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Preface
Humans interact more and more at a distance these days. Where currently, this interaction is mainly
visual and auditory, Tactile Internet (TI) also allows for remote kinesthetic interactions. With the devel-
opment of TI, a paradigm shift is on the horizon where the current internet evolves from content delivery
to a skill-set delivery network. Imagine the possibilities when specialists in whatever field can, in real-
time, apply their skills everywhere in the world from within their living room. To make this a reality, TI
applications have to be able to provide feedback to the user with ULL. The speed of light, however,
constrains the extent to which TI can be used at large distances. This thesis hence takes a closer
look at the problems that arise when long-distance TI is to be used and tries to tackle them. These
problems are tackled by building a system based on Model-Mediated Teleoperation (MMT), where lo-
cal simulations of the environments are used. A local feedback loop is instantiated through these local
simulations, which lowers the system’s dependence on the network performance. The former control
loop, including the network, now becomes a corrective loop to prevent mismatches. This thesis focuses
on the part where the local simulation is corrected by the real-life data received over the network. The
question is how real-time dynamic environments can be captured and kept track of for use in MMT. We
identify accurate tracking of objects in the environment as the critical building block enabling MMT with
dynamic objects. Consequently, the first 6 Degrees of Freedom (DoF) tracking application designed for
use in TI applications is created and evaluated. Through this research, the first steps are set towards
a full-blown MMT system that can capture the remote environment successfully.

Kilian van Berlo
Delft, November 2022
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1
Introduction

In the past couple of centuries, humans have revolutionized their approaches to remote interaction
tremendously. Since the invention of the telegraph machine about two hundred years ago, we have
managed to speak and see each other remotely in real-time. Do you need to educate people on the
other side of the world about your newest invention? Send them a digital meeting invite, and within
seconds you can tell and show them everything about it. However, sometimes more than hearing
and seeing is needed. For example, when surgery has to take place, that can only be done by a few
surgeons/experts worldwide. That expert being able to see the situation and tell what to do is, in all
likelihood, not enough, as the expert must perform physical actions. Therefore, the expert has to travel
to where the surgery is executed, losing valuable time that could have been spent more efficiently.

This valuable time does not have to get lost anymore as Tactile Internet (TI) revolutionizes interac-
tion as we know it. Through building a solid foundation, TI can accelerate developments in Industry
4.0, making it possible to speak, see and feel things at a distance in real time. With TI, surgery could
be executed remotely through teleoperation. In such a situation, the surgeon would not have to travel
everywhere and could apply their skills from a single location. TI facilitates physical interaction with
humans and machines as if they were near, enabling real-time remote control and physical, tactile ex-
periences. Through TI, the exchange of simple touch-based gestures, such as handshakes, high-fives,
and even hugs, can be facilitated. Besides, it enables us to seamlessly transfer skills over the internet
(such as the surgeon’s). Hence, TI shows the potential to provide a true paradigm shift from content-
delivery to skill-set delivery networks and is, therefore, able to revolutionize almost every segment of
society.

 

 0110100

 01
10

10

5G  ML
AI

 SDN 010

Master Domain Controlled Domain

Figure 1.1: A schematic representation of Tactile Internet showing the master and controlled domains with the network domain
in-between [1]

Not only a surgeon can reap the benefits that TI provides. Search and Rescue operators and
astronauts do not have to get into dangerous situations anymore and the entertainment industry will be
able to, now more immersively, mix the virtual world with reality. While the possible applications of TI
that one can think of are endless, the primary system behind each use case shows to be similar. As
shown in Figure 1.1, a TI system consists of three distinct domains: a master domain, a network domain
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2 1. Introduction

(the cloud in the image), and a controlled domain. In the telesurgery example mentioned earlier, the
master domain would be the expert controlling the robotic hand with which the surgery is performed.
This robotic system is part of the remotely controlled domain communicated over the network. Thus,
when the expert uses his hand during surgery, the robotic handwill receive data indicating what the hand
is doing and replicate those actions. Once the controlled domain mimics the action, the data acquired
on that side is used to provide feedback. This feedback is sent over the network to the operator on the
side of the master domain.

The promising benefits of TI accompany several enormous system design, development, and real-
ization challenges. The most important of these challenges is the Ultra-Low Latency (ULL) requirement
of a round-trip latency of 1ms [2]. That means that the data transmission latency from one domain to
the other domain and back should be within the 1ms range to allow an optimal quality of teleoperation.
This requirement might feel exaggerated; however, as studies have shown, humans can distinguish
this order of magnitude for tactile sensing [3]. When the surgeon, for instance, has to make a small
incision without damaging the lower tissue layers, data about force feedback must be fed back in time
[1]. The surgeon applies a force sent to the controlled domain, and the controlled domain sends back
the force feedback. If, for example, the surgeon cannot receive the haptic feedback in time, it will not
notice when the incision becomes too big, leading to possibly disastrous consequences.

Next to ULL, also Ultra-Reliability (UR) and throughput are considered important aspects in this field
[4]. However, since the throughput in TI applications is relatively small compared to already existing
applications, this should not be of any issue. For UR, the TI community recommends a requirement
of up to 99.9999% [5, 6]. However, unlike the ULL requirement, which has been quantified through
experiments, the requirement of UR is mainly speculation based. At the time of writing, only one recent
work has applied rigorous experiments on this topic. In this research, the results do not support the
requirement claim and even reveal that a much lower level of reliability, under 20% of packet losses,
is also sufficient [1].

UR and throughput do not seem to be the main culprits for TI. Thus, the main focus of this work is
on meeting the ULL requirement of the round-trip time. To achieve this, one might expect it is solely a
matter of diminishing latency times in the network domain. Despite the outstanding advancements in
5G and beyond, the ultimate limit for latency will still be set by the finite speed of light. Speed of light is
limited at 300km/ms, and hence even when the latency is optimized, TI applications will still be unable
to function correctly over large distances. Take Figure 1.2, where a finger presses a button. This finger
is part of the controller at the side of the master domain. In this domain, it attempts to push a button on
the side of the controlled domain. When the latency is within the defined limits, a situation as shown
in Figure 1.2 a occurs. For example, when a setup exists between Amsterdam and Rotterdam, the
movement of the finger would be mimicked by the controlled domain. The controlled domain would, in
turn, send force feedback back to the finger in the master domain, all within 1ms. However, in case a
setup is created between Amsterdam and London, or even further, network latency becomes too big.
A situation like this is envisioned in Figure 1.2 b, where the finger will substantially push past the point
of contact since the force feedback is received too late.

Because of the delayed force feedback, the controlled domain will perceive the finger to be applying
more force than initially planned. Therefore, the controlled domain will push the button further than
intended or supply a more significant feedback force. In the first case, a situation with the surgeon
cutting too deep would occur. In the latter case, the controller could become unmanageable as it cannot
handle the feedback force properly and attempts to correct it. The situation sketched here leaves us
with two options: deploy TI only over small distances or think of another approach that circumvents
the natural speed limit. As one might expect, researchers do not take no for an answer; thus, several
radical approaches for TI have been invoked already. With these approaches, researchers attempt
to accelerate further the required paradigm shift toward realizing seamless teleoperation with haptic
feedback.

One of these possible approaches being researched to achieve seamless teleoperation is called
Model-Mediated Teleoperation (MMT). This approach builds on the idea that if remote interaction with
the controlled domain takes too long, the controlled domain can be interacted with locally. The differ-
ence between the classical control loop, as shown in Figure 1.1, and MMT (Figure 1.3) is in the fact
that MMT makes use of local simulations. These local simulations are models of the domain on the op-
posite side of the network (see the human and environment models) and are deployed to approximate
that other side. By creating local models on either side, the system opens the control loop between
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Figure 1.2: Illustration of the detrimental effects of the network on TI interaction. The operator intends to press a blue button in
the controlled domain with his finger in the master domain. The red circle is the finger representation in the controlled domain,
while the dotted blue button is the representation in the master domain. (a) The ideal case where the feedback loop happens
within 1ms (b) The realistic case where the feedback loop takes longer and significant performance degradation occurs. [7]

the master and controlled domain, leading to two decoupled local control loops supported by the origi-
nal, overarching control loop. Through the local models, uninterrupted data is presented, of which the
perceived delay is unaffected by the network. The models on either side would still use the network’s
data; however, now, it only serves for corrections on the simulations.

Given that the goal is complete immersion and functionality for the master in the controlled domain,
the local simulations will not be shown visually to the user. These local simulations will instead serve
as an underlying invisible layer. This approach with invisible layers will allow the system to eventually
fix divergences in the background without making the user aware of these fixes. In the case of the
surgery, when making an incision, this would result in the expert initially receiving force feedback based
on its interaction with the local model. Because it interacts with the local model, the interaction does
not have to go over the network before feedback can be received, leading to an interaction without
noticeable latency. In the meantime, corrective data is still provided over the network. Based on this
data, the mismatch between the simulation and the real-life environment is handled in the background.
By guiding this collaboration between simulation and real data, a situation is maintained in which the
surgeon can successfully implement their skills.

Figure 1.3: State-of-the-art MMT control loop where there is a local control loop on either side. One loop is between the human
(controller) and the environment model, and the other is between the environment and the human model. The model estimator,
in turn, is part of the overarching control loop and hence gathers information about the controlled environment on the one side
and information about the controller on the other. This information is sent over the network to support the local models on both
sides. [8]

When making use of a local control loop, latency can become unnoticeable. Unnoticeable latency
indicates that if the estimated models are accurate enough approximations of the actual domains, func-
tional long-distance teleoperation can be achieved. To achieve this, however, it is of utmost importance
that the local model is a good enough representation of the respective environment. In principle, the
better the match between the local model and the controlled environment, the more stable the teleop-
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eration will be in arbitrary communication latency. However, the problem is that a perfect match cannot
be obtained; hence, the master and the slave environment model sometimes mismatch. This mismatch
can be caused due to several situations, such as changes in the environment, operator commands and
movements, improper model approximations, or inefficient parameter estimation methods.

Due to the probable mismatch in the model and environment, adequately correcting these mistakes
is crucial. In MMT, for mismatch correction, the overarching control loop comes into play, through which
corrective data is provided. On the one hand, this is data about the controller physics from the master
to the controller model in the controlled domain. On the other hand, data about the environment in the
controlled domain is provided to the local environment model in the master domain. Both data streams
are crucial elements for the proper functioning of the system. Acquiring data for the latter, the local
environment model, can be done through online parameter estimation. According to the state of the
art, online parameter estimation for environment modeling is the most critical and challenging task that
MMT is currently facing [2, 9].

When modeling an environment, there is a distinction between static and dynamic environments.
A static environment contains non-movable objects, while a dynamic environment contains movable
objects. Static objects make modeling a static environment relatively easy compared to a dynamic
environment, given that with non-movable objects, the critical point is to estimate the dynamics of the
object at the area of contact. This contact area can only change to a limited extent over time; thus,
constructing the environment model is only needed once. For movable objects in a scene, constructing
a model is more challenging as the static object dynamics and the dynamics regarding interaction with
the surroundings have to be modeled. Because movable objects require more parameters than non-
movable objects, previous studies on MMT have, so far, mainly focused on static environments [9].
Motivated by this knowledge, the main research question of this thesis is:

How to capture real-time dynamic environments for use in Model-Mediated Teleopera-
tion?

Our approach looks at what is needed to quantify an environment reliably. Since an environment
can be dynamic, it is vital to keep track of the changes at all times. Hence, most of the thesis is focused
on how one can track moving objects in space. With the help of point clouds, multiple possibilities are
explored for tracking in 6DoF. For the tracking algorithms, special attention goes to the opportunities
that particle filters present; hence, several different implementations are objectively evaluated in terms
of timing and accuracy performance. Eventually, once the tracking functionality is in place, it is com-
bined with a TI application to make the first steps towards a complete MMT system. Once tracking and
TI are combined, a small user study is performed to give a first indication of the requirements of the
tracking performance for deployment in MMT systems.

In essence, this thesis intends to contribute to the relaxation of the timing requirements of TI. For this
purpose, a 6DoF tracking module that keeps track of objects in a dynamic environment is theorized,
implemented, and analyzed. This tracking functionality is eventually used to interact with a remote
environment through MMT. The contributions from this work can be listed as follows:

1. We identify and demonstrate accurate tracking of objects in the environment as the key building
block to enable MMT with dynamic objects

2. We develop the first 6DoF tracking application that is specifically designed for use in TI applica-
tions

3. We propose the use of a particle filter-based tracking algorithm to gather data about the remote
environment. This data can then be used to correct for mismatches of the local model in the
master domain of the MMT system.

4. We identify the performance trade-offs required when tracking objects, both in the static and
dynamic situations with which MMT deals.

5. We evaluate the Quality of Experience (QoE) of an MMT system that uses object tracking and
determine its dependence on variables such as delay and sensitivity.

6. We highlight the importance of fast-paced tracking algorithms for real-time tracking capabilities
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7. We demonstrate that our particle filter algorithm outperforms the standard implementation in terms
of noise elimination in static scenarios.

The rest of the report is organized as follows: Chapter 2 gives a first insight into the works related to
this research. Chapter 3 presents the theory behind all the concepts utilized. Chapter 4 outlines how
the project was performed. Chapter 5 highlights and discusses the most important results from the ex-
periments conducted. Chapter 6 evaluates the project and briefly looks ahead to future opportunities.





2
Related Works

2.1. Tactile Internet
TI is a relatively new research area that has shown tremendous growth over the past decade. The
idea of a TI was already being explored around the late 2000s and early 2010s. Around this time,
researchers were looking into sending haptic feedback over a network [10, 11]. However, it was G. P.
Fettweis who published the first article specifically focused on the applications and challenges of TI as
a whole [5]. A few months after Fettweis’ paper, he aided the International Telecommunication Union -
Telecommunications (ITU-T) in publishing an extensive Technology Watch Report on the TI [12]. There
on, it lasted only a short time before other researchers started to join in contributing to the field.

With latency turning out to be the biggest challenge facing the TI, much work is being put into
restricting it. In the field of mobile networks, a significant part of current research in 5G is centralized
around meeting the low-latency real-time requirements that the TI brings around [13, 14, 15, 16]. These
latency requirements, however, are not realizable with just improvements to the network. As stated
earlier, the speed of light is not fast enough for application over long distances. Hence, people have
started to look at different approaches to tackle this challenge.

2.2. Model Mediation
One of the solutions proposed for satisfying the latency constraints in TI applications is to use Model
Mediation. The idea goes back to the ’90s when multiple papers were published with roughly the
same idea [17, 18]. They proposed creating a local model to manipulate a system that experiences
considerable latency when operated remotely. Then a leap in time occurred, and from 2004 onward,
interest has been gradually growing in using model-mediation in teleoperation systems [19, 20, 21, 22,
23].

In recent years a group of researchers led by X. Xu has made numerous contributions to MMT.
Not only did they provide clarity on the current state of the research domain, but they also performed
studies that provide a stable foundation for this work to expand on further [8]. Some papers of Xu et
al. specifically focus on using Point Clouds to aid model mediation [24, 25]. Another work of Xu et al.
from 2015 [9] focuses on MMT for movable objects. Besides this work, to the best of our knowledge,
there is no other comprehensive study available on MMT with freely movable objects. Hence, this work
is regarded as the current state of the art concerning dynamic real-time environment modeling.

2.3. Environment modelling
An environment can be modeled using online parameter estimation, which is one of the most important,
and at the same time, challenging tasks in MMT [9]. Online parameter estimation is the estimation
of the model parameters (e.g., geometry, force, position, velocity) in real-time [8]. When modeling an
environment, it is essential to knowwhether it is dynamic or static. A dynamic environment withmovable
objects logically requires dealing with more parameters than a static environment. Because of this,
previous studies on MMT mainly focus on modeling the simpler, static environments without movable
objects [25, 26, 27]. Little research has been conducted on a dynamic environment with movable
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8 2. Related Works

objects, as mentioned in Section 2.2. In 2012, Passenberg presented an algorithm that estimates
object inertia in real-time [28] while Xu et al. described a more generic approach to modeling movable
objects back in 2015 [9].

For creating a detailed environment model, it is vital to discover the environment, detect the indi-
vidual pieces and their associated features, and eventually track these pieces. While for static envi-
ronments, mainly the first two aspects hold, the third one, tracking, is mainly essential for a dynamic
situation. Point clouds obtained through RGB-D cameras are a promising solution in both cases. For
both discovery and detection, point clouds already acquired lots of attention in the field of teleopera-
tion [29, 30, 31, 32], and also a bit in the field of MMT [24, 25, 33] specifically. Whenever objects are
desired to be tracked in a dynamic environment, point clouds have not yet been considered much for
this specific use case.

2.4. Object tracking
When dealing with dynamic environments, obtaining a good level of immersion and situational aware-
ness becomes challenging. Physics models, combined with local models of the remote environment,
might be excellent starting points [28, 9]. However, it is also essential to keep track of all the parts that
make up that environment individually. While, as stated in Section 2.3, the domain of model mediation
is barely invested in this challenge, another domain is to a certain extent. This domain is the domain of
robotic sensing, where much attention goes to providing robots with capabilities to track objects, either
in 2D or 3D. Since for MMT, it is crucial to interact with an object from all directions, 3D (or 6 DoF)
object tracking is a must.

While many studies have looked for the best approach to object tracking in dynamic environments,
a clear best solution has yet to emerge. Point clouds are currently the preferred technique for tracking
an object in 3D space. However, there are two different approaches one can use with them, deep
learning and classical methods with filters such as Particle and Kalman. While the classical methods
started promising [34, 35, 36, 37], more and more attention has shifted to applying deep learning for
object tracking. While some studies combine both approaches [38, 39], others have indulged in the
space of deep learning completely [40, 41, 42].



3
Theory

3.1. Model-Mediated Teleoperation
TI applications enabling haptic communications require correct and near-instant force feedback to have
an acceptable Quality of Experience (QoE). As mentioned in Section 1, several networking conditions
need to be met to make this a reality. While challenges such as throughput and reliability of the network
are relatively easy to address, the opposite holds for latency. For TI applications such as teleoperation,
this remains the fundamental challenge since, for long distances, the latency is restricted by the limita-
tions of the speed of light [2]. This challenge can be tackled in two ways: sticking to scenarios where
the distances are limited or finding an alternative approach that relaxes the latency requirements. One
of these alternative approaches to circumvent the speed limitations is a concept called MMT.

As shown in Figure 1.3, MMT makes use of local models on either side of the system to bypass
the effects of the adverse conditions of the network, such as significant latency. The local model on
the master side simulates the environment in the controlled domain and vice versa. With these local
models, critical interactions could occur in real-time on one network side. Information from the oppo-
site domain could be used as corrective information for possible mismatches. Because this networked
information is less critical for instant execution, it does not have the exact strict latency requirements as
before. By applying this approach, the most critical communication takes place locally. Local communi-
cation makes a latency within the prescribed limitations possible, thus allowing for good force feedback.
However, the advantage of this system, which is better equipped for handling significant latency, comes
with the downside that it needs significant contributions to outperform the traditional methods. These
contributions are needed because of the lack of research that has, so far, been performed on this
method.

𝐶 𝐺

NW

NW

(a) Traditional tactile system

𝐶

𝐺′

𝐶′

𝐺

NW

NW

(b) Model-mediated tactile system

Figure 3.1: Simplified Control Systems Flowchart

Taking a closer look, one can see in Figure 3.1a that the control loop of a traditional TI application
has its critical connections running over the network (NW). A model-mediated application, however,
as shown in Figure 3.1b, enables both sides to function as independent systems. By executing it this
way, the local models can still utilize the data coming over the network; however, this data becomes

9



10 3. Theory

less crucial for execution. Figure 3.1 displays simplifications of both control systems, with the controller
being represented by C and the remote environment being portrayed as G. In the improved, model-
mediated version, C’ and G’ are also shown and serve as local representations of C and G respectively.
C’ is thus a local model of the controller on the controlled side. At the same time, G’ is a local model
of the remote environment on the master side. By adding these two local models, the controls can still
get corrected with data from the domain on the opposite side of the network. However, they will also be
able to keep functioning with more considerable data latency on the network than in the original setup.

A perfect local model of the environment (G’) would, irrespective of communication delays, enable
stable teleoperation [8]. The possibility for stable teleoperation means that, in theory, MMT success-
fully translates the latency requirement of the network to a model-fit requirement. With a better model,
the model becomes more accurate, and the update frequency and efficiency can be relaxed for more
extended periods of time. Once a perfect local model is created through data from the opposite side,
it should be able to maintain this perfect fit through the seamlessly fitting physics engine. In practice,
however, having a perfect real-time model proves impossible sometimes, and model mismatches oc-
cur inevitably. Because of these mismatches, it is also critical to consider how one wants to deal with
them over time. This process raises three crucial questions, how to: create the best physics engine,
create the best environment model, and deal with mismatches optimally. These questions are imper-
ative for the design of MMT applications since the better they are solved, the more delay is allowed
while maintaining adequate system performance. The research discussed here, as already mentioned
briefly in Section 1, is mainly about the second question of obtaining a digital model of a real dynamic
environment in real-time. This aspect is vital for initializing an environment and preparing for mismatch
correction.

3.2. Tactile physics engine
Over the past decade, commercially available physics engines, such as the ones fromUnity and Unreal,
have improved tremendously. Despite the improvements, however, they still lack their tactile physics
abilities. Tactile physics deals with fundamentally different challenges. Where standard physics en-
gines require quick and efficient calculations for collision detection, tactile physics engines demand
more precision. Next to precision, there are many more responsibilities that tactile physics engines
have to bear. Tracking the position of the haptic controller and measuring and applying the forces
registered are also important.

Traditionally, collisions are detected by registering intersections between two or more volumes. This
intersection problem is then resolved by pushing the objects out in the most efficient direction. The
problem with this approach for TI is that this method looks at the deepest point of penetration between
objects instead of the first point of contact. The forces applied to these objects will look good. However,
the haptics will be perceived as incorrect or noisy.

This project uses Unity as a base to create environments and extends it with functionality from
the Chai3D tactile framework [43]. Chai3D is added to create well-functioning tactile physics. Unity,
however, is generally not fast enough to comply with the 1ms bottleneck that TI introduces. Therefore,
Bullet Physics is also added to Unity, a physics engine fast enough for tactile applications [44]. This
physics engine is extended with tactile functionality from the Chai3D framework to construct a complete
tactile physics engine.

One of the core components that our physics engine reverse-engineered from Chai3D is the proxy
algorithm. This algorithm is critical for creating realistic haptic experiences of objects in a virtual envi-
ronment. The proxy algorithm determines how much force has to be applied when only the position of
the haptic device is known. It represents the haptic device in the virtual environment through a proxy
object. This object perfectly follows the haptic device when there are no collisions; however, it behaves
differently when a collision is detected. In case a collision is faced, the haptics device penetrates the
colliding object in the virtual environment while the proxy stays put at the first point of contact. The
distance between the actual device, 𝑥device, and the proxy, 𝑥proxy, can be interpreted as a spring drawn
between them. The bigger the spring constant, 𝑘, the more rigid the surfaces and, thus, the more
sensitive the haptic device is to touch. The force, 𝐹, to be applied is determined based on this distance
and the spring constant, calculated as in Equation 3.1.

𝐹 = (𝑥device − 𝑥proxy)𝑘. (3.1)
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Figure 3.2: TI interaction where an operator pushes on a virtual surface (blue dashed line) in the master domain. The haptic
device presses down on a real surface in the controlled domain. The proxy algorithm spans a spring to calculate the force applied
on the surface. [7]

In figure 3.2, an illustration of the proxy algorithm shows how the applied forces are determined and
how the spring constant affects these forces. A more significant spring constant feels more realistic;
however, it comes at the cost of higher force errors for relatively minor mistakes. This part of the
algorithm makes up a small part of the C’ functionality envisioned for the controlled domain in the MMT
system shown in Figure 3.1b. In a more complex control system, a more straightforward C’ model
dealing with virtual physics would also be visible on the master side.

3.3. Environment modelling
When a remote environment G has to be modeled, this requires sensors to extract information from
the real-life environment and send this information to G’ in the other domain. Sensors are essential to
creating an initial idea of what the environment is like without having yet interacted with it. If humans did
not infer details of an environment before interaction, life would be much more complicated. Imagine
seeing a glass filled with water but having no idea what the weight will be; before you know it, the
water is on the ceiling, and you are left thirsty. If there were a way to estimate the weight of the glass
beforehand, you would not have exercised excessive force when lifting the glass. Luckily, our brains
can make these inferences; computers do not so quickly. Of course, interacting with the environment
will support the creation of an even more detailed model. However, by adding non-interaction-based
data to the mix, most of the information about the environment can already be extracted and will serve
as both a great starting and reference point for model generation.

The goal of this work is to generate the best possible approximation of an environment before
having any interaction with that environment. When the environment is observable, beforemanipulating
anything in the surroundings, it should be possible to get a solid idea of everything that shapes the
scene. When creating a detailed model of an environment and keeping track of it, three steps are
essential in the process: discovery, detection, and tracking. With the discovery, a detailed overview of
the scene is obtained; detection is about identifying individual pieces within the scene, while tracking
is about keeping track of these individual objects in the current surroundings. All three steps should be
approached differently when modeling the environment.

Discovery is currently the step that academia focuses on in the area of MMT. Even the state-of-the-
art, as discussed in the work of Xu et al. [9], does not go far beyond this step. The idea of discovery is to
perform online parameter estimation of the surroundings through which a good overview of the scene
is created. Within this scene, objects are identified, and their characteristics, such as e.g. weight,
material, or size, are determined. It is crucial to be accurate in the estimation efforts as, this way, the
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discovery phase can be executed well. The more detailed the information is, the better an environ-
ment can be modeled. Since discovery is not necessarily connected with direct interaction, the timing
constraints are less critical. Discovery, in most cases, takes place the moment a new element of the
surrounding shows up, which is most likely to happen when the object is not yet close enough for in-
teraction. Hence, in that instance, it makes more sense to take longer for the estimation to achieve a
higher level of detail. In this project, the discovery phase of environment modeling does not receive
much attention as it is not one of the main goals. Since many aspects are contained in the eventual
PoC, parts that can be circumvented will be circumvented. Given that the discovery phase is one such
part, it is decided to mimic the functionality by having a known environment and populating a library
with the objects in that environment and their corresponding parameters. Doing this makes discovery
redundant, as the situational details are already known. As a result, they provide more time to focus
on other aspects of the process.

Once the surroundings are discovered, or in the case of this project, predetermined, the detection
phase starts. The state of detecting objects in the environment is not desired to be as accurate as
when discovery takes place since less time is available. Less time is available because detection is
mainly needed when an object gets in the range of possible interaction, unlike discovery. As mentioned,
discovery starts when new elements show up. When an object is in the range of possible interaction,
a more time-constrained approach has to be followed, and thus less accuracy is expected. Detection
is an aspect of the process that can be imitated relatively quickly. Therefore, a workaround for this is
also devised. The approach for detection circumvention is to use the predetermined library with objects
and go through it to select the desired object from the list. A 3D model of that object can be placed at
a starting point in the environment. Based on this starting point, the next step in the process, tracking,
knows where to be. The way these 3D models are created and prepared for deployment in the local
model is discussed in the next Section (Section 3.4).

While for unknown environments, the tricks used for discovery and detection will not cut it, the third
crucial step, tracking, creates a hurdle that, even for familiar environments, takes work to overcome.
This work focuses primarily on tracking objects within a scene, which has only been done to a limited
extent in the MMT domain. As tracking is primarily needed when objects can move within a scene, it
makes sense that this aspect is missing in research as the most focus has been on static scenes. In
more detail, how object tracking is approached will be discussed in Section 3.5.

Suitable sensors will be required to successfully model a real-life environment and keep track of
everything happening. Hence, some light must be shed on the sensors used for the process. The type
of sensor to use depends on the parameters desired for the environment model. For this project, the
main desired parameters are location and rotation; the rest, as already mentioned before, is prede-
termined to be able to focus entirely on object tracking. Location and rotation are crucial parameters
because it would be impossible to track an object within a 6 Degrees of Freedom (DoF) field without
them. To extract this information from the environment, popular sensing equipment that can be used
is either a conventional camera, an RGB-D camera, or a LiDAR sensor. With a conventional camera,
assuming only one is used, 2D scene information can be collected. 2D compared to 3D information
strongly restricts the data collection abilities during scene capture and makes the time constraint for
real-time scenarios less easily attainable. More processing is required for 2D data to attain the same
level of scene knowledge.

When it comes to using 3D sensing technologies, there are three prominent techniques to consider:
using Stereo Vision, Time of Flight (ToF), or Structured Light. As shown in Figure 3.3a, Stereo Vision
uses two slightly apart sensors, like our eyes. Using these two sensors ensures that two slightly different
images are created, which are then compared, and since the distance between the two sensors is
known, depth can be inferred. ToF works differently where the technique depends on how fast light
returns after being emitted by the sensor, as shown in Figure 3.3b. The third option, structured light, is
seen in Figure 3.3c and works in a way that a structured image (e.g., a grid) is projected onto an object,
and based on the distortion of this image, the shape and distance of the object are calculated.

All three options can capture depth information in a scene, which can then be used to create point
clouds. These point clouds are data points in 3D space, and because they provide depth measures,
further understanding of the scene can be achieved. Hence, as one has already seen in the sources
referenced in Section 2, 3D sensing technology is currently the go-to approach in almost all recent
studies related to 3D environment modeling. It is also clear that for 3D modeling, point clouds show
great promise for MMT due to their ability to provide depth information about a scene and its arbitrary
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(a) Stereo vision (b) Time-of-Flight (c) Structured light

Figure 3.3: Different types of 3D sensing technologies [45]

objects. However, how valuable point clouds can eventually be is still not fully determined. A MMT
system making use of point clouds has already been touched upon briefly by existing research and is
called Point Cloud Based Model-Mediated Teleoperation (pcbMMT) [25]. Nonetheless, state-of-the-art
has not yet managed to get far past the step of environment modeling; hence, opportunities lie in the
space beyond, the space of tracking.

3.4. Object modelling
Before the details about tracking are discussed, it is essential to know how the models of the objects
that make up the environment are constructed. A photogrammetry technique is applied to create a
3D model of an object [46]. Photogrammetry is a technique that uses 3D geometry derived from 2D
images. If correctly done, these 2D images are a series of photos of an object from various angles
with considerable overlap. Common points between multiple images are then identified using point
matching. Next to the information about these common points, information about the pixel size, position
and angles, lens distortion, and focal length of the camera are gathered for each image. In the case
of more advanced photogrammetry, one could also use other information about the scene, such as
symmetries. Every point in a 2D image specifies a light ray from the camera to the real point in a 3D
space. Based on this information, a photogrammetry algorithm then uses a triangulation technique,
which determines the geometric intersection of several light arrays. These intersections, in turn, help
to locate the location of the corresponding point in a 3D environment. After the 3D point locations are
discovered, photogrammetry combines all the information to create complete 3D models.

When through the help of photogrammetry, an object model is created, the unwanted parts of it are
cleared. After themodel is ready, it must be adjusted to fit the registered scene’s exact location, rotation,
and size. To do this, first, a point cloud has to be obtained through the Kinect that solely represents the
object of interest. Obtaining this point cloud can be done by first filtering out asmuch of the surroundings
as feasible, and when only the floor and the object are left, Random Sample Consensus (RANSAC)
plane segmentation is applied. RANSAC is an algorithm that can identify the points that make up the
floor plane and thus make it possible to separate object points from the points on the floor.

RANSAC is a method that estimates, based on gathered data, the parameters of a specific math-
ematical model (model hypothesis). In the case of the floor, this is a model hypothesis of a plane, but
it can, for example, also be a cylinder, cone, or torus. RANSAC works based on some assumptions,
with one being that the data is not perfect and thus consists of both ”inliers” and outliers. With inliers,
one means the points that fit the model within a set error margin, while outliers fall outside that range.
Another thing assumed by RANSAC is that, based on the inliers, it is possible to optimally estimate the
parameters that explain a model. These optimal parameter estimates can accurately segment a plane
from a scene. In the case of a plane segmentation in the current situation, the RANSAC algorithm goes
as follows [47]:

1. Three random non-collinear unique points are selected

2. The planar model coefficients are calculated based on the three points
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3. The distance from a point to the plane is calculated for each point of the point cloud

4. The points that fall within the distance threshold are grouped as inliers; the other points are
grouped as outliers

5. The above steps are repeated for a maximum of 1000 iterations to increase the chances of suc-
cessful segmentation.

When all iterations are completed, the iteration with the most inliers is selected as support for the planar
model. All the outliers are regarded as the points that, in our case, make up the segmented object point
cloud, as shown in Figure 3.4.

Figure 3.4: RANSAC plane segmentation applied in a real-life setting. The grey points in the point cloud are the inliers, while
everything else is an outlier. These grey points represent the identified floor.

When a point cloud of the 3Dmodel is available, and the pose and scale of the segmented object are
known, one can start matching the point clouds. Principal Component Analysis (PCA)matches the point
clouds by identifying each cloud’s mean and primary axes of variation. The eigenvectors that result
from these axes are always mutually orthogonal within the point cloud, and because of this, they can be
directly used as a rotation matrix. Together with the point in the middle of the cloud, these eigenvectors
make up a full transformation matrix for the respective point cloud. When this transformation matrix
is applied to the point cloud it is created by; it will move that cloud in such a way that the midpoint is
on the origin and the primary variation axes align with the Cartesian coordinate system. Through this
transformation, both models can change their basis to the same location with approximately the same
pose, making it easier to determine the scaling factor between them. By creating an oriented bounding
box (bounding box in the eigenspace) of both clouds, one can determine the variation in each axis, and
based on this variation, a scaling factor can be established. After the pose and scale are handled, the
3D model transforms to the position and rotation of the segmented object.

3.5. Object tracking
With the environment and the object ready for tracking, the central part left is the actual tracking of
objects. In this project, tracking happens based on a particle filter through which the object’s pose is
tracked in 6 DoF. Before the tracking process starts, however, first, the object model point cloud used is
downsampled. The environment point cloud received from the Kinect will also be downsampled. This
downsampling, however, will happen with each newly received frame instead of only once before the
start of tracking.

Downsampling is a resampling technique that aids in computational efficiency and filtering out noise.
For downsampling, a fixed spatial decomposition technique is used for assembling a local 3D grid of the
target point cloud. In the case of this project, it is chosen to make use of a fixed-width octree structure
to downsample the point clouds. An octree is a tree data structure where each node that has children
has precisely eight. A node without children is called a leaf node. In a 3D space, this means that an
octree recursively keeps dividing the space into eight smaller 3D spaces until any further subdivision is
undesired. For the application discussed in this thesis, a fixed leaf size width is set to determine how
big of an area the leaf nodes should cover. Figure 3.5 shows an example of such a fixed-width 3D
voxel grid assembly. Based on this local 3D grid that is created, the centroid of the set of points in each
leaf area is determined. The respective centroids are combined to create a downsampled version of
the original point cloud.



3.5. Object tracking 15

Figure 3.5: An environment represented using an octree structure with a fixed leaf size width of 1.5 cm. [47]

Next to downsampling, each frame received from the Kinect must go through another part of pre-
processing before it can be used for tracking. As it turns out, the tracking works better when the floor
points are removed from the image on which tracking is performed. Floor removal using the RANSAC
approach might be the most accurate option; however, it is costly. Therefore, to speed up this process,
a new approach was devised where RANSAC was only used to determine the normal vector of the
first received frame. Since the floor is not expected to change orientation, assuming the sensor is
stationary, this normal should be able to represent the floor for each frame. A limit can be calculated by
projecting the floor’s highest point on the normal. This limit serves as the cutoff point; all points below
this value are considered part of the floor.

3.5.1. Particle Filter
When the pre-processing through downsampling and floor extraction is done, the actual tracking algo-
rithms can run, which, in this case, is the particle filter algorithm. Particle filters are sequential Monte
Carlo algorithms that estimate the posterior distribution of states in a dynamic system, given incomplete
and noisy observations provided by sensors. A Monte Carlo algorithm is, in short, an algorithm that
repeatedly uses random sampling to obtain an outcome with a certain probability of being incorrect.
The particle filter’s posterior state estimation (also called belief) is based on the Markov assumption
that the posterior state only depends on the current state and is conditionally independent of all other
past states. So, particle filters compute the posterior each time by recursively updating the belief based
on the latest information. This belief is represented in a particle filter as shown in Equation 3.2.

𝑆𝑡 = {⟨𝑥(𝑖)𝑡 , 𝑤(𝑖)𝑡 ⟩|𝑖 = 1, ..., 𝑛} (3.2)

Here, the belief is a set 𝑆𝑡 of 𝑛 samples, where each 𝑥 is a particle (or state) at time 𝑡 with importance
weight 𝑤. These importance weights sum up to one, forming the belief. This belief, in its turn, is
updated through a sampling procedure which, in this case, is called Sequential Importance Sampling
with Resampling (SISR) [48, 49]. This procedure consists of two significant steps, namely importance
sampling and resampling. However, before the particle filter starts with importance sampling, it needs
to (re)sample a set of particles to use. These samples are created by generating random particles from
a Gaussian distribution. The mean for this distribution is the position and rotation of the current state.
The covariance is a parameter that determines the spread of the Gaussian. The covariance value can
be manually tuned and affects the performance, as is later shown in Section 5.

Once the set of particles is defined, the importance weight of each particle is calculated through
likelihood estimation. For the associated calculation, several algorithms exist. In this case, a likelihood
formula is used based on a combination of the K-Nearest Neighbour (KNN) and Approximate Nearest
Neighbour (ANN) algorithms. These algorithms classify the closest point pairs between a point mea-
sured by the Kinect and a predicted point. While on itself KNN should be sufficient for the computation,
the simpler, less detailed ANN algorithm serves as an extra background check for finding the right so-
lution. KNN is a non-parametric supervised learning method, and the way it works is that it recursively
goes through all the points within the indicated range and looks for the 𝑘 nearest neighbors of the target
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point. In turn, the ANN algorithm is less exhaustive and thus considerably faster because it processes
the data in a more efficient index, however, at the cost of lower accuracy. For these identified nearest
points, the coherence is computed following Equation 3.3, with 𝐶(𝑥𝑖 , 𝑢𝑖) the coherence value between
the predicted point 𝑥𝑖 and the measured nearest point 𝑢𝑖. 𝑑 is the vector length between the two points,
and 𝑤 is the weight of the coherence approach used for determining its importance. The importance
weights sum up the individual particle’s complete (non-normalized) weight.

𝐶(𝑥𝑖 , 𝑢𝑖) =
1

1 + 𝑑2 ∗ 𝑤 (3.3)

After the importance weights are normalized, the particles and their likelihood are used for approx-
imating the posterior state, and consequently, a belief is obtained. When the belief is decided, the
particle filter uses its position and rotation data to resample the particles in the next iteration. The
described procedure that the particle filter goes through for each iteration is visualized in Figure 3.6.

Figure 3.6: Simplified representation of the steps followed at each iteration of the particle filter [50]

3.5.2. KLD-adaptive Particle Filter
A variation of the particle filter is the Kullback-Leibler Distance (KLD)-adaptive particle filter. This variant
uses a varying number of particles (samples) for each iteration of the particle filter. The idea behind it
is that using the same number of particles for each situation is unnecessary, and reducing this could,
with probability 1 − 𝛿, reduce the computation time while keeping the distance between the belief and
the truth within a pre-specified threshold 𝜖. This distance is determined using KLD-sampling since it
measures the distance between the belief and the true posterior state by the Kullback-Leibler Distance
[51]. KLD is originally a method to measure the resemblance between two probability distributions
using Equation 3.4, with 𝑝 the true posterior distribution and 𝑞 the estimated posterior distribution.

𝐷𝐾𝐿(𝑝, 𝑞) =∑
𝑥
𝑝(𝑥) ∗ log(𝑝(𝑥)𝑞(𝑥)) (3.4)

The pre-specified threshold consists of a minimum and maximum value for the KLD calculation
results. Normally the true posterior is known, which makes implementing the solution relatively easy.
However, in the case of the particle filter, the whole point is to estimate this posterior through the filter.
Therefore, adjustments must be made to make this approach usable during each iteration of the particle
filter. Knowing how the number of samples needed is determined is important. Equation 3.5 shows
the derivation of the number of samples 𝑛𝜒 from a discrete distribution with 𝑘 bins, threshold 𝜖, and the
upper 1 − 𝛿 quantile of the standard normal distribution 𝑧1−𝛿 [52]. For the particle filter, the values for
𝜖 and 𝛿 are parameters to be tweaked manually, and the value for 𝑧1−𝛿 is readily available in statistical
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tables. The main challenge for implementation in the particle filter is the determination of the number
of bins (𝑘) with support (i.e., containing at least one particle).

𝑛𝜒 = 𝑘 − 1
2𝜖 {1 − 2

9(𝑘 − 1) + √
2

9(𝑘 − 1)𝑧1−𝛿}
3

(3.5)

The trick used in the particle filter is estimating the number of supported bins 𝑘 during sampling.
For each new sample, it is checked whether the sample falls into an empty bin, if that is the case,
𝑘 is incremented with one, and the number of samples required 𝑛𝜒 for the estimated 𝑘 is updated
using Equation 3.5. Since the number of samples 𝑛 increments faster than the sample threshold 𝑛𝜒,
sampling can eventually be stopped when they are equal. This number is then the number of samples
needed for the current iteration of the particle filter. For the current implementation, the bin size and the
maximum number of particles can be fixed in the software. Hence the sampling process is guaranteed
to terminate.

3.5.3. WA-based Particle Filter
Next to the KLD variation on the particle filter, also another adaptation is created. This variant does
not only make use of the previous state while sampling particles for the current iteration. It also uses
the result of the previous state as input for the updating sequence of the current state. The original
updating happens through normalizing the determined likelihoods of all particles. Then, a new state
is identified based on the weighted sum of all parameters of the particles. In the WA-based particle
filter, the same approach is used as in the original particle filter. However, the previous state’s particle
information is now weighed in when updating. The new state is determined based on the weighted
average that results from this comparison. This approach increases tracking stability at the cost of a
slower response to a changing environment. However, this solution might prove beneficial for the case
of MMT given that stability is a higher priority than the actual pose.

3.5.4. Kalman-inspired particle filter
Eventually, a Kalman-inspired particle filter has been worked out, regarded as the next step of the
WA-based particle filter. Due to time constraints, it was impossible to finish this variant, but a proof of
concept was created in Python. In this approach, a Kalman filter is used in the updating step of the par-
ticle filter. The Kalman filter, at this point, produces estimates of the new state. This (optimal) estimate
is based on the joint Probability Density Function (PDF) between the predicted state estimates and the
measurements, as depicted in Figure 3.7. In the case of the particle filter, all particles of the current time
frame are regarded as measurements. On the other hand, the particles of the previous step make up
the predicted state estimates, which is possible as a zero-order hold is applied here. Combining these
two groups of particles and determining their likelihood, an optimal particle/state estimate is obtained.

Figure 3.7: The idea behind the Kalman filter for 1 DoF. This same principle is applied in the particle filter, however, now with 6
DoF. Adapted from [53]

The idea of the PDF from the Kalman filter is used to ensure that in states with multiple well-fitting
estimates, only the particles within a reasonable distance from the current fit are selected. Selecting
these particles is especially useful in the case of rotations, where a symmetric object like a cube can
have several poses that fit equally well in the current state. Therefore, using the principles of the
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Kalman filter in the particle filter during the approximation of the posterior state is expected to improve
performance drastically.

3.5.5. Tracking post-processing for Model-Mediated Teleoperation
Once the particle filter algorithm processes a frame, the pose result is sent to the local model in the
master domain. Once the result arrives, the object model is placed in that pose in the local virtual
environment. One problem is, however, that the center and set of basis vectors used in the sensor
coordinate system differ from the ones used in the environment coordinate system. The eventual
tracking result is transformed post-processing to correct this difference before sending the information
over the network. A translation matrix describes the sensor distance to the environmental center. This
translation matrix is then multiplied with a rotation matrix based on the already defined normal vector
of the floor in the environment. The rotation matrix is built up from new axes. The z-axis is defined
through the normal vector’s projection on the normal vector’s yz-plane. This vector is then normalized
to make it a unit vector. The normal vector’s inverse represents the y-axis; the x-axis is determined
through the cross-product of the y and z-axes. Through this transformation matrix, the eventual pose
is described from the point of view of the environment’s center.



4
Methodology

When starting the thesis, the Embedded and Networked Systems group still needed to gain knowledge
about real-time dynamic environmentmodeling. Hence, we started with the question of how an accurate
model of the environment can be created. Soon we realized that this representation had to be done
in 3D space, and eventually, two approaches were identified. One of the options was with the use of
AR tags, and the other one utilized (colored) point clouds. Since the use of AR tags turned out to be
more limiting in its possibilities than the approach with point clouds, we decided to explore the latter
direction.

To be able to do research and conduct experiments in the space of environment modeling and
object tracking, a decent hardware setup is desired. For this setup, the first and foremost thing we
needed was a strong enough computer to run the software that was going to be created. Since, in the
beginning, we did not expect to require a high-performance computer, a readily available one would
suffice. The particular computer we used from the start, and eventually throughout most of the project,
turned out to be an ADLINK MXE-5501. This computer has a 2.80 GHz Intel(R) Core(TM) i7-6820EQ
CPU with an Intel(R) HD Graphics 530 graphics card and 32GB of RAM. Next to the computer, we
also needed a depth and a color camera for creating the necessary point clouds. Luckily for us, the
depth and color camera are regularly combined in what is known as an RGB-D camera. Generally,
these cameras are expensive, with, for example, the ZED 2, Azure Kinect, and Realsense cameras all
above 150 euros. Since limited monetary resources were available, we looked into a few options and
performed a simple Design Space Exploration on them to select which camera to use throughout the
project. A Kinect v1 was available at the office, and since its performance was sufficient for our goals
in this project, we decided that this was the way to go.

Using Kinect the first step was to find out how to use this camera and whether it was possible to attain
data from it reliably. Although Microsoft does not support using this Kinect on Linux, we still require
Linux. Linux is a real-time OS, which, compared to Windows, has considerably higher stability and
more predictable performance. Eventually, two good open-source libraries were identified with which
we could extract the data from the Kinect. One of the libraries explored was based on Python and the
other one used C++ as the primary programming language. As shown in Figure 4.1, the Python library
lacked performance for our purposes of environment modeling as the point cloud was not accurate
enough. Given that the C++ library, called OpenNI2 [54], could extract a decent quality point cloud, it
was decided to use that option further.

At this point, it was evident what hardware to use for the sensing and how to obtain a point cloud
with depth and RGB data. The next step was determining what we needed to obtain from these sen-
sor measurements. We quickly realized that the parameters that make up the environment and the
objects within it are most important to obtain through the camera. Hence, first, we devised a list of all
possibly interesting parameters with which environments and objects are described. From this list, we
concluded that the first step in environment modeling would be to detect the objects within and then
track them while they change. Hence, three stages were identified for environment modeling: discov-
ery, detection, and tracking. Before looking into the stages, we experimented with several libraries and
existing projects concerning object detection and tracking. Once we mapped out the possibilities that
existed, eventually, we started shifting our attention to solving each stage. Since we wanted to show a

19



20 4. Methodology

(a) Making use of a Python library (b) Making use of the C++ library OpenNI2

Figure 4.1: Point cloud extracted with the use of a Kinect v1

working proof of concept at the end, the first thing we did regarding each stage was to check its relative
cruciality to our demonstration. Quickly we realized that spending much time on both discovery, as
well as detection could be circumvented. Since tracking is more complex than the other two steps, this
became the main focus of our research. However, before we could lock in on efforts regarding tracking,
the other two stages had to be tackled first, given that tracking cannot occur without them.

4.1. Discovery and detection
Discovery and detection are, in our case, solved by creating a library of objects. In the library, important
parameters of the objects and a 3D model of that object are stored and connected. Then, with this
information, the object of interest is detected in a small, predetermined area of the environment. While
most object parameters can be obtained before tracking starts (weight or shape), acquiring the correct
scale and position for an object in the environment is more tricky. Since the object should be able to
move in 6DoF, a 3D model should be created containing all sides of the object. Therefore, we set up a
pipeline for object modeling involving different approaches. Unfortunately, not all parts of this modeling
process are automated completely. A partly manual pipeline was chosen because, after numerous
tests, it delivered the best results for object modeling in our specific situation. Since the eventual object
tracking performs considerably better with high-quality reference models of the objects, it made the
most sense to use this approach.

The pipeline for creating reference models is shown in Figure 4.2 and starts with creating a 3D
model. There are only a few options readily available for off-the-shelf 3D model creation. After some
experimenting, we found the app called KIRI Engine [46] to be the best free-to-play choice. Through
the app, one can create a 3D model saved as a .obj file by making at least 70 2D pictures of the desired
object from all sides. In the example of Figure 4.2a, a 3D model of a shoe was created based on the
pictures made. Besides using already available apps, other options we considered were writing code
ourselves or even readily available RGB-D-based approaches. However, the problem with all these
other options was that they either had too low of a time-reward ratio compared to KIRI, lacked detail in
the model they created, or all of the above. When a 3D model is correctly built-in KIRI, there are still
some undesired areas present in that model which have to be removed before the design is usable.
We tried directly removing these noise areas, shown in Figure 4.2a, with our code to create a more
automated process. However, due to the randomness of the noise and the limited number of models to
make, we decided to deploy a more manual process. In this process, the generated .obj file is loaded
into a program called CloudCompare [55]. In CloudCompare, the mesh in the .obj file is converted to a
point cloud (.pcd file format) from which all undesired parts of the model can then be removed manually.
Eventually, this results in a quality point cloud model as shown in Figure 4.2b.

Before the 3D model could be used as a reference model for the object tracking software, a third
step, as shown in Figure 4.2c, was taken. Through this step, object detection is largely avoided since
the model’s scale and position is adjusted to match that of the object in the environment. Since the
application starts with the scaled and positioned 3D model, the discovery is redundant and detection
trivial. The software looks at the current situation in the remote environment to achieve scaling and
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(a) Model creation (b) Model cleanup (c) Model scaling and positioning - pink is 3D
model, grey is object in the environment

Figure 4.2: Pipeline used for creating 3D models of objects

positioning. From the remote environment, it filters out the surroundings from the object of interest.
When only the object and the floor are left, it segments the floor plane to decouple the object and the
floor in two separate point clouds. Based on the floor normal, the world axes are determined. With
these axes and the object point cloud, the program can infer the current object’s size and approximate
position and rotation. This data consequently scales and positions the previously created 3D model of
the respective object accordingly.

To achieve scale synchrony, we took a simple but effective approach of measuring the length of one
side of the object and comparing it to that same side in the model. Based on the ratio between these
lengths, the size of the 3D model is subsequently adjusted. This approach is possible because the
setup of creating the 3D model is static, which makes it possible to always position the model the same
way as the object. For the position tuning, two different approaches were considered. One tactic was
based on placing multiple markers on the floor. We could use these markers to calculate the floor’s
normal vector and the object’s position in the world coordinates. This information made it comfortable
to transform the model to approximately that same location. The other, eventually chosen approach
did not use the manually placed markers to obtain a normal vector. Instead, the entire floor point cloud
obtained through the earlier plane segmentation was used, providing a more robust solution. The
details on how these techniques work are explained in more detail in Section 3.5.

4.2. Tracking
When the 3D models of the objects were adequately prepared, it was time to start looking into one
of the main focus points of this thesis: tracking dynamic objects in 6DoF. To find a promising object
tracking approach, we again conducted a literature review, this time on currently existing research in
the field of 6DoF tracking. What is striking when looking at the set of existing studies in Section 2.4
is that more and more research has started to focus on Deep Neural Network (DNN) as of lately. We
compared these approaches with approaches solely utilizing the classical methods and noticed that
combining both might be the most promising solution. However, as this is a relatively young field of
study, and the research group is relatively new to the topic, our goal is not only to create a good tracking
approach but also to gain more insight into the problem. When trying to understand a concept better,
a black box model based on DNNs might not be ideal. Hence, we decided that for this project, it would
make more sense to focus on using filters and other algorithms that are part of the classical methods
to understand object tracking better.

Once more familiarity with the theory behind object tracking was obtained, we could slowly start
building the necessary software. The first version of the software consisted of two separate threads,
one for the calculations performed and the other for visualizing the results. First, the Kinect captures
a colored point cloud based on the depth and RGB data it processes. This data is then fed to the
calculation thread, which is eventually the most important as it is the part that enables us to analyze the
performance of the tracking algorithms. The calculations, however, do not only encompass tracking
efforts; also, pre-processing takes place here. Pre-processing is necessary for two reasons. One
reason is that segmenting the floor in the scene improves tracking performance drastically. The other
reason is optional when the computational power needs to be stronger. In that case, the point cloud
has to be downsampled since using all available points for tracking is computationally too expensive. In
Section 5, we show how significant this effect of downsampling is on the timing performance of tracking.
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How these pre-processing efforts exactly work is explained in more detail in Section 3.5. After the pre-
processing of a frame is concluded, the point clouds of the environment and the 3D model are ready
to facilitate the object-tracking algorithms.

For object tracking, several algorithms were considered for implementation. The most promising
ones in existing research are the Bayesian-based solutions where a Kalman or particle filter, or a
variation thereof, was implemented. To decide which of these two commonly used filters we wanted to
test, we looked at the characteristics of both solutions and their variations while considering both the
suitability for tracking and MMT applications. While the options do not differ much in the results, one
difference between the two approaches is that it has been mentioned multiple times that the particle
filter tends to give better results [56, 57, 58]. These better results come at a higher computational cost;
however, given the ever-increasing computational capabilities of modern systems and the assumed
importance of accuracy of tracking for theMMT system, we decided to explore the particle filter solutions
for this project.

In our code, tracking happens by deploying an advanced particle filter that uses both the point cloud
of the target object and the environment. By tracking an object, the position and orientation of the object
are determined, which can then be used for further usage in MMT applications. Before the eventually
advanced particle filter was created, we went through an iterative process of implementing a basic
particle filter and slowly attempting to improve it. Three significant steps were identified in a particle filter:
prediction, importance sampling, and re-sampling. While newer versions have different techniques for
handling one or more of these steps, the overall process remains the same. First, the position and
rotation are predicted for a predetermined number of particles/samples based on the information of the
particles in the previous frame. After this, the likelihood of those particles being correct is calculated
based on a chosen algorithm. This algorithm can be based on several characteristics on which the point
clouds are compared, such as distance, normal vectors, or even color between points. Since our setup
was placed in an environment where the lights were not so easily controlled, it quickly became apparent
during testing that predicting the formula based on color differences was not ideal. Eventually, the use
of normal vectors also did not work sufficiently, and thus a likelihood based on the distance between
points near each other was chosen as the likelihood predictor. The reason for eventually choosing
these parameters was because of the results we obtained backed by the promising indications given
about its effectiveness in previous research. When the likelihood is eventually calculated, based on this,
re-sampling of the particles takes place. This description briefly explains how the particle filter works
at its core, a more detailed picture of all the implemented improvements is painted in Section 3.5.

After we managed to implement the initial particle filter algorithm (Figure 4.3), we noticed that, at
first, it was too slow to be used possibly. We printed the execution times to the console to get a rough
estimate of exactly how slow the code was. Later on, this approach changed when a better picture of
execution times and thread interaction had to be painted. The eventual timing measurement approach
used is explained in more detail in Section 4.3. This simple printing approach was used for high-
level debugging throughout the code implementation process. It turned out that the point clouds that
we used contained many points, and the computer was not the greatest. Hence, we came up with
the idea of downsampling both point clouds, as mentioned earlier. This speedup, however, logically
came at the cost of having lower tracking stability for the basic particle filter implementation. Besides
the downsampling, we also looked at other parameters which could be tuned, such as covariance
values and the number of particles used during calculation. The tweaking of these parameters was
eventually analyzed for every iteration of our approach. Its results are presented in Section 5. Tuning
these parameters for our first effort eventually made a big difference. However, as we gathered more
knowledge on particle filters, we identified some opportunities that could improve the performance
considerably. Eventually, the idea of having fewer particles when the algorithm is more likely correct
led us to try a variation of the particle filter approach called the KLD-adaptive particle filter [52].

The KLD-adaptive particle filter adapts the number of particles it uses for prediction based on the
likelihood level that the tracking is correct. Hence, the more confident the tracking algorithm is about
a specific position the object is in, the fewer particles it will use for its current calculation. With this
approach, the tracking time should drastically improve in simple situations. Since the approach is
based on how ”certain” the algorithm is about the actual object location and pose, one would reasonably
expect the tracking stability to stay the same while speed improves. Since the KLD adaptation of the
algorithm mainly focuses on calculation efficiency, it made sense for our next iteration to look more into
how to restrict the position and rotation fluctuations, as this was another concern.
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Figure 4.3: Visualization of the particle filter-based tracking algorithm. The blue points on the object represent the actual position
of the object that is tracked; the green points serve as a reference to get a better idea of its behavior.

When looking further into how to improve the stability problem of the tracking, we noticed an inter-
esting thing in the theory behind the particle filter. The approach only uses the final pose of the object in
the previous frame to generate new particles for the current frame. However, it seemed wasteful only
to use some of the information from the previous result throughout the entire process. After all, more
data is more knowledge in this case. Therefore, the following improvement applied used the previous
result also in the other phases of the particle filter instead of only during prediction. This approach
is still a particle filter; however now starts to include more of the principles of a Kalman filter as well,
explained in more detail in Section 3.5. In Section 5, one can see an analysis of this implementation
compared to the others.

The latest improvement still showed fluctuations in the position and rotation values, although less
than before. Especially positioning and rotation over the x-axis seemed to fluctuate too much for hap-
tic systems’ liking. Hence, to tackle the problem better, we devised a more drastic Kalman-inspired
approach. Since this solution proved to be more complicated to implement than expected due to its
mathematical complexity, we decided to test the proof of concept in a different, more easily adjustable
test environment. In this test environment, we created an experiment for a 1 DoF rotation, to be ex-
panded to 3 DoF later. Due to the timing constraints of the project, however, we had to leave this
possible improvement for what it was, as our priority was to track a digital model of a dynamic object
in real-time as part of the MMT system. Since the tracking functioned relatively well, we decided that
integrating the software with the MMT system was, for now, of higher precedence.

The experiments on the Kalman-inspired approach proved promising, as seen in Figure 4.4. Here
it is clear that, in a 1 DoF situation, the Kalman-based approach tracks the rotational change of a
fully symmetric object more precisely than the basic particle filter. This approach functions so well
because the PDF that is used in the Kalman filter avoids confusion about the correct degrees of rotation
when multiple poses fit equally well. However, keep in mind that so far, these tests only serve to
give us a better understanding of its potential, while unfortunately, they could not give a quantitative
prediction of the performance within the 6 DoF tracking process itself. Therefore, the main focus of
these experiments was to prove that the devised concept is promising regarding tracking at least one
DoF. Based on this exploration, the first signs show promising for its implementation in the eventual
solution.

4.3. Model-mediated Teleoperation
At a certain point when developing the tracking part, we also had to integrate this into the larger MMT
system. Software development was crucial for this system integration, and our existing hardware setup
had to be extended. As can be seen in Figure 4.5, the setup of the MMT system exists of a core
computer running two peripherals. One of these peripherals is the Kinect that we used for object
tracking; the other one is new, the Novint Falcon. The Novint Falcon is the haptic device that will be
the controller on the master side of the setup, while the Kinect, as already discussed, is desired for
the tracking on the controlled side. Other devices could be chosen as the haptic and sensing devices;
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(a) Using a Kalman-inspired particle filter (b) Without using a Kalman-inspired particle filter

Figure 4.4: Tracking the rotational position of a completely symmetric object over time in 1 DoF

however, these two devices were both readily available at the TU Delft and sufficient for obtaining the
defined research goals.

Regarding the computer, the same one was still primarily used as it showed to be sufficiently ca-
pable. For one of the experiments, we also used another different computer to evaluate the effect of
computing power on the speed performance. For the network of the MMT system, there were two op-
tions, either emulate the network on one computer or have a real network between two computers. In
the case of this project, it was decided to use an emulated network to ensure that experiments would
be repeatable within a controlled environment. Using this setup, either entirely or partially, all desired
experiments could be carried out to answer our research questions.

(a) Kinect (b) Adlink MXE-5501 (c) Novint Falcon

Figure 4.5: Complete hardware setup containing one Kinect v1, one Adlink MXE-5501 and one Novint Falcon

To add the tracking capabilities and other parts, later on, we deemed it essential to have an archi-
tecture in place for the application that makes it easy to add or remove capabilities from the system.
When starting the project, the idea of what the overarching MMT system would look like was already
clear based on existing research in this domain [8, 22]. Since the research group’s efforts with regards
to MMT had mainly focused on implementing the physics engine, a clear architecture within the soft-
ware was still missing, however. Since the tracking had to be included, we uncluttered the system and
realized a clear division into separate modules, most using individual threads. Besides the standard
benefits of the modular programming approach that we applied, such as an easy-to-understand code
architecture and reusable modules, it also eased the setup for different testing scenarios later. Modu-
lar programming is, therefore, an excellent choice for the design of this project as it makes it relatively
simple to add new functionality or leave out existing processes. In addition, it also makes it easier to
analyze individual components in isolation or with respect to other modules.

The core component for this system to function correctly is the Unity engine since this engine plays
a crucial role in the local model construction. Hence, at first, we created the software so that from the
Unity engine, all additional modules were initialized with their respective parameters. There are four
main modules (haptic device, physics, network, and tracking), with each their threads. The way the
modules in the designed system communicate with each other is shown in Figure 4.6. As one might
have guessed, the tracking module contains most of the additions from this research.
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Figure 4.6: Modules of both domains communicating within and between the domains. The Novint Falcon and the Kinect are
hardware; however, since they provide data to the software, they are added to the overview. Note that the physics module on
the master side takes care of the G’ simulation.

Given that there was no desire for this project to have a local model in the controlled domain yet,
the module communication regarding this element is also not portrayed (witness the three dots in Fig-
ure 4.6). In this system, irrespective of the network, a control loop on the master side eventually always
exists, just as MMT intends. Once the entire system is complete, with a local model in the controlled
domain, there will also be a control loop specifically for that domain.

In the master domain, the physics module receives interaction data from the haptic device, in our
case, the Novint Falcon, and data from the network module. This network module solely takes care
of the communication between the two domains, receiving data from one side and directing it to the
physics module on the other side. The tracking outcome provides the data that the network trans-
fers from the controlled domain to the master domain, which processes the raw data from the Kinect.
Looking at this, we realized that the physics engine was not even needed for tracking in the controlled
domain. Hence, we decided to make the tracking functionality standalone and separate it from the
Unity engine. Doing this resulted in a speedup of approximately three times for the tracking. When
one would want to add a local model on the controlled domain side, there would only be one extra
step involved when tracking is standalone. This step would be to connect the physics module in the
controlled domain through different network ports than the ports the tracking part uses for connection
to the master domain. The network modules for both would also be slightly different as tracking data
only has to be sent, while the physics data has to be both sent and received.

The network module can have two different components, one for sending and one for receiving.
When data is being received or sent, it has to be done asynchronously, meaning a specialized thread
is needed for both operations. The packets sent over the network are UDP packets since the application
operates in real time. With this approach, security risks arise for some applications. However, since this
research focuses not on networking, it was decided that a UDP protocol was sufficient. One thing we
did to make the connection more secure for the future was about packets critical for proper execution.
For these packets, the receiver is expected to return an acknowledgment with the hash of the contents
when it receives a packet correctly. The sender, in its turn, waits for the acknowledgment for a while;
if it does not receive it, the sender will resend the critical packet. The reason this bilateral UDP packet
implementation is done for critical packets becomes clear when we take a look at the purpose the
network serves. Communication over the network is essential for two reasons: discovering new objects
and maintaining the already established objects. While both packets are sent over the network, the
maintenance of object information is much less critical than when a new object is discovered. This
difference in criticality is because when object discovery takes place, the corresponding packet is only
sent once, while for object updating, the data is received constantly. Missing a discovery packet might
thus have significant consequences compared to the minor effect that missing a maintenance packet
has.

Next to the communication between the domains, the communication within the domains must hap-
pen safely. Because of the multi-threaded nature of the code, it is vital to ensure the safe functioning of
these interdependent threads. This thread safety for read and write operations between the threads is
guaranteed through mutexes. Mutexes ensure that only one thread can interact with a particular part
of the code; if a second thread wants to interact, its execution is halted until the other thread is done.
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Even though in C++, atomic variables are superior to mutexes concerning performance, mutexes are
crucial when writing to multiple addresses in a thread-safe manner. If, for example, one thread would
read a position or force vector while another thread is actively writing new values to that vector, a
partly updated vector could be read. This erroneous reading could crash the system or diverge the
model depending on the situation. These problems would be caused by misplaced objects or wrongly
determined force feedback.

4.4. Logging and benchmarking
The results required for evaluation were logged into a CSV file which contained all the essential pose
and timing data. While the pose data was logged the moment the result of the iteration was known,
the timing measurements were gathered using a benchmarking tool developed by The Cherno [59].
This benchmarking code made it possible to measure the duration of each tracking iteration and even
its sub-components. Not only did this benchmarking code help us measure the timing performance,
but due to its visualization capabilities, it eventually also proved helpful for even further improving the
timing performance. By visualizing the function execution timeline and the used threads, bottlenecks
and simple adjustments could easily be identified. Due to this tool, we realized that when using tracking
in theMMT system, we could spread the work for tracking over two threads: one occupied with retrieving
and pre-processing, the other one with the tracking computations based on the earlier pre-processed
frame. By implementing the tracking functionality this way, we achieved a higher frequency.
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Results

In this research, the focus is mainly on the performance of the tracking module and its integration
within the larger MMT system, as shown earlier in Figure 4.6. Several experiments are conducted to
give more insights into the conditions discussed earlier. The main object used in the experiments was
a rectangular box of 21 by 9 by 6 cm. This box was placed in a controlled environment that was easy
to model for the tests, without any closeby objects.

5.1. Tracking performance experimental setup
For the analysis of the tracking performance, three different scenarios are identified. One situation is
about an object that does not move and is hence static. The other two scenarios happen when an
object changes its position or rotation. Three point cloud videos are recorded to test these scenarios.
In one video, there is a static rectangular box; in one video, the box moves by ~25 cm in the x direction;
in the third video, the box rotates around its center with ~25degrees. With these videos, it is possible
to conduct experiments on tracking performance in identical situations using different parameter values
and versions of the algorithm.

Several parameters are analyzed to find the optimal configuration for the particle filter. While sev-
eral parameters have been experimented with, three of the most interesting ones are identified and
discussed in this section; these are:

• Number of particles
The number of particles being used in each iteration of the particle filter on paper should be one of
the parameters with tremendous influence on the speed of computation. For the solution version
utilizing KLD sampling, this number indicates the maximum amount of particles to be used rather
than the exact number.

• Level of downsampling
The level of downsampling applied to the point clouds used for tracking. These are the envi-
ronment point cloud and the 3D object model point cloud. Instead of looking at the number of
particles directly, the level of downsampling influences the number of points used to calculate a
particle’s fit to the model.

• Sampling covariance
Sapling covariance is the spread of the area in which particles are randomly sampled in the
sampling phase of the particle filter.

Unless otherwise indicated, the parameter values used in the experiments are the same for each
experiment. In the case of the three parameters mentioned before, this means that downsampling is
at a 20mm level, sampling happens with a covariance of 15mm, and a total of 2000particles are
used. Besides analyzing the particle filter parameters, different particle filters are also evaluated on
their performance. In total, four different particle filters are closely examined:

• Basic

27
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• KLD-adaptive

• WA-based

• Combined KLD-adaptive and WA-based

These different filters and several parameter configurations are evaluated based on timing perfor-
mance. For timing, a distinction is made between processing/computation speed and filtering delay.
Computation speed in this thesis is defined as the time it takes for a new frame from the Kinect to be
received and processed. This processing time can be further divided into three parts: downsampling,
extraction, and tracking. Of these three parts, the first two are part of the preprocessing that each
frame has to go through, which is explained in more detail in Section 3.5.1. Filtering delay describes
how far the filter is lagging behind environmental changes. Since no means were available to mea-
sure the movements and rotations to mm and degree level accuracy, the filtering delay uses relative
changes for comparison. Hence, the performance is evaluated for filtering delay relative to other filter
implementations and configurations.

Besides timing, another vital aspect of the particle filter is its tracking accuracy. Because of the
inability to measure movements and rotations to mm and degree level accuracy, a relative approach
is used rather than an absolute one. In the static scenario, with the box standing still, the positional
accuracy is defined as the Euclidian distance between the current and the previous point. The rotational
error is determined as the change in degrees between the current and the previous point. This error
determination is done separately for roll, pitch, and yaw since no single measure exists to define rotation
in three dimensions. The current and previous points are used each time because, in a static situation,
the object is not supposed to move; any change concerning the previous pose can be regarded as
a tracking error. Also, an important motivation for this choice is that, for TI applications, it is first and
foremost important for the QoE that objects that do not move also feel like it. Hence, it is important to
quantify how much change occurs between frames, as this change is supposed to be zero.

5.2. Tracking performance analysis
5.2.1. Particle filter parameters
The effects of different parameter configurations on the timing and accuracy performance of the fun-
damental particle filter are shown in Figures 5.1 to 5.10. Figures 5.1, 5.4, and 5.8 represent the static
tracking scenario where the accuracy evaluation is based on the positional tracking error. The rotational
tracking error is not shown here, as those results follow the same trends.

In Figure 5.1, the processing time increases somewhat linearly with the number of particles used
by the filter. Fluctuations in the positional tracking error, on the other hand, decrease drastically when
only small numbers of particles are used. When a certain number of particles is reached, however, this
decrease in tracking error starts to smoothen out. Hence, increasingly using more particles tends to
cost more time at a certain point, while there is only a limited decline in the tracking error. This situation
is essential to remember to benefit the most from the trade-off between processing time and accuracy.
Inference 1: A range of particles can be identified in which a significant amount of processing time can
be gained with marginal loss in tracking error.

In Figure 5.1, it seems to be that after at least 1000 particles are used, the tracking error does not
decreasemuch anymore. In a static situation, a value of around 1000 particles would seem appropriate.
However, when looking at the filter’s behavior in a situation with positional displacement, Figure 5.2, a
slight filtering delay starts to appear when 1000 particles are used. This delay is even more apparent
with 500 particles as in both Figures 5.2 and 5.3, rotational and positional changes are delayed critically.
Inference 2: The velocity with which an object changes its pose affects the number of particles needed
for the tracking algorithm to track that object properly.

Figure 5.4 clearly shows the effect that the level of point cloud downsampling has on particle filtering.
As expected, with a lower downsampling range, the tracking error decreases, and the time needed
increases. As shown in Figure 5.5, this exponential increase in time with lower levels of downsampling
directly correlates with the number of points left in the point cloud after downsampling. Hence, one
should try to balance the timing and accuracy for the downsampling level to ensure the particle filter’s
proper functioning.
Inference 3: The gain in processing time is directly correlated to the number of points used in the
particle filter calculations.
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Figure 5.1: The effect that the number of particles has on the positional accuracy and processing time of the particle filter.
Important to note is that the difference in the number of particles is not evenly spaced over the entire x-axis.
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Figure 5.2: The effect that the number of particles has on the
positional filtering delay in the x direction
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Figure 5.3: The effect that the number of particles has on the
rotational filtering delay in the pitch rotation

Looking at Figure 5.4, one might think that the best option, in this case, is to choose 30mm of
downsampling as compared to 20mm the accuracy is barely affected while the processing time almost
halves. In a static scenario, this might be true; however, as Figures 5.6 and 5.7 show, this does not
hold in dynamic situations. While the position is still sufficiently kept track of at 30mm, it loses track of
the rotation altogether.
Inference 4: There is a minimum number of points needed for the tracking algorithm to keep track of
an object’s pose.

Figure 5.8 shows that the sampling covariance leaves the processing time nearly unaffected. For
accuracy, however, an apparent effect can be observed as it tends to get more stable and accurate
when the covariance is smaller. This effect is only observed up until a certain point where a lower
covariance becomes unusable. For static scenarios, this is not immediately apparent. However, when
an object moves, as seen in Figures 5.9 and 5.10, it shows that the lower the covariance, the smaller
the changes in the object that the algorithm can track. At a certain level, the particle filter cannot sample
particles close enough to the correct location to adjust its prediction. Hence, even the slightest change
becomes too difficult to track. The question to be asked for deciding the correct value is, hence, the
maximum level of change in the object pose per time frame.
Inference 5: The change in processing time is negligibly small for a change in sampling covariance
but a lower level aids with better accuracy.
Inference 6: A low covariance can cause the tracking algorithm to not keep up with objects moving
above a certain velocity.
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Figure 5.4: The effect of tuning the level of point cloud down-
sampling on the positional accuracy and processing time of
the particle filter. Note that the y-axis on the right about timing
is shown with a logarithmic scale.
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Figure 5.5: The number of points left in the object point cloud
of the box used in the experiments after downsampling.
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Figure 5.6: The effect that the level of downsampling has on
the positional filtering delay in the x direction.
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Figure 5.7: The effect that the level of downsampling has on
the positional filtering delay in the pitch rotation.
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Figure 5.8: The effect of tuning the sampling covariance on the positional accuracy and processing time of the particle filter
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Figure 5.9: The effect of the sampling covariance on the po-
sitional filtering delay in the x direction.
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Figure 5.10: The effect of the sampling covariance on the po-
sitional filtering delay in the pitch rotation.

5.2.2. Particle filters
From the analysis of the three parameters above in both static and dynamic scenarios, it becomes
clear that there is a trade-off between how well one wants to be able to track changes in a dynamic
object versus how much error one wants to allow in situations where the object is static. Different
implementations of the particle filter also affect the timing and accuracy performance. This analysis is
shown in Figures 5.11 to 5.15. Figures 5.11 and 5.12 evaluate the static performance in both the timing
and accuracy of each version. All other parts below focus on the timing analysis amongst all scenarios.
For the particle filter without KLD, the standard number of 2000 particles is used, while for the particle
filter with KLD, 2000 is the maximum number of particles used. For KLD, that means the number of
particles could be less if the algorithm decides so.

The performance results for different particle filter implementations in a static scenario can be seen
in Figures 5.11 and 5.12. In Figure 5.11, a time-frequency domain transformation is performed with the
help of the Fast Fourier Transform (FFT). Since the tracking error is not constant, it means it consists of
different levels of noise that are uncluttered this way. Since there should be no frequency in a static sit-
uation, anything detected is basically due to an error. Therefore, the bigger the amplitudes of a version,
the bigger the power of the noise. The frequency domain of Figure 5.11 shows that WA outperforms
the other implementations, closely followed by WA + KLD. The basic and KLD implementations seem
comparable in performance. Figure 5.12 supports the observation for WA to be the best-performing
solution in a static environment. WA also shows here that, both with and without KLD, it decreases
the error rate while not affecting the processing time. Something interesting to note here is that KLD
implementations take longer in their processing time, while the core idea of KLD is to diminish the time
needed in situations like this.
Inference 7: The WA implementation of the particle filter significantly reduces the tracking error over
the entire frequency domain while leaving the processing time unaffected.
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Figure 5.11: Low-pass filtered frequency domain for positional
tracking, comparing different iterations of the particle filter
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Figure 5.12: The average positional tracking error balanced
against the average tracking time. The whiskers show the
25th and 75th percentile around the median.
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To ensure tracking is not the limiting factor in the system, it has to perform at a higher Frames per
Second (FPS) than the speed with which the Kinect receives new frames. Since the Kinect functions at
30 FPS, ideally, the tracking algorithm runs at equal or lower FPS. Figure 5.13a shows that reaching 30
FPS with the current setup is attainable when 1000 particles are used. When more than 1000 particles
are used, the processing time becomes higher than 30 FPS. When this same application is run on a
more powerful computer, as shown in Figure 5.13b, the tracking efforts can use even more than 1500
particles.
Inference 8: The processing time for tracking depends on the computing capabilities of the system
significantly.
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Figure 5.13: Representation of the processing times for different numbers of particles. Since the tracking runs on a separate
thread from extraction and downsampling, the frequency is usually unaffected by the extraction and downsampling. These two
preprocessing efforts hence only affect the processing time of a frame.

While WA outperforms the other implementations based on processing time and accuracy in static
domains, it shows a lag in terms of filtering delay. In Figure 5.14, the filtering delay shows to be relatively
small during the object’s movement (50% point), where some variations of the filter have more delay
than others. The moment an object stops moving, the transition from dynamic to static takes place
(around the 90% point). These results show increased differences in delay between different particle
filters as some adapt faster to changes than others. Not only does this happen for positional changes,
Figure 5.15 shows this is also the case for changes in rotation.
Inference 9: A higher accuracy for tracking static objects comes at the cost of a more significant filtering
delay when keeping track of the dynamic object’s changes in pose.
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Figure 5.14: Effect that the different particle filter implemen-
tations have on the positional filtering delay in the x direction.
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Figure 5.15: Effect that the different particle filter implementa-
tions have on the rotational filtering delay in the pitch rotation.

Combining each filter’s processing time and filtering delay shows that both are essential measures
to consider when looking at timing performance. Figure 5.16 shows an apparent decrease in time for
positional tracking of objects when a KLD filter is used. This effect of KLD is amplified if the filter works
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based on WA. In Figure 5.17, the same effects are observed when rotation is tracked. Here, however,
the effect of KLD is negligible and less effective in decreasing the delay that WA introduces to the
tracking module.
Inference 10: Overall, KLD significantly decreases the time the application needs to keep track of
changes in an object, especially in the positional domain.
Inference 11: WA significantly increases the time it takes for the application to respond to an object’s
dynamic changes, especially in the rotational domain.
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5.3. Model-Mediated Teleoperation experimental setup
Minor user tests are conducted to analyze the tracking performance concerning the MMT system. With
these tests, a first impression can be obtained of the QoE of the tracking performance at different levels
of haptic feedback sensitivity. Through these tests, better insight is gathered into how good the tracking
has to be before people experience limits in operation. To test the entire system, next to the computer
and the Kinect, also the Novint Falcon is needed. For the evaluation of the QoE of the system, we
combined the standalone tracking software with the physics engine running the local model of the
environment. The parameter values used in the experiments are the same for each experiment. The
only difference with the previous experiments is that now all tests are performed with 1500 particles
instead of 2000.

For the analysis of the system performance, two different tests are identified. One experiment
evaluates the positional tracking error, and another evaluates the rotational tracking error. Both tests
are conducted while tracking a static rectangular box of 21 by 9 by 6 cm. On this static box, the QoE
at the center of the object is used for evaluating the positional tracking error. The QoE at the wide
ends of the rectangle are used for rotational error assessment. No dynamic object interactions are
evaluated because only one Novint Falcon is available at the time of writing. For the evaluation of
dynamic interaction, the master domain should be able to interact with the controlled domain as well.
With the current setup, only the opposite interaction direction works.

In the user study, three participants, aged between 25 and 35, were invited to Delft University of
Technology. None of the participants had any known neurological disorders. Three requirements are
adhered to gather statistically relevant test results [1]:

• A task should be performed several times under identical circumstances

• Participants of all skill levels should be able to concentrate equally well

• To prevent fatigue, the duration of the experiments should be brief

An experiment is created where participants are presented with sixteen static scenarios. However,
each scenario has the same setup with different combinations of particle filter implementations and
spring constants (representing the system’s sensitivity as explained in 3.2). The spring constants used
in the experiments are the same as the ones used in research by Kroep et al. [60]. The participant
has to sit in front of the computer while controlling the Novint Falcon. In each scenario, the participant
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has to move the Novint Falcon around in the virtual environment and rate the QoE of the tracking
error. The virtual environment shows a platform representing the floor in real life, with two equally sized
rectangular boxes on top. One of these boxes is static, used as ground truth, and only present in the
virtual environment. The other box moves according to the tracking results received. The real-life setup
and the virtual environment are shown in Figure 5.18 to get an idea of the experiment.

(a) Real-life environment (b) Virtual environment

Figure 5.18: Real-life and virtual environment used in the experiments

5.4. Model-Mediated Teleoperation performance analysis
Figure 5.19 and 5.20 both show the subjective performance of the object tracking of an object, one
position-wise and one concerning rotation. A grade of 8 or higher is interpreted as excellent perfor-
mance, while everything below 5 is considered insufficient. In both situations, the particle filters without
KLD are preferred over the ones with KLD. This preference partly matches our expectations as the
quantitative analysis shows that KLD sacrifices a small amount of accuracy during static situations in
a trade-off for faster response times in dynamic situations. Essential to note once more is that the
experiments with the complete system are regarding a situation where a static object is tracked since
experiments with dynamic objects require a more advanced system. Another critical observation based
on the user tests is that the acceptable accuracy of the tracking module depends on how sensitive the
haptic feedback is. Sensitive systems take note of small changes relatively quickly compared to sce-
narios where weaker spring constants are used.
Inference 12: KLD-based approaches generally create a lower QoE in static scenarios while WA-
based implementations slightly improve it.
Inference 13: A lower haptic sensitivity makes for a more stable experience. Hence, the lower the
spring constant, the more tracking error is acceptable.
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Figure 5.19: User grades rating the positional tracking perfor-
mance of several particle filter implementations across differ-
ent haptic sensitivity levels. These levels are expressed by
the spring constant.
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Figure 5.20: User grades rating the rotational tracking perfor-
mance of several particle filter implementations across differ-
ent haptic sensitivity levels. These levels are expressed by
the spring constant.

All participants noted during tests that with the lowest spring constant of 1.4, the experience overall
was slightly confusing since the feedback was too weak to even register distinctions between, for ex-
ample, the floor and the boxes. Also, a surprise for them was the amount of jitter observable on screen
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compared to how well one could feel this movement through the haptic device.
Inference 14: If the haptic sensitivity becomes too low, the experience is not regarded as pleasant
anymore as it becomes difficult to distinguish between objects.





6
Discussion

We have progressed towards a more robust TI with the current work. Throughout the process, many
things went well, and others, not so much. Overall we made much progress reasonably quickly. As the
funding was limited, we had to get creative in obtaining things. For example, when designing the 3D
models, we had no accurate way to create them. We dealt with this challenge appropriately through an
existing app called Kiri Engine [46] and some creative tinkering. Also, the computer used throughout the
process was barely good enough to run everything correctly. The lack of computing power available,
however, can also be seen as positive as it forced us to be as efficient as possible when designing the
software.

Regarding the tracking algorithm development, perhaps other approaches should have been tested
instead of zooming in on the particle filter and using this as the basis for all improvements. Kalman filter
tracking and many DNN approaches currently exist that try to tackle the same problem. Since these
approaches exist, the comparison between ours and the others is missing in the thesis. The missing
comparison, however, is because there is no generic testing data set and no standards available to
compare 6 DoF tracking algorithms. Moreover, even if there were, they would not have been focused
on using tracking algorithms for TI applications. Due to the limited time available, it was decided to
compare the performance only to our proposed solutions.

For the analysis of the results, substantial quantitative experiments were conducted, which helped
get a good indication of the effect of our research. A controlled environment was used that was identi-
cal in each test when needed. However, in these experiments, we always used relative ground truths
rather than absolute ones since there were no easy ways to obtain reliable measures of this. However,
the relative ground truths we used have solved our problems of the missing ground truth quite profi-
ciently. Another criticism that one could make of our qualitative research is that the overall positional
tracking error was investigated while not mentioning anything about the errors over the axes sepa-
rately. Perhaps when this has been zoomed in on, different inferences could be obtained about the
tracking performance if one axis performed worse than others. Besides the generalization of positional
tracking, also the generalization of our performance based on experimentation with only one object
could be questioned. Different objects could indeed lead to different details in the results. However, it
is expected that the same general principles hold across different objects.

The subjective analysis was rushed due to bad timing and should have been done more extensively.
While the current qualitative results can provide reasonable indications of what to expect, significant
conclusions cannot be drawn due to the small number of participants present. However, the experi-
ments conducted with the participants were correctly executed without any anomalies.

6.1. Future work
In this thesis, an MMT system that incorporates tracking is successfully created; however, as mentioned
in Section 6, there is still much room for improvement and, thus, future work. The easiest improvement
would be to conduct more extensive user studies on the static experience of the tracking algorithm.
Instead of only a few participants, the group should be extended to gather statistically more substantial
results. This way, inferences can be made that are statistically significant. Next to more extensive

37



38 6. Discussion

existing user studies, extending the user studies to dynamic object QoE evaluation is an exciting step.
From the results of the user studies, promising indications can already be obtained about the possible
tracking and sensitivity requirements of theMMT system. When user studies on dynamic object tracking
are performed, results can be combined with the outcomes from a study of Kroep et al. [7], which
could, for example, give us an idea of the minimal tracking delay requirements for smooth operation.
However, it could also be inferred whether the tracking capabilities are a problem for the system or
whether network latency is still the bottleneck. However, a more complete MMT system is needed to
conduct these dynamic QoE experiments. Currently, the system can only provide feedback from the
controlled domain to the master, while for proper dynamic object interaction, feedback from the master
domain to the controlled domain is also required. Once that is done, one can also consider testing the
setup with a real network instead of an emulated version to see if unexpected problems arise.

Besides the next step of dynamic object experiments, one could also consider first doing more
extensive tests while using different types of objects. Different types of objects might require different
tracking algorithm compositions. Big objects could, for example, be easier to track with fewer points,
or objects with lots of odd shapes might require more. Nevertheless, before more objects are tested,
improving the object modeling pipeline is a higher priority mainly because higher quality 3D models of
objects make it easier for any tracking algorithm to track that object.

While improving the quality of the 3D models is essential, the quality of other parts of this setup can
also be improved. Cameras with a higher frame rate capability or different types of sensors could be
used. However, more powerful computers can also be deployed to boost the system’s performance.
When a powerful computer is used, the tracking algorithm can be further multithreaded on a GPU,
whereas up to now, we only ran it on a CPU with a limited multithreaded implementation. Instead of
improving the hardware, the software behind the tracking algorithm could also be improved. The first
step would be to implement the proposed Kalman-based particle filter.

Nevertheless, other ways should be identified to improve the tracking performance besides im-
plementing the Kalman-based particle filter. Perhaps more complicated machine learning algorithms
could be experimented with, and DNNs could be used. As we have seen in several studies, this shows
promising results for the future [40, 41, 42, 38, 39]. To be able to do this, however, general guidelines
should be constructed that makes it possible to compare different tracking algorithms to each other.
Currently, there is not much available or even one guideline for evaluating object tracking performance
in the TI domain.

Another direction one could take in the future instead of improving the performance and extending
the tests of the tracking functionality is expanding its capabilities. Eventually, the system would have to
consider an entire dynamic environment. Multiple objects will then move around; for proper operation,
all moving objects must be tracked. Hence, tracking could be extended to track multiple objects at
once. These objects in a dynamic environment do not necessarily have to be there from the beginning;
an environment can change. Hence, the system could be extended to be more flexible in real time.
One could develop a way to recognize new objects that enter the scene. These objects may need to
be discovered by the system. Another addition is making the system model new objects it does not
recognize on the spot. Currently, the system is already aware of which object it is tracking and where
its starting position is; hence these two improvements have not been required. One more limiting factor
of the current system is that the camera is static while the environment is dynamic. A more immersive
experience is expected to emerge if one can move the camera around.

Of course, other parts of the MMT system can be improved or added besides improving how real-
time dynamic environments are captured. No local model, 𝐶′, is currently available in the controlled
domain representing the controller’s behavior in the master domain. This part is crucial to creating a
fully functional MMT system. One could also focus on the interaction in the local models. In the local
models, the data from their domain and that from the other domain must be used together. This model
correction scheme must consider the network latency when the local model is corrected. The effects
of this latency have to be researched, and methods have to be identified with which model parameter
values can be derived from delayed information received over the network. The interplay between
local and remote data is one of the crucial questions in MMT as it is about how the system deals with
model mismatch. While current research in MMT has proposed solutions, these are based on static
environments. Hence, these ideas must be reevaluated for use in dynamic scenarios. As stated in
Section 1, dynamic situations require more parameters to be taken into account, and the static solutions
so far will probably lack at least partially. Thus, the importance of newly identified parameters has to
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be assessed for different scenarios.

6.2. Conclusion
Through this thesis, we are a few steps closer to understanding how TI can be used globally. In the
future, TI will be able to enable interaction with other people in ways not experienced before. The
reason is that besides remote visual and auditory interaction, TI also makes it possible to experience
remote kinesthetic interaction. The network latency constraints that haptics deal with form the biggest
obstacle to designing usable TI applications. In order to solve these latency constraints, the majority
of research focuses on reducing the latency produced. While reducing the latency helps partly, it will
still be limited by the speed of light.

In this thesis, the focus is not on reducing the latency but rather on relaxing its constraints. There-
fore, an MMT system that uses local models of the actual environments for interaction is developed.
Because these local models are less dependent on data from the network, the network latency re-
quirements can be loosened. A local model, however, will never be perfect when the environment is
dynamic. Therefore, feedback from the remote dynamic environment is still needed, and registering
this is currently regarded as one of the critical challenges for long-distance TI.

With our research, we take a deep dive into how to capture real-time dynamic environments for use
in MMT. We identify and demonstrate accurate tracking of objects in the environment as the critical
building block to enable MMT with dynamic objects. For this, we develop the first 6 DoF tracking
application designed explicitly for TI applications. This tracking application uses an improved particle
filter-based tracking algorithm to gather data about the remote environment. This data can then be used
to correct for mismatches of the local model in the master domain of the MMT system. To establish
this as well as possible, we conduct several experiments that help identify the performance trade-offs
required when tracking objects, both in the static and dynamic situations with which MMT deals. While
our approach is in no way solving all of the issues that TI is currently facing, it does help move the
developments of a small subset of the challenge slightly forward. As the community involved with TI
research is growing, the advancements to enable the TI revolution are getting more promising every
day.
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