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Hypothesis and theory-based studies in microbial ecology have been
neglected in favour of those that are descriptive and aim for data-gathering
of uncultured microbial species. This tendency limits our capacity to create
newmechanistic explanations of microbial community dynamics, hampering
the improvement of current environmental biotechnologies. We propose that
a multiscale modelling bottom-up approach (piecing together sub-systems to
give rise to more complex systems) can be used as a framework to generate
mechanistic hypotheses and theories (in-silico bottom-up methodology). To
accomplish this, formal comprehension of the mathematical model design
is required together with a systematic procedure for the application of the
in-silico bottom-up methodology. Ruling out the belief that experimentation
before modelling is indispensable, we propose that mathematical modelling
can be used as a tool to direct experimentation by validating theoretical prin-
ciples of microbial ecology. Our goal is to develop methodologies that
effectively integrate experimentation and modelling efforts to achieve
superior levels of predictive capacity.
1. Introduction
Hypothesis testing as a scientific approach in environmental microbiology
and biotechnology is bounded by the intrinsic complexity of microbial commu-
nities. Theory-based research is relegated by an increasing number of microbial
ecology studies that focus on descriptive experiments of uncultured microbial
species. However, critically testing ecological hypotheses requires rigorous
experimental design while the application of novel molecular technologies for
data collection has led to a multitude of top-down research approaches
where data are just described [1]. Generation of knowledge through induction
(e.g. accumulative characterization of uncultured microbial species) does not
per se translate in new theoretical/mechanistic explanations for community
assembly or specific fitness traits.

We propose the development of research focused on microbial ecology
quantification, which driven by theoretical hypotheses, is further validated by
interplay within mathematical modelling and laboratory experimentation. We
describe a modelling methodology based on a bottom-up approach (piecing
together sub-systems to give rise to more complex systems) in order to generate,
together with experimental validation, new hypotheses and theories. By using
theoretical platforms, we can target the minimization of complexity associated
with natural communities directing research exploration in a more efficient
way. To understand the implications associated with this methodology, we
first discuss the actual position of mathematical models and experimentation
in scientific research.
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Figure 1. Modelling–experimental cycle. Integrated development of experimental and modelling methodologies can lead to higher levels of predictive capacities
and operation control. Dotted arrow depicts the methodology presented here—theoretical model before experimentation.
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2. Experimental and theoretical models
Considering that any mathematical model represents a
conceptualization of reality, it is commonly assumed that
experiments should precede any modelling exercise. Model-
ling is then mostly placed as an alternative complement to
experimentation because theoretical results must be demon-
strated or validated. Nevertheless, experimental outcomes
must also be demonstrated by replication and reproducibility
as a major principle underpinning the scientific method. The
results obtained by an experiment, an observational study, or
in a statistical analysis of a dataset can be considered reliable
only if these studies are replicated [2].

Experimentation and modelling exercises might not be seen
as exclusive, but interconnected methodologies (figure 1).
A modelling exercise can help in defining experimental designs
that validate hypotheses theoretically constructed (dotted
arrow, figure 1). This level of definition also aids reproducibility,
especially when applied to complex systems. It can be argued
that the most useful models are constructed on the basis of
the theoretical knowledge we possess [3,4], directing exper-
imentation that aims at validating the principles on which
they are built, that is, using mathematical models as hypotheses
generator.
3. In-silico bottom-up methodology
When modelling continuous and complex natural processes,
they can be treated as a group of discrete elements intercon-
nected able to define observable events that can be measured.
A bottom-up approach is essentially piecing together sub-sys-
tems to give rise to more complex systems. In-silico models
that follow a bottom-up approach aim to explain how emer-
ging properties of complex communities arise from simpler
processes [5].

The first step to build an in-silico bottom-up
methodology is to identify all the elements that describe a
particular phenomenon (i.e. the fragmentation; figure 2).
After that, the elements that will be part of the model are
selected. For this step having enough information is crucial,
either providing enough specific experimental data or by
means of construction of theories and first principles (gener-
ally associated with a set of mathematical equations).
Additionally, in the process of selection of elements one
must consider and evaluate the model complexity and the
possibilities for experimental validation [6]. Subsequently,
the mathematical model is assembled. A mathematical
model is a conceptual representation of a mechanism (or a
collection of them) limited by our knowledge about
the reality. All models are constituted by the quintuple:

— Domain (D): set of factual items (elements and processes)
that constitute the studied system.

— Scientific question (Q): question(s) that states the reason for
modelling and the construction of the model.

— Interpretation (I ): validated explanations of each item of
the domain. Definition of spatial scale(s) and temporal
extent is included here.

— Assumptions (A): set of explicitly stated (or implicit
premised) conventions and choices that fulfils the
holes in our interpretation of reality. These establish
the limits of our model and simplify the problem (e.g.
by ignoring some processes or elements that cannot be
well described).

— Formalism (F ): set of mathematical expressions that
represent the items of the domain.

The definition of each of the components 〈D, Q, I, A, F〉 is
fundamental for the success of the modelling process. The
construction of the mathematical model starts with the
abstraction of the current knowledge about the domain (D).
Based on our understanding, the scientific question (Q) is
stated. Then, the formalization of our knowledge about the
domain is addressed, defining interpretation, assumptions and
formalism (i.e. the modelling approach, I, A, F ). Table 1
shows an example of the statement of 〈D, Q, I, A, F〉. The
limits of the modelling approach 〈I, A, F〉 are established by
the scope of the fundamental processes and the selected
elements. The overlook of a key element or process can
make our model inaccurate. An example of this is the omis-
sion of the diffusion in an aggregated system as presented
in Model 1 in table 1. Although an NH3-limiting environment
was considered (this being one of the main pressure factors
for the selection of Comammox process [7]), the enrichment
observed in the Daims et al. study [8] was not predicted
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Figure 2. Schematic of in-silico bottom-up methodology.
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with Model 1. Therefore, a model will be useful (i.e. generates
reliable knowledge) if and only if there is no discrepancy
between the results of the modelling approach 〈I, A, F〉 and
the observations in the real domain (D).

The outcome from the computational model is validated
using the available experimental data. If the model is accurate
enough to represent the system of interest, we can use it for
prediction and generation of new knowledge. New theoreti-
cal knowledge can be generated by the validation of the
discrete elements and processes employed. To increase the
accuracy of a mathematical model, we could (i) add (or
remove) elements and/or processes that were previously
overlooked or (ii) modify those previously selected (iterative
procedure; figure 2).
4. Scales of modelling for microbial communities
We define three scales that are fundamental in the modelling
of microbial communities: individual scale (main elements of
the model), micro-scale (processes simulated at the same res-
olution as individual scale) and macro-scale (elements and
processes described from a larger perspective, generally
embedded in the bulk liquid region). Table 1 presents an
example of these scales for the modelling of microbial
aggregates.

The different scales of the model are interconnected and
they influence each other. For example, the microbial activity
is influenced by the local conditions stated by the micro-scale
and, simultaneously, the microbial cells shape the local
environment. The integration of multiple scales with different
characteristic times (e.g. cell division: approximately 1 h; dif-
fusion–reaction process: approximately 10−8 h) is possible
thanks to the use of proper time discretization and systematic
resolution—a pseudo-steady state for processes with lower
characteristic time is considered a good approximation for
most applications when solving those with higher character-
istic time [9]. Multiscale modelling also covers processes with
a gap between characteristic space scales, such as diffusion–
reaction process (approx. 10−6 m) and the bulk processes
(approx. 10−3–1 m). Because the characteristic time and
space are positively correlated (ensuring the numerical con-
dition stability), the systematic resolution presented above
also deals with the gap between space scales.



Table 1. Example of statement of model components 〈D, Q, I, A, F〉. Legend μmax, maximum specific growth rate; KNH3 , half-saturation constant for NH3; KO2 ,
half-saturation constant for O2; am, specific maintenance rate; [NH3], [O2], substrate concentration; D, diffusion coefficient; Rxy, reaction term in each discretized
space; RBL, reaction term in bulk liquid; HRT, hydraulic retention time; X, bacteria concentration.

Model 1 (ODE system)a Model 2 (individual-based model)b

domain (D)

suspended microbial community growing under a dynamic ammonia environment simulated as a continuous stirred tank reactor (CSTR) until it reaches

steady state (1825 days). Dense population of cells was generated (simulated as small aggregates)

scientific question/aim of modelling (Q)

in-silico prediction of the selection of Comammox (from NH3 to NO3) over canonical ammonia oxidation (from NH3 to NO
�
2 ) under NH3-limiting

environment

interpretation (I)

aggregates are too small and diffusion gradients for chemical components are

neglected

diffusion gradients for chemical components are computed

spatial scales

individual scale: biomass concentration of reactor individual scale: independent entities

micro-scale: not considered micro-scale: aggregate region + boundary layer

macro-scale: bulk liquid macro-scale: bulk liquid

assumptions (A)

no kinetic competition—same growth kinetics both metabolic activities considered (mmax, KNH3 , KO2 , am)

different growth yield (YX/S)—estimated according to bioenergetic analysis

ideal behaviour of the CSTR operation

formalism (F)

microbial growth: mmax ¼ 0:01 h�1; KNH3 ¼ 1:0 mM; KO2 ¼ 3:13 mM; am ¼ 0:001 h�1

growth yield (YX/S): ammonia oxidation, 4.09 × 10−2 molX/molN; Comammox, 6.51 × 10−2molX/molN

bacteria growth rate (Monod): m ¼ mmax �
[NH3]

KNH3 þ [NH3]
� [O2]
KO2 þ [O2]

� am

micro-scale: not considered micro-scale: second Fick’s Law + reaction

@

@t
[S](x,y) ¼ D � r2

xy[S](x,y)þ Rxy

macro-scale (mass balance of CSTR):
d
dt
[S] ¼ 1

HRT
� ([S]influent � [S])þ RBL; RBL ¼ 1

YX=S

� �
� m([S]) � X

results from modelling (with triplicate)

ammonia oxidation: 50.0 wt% ammonia oxidation: 14.0 wt%

Comammox: 50.0 wt% Comammox: 86.0 wt%

experimental results from Daims et al. [8]

after a series of sub-cultivation steps, an enrichment culture of Comammox bacteria (60–80% of the community) was obtained without known ammonia

oxidizers (bacteria or archaea) in it
aModel performed with MATLAB (R2020b) via the built-in function ‘ode45()’.
bSource code is available on public GitHub repository at https://github.com/Computational-Platform-IbM/IbM.
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4.1. Individual scale: models that describe individual
microbial activity

In microbial ecology, Monod equation has been widely used
to describe biological activity [10,11]. Growth is defined by
empirical parameters measured for specific populations and
conditions without considering the ecological interactions
or microbial evolution that would explain the specific
dominant activities observed in bioprocesses.

Aware of the limitations imposed by the use of Monod
equation [12], molecular systems biology attempts to com-
prehend cell growth through mechanistic descriptions of
intracellular processes. With different levels of metabolic and
physiological detail, these descriptions are able to identify
some fitness trade-offs in microbial activity arising from a
common set of physicochemical and intracellular constraints.
Resource allocation theory defines that microorganisms optimize
the use of limited intracellular resources towards expressing the
most efficient strategy for growth, allowing the description of
their dynamic adaptations to the environment [13].

An approach like this requires in many cases detailed
physiologic and metabolic information available, generating
mathematical models that require a high number of par-
ameters. This limits their application to a few model
organisms [14]. A validation of a first-principles approach
can overcome the reduced empirical information by

https://github.com/Computational-Platform-IbM/IbM
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attempting the prediction of kinetic parameters for growth
through mathematical equations. For example, bioenergetics
analyses provide a tool for quantifying growth yields [15].
Efforts towards estimating the trends of other kinetic
parameters for description of microbial activity and
growth can also be considered on a framework of resource
allocation [16].

4.2. Micro-scale: prediction of emerging properties of
communities

The integration of models that describe microbial growth
with the definition of the local conditions dynamically
affected by the microbial activity enables the description of
interactions between the media, individuals and community.
This allows the prediction of emergent properties that arise
from the definition of individual activity [17], and possible
estimation of ecological trends in communities that can be
compared to experimental observations.

Depending on the scientific question asked, abiotic phys-
icochemical processes should be considered. Examples of this
are kinetic models of acid–base reactions, chemical speciation
or precipitation. The consideration of spatial competition
might also be crucial to describe ecological interactions in
specific communities [4].

4.3. Macro-scale: scaling up and down key processes
Modelling large-scale systems with micro-scale resolution
(approx. 10−6 m) is computationally a very intensive task.
To overcome this limitation, micro- and macro-scale pro-
cesses are independently resolved following a systematic
procedure through the establishment of pseudo-steady states
[9]. The full integration of both spatial scales can be achieved
if the micro-scale processes are scaled up, and the macro-scale
processes are scaled down. The scaling-up is based on the
consideration of a statistically representative volume of the
larger system in full detail. It is assumed that the representa-
tive volume yields a representative influence on the whole
system (i.e. the macro-scale). On the other hand, the scal-
ing-down of macro-scale processes needs the definition of
boundary conditions for the simulated system. Based on the
goal that the model has (or the scientific question (Q)), the
boundary conditions can be set (i) unidirectionally (only
macro-scale influences micro-scale; fixed boundary con-
ditions) or (ii) bidirectionally (macro-scale influences
micro-scale and vice versa; dynamic boundary conditions).
5. Conclusion
An alternative avenue to advance the understanding of
microbial ecology, community assembly and biological activity
would aim at the deconstruction of complexity by means of a
bottom-up approach, where multiscale models, robust exper-
imental data collection, and method development are
integrated. In essence, we propose the design of cultivation-
based experiments that help the validation of hypotheses con-
structed by mathematical modelling. Although hypothesis-
based cultivation experiments can be seen as too idealistic
when compared with the intrinsic complexity of microbial
ecology, well-designed experiments with targeted scientific
questions can lead to the discovery of newmetabolic character-
istics or relationships between species. In this context, the
integration of molecular technologies would aid the validation
of theoretical hypotheses. The rationalization of ecological
interactions in a community, and their relation to the environ-
ment, breaks down complexity, reduces the necessity of data,
and accelerates understanding [18]. This promises a higher
level of prediction capacity which can directly impact on the
engineering of bioprocesses. In this effort, commonalities
between communities will be found, which implies that
knowledge construction in one field will benefit others (e.g.
research on anaerobic digestion processes and the understand-
ing of gut microbiome or marine microbial communities).
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