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Abstract—The potential of proton therapy to improve the conformity of the delivered dose to the tumor volume
is currently limited by range uncertainties. Injectable superheated nanodroplets have recently been proposed for
ultrasound-based in vivo range verification, as these vaporize into echogenic microbubbles on proton irradiation.
In previous studies, offline ultrasound images of phantoms with dispersed nanodroplets were acquired after irra-
diation, relating the induced vaporization profiles to the proton range. However, the aforementioned method did
not enable the counting of individual vaporization events, and offline imaging cannot provide real-time feedback.
In this study, we overcame these limitations using high-frame-rate ultrasound imaging with a linear array during
proton irradiation of phantoms with dispersed perfluorobutane nanodroplets at 37˚C and 50˚C. Differential
image analysis of subsequent frames allowed us to count individual vaporization events and to localize them with
a resolution beyond the ultrasound diffraction limit, enabling spatial and temporal quantification of the interac-
tion between ionizing radiation and nanodroplets. Vaporization maps were found to accurately correlate with
the stopping distribution of protons (at 50˚C) or secondary particles (at both temperatures). Furthermore, a lin-
ear relationship between the vaporization count and the number of incoming protons was observed. These results
indicate the potential of real-time high-frame-rate contrast-enhanced ultrasound imaging for proton range verifi-
cation and dosimetry. (E-mail: g.colladolara@erasmusmc.nl) © 2021 The Author(s). Published by Elsevier Inc.
on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Proton therapy is emerging as an advanced radiation

therapy modality for tumors in critical locations

(Grau et al. 2020). Because protons deposit most of their

dose in a narrow (few millimeters wide) peak at the end

of their range, called the Bragg peak, followed by a sharp

distal dose fall-off, the spatial dose distribution can be

better conformed to the tumor volume than in
ddress correspondence to: Gonzalo Collado-Lara, Erasmus
e23.02, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
: g.colladolara@erasmusmc.nl
onzalo Collado-Lara and Sophie V. Heymans contributed
to this work.
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conventional radiotherapy, thereby improving healthy

tissue sparing (Parodi and Polf 2018). In practice, how-

ever, the physical benefits of protons cannot be fully

exploited because deviations from the planned dose dis-

tribution may arise from different sources of range

uncertainty, including treatment planning, setup errors

and patient and organ motion (Paganetti 2012;

Knopf and Lomax 2013). Therefore, substantial safety

margins are included in the treatment plan (Paga-

netti 2012; Polf and Parodi 2015), reducing the potential

improvement compared with conventional radiotherapy.

The benefits of proton therapy could be maximized if

deviations during the treatment were detected and
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corrected through real-time spatial verification, espe-

cially in moving targets (Kubiak 2016;

Meijers et al. 2020; Raldow et al. 2020). Although sev-

eral in vivo range verification techniques are being inves-

tigated (Parodi et al. 2007; Zhu et al. 2011;

Lehrack et al. 2017; Xie et al. 2017;

Hickling et al. 2018; Patch et al. 2021), none of them has

been widely adopted in clinical practice.

The detection of charged particles, among which

are protons, can be achieved in superheated liquids

(D’Errico 2001; Felizardo et al. 2013;

Miller et al. 2018), which can remain in a metastable liq-

uid phase above their boiling point owing to the removal

of heterogeneous nucleation sites (Apfel 1979). The only

mechanism remaining for vaporization is homogeneous

nucleation, occurring when a gas embryo grows larger

than a critical size (Mountford and Borden 2016). Conse-

quently, a charged particle can induce vaporization of

the superheated liquid if it deposits a sufficient amount

of energy to nucleate such a critical embryo within a

length comparable to the embryo size (D’Errico 2001).

Accordingly, the condition for vaporization of super-

heated liquids depends on the density of energy depos-

ited by the charged particle per unit length, namely, its

linear energy transfer (LET). Furthermore, the energy

necessary to nucleate a critical embryo decreases with

the temperature excess above the liquid boiling point,

that is, the degree of superheat (D’Errico 2001).

Superheated nanodroplets have been introduced as

a novel injectable ultrasound contrast agent capable of

turning into echogenic microbubbles on controlled

energy deposition, for example, acoustic or thermal

(Sheeran et al. 2012; Shimizu et al. 2012;

Dove et al. 2014; Lin et al. 2017; Toumia et al. 2019). It

was only recently reported that the phase-change mecha-

nism holds for superheated encapsulated nanodroplets

irradiated by protons (Carlier et al. 2020;

Heymans et al. 2021). The combination of the longstand-

ing knowledge of radiation-induced nucleation with the

recent developments in producing stable, injectable

nanodroplets opens the door to ultrasound-based detec-

tion and monitoring of ionizing radiation in vivo.

Previous studies of nanodroplet vaporization using

a passively scattered proton beam have demonstrated a

sub-millimeter reproducibility of the shift between the

proton range and vaporization profiles derived from the

ultrasound gray value or attenuation coefficient

(Carlier et al. 2020; Heymans et al. 2021). However, off-

line ultrasound imaging does not enable real-time verifi-

cation and, potentially, compensation of deviations

during treatment delivery. Moreover, those studies

revealed the presence of acoustic shadowing and image

saturation, which led to a complex relation between

ultrasound contrast and proton fluence (Soetanto and
Chan 2000), limiting the performance for dosimetry and

range verification. Indeed, obtaining a sufficient

response for accurate range verification and dosimetry in

vivo will require high bubble concentrations, which pre-

cludes individual bubble counting on offline ultrasound

images. Moreover, real-time verification during proton

therapy would allow the beam to be stopped during the

treatment in case of deviation. Online imaging would be

performed with the patient in the treatment position, and

could be more robust to potential errors induced by

nanodroplets and microbubble biological washout, com-

pared with offline, post-irradiation imaging. Therefore,

in this study, we transition to real-time high-frame-rate

ultrasound imaging during irradiation in a proton beam

to detect individual vaporization events and localize

them with an accuracy beyond the ultrasound diffraction

limit. This allowed temporal and spatial quantification of

the interaction between charged particles and super-

heated nanodroplets.
METHODS

Nanodroplet and phantom synthesis

Nanodroplets with a perfluorobutane core (boiling

point �2˚C) and a crosslinked polymeric shell made of

polyvinyl alcohol (PVA) were prepared according to the

protocol described by Heymans et al. (2021). Briefly,

gaseous perfluorobutane was injected in an empty vial

and liquefied by immersion in liquid nitrogen. After

addition of an aqueous telechelic PVA solution (2% w/v

PVA, 0.2% w/v sodium metaperiodate), the vial was

sonicated in an ice-cold water bath for 15 min. The

resulting nanodroplets were then washed by a two-step

centrifugation. Dynamic light scattering measurements

yielded intensity-weighted size distributions with a

median nanodroplet size of 799 nm and a polydispersity

index of 0.3 (Heymans et al. 2021). The droplets were

dispersed in an aqueous polymer gel, which entrapped

their position, to achieve a homogeneous distribution

within the phantom. The phantom matrix was made of a

carbomer solution (0.1% w/v) and prepared according to

Putz and Burghelea (2009): after dilution of Carbopol

2050 powder (Lubrizol, Wickliffe, OH, USA) in Milli-Q

water, the solution pH was adjusted to 7 by adding

NaOH while monitoring with a pH meter (Consort

C830, Turnhout, Belgium). This non-Newtonian fluid

was able to entrap the nanodroplets and resulting micro-

bubbles, keeping the dispersion of contrast agents homo-

geneous throughout the experiment, but did not impede

the microbubble oscillations (Brunet et al. 2012). Before

nanodroplet dispersion, the carbomer solution and phan-

tom containers (54 £ 26 £ 31 mm) were first heated to

the desired temperature (37˚C or 50˚C). Then, the

carbomer solution was poured into phantom containers
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(54 £ 26 £ 31 mm), and a given volume of nanodroplets

was dispersed homogeneously in the gel by manual stir-

ring. The phantoms were subsequently immersed in a

water tank preheated to 37˚C or 50˚C for irradiation. The

perfluorobutane concentration in the phantom was

assessed with nuclear magnetic resonance (NMR) spec-

troscopy (400-MHz Avance II, Bruker Biospin GmbH,

Rheinstetten, Germany) on the day following the proton

experiments and was 19 mM. For this concentration, the

impact of both liquid-filled nanodroplets and gas-filled

microbubbles on proton therapy treatment delivery (i.e.,

the proton range) is expected to be negligible.

Phantom irradiation

The phantoms were irradiated in the research beam

line of the Holland Proton Therapy Center in Delft

(HPTC). The water tank was aligned to have its outer
Fig. 1. (a) Schematic representation of the setup. The proton
beam was used to irradiate nanodroplets (NDs) dispersed in a
phantom (yellow), which was imaged in real time with an ultra-
sound array. Simultaneously, an ionization chamber counted
the incoming protons. (b) Subsequent frames were subtracted
to isolate vaporization events. (c) Example of differential
wall positioned at the beam isocenter and the phantom

traversed by the proton beam through its center (Fig. 1a).

Reproducibility of phantom positioning with respect to

the proton range was ensured with a locking pin. The dis-

tance between the water tank’s outer wall and the phan-

tom entrance was 13.3 cm. The R&D proton room of

HPTC has a horizontal, fixed beam line which provides

a therapeutic beam from 70 to 250 MeV with beam

intensities from 1 to 800nA at beam extraction. A beam

energy of 154 MeV was chosen to ensure that the proton

range would approximately correspond to the phantom

midlength, as illustrated in Figure 1a. As the accelerator

produced a single pencil beam, the lateral beam profile

was a 2-D Gaussian. For each irradiation, the total num-

ber of protons was counted with an ionization chamber

(beam monitor, DE.TEC.TOR, Torino, Italy) inserted in

the beam path (Fig. 1a). The beam currents, total number

of protons, irradiation durations and phantom doses are

given in Table 1. The radiation dose used at 50˚C was

relatively close to the typical dose delivered in a proton

therapy session (»2 Gy), while a higher dose was used

at 37˚C to account for the fact that at this temperature,

nanodroplets are sensitive only to high-LET secondary

particles, which are relatively rare (Heymans et al. 2021).

Characterization of the proton beam

The spatial dimensions of the proton beam were

independently characterized after the experiment. The

depth�dose distribution was measured using a multi-

layer ionization chamber (QubeNext, 2.43 mm spacing,

DE.TEC.TOR) and fit to an analytical expression of the

Bragg curve (Bortfeld 1997) to obtain the proton range

R80 (i.e., distal position at which the dose has dropped to

80% of its peak value [Paganetti 2012, 2019]). The

impact of the in-beam ionization chamber, water tank

entrance wall (9.5 mm, polymethyl methacrylate) and

phantom container entrance wall (2 mm, PVC) on the

range was estimated by calculating their water equiva-

lent thickness (Zhang and Newhauser 2009). The phan-

tom was considered water equivalent, as it was made of

99.9% water. As nanodroplets are vaporized by individ-

ual charged particles at the end of their range (i.e., where

the LET is maximal), the distributions of their ranges

(also called “stopping distributions”) were computed to

be compared with nanodroplet vaporization maps. The

stopping distribution of primary protons in the beam

direction was modeled as a Gaussian centered on the R80

position, defined as ”the depth at which half the surviv-

ing primaries . . . have stopped” (Paganetti 2019). The

standard deviation, characterizing the range dispersion,

was obtained from the analytical Bragg curve fit. The

entrance lateral spot profile was measured at the isocen-

ter with a scintillating screen detector (LynxPT, IBA



Table 1. Irradiation settings

Phantom Temperature
(˚C)

Cyclotron current
(nA)

No. of incoming
protons

Irradiation time
(s)

Peak dose
(Gy)

Averaged dose across
Gaussian FWHM at
Bragg peak
(Gy)

1 37 80 7.96 £ 109 4.93 14.19 9.25
2 50 25 2.61 £ 109 5.20 4.65 3.03

FWHM = full width half-maximum.
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Dosimetry, Schwarzenbruck, Germany). Lateral spot

spreading in water was modeled using a Gaussian

approximation and applying the Highland formula

(Gottschalk et al. 1993; Paganetti 2019). The combina-

tion of the beam model and online proton count enabled

computation of the 3-D proton stopping distribution and

absorbed dose for each phantom. Aside from protons,

nanodroplets can also be vaporized by heavy secondary

particles, which are produced by nuclear reactions

between primary protons and atomic nuclei from the

medium. As those secondary particles have a very lim-

ited range (few microns), contrarily to protons, their

stopping distribution was assimilated to their production

distribution. The spatial distributions of secondary reac-

tion products generated from the nuclear reaction

p + 16O were also derived from the production cross-sec-

tion of relevant particles (International Commission on

Radiation Units & Measurements [ICRU] 2000).

Online ultrasound imaging and image processing

Real-time ultrasound imaging during proton irradia-

tion was achieved by fixing a linear ultrasound array

(ATL L12-5, 38-mm aperture) outside the water tank

(acoustic coupling was ensured through ultrasound gel

and a 20-mm polyester window) (Fig. 1a). The side of

the phantom facing the ultrasound probe was also cov-

ered with an identical acoustically transparent window.

The array was connected to a research platform (Vera-

sonics Vantage 256, Kirkland, WA, USA) to image

phantoms at 1000 frames/s during irradiation, by use of

a plane wave (0˚, no angle compounding) imaging

sequence. The ultrasound center frequency was 9 MHz,

and the peak negative pressure of the plane waves was

370 kPa (characterized with a 0.075-mm needle hydro-

phone, Precision Acoustics, Dorchester, England), well

below the threshold for acoustic droplet vaporization

(Sheeran et al. 2010). The ultrasound radiofrequency

(RF) data were beamformed offline using the Verasonics

beamformer. Differential imaging was performed by

subtracting subsequent frames (Fig. 1b), allowing identi-

fication of newly formed echogenic microbubbles (radia-

tion-induced vaporized nanodroplets), which appeared

as bright spots in the subtracted frames (Fig. 1c). As the

vaporization events per frame were sparse, they could be

individually detected as in ultrasound localization
microscopy (Hingot et al. 2016; Zhang et al. 2018), with

a resolution overcoming the ultrasound diffraction limit

(<50 mm) (Viessmann et al. 2013; Errico et al. 2015).

The events were detected in the differential images by

intensity thresholding and localized by the weighted

average centroid of their point spread function. To deter-

mine the distance between the ultrasound probe and the

entrance of the proton beam, a fiducial object of known

absolute position was imaged between irradiations. This

step provided us with an absolute reference in the direc-

tion parallel to the beam to compare range estimates

from the obtained vaporization maps with ionization

chamber measurements. In the direction orthogonal to

the beam, the distance between the beam axis and the

probe was not measured. Therefore, the vaporization

counts and the beam profile in the orthogonal direction

were aligned during post-processing.
RESULTS AND DISCUSSION

Influence of the temperature on the vaporization

response

Videos of the ultrasound B-mode frames, differen-

tial images and accumulated vaporization events are

available online as Supplementary Data. The 2-D maps

of the vaporized nanodroplets detected during proton

irradiation at 37˚C and 50˚C are provided in Figure 2. A

considerable difference in vaporization density and loca-

tion can be observed for the two temperatures, with the

presence of sparse vaporization events mostly in front of

the Bragg peak (dose peak) at 37˚C (Fig. 2a) and a high

vaporization density close to the proton range at 50˚C

(Fig. 2b). We attribute this difference to the variation of

the LET threshold for vaporization with temperature,

leading to the detection of different charged particles. It

was previously reported for the droplets used in these

experiments that at moderate degrees of superheat,

vaporization is induced by high-LET secondary particles

only (Carlier et al. 2020; Heymans et al. 2021), which

can be produced by nuclear reactions up until the proton

energy drops below the Coulomb barrier (the energy bar-

rier that protons should overcome to trigger a nuclear

reaction with an atom from the medium). Only at high

degrees of superheat is the vaporization threshold suffi-

ciently low (<70 keV/mm) for protons to directly



Fig. 2. Vaporization maps at 37˚C (a) and 50˚C (b) overlaid
with the beam dose distribution (the field of view limits match
the phantom dimensions). The same nanodroplet concentration
was employed in both phantoms, while the maximum dose was

higher at 37˚C.
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vaporize nanodroplets at their individual Bragg peak

(Heymans et al. 2021). This explains the enhancement

observed in Figure 2b at the proton range (where the
Fig. 3. Nanodroplet vaporization distribution at 37˚C (a1) and
ping positions of primary protons (red color scale) and heavy
The vaporization counts were projected in the direction paralle
compared with the corresponding projections of the stopping di
tons (b2, b3). The proton range is represented by a dashed vert

played for both the bubble count profiles (Gaus
majority of the primary protons stop), just beyond the

dose maximum. The difference in number of vaporiza-

tion events stems from the fact that non-elastic nuclear

reactions are relatively rare events (1% per centimeter

[Durante and Paganetti 2016]), yielding a number of sec-

ondary particles much lower than primary protons. At

50˚C, the bubble density within the peak zone after irra-

diation was too high to allow the localization of single

bubbles on post-irradiation images, highlighting the

need for high-frame-rate differential imaging.
Spatial quantification of the vaporization events

Because vaporization events were not expected to

be directly proportional to the absorbed dose, but rather

to be related to the number of stopping primary protons

and secondaries, the spatial distribution of bubble count

was compared with these beam features (Fig. 3). Two-

dimensional maps are represented in Figures 3a1 and

3b1 for 37˚C and 50˚C, respectively. Vaporization count

profiles were obtained by binning the location of all

vaporization events in the direction parallel (Fig. 3a2,

3b2) and orthogonal (Fig. 3a3, 3b3) to the proton beam.

Here, the red color was used to display the spatial distri-

bution of the stopping positions of individual protons

inside the phantom, and the blue color represents the

spatial density of relevant secondary particles.

At 37˚C, the microbubble count profiles are com-

pared with the spatial distribution of heavy secondaries

(Z >1), as those are expected to have a sufficient LET to

vaporize nanodroplets (Heymans et al. 2021).
50˚C (b1) superimposed on the distribution of the stop-
secondaries (Z > 1 [a1] or Z � 1 [b1], blue color scale).
l (a2, b2) and orthogonal (a3, b3) to the proton beam, and
stribution of secondary particles (a2, a3) and primary pro-
ical line (a2 and b2). The standard deviations (s) are dis-
sian fit) and the charged particle profiles.



Fig. 4. (a) Vaporization count as a function of number of stop-
ping protons in the ultrasound (US) field of view (GP+ symbol
refers to 109 protons). The R2 values and residual counts of a

linear fit are shown both at 50˚C (b) and 37˚C (c).
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Qualitatively, bubble count profiles closely resemble the

distribution of secondaries (Fig. 3a2, 3a3). To compare

the lateral spot spreading with the bubble count profile

(Fig. 3a3), a Gaussian fit was applied to the latter, yield-

ing a standard deviation (s = 5.33 mm) close to the dis-

persion of secondaries (s = 5.14 mm). At 50˚C, the

projection of the microbubble counts on the axis parallel

to the proton beam (Fig. 3b2) clearly illustrates that

vaporization is induced both by primary protons at the

end of their range, responsible for the observed Gaussian

peak, and by secondaries (Z � 1, including secondary

protons), responsible for the plateau proximal to the pro-

ton range. This is further supported by the sub-millimeter

distance (0.8 mm) between the peak in bubble count

(161.9 mm) and the peak in stopping protons (162.7 mm,

R80 position), which we attribute to experimental uncer-

tainties. Importantly, the position of the vaporization

count peak, including an uncertainty window of §3s,

was within §0.5 mm of its final value from 575 events

on, indicating that for the tested nanodroplet concentra-

tion, a dose of 0.7 Gy (dose maximum reported at the

spot center) would have been sufficient to obtain a range

estimate with §0.5-mm precision. Moreover, the stan-

dard deviation for the bubble count (Gaussian fit) was

within 0.2 mm of that of the range (Fig. 3b2) and within

0.1 mm of the beam lateral standard deviation (Fig. 3b3).

Overall, the profiles in Figure 3 illustrate the ability

of the obtained vaporization maps to accurately represent

different spatial features of the proton beam, depending

on the temperature. This has implications not only for

range verification, as bubble count profiles can be

directly (50˚C) or indirectly (37˚C) related to the proton

range, but also for dosimetry, as both the number of acti-

vated droplets and their spatial distribution can be accu-

rately quantified. The ratio between the microbubble

peak and its plateau at 50˚C (9.31) is smaller than the

ratio between primary protons and secondaries (25.5),

possibly because the vaporization efficiency depends

on the charged particle type (D’Errico 1999). Also,

the standard deviation of the microbubble Gaussian dis-

tribution only slightly exceeds the proton stopping dis-

persion (by 4%), while it was largely overestimated (by

>100%) on previous post-irradiation offline recordings

(Heymans et al. 2021). To summarize, online high-

frame-rate imaging was found to be a reliable tool to

characterize the interaction of nanodroplets with ionizing

radiation.

Temporal quantification of the vaporization events

Next to spatial quantification, online ultrasound

imaging allowed examination of the temporal vaporiza-

tion rate and assessment of the relationship between the

vaporization counts and the proton fluence. Figure 4a

compares the cumulative number of vaporization events
recorded during irradiation with the number of stopping

protons in the field of view of the ultrasound probe (the

elevational plane thickness was approximated to a quar-

ter of the elevational aperture [Cobbold 2006]). We

assumed a constant proton flux during irradiation,

neglecting any small deviation in beam current. The

results indicate a linear relationship between the number

of vaporization events and the number of protons, with

coefficients of determination of 0.9947 at 37˚C and

0.9997 at 50˚C. In comparing both temperatures, a 25-

fold increase in the number of generated microbubbles

was observed, from 460 bubbles per 109 stopping pro-

tons at 37˚C to 11:6 � 103 bubbles per 109 stopping pro-

tons at 50˚C. The residuals are illustrated in Figure 4b,

4c and have root mean square errors of 10 events at 37˚C

and 19.5 events at 50˚C. The maximum deviation

occurred at the start of the irradiation in both cases,

which could be caused by the beam “ramp-up.” The lin-

earity of these curves indicates a straightforward rela-

tionship between proton and vaporization count, which

could potentially be exploited for dosimetry. However,

the influence of the nanodroplet concentration and pro-

ton dose on linearity should be addressed in future stud-

ies, as both acoustic shadowing and a gradual decrease

in nanodroplet concentration (caused by radiation-

induced vaporization) in regions with high densities of

vaporization events might reduce the count rates.

Future directions and clinical translation

Two scenarios are presented here: sensitivity only to

high-LET secondaries (37˚C) and sensitivity to primaries

and secondaries (50˚C). The current nanodroplets were

sensitive to secondary reaction products at physiological

temperature, which could be used to indirectly measure

the range in vivo with an approach similar to positron

emission tomography (PET) and prompt gamma imaging.

However, the number of vaporization events was multi-

plied by a factor of 25 at 50˚C, once they became sensitive
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to primary protons. A larger number of events will utterly

result in a refined resolution for both dosimetry and range

verification. Moreover, vaporization by primary protons

leads to a direct relationship between the peak in vapori-

zation count and the proton range. Therefore, even though

the indirect response observed at 37˚C for our nanodroplet

formulation might enable proton range verification,

increasing the degree of superheat of the nanodroplets to

transpose the direct response to physiological temperature

would be desirable (Heymans et al. 2021). This could be

achieved by modifying the nanodroplet liquid core using

lower-boiling-point perfluorocarbons (Mountford and

Borden 2016) or mixed compounds (Shakya et al. 2020).

This in vitro study was performed under ideal con-

ditions as a proof of concept; thus, future research should

cover different aspects with respect to clinical transla-

tion. The effects of both tissue and nanodroplet distribu-

tion inhomogeneities on the accuracy of the localization

method should be assessed and compared with the

homogeneous dispersions used here. In particular, the

use of acoustic droplet vaporization as a calibration tool

could be considered, to infer potential nanodroplet distri-

bution inhomogeneities. Furthermore, analytical models

need to be developed to estimate the nanodroplet

response for complex treatment plans, and the integra-

tion of the ultrasound system in the proton therapy room

should be examined. Ultimately, we envision that this

online range verification method could benefit several

sites of sonic accessibility such as the prostate, breast

and liver. In the longer term, the dosimetric use of nano-

droplets could be complemented with their ability to

mechanically (through cavitation) or chemically

(through drug or oxygen delivery) enhance the tumor

response to radiation therapy (Czarnota et al. 2012;

Lacerda et al. 2021).

Finally, even though the detection and localization

of vaporization events were performed offline, the neces-

sary operations were not too computationally intensive.

Thus, future research could focus on the optimization

and implementation of the algorithm in real time

(Ramalli et al. 2018, 2020) to provide direct feedback

over the course of irradiation.
CONCLUSIONS

We have developed and implemented a method for

detecting and superlocalizing superheated nanodroplet

vaporization events in a proton pencil beam using high-

frame-rate contrast-enhanced ultrasound imaging. This

allowed quantification of the spatial and temporal distri-

butions of droplet activation events, which have been

related to the proton range as well as to spatial features of

primary protons and secondary particles. The method

described method allows derivation of microbubble count
profiles directly representing the interaction between

nanodroplets and charged particles, even for large vapori-

zation concentrations for which offline ultrasound assess-

ment would provide only indirect information.

Ultimately, online imaging could provide real-time feed-

back during proton therapy, potentially enabling compen-

sation for deviations in treatment delivery.
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