender.
Our manually created assets feature order of magnitudes
less vertices but still capture the geometrical essence of the
asset purely for CFD purposes. This results in a significant

performance increase of the CFD pipeline while retaining
realistic wind data generation.

The meshing and CFD processes create a wind field
according to the relevant settings in the configuration file.
Most notable are the end time and time range. With larger
indoor environments it takes time before the ‘wind’ has
propagated fully through the environment. Therefore the user
can directly select the wind fields that are of the most interest
for the gas dispersal simulation. The mesh is created with
openFOAM’s cartesianMesh and CFD is performed
with the pimpleFoam solver for transient, incompressible,
turbulent flow [17]. The meshing and CFD processes are
automatically multi-threaded for a significant speed increase.

The wind fields get passed to the gas dispersion modeling
component of AutoGDM+ which is performed with GADEN
[16]. GADEN makes use of the filament-based dispersion
model [23] and has been validated with real-world experi-
ments. The configuration file specifies the desired gas type,
source location and intensity. Lastly, the output of GADEN
is automatically post-processed for ease-of-use with GSL-
Bench and other Python environments.

AutoGDM+ currently provides three indoor environment
types: an empty, simple or complex warehouse. All three
warehouse types make use of the same CFD setup featuring
a velocity inlet and a pressure outlet in the near and far corner
of the warehouse respectively, see Figure 3. The size of the
inlet and outlet are configurable, as is the inlet velocity.

xy

z

inlet

outlet

racks*

Fig. 3. CFD configuration of the warehouse environments. A velocity inlet
and pressure outlet are situated near and far from the origin respectively.
∗Racks are only placed for the simple and complex warehouse types.

As the name implies, the empty warehouse features no
interior. The simple warehouse includes rows of racks in
the y-direction. The amount of rows, their height and length
is adapted to the dimensions of the warehouse, inlet and
outlet. Finally, the complex warehouse recipe orients the
racks differently and places extra assets such as forklifts,
pallets, piles of boxes etc. in the scene. These environments
are well suited for this application because they can represent
a warehouse storing various chemicals.

For this study six environments are generated. All environ-
ments are 15x15x8 meters in the XYZ direction respectively
and are of the empty, simple and complex warehouse types.
Parameters influencing the wind and gas simulation are
identical across all environments (except for the source
location), see Table I. A noteworthy parameter is the ‘least

percentage of filled racks’. There are nine different rack types
of which two are empty and seven are filled. Although the
layout generator chooses these types at random to introduce
variation in the generated environments, some control is
given back with this parameter. An overview of the different
parameters is presented by Table II.

TABLE I
RELEVANT PARAMETERS IDENTICAL FOR ALL ENVIRONMENTS.

Parameter Value
Inlet & Outlet Size (Y,Z) [m] 1.5, 2.4
Inlet Velocity (X,Y,Z) [m/s] 1.0, 0.0, 0.0
Least percentage of filled racks [-] 20%
CFD Cell Size [m] 0.2
CFD End Time [s] 5
Wind Steady-State True
Gas Type Ethanol
Gas Simulation End Time [s] 500
Gas Simulation Time Step [s] 0.2

TABLE II
DIFFERENT ENVIRONMENT PARAMETERS

Environment # 1 2 3 4 5 6
Type empty simple complex
Source Location
(X,Y,Z) [m] 5,1,2 1,10,2 5,1,2 1,10,2 5,1,2 1,10,2

B. GSL-Bench

GSL-Bench makes use of the Pegasus Simulator frame-
work [25] and features GSL related sensors, easy implemen-
tation of GSL algorithms and the necessary benchmarking
features, see Figure 4. Although Pegasus Simulator can be
used with a PX4 or ROS backend, GSL-Bench makes use of
the Python backend and the included non-linear controller.

1) Sensors: Currently, one of the most common gas sen-
sors are Metal Oxide (MOX) sensors due to their sensitivity
to Volatile Organic Compounds (VOC’s) and low cost [16].
GSL-Bench features different MOX sensor models. The
downside of these sensors is their relatively slow response
to changes in the instantaneous gas concentration. This
behavior must therefore be accurately represented to keep
the simulation to reality gap small. This is achieved with a
low pass filter on the instant gas concentration with separate,
calibrated time constants for rise and decay phases from the
GADEN simulator [16]. For our experiments we use the
simulated sensor model of the TGS2600.

In addition to the gas sensors, a wind sensor (anemometer)
is implemented. It reads the generated wind fields and
provides the wind heading and speed with the addition of
noise. The heading is set to be in a range of [−π, π],
positive to the right and 0 pointing to the north. Because
the Pegasus Simulator framework uses the ‘east, north, up’
(ENU) convention, north is in the positive y-direction of the
inertial simulation frame. If desired, the raw velocity vectors
of the wind field can also be provided.

2) Waypoint Logic & Obstacle Avoidance: Because the
focus of the benchmark is GSL algorithm performance it

Isaac Sim (Pegasus Simulator)

Control Backend

Obstacle
Avoidance

Trajectory
Generation

Waypoint Logic

Nonlinear
Contoller

Vehicle API

Sensors API

thrust
control

sensor data,
vehicle state

Gas
Sensor

Wind
Sensor

Vehicle State

Benchmark
Definition

Environment
specification

of runs

Metrics

Stop
Condition

AutoGDM+

Success Rate

Gas Data

Wind data

Occupancy

Scene

Time to Source

Position

Distance to Source

GSL
Algorithm

Fig. 4. System architecture of GSL-Bench. For Isaac Sim the Pegasus
Simulator framework is used with the Python Control backend [25]. The
generation of environments with AutoGDM+ is optional due to the avail-
ability of pre-generated environments. Only the GSL Algorithm (highlighted
in black) is supplied by the user.

comes equipped with waypoint logic and rudimentary ob-
stacle avoidance techniques. In its current implementation, a
multirotor first takes off to the desired starting/search height.
Then, the GSL algorithm provides a first goal waypoint. With
the occupancy grid provided by AutoGDM+ this waypoint
is checked for obstacles. If the path to the goal waypoint is
clear, a trajectory is generated for the nonlinear controller to
follow and the cycle repeats after a specified hold time. This
hold time can be convenient for the gas sensor to respond to
the new location and is set to 2 seconds for all algorithms.
If the goal waypoint is in an obstacle, a new waypoint just
outside of the obstacle is provided. If the goal waypoint is
behind an obstacle however, a path is generated using the A∗

algorithm which can consist of multiple waypoints called a
‘mission’, see Figure 5. GSL is resumed once the mission is
completed. Lastly, please note that users can make their own
real-time ’on-board’ obstacle avoidance with the help of the
sensors available in Isaac Sim.

C. GSL Algorithms

GSL-Bench currently features three algorithms; E. Coli,
dung beetle and random walker. The E. Coli algorithm is
included because it is a rudimentary bio-inspired algorithm.
It is therefore featured in a fair share of research as a
’common denominator’ [3], [27]. The dung beetle algorithm
(also known as zig-zag) is considered the next a step with
bio-inspired algorithms. It not only uses a chemical sensor
but also makes use of the wind direction. Although these
algorithms are quite elementary, they are well suited to
demonstrate the capabilities of GSL-Bench.

Obstacle Avoidance at Z=4.0m

A *

start
goal
check
mission

Fig. 5. Obstacle avoidance built into GSL-Bench. If the check runs into
an obstacle, a mission is generated with an A∗ algorithm.

1) E. Coli: E. Coli compares its current and previous
gas readings. If the current reading shows improvement the
agent surges with its previous heading. Otherwise the agent
chooses a random heading for movement. By altering the
surge distance the behavior of the algorithm can be more
conservative or exploratory [32]. For these experiments the
surge distance is set to 1 meter.

2) Dung Beetle: The dung beetle algorithm is analogous
to the one featured in the work of Russel et al. [33]. Before
any chemical detection, the agent moves in a direction 90
degrees to the left of the wind vector. Once gas is detected,
the agent initiates zig-zagging ±60 degrees to the wind
vector, switching direction when less gas is detected.

3) Random Walker: The random walker is implemented
as a variation of the E. Coli algorithm. In contrast to the E.
Coli, it does not sense any gas concentration and therefore
never surges with a repeated heading. This algorithm is
implemented to provide a baseline performance indicator.

D. Metrics & Stop Conditions

A variety of metrics is recorded by GSL-Bench to evaluate
the performance of algorithms in multiple ways. Currently,
six metrics are implemented: success rate, ground tracks,
distance to source, time to source and gas sensor readings.
The definition of success is specified with the stop condition.
For example, it can activate when the GSL algorithm declares
the location of the source. In our case, the stop condition
is set to end the simulation after 300 seconds (of simulated
time) or when the agent is closer than 1.0 meter to the source.
If the the stop condition was triggered due to its proximity to
the source, the run is considered a success. Each experiment
is repeated for 10 runs to determine the success rate. For
every environment, experiments are conducted from a grid of
nine starting positions, resulting in a total of 1620 simulated
runs.

y y

x x

Fig. 6. Top-down view of environment 1 and 2 on the left and right
respectively. The white arrows and dot indicate the in-/outlet, and source
location. The green dots depict the gas filaments.

IV. RESULTS

The results of this study are twofold: (1) the generated
environments and (2) algorithms performance. The gener-
ated environments show that minor changes in environment
parameters can lead to a diverse set of challenges. We
highlight some algorithms performance to showcase the
various metrics that GSL-Bench offers.

A. Generated Environments

The generated environments present a diverse set of chal-
lenges. Each environment generation took approximately 90
seconds on a laptop with an 8-core AMD Ryzen 7 5800H
CPU. A top-down view of environment 1 and 2 are shown by
Figure 6. Intuitively, the gas dispersion is more pronounced
when the source location (depicted by the white dot) is in
front of the inlet. With slower wind speeds in the upper left
corner of the environment, the gas plume is less spread out
for the same duration of simulation time.

The simple warehouse type introduces storage racks in
the scene as shown left in Figure 7. The size of the
environment combined with the specified aisle dimensions
determine the amount of rows, their length and height. Like
in a real warehouse, the aisles are situated in line with the
warehouse doors for easy transportation of goods (the doors
are not visually modeled). From the top-down view the gas
seems noticeably less dispersed due to the obstruction of
the racks compared to the empty warehouse type. However,
the racks introduce more vertical dispersion due to more
pronounced upward wind flows they cause. This can increase
the environment difficulty for algorithms that work only in
the XY-plane because it decreases the plume cross section
at the search height.

The complex warehouse type introduces assets such as
piles and a forklift as shown right in Figure 7. The middle
two rows of racks are rotated by 90 degrees resulting in
tighter passages within the environment. The presence of the
extra assets introduce even more turbulence into the scene.

B. Algorithm Performance Evaluation

We showcase various metrics with the data generated as
described by Section III. Common plots including ground
tracks or distance to source over time and more detailed
plots such as success rates per location are shown.

y

x
y

x

Fig. 7. Top-down view of environment 3 and 6 on the left and right
respectively. The white arrows and dot indicate the in-/outlet, and source
location. The green dots depict the gas filaments.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
x [m]

0

2

4

6

8

10

12

14

y
[m

]

inlet

outlet

Dung Beetle Algorithm - Ground Track

start
source

0

1

2

3

4

5

6

7

8

ppm

Fig. 8. Position traces of 10 Dung beetle runs in environment 3 from
the upper right location. Obstacles are depicted as gray blocks. At first, the
agents are stuck at the outlet but start zigzagging once some gas is detected.

1) Ground Tracks and Distance to Source: Ground track
plots give an intuitive indication of an algorithm’s behavior.
A good example is shown by Figure 8. The algorithm seems
to struggle at first, but when the gas plume reaches closer
near the outlet the zigzagging is initiated. Depending on the
run, the zigzagging starts at around 30 to 50 seconds as
depicted by Figure 9. The distance to source plot illustrates
an algorithm’s time efficiency properly.

2) Success Rate: Success rate is ideal for benchmarking
because of its clear, quantitative nature. We make a few
observations from the success rate per environment in Figure
10. The performance of the dung beetle algorithm is heavily
dependent on the source location. This is attributed to its
initial 90 degree move to the left of the wind direction. Gen-
erally speaking, increased environment complexity decreases
the success rate for all algorithms as expected.

Figure 11 offers additional insight into the success rates
of environment 3. The success rate of E. Coli and the
random walker seem correlated with the proximity of their
starting location to the source. The E. Coli algorithm’s
underperformance can be attributed to the absence of a
plume near the actual source location at the specified search
height. This shows the importance of simulating gas plumes
in 3D for the realistic evaluation of GSL algorithms. We

0 50 100 150 200
Time (s)

2

4

6

8

10

12

14

D
is

ta
nc

e
To

 S
ou

rc
e

(m
)

avg: 173.0s

Dung Beetle Algotirhm - Distance to Source

Fig. 9. Distance to source over time of 10 Dung beetle runs in environment
003 from the upper right location, highlighting the average time to the
source.

1 2 3 4 5 6
Environment

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

16
.7

15
.6

7.
8

15
.6 21

.1

12
.2

10
0

0

68
.9

0

70

0

23
.3

21
.1

18
.9

18
.9 24

.4

13
.3

Success Rate Per Environment

E. Coli
Dung Beetle
Random Walker

Fig. 10. Overall success rates per environment. The random walker
outperforms the E. Coli algorithm in every environment, while the success
of the dung beetle algorithm is heavily dependent on the source location.

also observe how obstacles hinder the dung beetle algorithm
knowing that it first tries to move towards the lower right
corner of the environment due to the wind.

3) Average Time to source: The average time to source
is another quantitative measure of performance shown by
Figure 12. Runs that did not find the source are disregarded.
Therefore, this metric must be combined with success rate
to provide a meaningful indication. The performance of the
dung beetle algorithm is consistent when it is able to find
the source. E. Coli and random walker are less uniform as
can be expected due to the randomness in their logic.

V. CONCLUSION

We have introduced GSL-Bench, a Gas Source Local-
ization benchmarking suite. We focus on accessibility and
simulation fidelity to promote widespread adoption. Due to
the built-in obstacle avoidance, waypoint logic and sensors
one can directly concentrate their efforts on only the GSL
algorithm. However, the built-in modules can easily be
omitted to keep development flexible. High fidelity of the

0.0 2.5 5.0 7.5 10.0 12.5 15.0
x [m]

0

2

4

6

8

10

12

14

y
[m

]

E: 0.2 E: 0.3 E: 0.0

E: 0.1 E: 0.1 E: 0.0

E: 0.0 E: 0.0 E: 0.0

B: 1.0 B: 1.0 B: 1.0

B: 0.2 B: 1.0 B: 1.0

B: 0.0 B: 0.0 B: 1.0

R: 0.8 R: 0.3 R: 0.2

R: 0.1 R: 0.2 R: 0.0

R: 0.0 R: 0.1 R: 0.0

Success Rates Per Location - Environment 3

start
source

0

1

2

3

4

5

6

7

8

ppm

Fig. 11. Success rates for E. Coli (E), dung beetle (B) and random walker
(R) for 10 runs per location in environment 3. Obstacles are depicted as
gray blocks

1 2 3 4 5 6
Environment

0

25

50

75

100

125

150

175

200
Av

er
ag

e
tim

e
to

 so
ur

ce
 (s

)

16
0.

5

12
1

16
8

16
0.

1

13
7.

9

11
8.

2

11
6

0

10
9.

1

0

11
6.

8

0

12
9.

7

85
.1

12
1.

5

12
6.

3 14
2.

4

13
2.

7

Average Times To Source Per Environment

E. Coli Dung Beetle Random Walker

Fig. 12. Average time to source per environment. 0 indicates the absence
of a measurement because no runs located the source.

simulation is ensured with proper visuals and the introduction
of AutoGDM+: a fully automated environment generation
pipeline relying on validated software such as GADEN
and OpenFOAM. We generate six warehouse environments
with increasing complexity and benchmark three algorithms.
The results demonstrate GSL-Bench’s ability to thoroughly
test and visualize algorithm performance. Moreover, the
performance of algorithms align with other experiments from
literature, further validating our pipeline.

In future work, we continue further development of GSL-
Bench and AutoGDM+. We plan to introduce extra algo-
rithms. These include multi-agent algorithms and probabilis-
tic methods such as Particle Swarm Optimization (PSO)
and infotaxis respectively. Additionally, outdoor environment
types and more complex indoor environments will be added
to AutoGDM+. Ultimately, we aspire for GSL-Bench to
effectively support the research community and spark fresh
interest within the gas source localization field. Our website
will provide our most recent findings and host a leaderboard
showcasing results from diverse standardized tests.

REFERENCES

[1] B. L. Villarreal, G. Olague, and J. L. Gordillo, “Synthesis of odor
tracking algorithms with genetic programming,” Neurocomputing,
vol. 175, pp. 1019–1032, 2016. [Online]. Available: http://dx.doi.org/
10.1016/j.neucom.2015.09.108

[2] Q. H. Meng, W. X. Yang, Y. Wang, and M. Zeng, “Collective odor
source estimation and search in time-variant airflow environments
using mobile robots,” Sensors, vol. 11, no. 11, pp. 10 415–10 443,
2011.

[3] B. P. Duisterhof, S. Li, J. Burgues, V. J. Reddi, and G. C. De Croon,
“Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking Nano Quad-
copters in Cluttered Environments,” IEEE International Conference on
Intelligent Robots and Systems, pp. 9099–9106, 2021.

[4] C. Ercolani and A. Martinoli, “3D odor source localization using
a micro aerial vehicle: System design and performance evaluation,”
IEEE International Conference on Intelligent Robots and Systems, pp.
6194–6200, 2020.

[5] S. Pang and J. A. Farrell, “Chemical plume source localization,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
vol. 36, no. 5, pp. 1068–1080, 2006.

[6] C. Song, Y. He, B. Ristic, and X. Lei, “Collaborative infotaxis:
Searching for a signal-emitting source based on particle filter and
Gaussian fitting,” Robotics and Autonomous Systems, vol. 125,
p. 103414, 2020. [Online]. Available: https://doi.org/10.1016/j.robot.
2019.103414

[7] K. Gaurav, A. Kumar, and R. Singh, “Single and multiple
odor source localization using hybrid nature-inspired algorithm,”
Sadhana - Academy Proceedings in Engineering Sciences, vol. 45,
no. 1, pp. 1–19, 2020. [Online]. Available: https://doi.org/10.1007/
s12046-020-1318-3

[8] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A Mobile Robots PSO-
based for Odor Source Localization in Dynamic Advection-Diffusion
Environment,” International Conference on Intelligent Robots and
Systems, pp. 4527–4532, 2006.

[9] M. Awadalla, T. F. Lu, Z. Tian, B. Dally, and Z. Liu, “3D
framework combining CFD and MATLAB techniques for plume
source localization research,” Building and Environment, vol. 70, pp.
10–19, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.buildenv.
2013.07.021

[10] A. Marjovi and L. Marques, “Optimal spatial formation of swarm
robotic gas sensors in odor plume finding,” Auton Robot, vol. 35, pp.
93–109, 2013.

[11] G. Ferri, M. V. Jakuba, A. Mondini, V. Mattoli, B. Mazzolai,
D. R. Yoerger, and P. Dario, “Mapping multiple gas/odor sources
in an uncontrolled indoor environment using a Bayesian occupancy
grid mapping based method,” Robotics and Autonomous Systems,
vol. 59, no. 11, pp. 988–1000, 2011. [Online]. Available: http:
//dx.doi.org/10.1016/j.robot.2011.06.007

[12] V. H. Bennetts, A. J. Lilienthal, P. P. Neumann, and M. Trincavelli,
“Mobile robots for localizing gas emission sources on landfill sites: Is
bio-inspiration the way to go?” Frontiers in Neuroengineering, vol. 4,
no. JANUARY, pp. 1–12, 2012.

[13] H. Ishida, K. Hayashi, M. Takakusaki, T. Nakamoto, T. Moriizumi, and
R. Kanzaki, “Odour-source localization system mimicking behaviour
of silkworm moth,” pp. 225–230, 1995.

[14] F. Rahbar, A. Marjovi, P. Kibleur, and A. Martinoli, “A 3-D bio-
inspired odor source localization and its validation in realistic envi-
ronmental conditions,” IEEE International Conference on Intelligent
Robots and Systems, vol. 2017-Septe, pp. 3983–3989, 2017.

[15] NVIDIA Corporation, “Isaac Sim,” 2023. [Online]. Available:
https://developer.nvidia.com/isaac-sim

[16] J. Monroy, V. Hernandez-Bennetts, H. Fan, A. Lilienthal, and
J. Gonzalez-Jimenez, “GADEN: A 3D gas dispersion simulator for
mobile robot olfaction in realistic environments,” Sensors (Switzer-
land), vol. 17, no. 7, pp. 1–16, 2017.

[17] H. Jasak, “OpenFOAM: Open source CFD in research and industry,”
International Journal of Naval Architecture and Ocean Engineering,
vol. 1, no. 2, pp. 89–94, 12 2009.

[18] U. Jain, R. Tiwari, and W. W. Godfrey, “Multiple odor source
localization using diverse-PSO and group-based strategies in an
unknown environment,” Journal of Computational Science, vol. 34,
pp. 33–47, 2019. [Online]. Available: https://doi.org/10.1016/j.jocs.
2019.04.008

[19] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A PSO-based mobile
robot for odor source localization in dynamic advection-diffusion with
obstacles environment: theory, simulation and measurement,” IEEE
Computational Intelligence Magazine, pp. 37–51, 2007.

[20] T. Wiedemann, C. Vlaicu, J. Josifovski, and A. Viseras, “Robotic
information gathering with reinforcement learning assisted by domain
knowledge: An application to gas source localization,” IEEE Access,
vol. 9, pp. 13 159–13 172, 2021.

[21] S. Ivaldi, V. Padois, and F. Nori, “Tools for dynamics simulation of
robots: a survey based on user feedback,” pp. 1–15, 2014. [Online].
Available: http://arxiv.org/abs/1402.7050

[22] G. Cabrita, P. Sousa, and L. Marques, “PlumeSim-Player/Stage Plume
Simulator,” ICRA Workshop on Networked and Mobile Robot Olfaction
in Natural, Dynamic Environments, 2010. [Online]. Available:
papers://15a17785-8386-4a79-b6ae-1c6e2d0ed658/Paper/p5861

[23] J. A. Farrell, J. Murlis, X. Long, W. Li, and R. T. Cardé, “Filament-
based atmospheric dispersion model to achieve short time-scale struc-
ture of odor plumes,” Environmental Fluid Mechanics, vol. 2, no. 1-2,
pp. 143–169, 2002.

[24] P. Ojeda, J. Monroy, and J. Gonzalez-Jimenez, “A simulation frame-
work for the integration of artificial olfaction into multi-sensor mobile
robots,” Sensors, vol. 21, no. 6, pp. 1–13, 2021.

[25] M. Jacinto, J. Pinto, J. Patrikar, J. Keller, R. Cunha, S. Scherer,
and A. Pascoal, “Pegasus Simulator: An Isaac Sim Framework for
Multiple Aerial Vehicles Simulation,” 7 2023. [Online]. Available:
http://arxiv.org/abs/2307.05263

[26] H. Yu, G. De Croon, and C. De Wagter, “AvoidBench: A high-fidelity
vision-based obstacle avoidance benchmarking suite for multi-rotors,”
2023.

[27] N. Voges, A. Chaffiol, P. Lucas, and D. Martinez, “Reactive Searching
and Infotaxis in Odor Source Localization,” PLoS Computational
Biology, vol. 10, no. 10, 2014.

[28] P. P. Neumann, V. Hernandez Bennetts, A. J. Lilienthal, M. Bartholmai,
and J. H. Schiller, “Gas source localization with a micro-drone using
bio-inspired and particle filter-based algorithms,” Advanced Robotics,
vol. 27, no. 9, pp. 725–738, 2013.

[29] G. C. de Croon, L. M. O’Connor, C. Nicol, and D. Izzo,
“Evolutionary robotics approach to odor source localization,”
Neurocomputing, vol. 121, pp. 481–497, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2013.05.028

[30] H. Hu, S. Song, and C. L. Chen, “Plume Tracing via Model-
Free Reinforcement Learning Method,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 30, no. 8, pp. 2515–2527, 2019.

[31] Y. Zhao, B. Chen, X. H. Wang, Z. Zhu, Y. Wang, G. Cheng,
R. Wang, R. Wang, M. He, and Y. Liu, “A deep reinforcement
learning based searching method for source localization,” Information
Sciences, vol. 588, pp. 67–81, 2022. [Online]. Available: https:
//doi.org/10.1016/j.ins.2021.12.041

[32] T. F. Lu, “Indoor odour source localisation using robot: Initial
location and surge distance matter?” Robotics and Autonomous
Systems, vol. 61, no. 6, pp. 637–647, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2013.02.002

[33] R. A. Russell, A. Bab-Hadiashar, R. L. Shepherd, and G. G. Wallace,
“A comparison of reactive robot chemotaxis algorithms,” Robotics and
Autonomous Systems, vol. 45, no. 2, pp. 83–97, 2003.

*This part has been assessed for the course AE4020 Literature Study.

Part II
Literature Review

11

3
Introduction

In robotics, Gas Source Localization (GSL) is a popular subject matter. From simulation to experimentation

a wide variety of GSL methods are put to the test on different platforms such as rovers [1], unmanned aerial

vehicles [2] or even autonomous underwater vehicles [3]. Currently, emergency response to gas leaks

involves humans localizing the source. Robots can therefore alleviate risk in such critical and dangerous

tasks. Additionally, they can monitor a site continuously in the case of large chemical plants for example.

Nevertheless, the research field of GSL can only progress if different methods can be objectively

compared. This poses a substantial challenge. Without an established benchmark, researchers use their

custom simulators for testing and evaluation. Simulations can differ in many ways thereby complicating

objective comparison. The implementation of the physics, especially the gas plume model, largely

influences the difficulty of the task. For example, an environment featuring a Gaussian plume model

without obstacles is less challenging than an environment with obstacles and a turbulent plume. Moreover,

a large portion of research evaluates methods in a relatively small, open environment, while some include

obstacles. Even if environments are comparable the performance metrics might still differ. Furthermore,

repeatability in real-world experimentation is complicated by the chaotic nature of gas flows. Not to mention

the limited availability of real-world data due to the time constraints involved with experimentation.

A proper simulated benchmark can alleviate these current limitations. Therefore, the research objective

of the thesis is as follows: ”To objectively compare the performance of gas source localization methods

by developing a high fidelity simulated benchmark capable of evaluating the performance of gas source

localization methods in various environments”. With simulation, repeatability is straightforward. Additionally,

simulation offers ground-truth information and runs faster than real-time with proper hardware and software

implementation [23]. This is especially of interest to Machine Learning (ML) algorithms as they require

training. In addition to potential time savings, simulation provides a save and cost-effective environment

compared to its real-world counterpart [24].

This literature study aims to answer the main question; what is the best way to implement a GSL

benchmark, such that it is accessible, has an acceptable simulation-to-reality (sim2real) gap, and provides

useful performance metrics? To accomplish this, the literature study contributes in three ways:

• Firstly, existing GSL methods are studied. Their working principle and possible simulation require-

ments are highlighted. Moreover, a gap in comparisons is identified further establishing the need for

a GSL benchmark.

• Secondly, the current state of (GSL) simulation environments is surveyed. To make a simula-

tor/benchmark accessible it is important to consider existing solutions, their popularity, advantages

and disadvantages. Furthermore, current experimentation methods are examined to extend the

usefulness of the benchmark into the real world.

• Lastly, the applicability of varying performance metrics is analyzed. What performance metrics

are commonly used? Some GSL methods favor particular metrics, while others are sometimes

inapplicable. The different metrics and their practicality will therefore be elaborated upon.

This literature study is set out as follows. Chapter 4 touches upon the different GSL methods presented in

research, their characteristics, advantages and implications for a simulator. Additionally, existing method

comparisons are studied. Then in Chapter 5 the current state of simulation environments is elaborated upon.

12

13

Chapter 6 discusses real-world experimentation, thereby gaining insight into what kind of benchmarks

would translate well into the real world. Lastly, Chapter 7 compares different performance metrics used

throughout the literature. Finally, the literature review concludes in Chapter 8.

4
Gas Source Localization Methods

Gas Source Localization (GSL) methods in the literature vary widely from simple bio-inspired algorithms

requiring no memory to computationally intensive inference methods. Some informative review papers

report on the wide variety of algorithms [30, 31, 32]. This chapter touches upon common types of methods

in order to build an understanding of the different approaches and what that would mean for a potential

simulator. The methods are divided into four categories: bio-inspired, multi-agent, probabilistic and machine

learning methods and are covered in their respective section. Finally, method comparisons in the literature

are reviewed and analyzed.

4.1. Bio-Inspired GSL Methods
The field of GSL research mainly started by looking at nature. Many early algorithms are therefore bio-

inspired [33, 6, 7]. Although bio-inspired methods are one of the first algorithms to be used, they still prove

to be relevant to this day, usually to compare them to a novel algorithm [34]. They characterize themselves

by being simple, elegant and requiring little memory.

Bio-inspired algorithms can be divided into chemotaxis and chemotaxis-anemotaxis types of methods.

Chemotaxis refers to the locomotion of an organism based on a chemical stimulus. In the case of GSL

research, it means that a robot is able to sense the gas and act in order to find the odour source. With

chemotaxis-anemotaxis, in addition to the gas information a robot can detect information about the wind

direction and/or velocity.

Arguably the most elementary implementation of a bio-inspired algorithm is the E. Coli algorithm [7].

Derived from the behavior of the real bacteria E. Coli, it chooses between two distinct actions based on a

chemical stimulus. If E. coli senses a lower chemical concentration after moving, it moves randomly to a

new location. If the chemical concentration becomes higher however E. coli keeps moving in the same

direction. Therefore, E. coli only has to memorize the chemical concentration at its previous location thus

requiring little computational resources.

More involved is the so-called dung beetle algorithm, also known as the ’zig-zag’ algorithm. Once the

chemical is sensed the beetle keeps moving diagonally upwind. If the trial is lost the beetle turns around

90 degrees through the direction of the wind resulting in a zig-zag pattern, see Figure 4.1. Chen et al.
experimented with and compared the effect of different/variable turning angles for the zig-zag algorithm in

diffusive conditions [35].

Finally, there is the silkworm moth algorithm, also known as a ’cast-and-surge’ method. This algorithm is

derived from the actual behavior of the silkworm moth [36]. By a combination of upwind surges, side-to-side

casting and spirals is the moth able to traverse towards an odor source, see Figure 4.1. Additionally, the

algorithm is more elaborate due to the use of two chemical sensors left and right (antennae) compared to

only one sensor used by the E. Coli and dung beetle algorithms.

4.2. Multi-Agent GSL Methods
Multi-agent approaches, or swarming is popular within GSL research. Although one could deploy multiple

agents independently, the idea with swarming is that a multi-agent setup performs better than the sum of its

parts. This philosophy is attributed to three key properties of swarms. Firstly, multi-agent setups are more

14

4.2. Multi-Agent GSL Methods 15

Figure 4.1: Simulation results of different bio-inspired algorithms by Russel et al. [7].

robust. If an agent were to break down it does not immediately result in a failed mission. Secondly, swarms

provide flexibility as together they can perform a multitude of tasks an individual would be unable to. Lastly,

multi-agent setups are scalable, making them suited for tasks of different scales [37]. This section first

covers formation searching algorithms. Subsequently, particle swarm optimization is elaborated upon.

4.2.1. Formation Searching
Formation searching deploys multiple robots in a formation to increase the GSL performance. One of the

earliest works in GSL by Genovese et al. [38] investigates the GSL performance of a robot formation, see

Figure 4.2. The agents are programmed to exhibit different ’personalities’ (sociable, lonely) based on their

sensor input and that of the others around them. This swarming behavior automatically results in having

the highest density of robots in the area of highest interest.

Another implementation relies on applying a virtual force to all robots so that they form a polygon

formation, see Figure 4.3 [39]. Commanded by a virtual robot in the center of the formation, they move

in the direction of the robot sensing the highest chemical concentration. Instead of using virtual forces,

the formation can also be predefined such as a ’five-node square’ or ’inverted V’ formation [40]. In this

case, the distances between the agents are determined dynamically. In both cases, however, the swarm

essentially acts as one large robot with the advantage that the sensors have significant spacial separation.

Figure 4.2: Start

formation used in [38].

Figure 4.3: Polygon formation for different amount of

agents [39].

4.2.2. Particle Swarm Optimisation
Particle Swarm Optimization (PSO) is a computational method which iteratively solves for an optimum

solution. The algorithm makes use of multiple candidate solutions (particles) that traverse the solution

space. PSO lends itself well to multi-agent OSL tasks because the particles can be represented by the

4.2. Multi-Agent GSL Methods 16

agents. Additionally, the implementation of Standard PSO (S-PSO) is relatively straightforward and requires

no prior knowledge of the odor source. There are a few caveats to PSO however. Firstly, it requires some

parameters to be set accordingly to perform satisfactorily. Moreover, PSO is not guaranteed to find a

global optimum, and might ’get stuck’ in a local optimum. Finally, PSO struggles with sparse and dynamic

data prevalent in turbulent instead of diffusive conditions [41]. Additionally, S-PSO does not guarantee the

proper localization of multiple gas sources at once.

Variations of PSO have been introduced to overcome these limitations. First, S-PSO is explained in

more detail. Subsequently, some notable variants of PSO are elaborated upon such as Detection and

Responding PSO (DR-PSO), Charged PSO (C-PSO) and PSO with Wind Utilization (PSO-WU). Note that

many other variants of PSO incorporate probability estimation [10] or can locate multiple odor sources by

the implementation of certain ’group behaviors’ [42].

Standard PSO

S-PSO was introduced by Kennedy et al. in 1995 [43], and it is outlined by algorithm 1. Although the

gradient of f is unknown S-PSO will try to find a point a for which f(a) ≤ f(b). The amount of particles in
the swarm is denoted by S. Let xi, vi and pi be each particle’s position, velocity and best-known position

respectively. Let g be the swarm’s best position. When the velocity of each particle is updated there are

three important parameters to take into account. Increasing the weight (inertia) w will prevent the particles

from erratically changing directions. φp and φg are called the cognitive coefficient and social coefficient

respectively. They determine how much the particle will follow its own versus the swarm’s best estimate.

A visualization of S-PSO finding a plume is shown by Figure 4.4 (a).

Algorithm 1: Standard PSO

for each particle i = 1, ..., S do

xi ∼ U(blo,bup) ; // initialize the particle's position
pi ← xi ; // initialize the particle's best known position
if f(pi) < f(g) then

g← pi ; // update the swarm's best known position
vi ∼ U(−|bup − blo|, |bup − blo|) ; // initialize the particle's velocity

while a termination criterion is not met do

for each particle i = 1, ..., S do

for each dimension d = 1, ..., n do

rp, rg ∼ U(0, 1) ; // pick random numbers
vi,d ← wvi,d + φprp(pi,d − xi,d) + φgrg(gd − xi,d) ; // update velocity
xi ← xi + vi ; // update position
if f(xi) < f(pi) then

pi ← xi ; // update the particle's best known position
if f(pi) < f(g) then

g← pi ; // update the swarm's best known position

Detection and Responding PSO

To make PSO more versatile in dynamic systems, Detection and Responding PSO (DR-PSO) is introduced

[9, 8]. If g, the swarm’s best estimate is not changed for a set amount of iterations it may imply that there

is another solution to be found. The swarm responds by randomly spreading its particles for an iteration in

order to explore outside the previously found solution. Therefore this approach performs better in dynamic

conditions compared to S-PSO, as shown by Figure 4.4 (b).

Charged PSO

Another variant of PSO is Charged PSO (C-PSO) [44, 8]. In addition to the ’neutral’ particles used in

S-PSO, ’charged’ particles are introduced. The charged particles repel each other according to Coulomb’s

law, see Equation 4.1. Every charged particle has a core and perception radius, labeled rcore and rperc.
Within the core radius, particles are repelled by a constant strong force. Between the core and perception

radius, the repellent force is a function of the distance between the particles. Outside of the perception

radius, there is no repellent force. This force is calculated and summed for each particle and added to its

velocity update, resulting in the behavior shown in Figure 4.4 (c).

4.2. Multi-Agent GSL Methods 17

ai =

QiQp(xi−xp)
r2core|xi−xp| |xi − xp| < rcore

QiQp(xi−xp)
|xi−xp|3 rcore < |xi − xp| < rperc

0 rperc < |xi − xp|

(4.1)

Figure 4.4: Comparison of S-PSO, DR-PSO and C-PSO with a dynamic (turbulent) OSL task [8].

PSO with Wind Utilisation

PSO with Wind Utilization (PSO-WU) incorporates wind measurements in order to improve performance

[45]. Knowing the wind vector, the particles are prohibited to move to an area downwind as depicted by

the ’forbidden area’ in Figure 4.5. The size of the forbidden area is set by the angle θforbidden. Another
implementation of wind utilization multiplies the updated velocity vector with a factor between [0, 1] based
on the angle between the velocity and wind vector. This way, the particles are encouraged to move upwind

where the odor source is likely located.

4.2.3. Glowworm Swarm Optimization
Glowworm Swarm Optimization (GSO) is a meta-heuristic optimization algorithm designed to find multiple

optima in a search space [46]. Analogous to the glowworms in nature, agents emit light with a certain

intensity to attract mates or food. In the case of GSO, the intensity of light is proportional to the local

concentration value. Agents are programmed to move to a neighboring agent within their local decision

range that has a higher luminescence value. After each movement step, the luminescence values are

updated and the cycle is repeated. The advantages of GSO are that it can deal with highly non-linear

problems and, compared to PSO, does not use velocity eliminating any overshoot/other velocity-related

issues [47]. Another advantage over PSO is that all the agents only have to communicate locally with

4.3. Probabilistic GSL Methods 18

Figure 4.5: Implementation of PSO-WU by use of a forbidden downwind area [45].

only their neighbors and not the whole swarm, saving communication overhead. However, GSO is very

susceptible to dynamic changes in the environment and would therefore be impractical to use in turbulent

conditions.

Zhang et al. [48] created a Modified GSO (M-GSO) algorithm for GSL purposes. The method features

four steps: plume finding, plume traversal, odor source declaration and forbidden area setting. When

a gas source has yet to be detected, the agents conduct global self-exploration by randomly traversing

the search area in spirals and zig-zags. If gas is sensed, the agents switch to a local GSO search tactic

until they declare the source. With the source declared the region surrounding the source is designated a

forbidden area to have the agents search elsewhere for other sources.

4.3. Probabilistic GSL Methods
Besides the development of the heuristic multi-agent approaches, research efforts are put into probabilistic

methods. Most of these methods are based on Bayesian inference and variations on this framework exist

such as the use of hidden Markov methods or the combination with PSO [13, 10]. As probabilistic methods

are model-based instead of a search heuristic they can perform very well when using a proper model of the

problem. Unfortunately, a good model still requires a few key assumptions that limit real-world applicability.

For example, because these methods have to assume the gas plume to distribute in a certain way, they

would fail in an environment with unknown obstacles as that would invalidate the earlier assumption

about the gas plume distribution [12]. These methods are also susceptible to errors in wind measurement

because the predictions can heavily depend on wind data depending on the model. Additionally, data

about the chemical release rate has to be known/assumed although Bourne et al. devised a method to

locate and estimate the plume source terms [11]. Moreover, these approaches require more computational

resources compared to bio-inspired and heuristic methods, making them hard to deploy on smaller robots

like micro UAVs.

Despite these limitations, probabilistic methods stay relevant through continuous improvements. This

section first elaborates on the basic principle of Bayesian inference and how it is applied in GSL tasks. In

the subsequent sections, notable variations such as infotaxis and entrotaxis are discussed.

4.3.1. Bayesian Inference
The process of Bayesian inference makes use of the fact that time-averaged gas concentration follows

that of a Gaussian distribution in the direction of the flow [3]. With this knowledge, two probability maps

can be constructed. First, given the location of the source, a probability distribution of the released odor

molecules is derived. This is known as the forward algorithm. Also, a probability distribution of the odor

source location is determined. Then, with the use of Bayesian inference, the inverse algorithm is created.

The inverse algorithm iteratively updates the source location probability map based on (non-) detection

events of the robot. Usually, robots are given a predefined path to scan the region of interest [20, 49].

4.4. Machine Learning GSL Methods 19

4.3.2. Infotaxis

Figure 4.6: Typical

infotactic trajectory in a

windy (non-turbulent)

environment. The triangle

and points represent the

start point and odor

detections respectively

[50].

To improve the efficiency of the existing probabilistic GSL methods in-

fotaxis is introduced by Vergasolla et al. [50]. Infotaxis is an information-

driven search strategy, seeking to maximise the expected rate of infor-

mation. It does this by striking a balance between exploration (moving

in a certain direction) and exploitation (staying still to acquire more info

in the same spot), see Figure 4.6. Another notable difference compared

to methods based solely on Bayesian inference is that infotaxis employs

the number of odour encounters in a given time rather than the binary

(non-) detection. Compared to reactive methods, infotaxis performs better

regarding search time in conditions with low chemical concentrations.

However, infotaxis takes longer to find a source in conditions with higher

chemical concentrations [34].

4.3.3. Entrotaxis
Entrotaxis is a search strategy driven by maximizing the entropy of the

predictive distribution [51]. Just like infotaxis, entrotaxis uses the number

of odor encounters in a given time. However, entrotaxis calculates the

possible number of odor encounters for every possible move based on

the odor source distribution. From there the move maximising the entropy

gain is chosen. Compared to infotaxis, entrotaxis has a similar success

rate. However, the mean search time of entrotaxis is significantly lower

compared to infotaxis, as are the computational resources required [51].

4.4. Machine Learning GSL Methods
GSL research has not been immune to the tremendous rise in popularity

of Machine Learning (ML) recently. Although earlier applications of ML for

GSL are limited, the advent of Deep Neural Networks (DNNs) and Deep

Reinforcement Learning (DRL) result in some interesting findings [30].

ML implies that an algorithm learns to perform by means of training. The

algorithm is usually represented by a neural network containing weights

and biases. During training, these weights and biases are adjusted so that a given input (e.g. sensor data)

results in the desired output (e.g. estimation of the gas source location). A big advantage of using neural

networks and machine learning is that in theory any desired function can be constructed. Moreover, this

function can be constructed automatically, eliminating the need for any prior knowledge of the problem.

However, this does come with some disadvantages depending on the implementation which are discussed

in the following subsections. For the purpose of this overview, this section is split into three common

training methods; supervised learning, reinforcement learning and evolutionary algorithms.

4.4.1. Supervised Learning
Supervised learning refers to the use of labeled training data to fit an algorithm. A most rudimentary

implementation involves a Feedworward Neural Network (FNN) fitted by backpropagation. During back-

propagation, the output of the network is compared to the (correct) labeled training data resulting in an

error. Subsequently, the partial derivatives of all the weights and biases over the error are calculated.

These partial derivatives are then used to change the values of the weights and biases to improve the

output of the FNN.

An advantage of such an algorithm is that it is relatively easy to implement. However, a sufficient

quantity and quality of training data are required in order to train the algorithm properly. This results

in research that deploys a static sensor array in the area of interest instead of a moving robot. This

way, training data can easily be recorded by experimentation or simulation [52, 53, 54], see Figure 4.7.

Additionally, this research often makes use of Recurrent Neural Networks (RNNs) with Long Short-Term

Memory (LSTM) to take advantage of the temporal data in gas measurements.

4.4. Machine Learning GSL Methods 20

Figure 4.7: Schematic diagram of a localization model with a static array for a large chemical plant [53].

4.4.2. Reinforcement Learning
With Reinforcement Learning (RL), the algorithm is considered to be an agent that can interact with its

environment through different actions it can take. The goal of the agent is to maximize a reward resulting

from its actions.

An advantage over supervised learning is that RL negates the need for training data and can even learn

in an online setting. This implies that an agent does not need to know everything about the environmental

conditions or the odor source beforehand as it can learn while searching. Therefore, it has seen more use

in research featuring agents that move and search for the odor source instead of a static array of sensors

[14, 55, 56, 57]. A disadvantage of RL is that convergence is not guaranteed and that the result is sensitive

to the reward and input parameters. Still, there is limited control over the learned behaviour of the agent

because it requires non-trivial changes of the reward/value function.

4.4.3. Evolutionary Algorithms
An evolutionary algorithm (EA) is a metaheuristic optimization method that leverages natural evolutionary

principles to improve their performance. It is characterized by the closed feedback loop between actuators

(actions) and sensors (perception) through changes in its environment. This way, EAs learn about their

complete system at once which is referred to as ’embodied cognition’. A basic setup of an EA is shown in

Figure 4.8.

Figure 4.8: High level flowdiagram of an evolutionary algorithm [58].

4.5. Method Related Simulator Requirements 21

Advantages of EAs are as follows. Compared to RL, EAs do not require a gradient to find a solution and are

therefore less likely to get stuck. Moreover, due to the principle of embodied cognition, there is no limit on

the amount and kind of parameters that can be optimized (sensors and actuators for example). Additionally,

as any type of controller can be optimized with an EA there is control over the number of computational

resources spent. Finally, no additional knowledge about the environment and how interactions would

influence the environment is required.

A disadvantage of EAs, compared to RL algorithms, is that EAs are generally not capable of online

learning and generally require more computational resources. Moreover, the chosen controller can limit

the solution such that it performs unsatisfactorily. Furthermore, when a solution has not been found at all

the cause is often unclear.

Evolutionary algorithms seem to be rarely used in GSL research. Nevertheless, there are some

interesting implementations. Duisterhof et al. [5] employed an EA to evolve a PSO algorithm to find an

odour source in simulation and experimented on real hardware with promising results. In earlier research,

De Croon et al. [15] used an EA to train a Continuous Time Recurrent Neural Network (CTRNN) for GSL

in simulation and analyzed its trained behavior, see Figure 4.9.

Figure 4.9: Best evolved agent localizes the gas source in turbulent conditions by De Croon et al. [15].

4.5. Method Related Simulator Requirements
The initial survey of GSL methods highlights some simulator requirements. Most importantly for all method

types, the simulator must be able to offer the agent concentration data for a specific location and time

(depending on the gas simulation type). For the performance measurement of methods that predict a

complete concentration field as some probabilistic methods do, it is required that the simulator offers the

complete ground truth concentration data. Furthermore, some methods utilize wind data to locate the

source such as some variants of PSO, probabilistic and even ML methods. Therefore wind vectors should

also be able to be passed to the agent.

Computational efficiency is always desirable. However, for multi-agent and ML methods it is vital to the

practicality of the simulator. Multi-agent simulations require more and more resources with an increasing

number of robots, especially if they use computationally expensive vision sensors. It is therefore important

that the simulator is able to handle these agents efficiently, perhaps in parallel, to keep the simulation

running at a satisfactory time factor. For ML methods, parallelization is of even greater importance.

The generation of training data or the online learning process of an EA benefits greatly from increased

computational efficiency and parallelization. This is because individuals of an EA can be evaluated

separately. This is not necessarily the case for RL algorithms.

4.6. Method Comparisons in Literature 22

4.6. Method Comparisons in Literature
Analysis of GSL research regarding comparisons reveals a need for cross-category comparisons. Here,

the categories correlate to this chapter’s 4 sections above. From the 57 research papers studied, only 6
included comparisons with methods of a different category (e.g. a bio-inspired method versus a probabilistic

method). Additionally, 12 papers featured no comparison to any other method, see Figure 4.10.

Cross-categorical comparison

10.5%
In-category comparison

69.4%

No comparison

20.1%

Figure 4.10: Percentages of studied papers in GSL research featuring in-category/cross-categorical

comparisons. The categories are defined as follows: bio-inspired, multi-agent, probabilistic and machine

learning.

Papers featuring cross-categorical comparisons share valuable insights. For instance, Duisterhof et al.

compared PSO algorithms with varying parameters with chemotaxis and anemotaxis algorithms [5]. The

bio-inspired methods performed on par with the PSO algorithm featuring manual parameters in terms of

success rate, but they were outperformed by a PSO algorithm with evolved parameters in success rate,

time and distance to the source. Voges et al. [34] compared three bio-inspired methods to infotaxis in

terms of success rate, distance overhead, deviation and trajectory. Results show that infotaxis performs

better in environments with low odor concentrations than bio-inspired algorithms. Prabowo et al. [12]

combined a probabilistic strategy based on Bayesian inference with an anemotaxis strategy. Compared

to three other strategies; entrotaxis, a purely Bayesian algorithm and a purely bio-inspired algorithm the

combined strategy excelled in terms of path length. Unfortunately, no other commonly used performance

metric (success rate for example) is used to compare performance. Finally, de Croon et al. [15] compared

a CTRNN trained by an evolutionary algorithm to a silkworm moth strategy. They concluded that the

CTRNN outperforms the silkworm moth strategy. As these papers have shown by their respective influence,

cross-categorical comparisons are essential for progress in the research field of GSL.

Nevertheless, the majority of research presents in-category comparisons. Logically this is the most

practical way to put the performance of a novel method into perspective. The depth and quality of

comparisons vary across research. Some notable examples of quality comparisons are as follows.

Russel et al. [7] compared two bio-inspired algorithms with a gradient-based method with simulation and

experimentation. Performance was measured in terms of success rate, mean path length and standard

deviation. Although not measuring performance, the most in-depth comparison of reactive strategies is

done by Macedo et al. [59]. Their paper features an analysis of nine different methods (of which many are

bio-inspired) from a state-action perspective. For each state, histograms of actions are built resulting in

state-action mappings revealing common trends regarding strategy.

It is observed that each category contains a ‘root’ algorithm that is often used for comparison. For

bio-inspired methods, those would be the E.coli or silkworm moth-inspired algorithms. Likewise, multi-agent

methods are often compared with a standard PSO. Moreover, probabilistic methods usually feature a

rudimentary method based on Bayesian inference for comparison. However, within the category of ML

methods, there is no such common method.

Despite all the aforementioned comparisons, there is potential for improvement. Because of the

differences in methods (assumptions, simulation/experimental setup etc.), the results of these papers are

limited by the lack of objective comparison to other papers. This emphasizes the need for a common

benchmark that can alleviate these limitations.

5
Robot Simulation Environments

The current state of simulation environments features a diverse selection. To make a simulator/benchmark

accessible it is important to consider existing solutions, their popularity, advantages and disadvantages

regarding GSL research. Some simulators are optimize for swift execution times while others require more

computational resources to emphasize visual realism for example. This chapter first covers existing general-

purpose simulation environments. Subsequently, different methods of gas and gas sensor simulation are

examined. Finally, some GSL-specific simulators are presented.

5.1. General-Purpose Simulators
The success of a benchmark depends on the amount of adoption. To encourage this the software has to be

accessible enough to persuade researchers into implementing their own method. In this case, accessibility

is considered to be defined by three factors. Firstly, the availability of an API is taken into consideration.

A simulator with APIs for common programming languages such as C++ and Python are considered.

More importantly, the quality of documentation is taken into account. Lack of proper documentation

hinders development. Lastly, the surrounding development community is important. For example, the

presence of a forum where common questions get discussed and resolved or activity on GitHub issues are

considered. Besides accessibility, practicality is reviewed by assessing the degree of realism, required

system resources/execution time and potential API’s for that simulator.

The remainder of this section discusses a selection of relevant existing simulators. Note that many

other simulators have been considered such as Player/Stage [60], Webots [61], CoppeliaSim (formerly

known as V-REP) [62], CARLA [63] and Unreal Engine [64]. Unreal Engine is interesting in particular due

to its use in project AirSim [65]. Unfortunately, AirSim has since been deprecated.

5.1.1. Gazebo
Gazebo is an open-source simulator that started development in 2002, making it one of the more established

pieces of software [66, 67]. Its development was initiated by the need for a high-fidelity outdoor dynamics

simulator for Player/Stage, an older robotics simulator [60]. Currently, it is curated and maintained by

the Open Robotics Foundation in collaboration with a community of developers. Note that there are two

versions of Gazebo, Gazebo Classic (≤ ver. 11) and Gazebo (which was shortly named ’Ignition’ in

2019-2022). Gazebo Classic will reach its end of life in 2025, therefore it is important to use the latest

Gazebo for continued support. Accessibility is good, as Gazebo’s main API language is C++, a commonly

used language in robotics. Moreover, contributors are actively assisting users with issues on GitHub. This

is partly due to the fact that Gazebo is frequently used in combination with ROS, the open-source Robot

Operating System [68].

Gazebo’s main physics engine is DART [69] which features multiple collision engines like Bullet and

ODE. Although DART is generally stable and accurate, it is relatively slow compared to other engines

for the same accuracy [70]. However, if a simulated robot uses cameras for navigation it must be noted

that photorealism is lacking in Gazebo. Additionally, Gazebo is less well suited for RL research as it can

become unstable when sped up [71]. Required system resources highly depend on the size and complexity

of the scene, number of agents and localisation algorithm. Nevertheless, Gazebo can be considered to

be average regarding necessary system resources. For RL environments in Gazebo with ROS there is

23

5.2. Gas Dispersion Simulation 24

DeepSim [72].

5.1.2. Unity
Although Unity is primarily a game engine it finds its use in GSL research as well. Therefore, it has a

focus on photorealism and interactions with the environment. For this reason, Ojeda et al. created an

environment in Unity for unmanned aerial vehicles (UAVs) to visually search for an odor source [26].

Unfortunately, Unity is not open-source and only supports C# as an API language which is less common in

the field of robotics. Nevertheless, the documentation of Unity is excellent and the surrounding community

is substantial.

Although the visuals of Unity are great, it requires a considerable amount of computational resources

compared to the other simulators discussed. Physics simulation is therefore often handled separately.

Interesting examples of this are Flightgoggles [24] and Flightmare [73]. Finally, Unity features an ML toolkit

to enable the training of agents in Unity environments [74].

5.1.3. Swarmulator
Swarmulator is a lightweight, open-source, simulator ideal for prototyping spatial (2D) swarm behaviour

[75]. It was created in-house by researchers at the TU Delft MAVlab. Written in C++, execution is swift and

each agent is handled with their own thread, making them able to handle asynchronously [28]. Compared

to Gazebo and Unity, Swarmulator is a niche piece of software. Therefore, although still sufficient, there is

less documentation and there is no active development on GitHub.

Swarmulator excels in the simultaneous simulation of multiple agents. Visually, however, Swarmulator

is flexible to generate basic imagery as required but lacks integration with a proper rendering engine.

Because the code is relatively barebones and low level, one is free to implement any behavior or machine

learning algorithm as they desire.

5.1.4. Isaac Sim™
Isaac Sim [76] is a simulator by NVIDIA that started development in 2019 and was officially released in

2021. The simulators’ main focus is on minimizing the sim2real gap. Therefore it is capable of real-time

photorealistic rendering, simulating high-fidelity physics and sensors. Originally, Unreal Engine and Unity

were used for rendering before their integration depreciated. Now, NVIDIA’s Omniverse™ is used for

environment rendering. Additionally, the physics simulation can be run on the Graphics Processing Unit

(GPU) resulting in a significant performance increase while being accurate. In addition to this, Isaac Sim

features integration with different ML tools.

As Isaac Sim is a relatively new development, adoption is still limited. Nevertheless, there is good

documentation with tutorials in addition to a dedicated forum. APIs for ROS/ROS 2 and Python are present

and there is even a Software Development Kit (SDK) to create additional applications and plugins for Isaac

Sim. This set of features and community makes the simulator suitable for continued development in the

future. Unfortunately, Isaac Sim is closed-source and relatively new, therefore adoption might pose a

challenge. Moreover, the development of Isaac Sim is entirely dependent on the NVIDIA Corporation and

its Omniverse environment.

5.2. Gas Dispersion Simulation
Simulating the complex phenomenon of gas dispersion poses a great challenge in GSL research. The

process must match real-world behavior as much as possible while still being computationally efficient

enough to be practical. Nevertheless, proper simulation brings advantages that extend to experimentation

as a whole. Ground truth information is easy to obtain with simulation. Moreover, simulation offers perfect

repeatability. Especially with gas dispersion, this is important because small variations in parameters have

a major impact on resulting datasets. Lastly, real-world data acquisition is time-consuming. A simulation

has therefore the potential to increase the efficiency of research. This section covers commonly used gas

dispersion models, from real-world measurements to CFD analysis.

5.2.1. Real-World Dispersion Measurements
Before the advent of proper simulation real-world measurements were the only way to gather information on

the process of gas dispersal. To the present day, real-world measurements stay relevant for the validation

5.2. Gas Dispersion Simulation 25

of novel dispersion models. For example, Farrel et al. [77] and Monroy et al. [25] used experimental data

to validate their filament-based plume shown in Figure 5.3. Other research by Cabrita et al. [27] validated

the simulation of their meandering gas model with real-world measurements. Unfortunately, validation of

simulation by real-world experimentation is uncommon.

Real-world data can also be used in simulation directly. Jones [4] conducted real-world experiments to

formulate numerous statistical parameters to model the experimental observations. Experiments were

conducted in a wind tunnel using negatively ionized air as a tracer. He concluded that the plume structures

feature high levels of intermittency and peak-to-mean ratios. Additionally, the puffs in a plume are generally

of small cross-sections. Therefore, these puffs feature a high concentration and the mean of concentration

is acquired by consecutively swift bursts of intense concentration. Finally, fast sensor response time is

vital to determine the proper statistical parameters of the plume structure. This was tested by applying a

low-pass filter to the sensor. Likewise, Webster et al. [78] determined statistical plume characteristics by

exploiting Laser-Induced Fluorescence (LIF) in liquid, see Figure 5.1.

Figure 5.1: Laser-induced fluorescence measurements of a turbulent plume by Webster et al. [78]. The

plume is released isokinetically close to the wall into a fully developed boundary layer.

5.2.2. Mathematical Gas Dispersion Models
Mathematical models can be divided into box models, Gaussian models, Eulerian and Lagrangian models,

filament-based models and Computational Fluid Dynamics (CFD) [79, 80]. Because CFD will be elaborated

upon more than the aforementioned models, it is treated in Section 5.2.3.

Box Model

The box model is a zero-dimensional model that follows the principle of the conservation of mass. The box

is considered a virtual region in which particles can undergo chemical and physical processes. Moreover,

particles are free to move in and out of the box. Inside the box, the air is considered to be well-mixed and

uniform. The model is useful for simulating detailed chemical reactions and aerosol dynamics. However,

the box cannot provide any local concentration information, making the box model inadequate for the

simulation of highly dynamic particles influenced by wind and turbulence.

Gaussian Dispersion Models

Gaussian models are a common method to simulate gas dispersion and assume that gas dispersion

follows a normal probability distribution, see Equation 5.1 and Figure 5.2 (a).

C̄(x, y, z) =
Q

2πσyσzū
exp

(
−
(

y2

2σ2
y

+
z2

2σ2
z

))
(5.1)

Here, C̄(x, y, z) depicts the average concentration as a function of location in x, y, z. Q is the chemical

release rate and ū is the mean wind speed. The amount of dispersion of the plume in y and z is determined
by σy and σz respectively. These coefficients are defined by the distance from the source in addition to

atmospheric stability and wind speed.

The analytical nature of the Gaussian model requires fewer computational resources than its numerical

counterparts. However, its practicality is limited by the fact that is a steady-state approximation. This implies

that the wind field is assumed to be uniform and the plume behavior will not change over time. Therefore,

no recirculation or turbulent effects can be modeled that would be present in complex environments

featuring buildings, walls or other (perhaps moving) obstacles. Variations on the Gaussian model have

been introduced to resolve some of these limitations for specific use like the meandering plume model

shown in Figure 5.2 b.

5.2. Gas Dispersion Simulation 26

Figure 5.2: Three different kinds of plumes by Murlis et al. [81]. A Gaussian, time-averaged plume (a). A

meandering plume model with the distributions centered around the sinusoidal meandering line (b). The

structure of a real plume (c).

Eulerian & Langrangian Dispersion Models

Eulerian and Lagrangian models describe dispersion with dynamic advection and diffusion equations. The

models differ in their frame of reference. While the Eulerian model employs a fixed frame of reference

(usually a grid system with orthogonal coordinates), the Lagrangian model utilizes a reference frame

following the average wind trajectory. This implies that for a Lagrangian model, the governing equations

can neglect the terms for advection i.e. the movement of particles along the wind direction.

Like Gaussian models, Lagrangian models cannot handle environments resulting in complex wind

fields. Moreover, the implementation of sources and sinks is hampered by the assumption that air parcels

must stay intact. Nevertheless, Lagrangian models are less computationally expensive than Eulerian

models [80].

The practicality of Eulerian models is limited by the assumption of homogeneity within each grid cell.

Therefore, no extra information can be resolved at the sub-grid cell level. To alleviate this limitation the grid

cell size can be reduced to simulate in more detail. This approach can become computationally expensive

quickly.

Filament-based Model

Farrell et al. [77] introduced a filament-based model to efficiently simulate gas dispersion in turbulent

environments. Unlike the previously mentioned methods, the filament-based model is a consolidation

of different dispersion phenomena resulting in an accurate replication of short- and long-term exposure

statistics. The model simulates the release of gas as puffs containing filaments of normally distributed

odor concentration, see Figure 5.3. Three dispersion phenomena allow the plume to realistically evolve

over time. Eddy structures (the swirling of the wind field) larger than the puff size move the puffs as a

whole, simulating advection. Eddies approximately matching the puff size cause the puff to considerably

5.3. Gas Sensor Simulation 27

distort and alter the motion of the filaments. Lastly, smaller eddies mix the filaments in the puff with little

distortion of the puff itself. Do note that the filament-based model required a wind field as input. For simple

environments, this wind field might be generated by a simple mathematical function. In more complex

environments, however, the wind field data is usually generated using CFD.

The filament-based model strikes a balance between realism and required computational resources.

The implementation allows for dispersion simulation in complex (indoor) environments featuring obstacles.

However, the model does not take into account the effects of gravity or temperature gradients on the

plume, among other complex phenomena that may influence the dispersion.

Figure 5.3: Filament-based plume model featuring puffs containing filaments. Within each filament, the

odor concentration (molecules) is normally distributed. Large eddies cause puff advection (Va), while

medium and small eddies in the wind field cause the filaments to mix and distort (Vm and Vd) [25].

5.2.3. Computational Fluid Dynamics
Computational Fluid Dynamics (CFD) is a numerical method that allows solving for many parameters such

as wind velocity, temperature and gas concentration depending on the model. Due to the increase in

available computational resources it has become a popular method for simulating gas dispersion. The

general workflow of a CFD simulation is as follows. First, a model of the region or object of interest is

used to generate a mesh. Mesh generation divides the environment to be simulated (the air) into smaller,

discrete parts. A proper mesh is important as it serves as the approximation of the larger domain. In

regions where the properties of the flow (pressure, density etc.) feature a high gradient the mesh size is

smaller to ensure an accurate solution.

Subsequently, boundary conditions are introduced. For example, an open window letting air in or out

is considered a source or a sink respectively. Additionally, the boundary condition of a wall implies that

there is no slip at the surface of that wall. After selecting a solver, miscellaneous physics settings and

convergence criteria the algorithm tries to solve the model until the convergence criteria are satisfied.

This can take multiple tries, as sometimes the solver does not manage to converge properly. Finally, the

resulting data can be used in robotics simulation for GSL tasks. CFD puts out realistic results but can not

be run online like similar methods. Usually, CFD is performed beforehand.

5.3. Gas Sensor Simulation
Apart from a simulation engine and the type of gas plume simulation, variate simulation methods for

gas sensors are used in research. From the 40 papers studied, 17 tested their GSL method without the
simulation of a sensor. This implies that the instantaneous gas concentration present is directly passed

to the localization algorithm. This is a straightforward approach which might be valuable in an isolated

case of comparing different methods and assessing their performance. Nevertheless, the lack of sensor

dynamics increases the sim2real gap, thereby hindering the transition to real-world experimentation.

Therefore, different methods of sensor simulation are proposed. In this section, they are divided into

custom implementations and simulation of real-world sensors.

5.3. Gas Sensor Simulation 28

5.3.1. Custom Sensor Implementation
Custom implementations usually rely on a combination of either a concentration threshold value and/or

noise. Jatmiko et al. [8] tested a PSO algorithm with a sensor model given by Equation 5.2.

S(t) =

{
C
([

t
∆t

])
+ e(t) If C > τ

0 Otherwise
(5.2)

Where S(t) is the sensor response,C is the gas concentration and e is random sensor noise with e << C.
Moreover, the sensor only reads when the concentration is above a set threshold τ . Finally,

([
t
∆t

])
is used

to resolve the discrepancy in time step resolution between the robot and the gas simulation. Although this

implementation is one step beyond the direct reading of gas concentration in logical development, it only

improves by adding noise and a threshold value.

Song et al. [16] conducted their research on collaborative infotaxis using a binary sensor implementation.

For a specific time interval and location the sensor either reads no concentration or any concentration

which are represented by a zero or one respectively. Over time, the sensor reads odour counts rather

than concentration. This combination of detection events and trajectory is often used for probabilistic GSL

methods. This is because it simplifies the input for the subsequent inference algorithm. However, this

approach poses problems when transferring to the real world. For example, Moraud et al. [82] conducted

real-world experiments with a ground-based robot and an infotaxis GSL method. After extensively testing

several odour sensors they concluded that their sensitivity and response time is inadequate for an infotaxis

scheme. To solve this, they resorted to the use of a temperature sensor that quickly reacts and does not

saturate easily to detect a source of hot air.

5.3.2. Real-World Sensor Simulation
Simulating real-world sensors is the most elaborate but realistic form of sensor simulation. Li et al. [10]

and Meng et al. [83] simulate a Metal Oxide Semiconductor (MOS) sensor to use in their simulation. The

physical working principle of a MOS sensor expresses itself as a lagged response and recovery. To

simulate this two separate second-order lags are implemented as shown by Figure 5.4 and Eqs. (5.3)

and (5.4). Moreover, Meng et al. [83] include Gaussian noise to further increase realism. Additional

parameters that can be added to this model are sensor bias and possible drift. Although the implementation

requires extra computational resources it is invaluable to bridging the sim2real gap.

Response/Recover
Switch

Response Lag
Function

Recovery Lag
Function

Feedback

Output

Input

Figure 5.4: Block diagram showing the dynamics of a simulated MOS sensor response. The phase switch

switches to the response/recovery blocks based on an increase or decrease in the input concentration.

The response and recovery dynamics are a second-order lag given by Equation 5.3 and Equation 5.4 [10,

83].

yres(s)

x(s)
=

1

(1 +Aress) (1 +Bress)
(5.3)

yrec(s)

x(s)
=

1

(1 +Arecs) (1 +Brecs)
(5.4)

5.4. GSL Specific Simulators 29

Likewise, Monroy et al. [25] include the simulation of a MOS and a Photo Ionisation Detector (PID)

sensor in their developed gas dispersion simulator GADEN. To accomplish this they consult the technical

data sheets provided by the manufacturers. For the MOS sensor, this implicates the calibration of the

right sensor resistance given a reference resistance and the use of a low pass filter as discussed earlier.

Compared to a MOS sensor, a PID sensor shows a quicker response. However, it is unable to distinguish

between different gasses. Rather, it provides the total concentration of all gasses present. The PID

sensor behavior is also simulated according to the provided technical specifications. Finally, validation

experiments were conducted to test the accuracy of the plume and sensor simulation.

5.4. GSL Specific Simulators
Apart from the general-purpose simulators discussed earlier, the majority amount of GSL research is per-

formed with custom simulations developed in-house. Awadalla et al. present an example of a combination

that is often used; MATLAB and Ansys Fluent (both paid software) [18]. In their research, they developed

a framework capable of simulation in three dimensions. First, they model the environment in Ansys and

simulate a release of gas using CFD in an indoor setting. They assume certain windows and doorways to

be the inlets and outlets to create a slight breeze. This situation might not be realistic but tailors well to the

presented case study. Finally, the resulting information is passed to the MATLAB simulation code.

Duisterhof et al. created an automated pipeline for environment generation called AutoGDM and

combined it with Swarmulator for the simulation of multiple agents [5]. The generation of environments with

AutoGDM consists of three stages as shown by Figure 5.5. First, a room is randomly filled with walls and

corridors resulting in an occupancy grid map. This map is transformed into a 3D CAD (Computer Aided

Design) model to pass it to the CFD simulation. CFD is performed with OpenFOAM. It first generates a

mesh from the imported CAD model and then calculates a flow field for the given boundary conditions.

This flowfield is handed to GADEN, a gas dispersion simulation, which simulates the gas plume with a

filament-based model [25]. Swarmulator is then used to simulate multiple agents searching for the gas

source location. This approach is specifically tailored to quickly generate multiple environments with

different complexities. This way, an ML algorithm can progressively learn to locate the gas source in

increasingly difficult environments.

Finally, Cabrita et al. implemented a GSL simulation called PlumeSim in the Player/Stage simulation

environment [27]. The simulator is capable of using different inputs to generate a plume; from real-world

data, a CFD simulation or a custom mathematical model. Two mathematical models, a Gaussian and a

meandering model are already implemented. Additionally, they argue that in the field of OSL research,

more emphasis has to be put on gas sensor modeling as it greatly affects the performance of the simulated

algorithms and can increase the realism of the simulator. They introduce a sensor model of a MOX (Metal

Oxide) sensor featuring rise time and decay time. The parameters for this model are collected through

real-world experimentation. Unfortunately, Player/Stage has become obsolete therefore this GSL-specific

simulation setup is not used anymore.

Figure 5.5: Flowchart of environment generation with AutoGDM by Duisterhof et al. [5].

5.5. Conclusion and Discussion on Simulation 30

5.5. Conclusion and Discussion on Simulation
A diverse selection of general and GSL-specific simulators is studied to consider existing solutions, their

advantages and disadvantages regarding GSL research. The choice of a simulator will ultimately be

decided after some initial experimentation. The most widely used option is Gazebo in combination with

ROS and GADEN. As Gazebo and GADEN are well established in the research field they present a good

option for creating a benchmark that is widely accessible. However, Gazebo can become computationally

expensive and is not photorealistic. These shortcomings hinder large-scale online Machine Learning

(ML) and the simulation of vision sensors. For a more computationally efficient simulation, Swarmulator

is a good option. In combination with AutoGDM and GADEN, it presents a useful tool for GSL and ML.

However, its lightweight implementation lacks any realistic visualization thereby excluding the use of

vision sensors. Therefore Swarmulator is considered too impractical to use in further testing. Compared

to Gazebo and Swarmulator, Unity provides excellent visual fidelity. Because it is originally developed

as a game engine the physics is usually handled separately for accurate simulation. Flightgoggles [24]

and Flightmare [73] are good examples of this. Moreover, the availability of excellent documentation

and support in combination with the use of C# make this simulator one of the most accessible options

considered. Lastly, a relatively new simulator to consider is NVIDIA’s Isaac Sim. The focus of this simulator

lies in minimizing the simulation to reality gap by the use of photo-realistic rendering and accurate physics.

For accessibility, it features APIs for ROS and Python and features an ML toolbox. Unfortunately, Isaac

Sim is closed-source and relatively new, therefore adoption might pose a challenge. Moreover, only future

experimentation with Isaac Sim will elucidate the challenges of implementing GSL methods and plume

simulation in the simulator.

From the analysis of gas simulation methods, it can be concluded that the filament-based model in

combination with CFD simulation is the most relevant for future GSL simulation. Other simulation methods

such as the box model or the Gaussian plume model make use of assumptions that are considered to limit

realism and practicality. The combination of CFD and a filament-based model allows the use of accurate

wind and dispersion fields in complex environments featuring multiple obstacles. One downside however

is the fact that the CFD simulation cannot be run in an online fashion. Nevertheless, this is considered a

worthwhile tradeoff for the realism it introduces.

Regarding sensor simulation, the following can be concluded. An important basis for all sensor

simulations is the availability of accurate instantaneous gas concentration data. This will require high-

fidelity gas simulation both in a spatial and temporal manner. From there, multiple sensor types can

be implemented such as a MOX or PID sensor. Furthermore, on top of these simulated sensors, other

representations such as a binary or averaged reading can be applied to suit the method at hand.

6
Real World Experimentation

A simulated benchmark is more valuable if it represents real-world experimentation which can be used to

validate simulated methods. To achieve this, the current state of experimentation is surveyed. Special

attention is brought to the arena size of the experiments, the presence of obstacles, the (artificial) wind

conditions and the robot type. Moreover, some trends regarding these characteristics are observed. The

chapter concludes with a discussion of future real-world experiments mimicking practical applications of

GSL robots.

6.1. Current State of Experimentation
Approximately half of the studied GSL research papers conducted real-world experiments. The majority of

these experiments are carried out in relatively small arenas [84, 21, 19]. The discrepancy between arena

sizes is illustrated by Figure 6.1. The use of small arenas has multiple advantages besides the fact that it

requires little space. If the experiment serves as validation of a simulation then the simulation does not

have to be as large thereby limiting the required computational resources. Moreover, with a small arena, it

can be argued that the experiment focuses more on the actual localization of a gas source rather than the

exploration of an environment. Nevertheless, it is more logical to consider exploration an important phase

of a GSL task. Note that some arenas have substantial lengths compared to their width as can be seen in

the bottom of Figure 6.1. These experiments were mostly conducted in wind tunnels resulting in conditions

that do not require any exploration at all [6, 40, 22, 2]. In these cases, plume tracing rather than plume

acquisition and exploration are tested.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Length [m]

2
4
6
8

10
12
14
16

W
id

th
 [m

]

Experimental Arena Size
rover
UAV

Figure 6.1: Dimensions of the experimental arena’s studied throughout literature. The majority of

experiments feature a rover and a smaller arena.

A ground-based robot is used most often compared to (micro) UAVs. The advantage of ground-based

robots is that they are not restricted by weight. This expresses itself by being able to have longer endurance

31

6.2. Experimentation Trends 32

and more elaborate sensor suites on board. Additionally, ground-based robots are able to use their wheel

odometry data (often noisy) for localization in addition to other means such as ultrasound, LiDAR or GPS

sensors.

Almost all of the experiments feature an artificially created wind field, while some introduce no wind

field and test for diffusive conditions [49, 52]. Usually, a wind field is created using a desk or computer fan.

Outdoor experiments are often carried out in low wind conditions to limit the turbulence present. Although

these setups are convenient, they do not resemble a realistic scenario. Ultimately, apart from the GSL

methods used, it can be stated that the current arenas can be considered to be rather straightforward

challenges for the robot due to the combination of small arenas without obstacles and artificial (favorable)

wind fields.

6.2. Experimentation Trends
GSL experiments are becoming increasingly complex. More recent research introduces larger (outdoor)

arenas, see Figure 6.2. Additionally, an increasing amount of research features obstacles in their arenas,

thereby further increasing the difficulty. The main reason environments are getting increasingly difficult is

the fact that researchers acknowledge that experimentation in small, simple environments is of limited

practical relevance. Additionally, GSL methods are improved to handle unknown environments and

obstacles [12].

Furthermore, the popularity of (micro) UAVs for GSL tasks is increasing [5]. Recent developments in

UAV technology make the platform more accessible and they prove to be versatile for exploration and

GSL tasks. Nevertheless, the use of micro UAVs is challenging due to their weight restrictions. Therefore,

onboard sensors have to be limited in weight and power consumption, further increasing the difficulty of a

GSL task.

Figure 6.2: Outdoor experimental setup by Neumann et al. [85] featuring a micro UAV with a methane

source on the left side.

6.3. Discussion on Future Experimentation
Experiments are expected to get more and more complex to the point that they can fully emulate practical

real-world scenarios. It is therefore important for a benchmark to offer the flexibility to develop into

something that can simulate it. In other words, the simulator must offer room for environments and

situations to grow in complexity to the point of practical real-world experiments.

A few examples of ’practical’ experiments are given. Firstly, consider a large indoor warehouse or

factory. Having rovers or UAVs be able to swiftly cover a large area looking for a gas leak reduces the

risk of casualties. Moreover, a UAV could be invaluable to search for odors that rise to the ceiling of the

building. Another practical scenario is the surveillance of a large outdoor chemical plant. Or imagine the

supervision of major roadworks. In these scenarios, there is always a risk of striking a gas pipe. Lastly,

but maybe most importantly, GSL robots can assist in disaster relief. Especially with the use of UAVs

substantial amounts of an area can swiftly be covered regardless of the terrain conditions.

The capability to easily change environment complexity in the simulator will be a key feature for training

and benchmarking. Scenarios can feature different levels of complexity in terms of environment type and

size, wind (gas) conditions and obstacles. For example, an indoor space might be a large rectangular

warehouse or factory floor, or an office building featuring hallways and many rooms. The gas conditions

6.3. Discussion on Future Experimentation 33

can vary widely as well. In most indoor scenarios the wind field is probably negligible resulting in diffusive

conditions. Or maybe there is some kind of ventilation present. This can be an air conditioning system/open

window or, in the case of a large hall, an open garage door. The buoyancy of the gas also influences the

difficulty of the task. Finally, the type and amount of obstacles affect the task difficulty. A factory/warehouse

floor might be open or filled with storage and machines. The same concept can be applied to obstacles in

office buildings and outdoor environments.

7
Performance Metrics

Throughout GSL research a wide variety of performance measurements is used. The percentage of

successful runs and (average) localization time are the most commonly used metrics. These elementary

metrics combined can give a good indication of an algorithm’s performance. Nevertheless, more involved

types of measurements may offer other valuable insights into an algorithm’s performance. This chapter

presents commonly used metrics to discuss their practicality.

7.1. Successful Runs
Successfully completed runs is a widely used metric that mainly describes an algorithm’s reliability. For

this metric to be statistically meaningful it is important to perform a sufficient amount of runs. The amount

of successful runs does not however indicate how ’well’ the algorithm completed the GSL task in terms of

other metrics such as search time/steps or movement overhead for example. Therefore, caution should

be taken when interpreting the number of successful runs. For example, if various algorithms have high

success rates it might indicate that the experiment lacks difficulty. This problem can be mitigated by

measuring the success rate when no odor source is present.

An example of good use of success rate is shown by Voges et al. [34]. In their research, they perform

multiple trials (ranging from 18 to 73 trials) for each different method and concentration. This amount of

trials is considered to be sufficient to gain significant statistical information. Furthermore, the testing of

different conditions and methods results in valuable comparisons, see Figure 7.1.

Less practical use of the success rate metric is presented by Ercolani et al. [2]. In their research, they

use micro UAVs to locate an odor source at the end of a wind tunnel. They conducted five trials for two

different sensor configurations: mounted on top or on the bottom of the UAV. As the sensor configurations

resulted in a success rate of 100% and 80% respectively it would be interesting to see the success rate

when no odor source is present.

Figure 7.1: Success rates of reactive and infotaxis searching methods by Voges et al. [34]. Three

reactive strategies are tested with different concentrations of the odor source. They are: Spiraling only

(sp), arithmetic spiral & zigzagging (za), exponential spiral & zigzagging (ze).

34

7.2. Search Time & Steps 35

7.2. Search Time & Steps
Search time is usually expressed in simulation runtime or real-time for experiments. Search time is closely

related to the search steps which indicates the number of iterations the algorithm requires to find the source.

Individually, these metrics are only useful when they can be compared with the search time and steps of

other algorithms [86]. Therefore they are usually combined with other metrics to get a better picture of the

performance.

Nevertheless, search steps can be an indication of the ’efficiency’ of a method. For example, if it takes

a novel PSO algorithm half as many iterations to find the odor source than an older PSO method it can be

said that the novel algorithm is more efficient. Still, steps as an efficiency metric must not be confused with

the required computational resources of a method. It could be that a method requires a few steps to locate

an odor source, but each step may be computationally intensive.

7.3. Distance & Movement Overhead
The covered distance is not often presented as a metric but is still valuable for comparison purposes. In the

case of multi-agent methods, traversed distance can be averaged over the agents [5]. Covered distance in

itself is more intuitive when the minimum required distance is taken into account. Therefore, movement

overhead is often introduced. Movement overhead is described by the percentage of excess movement

the agent performed to find the source. It is defined as α = d/∆− 1, where d is the distance traveled and
∆ is the straight line distance between the starting position and the odor source location [40].

The implementation of a movement overhead metric becomes more complex with the presence of

obstacles in the arena. The ’straight line’ distance will then have to be determined by a shortest path

algorithm. On the other hand, the straight line distance can still be calculated as before for simplicity. In

that case, it must be made clear that a perfect movement overhead score might be impossible because

the line from the start to the odor source might pass through an obstacle.

7.4. Trajectory
In some cases, research evaluates the performance of an algorithm by looking at the trajectory of an agent.

Pequeño-Zurro et al. [87] evaluate the performance of an algorithm by the trajectory directness metric D̄.

It describes the average straightness of a trajectory compared to a reference vector pointing from the start

position to the source location, see Equation 7.1.

D̄ =
1

L

(
N∑
i=1

ri · cos θi,−i ·
N∑
i=1

ri · sin θi

)
(7.1)

The path of the agent is divided into N vectors. The length and deviation of each vector are described

by ri and θi respectively. The total traversed distance L is defined by L =
∑N

i=1 ri. The resulting trajectory
directness D̄ is a vector with a length between [0, 1] and a heading between [−π, π]. The thought behind this
metric is that a more straight, continuous track represents more stable performance. Although extensive

analysis is performed in Pequeño-Zurro et al. [87] work, this metric it is only applied to evaluating plume

tracing performance as the agent’s starting position is located inside the plume. Logically, trajectories in a

plume discovery phase are more exploratory thereby limiting the usefulness of this metric in experiments

representing a larger GSL task.

In other research, the trajectory is analyzed in a broader sense rather than hard metrics. De Croon et

al. [15] evaluates the trajectory of an ML method to investigate the neural network dynamics of the agent.

Moraud et al. [82] observe the trajectories of an infotaxis scheme for different wind conditions. By plotting

a heading histogram (w.r.t. the wind vector) they conclude that the agent has a tendency to move upwind

in a similar fashion to moths.

Ultimately, trajectory metrics tend to be useful when describing the characteristics of the search method.

For direct comparison of different algorithms, trajectory directness may be useful in the phase of plume

tracing.

7.5. Localization Accuracy & Error 36

7.5. Localization Accuracy & Error
Accuracy and error metrics are often used when predicting the source location or concentration distribution.

Therefore probabilistic methods are regularly evaluated using these metrics. In these cases, it is assumed

that the agents will detect at least some gas concentration in order to predict the source location. Ferri et

al. [20] evaluated the performance of a Bayesian grid mapping method of three sources by plotting the

localization error, see Figure 7.2.

Figure 7.2: Estimation error of the source location for a Bayesian grid mapping method by Ferri et al. [20].

Additionally, a rarely used but interesting error metric is the Earth Mover’s Distance (EMD) [49, 56].

The EMD calculates the separation between two discrete histograms or distributions. It can be viewed

as the first Wasserstein metric’s discrete counterpart. In other words: The EMD calculates the cost of

converting one probability distribution into the other given two probability distributions that depict two distinct

strategies of accumulating a certain probability mass (or earth). In other words, it calculates the least effort

required to transfer mass from the first distribution to the second distribution, where the effort is equal to

the mass’s quantity times the mass’s transfer distance. This approach is limited to the availability of the

gas concentration ground truth of the entire search space, making it impractical for real-world experiments

7.6. Conclusion and Discussion on Performance Metrics
To conclude this chapter on performance metrics some final observations are made. Success rate,

movement overhead and search time metrics are most often used and are proven measurements to assess

GSL performance. The benchmark will therefore feature these metrics for all methods and environments.

Furthermore, other metrics might be of interest depending on the method used. The performance of

probabilistic methods might be assessed by accuracy and Earth Mover’s Distance (EMD). Additionally,

ML methods might be better characterized by accuracy metrics such as confusion matrices and receiver

operating characteristic (ROC) curves.

8
Conclusion and Discussion

This literature study aims to determine the specification of a Gas Source Localization (GSL) benchmark

such that it is accessible, has the right balance between practicality and realism, and provides valuable

performance metrics. With the variety of GSL methods ever increasing objective performance comparison

becomes more and more relevant. Unfortunately, study shows these comparisons to be rare in the

research field. Often, results are unable to be fairly compared due to differences in methods, namely the

environment setup (arena size, presence of obstacles) and gas simulation (model fidelity, wind conditions).

The development of a broadly accessible benchmark will therefore alleviate these limitations holding back

the research field.

From the survey of methods arise initial GSL simulator/benchmark requirements. Most importantly, the

simulator must be able to offer a robot instantaneous gas concentration data for a specific location and time.

Additionally, the agent must be able to collect wind field data if applicable. Furthermore, computational

efficiency is desirable. Especially with the rising popularity of multi-agent and ML methods computational

efficiency becomes increasingly vital.

A diverse selection of general and GSL-specific simulators is studied to consider existing solutions. The

choice of a simulator will ultimately be decided after some initial experimentation. The most widely used

option is Gazebo in combination with ROS and GADEN. As Gazebo and GADEN are well established in

the research field they present a good option for creating a benchmark that is widely accessible. However,

Gazebo can become computationally expensive and is not photorealistic. These shortcomings hinder

large-scale online Machine Learning (ML) and the simulation of vision sensors. Compared to Gazebo,

Unity improves on visual fidelity as it was originally a game engine. Nevertheless, good examples such as

Flightmare and Flightgoggles use Unity for rendering. With Unity, the physics is usually handled separately

for computational efficiency. Finally, Unity is readily accessible due to excellent documentation and the

surrounding community. Lastly, a relatively new simulator to consider is NVIDIA’s Isaac Sim. The focus of

this simulator lies in minimizing the simulation to reality gap by the use of photo-realistic rendering and

accurate physics. For accessibility, it features APIs for ROS and Python and features an ML toolbox.

Unfortunately, Isaac Sim is closed-source and relatively new, therefore adoption might pose a challenge.

Finally, types of performance metrics are evaluated. Success rate, movement overhead and search

time are considered to be the most commonly used metrics and are therefore important to include in the

benchmark. For methods predicting the location of the odour source or the distribution of concentration,

accuracy and Earth Mover’s Distance (EMD) can also be of use.

Continuing the thesis work involves experimentation with different simulation environment setups starting

with NVIDIA’s Isaac Sim as it shows great potential. However, if Isaac Sim is deemed too impractical the

focus will shift towards Flightmare because the local research group at the TU Delft already has experience

with this software. The main challenges are going to be the integration of gas plume simulation and the

generation of environments. Additionally, the simulation might be validated by comparing the results from

previous real-world experimentation.

37

Part III
Additional Results & Closure

38

9
AutoGDM+

AutoGDM+ (Automatic Gas Dispersion Modeling) serves as the environment generation pipeline for

GSL-Bench. This includes the creation of environment scenes and the simulation of wind fields and gas

dispersion, see Figure 9.1. The ’+’ refers to the fact that this generation pipeline is an evolution of the

original AutoGDM presented by Duisterhof et al. [5]. The output of AutoGDM+ is not specifically tailored to

the use in GSL-Bench and is easily integrated into any other simulation project. Therefore, the goal of this

chapter is to describe the pipeline in more detail and facilitate the use of AutoGDM+ outside of this study.

Please note that these concepts build on the information from the scientific article in Part I.

This chapter is structured according to the gray boxes in the workflow of Figure 9.1. Layout (or scene)

generation is elaborated upon in Section 9.1. Subsequently, the wind field simulation and its structure is

formulated in Section 9.2. Finally, the gas dispersion simulation is explained in Section 9.3

Layout
Generator

Isaac Sim
Assets

Mockup
Assets

.stl/.obj

 Asset
 Placer

 Asset
 Placer

config.yaml

mesh recipe

scene recipe

Meshing & CFD

 GSLBench
.usd scene

.stl scene

GADEN

wind field(s)

gas dispersal
occupancy

grid

Figure 9.1: Workflow of AutoGDM+. The respective asset placers create a scene from a generated layout.

The .stl scene is used for meshing and CFD to generate wind fields and ultimately gas dispersion data.

The .usd scene is used directly with GSL-Bench in Isaac Sim.

9.1. Layout Generator
The layout generator is the starting point of the generation pipeline. It allows for automatic variation

between multiple generated environments of the same type, making it useful for Machine Learning (ML)

applications. Variation applies to the type of asset (empty racks versus full racks), their location and

orientation. The layout generator outputs a recipe .txt file from the relevant settings in the conf.yaml that
is passed to the asset placers. Although Figure 9.1 shows a ’mesh recipe’ and a separate ’scene recipe’,

they are contained in this single recipe file. The top-level settings of the layout generator in the conf.yaml
are described in Table 9.1. The remainder of this section elaborates on the available environment types,

the generated recipes and the respective asset placers.

9.1.1. Environment Types
Currently, AutoGDM+ features three warehouse environment types; the empty, simple and complex

warehouse respectively. The boundary conditions regarding the wind generation are largely identical

39

9.1. Layout Generator 40

Table 9.1: Layout generator parameters

Setting Example Value Description

env_types ['wh_empty', 'wh_simple'] list of the available environment types

env_type 1 selected environment type ('wh_simple')
env_amount 20 amount of environments to be generated

env_size [15.0, 15.0, 8.0] environment size in XYZ (m)

across all warehouse types (as described by the scientific paper) and are configurable with the parameters

in Table 9.2. The location of the inlet and outlet are chosen such to promote significant airflow through

the entire scene. Walls and lights are added to the scene for all warehouse types. By default, Isaac Sim

features walls that have a white base of 3m and continue with bright yellow walls. Arguably, an all-white

wall is more realistic and can be specified with the configuration file. Figure 9.2 illustrates the difference in

wall types. The lights are placed just above the specified environment height in order to provide lighting for

the entire scene.

Table 9.2: Warehouse environment generation parameters

Setting Example Value Description

inlet_size [1.5, 2.4] inlet size in YZ (m)

inlet_vel [1.0, 0.0, 0.0] inlet velocity in XYZ (ms−1)

outlet_size [1.5, 2.4] outlet size in YZ (m)

emptyfullrackdiv 0.2 least percentage of filled racks

white_walls True choice between all-white or white-yellow walls

(a) Empty warehouse with the default white-yellow walls (b) Complex warehouse with the all-white walls

Figure 9.2: Different wall options for the warehouse environment

The simple warehouse environment introduces racks to the scene. These racks are placed in rows

such that they leave at least the required space for the end aisles and rack aisles, see Figure 9.3. The

complex warehouse layout includes extra obstacles rotated at a random angle as depicted in red. These

obstacles include forklifts and piles of warehouse items. Additionally, the rows of racks that are not against

the wall are turned 90◦ to create tighter, more challenging passages.

9.1.2. Recipe Dictionary
Figure 9.4 gives an overview of the contents of a recipe. The recipe text file is mainly a dictionary of nine

lists of asset dictionaries. It also contains entries for the environment type and size in combination with

the inlet and outlet sizes. The nine lists of assets are used for three purposes: CFD, Gas dispersion and

Isaac Sim scene generation. Only the list of interior assets is used for all three purposes, the other lists

are created separately due to the differences in requirements of the subsequent steps. The methods that

create these lists of assets are contained within the warehouse environment class. This class in initialized

9.2. Wind Data Generation 41

en
v_

si
ze

 in
 Y

x

y inlet end_ailse
width

inlet

outlet

env_size in X

ra
ck

_a
ils

e
w

id
th

(a) Simple warehouse layout with the

end-aisles marked by the hatched boxes

en
v_

si
ze

 in
 Y

x

y end_ailse
widthinlet

outlet

env_size in X

(b) Complex warehouse layout with additional

obstacles in red

Figure 9.3: Schematic layout for the simple and complex warehouse environments.

with assets used throughout the class for convenience. The assets themselves are instances of the asset

class as well. Most importantly, the asset class contains a method that returns a dictionary of its instance

attributes.

The lists for the purpose of CFD and gas dispersion are used by the Blender asset placer. The blender

asset placer is a script that uses the Blender Python API to place the assets and export the multiple required

meshes. The list of sides, outlets and inlets contain definitions of planes that define the boundaries for

CFD in space. It is important to note that the normal vectors of these planes must point inwards for the

subsequent meshing process.

The list of interior assets is unique because of the included ‘mockups’. A mockup is a low resolution

mesh of the associated model that still contains the relevant geometry. The high fidelity models that

are bundled with Isaac Sim are considered to be too detailed for CFD. For example, the file size of an

interior mesh for a simple warehouse of 20x30x8m is reduced from 750MB to just 86kB. The asset class
accommodates the mockup meshes by defining the filename as a list of two paths; one to the original

Isaac Sim asset, and the other to the corresponding mockup asset. The mockup assets are easily created

manually in Blender.

The gas dispersion simulation also makes use of the low resolution interior assets in order to create

an occupancy grid. Additionally, there are two lists created solely for the dispersion simulation because

of the required geometry. In contrast to the models for CFD, the gas dispersion simulation requires the

inlets, outlets and walls with thickness. All of the geometry is modeled with cubes in Blender. Boolean

operations are used to create the walls by subtracting the inside, inlet and outlet from the wall geometry.

These operations are specified in the gaden_bools list. By default, the wall thickness is set to 0.2m for the

warehouse environments.

Finally, assets purely for Isaac Sim contain the floor tiles, walls and lights. These are all models

provided with Isaac Sim. The floor tiles are 6x6m and are tiled to cover the entire scene. The walls consists

of straight walls and corner pieces. The model of the light fixture is the only Isaac Sim asset that is changed

from its original state. The original fixture did not emit light because it was turned off, whereas the custom

asset features the light fixture turned on.

9.2. Wind Data Generation
The wind generation pipeline consists of a series of functions that automate the use of OpenFOAM.

Note that AutoGDM+ uses OpenFOAM ESI v2212 (instead of Foundation) specifically because it already

includes the preferred method for meshing. The environments are solved one by one after they are meshed.

Meshing settings are verified with a mesh sensitivity analysis presented in this section. If the CFD fails for

an environment it is disregarded for the subsequent steps in order to complete the remaining environments.

9.2. Wind Data Generation 42

recipe:dict
C

FD G
as

D
is

pe
rs

io
n

Isaac Sim

env_type:str env_size:list
inlet_size:list outlet_size:list

sides:list
Asset:dict...

inlets:list
Asset:dict...

outlets:list
Asset:dict...

interior:list
Asset:dict...

isaac_floor:list
Asset:dict...

isaac_walls:list
Asset:dict...

isaac_lights:list
Asset:dict...

gaden_geom:list
Asset:dict...

gaden_bools:list
bool_op:list...

Figure 9.4: Contents of the recipe text file that is created by the layout generator. In general, a recipe is a

dictionary of lists containing dictionaries of assets. The list of interior assets is used for all purposes.

(a) High resolution mesh of a shelve included

with Isaac Sim consisting of 27348 vertices.
(b) Manually replicated mockup of the shelve

consisting of only 56 vertices.

Figure 9.5: High resolution mesh of a shelve (a) and its corresponding mockup model (b). The mockup

models are used for the CFD and gas dispersion process.

9.2.1. Meshing
Meshing is performed with OpenFOAM’s cfMesh. snappyHexMesh was also considered and tested as

it is used by the original AutoGDM. Compared to cfMesh, snappyHexMesh proved to be less robust and

presents a more complicated workflow. Overall, cfMesh offers sufficient mesh quality and is therefore

the meshing method of choice. The available meshing parameters for AutoGDM+ are presented by

Table 9.3. In general, robust meshing performance is observed with uniform meshing parameters and no

localRefinement. If specified, AutoGDM+ is set to apply the localRefinement around the interior assets.

Additionally, a uniform cell size keeps the mesh file size and computation time manageable. Luckily,

cfMesh is a hyperthreaded process by default for a significant decrease in computation time. Figure 9.6
illustrates the effect of localRefinement with a cross section of the mesh.

Table 9.3: Meshing parameters. These example parameters provide consistent mesh results.

Setting Example Value Description

minCellSize 0.2 activates automatic refinement of the mesh (m)

maxCellSize 0.2 default cell size used for the meshing job (m)

boundaryCellSize 0.2 refinement of cells at the boundaries of the environment (m)

localRefinement 0.0 refinement around interior assets (m) (0.0==no refinement)

9.2.2. Mesh Sensitivity Analysis
A mesh sensitivity analysis is performed to determine an appropriate mesh resolution. A simple warehouse

environment with a size of 10x16x8m is meshed with the settings shown in Table 9.4. The inlet and outlet

have a size of 1.5m wide by 2.4m tall, and the inlet velocity is 1ms−1 in the positive Y direction. The

9.2. Wind Data Generation 43

(a) Mesh created with the settings from Table 9.3 (b) Mesh created with the min, max and boundary set

to 0.1 instead of 0.2 and a localRefinement of 0.05

Figure 9.6: Cross section of meshes with different settings that slice through warehouse shelves to

highlight the effect of a localRefinement.

simulation is performed using the PISO algorithm with a variable time step and a maximum Courant number

of 1 (see Section 9.2.3 for more details). The magnitude of the wind vector is the parameter of interest and
is probed at 4 different locations at a time of 50 s.

The results show that the wind vector is fairly consistent across different environments at location 3 and

4. However, the results from location 1 and 2 show display a significant amount of variation. Because these

locations are closer to the inlet they experience larger fluctuations in wind velocity which can contribute to

this variation. Unfortunately, the magnitudes do not seem to approach a certain value, rendering the results

largely inconclusive. Nevertheless, a uniform cell size of 0.2m is deemed to be the best compromise

between spacial resolution and computational times for now.

Table 9.4: Mesh sensitivity analysis parameters. *The gas dispersion simulation expects a uniform cell

size, but also works with meshes containing some local refinement.

Environment 1∗ 2 3 4 5

minCellSize, maxCellSize, boundaryCellSize 0.5 0.4 0.25 0.2 0.1
localRefinement 0.1 0.0 0.0 0.0 0.0

1 2 3 4 5
0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Location 1
[3.05, 2.05, 4.05]

u v w

1 2 3 4 5

Location 2
[7.05, 2.05, 4.05]

1 2 3 4 5

Location 3
[3.05, 14.05, 4.05]

1 2 3 4 5

Location 4
[7.05, 14.05, 4.05]

Probe location XYZ (m)

Environment

M
ag

ni
tu

de
 (m

/s
)

Figure 9.7: Mesh sensitivity analysis results of four different locations from the environments described by

Table 9.4. The results are consistent at locations 3 and 4. However, locations 1 and 2 show more

variation in their results, probably due to the fact that they are closer to the inlet.

9.3. Gas Data Generation 44

9.2.3. CFD Simulation
Currently, pimpleFoam is the solver used by AutoGDM+. It is a large time-step transient solver for in-

compressible, turbulent flow. The ‘pimple’ solver combines the PISO and SIMPLE algorithms making it

comparably versatile. The result is a merger of the transient simulation of the PISO algorithm and residual

control of the SIMPLE algorithm, allowing for transient simulations over larger timescales that involve a

Courant number> 1. By default however, pimpleFoam runs in PISOmode because the nOuterCorrectors
is set to 1. By limiting the number of outer correctors, the amount of calculation is reduced while retaining
accurate results. The simulation can be sped up by simulating at larger timescales and higher Courant

numbers when accuracy is of a lesser importance. This is done by setting the maxCo to a desired value and
increasing the number of outer correctors to 10 to prevent the simulation from diverging. If the simulation

is unstable the number of outer correctors can be increased, or maxCo can be decreased, or the mesh cell

size can be increased.

Table 9.5 shows all the configurable parameters that apply to the CFD simulation. It is observed that

the simulation is the quickest when all but two (virtual) threads are dedicated to the simulation. This is the

default setting for AutoGDM+, but any other number of threads can be assigned to the simulation with the

threads setting.

Table 9.5: CFD Solving parameters

Setting Example Value Description

threads 0 set to 0 to use all but 2 threads for maximum performance.

endTime 5.0 end time of the wind simulation (s)

writeInterval 1.0 time interval at which the results are saved (s)

maxCo 1.0 maximum allowed Courant number

maxDeltaT 0.0 maximum allowed time step (m) (0.0== inactive)

nOuterCorrectors 1 number of outer correctors in the loop (1== PISO mode)

latestTime True use the latest time step as steady state

timeRange 3:5 select a time range of wind fields (latestTime must be False)

9.2.4. Wind Data Post-Processing
Post processing the CFD simulation data starts with exporting the wind vector ’U’ at the cell centers. The

timeRange parameter defines the wind fields that are exported, but if latestTime is set to true, only the last
wind field is exported for further processing. This data is converted to a .csv file so that it can be used by

GADEN, the gas dispersion simulation. With the environment size and cell size known, GADEN converts

the .csv file to three, one-dimensional vectors that contain the X, Y and Z components of all the wind

vectors in the wind field. Spreading out this data into a one dimensional vector is done for performance

reasons. Finally, all iterations of the wind vector (in the case of multiple wind fields) are converted from

binary and combined into a numpy array.

The desired index of this one-dimensional wind vector is accessed by first determining the cell indices

as shown by Equation 9.1, with xloc the location in XYZ, xmin the scene minimums and ∆x the cell size in

XYZ. The cell indices are then used in Equation 9.2 to determine the right index of the wind vector.

i =

⌈
xloc − xmin

∆x

⌉
(9.1)

iwind = ix + iyncellsx + izncellsxncellsy (9.2)

9.3. Gas Data Generation
The final step of the pipeline features the gas dispersion simulation with the affection-diffusion method

discussed in Part II. It requires three inputs; the settings displayed in Table 9.6, the .stl mesh geometry

created by the Blender asset placer and the the post-processed wind field as described earlier. The

settings specify the placement of the gas source and the type of gas. These gases differ in their specific

9.3. Gas Data Generation 45

gravity, making them either sink to the ground or rise up (if left in undisturbed air). They also influence

the response of the simulated gas sensors. sim_time and time_step determine the run time and time

resolution of the simulation respectively. The time resolution should be set to a value of approximately the

cell size divided by the maximum wind speed. The last three settings allow for looping through multiple

wind fields during the gas dispersion simulation. For example, with the settings in Table 9.5 there would be

three wind fields from timesteps 3, 4, and 5 seconds respectively. With these settings, the gas simulation

will loop through these three available wind fields. Note that wind_looping can still be true even if the CFD
setting latestTime is also true, because GADEN then automatically loops the single present windfield.

Table 9.6: Gas dispersion simulation parameters

Setting Example Value Description

src_placement_types ['specific', 'random'] list of gas source placement types

src_placement_type 0 selection of the gas source placement type

src_placement [5.0, 1.0, 2.0] source placement in XYZ (m)

gas_type 0 0= ethanol, 1= methane, 2= hydrogen

sim_time 500 gas dispersion simulation time (s)

time_step 0.2 time resolution of the simulation (s)

wind_looping 'true' loop though multiple wind fields

wind_start_step 0 first wind iteration for looping

wind_stop_step 3 last wind iteration for looping

Like the wind data, the resulting gas data is converted from binary to numpy arrrays for ease of use.

Currently, each numpy array contains one iteration of the gas simulation with the location and size of all

the filaments present. Additionally, the header information containing variables such as the amount of

moles per filament is also converted.

10
GSL-Bench

GSL-Bench refers to the robotcs simulation with benchmarking capabilities together with the plotting of

metrics. As shown by Figure 10.1, it utilizes Pegasus Simulator [29], an Isaac Sim framework for aerial

vehicles. The article featured in Part I concisely covers the main aspects of GSL-Bench such as the included

sensors, waypoint logic and obstacle avoidance. This chapter continues by introducing two additional

algorithms and their results, details on motion planning and instructions on the usage of GSL-Bench.

Isaac Sim (Pegasus Simulator Framework)

Control Backend

Obstacle
Avoidance

Trajectory
Generation

Waypoint Logic

Nonlinear
Contoller

Vehicle API

Sensors API

thrust
control

sensor data,
vehicle state

Gas
Sensor

Wind
Sensor

Vehicle State

Benchmark
Definition

Environment
specification

of runs

Metrics

Stop
Condition

AutoGDM+

Success Rate

Gas Data

Wind data

Occupancy

Scene

Time to Source

Position

Distance to Source

GSL
Algorithm

Figure 10.1: Diagram of the GSL-Bench simulation framework. The environments generated by

AutoGDM+ are optional because GSL-Bench comes with six pre-generated environments.

10.1. Additional Algorithms
Two additional algorithms are implemented to demonstrate the capabilities of GSL-Bench; 3D E. coli

and Sniffybug. These methods are created to showcase three dimensional and multi-agent methods

respectively. Because of the key differences between all methods (including the ones presented in the

article), categories are introduced to GSL-Bench so that results can be filtered and compared accordingly,

see Table 10.1

10.1.1. 3D E. Coli
3D E. Coli is a variation on the E. coli method covered in the article. Instead of operating at the specified

search height, it includes a z-component in its movements. The maximum magnitude of this z-component

is defined by a separate surge distance surge_dist_z. To accommodate the added change in altitude,
the surge heading is expanded from only a heading to a list containing the heading and the altitude change.

46

10.2. Motion Planning 47

Table 10.1: GSL method categories and possible options

Dimensionality Obstacle Avoidance Robot Configuration Source Declaration

2D GSL-Bench Single Agent None

3D Custom Multi-Agent Location

Probability

Currently, there is no 3D obstacle avoidance to keep the algorithm from flying into obstacles. Therefore

the algorithm contains its own rudimentary ‘obstacle avoidance’ for now. With the provided occupancy

grid, it checks every goal waypoint for obstacles. The surge heading is randomized again in case of

any obstruction to the goal waypoint, even if it was surging due to an increase in sensor reading, see

Figure 10.2.

receive new
sensor reading

yes

no

current reading >
previous reading?

set surge heading
to previous

heading

randomize surge
heading

yes

no
route

obstructed / outside
environment?

return waypoint
to controller

Figure 10.2: Flow diagram of the (3D) E. coli algorithm. The dashed arrow indicates omitted steps outside

the scope of this method.

10.1.2. Sniffybug
The Sniffybug algorithm presented in this work is an adaptation of the original method presented by

Duisterhof et al. [5]. Sniffybug is a PSO method (as outlined by algorithm 1) with a preceding exploration

phase and repulsion swarming. The original Sniffybug algorithm utilizes range sensors for obstacle

avoidance. These sensor are not yet available within GSL-Bench and therefore all aspects regarding

‘on-board’ obstacle avoidance are omitted and left to the global obstacle avoidance offered by GSL-Bench.

The algorithm is also adapted to work with the ‘goto waypoint, hold’ cycle of GSL-Bench’s included controller.

This does take away some of the effectiveness of this method and will have to be improved in the future as

discussed in Chapter 12.

The exploration phase has all agents traversing the environment randomly, until one of the agents

senses the gas. From there, the agents update their velocity according to the PSO algorithm. When they

get within a distance of d_swarm of each other, they initiate repulsion swarming to avoid collision. During

testing, the swarm’s best known position is passed to the distance to source stop condition.

10.2. Motion Planning
The motion planning included with GSL-Bench is designed to simplify the implementation any new GSL-

method. The motion planning consists of a waypoint module which finds itself in the middle of the

GSL-method, the obstacle avoidance and the trajectory generation as shown in Figure 10.1. How these

modules work in practice is better visualized with the flow diagram depicted in Figure 10.3. In the case of

aerial vehicles, the waypoint module is initialized with a take off mission consisting of an initial waypoint

and one at the specified starting height. After completion of the take off mission, waypoints provided by the

GSL method are used. Every path the GSL-method wants to take is checked by the obstacle avoidance

module. If there are any obstructions, the obstacle avoidance module passes a set of waypoints as a

mission to the waypoint module and so on.

The gray boxes in Figure 10.3 contain functions performed by the the trajectory generation module

and controller. The trajectory generation module is required because the implementation of the controller

10.3. Benchmark Execution 48

set take off
waypoint mission no

yes

all mission
 waypoints traversed?

go to next
waypoint in

mission

get waypoint from
GSL method

yes

no

is the route
obstructed?

set avoidance
waypoint mission

hold for
hold_time

seconds
go to waypoint

hold for
hold_time

seconds

Figure 10.3: Flow diagram of the motion planning, the gray boxes contain the trajectory generation.

expects references for position, velocity, acceleration and jerk for every time step. Currently, a trajectory

with minimal jerk is implemented to encourage stable flight and is generated by fitting a quintic polynomial

to the start and end location, given the starting and final velocity and acceleration respectively, see

Equation 10.1. An example of the generated references is shown by Figure 10.5. Generally, the velocity

and acceleration at the start and end of the trajectory are both set to zero, but they could be set to different

values if to traverse an environment without interruptions (if the hold time is also set to 0 s).

generate
trajectory

 from start and
end waypoint

reset trajectory
index

perform control
update

yes

no

was that the last
trajectory index?

do not update
trajectory index
to initiate hold

update trajectory
index

Figure 10.4: Trajectory generation and traversal loops performed in the gray boxes in Figure 10.3

s(t) = a0 + a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5 (10.1)

10.3. Benchmark Execution
Execution of a benchmark is facilitated by an included python script that automates the process. This

section describes this process more in detail and elaborates on the simulation performance.

10.3.1. Methodology & Usage
Isaac Sim offers multiple development workflows to run your simulation1. This work uses the VSCode and

Python workflow. Pegasus Simulator is installed as an extension as described by their documentation2,

and the simulation itself is run as a standalone Python script. The benchmarking module simply automates

the execution of the standalone Python scripts. Multiple variables are used to define a benchmark: the GSL

method (script), the environments and starting positions. From these inputs a complete list of experiments

is generated to execute every script with every environment from every specified location. By default,

each experiment is repeated ten times. Afterwards, the benchmark script may execute multiple plotting

functions to visualize the requested metrics.

1https://docs.omniverse.nvidia.com/isaacsim/latest/index.html
2https://pegasussimulator.github.io/PegasusSimulator/source/setup/installation.html#installing-the-pegasus-simulator

https://docs.omniverse.nvidia.com/isaacsim/latest/index.html
https://pegasussimulator.github.io/PegasusSimulator/source/setup/installation.html#installing-the-pegasus-simulator

10.3. Benchmark Execution 49

Figure 10.5: Position (fit), velocity, acceleration and jerk references over time of a minimal jerk trajectory

in one dimension from 0m to 2.5m m generated by fitting a quintic polynomial.

10.3.2. Simulation Performance
The biggest impact on simulation performance is attributed to the sensors that are added to the Pe-

gasus Simulator framework. Nevertheless, additional computational overhead due to the gas sensor

and anemometer can be considered negligible compared to the other sensors used by the multirotor.

Figure 10.6 shows a visualization of Python’s cProfile module as a result of profiling the simulation. The

Inertial Measurement Unit (IMU), GPS and barometer require orders of magnitude more computation time

than the added sensors highlighted by the red rectangle. When running in headless mode, the simulation

runs at approximately 1.95 real time factor.

Figure 10.6: A visualization of Python’s cProfile module showing the negligible impact the gas sensor

and anemometer on the computation time (highlighted by the red rectangle to the right of barometer.py)

10.4. Additional Metrics 50

10.4. Additional Metrics
Although most of the metrics available from GSL-Bench are included in the scientific article, the visualization

of the instantaneous gas reading and sensor reading are not shown. An example of this plot is depicted

by Figure 10.7. In this figure, the gas concentration and sensor readings of ten runs of the dung beetle

algorithm are shown. It clearly visualizes the rise and decay characteristics of the metal oxide sensor,

resulting in the necessary delay compared to the instantaneous reading. Most importantly, it provides an

indication of the plume tracking performance of an algorithm.

0 50 100 150 200
0

5

10

C
on

ce
nt

ra
ito

n
[p

pm
]

0 50 100 150 200
time [s]

2

3

4

5

Se
ns

or
 re

ad
in

g
[o

hm
s]

1e4

Dung Beetle Algorithm - Gas Concentration and Sensor Reading

Figure 10.7: Instantaneous gas concentration and MOX sensor response over time from a dung beetle

algorithm, note the rise and decay of the simulated sensor.

10.5. Additional Algorithm Results
Results from the additional algorithms discussed in Section 10.1; the 3D E. coli and adapted Sniffybug

method, are presented in this section.

10.5.1. 3D E. Coli
The testing methodology of the 3D E. coli algorithm is identical to the methodology presented in the

scientific article. The method is run 10 times from a grid of 9 starting positions for all 6 environments. The
success rate and average time to source of all tested algorithms are shown in Figure 10.8 and Figure 10.9

respectively.

The 3D E. coli algorithm has a poor success rate compared to the 2D algorithms. There are several

possible explanations for these results. Extending the search space to three dimensions reduces the chance

of initial contact with the plume, thereby reducing the success rate. On the other hand, the combination of

algorithm parameters such as the surge_dist (horizontal surge distance) and surge_dist_z may also

have contributed to poor performance.

Whenever the 3D algorithm does find the source, it generally outperforms its 2D counterpart in environ-

ments that feature obstacles (environment 3 and higher). This can imply that the agent may be guided to
the source in some way because of the current implementation of the obstacle avoidance. The longer

times to the source in environment 1 and 2 reinforce this hypothesis, but may also indicate poor parameter
choice. More experimentation will be required to better understand the results.

10.5. Additional Algorithm Results 51

1 2 3 4 5 6
Environment

0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

16
.7

15
.6

7.
8

15
.6 21

.1

11
.1

10
0

0

68
.9

0

70

0

23
.3

21
.1

18
.9

18
.9 24

.4

13
.3

3.
7 6.

7

3.
3 4.
4 6.
7

1.
1

Success Rate Per Environment
E. Coli
Dung Beetle
Random Walker
3D E. coli

Figure 10.8: Success rate per environment for every single-agent method tested, including the addition of

the 3D E. coli algorithm. 3D E. coli has the lowest success rate overall, even lower than its 2D variant.

This might be explained by the extra dimension adding a too large search space.

1 2 3 4 5 6
Environment

0

25

50

75

100

125

150

175

200

225

Av
er

ag
e

tim
e

to
 so

ur
ce

 (s
) 16

0.
5

12
1

16
8

16
0.

1

13
7.

9

16
3.

4

11
6

0

10
9.

1

0

11
6.

8

0

12
9.

7

85
.1

12
1.

5

12
6.

3 14
2.

4

13
2.

7

18
0.

3

18
0.

5

13
3

13
4.

2 15
0.

2

11
3

Average Times To Source Per Environment
E. Coli Dung Beetle Random Walker 3D E. Coli

Figure 10.9: Average time to source for every single-agent method tested, including the addition of the 3D

E. coli algorithm. Interestingly, the average time to source of the 3D E. coli algorithm is generally shorter in

environments with obstacles (3, 4, 5, 6).

10.5. Additional Algorithm Results 52

10.5.2. Sniffybug
The Sniffybug algorithm was tested in environment 1 and 2 with three agents and started from the grid

spaces on the diagonal as shown by Figure 10.10. The exploration phase is clearly depicted by the random

movement of the agents. When one of the agents senses the gas plume, the seeking phase is initiated.

This is phase is characterized by the smoother tracks. At one point, the agent starting from XY=7.5,7.5

sensed higher concentrations than the agent starting at XY=3.0,3.0, resulting in a sudden change of

direction to the source location.

0 2 4 6 8 10 12 14
x [m]

0

2

4

6

8

10

12

14

y
[m

]

inlet

outlet

Sniffybug Algorithm - Ground Track
start
source

0

1

2

3

4

5

6

7

ppm

Figure 10.10: Ground tracks of the Sniffibug algorithm with agents starting at XY = 3,3; 7.5,7.5; 12,12 in

environment 1. The exploration and seeking phases of the method are clearly shown in this plot.

11
Conclusion

The lack of a widely adopted benchmark for Gas Source Localization (GSL) methods slows progress in

this challenging field of robotics. Current options do not offer a combination of photo-realism, high fidelity

gas dispersion simulation and benchmarking functionality.

This thesis presents GSL-Bench: a high fidelity gas source localization benchmarking suite. The

requirements for GSL-Bench are shaped by means of a study of literature. This study has led to a focus

on accessibility and high simulation fidelity to promote widespread adoption. GSL-Bench is implemented

with NVIDIA’s® Isaac Sim and the Pegasus Simulator framework [29] to meet these requirements. Due

to the built-in obstacle avoidance, waypoint logic and sensors one can directly concentrate their efforts

on only the GSL algorithm. However, the built-in modules can easily be omitted to keep development

flexible. High fidelity of the simulation is ensured with proper visuals and the introduction of AutoGDM+: a

fully automated environment generation pipeline relying on validated software such as GADEN for gas

dispersion simulation and OpenFOAM for CFD.

Multiple GSL algorithms are tested in six warehouse environments with increasing complexity. The

results demonstrate GSL-Bench’s ability to thoroughly test and visualize algorithm performance. Moreover,

the performance of algorithms align with other experiments from literature, further vefifying the benchmarking

suite. The GSL-Bench website1 will provide the most recent findings and host a leaderboard showcasing

results from diverse standardized test. The website will also contain instructions on how to contribute

and/or test one’s own methods.

1https://sites.google.com/view/gslbench/

53

https://sites.google.com/view/gslbench/

12
Recommendations

Chapter 11 confirms that this work has completed the research objective stated in Section 1.1. Although

the current state of the project serves as a proper basis to test GSL algorithms there are some features

that are not included yet due to time constraints. This chapter provides recommendations for future work

on GSL-Bench and AutoGDM+. Because the versatility of this work allows expansion into other types of

research, some final recommendation to broaden the scope are given as well.

12.1. Recommendations for Future Work
In future work, development of GSL-Bench and AutoGDM+ can be continued in the following ways.

Additional controller types

A non-linear controller is included with GSL-Bench. Built around this controller are the trajectory generation

and waypoint logic modules. Generally, the implementation the controller in combination with the modules

serves its purpose well. However, there are cases where this kind of implementation is suboptimal. Some

algorithms like the Sniffybug algorithm (discussed in Chapter 10) rely on their agents having a constant

velocity to prevent deadlock. This is not yet possible with the current implementation of the controller.

Therefore, additional controller types or trajectory generation modules could address these limitations.

3D obstacle avoidance

The build-in obstacle avoidance module is currently implemented in two dimensions only. The 3D E. coli

algorithm therefore employs only a rudimentary obstacle check before every move. The A∗ algorithm can

be expanded into the third dimension to enable 3D path planning.

Additional robot types

The Pegasus Simulator framework comes bundled with a multirotor vehicle. However, the majority of

research features ground-based robots such as rovers. Luckily, the Pegasus Simulator framework and

Isaac Sim already support these kinds of robots, but they still have to be implemented.

Reduction in execution time

With GSL-Bench running in headless mode the simulation runs with a real-time factor of approximately

1.95. A speed increase might be achieved by making improvements in the sensor suite. For example, the

gas sensor could work more efficiently if it were to work on a cell basis rather than a filament basis. This

goes hand in hand with the next recommendation:

Post-Processing of the gas dispersion data

The filament data generated by AutoGDM+ is only converted from the binary to numpy arrays, each

containing a list of filaments. The gas sensor has to check for each filament if it is within the limit distance

for each iteration. With increasing amount of filaments in a scene the simulation noticeably slows down.

This can be solved by post-processing the filament data by assigning them to cells in space as done by

Odeja et al. in [26]. Or the gas concentration can already be calculated for different cells in space, like is

done with the wind data to omit the filament calculation completely. This will reduce the spacial resolution

however.

54

12.2. Recommendations to Broaden the Scope 55

More extensive mesh sensitivity analysis

The mesh sensitivity analysis in Section 9.2 is largely inconclusive because the wind velocity data does

not seem to converge to a certain value as expected. This could be explained by the large steps in cell

count, because a reduction in cell size of 50% increases the amount of cells by a factor 8. A trend in the

wind data may reveal itself with more data from more incremental steps in cell count.

Additional environment types

AutoGDM+ is currently capable of generating three types of indoor warehouse environments. Firstly, indoor

environments types such as offices or homes would be a great addition. Moreover, the ability to generate

non-rectangular indoor environments would increase their complexity. Besides the indoor environments,

outdoor environments also play a large part in GSL research.

12.2. Recommendations to Broaden the Scope
Although GSL-Bench and AutoGDM+ are currently developed for their intended purpose, they might prove

useful for other applications as well. The following uses would require little adaptation to the presented

work:

Machine Learning Environment

Isaac Sim provides an extension for reinforcement learning training and inference: Isaac Gym1. This way,

training RL agents can be run in parallel for a significant decrease in computation time.

Manipulation and end effector research

Manipulation is often simulated with Isaac Sim. Because the physics are accelerated using the GPU they

can be of high fidelity. Combining UAV’s with manipulation in Isaac Sim therefore require little alterations

to the simulation of GSL-Bench.

Wind-only generation

Other research might only be interested in the wind data produced by AutoGDM+. Currently, the gas

dispersion simulation is required to generate the wind data. Because using the gas dispersion simulation

requires extra steps during the installation process and runtime, a version of AutoGDM+ that only generates

the wind data without the gas dispersion simulation would be a welcome addition.

1https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_gym_isaac_gym.html

https://docs.omniverse.nvidia.com/isaacsim/latest/tutorial_gym_isaac_gym.html

References

[1] B. Lorena Villarreal et al. “Synthesis of odor tracking algorithms with genetic programming”. In:

Neurocomputing 175 (2016), pp. 1019–1032. DOI: 10.1016/j.neucom.2015.09.108. URL: http:
//dx.doi.org/10.1016/j.neucom.2015.09.108.

[2] Chiara Ercolani et al. “3D odor source localization using a micro aerial vehicle: System design

and performance evaluation”. In: IEEE International Conference on Intelligent Robots and Systems

(2020), pp. 6194–6200. DOI: 10.1109/IROS45743.2020.9341501.

[3] Shuo Pang et al. “Chemical plume source localization”. In: IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 36.5 (2006), pp. 1068–1080. DOI: 10.1109/TSMCB.2006.874689.

[4] C. D. Jones. “On the structure of instantaneous plumes in the atmosphere”. In: Journal of Hazardous

Materials 7.2 (1983), pp. 87–112. DOI: 10.1016/0304-3894(83)80001-6.

[5] Bardienus P. Duisterhof et al. “Sniffy Bug: A Fully Autonomous Swarm of Gas-Seeking Nano

Quadcopters in Cluttered Environments”. In: IEEE International Conference on Intelligent Robots

and Systems (2021), pp. 9099–9106. DOI: 10.1109/IROS51168.2021.9636217.

[6] H. Ishida et al. Odour-source localization system mimicking behaviour of silkworm moth. 1995. DOI:

10.1016/0924-4247(95)01220-6.

[7] R. Andrew Russell et al. “A comparison of reactive robot chemotaxis algorithms”. In: Robotics and

Autonomous Systems 45.2 (2003), pp. 83–97. DOI: 10.1016/S0921-8890(03)00120-9.

[8] Wisnu Jatmiko et al. “AMobile Robots PSO-based for Odor Source Localization in Dynamic Advection-

Diffusion Environment”. In: International Conference on Intelligent Robots and Systems (2006),

pp. 4527–4532.

[9] Xiaohui Hu et al. “Adaptive particle swarm optimization: Detection and response to dynamic systems”.

In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 2 (2002), pp. 1666–

1670. DOI: 10.1109/CEC.2002.1004492.

[10] Fei Li et al. “Probability-PSO algorithm for multi-robot based odor source localization in ventilated

indoor environments”. In: Lecture Notes in Computer Science 5314 LNAI.PART 1 (2008), pp. 1206–

1215. DOI: 10.1007/978-3-540-88513-9{_}128.

[11] Joseph R. Bourne et al. “Coordinated Bayesian-Based Bioinspired Plume Source Term Estimation

and Source Seeking for Mobile Robots”. In: IEEE Transactions on Robotics 35.4 (2019), pp. 967–986.

DOI: 10.1109/TRO.2019.2912520.

[12] Yaqub A Prabowo et al. “Integration of Bayesian Inference and Anemotaxis for Robotics Gas Source

Localization in a Large Cluttered Outdoor Environment”. In: IEEE Access PP (2023), p. 1. DOI:

10.1109/ACCESS.2023.3238470.

[13] Jay A. Farrell et al. “Plume Mapping via Hidden Markov Methods”. In: IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics 33.6 (2003), pp. 850–863. DOI: 10.1109/TSMCB.2003.
810873.

[14] Jian Long Wei et al. “Multi-Robot gas-source localization based on reinforcement learning”. In: 2012

IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest

(2012), pp. 1440–1445. DOI: 10.1109/ROBIO.2012.6491171.

[15] G. C.H.E. de Croon et al. “Evolutionary robotics approach to odor source localization”. In: Neu-

rocomputing 121 (2013), pp. 481–497. DOI: 10 . 1016 / j . neucom . 2013 . 05 . 028. URL: http :
//dx.doi.org/10.1016/j.neucom.2013.05.028.

56

https://doi.org/10.1016/j.neucom.2015.09.108
http://dx.doi.org/10.1016/j.neucom.2015.09.108
http://dx.doi.org/10.1016/j.neucom.2015.09.108
https://doi.org/10.1109/IROS45743.2020.9341501
https://doi.org/10.1109/TSMCB.2006.874689
https://doi.org/10.1016/0304-3894(83)80001-6
https://doi.org/10.1109/IROS51168.2021.9636217
https://doi.org/10.1016/0924-4247(95)01220-6
https://doi.org/10.1016/S0921-8890(03)00120-9
https://doi.org/10.1109/CEC.2002.1004492
https://doi.org/10.1007/978-3-540-88513-9{_}128
https://doi.org/10.1109/TRO.2019.2912520
https://doi.org/10.1109/ACCESS.2023.3238470
https://doi.org/10.1109/TSMCB.2003.810873
https://doi.org/10.1109/TSMCB.2003.810873
https://doi.org/10.1109/ROBIO.2012.6491171
https://doi.org/10.1016/j.neucom.2013.05.028
http://dx.doi.org/10.1016/j.neucom.2013.05.028
http://dx.doi.org/10.1016/j.neucom.2013.05.028

References 57

[16] Cheng Song et al. “Collaborative infotaxis: Searching for a signal-emitting source based on particle

filter and Gaussian fitting”. In: Robotics and Autonomous Systems 125 (2020), p. 103414. DOI:

10.1016/j.robot.2019.103414. URL: https://doi.org/10.1016/j.robot.2019.103414.

[17] Kumar Gaurav et al. “Single and multiple odor source localization using hybrid nature-inspired

algorithm”. In: Sadhana - Academy Proceedings in Engineering Sciences 45.1 (2020), pp. 1–19.

DOI: 10.1007/s12046-020-1318-3. URL: https://doi.org/10.1007/s12046-020-1318-3.

[18] Mohamed Awadalla et al. “3D framework combining CFD and MATLAB techniques for plume source

localization research”. In:Building and Environment 70 (2013), pp. 10–19. DOI: 10.1016/j.buildenv.
2013.07.021. URL: http://dx.doi.org/10.1016/j.buildenv.2013.07.021.

[19] Ali Marjovi et al. “Optimal spatial formation of swarm robotic gas sensors in odor plume finding”. In:

Auton Robot 35 (2013), pp. 93–109. DOI: 10.1007/s10514-013-9336-1.

[20] Gabriele Ferri et al. “Mapping multiple gas/odor sources in an uncontrolled indoor environment using

a Bayesian occupancy grid mapping based method”. In: Robotics and Autonomous Systems 59.11

(2011), pp. 988–1000. DOI: 10.1016/j.robot.2011.06.007. URL: http://dx.doi.org/10.1016/
j.robot.2011.06.007.

[21] Victor Hernandez Bennetts et al. “Mobile robots for localizing gas emission sources on landfill sites:

Is bio-inspiration the way to go?” In: Frontiers in Neuroengineering 4.JANUARY (2012), pp. 1–12.

DOI: 10.3389/fneng.2011.00020.

[22] Faezeh Rahbar et al. “A 3-D bio-inspired odor source localization and its validation in realistic

environmental conditions”. In: IEEE International Conference on Intelligent Robots and Systems

2017-Septe (2017), pp. 3983–3989. DOI: 10.1109/IROS.2017.8206252.

[23] Manolis Savva et al. “Habitat: A platform for embodied AI research”. In: Proceedings of the IEEE

International Conference on Computer Vision 2019-Octob (2019), pp. 9338–9346. DOI: 10.1109/
ICCV.2019.00943.

[24] Winter Guerra et al. “FlightGoggles: A Modular Framework for Photorealistic Camera, Exteroceptive

Sensor, and Dynamics Simulation”. In: International Conference on Intelligent Robots and Systems

(2019). DOI: 10.1109/IROS40897.2019.8968116. URL: http://arxiv.org/abs/1905.11377%
0Ahttp://dx.doi.org/10.1109/IROS40897.2019.8968116.

[25] Javier Monroy et al. “GADEN: A 3D gas dispersion simulator for mobile robot olfaction in realistic

environments”. In: Sensors (Switzerland) 17.7 (2017), pp. 1–16. DOI: 10.3390/s17071479.

[26] Pepe Ojeda et al. “A simulation framework for the integration of artificial olfaction into multi-sensor

mobile robots”. In: Sensors 21.6 (2021), pp. 1–13. DOI: 10.3390/s21062041.

[27] G Cabrita et al. “PlumeSim-Player/Stage Plume Simulator”. In: ICRA Workshop on Networked and

Mobile Robot Olfaction in Natural, Dynamic Environments (2010). URL: papers://15a17785-8386-
4a79-b6ae-1c6e2d0ed658/Paper/p5861.

[28] Mario Coppola et al. “Provable self-organizing pattern formation by a swarm of robots with limited

knowledge”. In: Swarm Intelligence 13.1 (2019), pp. 59–94. DOI: 10.1007/s11721-019-00163-0.
URL: https://doi.org/10.1007/s11721-019-00163-0.

[29] Marcelo Jacinto et al. “Pegasus Simulator: An Isaac Sim Framework for Multiple Aerial Vehicles

Simulation”. In: (July 2023). URL: http://arxiv.org/abs/2307.05263.

[30] Tao Jing et al. “Recent Progress and Trend of Robot Odor Source Localization”. In: IEEJ Transactions

on Electrical and Electronic Engineering 16.7 (2021), pp. 938–953. DOI: 10.1002/tee.23364.

[31] Xin xing Chen et al. “Odor source localization algorithms on mobile robots: A review and future

outlook”. In: Robotics and Autonomous Systems 112 (2019), pp. 123–136. DOI: 10.1016/j.robot.
2018.11.014. URL: https://doi.org/10.1016/j.robot.2018.11.014.

[32] Gideon Kowadlo et al. “Robot odor localization: A taxonomy and survey”. In: International Journal of

Robotics Research 27.8 (2008), pp. 869–894. DOI: 10.1177/0278364908095118.

https://doi.org/10.1016/j.robot.2019.103414
https://doi.org/10.1016/j.robot.2019.103414
https://doi.org/10.1007/s12046-020-1318-3
https://doi.org/10.1007/s12046-020-1318-3
https://doi.org/10.1016/j.buildenv.2013.07.021
https://doi.org/10.1016/j.buildenv.2013.07.021
http://dx.doi.org/10.1016/j.buildenv.2013.07.021
https://doi.org/10.1007/s10514-013-9336-1
https://doi.org/10.1016/j.robot.2011.06.007
http://dx.doi.org/10.1016/j.robot.2011.06.007
http://dx.doi.org/10.1016/j.robot.2011.06.007
https://doi.org/10.3389/fneng.2011.00020
https://doi.org/10.1109/IROS.2017.8206252
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/ICCV.2019.00943
https://doi.org/10.1109/IROS40897.2019.8968116
http://arxiv.org/abs/1905.11377%0Ahttp://dx.doi.org/10.1109/IROS40897.2019.8968116
http://arxiv.org/abs/1905.11377%0Ahttp://dx.doi.org/10.1109/IROS40897.2019.8968116
https://doi.org/10.3390/s17071479
https://doi.org/10.3390/s21062041
papers://15a17785-8386-4a79-b6ae-1c6e2d0ed658/Paper/p5861
papers://15a17785-8386-4a79-b6ae-1c6e2d0ed658/Paper/p5861
https://doi.org/10.1007/s11721-019-00163-0
https://doi.org/10.1007/s11721-019-00163-0
http://arxiv.org/abs/2307.05263
https://doi.org/10.1002/tee.23364
https://doi.org/10.1016/j.robot.2018.11.014
https://doi.org/10.1016/j.robot.2018.11.014
https://doi.org/10.1016/j.robot.2018.11.014
https://doi.org/10.1177/0278364908095118

References 58

[33] Roberto Rozas et al. “Artificial Smell Detection for Robotic Navigation”. In: Advanced Robotics 4.1

(1991), pp. 1730–1733. DOI: 10.1109/ICAR.1991.240354.

[34] Nicole Voges et al. “Reactive Searching and Infotaxis in Odor Source Localization”. In: PLoS

Computational Biology 10.10 (2014). DOI: 10.1371/journal.pcbi.1003861.

[35] Ziqi Chen et al. “Underground Odor Source Localization Based on a Variation of Lower Organism

Search Behavior”. In: IEEE Sensors Journal 17.18 (2017), pp. 5963–5970. DOI: 10.1109/JSEN.
2017.2729558.

[36] R Kanzaki et al. “Self-Generated Zigzag Turning of Bombyx-Mori Males during Pheromone-Mediated

Upwind Walking”. In: Zoological Science 9.3 (1992), pp. 515–527.

[37] Erol Şahin et al. “Swarm Robotics”. In: Swarm Intelligence (2008), pp. 87–100. DOI: 10.1007/978-
3-540-74089-6{_}3.

[38] V. Genovese et al. “Self organizing behavior and swarm intelligence in a pack of mobile miniature

robots in search of pollutants”. In: IEEE International Conference on Intelligent Robots and Systems

3 (1992), pp. 1575–1582. DOI: 10.1109/IROS.1992.594225.

[39] Yuli Zhang et al. “A Virtual Physics-based Approach to Chemical Source Localization using Mobile

Robots”. In: Applied Mechanics and Materials 263-266 (2013), pp. 674–679. DOI: 10.4028/www.
scientific.net/AMM.263-266.674.

[40] Jorge M. Soares et al. “A distributed formation-based odor source localization algorithm - Design,

implementation, and wind tunnel evaluation”. In: Proceedings - IEEE International Conference on

Robotics and Automation 2015-June.June (2015), pp. 1830–1836. DOI: 10.1109/ICRA.2015.
7139436.

[41] James Kennedy et al. Swarm Intelligence. Morgan Kaufmann Publishers, 2001.

[42] Upma Jain et al. “Multiple odor source localization using diverse-PSO and group-based strategies

in an unknown environment”. In: Journal of Computational Science 34 (2019), pp. 33–47. DOI:

10.1016/j.jocs.2019.04.008. URL: https://doi.org/10.1016/j.jocs.2019.04.008.

[43] James Kennedy et al. “Particle SwarmOptimization”. In: International Conference on Neural Networks

(1995), pp. 1942–1948. DOI: 10.1007/978-3-319-46173-1{_}2.

[44] Tim Blackwell et al. “Multi-swarm optimization in dynamic environments”. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 3005 (2004), pp. 489–500. DOI: 10.1007/978-3-540-24653-4{_}50.

[45] Wisnu Jatmiko et al. “A PSO-based mobile robot for odor source localization in dynamic advection-

diffusion with obstacles environment: theory, simulation and measurement”. In: IEEE Computational

Intelligence Magazine (2007), pp. 37–51.

[46] K. N. Krishnanand et al. “Detection of multiple source locations using a glowworm metaphor with

applications to collective robotics”. In: Proceedings - 2005 IEEE Swarm Intelligence Symposium,

SIS 2005 2005 (2005), pp. 84–91. DOI: 10.1109/SIS.2005.1501606.

[47] T Kalaiselvi et al. “A Review on Glowworm Swarm Optimization”. In: International Journal of Informa-

tion Technology (IJIT) 3.2 (2015), pp. 49–56. URL: www.ijitjournal.org.

[48] Yuli Zhang et al. “Localization of multiple odor sources using modified glowworm swarm optimization

with collective robots”. In: Proceedings of the 30th Chinese Control Conference, CCC 2011 (2011),

pp. 1899–1904.

[49] ThomasWiedemann et al. “Model-based gas source localization strategy for a cooperative multi-robot

system—A probabilistic approach and experimental validation incorporating physical knowledge

and model uncertainties”. In: Robotics and Autonomous Systems 118 (2019), pp. 66–79. DOI:

10.1016/j.robot.2019.03.014. URL: https://doi.org/10.1016/j.robot.2019.03.014.

[50] Massimo Vergassola et al. “’Infotaxis’ as a strategy for searching without gradients”. In: Nature

445.7126 (2007), pp. 406–409. DOI: 10.1038/nature05464.

https://doi.org/10.1109/ICAR.1991.240354
https://doi.org/10.1371/journal.pcbi.1003861
https://doi.org/10.1109/JSEN.2017.2729558
https://doi.org/10.1109/JSEN.2017.2729558
https://doi.org/10.1007/978-3-540-74089-6{_}3
https://doi.org/10.1007/978-3-540-74089-6{_}3
https://doi.org/10.1109/IROS.1992.594225
https://doi.org/10.4028/www.scientific.net/AMM.263-266.674
https://doi.org/10.4028/www.scientific.net/AMM.263-266.674
https://doi.org/10.1109/ICRA.2015.7139436
https://doi.org/10.1109/ICRA.2015.7139436
https://doi.org/10.1016/j.jocs.2019.04.008
https://doi.org/10.1016/j.jocs.2019.04.008
https://doi.org/10.1007/978-3-319-46173-1{_}2
https://doi.org/10.1007/978-3-540-24653-4{_}50
https://doi.org/10.1109/SIS.2005.1501606
www.ijitjournal.org
https://doi.org/10.1016/j.robot.2019.03.014
https://doi.org/10.1016/j.robot.2019.03.014
https://doi.org/10.1038/nature05464

References 59

[51] Michael Hutchinson et al. “Entrotaxis as a strategy for autonomous search and source reconstruction

in turbulent conditions”. In: Information Fusion 42.October 2017 (2018), pp. 179–189. DOI: 10.1016/
j.inffus.2017.10.009. URL: https://doi.org/10.1016/j.inffus.2017.10.009.

[52] Christian Bilgera et al. “Application of convolutional long short-termmemory neural networks to signals

collected from a sensor network for autonomous gas source localization in outdoor environments”.

In: Sensors (Switzerland) 18.12 (2018). DOI: 10.3390/s18124484.

[53] Hyunseung Kim et al. “Source localization for hazardous material release in an outdoor chemical

plant via a combination of LSTM-RNN and CFD simulation”. In: Computers and Chemical Engineering

125 (2019), pp. 476–489. DOI: 10.1016/j.compchemeng.2019.03.012. URL: https://doi.org/
10.1016/j.compchemeng.2019.03.012.

[54] William John Thrift et al. “Surface-enhanced raman scattering-based odor compass: Locating Multiple

Chemical Sources and Pathogens”. In: ACS Sensors 4.9 (2019), pp. 2311–2319. DOI: 10.1021/
acssensors.9b00809.

[55] Hangkai Hu et al. “Plume Tracing via Model-Free Reinforcement Learning Method”. In: IEEE Trans-

actions on Neural Networks and Learning Systems 30.8 (2019), pp. 2515–2527. DOI: 10.1109/
TNNLS.2018.2885374.

[56] Thomas Wiedemann et al. “Robotic information gathering with reinforcement learning assisted by

domain knowledge: An application to gas source localization”. In: IEEE Access 9 (2021), pp. 13159–

13172. DOI: 10.1109/ACCESS.2021.3052024.

[57] Yong Zhao et al. “A deep reinforcement learning based searching method for source localization”.

In: Information Sciences 588 (2022), pp. 67–81. DOI: 10.1016/j.ins.2021.12.041. URL: https:
//doi.org/10.1016/j.ins.2021.12.041.

[58] Stephane Doncieux et al. “Evolutionary robotics: What, why, and where to”. In: Frontiers Robotics AI

2.MAR (2015), pp. 1–18. DOI: 10.3389/frobt.2015.00004.

[59] João Macedo et al. “A comparative study of bio-inspired odour source localisation strategies from

the state-action perspective”. In: Sensors (Switzerland) 19.10 (2019), pp. 1–34. DOI: 10.3390/
s19102231.

[60] B Gerkey et al. “The player/stage project: Tools for multi-robot and distributed sensor systems”. In:

Proc. of International Conference on Advanced Robotics (ICAR 2003) Icar (2003), pp. 317–323.

[61] Olivier Michel. “WebotsTM: Professional Mobile Robot Simulation”. In: 1.1 (2004), pp. 39–42. URL:

http://arxiv.org/abs/cs/0412052.

[62] Eric Rohmer et al. “V-REP: A versatile and scalable robot simulation framework”. In: IEEE International

Conference on Intelligent Robots and Systems (2013), pp. 1321–1326. DOI: 10.1109/IROS.2013.
6696520.

[63] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In: CoRL (2017), pp. 1–16.

URL: http://arxiv.org/abs/1711.03938.

[64] Epic Games. Unreal Engine. 2022. URL: https://www.unrealengine.com/.

[65] Shital Shah et al. “AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles”.

In: Springer Proceedings in Advanced Robotics 5 (2018), pp. 621–635. DOI: 10.1007/978-3-319-
67361-5{_}40.

[66] Nathan Koenig et al. “Design and use paradigms for Gazebo, an open-source multi-robot simulator”.

In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 3 (2004),

pp. 2149–2154. DOI: 10.1109/iros.2004.1389727.

[67] Serena Ivaldi et al. “Tools for dynamics simulation of robots: a survey based on user feedback”. In:

(2014), pp. 1–15. URL: http://arxiv.org/abs/1402.7050.

[68] Morgan Quigley et al. “ROS: an open-source Robot Operating System”. In: IEEE International

Conference on Robotics and Automation (2009). DOI: 10.1109/IECON.2015.7392843.

https://doi.org/10.1016/j.inffus.2017.10.009
https://doi.org/10.1016/j.inffus.2017.10.009
https://doi.org/10.1016/j.inffus.2017.10.009
https://doi.org/10.3390/s18124484
https://doi.org/10.1016/j.compchemeng.2019.03.012
https://doi.org/10.1016/j.compchemeng.2019.03.012
https://doi.org/10.1016/j.compchemeng.2019.03.012
https://doi.org/10.1021/acssensors.9b00809
https://doi.org/10.1021/acssensors.9b00809
https://doi.org/10.1109/TNNLS.2018.2885374
https://doi.org/10.1109/TNNLS.2018.2885374
https://doi.org/10.1109/ACCESS.2021.3052024
https://doi.org/10.1016/j.ins.2021.12.041
https://doi.org/10.1016/j.ins.2021.12.041
https://doi.org/10.1016/j.ins.2021.12.041
https://doi.org/10.3389/frobt.2015.00004
https://doi.org/10.3390/s19102231
https://doi.org/10.3390/s19102231
http://arxiv.org/abs/cs/0412052
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/IROS.2013.6696520
http://arxiv.org/abs/1711.03938
https://www.unrealengine.com/
https://doi.org/10.1007/978-3-319-67361-5{_}40
https://doi.org/10.1007/978-3-319-67361-5{_}40
https://doi.org/10.1109/iros.2004.1389727
http://arxiv.org/abs/1402.7050
https://doi.org/10.1109/IECON.2015.7392843

References 60

[69] Jeongseok Lee et al. “DART: Dynamic Animation and Robotics Toolkit”. In: The Journal of Open

Source Software 3.22 (2018), p. 500. DOI: 10.21105/joss.00500.

[70] Dongho Kang. SimBenchmark. 2021. URL: https://github.com/leggedrobotics/SimBenchmark.

[71] Marian Körber et al. “Comparing Popular Simulation Environments in the Scope of Robotics and

Reinforcement Learning”. In: (2021). URL: http://arxiv.org/abs/2103.04616.

[72] Woong Gyu La et al. “DeepSim: A Reinforcement Learning Environment Build Toolkit for ROS and

Gazebo”. In: (2022), pp. 1–10. URL: http://arxiv.org/abs/2205.08034.

[73] Yunlong Song et al. “Flightmare: A Flexible Quadrotor Simulator”. In: Conference on Robot Learning

4 (2020), pp. 1147–1157. URL: http://arxiv.org/abs/2009.00563.

[74] Arthur Juliani et al. “Unity: A General Platform for Intelligent Agents”. In: (2018), pp. 1–28. URL:

http://arxiv.org/abs/1809.02627.

[75] Mario Coppola. “Automatic Design of Verifiable Robot Swarms”. PhD thesis. Delft University of

Technology, 2021. DOI: 10.4233/uuid. URL: https://doi.org/10.4233/uuid:b6ad7ddd-c660-
4aab-8277-65f7a22a4a52.

[76] NVIDIA Corporation. Isaac Sim. 2023. URL: https://developer.nvidia.com/isaac-sim.

[77] Jay A. Farrell et al. “Filament-based atmospheric dispersion model to achieve short time-scale

structure of odor plumes”. In: Environmental Fluid Mechanics 2.1-2 (2002), pp. 143–169. DOI:

10.1023/A:1016283702837.

[78] D. R. Webster et al. “Laser-Induced Fluorescence Measurements of a Turbulent Plume”. In: Journal of

Engineering Mechanics 129.10 (2003), pp. 1130–1137. DOI: 10.1061/(asce)0733-9399(2003)129:
10(1130).

[79] N. S. Holmes et al. “A review of dispersion modelling and its application to the dispersion of particles:

An overview of different dispersion models available”. In: Atmospheric Environment 40.30 (2006),

pp. 5902–5928. DOI: 10.1016/j.atmosenv.2006.06.003.

[80] Daewon W. Byun et al. “Eulerian Dispersion Models”. In: AIR QUALITY MODELING - Theories,

Methodologies, Computational Techniques, and Available Databases and Software. Vol. 1. En-

vioComp Institute and Air & Waste Management Association, 2003. Chap. 10, pp. 213–291. DOI:

10.1007/978-1-4757-4465-1{_}6.

[81] J. Murlis et al. “Odor plumes and how insects use them”. In: Annual review of entomology. Vol. 37

86 (1992), pp. 505–532. DOI: 10.1146/annurev.ento.37.1.505.

[82] Eduardo Martin Moraud et al. “Effectiveness and robustness of robot infotaxis for searching in dilute

conditions”. In: Frontiers in Neurorobotics 4.MAR (2010), pp. 1–8. DOI: 10.3389/fnbot.2010.00001.

[83] Qing Hao Meng et al. “Collective odor source estimation and search in time-variant airflow environ-

ments using mobile robots”. In: Sensors 11.11 (2011), pp. 10415–10443. DOI: 10.3390/s111110415.

[84] Gabriele Ferri et al. “SPIRAL: A novel biologically-inspired algorithm for gas/odor source localization

in an indoor environment with no strong airflow”. In: Robotics and Autonomous Systems 57.4 (2009),

pp. 393–402. DOI: 10.1016/j.robot.2008.07.004. URL: http://dx.doi.org/10.1016/j.robot.
2008.07.004.

[85] Patrick P. Neumann et al. “Gas source localization with a micro-drone using bio-inspired and particle

filter-based algorithms”. In: Advanced Robotics 27.9 (2013), pp. 725–738. DOI: 10.1080/01691864.
2013.779052.

[86] Zeqi Li et al. “Assessment of different plume-tracing algorithms for indoor plumes”. In: Building and

Environment 173.October 2019 (2020), p. 106746. DOI: 10.1016/j.buildenv.2020.106746. URL:
https://doi.org/10.1016/j.buildenv.2020.106746.

[87] Alejandro Pequeno-Zurro et al. “A Chemosensory Navigation Model Inspired by the On/Off Neural

Processing Mechanism in Cockroaches”. In: IEEE Transactions on Medical Robotics and Bionics

2.3 (2020), pp. 338–346. DOI: 10.1109/TMRB.2020.3007948.

https://doi.org/10.21105/joss.00500
https://github.com/leggedrobotics/SimBenchmark
http://arxiv.org/abs/2103.04616
http://arxiv.org/abs/2205.08034
http://arxiv.org/abs/2009.00563
http://arxiv.org/abs/1809.02627
https://doi.org/10.4233/uuid
https://doi.org/10.4233/uuid:b6ad7ddd-c660-4aab-8277-65f7a22a4a52
https://doi.org/10.4233/uuid:b6ad7ddd-c660-4aab-8277-65f7a22a4a52
https://developer.nvidia.com/isaac-sim
https://doi.org/10.1023/A:1016283702837
https://doi.org/10.1061/(asce)0733-9399(2003)129:10(1130)
https://doi.org/10.1061/(asce)0733-9399(2003)129:10(1130)
https://doi.org/10.1016/j.atmosenv.2006.06.003
https://doi.org/10.1007/978-1-4757-4465-1{_}6
https://doi.org/10.1146/annurev.ento.37.1.505
https://doi.org/10.3389/fnbot.2010.00001
https://doi.org/10.3390/s111110415
https://doi.org/10.1016/j.robot.2008.07.004
http://dx.doi.org/10.1016/j.robot.2008.07.004
http://dx.doi.org/10.1016/j.robot.2008.07.004
https://doi.org/10.1080/01691864.2013.779052
https://doi.org/10.1080/01691864.2013.779052
https://doi.org/10.1016/j.buildenv.2020.106746
https://doi.org/10.1016/j.buildenv.2020.106746
https://doi.org/10.1109/TMRB.2020.3007948

A
Useful Links

This appendix contains several useful links for reference:

• GSL-Bench website: https://sites.google.com/view/gslbench/

• GSL-Bench video: https://youtu.be/kZa48WXf_1w?si=GWGlhjDF6Q4d2KKO

• AutoGDM+ Github: https://github.com/tudelft/autoGDMplus

61

https://sites.google.com/view/gslbench/
https://youtu.be/kZa48WXf_1w?si=GWGlhjDF6Q4d2KKO
https://github.com/tudelft/autoGDMplus

	List of Figures
	List of Tables
	Introduction
	Research Objective
	Thesis Structure

	I Scientific Article
	GSL-Bench: High Fidelity Gas Source Localization Benchmarking
	Introduction
	Related Work
	Methodology
	Results
	Conclusion

	II Literature Review
	Introduction
	Gas Source Localization Methods
	Bio-Inspired GSL Methods
	Multi-Agent GSL Methods
	Probabilistic GSL Methods
	Machine Learning GSL Methods
	Method Related Simulator Requirements
	Method Comparisons in Literature

	Robot Simulation Environments
	General-Purpose Simulators
	Gas Dispersion Simulation
	Gas Sensor Simulation
	GSL Specific Simulators
	Conclusion and Discussion on Simulation

	Real World Experimentation
	Current State of Experimentation
	Experimentation Trends
	Discussion on Future Experimentation

	Performance Metrics
	Successful Runs
	Search Time & Steps
	Distance & Movement Overhead
	Trajectory
	Localization Accuracy & Error
	Conclusion and Discussion on Performance Metrics

	Conclusion and Discussion

	III Additional Results & Closure
	AutoGDM+
	Layout Generator
	Wind Data Generation
	Gas Data Generation

	GSL-Bench
	Additional Algorithms
	Motion Planning
	Benchmark Execution
	Additional Metrics
	Additional Algorithm Results

	Conclusion
	Recommendations
	Recommendations for Future Work
	Recommendations to Broaden the Scope

	References
	Useful Links

