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Formation of Rarefaction Shockwaves in
Non-ideal Gases with Temperature Gradients
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Abstract. The nonlinear propagation of finite amplitude waves in the non-ideal
compressible fluid dynamic (NICFD) region of high-molecular weight fluids, and
in particular in cases where non-classical gas dynamic phenomena like the for-
mation of rarefaction shock waves may be expected, is of great scientific interest.
Almost all the theoretical developments so far are based on the assumption that
the waves propagate in a fluid kept in homogeneous conditions. Experimental
activities performed with the Flexible Asymmetric Shock Tube (FAST) operated
in the laboratories of the Propulsion and Power group at the Delft University
of Technology have shown that obtaining such conditions is particularly chal-
lenging, especially keeping the tube at constant temperature. Stemming from
this observation, this study is a part of a theoretical and numerical investiga-
tions aimed at assessing the influence of temperature gradients at the boundary
on wave propagation in so-called Bethe-Zel’dovich Thompson (BZT) fluids. The
full-wave Westervelt Equation is solved numerically using the Finite Difference
Time Domain (FDTD) method. The steepening of the wave front is used as an
indicator of shock formation. The effect of varying temperature, and the corre-
sponding variation of the fundamental derivative of gas dynamics on the distor-
tion of rarefaction waves is analyzed by observing the simulated behaviour of
the wave as it propagates from a region of negative values of the fundamental
derivative of gas dynamics to a region of positive values.

Keywords: NICFD · BZT · Γ · Non classical gas dynamics · Rarefaction
shockwaves · Westervelt equation · Nonlinear distortion

1 Introduction

Non-ideal compressible fluid dynamics (NICFD), and non-classical fluid dynamics
within it, have been rather extensively studied theoretically, numerically and experi-
mentally. Most of the studies on non-linear wave propagation in the NICFD regime are
based on the assumption that the medium in which the waves travel is in homogeneous
conditions. All the so-far unsuccessful experimental efforts aimed at generating and
measuring the formation and propagation of rarefaction shock waves in the dense vapor
of BZT fluids [1,4,9] also relied and rely on trying to obtain such conditions in order
to facilitate the interpretation of experimental results. However, obtaining a sufficiently
constant temperature at the surfaces of the volume containing the fluid is challeng-
ing. For this reason, but also and more in general, to expand the theory of non-linear
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wave propagation in the NICFD regime, it is of interest to extend the modeling of wave
propagation in non-homogeneous fluids to the case of dense vapors of fluids exhibiting
negative values of the fundamental derivative of gas dynamics Γ for the thermodynamic
states of the fluid affected by the process.

Γ is very sensitive to variations in temperature, therefore a small change in the
temperature of the medium can give rise to a completely different nonlinear behaviour
of the propagation of the waves. Such propagation is affected by strong effects on the
steepening of a nonlinear distortion as the wave progresses through regions of opposite
nonlinearities.

An important parameter for the experimental study of nonlinear wave propagation
is the shock formation distance. For a uniform medium, this can be computed easily
using the method of characteristics (MoC) [2,9]. In this case, the characteristic lines are
straight with constant slopes and their intersection indicates shock formation. The MoC
is both more complex to solve and exhibits some limitations when the temperature of
the fluid varies, in which case the characteristic lines are curved due to the changing
value of the local sound speed. In such situations, a more general approach to describe
the nonlinear evolution of a disturbance needs to be employed.

The nonlinear steepening of waves in a medium with an axial variation in tempera-
ture, and thus a variation in Γ, is investigated using the full-wave Westervelt Equation.
The Westervelt equation is a well-known mathematical model in nonlinear acoustics,
widely used in several industrial and medical applications including diagnostic ultra-
sound, sonochemistry, etc. [11]. This equation is solved numerically using the Finite
Difference in Time Domain (FDTD) method for the case of a non-isothermal attenu-
ating medium. Various forms of initial disturbances are considered and the steepening
of the wave front and the corresponding shock formation distances and times are com-
puted.

2 Westervelt Equation

The Westervelt equation describes the propagation of an acoustic wave in a quiescent
medium in the presence of viscous dissipation and nonlinearity effects. In the absence
of temperature gradients, simpler equations such as the inviscid Burgers’ equation ut +
cux = 0, where c is the nonlinear sound propagation velocity, can also be employed [7].
However, this equation allows for wave propagation in only one direction. Hence, it is
not suitable for studying wave propagations in temperature inhomogeneous mediums
wherein the change in the acoustic impedance arising from the variation in temperature
reflects a part of the incident wave. The Westervelt equation [6] is written as:

ρ0∇ · (ρ0∇p)+
1

c2
0

∂ 2p
∂ t2

+
δ
c4

0

∂ 3p
∂ t3

+
Γ

ρ0c4
0

∂ 2p2

∂ t2
= 0, (1)

where c0 and ρ0 are the local sound speed and density of the medium at rest, δ is
the dissipation coefficient and Γ, also referred to as the nonlinearity coefficient β in
acoustics, is the fundamental derivative of gasdynamics [9]:
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ρ
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The diffusivity coefficient is given by

δ =
1
ρ0

(4
3

μ +μB

)
+

κ
ρ0

( 1
cv

− 1
cp

)
, (3)

where μ is the shear viscosity, μB is the bulk viscosity, κ is the thermal conductivity
and cp and cv are the specific heats at constant pressure and volume, respectively [12].

2.1 Numerical Method

Spatial and temporal derivatives in Eq. (1) are approximated with discrete differences
using the Finite Difference Time Domain (FDTD) method [5]. The spatial dimension
is divided into Nx elements with equal spacing of Δx and is indexed with i. Absorbing
boundary conditions are implemented at the domain boundaries to prevent numerical
reflections from affecting the results. The spatial derivative is computed using second-
order accurate, central differences as

∂ 2p
∂x2 ≈ 1

(Δx)2 (p
n
i+1 −2pni + pni−1). (4)

The temporal dimension is discretized into Nt timesteps with a uniform spacing
of Δt and index n. The time derivatives are computed using second-order accurate,
central differences with the nonlinear and absorption terms expanded using backward
differencing, resulting in
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Equations (5) are substituted into Eq. (1) and solved for pn+1
i . Since Eq. (5b) requires

five time steps for initialization, the starting waveform is advected using the second-
order approximation for nonlinear propagation velocity for n= 1 . . .5.

Computations are performed in a domain of length 9 m with a uniform grid of 1 mm
spatial discretization. The time step of the simulation is chosen to be 1 μs to ensure
numerical stability. The source is simulated to be siloxane D6, a BZT fluid, whose
medium temperature and pressure are set at 369 ◦C and 9 bar respectively. The value of
Γ estimated with technical equations of state based on Helmholtz energy [3,8] at this
state is –0.15, therefore the flow is theoretically affected by nonclassical gas dynamic
conditions. The dimensions of the numerical domain and the initial conditions of the
simulation are chosen to match the Flexible Asymmetric Shock Tube (FAST) facility,
a shock-tube test setup designed at the Delft University of Technology with the aim of
studying the propagation of expansion waves in the NICFD regime [9].

The location at which a shock wave forms is identified by plotting the inverse of the
slope of the wave front along the x-direction. Since the shock wave is a discontinuity
with the slope of the wave front being infinite, the point at which the inverse of the slope
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becomes zero provides the shock formation distance [10]. The slope here is expressed
as the gradient in the local acoustic velocity (∂u/∂x) along the wavefront. To prevent
numerical instabilities, the domain is defined to have Γ = 0 till 0.2 ·L0 after which Γ is
calculated using the thermodynamic model.

3 Results

Figure 1 illustrates a result of simulating the propagation of a right-travelling triangular
rarefaction wave of amplitude 50 kPa and wavelength 0.72 m in D6 with uniform tem-
perature. The nonlinear steepening is shown in Fig. 1 (a) by comparing the waveform
of the same initial disturbance which travels in a hypothetical linear medium, and in a
non-linear medium. Since the fluid temperature is constant, the value of (∂u/∂x)−1 is
expected to decrease linearly down to zero. Figure 1 (b) illustrates this trend, though
calculated values are also affected by a spurious oscillation which is expected to occur
when estimating the slope.
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Fig. 1. (a) Nonlinear steepening of a rarefaction wave close to xshock (b) Estimation of xshock
using the wavefront slope.

The same type of analysis is performed for the case of an inhomogeneous temper-
ature distribution. A sinusoidal variation of 1 ◦C in temperature about a mean value
of 370 ◦C is assumed and the corresponding values of Γ are computed using the same
thermodynamic model. Figure 2(a) shows calculated propagation of the wave front into
the medium (left axis) and the variation in Γ along the medium on the right. It can be
seen that, unlike what can be noticed in Fig. 1(b), the slope of (∂u/∂x)−1 is no longer
constant as the wave continuously steepens and relaxes as the temperature varies along
the medium. Remarkably, the rarefaction steepens to form a shock despite the thermo-
dynamic states of medium display positive Γ in several locations. This observation can
be justified by the fact that the bulk of the medium is in the nonlinear thermodynamic
region, resulting in the overall effect that the wave steepens into a rarefaction shock
wave. The effect of the local linear regions where Γ � 0 is also visible by the inflection
in (∂u/∂x)−1 curve between the local extrema.
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Fig. 2. (a) Steepening of the rarefaction wavefront in D6 with sinusoidally-varying tempera-
ture (b) Steepening of the rarefaction wavefront in D6 with linearly-varying temperature—
Locations where Γ = 0 ( ) and where

[
(∂u/∂x)−1

]′ = 0 ( )

Another interesting feature can be observed in Fig. 2 at the locations where Γ = 0.
One would expect that the wave would propagate unchanged if Γ = 0; thus the tangent
of (∂u/∂x)−1 at these locations must also be 0. However, it can be observed that this
flattening of the wavefront always succeeds the point where Γ is zero. This can be seen
clearly in Fig. 2(b), which shows the propagation of a compression wave in a fluid with
temperature increasing linearly from 367.5 ◦C to 372 ◦C. Here, it is apparent that the
compression initially relaxes into a non-ideal compression fan and steepens as the value
of Γ becomes positive.

The vertical lines in Fig. 2(b) represent the axial locations where Γ is zero and where
the wavefront starts steepening into a compression shock. It can be clearly observed that
in a narrow region right after the point where Γ = 0, the compression wave continues
to relax despite Γ becoming positive, indicating that the variation in the sound speed
and density in this region has a significant influence on the wave distortion. Except
in this region, the sign and magnitude of Γ remain the most important characteristics
governing the nature of the nonlinear distortion of the wave.

4 Conclusions and Future Work

Preliminary results of a numerical investigation on the nonclassical propagation of non-
linear waves in case the medium is affected by temperature variations at the boundary
of the domain indicate that, though the amplitude of the initial disturbance is crucial for
nonlinear steepening, the minimum amplitude for shock formation is strongly depen-
dent on the temperature distribution, and therefore, the variation of the fundamental
derivative in the medium. Though Γ is the most important parameter influencing shock
formation, it is observed that rarefaction shocks can steepen even in regions of positive
nonlinearity before transitioning into a rarefaction fan. This study resulted in a tool that
allows computing shock parameters such as formation distance and time for the case
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of a medium affected by varying temperatures. Further sensitivity studies will be per-
formed to analyse the effect of temperature inhomogeneities on nonlinear wave propa-
gation and shock formation. In addition, the applicability of this analysis to industrial
problems will be explored.
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