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Abstract

Reynolds averaged Navier Stokes (RANS) models are the industry standard when it comes
to computational fluid dynamics (CFD). RANS models have notable shortcomings as the
Reynolds stress is modelled locally and does not include temporal behaviour. Therefore,
current RANS models fail to make accurate predictions in areas of out-of-plane straining,
high streamline curvature and significant anisotropic Reynolds stresses.

Data augmented RANS models have shown promise to improve accuracy, with sparse re-
gression and machine learning algorithms being able to train models between high fidelity
data and RANS. The current data driven models have problems, as they lack generalis-
ability between data-sets, are difficult to interpret and only provide a local, non-temporal
correction or prediction for the Reynolds stresses.

The current work will explore sparse regression routines, in particular PDE FIND, for
the purpose of creating a non-local, temporal transport equation from data. Rather than
using high-fidelity turbulence data, a self-developed model problem, dubbed the ψ − ϕ
system, is created to replicate the uncertainties related to turbulence modelling. Multiple
candidate libraries for PDE FIND are tested, with the greatest emphasis on libraries
lacking a part of the true functional form, known as incomplete candidate libraries.

Incomplete candidate libraries are found to benefit from using highly correlated replace-
ment functions for the missing function with an exception being a candidate library lacking
the correct production term. Even if models were trained poorly, PDE FIND was able to
identify the most important functions with an accurate coefficient.

PDE FIND could potentially create an universal transport equation to model the residual
between high fidelity data and RANS, but only if there are enough highly correlated
candidate functions and the production terms are well known or well represented in the
candidate library.
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1. Introduction

High fidelity aerodynamic simulations, used in the aerospace, wind, automotive and more
hi-tech industries are of importance for making accurate and reliable designs. The current
industry standard is Reynolds Averaged Navier Stokes (RANS), a method that is com-
putationally cheap, but inaccurate. For most models, the main cause is the Boussinesq
assumption, Boussinesq [1], that creates an analytical, local and non-temporal equation
for the Reynolds stresses. The Reynolds stresses are inherently non-local and memory
driven with most deficiencies found in the areas that have out-of-plane straining, sig-
nificant streamline curvature and significant anisotropic Reynolds stresses, Spalart [2],
Wilcox [3].

Data driven turbulence has the potential to remedy the inaccuracies of RANS. Tracey
et al [4] is one of the first to apply high-fidelity data for RANS modelling by creating
corrections for the spatial field. The method was expanded by the group of Duraisamy
to form the field inversion machine learning (FIML) method [5, 6, 7], transforming the
spatial field discrepancies in terms of the mean flow parameters by using a source to the
production term for the Spalart-Allmaras model [8]. Ferrero et al [9] used FIML beyond
the original application on airfoils, by using FIML for low pressure gas turbine cascades,
and used a sparsity constraint to make more interpretable models.

Franceschni et al [10] used a similar method to FIML, by analysing a source term in
the RANS momentum equation and in the Spalart-Allmaras equation, arguing that both
corrections work. The group of Volpiani [11, 12, 13, 14] expanded upon the work of
Franceschni et al by adding multiple different sources and corrections to the momentum
equation and the Spalart-Allmaras-neg model [15], with the main goal of finding the
most effective location for data driven corrections. All terms were found to improve the
solution, with particular impressive performance found for corrections in the momentum
equation, acting as an effective correction to the Boussinesq assumption.

Corrections for the Boussinesq assumption and the Reynolds stress anistropy has seen
quite some success in data driven turbulence closure modelling, with the tensor bases
neural network (TBNN) of Ling et al [16] being the foundation. TBNN is a neural network
driven method using the tensor bases and invariants of the more general effective viscosity
hypothesis by Pope [17] (the non-linear Boussinesq assumption), improving the prediction
of the Reynolds stress by creating an algebraic Reynolds stress (EARSM) model.

TBNN has seen multiple variations and expansions, with extensions by Cai at al [18]
and Fang et al [19] improving the algorithm and discussing the applicability of TBNN.
Kaandorp and Dwight [20] used a random forest algorithm rather than a neural network
with the same tensor bases of Pope [17], calling it the tensor bases random forest (TBRF)
while Xiao et al [21, 22, 23] used a random forest algorithm in their physics informed
machine learning (PIML) algorithm, focusing on predictions in the Reynolds stress in the
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barycentric map, a visualisation concept introduced by Banjeree et al [24]. PiResNet by
Jiang et al [25, 26] forced sparsity in the solution by using an L1 and L2 penalty in the
cost function and Sáez de Ocáriz Borde et al [27] improved interpretability by increasing
the traceability of the activation of the neurons.

genetic expression programming (GEP) by Ferreira et al [28] was implemented by Weath-
erhitt et al [29, 30] for creating a data driven EARSM. An extension is made by Zhao et
al [31], where RANS calculations are put in the GEP loop, improving predictions but for
a penalty in computational power. Bleh and Geiser [32] used the GEP algorithm by Ma
et al [33] being Dimensional Homogeneity Constrained GEP (DHC-GEP), selecting func-
tional forms for the correct dimensions in the augmentations. The DHC-GEP algorithm
is improved by Bleh and Geiser [32] by making the variables non-dimensional.

One of the leading methods for data driven corrections in the RANS formulation is the
sparse regression of turbulent stress anisotropy (SpaRTA) by Schmelzer et al [34], where
a regression method is used to obtain corrections for both the Reynolds stress anisotropy
and the k-equation. SpaRTA has seen success in modelling of wind turbine wakes, with
Steiner et al [35, 36, 37] expanding the candidate library beyond the Pope tensor bases
and Stöcker et al [38] using SpaRTA for particle laden flow, implementing a correction
only for the production term. Cherroud et al [39] expanded SpaRTA by using sparse
Bayesian learning (SBL) over linear regression. SBL introduces uncertainty windows
for the solution that can be used as a tool for the engineer to analyse the uncertainty
of a result, while also eliminating hyper parameters associated with regularised linear
regression in the process.

In SpaRTA, a predetermined set of candidate functions are used to create a sparse cor-
rection using elastic-net regression. Sparse regression techniques have the advantage of
being relatively easy to implement for a low computational cost, with PDE FIND by
Rudy et al [40, 41] and SINDy by Brunton et al [42] being the earliest baseline works.
Multiple studies have shown the advantages of sparse linear regression, such as obtaining
the governing equations for drift-wave turbulence equation for plasma by Abramovic et
al [43], or finding the macroscopic governing equations of granular flow by Zhao et al
[44]. PDE FIND has been extended by Rudy et al to include time varying coefficients
[45] and a similar method to PDE FIND is proposed by Schaeffer [46], where an L1 lasso
regularisation is used to enforce sparsity.

Problems with PDE FIND arise with the tuning of hyper parameters and noise, with
noise worsening the predictions surrounding derivatives of the data set. Sparse Bayesian
learning (SBL) methods, like the method of Zhang et al [47], the S3d of Yuan et al
[48], SubTSBR of Zhang and Ling [49] or the algorithm of Chen et al [50] improves the
prediction for noisy data sets and eliminate hyper parameter tuning, but carry a penalty
in computational efficiency. The group of Grigoriev [51, 52, 53] and weak-SINDy by
Messenger and Bortz [54, 55] uses a weak form formulation for the derivatives and have
proofed a high resistance to noise, but the method is still subject to hyper parameter
tuning.

More complex methods to find governing equation exist, with the peridynamic differential
operators (PDDO) used by Bekar et al [56] from Madenci [57]. A PDDO reduces the
effect of noise for sparse regression by using a Taylor expansion on a point, being able to
represent it as a function of multiple points. The ψ−PDE method by Zhang et al [58, 59]
eliminates noise by using high frequency filters and machine learning [58, 59] while the
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correct governing equation is found using brute force. A kernel filter method is introduced
by Joemon et al [60] and found a prediction improvement for noisy data, even though it
is not recommended by Rudy et al [41].

Other methods for finding the governing equations, include machine learning methods
used in the form of deep learning with convolution kernels used in partial differential
equation-net (PDE-net) by Long et al [61], deep learning with physics-informed neural
networks (PINNs) by Raissi et al [62] and GEP with the works of Vaddireddy et al [63],
Xing et al [64] and Ma et al [33], all able to obtain the governing system from data.

Data driven RANS models lack generalisability between test datasets. Strides have been
made to improve generalisability, but full confidence is still lacking. Most of the models,
such as SBL-SpaRTA [39], SpaRTA [34], TBNN [16], TBRF [20] and more, are an EARSM
model, using the tensor bases of Pope [17] to create a correction for RANS models. The
problem with an EARSM is that the Reynolds stress equation is local and does not include
temporal effects.

Based on the locality of the correction, an idea is to have the residual of k-frozen RANS
from Schmelzer et al [34] to be a transport equation. A transport equation provides
information of a variable over a streamline, providing non-locality and includes memory
effects. Due to the unknown behaviour of the residual between DNS and RANS, it is
unknown what the exact equations need to be to represent DNS in RANS.

The lack of understanding between the true function of DNS and RANS motivates the
objective in the current work to analyse sparse regression routines to deduce a transport
equation from data. A simplified model problem is made, where the complete functional
form is known and is analogous to turbulence modelling and the residual of k-frozen RANS
and DNS. The research objective is as follows:

The research objective is to analyse sparse regression routines to obtain a
non local expression for a known residual in a partial differential equation
by creating a model problem analogous to turbulence modelling

Based on the research objective, a research question is made that focuses on sparse re-
gression and the ability for future work to find a transport equation for the residual with
the k-frozen RANS. The research question is as follows:

How can sparse regression provide a trained model for non-local temporal
behaviour in a model problem to represent the residual in k-frozen RANS?

The research question can be subdivided in sub questions, as follows:

• To what extent can a residual be represented by a model problem?

• How can sparse regression be used for the purpose of a transport equation?

• How reliable is sparse regression for obtaining the complete functional form of a
model problem?

• To what extent can sparse regression approximate a model with an incomplete set of
candidate functions?

• Could sparse regression provide insight even if the trained model is incorrect?

A model problem, called the ψ − ϕ model, is created that is analogous to turbulence
modelling. Three distinct steady state velocities are tested on a two dimensional square
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domain, being a vortex case, an exponential case and a shear case. The equations are
simulated using FEniCSx and PDE FIND is the regression routine to obtain trained
models that are cross validated among one another.

The experiments with PDE FIND will be subject to tests with a complete candidate
library and multiple incomplete candidate libraries. The incomplete library seeks to
analyse if it is possible to train a reliable, consistent, low error model with the aim
to see the effect of unknowns between the RANS and DNS functional form. There are
four main incomplete libraries, being a library where a small contribution to the overall
solution is lacking, a library where a larger part is lacking, a library where a larger part is
lacking with additional functions and a library where the production terms are replaced
by highly correlated different production terms.

The current work has shown that PDE FIND is able to return the full ground truth for a
set of transport equations for a complete candidate library. For models that do not have
the full functional form returned, a near perfect performing model is still found.

For an incomplete candidate library lacking a small contribution to the solution, models
perform well on the test data, with PDE FIND being able to find suitable models able
to reflect the ground truth. For an incomplete library lacking a larger contribution to
the solution, a sparse candidate library lacked the ability to find decent models. With
the addition of functions, only one satisfactory model was obtained, where an addition
of search windows and highly correlated functions proofed to be crucial. Replacing the
production terms by different production terms provided poor results and while the trained
models performed decent, the cross validated models performed poorly and no suitable
model was found.

Throughout the tests, PDE FIND has been successful in identifying the most important
functions of the data, functions with a large contribution to the overall solution and
functions with a large amplitude. The coefficients of these functions were mostly accurate,
even for poor performing models. The z-score proofed to be a good tool, able to identify
the likelihood of terms in the solution and always able to detect the most important
functions.

For turbulence modelling, it means that a large, highly correlated set of candidate func-
tions, with an complete as possible invariant candidate collection could potentially result
in a viable transport equation for the residual in k-frozen RANS.

The work is structured as follows, Chapter 2 discusses the background of turbulence
modelling, system identification techniques and data driven turbulence while Chapter
3 discusses the methodologies used to perform the experiment. Chapters 4, 5 and 6
discusses the results, focusing on data generation, data regression and data validation.
The conclusions and recommendations are given in Chapter 7.



2. Background Information and
Previous Works

The current chapter is divided in three main sections related to turbulence modelling
and data driven models. Section 2.1 provides the basics behind turbulence modelling,
describing concepts such as the Boussinesq approximation and describing well-known
turbulence models. Section 2.2 describes techniques related to finding the governing
equations from data with a specific focus on sparse regression algorithms. At last, Section
2.3 describes data driven turbulence model, and the role data has for creating augmented
models.

2.1 Introduction to Turbulence Modelling
The section ’Introduction to Turbulence Modelling’ discusses the classic turbulence meth-
ods with a deep-dive into Reynolds averaged Navier-Stokes (RANS). The aim of the sec-
tion is to discuss the historical development of turbulence modelling up to the current
day.

In Subsection 2.1.1, the full Navier-Stokes equations are discussed. Subsection 2.1.2 dis-
cusses Navier-Stokes modelling and Subsection 2.1.3 discusses RANS in more depth. All
work in the section is based on the books of Wilcox [3] and Pope [65]. If other works are
used, it will be cited as such.

2.1.1 The Navier-Stokes Equations

The Navier-Stokes equations are the governing equations for aerodynamics and fluid dy-
namics and for three dimensional flows consists of five equations. These equations con-
sisting of the continuity equation, momentum equation in the x, y and z directions and
the energy equation, given as

∂ρ

∂t
+
∂ρui
∂xi

= 0 (2.1)

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+ ρν

∂2ui
∂xj∂xj

+ Fm (2.2)

∂ρ(e+ 1
2
uiui)

∂t
+
∂ρuj(h+ 1

2
uiui)

∂xj
=

∂

∂xj

[
ρν

(
∂ui
∂xj

+
∂uj
∂xi

)]
− ∂qj
∂xj

+ Fh (2.3)

In (2.1), (2.2) and (2.3), xi is the spatial direction, ui is the velocity, ρ is the density, p
the pressure, ν the kinematic viscosity , Fm a momentum source, Fh a heat source, e the
energy, h the enthalpy and qi the heat flux.

5
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2.1.2 Navier-Stokes and Turbulence

The non-linear convective terms of (2.2) drive the chaotic nature of turbulence in the
momentum equation and provides modelling issues. Multiple methods exist for the sim-
ulation of the Navier-Stokes equations, ranging from low-fidelity methods such as panel
methods to high fidelity methods such as the direct numerical simulations (DNS). Prob-
lems in modelling arise when turbulence is considered. For computational fluid dynamics
(CFD), the main three types are DNS, large eddy simulations (LES) and Reynolds av-
eraged Navier-Stokes (RANS), where DNS is the most expensive and RANS is the least
expensive method.

The Kolmogorov Equilibrium Theorem

Turbulence can be described as an irregular, unsteady motion that considers a wide range
of scales. Rotational motion with varying vorticity is often found in turbulent flows
and are described as eddies. The turbulent eddies exist throughout the flow in different
(length) scales and can be described to encompass a turbulent motion. In mathematical
terms, it can be seen as a collection of different wavelengths of the flow. The cascade
process describes the nature of the eddies. When turbulence decays, large eddies transfer
their kinetic energy to smaller eddies where the smallest eddies will dissipate into heat
through viscosity. The rate of dissipation of the smallest eddies are bounded by the energy
transfer of the larger size eddies.

Kolmogorov introduced the universal equilibrium theorem [66], stating that the energy
transfer from the larger eddies to the smaller eddies must be equal to the rate of dissi-
pation. Kolmogorov relates the kinematic viscosity ν to the dissipation ϵ, establishing
equations for the smallest length, time and velocity scales,

lkol ≡ (ν3/ϵ)1/4 (2.4)

tkol ≡ (ν/ϵ)1/2 (2.5)

ukol ≡ (ν/ϵ)1/4 (2.6)

In (2.4), (2.5) and (2.6), ϵ is the dissipation and lkol, tkol and ukol are the Kolmogorov
length, time and velocity scales, related to the smallest scales in the flow.

Direct Numerical Simulation

DNS is the direct discretisation of the Navier-Stokes equations. For DNS simulations,
the smallest discretisation length, is driven by the smallest time and length scales of the
flow. A relation can be found with the Kolmogorov scales of (2.4) and (2.5), resulting in
a relation for the integral Reynolds number ReL as

lI
lkol

∝ Re
3/4
L (2.7)

In (2.7), L is the integral length scale, describing the largest eddie size (most often re-
lated to the size of the object of interest). From (2.7), it can be seen that the smallest
length scale scales with the Reynolds number as the smallest scale decreases in size with
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increasing Reynolds number. For DNS to work effectively, the full range of scales, and
therefore the smallest eddies, have to be captured, meaning that the amount of mesh cells
will increase with increasing Reynolds number. For 3D time dependent DNS simulations,
DNS will scale with Re3L. An increase in mesh cells, is an increase in computing power
and for a 1 % equivalent airspeed increase of a transport aircraft (assuming ReL=107) an
increase in the amount of cells of 1015 is found.

Some DNS data sets are openly available for use. The national aeronautics and space
administration (NASA) has multiple datasets for both compressible and incompressible
aerodynamics 1, such as the DNS periodic hill case (Xiao [67]) or the converging-diverging
duct (Marquillie [68]). The highest Reynolds number for the DNS of the periodic hill
case is around 5600, what is several orders lower than aerospace applications. A simple
search allows for more datasets, such as but not limited to, data provided by the KTH
royal institute of technology 2 or the John Hopkins institute 3, with a Reynolds number
of O(104) at most. Figure 2.1 shows an example of a periodic hill LES simulation by
Balakumar and Park [69]. The periodic hill is often used in data driven turbulence
modelling applications

Figure 2.1: Example of the periodic hill case often used in data driven turbulence mod-
elling, with in the current case streamlines over averaged velocity, provided by Balakumar
and Park [69]

The use of DNS for high Reynolds purposes in the imminent future is highly unlikely.
Moore’s law, stating that the amount of computational power doubles every two years,
is halting as computer components are reaching size limits related to quantum-and ther-
modynamics (Waldrop [70], Theis and Wong [71]). Compromises have to be made for
aerodynamic simulations.

Large Eddy Simulations

A compromise for accurate simulations is LES. As DNS resolves all scales, LES only
fully resolves larger scales, where most of the anisotropy and energy is associated in the
turbulence. The smaller scales are modelled by simpler models. For LES, a filtering
procedure is performed to split larger scale and smaller scale motions. For the larger

1Found at https://turbmodels.larc.nasa.gov/other_dns.html
2Found at https://www.flow.kth.se/flow-database/simulation-data-1.791810
3Found at https://turbulence.pha.jhu.edu/datasets.aspx

https://turbmodels.larc.nasa.gov/other_dns.html
https://www.flow.kth.se/flow-database/simulation-data-1.791810
https://turbulence.pha.jhu.edu/datasets.aspx
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scales, a subgrid-scale (SGS) tensor is obtained that arises from the residual moments.
Closure is reached by modelling the smaller scale motions by an eddy-viscosity model,
modelling the SGS tensor and coupling it to the larger scale movements in the flow.

Similar to DNS, LES data is widely available as well. Accurate high fidelity LES data
is available for data driven turbulence cases, such as the periodic hill by Cinella [72]
where the highest case Re is 37000. For industrial purpose, the LES discretisation is
still considered too significant and current challenges with LES are found in the setup
of LES simulations, needing proper background study and proper research to setup such
simulation.

2.1.3 Introduction to Reynolds Averaged Navier Stokes

RANS is computationally the cheapest model of CFD and is considered the industry
standard. Due to the cheap nature of RANS, it is able to provide results for a fraction
of the time and computational resources compared to DNS. RANS does have a problem
with accuracy, as for most models (in particular the Bousinessq assumption driven models)
RANS performs poorly in highly transient, highly anisotropic flows.

The Reynolds Averaged Navier Stokes Equations

RANS models are based on Reynolds averaging, where a variable (such as the velocity ui)
is decomposed in a mean ūi component and a fluctuating component u′i and subsequently
is averaged. For incompressible aerodynamics, three different types of averaging exist:

• Time averaging Averaging a statistically stationary flow at a certain location xi,
n measurements are made at n different times t.

• Ensemble averaging Suitable for flows with unsteady behaviour. For n different
experiments, measurements are made at a station xi at the same t per experiment.

• Phase averaging Able to capture averages of periodically repeating flow, where n
measurements are made for the same phase lag of periodic behaviour.

The averaging procedure is applied to the Navier Stokes equations from Section 2.1.1. For
incompressible flows, the Reynolds averaged equations for the continuity equation and the
momentum equation are

∂ui
∂xi

= 0 (2.8)

and

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+
∂

∂xj

(
u′iu

′
j

)
(2.9)

The Reynolds stress u′iu
′
j is introduced in (2.9) and is a symmetric tensor with six un-

knowns for a three dimensional system, resulting in a total of 10 unknowns for the RANS
equations (2.8) and (2.9). With five equations, the system is undetermined and needs
closure modelling to be able to solve for (2.8) and (2.9).

The Boussinesq Eddy-Viscosity Approximation

The Boussinesq eddy-viscosity assumption (Boussinesq [1]) provides closure modelling for
the RANS equations and is a well used assumption to create a relation for the Reynolds
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stress tensor from (2.9). The basis of the Boussinesq assumptions can be obtained from
continuum mechanics and states that the molecular momentum transport fluctuation bare
similar behaviour to turbulence, resulting in a mathematically analogous relation to the
stress-rate-of-strain relation for a Newtonian Fluid. The Boussinesq assumption follows

−u′iu′j ≈ νT

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
kδij = 2ντSij −

2

3
kδij = aij −

2

3
kδij (2.10)

In (2.10), νt is the eddy viscosity, k the turbulent kinetic energy, δij a dirac operator that
is one for i equal to j and zero otherwise and aij is the anisotropic part of the Reynolds
stress tensor. The main assumption in the Boussinesq assumption is that the anisotropy
of the Reynolds stress tensor is driven by the mean rate-of-strain of the flow Sij,

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.11)

The Turbulent Kinetic Energy Equation

The equation for the turbulent kinetic energy, the k-equation, is an important transport
equation often used for closure in turbulence models. The equation is obtained by obtain-
ing a transport equation for the Reynolds stresses. Such a transport equation is obtained,
following an averaging and multiplication procedure of the momentum equation of the
Navier Stokes (2.2), as

u′iN (uj) + u′jN (ui) = 0 (2.12)

In (2.12), N is an operator for the momentum equation of the Navier-Stokes. After
simplifications, a transport equation for the Reynolds stress tensor can be obtained, given
as

∂u′iu
′
j

∂t
+ uk

∂u′iu
′
j

∂xk
= u′iu

′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

− 2ν
∂u′i
∂xk

∂u′j
∂xk

+
p′

ρ

(
∂u′i
∂xj

−
∂u′j
∂xi

)
+

∂

∂xk

[
ν
∂u′iu

′
j

xk
+ u′iu

′
ju

′
k +

p′

ρ
u′iδjk +

p′

ρ
uj

′

δik

] (2.13)

Equation (2.13) can be expressed in a term-by-term basis as

Du′iu
′
j

Dt
= PRSM + ϵRSM +ΠRSM +DRSM +

∂

∂xk
CRSM (2.14)

where the terms are defines as

PRSM = u′iu
′
k

∂uj
∂xk

+ u′ju
′
k

∂ui
∂xk

(2.15) DRSM =
∂

∂xk

[
ν
∂u′iu

′
j

xk

]
(2.16)

ϵRSM = −2ν
∂u′i
∂xk

∂u′j
∂xk

(2.17) ΠRSM =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(2.18)

and
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CRSM = u′iu
′
ju

′
k +

p′

ρ
u′iδjk +

p′

ρ
uj

′

δik (2.19)

Equations (2.13) and (2.14) consists out of 22 unknowns, CRST has 16 unknowns and ϵRST
has 6 unknowns. The turbulent kinetic energy k is obtained by taking half of the trace
of the Reynolds stress tensor,

k =
1

2
u′iu

′
i (2.20)

A subsequent transport equation for k is found by taking the trace of the Reynolds stress
transport equation (2.13), resulting in

Dk

Dt
= −u′iu′j

∂ui
∂xj

− ϵ+
∂

∂xj

[
ν
∂k

∂xj
− 1

2
u′ju

′
iu

′
i −

1

ρ
p′u′j

]
= Pk + ϵk +Dk + Tk (2.21)

Similar to the Reynolds stress equations, the k-equation (2.21) can be divided in a produc-
tion term Pk, a dissipation term ϵ, a viscous transport Dk term and a turbulent transport
Tk term. The turbulent transport term Tk consists of the triple correlation u′ju

′
iu

′
i and the

pressure fluctuation term p′u′j. These correlations are difficult to measure in experiments
and are therefore modelled to provide closure for the k-equation. For the Boussinesq
assumption, an approximation for the turbulent transport term results in the relation

Tk = − ∂

∂xj

[
1

2
u′ju

′
iu

′
i +

1

ρ
p′u′j

]
∼=

∂

∂xj

[
νt
σk

∂k

∂xj

]
(2.22)

In (2.22), σk is a constant based on measurements and the full k-equation, with the
Boussinesq assumption is

Dk

Dt
= Pk +Dk + Tk − ϵ = −u′iu′j

∂ui
∂xj

+
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
− ϵ (2.23)

2.1.4 Closure Modelling in Reynolds Averaged Navier Stokes

The RANS equations from Subsection 2.1.3, (2.8) and (2.9) are not closed, having more
unknowns than equations. Multiple different RANS models exist for closure, such as the
one- and two-equation models, Reynolds stress models, explicit algebraic Reynolds stress
models and more.

One-Equation Models

One-equation models are models with one transport equation. The two main models are
the Prandtl one equation model [73] and the Spalart-Allmaras model [8]. The Prandtl one
equation model states that the dissipation of the k-equation (Equation (2.23)) becomes a
function of the turbulent length scale l, given as

ϵ = CD
k3/2

l
(2.24)
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In (2.24), CD is a constant obtained from experiments.

The Spalart-Allmaras model is a transport equation for a type of eddy viscosity (stated
in literature often as the turbulent field variable), denoted as ν̃, and still satisfies the
Boussinesq assumption (2.10) to predict the Reynolds stresses. The Spalart-Allmaras
model transport equation is given as

Dν̃

Dt
= Pν̃ − ϵν̃ +Dν̃ + Tν̃ +DC

ν̃ =

cb1S̃ν̃ − cw1fw

(
ν̃

d

)2

+
1

θ

∂

∂xk

[
(ν + ν̃)

∂ν̃

∂xk

]
+
cb2
σ

∂ν̃

∂xk

∂ν̃

∂xk

(2.25)

In (2.25), a production term, destruction term, diffusion term, transport term and a non-
conservative diffusion term Dν̃C are found and cb1, cw1, cb2 are coefficients, while θ is the
momentum thickness and σ the turbulent Prandtl number. the function fw is an empirical
function while S̃ is the result of an (empirical) function of the real shear strain rate tensor.
For the relations defining fw and S̃, the reader is suggested to look at the original paper
of Spalart and Allmaras [8]. In (2.25), d is the distance to the wall, a measure to make
the Spalart-Allmaras model non local.

Two-Equation Models

Two-equation models mostly expands on the k-equation (2.23), by having a second trans-
port equation. The most basic models are the k − ϵ model by Jones and Launder [74]
and the k− ω model by Wilcox [75], where ω is the specific dissipation rate. Those mod-
els provide values for νT to use in the Boussinesq relation (2.10), where the relation is
obtained for such models using dimensional analyses.

The k−ϵ model is a two equation model that relates the eddy viscosity νT to the turbulent
kinetic energy k and the dissipation ϵ following

νT = Cνϵ
k2

ϵ
(2.26)

In (2.26), Cνϵ is a coefficient. The result for νt can subsequently be used to provide a
prediction for the Reynolds stress in the Boussinesq assumption (2.10).

The ϵ in the k − ϵ equation is not the same as the exact ϵ (the dissipation) of the flow.
In the k − ϵ model, empirical argumentation is used, where ϵ is considered as the energy
flow throughout the energy cascade rather than the process through the dissipative range.
Jones and Launder [74] created the empirical transport equation for ϵ, building it from a
production Pϵ, transport Tϵ and a destruction Γϵ, resulting in

Dϵ

Dt
= Dϵ + Tϵ + Pϵ + Γϵ =

∂

∂xj

[(
ν +

νt
σϵ

)
∂ϵ

∂xj

]
+ cϵ1

Pkϵ

k
− cϵ2

ϵ2

k
(2.27)

For the k− ϵ model, to reach closure, values should be found for the coefficients: cϵ1 cϵ2,
Cνϵ, σk and σϵ.

The k − ω model, is a two equation model where the eddy viscosity is related to the
turbulent kinetic energy k and the dissipation per unit turbulent kinetic energy ω. The
relation is given as
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νt = Cνω
k

ω
(2.28)

In (2.28), Cνω is a constant based on measurements (Wilcox [75]). Similar to the k − ϵ
model, the k−ω model has a description for νt in Equation (2.28) that can be used to find
the Reynolds stress with the Boussinesq assumption (2.10). The ω equation uses a similar
physics build-up analogy as the ϵ equation, creating an equation with a production term
Pω, a transport term Tω, a cross diffusion term DC

ω , a viscous transport term Dω and a
destruction term Γω, combined as

Dω

Dt
= Pω +DC

ω +Dω + Tω − Γω =

cω1
ω

k
Pk +

σd
ω

∂k

∂xi

∂ω

∂xi
+

∂

∂xj

[(
ν + σω

k

ω

)
∂ω

∂xj

]
− cω2ω

2

(2.29)

For the k − ω model, to reach closure, values should be found for the coefficients: cω1
cω2, Cνω, σk, σd and σω. Besides, the k − ϵ and the k − ω model, a lot more industry
applicable two equations models exist, including (but not limited to) Mentor’s [76] k− ω
shear stress transport (SST) model or Speziale, Abid and Anderson k − τ model [77].

Reynolds Stress Models

Equation (2.13) is a direct transport equation for the Reynolds stress. A subset of RANS
models, called Reynolds Stress models (RSM) utilise the transport equation form of the
Reynolds stress. Compared to one and two equation models, RSMs do not use the Boussi-
nesq hypothesis and correct some of the Boussinesq shortcomings. For the Reynolds stress,
diffusion and convection are modelled completely and together with the time-history and
non-local transport behaviour, Reynolds stresses should be better represented than with
one- or two equation models. RSMs also provides production and convection terms that
are able to represent streamlines and curvature problems more naturally and RSMs do
not require an a priori assumption of the mean stress rates, resulting in a more realistic
behaviour of the flow for sudden rates of changes in the mean strain rate. The reason
RSMs are not the industry standard, is that RSMs are difficult to convergence and still
need modelling of some terms.

As stated in Section 2.1.3, the Reynolds Stress equation has 22 unknowns, creating an
undetermined system that still needs modelling. Three specific terms need to be modelled,
being the dissipation tensor eRST (2.17), the pressure strain correlation ΠRST (2.18) and
the turbulent transport tensor CRST (2.19).

An example of an RSM, is the Launder, Reece and Rodi LRR model [78]. The LRR model
uses the Kolmogorov [66] hypothesis for local isotropy, finding a closure approximation
for ϵRST . For the ΠRST , the pressure strain term, the pressure fluctuations are split into
rapid fluctuations and slow fluctuations and are modelled appropriately. For the turbulent
transport term CRST , the pressure correlation term is neglected and a gradient transport
process is assumed that is rotationally invariant. For more information please look at the
LRR introduction by Launder, Reece and Rodi LRR model [78] and the books of Wilcox
[3] and Pope [65].
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Nonlinear Constitutive Relation

Algebraic Reynolds Stress Models (ARSM) are non-linear algebraic relations for the
Reynolds stresses and eliminate a transport equation for the Reynolds Stress. The classic
ARSM equation is obtained by approximating the convective and turbulent transport
terms of (2.13) as proportions to the considered Reynolds Stress, giving

Du′iu
′
j

Dt
≈
u′iu

′
j

k

Dk

Dt
(2.30)

Equation (2.30) shows the initial assumption of Rodi [79], where the structural form of
the Reynolds stresses are self-similar in space and time and the anisotropic rate of change
is zero for homogeneous flows. The result is an algebraic nonlinear relation that is able
to provide a prediction for the Reynolds stress,

−u′iu′j
k

[
−u′mu′n

∂Um
∂xn

− ϵ

]
= u′iu

′
k

∂Uj
∂xk

+ u′ju
′
k

∂Ui
∂xk

+ ϵij − Πij (2.31)

Equation (2.31), is implicit as the Reynolds stress occurs both on the left and the right
hand side of the equation. Explicit algebraic Reynolds stress models (EARSM) are models
that circumvent the implicit nature.

A generalisation by Pope [17] for EARSM is made by creating it as a non-linear expansion
for the Boussinesq assumption, resulting in

u′iu
′
j =

2

3
kδij + k

∑
λ

αnT
n
ij (2.32)

In Equation (2.32), also known as the effective viscosity hypothesis or the non-linear
generalisation of the eddy viscosity assumption, T nij are tensor products and αn are coef-
ficients. The tensor products are polynomial combinations, build up from the strain rate
tensor (2.11) and the rotation tensor

Ωij =
1

2

(
∂ui
∂xj

− ∂uj
∂xi

)
(2.33)

The coefficients in (2.32) can be functions of the invariants. The invariants are, similar
too the tensors as a function of the strain rate tensor (2.11) and the rotation tensor (2.33).
Due to the Cayley-Hamilton theorem, (2.32) is not an infinite summation, being able to
express the infinite summation by a finite set of tensor bases and invariants. For two
dimensional cases, three tensor products and two invariants are enough to represent the
summation and for three dimensional cases, ten tensor products and five invariants are
enough. The full set of tensor products and invariants can be found in Appendix A.

2.1.5 Deficiencies of Current RANS Models

Most practical models are driven by the Boussinesq assumption, as explained in previous
sections. For the Boussinesq assumption, problems are found with flows that have sudden
changes in the mean strain rate. The Boussinesq assumption starts to fail for flow cases
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where out of plane straining, significant streamline curvature and significant anisotropic
Reynolds stresses are present.

In 2015, Spalart [2] published an article, stating the current state of RANS turbulence
modelling, noting current challenges and developments. Spalart argues that the Reynolds
stress in the current RANS frameworks are modelled locally, evaluating the mean values
and derivatives in one point even if along a streamline, a particle can be influenced by
preceding eddies of finite size. In time averaging, a sample can be averaged that includes
highly rotational flow and irrotational flow, averaging multiple states together and losing
information. Highly virtual quantities of the Reynolds stress that are affected by non-
local values and phenomena are treated locally by Reynolds averaging and the Boussinesq
assumption. Current models such as the k − ϵ model do have a region of influence and
show some level of non-locality, as the diffusion equation affects multiple values in the
flow field, resulting in a local equation where the mature solution field is not local.

Spalart [2] states that two strategic decisions can work against the locality of models.
The Spalart Allmaras model [8] and the Mentor k−ω SST model [80] use a wall distance
in the model to obtain the relative location of a point while another strategy is to use
higher order derivatives. Higher order derivatives do not occur naturally in the Reynolds
stress equation (2.13), but can be used empirically to force non-local effects. Spalart
believes that a promising direction in the future are detached eddy simulations (DES),
also known as hybrid RANS-LES methods, where the more mature smaller turbulent
structures that have more repeatable behaviour are in line with the Boussinesq assumption
and are modelled by RANS, but RANS-LES methods have their own challenges, such as
the communication at the interface between RANS and LES, better know as gray-zoning
(Spalart et al [81]). In theory, a Transport equation, such as the RSM models, could
provide non-local behaviour due to the time and advection properties of the equation. As
seen with RSM models, it would need proper modelling to reduce the inaccuracies.

Figure 2.2: Barycentric map comparing k− ϵ RANS, Machine leaning augmented RANS
and high fidelity LES at two specific locations of the periodic hill case. Picture taken
from Duraisamy et al and Wang et al [82, 22]

The Barycentric map, a method of visualisation introduced by Banjeree et al [24], is a
triangle that at the edges show one-, two- or three component turbulence at a certain
spatial location, resulting from the eigenvalues from the Reynolds stress tensor. In Figure
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2.2, the deficiencies of RANS are clear. RANS (the k − ϵ model) and the high fidelity
LES data have a significantly different response in the Barycentric map. Machine learned
work from Wang et al [22] provides an augmentation to RANS.

In general, Figure 2.3 shows the fidelity versus computational cost of all methods. In
CFD, RANS is currently the industrial standard but has quite a low fidelity. DNS has
the highest fidelity, but has the greatest costs. A lot of development is performed in
Hybrid RANS/LES (DES) methods, not discussed in the current report, and have some
promise. Another field that is interesting is the data driven RANS models, where high
fidelity LES or DNS data is augmented in the Reynolds stress.

Figure 2.3: Summary of the accuracy and computational time of the most important
simulations for the Navier-Stokes equation. Picture is inspired by Xiao and Cinella [83]

2.2 Identification of Dynamical Systems
The governing equations of dynamical systems, like the Navier-Stokes equations, are de-
rived via conservation and physics laws. Due to the increase in data over the past decade,
new techniques have arose for obtaining governing equations. The current chapter dis-
cusses (regression) techniques used for discovering partial differential equations.

In Subsection 2.2.1, the basics of regression are discussed, introducing least squares re-
gression and shrinkage methods for least squares regression. Subsection 2.2.2 discusses
the sparse linear regression for PDE discovery while Subsection 2.2.3 discusses different
methods for the discovery of governing equations.

2.2.1 Data Regression and Techniques

The subsection ’Data regression and techniques’ is based on the book by Hastie [84]
and provides the basics behind least squares regression and several shrinkage methods.
Regression enables finding suitable models from data, using training data to train models
that can be tested for performance on testing data.

Basics of Least Squares Regression

The most classic regression algorithm is the least-squares algorithm. Least-squares re-
gression aims to minimise the residual sum of squares (RSS) between a predictor and the
regressor. For a data set of outputs yi with input xi, for all i, a β coefficient is select to
minimise the residual sum as
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RSS(β) =
N∑
i=1

(yi −XT
ijβj)

2 (2.34)

From (2.34), a unique solution for the β coefficients can be found, given as

β̂i = (XkmXki)
−1Xjmyj (2.35)

Least Squares regression creates a linear model to approximate regression as

ŷ = xβ̂ (2.36)

where an output ŷ is formed based on a data point x and a regressed weight β̂.

The problem of least squares regression is that by minimising the residual sum of squares
for a certain training set, any candidate function in Xij passing through the solution can
become a part of the solution. The result is that a poor predictor can be established that
works well for a specific set of training data, but poorly on test data not included in the
training data.

Shrinkage Methods for Least Squares

Shrinkage methods can help the problem of least squares regression, by adding a regulator
(penalisation term). The result is a more sparse or less correlated result that can improve
prediction on test data not included in the training set.

One such shrinkage method is ridge regression (introduced by Hoerl and Kennard [85]).
Ridge regression adds an L2 constraint on (2.34), resulting in the form

β̂i = argmin
β

{
||(yj −Xijβi)||22 + λ||βi||22

}
(2.37)

In (2.37), λ is a hyper parameter that controls the amount of shrinkage of the values,
where the greater the value of λ, the greater the amount of shrinkage. Ridge regression
will still result in a unique solution and can be rewritten in similar form like (2.35) as

β̂i = (XkmXki − λδim)
−1Xjmyj (2.38)

In (2.35), it is clear that λ functions as a scaling parameter, resulting in β for ridge
regression being a scaled version of β from least squares.

Lasso is similar to ridge as it provides a constraint to the RSS least squares (2.35).
Lasso, introduced formally by Tibshirani [86], constraints the equation by providing an
L1 constraint, resulting in

β̂i = argmin
β

{
||yj −XT

ijβi||22 + λ||βi||1
}

(2.39)

The L1 constraint differs to ridge regression in that Lasso forces values of β to 0 for a
defined λ. Lasso effectively shifts the least squares β solution, truncating the solution at
0. For that reason, no closed form similar to (2.38) and (2.35) is possible.
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Best subset regression (following Hastie [84]) finds for each set of coefficients, the sub-
set of coefficients that gives the smallest residual sum of squares. Effectively, best subset
selection will force certain coefficients to zero as a hard threshold. For a large set of coeffi-
cients, best subset selection is costly, and more effective procedures exist such as forward-
and backward stepwise selection. In forward stepwise selection, the model starts with
the intercept (constant value y0) and adds progressively with the predictor that improves
the fit, while backward stepwise selection starts with the full model and progressively
eliminates the worst predictor to the model.

The effect of ridge, lasso and best subset selection on a certain coefficient β is best
visualised in Figure 2.4. In Figure 2.4, best subset is seen to act as a hard threshold,
where the coefficients are forced to zero if the coefficient becomes to small. For ridge,
the slope of the coefficient becomes less, resulting in lower regressed coefficients while for
lasso a translation of the curve is seen, forcing an earlier onset to zero of the regressed
coefficient.

Figure 2.4: Picture visualising the procedure of shrinkage methods with on the left the
best subset method, in the middle the ridge regression and on the right lasso regression,
inspired by Hastie [84]

Besides best subset, lasso and ridge regression, Hastie [84] summarises a lot of different
shrinkage methods to improve the predictive capabilities of regression, such as forward-
stagewise regression, least angle regression, principal component regression and partial
least squares.

2.2.2 Regression and Dynamical System Discovery

The regression routines in the previous section, results in different predictors for β based
on the type of regularisation and hyper parameters used. In recent years, regression and
regularised regression have been used for the act of system identification, using data to
obtain the governing equations for physical systems.

Sparse Regression for Data Driven Discovery

The group of Brunton introduced the Sparse Identification for Non-Linear Dynamics
(SINDy) algorithm [42]. SINDy is aimed at obtaining the important terms from data of
ordinary differential equations (ODE), in the form of

d

dt
xi(t) = f(xi(t)) (2.40)
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In (2.40), f(x) is a specific function. A sequential threshold least-squares algorithm drives
parsimonious solutions, where per iteration a least squares step is performed and small
coefficients lower than a certain threshold are set to zero. After an initial selection, a new
least squares operation is performed until a convergence of the non-zero values are found.
Brunton et al claims that the sequential threshold least-squares performs better for sparse
solutions than L1 regularisation (such as the Lasso Subsection 2.2.1) as L1 regularisation
might become expensive for large data sets.

SINDy uses a predetermined set of candidate functions that allows for possible solutions
for the governing equation. Candidate functions are all the possible functions that an
equation can become and for regression based purposes have to be defined by the user
before hand. Candidate functions can be any type of function, a constant,a polynomial
and more, resulting in the system

d

dt
xi(t) = Θij(x)βj (2.41)

In (2.41), Θij(x) is the matrix consisting of the candidate functions for x and β is the
(sparse) coefficient vector. The sparse regression routines allow for the candidate functions
to span beyond the ground truth functional form as the sparsity is aimed to limit the bias
related to a specific training data point, reducing the amount of used functional forms.

Rudy at al (Same group as Brunton) introduced the PDE FIND algorithm [40, 41]. Rudy
et al expands upon SINDy by making it able to obtain the (general form) of PDEs from
data of the form

d

dt
u(t) = f(u,

∂u

∂xi
,
∂2u

∂xi∂xi
, . . . , x, µf ) (2.42)

In (2.42), µf is an additional function, not driven by u. Similar to SINDy, PDE FIND uses
a selection of pre-determined (non-linear) candidate functions. The candidate functions
are populated in a linear system given as

d

dt
ui(t) = Θij(u,Q)βj (2.43)

In Equation (2.43), Θij consists of candidate functions of the variable of interest u and Q.
Q are candidate functions that provide additional information but are not a function of
u. An example of a vector system with candidate functions with an additional function
not related to the variable of interest in the form of x is given as

ut =

[
1 u

∂u

∂x

∂2u

∂x2
. . .u2∂u

∂x
x x2

]
β (2.44)

In the PDE FIND algorithm by Rudy et al, an L0 penalty is introduced that adds error
to a non sparse solution, seen in Equation (2.45). The idea is that the addition of an
additional term, should carry a greater decrease in prediction error than the L0 penalty
adds to the error. Before the error analyses, a sequential threshold ridge regression step
(STRidge in the works of Rudy et al) is performed. STRidge is similar to the threshold
least squares of SINDy, with ridge regression used instead of least-squares regression to
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reduce the correlation between variables and force coefficients towards lower values before
cut-off. The term β is evaluated with STRidge and the resulting error is estimated using
the L0 penalty. A new updated threshold tolerance for STRidge is found and the same
sequence is performed until convergence. The effective relation for PDE FIND is given in

β̂i = argmin
β

{∣∣∣∣∣∣∣∣Θij(u,Q)βi −
d

dt
uj(t)

∣∣∣∣∣∣∣∣2
2

+ µ ||βi||0

}
(2.45)

In the paper of Rudy et al [40], multiple equations like the Korteweg-De Vries and the
Navier-Stokes equations are discovered from data. The PDE FIND algorithm provides
good correlation for no noise. For situations with noise, the results are varying. For
the non-linear Schrödinger equation, PDE-FIND is able to find the underlying partial
differential equation with reasonable error while for the Kuramoto-Sivashinsky equation
there is a significant error of more than 50%. In the case of the Navier-Stokes equation,
PDE FIND is able to return all coefficients associated with the PDE within 0.2-1% of the
original value while for 1% noise (defined as 1% of the standard deviation of the solution
function), an offset of 6-7% is present. Rudy relates the sensitivity to noise for the sparse
regression routine due to the discretisation error imposed for derivatives.

Rudy et al created an improved algorithm where time dependent constants can be classi-
fied with the sparse regression algorithm. In [45], the aim is to find the underlying PDEs
in the form of

d

dt
u(t) = f

(
u,
∂u

∂xi
,
∂2u

∂xi∂xi
, . . . , x, µf (t)

)
(2.46)

The result is that the sparse regression coefficients β will have a time dependency, creating
β(t). The data is distributed in ’bins’ for specific time stamps and for each subset a PDE
prediction is made.

At a similar time to the group of Brunton, Schaeffer [46] found a different numerical
algorithm based on sparse regression to recover PDEs from data. Schaeffer approaches
the problem similar to Rudy et al, creating and populating candidate functions, aiming to
solve a system of Equations of form (2.43). An L1 regularised least-squares minimisation
is chosen similar to Lasso as presented in Section 2.2.1 that forces sparsity. Similar to
Rudy et al [40], the method is able to capture the governing partial differential equations
based on data and is stated to be robust to noise and data size.

PDE FIND and SINDy has been successful beyond [40] and [42]. A few examples, but
not limited to, include Jin et al [87], who used numerical data to obtain the governing
PDEs behind the heat conduction equation and the conductive–convective heat transfer
equation. Abramovic et al [43] was able to identify the drift-wave turbulence equations
based on the Hasegawa & Mima (HW) and modified HW models for tokamak plasma.
Zhao et al [44] used SINDy and STRidge to find ordinary differential equations successfully
for the macroscopic governing equations of granular flow. Zhang et al [88] was able to
obtain macroscopic PDEs from molecular simulation using discrete simulation Monte
Carlo. In the work of Zhang et al [88], the data-set is independent of the governing
equations a priori and PDE-FIND was able to return the macroscopic PDEs and provide
accurate predictions of the transport coefficients.
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Noise Mitigation for Sparse Regression

A problem with the PDE-FIND algorithm by Rudy et al [40] is the robustness to noise.
The evaluated candidate functions in (2.44) consists of derivatives that are deduced from
data. In the additional information to PDE FIND, Rudy et al [41] uses finite difference or
polynomial interpolation for higher order terms, methods using adjacent points. As the
adjacent points change with noise, the effect is translated on the calculated derivatives
and the derivative becomes more inaccurate with noise. Rudy et al [41] stated a few
techniques that are aimed to increase the robustness to noise. A Gaussian smoothing
Kernel was found to remove noise from the derivatives, but it added a bias that created
problems with the identified dynamics, and is subsequently not recommend by Rudy et
al. A similar conclusion is found for Tikhonov differentation. Rudy et al[41] found that a
polynomial interpolation of multiple data-points improves the accuracy related to noise,
but does that it is not perfect.

On the contrary to the work of Rudy et al, the work by Schaeffer [46] concludes a decent
robustness to noise. For multiple cases, derivatives are constructed with a spectral method
and pre-processing and regularisation is used for finite differences and finite elements to
ensure smooth derivatives. Inaccurate results are found after 3% of noise. It can be
argued, however, that the robustness to noise levels of 3 %, is still on the low side.

The group of Grigoriev [51, 52, 53] uses the weak formulation of the PDE for the sparse
regression problem,using the weak form for the candidate terms. The weak form is ob-
tained by multiplying each term with a test function and integrating it over a domain,
meaning that a certain function should hold over a domain rather than at a certain point
(also known as the hard form). The regression algorithm is a thresholding algoritihm
similar to SINDy [42], where all small values in a least squares approach are set to zero
under a certain tolerance. The weak formulation has an advantage that it can reduce the
order of the derivatives using integrating by parts. The noise constraint is then moved
from the derivative of the variable of interest (the trail function) to the test function,
reducing the dependencies on accurate derivatives. For the test function, exponential test
functions are chosen and a specific statement is made that carefull considerations should
be made for which test function to choose. The weak formulation, in the form presented
by the group of Grigoriev, has given improvement in finding the governing equations of
dynamics with noise, increasing the robustness to noise up to levels of 30%.

Messenger and Bortz [54, 55] introduced the weak SINDy method. Similar to the work
of Grigoriev, the weak SINDy method is able to obtain high accuracy for high levels of
noise, by eliminating the pointwise derivative. A sparse solution is found using a modified
sequential-thresholding least-squares algorithm, where an additional constraint on the
thresholding is present to provide a better balancing of the candidate terms. Different to
the work of Grigoriev, weak SINDy uses the convolutional weak form of the PDE, where a
set of test functions are used that are a translation of another test function. For a greater
understanding on the convolutional weak form, the reader is recommended to read the
original work by Messenger and Bortz [54, 55].

Bekar at al [56] improves robustness to noise for sparse regression by a peridynamic
differential operator (PDDO). Peridynamics presents a non-local representation of the
scalar field by accounting for the effect and the interaction with other points. a PDDO
is constructed by means of a Taylor series expansion around the scalar point of interest,
allowing to represent a derivative of with a certain dimension at a certain point x in terms
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of multiple points in a space (for more on PDDO, please read the book of Madenci et al
[57]). Bekar at al found that the implementation of the PDDO increased the resistance
against noise, being able to find the Kuramoto-Sivashinsky equation within 0.3% at a
noise level of 50%.

Joemon et al [60] proposes a smoothing approach using a 2D Gaussian kernel filter. The
filter computes a smoothed value at each point as a weighted average of the surrounding
points. After smoothing, an L0BnB method by Hazimeh et al [89] is implemented to
perform sparse regression. Results from [60] shows improved performance under noise of
both the heat equation and the Burgers equation.

The work by Joeman et al is in conflict with what is stated by Rudy et al [41], where
Rudy states that caution should be applied for smoothing differential values with kernel
functions. It should also be noted that the PDE FIND algorithm in [60] is not able to fully
return the Heat equation. The work of [40] is able to return the full governing equations
for multiple (similar and more complex) PDEs and no reasoning is provided by Joeman
et al [60] why there is a discrepancy present. Some reasons might be that numerical
noise due to discretisation doesn’t favour the PDE FIND algorithm or that the incorrect
selection of hyperparameters are used.

2.2.3 Different Techniques for System Indentification

The previous sections discussed data driven discovery techniques in the field of regression.
Multiple techniques beyond sparse regression exist to obtain the governing dynamics from
data, such as sparse Bayesian learning (SBL), neural networks, gene expression program-
ming (GEP) and more.

Sparse Bayesian Learning for Data Driven Discovery

Sparse Bayesian learning (SBL), introduced by Zhang et al [47] for system identification,
is a different technique than sparse regression for the parsimonious identification of the
governing equations. SBL is focused around assigning coefficients in (2.41) with inde-
pendent Gaussian priors around a mean of zero. A posterior Gaussian distribution and
a most probable point estimate is found by maximising the log-likelihood. Most of the
coefficients will go towards infinity at zero, hence promoting sparsity.

Zhang et al [47] introduces sparse Bayesian regression for model identification. SBL
has the advantage of providing error bars and quantify uncertainties in the data-driven
discovery process. In the article, Bayesian regression is used for ODE’s and the claim is
made that the SBL method by Zhang et al [47] is able to outperform symbolic regression
methods such as Lasso and STRidge (Rudy et al [40]) with tests performed for the shallow
water equation and the Navier Stokes equations. Nayek et al [90] used spike-and-slab
priors in comparison to the relevant vector machine priors of [47] to promote sparsity.
The spike-and-slab priors were tested on ODEs and found competitive results compared
to relevant vector machine models. An overall less in-depth study by Fuentes et al. [91]
(from the same group as Nayek et al, published around the same time as [90]) is performed
for non linear first order differential equations. A comparison is made with real life
experimental data and similar to Zhang et al [47], encouraging results are found. One of
the main advantages of the work of Zhang et al [47], is the tuning of hyperparameters. In
the SBL method, the hyperparameters are tuned automatically, while for Rudy et al PDE
FIND [40] a trail and error approach must be employed that can lead to an inaccurate
result.
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One of the problems with the SBL method of Zhang et al [47], is the efficiency of the cost
function. Yuan et al [48] proposes the S3d model that has a more efficient cost function.
The S3d model is able to deduce the governing PDE from spatiotemporal data from high-
quality experimental data and has the ability to provide adequate results for data with
noise, by applying polynomial interpolation for derivatives. The method is also used
with real data, for the Complex Ginzburg-Landau Equation (travelling wave experiment)
where a good representation of the governing equations to recreate the experiment are
found.

Zhang and ling [49] expand on Zhang et al [47] by introducing the SubTSBR model. The
SubTSBR is designed to tackle high noise and outliers, by using sub sampling methods.
The model was tested on four models, being the predator-prey model with noise, shallow
water equations with outliers, heat-diffusion equation with a random initial and boundary
condition and fish-harvesting problem with bifurcations. SubTSBR is able to provide an
improvement on the previous SBL methods, but is subject to proper tuning of the sub
sampling method, what is arguably against one of the purposes of Zhang et al [47] as the
article advocates against the tuning of (hyper) parameters.

Chen et al. [50] created a SBL algorithm that is able to discover variable coefficients, for
both spatial and temporal dependency, as a competitor to the sparse regression algorithm
for varying coefficients by Rudy et al [45]. In the work, a Lasso operator with spike-and-
slab priors is used (for more information please see [92]) and improved computations by
implementing a threshold for the coefficients. The uncertainty, key to Bayesian processes,
is implemented as a selection criteria, which is said to outperform selection procedures.
The algorithm in [50] is compared to PDE FIND and has shown to outperform for large
noise and provided a lower false discovery.

Neural networks for Data Driven Discovery

Physics-informed neural networks (PINNs) are a popular method for physics related data
science. In early works leading up to PINNs, physical laws are described in Gaussian
process priors for Bayesian regression with an aim on predicting future time predictions
[93]. The process got expanded by incorporating non-linear partial differential equations,
introducing the capability to infer the governing equations from data, Raisse et al [94],
resulting in the paper of PINNs by [62]. In PINNs, neural networks are used that contain
physics information (such as conservation laws) to obtain governing equations. In the
original paper, PINNs are used to identify the governing equations from data and are
able to identify different governing equations, even tested with 1 % noise.

PDE-Net is introduced by long et al [61], a feed-forward deep network that has the goal of
accurately predicting dynamics of complex systems and uncover underlying PDEs. PDE-
Net uses convolution Kernels to learn linear differential operators of a system and uses
Machine learning methods to approximate non-linear responses. PDE-Net only needs
minor information on the nonlinear response function, to create an accurate representa-
tion. PDE-Net is able to find both linear and non-linear governing equations of observed
dynamics, even in a noisy environment.

Berg and Nyström [95] used deep learning practices to discover PDEs from complex data
sets from measurement data. In [95], it is stated that a second order non-linear PDE
can be approximated by an ODE where neural networks work well. The ODE is able
to accurately represent the training data and predict the future (within a certain time
domain), for a fraction of the cost. Berg and Nyström states the importance of data
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quality, and that data transformations, such as coordinate transformations are of great
importance for machine learning.

The ψ-PDE and it’s Derivatives

A combination of previous methods, Zhang et al [58] proposes the ψ-PDE method in an
effort to mitigate the effects of noise and the use of hyperparameters, one of the limiting
factors in sparse regression techniques such as PDE FIND [40, 45]. ψ-PDE starts with
a neural network that filters noise and the filtered values are processed based on the
candidate functions. With a discrete Fourier transform, the values are transformed to
the frequency domain where additional values are cut to only preserve low frequency
components. Sparse regression is performed in the frequency domain in a progressive
manner using a sort of best subset selection, where all possible combinations are compared
for the lowest error. The best subset selection algorithm is expensive due to the search
requirement and an updated version is presented from the same group [59], where the
best subset selection sparse regression routine is replaced by an SBL method, with the
added benefit that uncertainties are quantified for each discovered term.

The cut-off and the filtering of high frequency responses could poise challenges in the
works of Zhang et al [58, 59]. From Rudy et al [41], one of the issues with filtering, is that
higher frequency terms could be important for the solution and could lead to a loss of
information, leading that the ψ-PDE method might have issues where the true response
is a high frequency response.

Gene Expression Programming for physical law discovery

Gene expression programming (GEP) is a popular form of regression, where the forms
of functions and their corresponding coefficients are learned concurrently. Introduced by
Ferreira [28], the essential part of GEP is similar to natural evolution, where GEP is a
tree structure that learns and adapts by changing the sizes, shapes and composition of
the tree structure based on the available data.

Vaddireddy et al [63] used GEP to find physical laws represented by linear and non-
linear PDEs. GEP is proven to retrieve the model from data, but with less accurate
coefficients than Rudy et al [40] PDE FIND. Compared to PDE FIND, GEP was also
more computationally expensive and has more hyper parameters to tune. The advantage
of GEP is that a candidate library is not needed and explores past that limitation. Xing
et al [64] used GEP for molecular simulations (simulations not based on the original PDE)
to find the physical system and was able to retrieve well known relations.

Ma et al [33] introduced the dimensional homogeneity constrained GEP (DHC-GEP). The
dimensional homogeneity is added via a verification process per step in the GEP algorithm
by checking the dimension of the terms, leaving the major algorithm the same and keeping
the advantage of the original GEP algorithm. DHC-GEP is able to recover physical
principles from data for cases including the diffusion equation and the voriticity equation
and has three improvements over the original GEP, being the robustness to the size and
noise of data sets, less sensitivity to hyperparameters and lowering the computational
costs. Similar to Xing et al [64], DHC-GEP is able to recover the correct equations for
molecular simulations.

2.3 Turbulence and Data Driven Methods
Turbulence modelling has always been data driven to a certain extent. RANS Boussinesq
models such as k−ω and k− ϵ from Section 2.1.4 have been developed empirically, using
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data to obtain coefficients needed for closure and making analogies for transport functions
based on observations.

The section ’Data Driven Turbulence’ expands on that notion, by discussing RANS aug-
mentations created using high-fidelity data of DNS and/or LES simulations, starting with
the inadequacies of RANS and the problems and challenges of data augmented models
in Subsection 2.3.1. Subsection 2.3.2 discusses machine learning and data driven turbu-
lence while Subsection 2.3.3 discusses symbolic regression and turbulence modelling. The
chapter ends with a comparison and summary between the most important methods in
Subsection 2.3.4

2.3.1 Data Driven RANS Strategies and Problems

The earliest uptick in data driven turbulence research started 18 years ago (Duraisamy
[96]) and has since seen a significant amount of contributions. Data driven techniques
aim to reduce the modelling errors and uncertainties and provide potential solutions, but
challenges are present and difficult.

Modelling Errors Found in RANS

The review paper by Duraisamy et al [82], describes four levels of uncertainties and
potential modelling errors found in RANS. The modelling errors can be used as the
stepping stone for data driven turbulence and the error can be corrected with such models.
The following four uncertainties are found:

• Level 1 Uncertainty that comes from averaging. With averaging, time local dy-
namical behaviour, such as specific shedding patterns, are lost resulting in a general
loss of information.

• Level 2 Uncertainty that comes from approximations, such as the Boussinesq as-
sumption for RANS models that reduces the Reynolds stress from it’s non-local
behaviour to a local expression.

• Level 3 Uncertainty in the functional form of the equation. The functional form
approaches and satisfies physics driven process but is not necessarily the exact equa-
tion. An example is the real dissipation versus the modelled dissipation in RANS
models such as the k − ϵ model.

• Level 4 Uncertainty in the coefficients of the RANS models. The coefficients in
the models are based on experimental data and use specific conditions depending
on the tests that might infer biases.

In the review paper of Duraisamy [96], the developments in the field of data-driven/machine
are provided with the main recommendation to use physics informed models to infer data.
Physics informed models reduce the search space and the general guideline is to use non-
dimensional values, consider invariance, use non-local quantities and have an understand-
ing of the used data. The physics informed terms can also be constraint to result in
satisfying results, by for instance using conservation laws.

The current report will only discuss the level two and level three approaches. For level
four errors, the author recommends the reader to look at the review paper of Duraisamy
et al [82] for a concise but informative summary.
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Challenges and Problems with Data Augmented RANS models

The papers by the group of Duraisamy [7, 82, 96] have list challenges and problems
related to data turbulence modelling and are meant as guidelines. Most of the turbulence
modelling methods take into account the guidelines, but do not always adhere to it. For
instance, Singh et al [7] promotes the use of propagating uncertainties to the output,
but a significant amount of work in the field of data driven turbulence only relies on
deterministic results. The following challenges and problems are listed:

1. Usage of data There is only a limited set of high fidelity data sets and turbulence
models augmented with data show bias towards a certain data set. Small discrep-
ancies in data can also (potentially) drive to incorrect models if not taken care off
properly. Due to the high computational cost of high Re number high fidelity data,
all high fidelity data have low Re numbers.

2. Consistency of data between the RANS and the high fidelity model The
description of parameters of the high fidelity model might not be the same as for
RANS models, as for example the dissipation ϵ.

3. Correct form of the data augmentation for turbulence models Due to a
limited data set and the unknown nature of the problem, the true form of the
turbulence model is not known and the designer of the turbulence model should
take care in which forms are applicable.

4. Generalisability of the data across data sets Learning models from specific
data sets can create a bias for that model and cannot guarantee prediction accuracy
between training and testing data.

5. Balance between model and data Data driven techniques have been developed
to produce models, but the researcher should take care to what extent data driven
equations drive the model result compared to physics driven analogies.

6. Loss of data due to the averaged field For RANS, the process of averaging
can lead to a loss of information as during the averaging process multiple different
mechanism at a certain locations of x can be lost (Level 1 error from previous
section).

7. Impact of discretisation and numerical filtering When LES models are used
as the high fidelity data set, care should be taken that numerical errors due to
filtering should not be propagated through the data inference.

8. Interpretability of modelsMore interpretable models, by for instance a reduction
of the amount of model terms, allow for a better understanding and less implemen-
tation errors.

9. Data driven models shouldn’t influence correct flow patterns The correctly
predicted flow patterns by RANS models shouldn’t be influenced in a negative man-
ner by the data driven corrections.

10. Uncertainties should be accounted for Uncertainties in the model should be
accounted for if possible and be propagated to the output. The result is that an
engineer has the possibility to know how the prediction influences the result and
where modelling might provide inadequate answers.
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2.3.2 Data Driven Turbulence and Machine Learning

The modelling errors of RANS and the challenges of data driven RANS are implemented
in multiple cases using machine learning. The main methods are related to field inversion
and machine learning, tensor bases machine learning, physics informed machine learn-
ing, sparse implementation of machine learning and corrections to the Spalart-Allmaras
turbulence model.

Field Inversion and Machine Learning

As far as the author can find, the use of high fidelity data for Reynolds stress modelling
was first introduced by Tracey et al. (part of the group of Duraisamy) [4]. The work is
described as a proof-of-concept and Kernel regression is used to train the true anisotropy
given a set of flow features from a low-fidelity model. Four inputs where given: the x and
y coordinates of the barycentric triangle, a marker function m that provides a measure of
the local flow condition for parallel shear flow and the ratio of turbulence production to
dissipation. From the trained kernel regression model, new predictions were made for the
anisotropy of turbulence. An improvement of the turbulence anisotropy is found compared
to RANS, with the problem that the correction is a function of spatial coordinates.

Continuations on the work of Tracey et al, resulted in the Field Inversion Machine Learn-
ing (FIML) technique introduced by the group of Duraisamy [5, 6, 97, 7]. In FIML, the
discrepancy between RANS and the high-fidelity data is inferred in terms of spatial co-
ordinates. The inversion is done using Bayesian inversion, able to show uncertainty in
predictions of sections of the flow what can act as a tool for the engineer. After the inver-
sion, a machine learning algorithm is used to find a corrections in terms of the mean flow
parameters. Most of these works followed on adding a source term B(x) to the production
term in the Spalart-Allmaras model like

Dν̃

Dt
== B(x)Pν̃ − ϵν̃ +Dν̃ + Tν̃ +DC

ν̃ (2.47)

In Singh et al [7], 1D channel flow was shown to be improved by only using a sparse set
of data. Another test, showed improvements in the prediction of the lift coefficient, drag
coefficient and stall onset angles for turbulent flow separation over airfoils. Generalisabil-
ity was found between data sets, where improvement was found for airfoils and angles of
attack that were not a part of the training set.

Ferrero et al [9] used the FIML for improving RANS predictions for low pressure gas
turbine cascades. A similar improvement to Singh et al [7] is found compared to original
Spalart-Allmaras RANS model. Unbiased programmed principles improved prediction
favouritism and a sparsity constraint is added to create a more simple model, where only
four terms are considered.

Tensor Bases Neural Network and Variations

Ling et al [16] used a neural network to represent the anisotropy of the Reynolds stress
tensor, calling it the Tensor Basis Neural Network (TBNN). A special neural network is
proposed to promote Galilean invariance based on previous work by Ling [98]. The neural
network creates an EARSM (in the form of (2.32)) using the integrity bases by Pope [17]
(As seen in Appendix A) that is able to promote the Galilean invariance for the Reynolds
stress anisotropy. The result is a Boussinesq assumption with a non-linear correction term
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bij = −νt
k
Sij + b∆ij (2.48)

In (2.48), b∆ij is the additional anisotropy correction that have the form of the bases and
invariants of Pope [17] (See Chapter 2 for EARSM models). The goal of the neural
network is to find coefficients based on the invariants for the tensor bases. The predicted
eddy viscosity of the neural network were shown to be significantly more accurate than for
linear and non-linear Boussinesq RANS models. The model was able to show separation
and corner vortices in duct flow compared to RANS.

Fang et al [19] did a deep dive in the terms that the TBNN predicts and found that a
TBNN is able to make an effort to overcome the Boussinesq deficiencies. Non-locality of
the EARSM is still noted to be an issue for such models, as an EARSM is still inherently
local.

Cai at al [18] revisited the work by Ling et al [16] and proposed an augmented TBNN. In
the work, non-local quantities (such as wall distance and the friction Reynolds number)
are added to EARSM structure. Transfer learning is used to mitigate the issue of a lack
of data, using datasets of different Reynolds numbers to cross correlate between cases.
Strong agreement was found between the reference data and the prediction data.

Kaandorp & Dwight [20] created a random forest algorithm called Tensor Basis Random
Forest (TBRF), expanding upon the work off Ling et al [16]. An EARSM model, similar
to Ling et al [16] with the tensor bases and invariants of Pope [17] (As seen in Appendix
A), are created. The random forest algorithm is less demanding to implement than the
TBNN, less demanding to train, needs less hyperparameters and has a better natural
protection against overfitting. Different training and testing sets are used such that the
testing set is not the same as the training set. For all cases, TBRF showed improvement
over the baseline k − ω simulations.

Physics Informed Machine Learning for Reynolds Stress Anisotropy

The research group of Xiao [21, 22, 23] has developed a different strategy for the usage of
neural networks for turbulence modelling, calling it the physics informed machine learning
(PIML). A Reynolds anisotropy discrepancy field is obtained from high fidelity data where
a neural network is trained to learn the discrepancy. In the earliest work, Wu et al [21]
made a discrepancy correction based on the spatial field that was expanded in Wang
et al [22] to create corrections based on the mean flow field parameters. A random
forest regression routine is used to create a correction for the Reynolds stress anisotropy.
Improvement of the Reynolds Stress anisotropy is found over the RANS simulation in the
barycentric map.

In later work, Xiao et al [23] made an improvement for the prediction of the main flow
parameters, rather than only the Reynolds stress anisotropy. For the input features, the
strain rate, rotation rate, gradients of pressure and gradients of the turbulent kinetic
energy and an integrity basis of the invariants of Pope [17] are used. The result are 57 po-
tential candidate functions that the random forest regression can explore. Improvements
are found in the predictions of the mean flow parameters, but transforming Reynolds
stress anisotropy improvements to quantities of interest is still challenging. At the time
of publishing the article, the state of the art machine learning models had problems with
physical system properties (fixed by machine learning models such as PINNs, Raissi et
al [62]), as the machine learning algorithms are not well suited to learn physical system
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properties, such as conservation laws. Another problem are numerical issues of neural
networks, where non-smoothness provides problems with velocity predictions. The work
of the group of Xiao also states problems with generalisability, where neural networks add
an improved correction for statistically similar flows but cannot guarantee improvements
for different cases.

Sparse Machine Learning Anisotropy Corrections

Jiang et al [26, 25] developed a deep neural network, the physics-informed residual net-
work (PiResNet), to compute the Reynolds stress anisotropy. A universally interpretable
machine learning framework is created where a physics informed residual network is made.
The machine learning model uses the tensor basis and invariants of Pope [17] (As seen
in Appendix A), similar to TBRF and TBNN and adds three more candidates, being the
dissipation, turbulent kinetic energy and the kinematic viscosity. The cost function for
the machine learning algorithm consists of an L1 and L2 penalty, promoting sparsity. The
result are simple and interpretable models with an requirement of four tensor bases at
most are found with the sparsity adding a benefit in the reduction in sensitivity of the
input parameters.

Jiang at al [26] state that TBNN models provide a non-unique input to output mapping
with how the coefficients are build-up. A remedy to enforce uniqueness is a time-scale
measure, with the result being a less biased result, more robust to noise and general input
uncertainty.

Two main deficiencies are noted in PiResNet, being that the corrections are local and the
corrections are lacking memory (do not have temporal effects). Turbulence is inherently
non local and memory driven but the nature of the EARSM model creates local and non-
memory corrections. Jiang et al [25] state that higher order derivatives have the potential
to model non-local behaviour and might be a future solution, similar to an explanation
by Spalart [2], stated in Subsection 2.1.5.

PiResNet did show satisfactory outcomes compared to RANS and claims that the deep
neural network has an advantage over a random forest regression in extracting informative
data features, capturing invariances and improved approximation capabilities. Jiang et al
[26] urges the development of a benchmark dataset containing diverse typical flow phe-
nomena for the development and evaluation of data-driven turbulence for the turbulence
community.

Sáez de Ocáriz Borde et al [27] proposed a convolutional neural network with the aim
of improving the interpretability of the model. Current models by Jiang et al [25, 26],
TBNN [16] and more neural network driven works are claimed to be a ’black-box’ and
lack interpretability. A convolutional neural network is a form of deep learning where
each neuron is connected to a small, nearby amount of neurons, whereby the same set
of weights are shared by every neuron. For an in-depth look into convolutional neural
networks, please look at the book of Millstein [99]. An improvement of the Reynolds stress
anisotropy is found, based on the input of the mean velocity gradient with the output
being the Reynolds anisotropy in one direction. The work is compared with the work of
Fang et al [19] and a good fit is claimed to be found. The interpretability improvement
is mostly reached by visualising the activation of each neuron and the sensitivity of the
results.
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Corrections Inferred for the Spalart Allmaras Model

A similar principle to Subsection 2.3.2, Franceschini et al [10] introduced a source term
in the momentum equation and a source term in the turbulent equations of an Spalart
Allmaras RANS model. Using a gradient descent based operator, a correction field is
obtained. The correction field is transformed with machine learning to a correction field
based on the main flow parameters. Franceschini et al [10] proofed that both correc-
tions can work but have different constraints, a correction within the Spalart Allmaras
model provides more control for less precision while a correction factor in the momentum
equation had better results, but was more difficult to find an appropriate model for.

Volpiani et al [12] performed a similar exercise by adding a vectorial source correction to
the momentum equation and using a similar data assimilation technique to describe the
correction with machine learning correcting the terms in the local mean-flow quantities.
Different to [10], Volpiani et al [12] proofed that for (small) differences in geometry, the
machine learned frame work can still provide high quality corrected results.

Volpiani extended on the work in [13], by adding a correction term to the turbulent eddy
viscosity with an additional contribution in [14] by analysing the capabilities of neural
networks versus random forest for correction of the turbulent eddy viscosity. Neural net-
works are stated to perform better in interpolating and extrapolating the output quantity
compared to random forest. For the random forest, oscillatory behaviour was better
captured but at a cost of predictive behaviour. A compromise is proposed between a
neural network and random forest algorithm. In the later work ([14]), the results from
the machine learning algorithm were made sparse by choosing the most important terms.

From the same group as Volpiani, Cato et al [11] performed a more encompassing analy-
ses. Data assimilation strategies for multiple corrections are compared using the Spalart-
Allmaras-neg RANS model of Crivellini et al [15] with the main goal of finding the location
of the most effective correction. The corrections have been added to the Reynolds Av-
eraged momentum equations and the transport equation of the Spalart Allmaras model,
resulting in
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ν̃ + f̃ν̃ + g̃ν̃ ν̃ (2.50)

In (2.49) and (2.50), η multiplies the eddy viscosity and is added to directly correct for
the eddy viscosity. A trace free symmetric tensor Rν̃ is a correction that is a conservative
force within the eddy viscosity assumption while fi is not a conservative force. The
multiplication βν is a correction to the production, f̃ν̃ and g̃ν̃ ν̃ and acts as source term
corrections to the general Spalart Allmaras model.

Cato et al [11], concluded that all terms responded differently to data-assimilated tech-
niques. In general, the terms in the momentum equation (Rν̃ and fi) performed the best,
except for the scalar multiplier η in the Boussinesq assumption. The vector corrections in
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the momentum equation are an effective EARSM model and an expansion of the Boussi-
nesq assumption. The source corrections (f̃ν̃ and g̃ν̃ ν̃) in the Spalart Allmaras transport
equation also functioned well and showed promise considering the Reynolds stresses. The
study proofed that despite using the Boussinesq assumption, accurate mean field predic-
tions are able to be generated and for some cases even correct Reynolds stress values are
found.

2.3.3 Symbolic Regression for Turbulence Modelling

The last subsection discusses machine learning, but symbolic regression can also provide
data driven turbulence models. Symbollic regression techniques such as GEP and the
Sparse Regression of Turbulent Stress Anisotropy (SpaRTA, Schmelzer et al. [34]) are
some of the methods that tackles some of the unknown black box behaviour related to
machine learning.

Symbollic Regression and Data Driven Turbulence

Weatheritt et al [29, 30] implement the original GEP of Ferreira et al [28] (explained
in Section 2.2.3). The GEP created an EARSM, using the 2D bases and invariants of
Pope [17] (For the full equations, see Appendix A). The study is split into an a priori
study, demonstrating the reconstruction of the Reynolds stress and a prosteriori study by
running a full implementation of the correction. The trained models using the technique
are not sparse but are able to improve on the standard Boussinesq assumption models
but robustness among other cases is not guaranteed.

An extension on the work is performed by Zhao et al [31] (Same group as Weatherhitt),
where an effort is made to improve the RANS environment calculations to high fidelity
data using GEP. RANS calculations are integrated in the GEP training loop in the form of
a non-linear Boussinesq model, with an aim of improving a posteriori predictive accuracy
and stable solutions. The framework was applied to wake mixing in turbomachines and
showed good agreement to high fidelity data. The main disadvantage is that the added
CFD loop provides greater computational cost.

Bleh and Geiser [32] expanded on the DHC-GEP algorithm of Ma et al [33], explained in
Subsection 2.2.3, by normalising physical dimensional input features to be non-dimensional,
reducing the likelihood of expressions with non-matching physical dimensions. The algo-
rithm was used to find transition models for two turbine profiles with transition induced
separation. A correction is applied in a k−ω production term, similar to (2.47) and LES
data is used as the high fidelity reference. The GEP algorithm was able to accurately
predict separation on the turbine profiles and a recommendation is given to check the
method with more test cases.

Sparse Regression of Turbulent Stress Anisotropy

As a continuation on the work by Weatherhitt and all, Schmezler et al [34] introduced the
Sparse Regression of Turbulent Stress Anisotropy (SpaRTA). SpaRTA promotes sparsity
on the solutions by creating an EARSM from a pre determined set of candidate functions.
The implementation of the corrections follow (2.48) and

Dk

Dt
= Pk +R +Dk + Tk − ϵ (2.51)

In (2.51), the R is a correction to the k-equation. Similar to TBNN and TBRF, the
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corrections for b∆ij and R are based on the integrity bases from Pope [17] (full set found
in Appendix A), resulting in an EARSM model following Equation (2.32). The build-up
of R is shown as

R = 2kbRij
∂uj
∂xi

(2.52)

The model discovery part in SpaRTA is subdivided in two parts: Model selection and
model inference and a solution is sought to satisfy (2.36). For the model discovery part,
an elastic net formulation is used, given as

β̂i = argmin
β

{
||Θijβi − yj||22 + λρr ||βi||1 + 0.5λ(1− ρr) ||βi||22

}
(2.53)

In (2.53), λ and ρr are hyper parameters (being a regularisation weight and mixing pa-
rameter), while yj is the data. The equation is able to filter between candidate functions
and create an initial estimation for b∆ij and R. L1 regularisation is used to force sparsity
on the solution while L2 regularisation is used to identify correlated candidate functions
and reduce the dependency among them. The hyper parameters are chosen to avoid over-
fitting by means of cross validation and a wide range of values of λ and ρ are analysed to
find the most optimum model.

For the model inference step, a L2 ridge regression is used,

β̂si = argmin
βs
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+ λ ||βsi ||

2
2

}
(2.54)

The model inference step removes the dependency of the model coefficients from the
model selection step. An L2 penalty is used to force the coefficients to smaller values as
experience by Schmelzer et al has shown that large coefficients increase the convergence
sensitivity. In (2.54), the superscript s is used to note the subset of the selection from
Equation (2.53). The model inference step does not change the inactive zero values as a
result from (2.53).

The test cases analysed by Schmelzer et al [34], are a periodic hill, a converging-diverging
channel and a curved backward-facing step. Schmelzer et al [34] found a sparse set of
correction terms for each case. Cross-correlation has been performed between cases to
find better results. It is found that a model trained for one flow can perform well outside
the training range with similar features. Corrections of R are found to be sufficient
for providing a better representation of the ground truth, rather than the Boussinesq
correction.

The effect of SpaRTA can be seen in Figure 2.5, where three resultant models of SpaRTA
are compared with high fidelity experimental data at a higher Re number than the models
are trained at and with a k − ω SST ’baseline’ computation. Figure 2.5 shows a consid-
erable improvement in prediction of the bulk velocity for all three obtained models and
shows superior prediction to the k − ω SST simulation, even if the trained Re number is
different.
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Figure 2.5: Predicted streamwise velocities of the three models found by SpaRTA, the
k − ω SST baseline and high fidelity data of Rapp [100] for the periodic hill at Re =
37000, courtesy of Schmelzer et al [34].

SpaRTA uses a procedure called k-frozen RANS, that is able to extract the error of high-
fidelity data sources efficiently. The high-fidelity value for k, ui and bij are from the
high-fidelity data and for a k − ω SST model, only the ω equation is computed. For
the unknowns, the Residual R and the correction for the Boussinesq assumption b∆ij are
obtained at every iteration.

Developments beyond SpaRTA

Around a similar time as SpaRTA, Beetham et al [101] explored sparse regression for
turbulence closure modelling. Contrary to the work of Schmelzer et al [34], Beetham et al
[101] used a single sparse regression loop with an L1 Lasso style penalty to force sparsity.
No second loop of tuning the coefficients were present. Two cases are considered with
different correction methods: A homogeneous free shear turbulence case where corrections
are made to a RSM and a periodic hill case where corrections are added to the Boussinesq
assumption, creating an EARSM (Similar to Schmelzer et al [34], without the correction
term to the k-equation). Instability of the correction terms are found with the value of the
coefficients, similar to SpaRTA. SpaRTA solves the instability by adding an L2 penalty to
the regression routine. The conclusion of Beetham et al [101] is similar to the conclusion
of Schmelzer et al [34], where there is a significant improvement found in the performance
by adding a sparse set of algebraic terms to the main equations.

Cherroud et al [39] improved upon the original SpaRTA scheme of Schmelzer et al [34],
creating the SBL-SpaRTA (Sparse Bayesian Learning - SpaRTA) method. SBL-SpaRTA
treats the parameters as random variables with associated prior normal distributions,
using the SBL algorithm of Tipping [102]. The goal is to provide uncertainty intervals
for the parameters such that a stochastic prediction is made, rather than a deterministic
’stiff’ result. An added benefit with stochastic predictions is that flow regions with a
greater sensitivity to turbulence modelling can be visualised and can be used as a tool for
the engineer. The same non linear EARSM tensor bases and invariants from Pope [17]
are used, like SpaRTA, TBNN, TBRF and more. Similar to SpaRTA, SBL-SpaRTA is
shown to have better results compared to a standard Boussinesq model and provides good
agreement with high fidelity data. A similar conclusion is made compared to a physics
based EARSM, where SBL-SpaRTA is shown to provide better agreement to high-fidelity
data while being a less complex model.

SpaRTA has been incorporated for the prediction of wakes of wind turbine farms by
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Steiner et al [35, 36], where a two turbine constellation is used as the training data that
is cross validated with a three turbine constellation. A k− ϵ RANS model is used, where
similar to Schmelzer et al [34], terms are found for the production term in the k-equation
and the anisotropy term in the Bousinessq assumption.

The work by Steiner et al [35, 36] is at a high Reynolds number and three dimensional,
expanding upon the original SpaRTA where only 2D considerations are made. With the
original SpaRTA, only the shear strain and rotation strain tensors are taken into account
for the invariants. Steiner et al expands upon the invariants by adding pressure- and
k-gradients and a set of additional scalar variables as invariants. The result of the study
is that the SpaRTA procedure is able to create corrections for RANS models that are able
to approach the LES ground truth for specific cases related to wind turbine fields. The
same group continued this work in [37] by adding classifiers to the areas of interest where
a correction is needed, allowing the result to increase in simplicity.

The SpaRTA algorithm has also been incorporated by Stöcker et al [38] for particle laden
flow. In that research, a correction for the Boussinesq model is not implemented. Rather,
only the production term is corrected and an additional correction for the dissipation is
added. Although a better agreement is found with the high-fidelity data, it is less great
than in the work presented by Schmelzer et al [34].

2.3.4 Comparison of Methods for Data Driven Turbulence

The current section acts as a brief summary for all (relevant) models presented in the
works, comparing them together on sparsity, generalisability, uncertainity and correction
(Based on the challenges and problems of Section 2.3.1 of the works of Duraisamy [82,
96, 7]). Table 2.1 shows a summary of the most important and impact full methods.

Sparsity determines if the correction form of the method is sparse and easy to understand.
Generalisability analyses the ability for a model from a training set to accurately predict
a model from a test set. Uncertainty checks if the model has uncertainty measures,
like standard deviation to show probability bands. Correction is based on the work of
Duraisamy [82] and states which level RANS correction is applied. Both sparsity and
generalisability have two checkmarks or two crossmarks, depending on how well the model
relatively performs. Uncertainty is just a checkmark or a crossmark (boolean decision),
correction states which level based on Section 2.3.1 is corrrected with the model. Note
that Table 2.1 is not a trade-off table and only functions to summarise all the methods
and that not all methods of the previous sections are summarised in the table, only the
ones deemed most relevant.

Table 2.1: Comparison of different data driven turbulence techniques for different cate-
gories, based on the Duraisamy [82, 96, 7].

Sparsity Generalisability Uncertainty Correction Works

TBNN ✗ ✓4 ✗ Level 2 [16, 98, 19, 18]
TBRF ✗ ✓✓ ✗ Level 2 [20]
PiResNet ✓ ✓✓ ✗ Level 2 [25, 26]
FIML ✗5 ✓ ✓✓ Level 2, 3 [5, 6, 97, 7, 9]
Volpiani6 ✗7 ✓ ✗ Level 2, 3 [12, 13, 14, 11]
PIML ✗ ✓ ✗ Level 2 [21, 22, 23]
SpaRTA ✓✓ ✓✓ ✗ Level 2, 3 [34, 35, 36, 37, 38]
SBL-SpaRTA ✓✓ ✓✓ ✓ Level 2, 3 [39]
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From Table 2.1, it can be seen that all methods tackle the level two error as defined in
Section 2.3.1, where the Boussinesq assumption is the source of the error. Few methods
tackle error three, being the error of the model form. The work by the group of Volpiani
provides a Level two correction explicitly with the work of Cato et al [11] by providing
a source term and a multiplication term in the momentum equation, mimicking a Level
two error correction. All of the level two corrections (except for the work by the group
of Volpiani, FIML and PIML) create an effective EARSM, mostly following the tensor
bases and invariants of Pope [17]. Some models, such as PiResNet, expand the EARSM,
by providing invariant values such as the dissipation and turbulent kinetic energy.

The most sparse methods are PiResNet, SpaRTA and SBL-SpaRTA. In table 2.1, PiRes-
Net is considered less sparse with the reason that there is more control in the candidate
library correction terms of SpaRTA and SBL-SpaRTA. All three methods behave differ-
ently in achieving sparsity, where for PiResNet an L1 lasso relation is considered, forcing
terms in the machine learning algorithm to be zero. For SpaRTA an elastic-net approach
is used and for SBL-SpaRTA an SBL routine from Tipping [102] is applied. In a later
work of Volpiani, sparsity is reached by employing a method choosing the most important
terms, not reflected in Table 2.1. A different work from Ferrero et al [9] for FIML also
uses enforces sparsity.

All models show generalisability to a certain extent. A particular good generalisability is
found for models that enforce sparsity, what might be related to a reduction in potential
overfitting. Models such as TBNN, the work of Volpiani and PIML show promising
behaviour for case-specific work, where the Reynolds number is different for the same
geometry. In the TBNN [16] it is stated that the performance of the model deteriorates
significantly for different geometries, different to SpaRTA where multiple models deduced
from multiple test-cases provide a decent correction. Compared to all works, the FIML
method (Singh et al[7]) states that generalisabilty is reached between different shape of
airfoils at different angles of incidences, using experimental pressure measurements. For
most works, an increase in generalisability is seeked, with Jiang et al (from PiResNet
[25, 26]) arguing for a standardised test condition set across works. Xiao et al [23] has an
interesting statement regarding generalisability, where statistically similar flow are easily
corrected in their method.

FIML and SBL-SpaRTA are the only methods that provide a measure of uncertainty,
stating where predictions of the solutions are most likely to be inaccurate. FIML reaches
it in the inversion step, using a Bayesian inversion step while SBL-Sparta uses an SBL
method.

5Only from the work of [18], where higher Re numbers show similar behaviour
6Doesn’t have a particular name for the work and is considered to the full group of work by Volpiani
7In later works (Volpiani et al [14]) sparsity is considered



3. Methodologies

The experiment can be sub-divided in three main stages, being the data generation stage,
model training stage and the training validation stage. A ψ − ϕ model is developed,
discussed in Section 3.2, that is analogous to RANS turbulence modelling and is analogous
to the residual from k-frozen RANS. The data generated is subject to the sparse regression
routine, discussed in Section 3.3, where new models are trained. From the model training
phase, errors are analysed and a subset of trained models are discussed and tested in
depth in Section 3.4. A list of assumptions is given in Section 3.1 and an overview of
the complete process is given in Figure 3.1 with a Table of the most important settings
provided in Table 3.1.

Create data for the
partial PDE

Create data for the
full PDE

Create a complete
candidate library

Create a complete
candidate library

Perform PDE FIND for a selection
of hyper parameters for all cases

Create an incomplete
candidate library for one

of the four cases

Perform PDE FIND for a selection
of hyper parameters for the vortex

and exponential velocity cases

Obtain 2/3 models per
case

Validate the performance
of the models using the

shear case

Perform PDE FIND for a selection
of hyper parameters for all velocity

cases

Obtain 2/3 models per
case

Validate the performance
of the models using all

cases

Data Generation Model Training Training Validation

Figure 3.1: Compact work breakdown structure of the planned work.

Table 3.1: Summary of all setting used in the report.

Setting Value Setting Value

Regression samples 1000 Discretisation in y 150
Different velocity cases 3 Discretisation in x 150
Tuneable hyperparamters λ, tol Time step 0.1
Max iterations TrainSTRidge 25 Amount of time steps 300
µ 0.001 min-max Domain x and y -2 to 2

3.1 Assumptions
The following assumptions are present in the current work:

1. All values are dimensionless As the system is analogous to turbulence modelling,
no physical units are taken into account for ψ and ϕ. Coefficients in RANS models
carry dimensions to ensure a correct dimension in the transport equation. Therefore,
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results from the regression routine can always be considered to have the correct
dimension as the coefficient can reflect the dimension to correct the result. To make
the analyses easier, the dimensions of ϕ and ψ are dimensionless throughout the
report.

2. The Reynolds stress can be analogous as a scalar value The current work can
be seen as a primer for the viability to create a transport equation for the Reynolds
stress using sparse linear regression routines. As the current study plays with the
linear regression routine, a simple scalar Reynolds stress is justified to analyse the
performance and generate simple results that are understandable. It does create an
inaccurate representation of the Reynolds stress tensor but for the purpose of the
current report it is acceptable.

3. Steady state velocity over the complete flow field There is a steady state flow
field driving the solution, meaning that there is no chaotic behaviour in the flow,
as would be expected for turbulence. It also means that no velocity equation has
to be solved and the complete focus can be on the ψ − ϕ system. An error can be
considered and care should be taken with the performance of the linear regression
routine for chaotic flows.

4. The turbulent transport term does not have to be modelled The turbulence
transport is neglected for the ϕ and ψ equations as the turbulent transport term is
driven by a triple correlation. The triple correlation is difficult to measure in general
and for the k-equation is modelled by means of the eddy viscosity assumption. With
the steady state velocity field over the complete system, the error should be small
and for the purpose of the report, to analyse sparse linear regression routines for
turbulence modelling, neglecting the term shouldn’t adjust the conclusion of the
research.

5. The pressure term does not have to be modelled The pressure is not con-
sidered in the current report as it would mean an additional equation that would
need to be solved, and therefore the pressure strain tensor can be neglected. The
pressure strain tensor is modelled in other works and one might see the additional
terms Rϕ in the ϕ equation as modelling of the pressure term. The result is that
some analogy is lost between turbulence and the current system.

6. The strain rate tensor can be squared for production terms To ensure
rotational invariance, the strain rate tensor is squared. The analogy compared
to turbulence modelling is off, but justifiable as the Boussinesq assumption for the
Reynolds stress contains the strain rate tensor, effectively always providing a squared
strain rate tensor in the production term. Not squaring the strain rate, would give
non-physical and non-rotational invariant results.

7. The model is two dimensional For the purposes of ease, understanding and
computational cost, a two dimensional model is chosen over a three dimensional
model. As the system is not chaotic, it is believed that a two dimensional system
will represent the turbulence analogy well.

3.2 The Data Generation Phase
In the data generation phase, a model problem analogous to turbulence modelling is
generated for the purpose to obtain models from sparse regression. The model problem
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is a two equation model, dubbed the ψ−ϕ system, on a two dimensional square grid and
the software used to generate the data is FEniCSx.

3.2.1 The ψ − ϕ System of Equations

The current work is centred around a model problem with equations analogous to tur-
bulence modelling. The model equations will follow similar principles to RANS as it is
meant as an extension of RANS. The model problem is a two equation system, the ψ− ϕ
system, reflecting the k-equation (2.20) as ψ and a scalar value for the Reynolds stress
transport equation (2.14) as ϕ. The equations follow certain requirements and has the
goal to be analogous to turbulence modelling. The transport equation for ψ is given as

Dψ

Dt
=
∂ψ

∂t
+ ui

∂ψ

∂xi
= c1ϕSijSij + c2

∂2ψ

∂xi∂xi
− c3ψ

2 = Pψ +Dψ + ϵψ (3.1)

and for ϕ

Dϕ

Dt
=
∂ϕ

∂t
+ ui

∂ϕ

∂xi
= d1ϕSijSij + d2

∂2ϕ

∂xi∂xi
− d3ϕ

2 +Rϕ = Pϕ +Dϕ + ϵϕ +Rϕ (3.2)

The Rϕ term is the residual term and aims in modelling the uncertainty between RANS
and DNS. The current work will have two versions of the Rϕ equation, the partial system
and the full system. The partial system is given as

Rϕ = d4SijSij + d5
∂ϕ

∂xi

∂ψ

∂xi
− d8ϕ

2 ∂ϕ

∂xi

∂ϕ

∂xi
= Pϕ,1 +DC

ϕ +Qϕ (3.3)

while the full system is

Rϕ = d4SijSij + d5
∂ϕ

∂xi

∂ψ

∂xi
+ d6ϕ

2SijSij − d7ψϕ− d8ϕ
2 ∂ϕ

∂xi

∂ϕ

∂xi
=

Pϕ,1 +DC
ϕ + Pϕ,2 + ϵCϕ +Qϕ

(3.4)

The equations should conform to the following requirements to fully represent turbulence
modelling:

1. Rotational invariant Ensures that certain terms, such as the production term,
are not related to the coordinate system.

2. Finite steady state The values of ϕ and ψ should be bounded for t going towards
infinity.

3. Transport equations ϕ and ψ should be transport equations to represent the
non-locality and temporal effects.

4. Analogy with Turbulence modelling There has to be a clear analogy between
the model equations and turbulence modelling.

5. Coefficients shouldn’t be too large or too small To have a fair distributed
contribution of terms, the coefficients shouldn’t be too large or too small for specific
terms.
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In the work of Schmelzer et al [34], the most effective correction was found in the R
term of the k-equation, where the correction was based on the Reynolds stress tensor
and therefore the production term. Work of the group of Duraisamy [82, 96, 7] state,
to a certain extent, that discrepancies to the Reynolds stress tensor are one of the main
contributors to the error in the solution. The barycentric map in Figure (2.2) (based on
the work of Duraisamy et al [82] and Wang et al[22]) show the differences in the Reynolds
stress between DNS and RANS, where the discrepancies are large. A transport equation
for the Reynolds stress is able to mitigate such an error and provide a better prediction.

The ψ − ϕ equations therefore, assumes that the residual found in k-frozen RANS is a
function of the Reynolds stress tensor. As the Reynolds stress tensor, is a 3D dimensional
tensor, the complexity for modelling is rather significant. As the purpose of the work is
to analyse and quantify sparse regression routines for turbulence modelling, the Reynolds
stress is modelled and simplified as a scalar quantity. Based on the work from Schmelzer
et al. [34], the full discrepancy is considered in the k-equation as an incorrect modelling
of the Reynolds stress tensor.

As stated, the ψ equation (3.1) is a direct measure for the k-equation and is based on
(2.20), having a production term, diffusion term and a destruction term. The turbulent
transport term is not considered in the equation (as stated in Subsection 3.1), as the
analogy of a scalar value for the Reynolds stress and the steady state velocity does not
suit the triple correlation and is therefore neglected.

The production term is based on (2.20), but to force a scalar value as well as rotational
invariance of the shear strain rate tensor, it is squared (as explained in Subsection 3.1).
The dissipation term is based on the destruction terms in both the k − ϵ and k − ω
equations (By Jones et al [74] and Wilcox [75]), what is driven by a negative squared
term of the variable of interest. The dissipation term in the k-equation is driven by (for
two equation models) a transport equation. A third equation is considered not relevant
for the current work as the goal of the dissipation is to limit the amount ψ in the system,
what is reached with the current analogy.

The ϕ equation is a scalar measure for the Reynolds stress and is a transport equation to
visualise non-local temporal behaviour. The ϕ equation is based on the RSM of Equation
(2.14) and as the k-equation is the trace of the RSM equation (2.14), meaning that the
ϕ equation is similar to the ψ equation. With similar arguments as the ψ equation, the
ϕ equation has a production, diffusion and destruction term. Different to ψ equation is
the Rϕ term that represents the residual in turbulence modelling and the uncertainties
related to modelling.

The ϕ equation is different to an RSM, not representing the pressure strain correlation
tensor ΠRST and the turbulent transport tensor CRST . In the current work, pressure is not
simulated and can be assumed to have no impact on the current equations, meaning that
the pressure strain correlation can be neglected. One can see the residual terms in (3.2)
as a model for the pressure strain, but note that the terms are not meant to represent
it. Similar argument can be made for the turbulent transport tensor, where the pressure
fluctuations can be neglected and similar to the ψ equation, the triple correlation can be
neglected.

Having ψ as a measure for the k-equation and ϕ for the Reynolds stress can be an issue
when relating it to turbulence modelling. The k-equation is used in (non-linear) Boussi-
nesq models in the form of one- or two- equation models (See Section 2.1 of Chapter 2 for
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more). The Boussinesq models create a prediction for the Reynolds stress and having it
as a transport equation for the Reynolds stress makes the use of the Boussinesq assump-
tion redundant. As the Boussinesq assumption is redundant, so is the k-equation as no
measure for νt has to be given. As the work is meant to augment Boussinesq models in
potential future work, the ϕ equation can be seen more as an additional, non-local memory
driven correction term based on the Reynolds stress discrepancies found in the residual
of k-frozen RANS of Schmelzer et al [34]. Regardless, the current analogy could work on
multiple levels and the analogy for ϕ to a RSM is meant as a basis for the modelling of ϕ.

The Rϕ term (3.3) and (3.4), short for additional, aims in modelling the uncertainty
between RANS and DNS. The current work will have two versions of the additional
equation, the partial system and the full system. The partial system is meant as a lower
entry functional form for the regression routine to discover. The partial system has three
additional terms, shown in (3.3), being an additional strain rate driven production term
a cross diffusion term and a quartic term. The strain rate driven production term is the
’kick starter’ for the process and converts the velocity field to quantities of ϕ, without the
term, there won’t be any value of ϕ generated in the domain. The cross diffusion term is a
non conserving diffusion term between ϕ and ψ and is inspired by the cross diffusion term
in the k−ω equation of Wilcox [75]. The quartic term has the form of a non-conservative
diffusion term, with ϕ squared in front of it. It acts as an unpredictable term and has no
direct physical meaning with the main idea of it representing an uncertainty addition to
an equation.

The full equation is an expansion on the partial equation by adding two additional terms,
shown in Equation (3.4). The additional terms are an extra production term and an extra
destruction term. Both the terms are highly correlated with the terms in the equation
and provide an additional challenge for the regression procedure (The correlation of terms
can be found in Appendix F).

The ψ equation is linked to the ϕ equation through the production term as the production
term is dominated by ϕ. Note that in the k-equation (2.20), the Reynolds stress drives
the production and as ϕ is a measure for the Reynolds stress and the ϕ and ψ equations
are similar, they both have the same production term.

The ϕ equation is linked to ψ through the cross diffusion and the cross destruction term.
The cross diffusion term is a non-conservative diffusion term, inspired by the Wilcox k−ω
model [75] and states that a deficit of concentration of ψ can drive a diffusion of ϕ to
the region of low ψ. The cross destruction term is a dissipation like term that limits
the generation of ϕ by means of ψ. A high amount of ψ can act as a limitation on the
production of ϕ and limit the amount of ϕ.

Table 3.2 show the coefficients of the cases. The coefficients are the same between the
partial and full case. Note that for all equations ((3.1), (3.2), (3.4) and (3.3)) the term
d4SijSij is crucial to start the solution from an initial condition of 0 with an active flow
field.
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Table 3.2: Coefficients related to the ψ-ϕ system used for testing. Both the partial case
and the full case have these values.

Coefficient Value Coefficient Value

d1 1 c1 1
d2 0.1 c2 0.035
d3 0.75 c3 1.5
d4 1.5
d5 1
d6 0.5
d7 3
d8 0.35

3.2.2 The Three Velocity Cases

Three different velocity cases are considered for the ψ − ϕ model that are all steady
state. The steady velocity profiles eliminates the chaotic nature of turbulence, as well as
the feedback loop between turbulent kinetic energy and velocity. For the current study,
however, it is considered fine as the purpose is to analyse the performance of the regression
routine for future purposes.

The computations are done on a square two-dimensional domain, with the velocity cases
being a vortex case, an exponential case and a shear case. Figure 3.2 show the velocity
profiles for each specific case.

Figure 3.2: The velocity of the flow field for (from left to right) the vortex case, exponential
case and the shear case. Note that for the vortex case the flow field is in the radial direction
while in y for the exponential and shear case.

The vortex case is simulated as a Lamb-Oseen (Oseen [103]) vortex, the exponential case
as an exponential equation and the shear as a polynomial equation. The velocities are
given as

u(r) = 0.5

(
1− e−(r/b)2

)
2πr

(3.5) u(y) = e−2y2 (3.6)

for the vortex and exponential case and for the shear case as

u(y) = 0.25y3/5 + 1 (3.7)
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For the shear case, the derivative with respect to y will go to infinity when y approaches
0, providing a unique challenge for the sparse regression algorithm.

For the square domain, the boundary conditions are found in Table 3.3. The exponential
and shear case both have Dirichlet boundary conditions for ϕ and ψ on the left domain
as the streamlines enter the domain from the left. The vortex case only has Neumann
boundary conditions.

Table 3.3: Boundary conditions related for each case on a square domain, with x and y
ranging from -2 to 2.

Side Left Top Right Bottom

Vortex Neumann Neumann Neumann Neumann
Exponential Dirichlet Neumann Neumann Neumann
Shear Dirichlet Neumann Neumann Neumann

For the exponential case, the Dirichlet boundary conditions are given as

ψ|x=0 = 0.8e−0.7y4 (3.8) ϕ|x=0 = 0.56e−0.7y4 (3.9)

and for the shear case the Dirichlet boundary conditions are given as

ψ|x=0 = 0.12e−5y2 (3.10) ϕ|x=0 = 0.12e−3y2 (3.11)

All other boundaries are given as Neumann boundaries where the conditions are given
as 0 ( ∂ψ

∂xi
= 0 and ∂ϕ

∂xi
= 0). The aim of the Dirichlet boundary conditions is to simulate

some sort of upstream phenomena, such as the influence of a jet or cylinder wake that
comes in the domain at a later stage. The values for (3.8), (3.9), (3.10) and (3.11) are
arbitrary as the author has used brute force to find suitable boundary conditions.

3.2.3 Discretisation of ψ and ϕ

The current subsection discusses the discretisation in the spatial and the temporal field.
As there is no ground truth, the error is compared to a preset value that acts as a reference.
The preset values are 0.13, 0.02 and 0.016 for the vortex, exponential and shear velocity
cases for ψ and 0.25, 0.041 and 0.061 for the vortex, exponential and shear velocity cases
for ϕ. The only difference between the preset and the ground truth is a scaling of the
system. The error is taking as the average value of ψ or ϕ over the complete temporal
and spatial range. Figure 3.3 shows a log-log plot for the spatial discretisation.
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Figure 3.3: Log-log plot looking at the spatial discretisation error with on the left ψ and
on the right ϕ.

From Figure 3.3, a rather poor performance can be found, with the ψ equation being of
O(10−1.2) approximately for all cases while for ϕ being of O(10−1). A reason might be
that the complex PDE equation is interfering with each others term and an accumulation
of errors might be happening. Another explanation could be the use of low accuracy finite
element functions to represent the solution.

The time discretisation for ψ and ϕ can be found in Appendix B. An forward-backward
Euler time integration scheme is used, where all linear terms in the transport equation
are implicit, while the non-linear terms will be explicit, ensuring a bi-linear form a(u, v).

The simulations are all ran with a time step of 0.1 for a total of 300 steps, resulting in
a time window of 0 to 3 s. The spatial discretisation both in x and y are equal to 150,
ranging from a minimum value of -2 to a maximum value of 2. The discretisation is rather
high due to the poor performance in Figure 3.3. For the ease of the report, the x and y
values are dimensionless. There is no noise considered as the work is deemed a primer for
future work. A table with data is provided in Table 3.1.

3.2.4 Data Generation with FEniCSx

The python package FEniCSx is used to generate the data for the training stage with
sparse regression. FEniCSx is an open-source computing platform that solves PDEs
with the finite element method. It allows for a simple representation of partial differential
equations where the user defines the mesh and variables that are desired with the required
settings. FEniCSx removes the numerical discretisation part for the user and is able to
fully describe the PDE in a few lines of code 1. FEniCSx has multiple examples, ranging
from the 1D heat equation to the 3D Navier-Stokes. The code in the current work is
based on the heat equation of the FEniCSx tutorial 2.

FEniCSx makes use of finite elements by means of the weak formulation. The weak
formulation states that a partial differential equation should hold over a section of the
domain rather than any point in the domain. The form used in the current work, the
strong form, states that the differential equation should hold at every point. A PDE is in
the weak form by multiplying the equation with a test function v and integrating it over
a domain Ω, resulting in the example for a Poisson equation in

1For more information on FEniCSx please look at https://fenicsproject.org
2Tutorial for the heat equation can be found in https://jsdokken.com/dolfinx-tutorial/chapter2/

heat_equation.html

https://fenicsproject.org
https://jsdokken.com/dolfinx-tutorial/chapter2/heat_equation.html
https://jsdokken.com/dolfinx-tutorial/chapter2/heat_equation.html
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∫
Ω

v

(
∂2u

∂xi∂xi
− f

)
=

∫ 1

0

vRweak = 0 (3.12)

In (3.12), u is said to be the trial function. The weak form is sought to be stated as a
bilinear form a(u, v) and a linear form L(v) as

L(v) = a(u, v) (3.13)

The trail function u can be described by a series of basis functions, as

u =
N∑
i=0

ciϕi (3.14)

In the current work, a one dimensional Lagrange family of elements using the Galerkin
method is used, meaning that v = ϕj. The one dimensional Lagrange family of elements
are localised piecewise hat functions (linear increasing to a point followed by a linear
decrease), meaning that they are in the Sobolev space, defined as

H1
Ω =

{
f :

∫
Ω

|f |2 +
∣∣∣∣ ∂f∂xi

∣∣∣∣2 dx <∞

}
(3.15)

The Sobolev space states that a function and it is derivative are both bounded integrals
in Ω. The second derivative of u will be equal to zero and the order of the to be evaluated
derivative cannot be greater than one. For the second derivative, differentiation by parts
is used to eliminate the second order derivative and create an equivalent form in terms of
the first derivative of both the test and trail functions.

Based on the FEniCSx tutorial by Langtangen and Logg [104], a step-by-step derivation
of the ψ − ϕ system weak form is given in Appendix B. The interested reader is recom-
mend to read more on finite elements in the book of Brenner and Scott [105] and the
implementation of finite elements in FEniCSx in Langtangen and Logg [104]

3.3 The Model Training Phase

The sparse regression algorithm used is the PDE FIND algorithm by Rudy et al [40]
3. The algorithm is well-tested and has shown great promise in other literature works
(Abramovic et al [43], Zhao et al [44] and more). PDE FIND is easy to implement and
understand, and has a low computational cost. As the report won’t tackle noise, the
ordinary PDE FIND algorithm should be suited. Sparse linear regression is chosen over
SBL and Neural networks routines as it is a more efficient and a more controlled option.
The PDE FIND algorithm is not based on an expensive cost function (as is the case for
SBL) and is controlled by the user rather than the black box neural networks.

PDE FIND will find coefficients related to a pre-selected set of candidates for the target.
The candidates, also used as candidate library in the current work, are functions aug-
mented with data to represent the possible solutions for a certain equation. The target

3The code for the PDE FIND is found on https://github.com/snagcliffs/PDE-FIND

https://github.com/snagcliffs/PDE-FIND
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is the data where PDE FIND will regress too. More on PDE FIND can be found in the
literature section, Section 2.2.2 in Chapter 2.2.

A flow diagram of the PDE FIND algorithm by Rudy et al [40] can be found in Figure 3.4.
The original work of Rudy et al [40] is split into TrainSTRidge and STRidge. STRidge
performs the ridge regression and cuts off the coefficients smaller than a certain tolerance.
Ridge regression, as explained in Section 2.2.1 of Chapter 2.2, shrinks the coefficients of the
regression, effectively reducing the correlation between the coefficients. A hard tolerance
is used to eliminate coefficients that are lower than the tolerance. The important hyper
parameter for ridge regression is λ and for the hard cut off tol.

TrainSTRidge predicts an error using an L0 norm and a different hyper parameter, being
µ. In the work, µ is set at 0.001, as default by the PDE FIND algorithm. The L0 increases
the error for non-sparse results and effectively a model must be found to overcome the non
sparsity error. A search algorithm is applied in TrainSTRidge for the tol, where a different
tol is calculated at each iteration to obtain a different sparse result from STRidge.

To start the process, the data is split into train and test data and a baseline predictor
for the coefficients is created with a least squares (LSQ) prediction. The algorithm has
a hard coded limit, meaning that no convergence error is sought but rather a maximum
amount of iterations are applied. The reason is that for a certain set of hyper parameters,
a convergence criteria might not be met, while a result can still be usefull. The amount
of iterations in TrainSTRidge are kept at 25 and only two hyper parameters are adjusted,
being the λ and tol.

Split data (Θij , yi ) in
training and test data

Baseline predictor for the error:
ξbest = ||Θijβj - yi||22 + μ||βj ||0

Baseline predictor for the error:
βj = argminβ {||Θijβj - yi||22 + λ||βj||22}

If βj < tol →  βj = 0 

error prediction:
ξnew = ||Θijβj - yi||22 + μ||βj ||0

Is ξnew < ξbest ?

tol = tol + dtol

dtol = tol,
Amount of
iterations

tol = max([0, tol - 2dtol])
dtol = 2dtol/(tol_iters)-iter

tol = tol + dtol

βj

yes no

Baseline LSQ
prediction for βj

Normalise input data

Start of iterating

Amount of iterations
reached?

TrainSTRidge STRidge

yes

no

Figure 3.4: Compact description of the PDE FIND algorithm of Rudy et al [40].

The current work can be seen as a continuation of SpaRTA. In SpaRTA, the residual was
analysed and a correction was made to the Boussinesq assumption, making an effective
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EARSM, and a correction was made to the production term in the k-equation. Both
corrections are local, and in the current work sparse regression is analysed for non-local
corrections. In particular, an additional transport equation will be analysed and PDE
FIND will be assessed for the performance to find transport equations. PDE FIND uses
as a the target the time derivative data and in the current work the target is the material
derivative, resulting in the PDE FIND system as

Dϕ

Dt
=
∂ϕ

∂t
+ ui

∂ϕ

∂xi
= f

(
ϕ0f 0, . . . ϕnf 0, ϕ0f 0, . . . ϕnf 1 . . . ϕ0fm, . . . ϕnfm

)
(3.16)

In (3.16), f is a potential candidate function. The candidate function is always given as
rotational invariant in the current work, as the inherent characteristic of turbulence is
that it is rotational invariant.

The PDE FIND algorithm will be subject to six different test cases, a summation can be
found below.

1. Partial PDE The partial PDE consistes of the simple Rϕ from (3.3), with the main
goal of ensuring PDE FIND works as expected.

2. Full PDE The full PDE has more correlated Rϕ function from (3.4) and is intended
as an analogous system to turbulence modelling.

3. First incomplete library case The first case lacks the quartic term and is a
small term contributing to the solution. The aim of the experiment is to analyse
the performance of PDE FIND where most of the governing terms are known.

4. Second incomplete library case The second case lacks the cross diffusion term
that has a greater share in the overall solution of the ψ − ϕ system, intending to
analyse the performance of PDE FIND where a large part of the governing terms of
the result are unknown.

5. Third incomplete library case The third case is similar to the second case, with
the addition of extra terms that are highly correlated with the missing cross diffusion
term. The aim is to see if the replacement terms are a good alternative selection
for PDE FIND to create a decent model.

6. Fourth incomplete library case The fourth case replaces the strain rate driven
candidates (the production candidates) by a different strain rate candidate. The
goal is to mimic not having the full picture of the invariants and analyse what the
effect might be if the wrong invariants are part of the candidate library.

While the cases ’Partial PDE’ and ’Full PDE’ analyse more the performance of the PDE
FIND for a highly correlated systems, the other four cases relate it to turbulence modelling
and the unknowns between RANS and DNS. Each case has increasing difficulty, with cases
two and three being similar. The additional candidates in case three are

ϕn
∂ψ

∂xi

∂ψ

∂xi
(3.17) ϕn

∂2ψ

∂xi∂xi
(3.18)

while the replacement candidate for the fourth case is

ϕnSijSijSijSij (3.19)
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A full overview of the candidate library are found in Appendix D.

Each case has different criteria, therefore the PDE FIND procedure is performed for a
selection of hyper parameters λ and tol. A list of all the ran cases is provided in Appendix
E. For the partial and full case, all three velocity cases are regressed. For the incomplete
library cases, only the vortex and exponential velocity cases are regressed. From the six
regression cases, a few models (2/3) per velocity case are chosen for further analyses.

For all cases, the amount of samples is equal to 1000, distributed randomly over a search
window with the most important information. The search windows per case can be
found in Appendix C. For some cases, multiple search spaces are used to improve search
performance as the author found an improvement in PDE FIND performance for different
search windows. For the shear case and the exponential case, a search window is employed
in a non significant gradient area and in a significant gradient area. The vortex case always
has the same search window.

3.4 The Training Validation Phase
The models chosen in the model training step are determined by the a priori and a
posteriori error, given in the report in an a priori-a posteriori diagram. The a priori error
is defined as the error that the functional form obtains from the linear regression routine
compared to the true functional form (being Equations (3.2), (3.1), (3.4) or (3.3)).

The a priori error is built up in two parts: The identifying part and the correcting part.
The correcting part will give the a priori error an increase by how much the coefficients
differ compared to the true form (for the normalised coefficient) while the identifying part
will give the a priori error an additional error of one per term not included or lacking
compared to the true functional form. An a priori error lower than one will correspond
to the return of the true model while an a priori error greater than one corresponds to a
model lacking a function or having functions too many compared to the true functional
form. The a priori is given as

ξprio =
∑
i=0

(∑
j=0

∥∥∥∥ci,model − cj,true
cj,true

∥∥∥∥2
2

δij + ∥ci,model∥0 − ∥ci,true∥0

)
(3.20)

In (3.20), ci,model are the coefficients resulting from the PDE FIND algorithm, cj,true the
coefficients of the ground truth, δij is the Dirac delta that equals 1 when i is equal to j
and 0 else. With how the incomplete library cases are defined in Subsection 3.3, the a
priori will always exceed one. For the first, second and third incomplete case, it will be at
least greater than one while for the fourth incomplete case it will be greater than three.
It is chosen not to correct for the a priori error (making it able to be less than one for
each test case), as an a priori error lower than one corresponds to the true form and the
true equation. The true functional form without the term in the candidate library might
perform worse than an incorrect addition of a certain function and therefore the a priori
error might give a wrong impression if corrected for the incorrect library.

The a posteriori error is given as the average error of the ground truth data versus the
simulated trained model from the PDE FIND algorithm averaged for every time step.
Per velocity case, trained models are selected with the a priori-a posteriori diagram. Note
that not always the lowest a priori model is chosen for analyses, as sometimes a low a
priori error might mean a high a posteriori error.
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The trained models are cross checked with other velocity test cases. The partial models
are not cross checked as the purpose of the partial model is to check if the PDE FIND
algorithm works as intended. For the full cases, all cases are cross checked with one-
another while for the incomplete library cases, only the shear case is cross checked by
the trained exponential and vortex models. The best performing model from each trained
velocity case will have further analyses in the model form and the regression performance.





4. Data Generation

The chapter ’Data Generation’ discusses the (future) train and test data for both the
partial and full PDE cases. All three velocity cases for both the partial and full PDE
system didn’t convergence, but tend to go to convergence and would reach convergence if
more numerical steps would have been included.

For the budget, the Rϕ term drives the initial solution, and for all cases becomes less
important with increasing time. The ψ values lack behind on the ϕ values for both
production, dissipation and the material derivative. Depending on the velocity case, Rϕ

varies if it has a positive or negative contribution with increasing time. For the shear
cases, the convection on the left hand-side boundary hasn’t reached the right hand side
for the value of ψ. For both the vortex and exponential cases, ϕ and ψ are developed
fully.

The functional forms related to f 4, with in particular f 4, have the greatest contribution
to the overall solution in terms of field averaged performance. The single f 4 term has a
contribution as high as 57 % to the overall solution in the full PDE shear velocity case
and 63 % in the partial PDE shear velocity case. In terms of the greatest amplitude,
the f 2 term has the greatest contribution in the shear and exponential cases for both the
partial and full PDE. A more muted response is present in the vortex cases where f 4 has
the greatest amplitude response.

The chapter reads as follows, a note on the notation is given in Section 4.1, while the results
for the cases are discussed in Section 4.2. Section 4.3 discusses the specific contribution
of the terms while Section 4.4 will briefly discuss some important parameters obtained
from the data generation.

4.1 A Note on Notation
In the previous chapters, the partial differential equations have been written in index
notation with complete and written out derivatives. For ease, in the current section,
a different style will be used for the differential part of the equations. Every possible
function used throughout the work will have a function form as fx, leading to the forms
needed to represent the true equations as

f 0 = 1 (4.1) f 1 = ψ (4.2) f 2 =
∂2ϕ

∂xi∂xi
(4.3)

f 3 =
∂ϕ

∂xi

∂ψ

∂xi
(4.4) f 4 = SijSij (4.5) f 5 =

∂ϕ

∂xi

∂ϕ

∂xi
(4.6)

These forms are used in combination with the material derivative to make the ψ equation
become
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Dψ

Dt
= −1.5ψf 1 + 0.035f 7 + ϕf 4 (4.7)

and ϕ become

Dϕ

Dt
= −0.75ϕ2f 0 − 3ϕf 1 + 0.1f 2 + f 3 + (1.5 + ϕ+ 0.5ϕ2)f 4 + 0.35f 5 (4.8)

Similar to the full PDE equation of ϕ (4.8), the partial PDE equation of ϕ is rewritten as

Dϕ

Dt
= −0.75ϕ2f 0 + 0.1f 2 + f 3 + (1.5 + ϕ)f 4 + 0.35f 5 (4.9)

The additional and replacement candidate functions, discussed in Section 3.3 have a
similar change in notation, making the additional functions

f 6 =
∂2ψ

∂xi∂xi
(4.10) f 7 =

∂ψ

∂xi

∂ψ

∂xi
(4.11)

and the replacement function

f 8 = SijSijSijSij (4.12)

4.2 Results of the Velocity Cases
The current section will show the data used for the regression experiment for three cases,
being the vortex case, exponential case and shear case. For each case, different results are
shown for the partial case and the full case. Subsection 4.2.1 discusses the results related
to the vortex case, Subsection 4.2.2 the exponential case and Subsection 4.2.3 the shear
case.

In the current section, budget graphs are given for ψ and ϕ to provide a clear development
of the terms for the ψ−ϕ system. The area of which the budget graphs are taken are ten
cells away from the border. Due to the boundary conditions and a zero initial condition for
the shear and exponential velocity cases, a sharp gradient is present in some sub functions
that are subject to numerical noise. For example, at t = 0 s, a step is present between
the boundary and the field, resulting in an oscillating value of the diffusion term. Note
that the change has barely an effect for the result of the budget graphs. Rϕ is taken as a
combination of terms, such as given in Subsection 3.2.1 of Chapter 3. So, when analysing
the Rϕ term, one should keep in mind that Rϕ consists of five terms for the full PDE and
three terms for the partial PDE.

4.2.1 The Vortex Velocity Case

Figures 4.2 and 4.1 shows the propagation of ϕ and ψ for different moments of time for
the partial case. A clear core can be seen around the centre, where the gradient of velocity
is the greatest as per Figure 3.2. ψ also changes behaviour, going from an initial more
donut structure to a peak like structure and has a smaller area of influence than ϕ.
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Figure 4.1: The time development of the ϕ field with for the partial PDE vortex case with
t = 3.0 s being equal to the final time moment.

Figure 4.2: The time development of the ψ field with for the partial PDE vortex case
with t = 3.0 s being equal to the final time moment.

Figure 4.3 shows the ϕ and ψ budget for the partial vortex case in time. Both ϕ and ψ
do not reach steady state but are close, in particular for ϕ. Rϕ is initially dominant, due
to the f 4 contribution that is driven from the velocity, but becomes less important as the
cross diffusion term in Rϕ, f

3, becomes more powerful. A similar effect is found for the
destruction in ϵϕ, that increases strongly till a t of 0.5 s, but then stabilises. At the final
t, Pϕ is the most dominant process, from the given four processes. For ψ, the destruction
is constantly increasing in time and while the production has stabilised, the destruction
makes the solution not yet converged and in general ψ is lacking behind on ϕ. In both
ψ and ϕ, the diffusion does not provide a contribution. Diffusion reduces the peak of the
solution and spreads the solution over the domain and as the solution is axis symmetric
and not losing significant values of ϕ and ψ over the border, a zero average is found.

Figure 4.3: The budgets of ϕ and ψ for the partial PDE system for the vortex velocity
case over time, with on the left ϕ and on the right ψ.

For the full PDE system, Figures 4.4 and 4.5 show the development of ϕ and ψ for the
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vortex velocity case. Similar behaviour is present compared to the partial case, but for
increasing time, the peak is not at the centre but rather at the location of the velocity
peak. The addition of the cross destruction term ϕf 0 to Rϕ could provide an explanation,
as the term damps the highest values the most.

Figure 4.4: The time development of the ϕ field with for the full PDE vortex case with t
= 3.0 s being equal to the final time moment.

Figure 4.5: The time development of the ψ field with for the full PDE vortex case with t
= 3.0 s being equal to the final time moment.

Figure 4.6 shows the ϕ and ψ budget for the full vortex case in time. The solutions do
not reach steady state but are close, similar to the partial PDE. The effect of Rϕ is less
pronounced, what might be due to the addition of the destruction term ϕf 0 to the Rϕ

term. When steady state is reached, the dominant contribution is still Pϕ. While Rϕ is a
negative contribution for the partial PDE at the latest time step, Rϕ becomes a positive
contribution in the full PDE case.

Figure 4.6: The budgets of ϕ and ψ for the full PDE system for the vortex velocity case
over time, with on the left ϕ and on the right ψ.
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4.2.2 The Exponential Velocity Case

Figures 4.8 and 4.7 shows the propagation of ϕ and ψ for different moments of time for
the partial exponential case. For ϕ, at the location of the greatest velocity gradient, the
value of ϕ is greater than the boundary condition on the left and keeps increasing within
the given time frame in the domain until steady state. The same is happening for ψ,
where the production term keeps on increasing the value of ψ. The main reason is that
the equilibrium between the terms is greater than the value of the boundary condition.

Figure 4.7: The time development of the ϕ field with for the partial PDE exponential
case with t = 3.0 s being equal to the final time moment.

Figure 4.8: The time development of the ψ field with for the partial PDE exponential
case with t = 3.0 being equal to the final time moment.

In Figure 4.9, the ϕ and ψ budget for the partial exponential case in time can be found.
Similar to the vortex case, Rϕ is initially dominant, due to the f 4 contribution that is
driven by the velocity. Rϕ becomes less important in time, similar to the vortex case
due to the cross diffusion, f 3. Contrary to the vortex case, ϵϕ is more dominant than Pϕ
and at the final t, Rϕ is positive and ϕ has reached steady state solution while ψ is still
varying. As ϕ has reached steady state, the production of ψ Pψ has reached steady state
as well and only the destruction ϵψ influences the main solution. The diffusion is more
present in the current case than the vortex case for the average plot, but doesn’t provide
a large contribution to the overall solution.
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Figure 4.9: The budgets of ϕ and ψ for the partial PDE system for the exponential velocity
case over time, with on the left ϕ and on the right ψ.

For the full PDE, Figures 4.10 and 4.11 show the development of ϕ and ψ for the ex-
ponential velocity case. For ϕ, a build up happens away from the left border (where
the Dirichlet boundary condition is enforced) and moves along the streamline to a lower
steady state solution, creating a small dip in the solution, clear in t = 2.0 s. The ψ
solution does not have such behaviour, rather progressing the value of ψ along with the
convection of the flow and having a lower production of ψ compared to the partial case.
The cross destruction ϕf 1 could be leading, reducing the production of ϕ at the point of
the greatest gradient.

Figure 4.10: The time development of the ϕ field with for the full PDE exponential case
with t = 3.0 s being equal to the final time moment.

Figure 4.11: The time development of the ψ field with for the full PDE exponential case
with t = 3.0 s being equal to the final time moment.

Figure 4.12, shows the ϕ and ψ budget for the full PDE exponential velocity case in time.
Similar to the partial PDE result, Rϕ is initially dominant, but loses importance quicker
in the full PDE case compared to the partial PDE case. Similar to the vortex case, the
addition of ϕf 1 in Rϕ could explain such behaviour as that is a destruction term that
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becomes more important with an increase in ϕ and ψ. For the full case, an increase in
ϕ is present that later decreases, resulting in Dϕ

Dt
crossing the zero y-axis and an overall

peak of ϕ being found before convergence. A peak is found in the production term in ψ
Pψ at that location and becomes less after that peak, but it is not large and the behaviour
is not found for ψ. It is also reflected in the destruction term of ϕ ϵϕ, that becomes less
important with time. In general, the solution will reach steady state if ran long enough.

Figure 4.12: The budgets of ϕ and ψ for the full PDE system for the exponential velocity
case over time, with on the left ϕ and on the right ψ.

4.2.3 The Shear Velocity Case

Figures 4.14 and 4.13 shows the propagation of ϕ and ψ for different moments of time for
the partial PDE shear velocity case. For ψ, the main core has not convected to the end of
the domain yet and is not fully developed while ϕ has convected and is more developed.
The asymmetry is clear, as is expected with the asymmetric velocity case. The peak
value of ψ and ϕ at y = 0 is visible due to the gradient of the velocity approaching infinity
(From Section 3.2.1 of Chapter 3).

Figure 4.13: The time development of the ϕ field with for the partial shear PDE case with
t = 3.0 s being equal to the final time moment.

Figure 4.14: The time development of the ψ field with for the partial shear PDE case
with t = 3.0 s being equal to the final time moment.
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Figure 4.15 shows the ϕ and ψ budget for the partial shear case in time. The curves are
different than the vortex and exponential velocity cases, but Rϕ is still dominant from
the onset due to the f 4 term. Different to the other cases, is that Rϕ is significantly more
dominant than the production Pϕ and destruction ϵϕ. An initial bump in the diffusion is
also found at a low time value. The diffusion spreads the solution from the boundary in
the main field and is greater with a substantial gradient, having a greater contribution
earlier in the solution. As the contribution of ϵϕ and Pϕ are significantly lower, the effect
of the diffusion is more pronounced in the current case than in the exponential case. The
solutions will go to steady state if ran long enough, but note that in the current case it
is not close, with ψ in particular . In ψ, the destruction ϵψ is far from steady state and
has yet to reach steady state. In general, the build up of the processes in the shear case
is slower than the vortex and exponential case.

Figure 4.15: The budgets of ϕ and ψ for the partial PDE system for the shear velocity
case over time, with on the left ϕ and on the right ψ.

For the full PDE, Figures 4.16 and 4.17 show the development of ϕ and ψ for the shear
velocity. Similar behaviour is found to the vortex and exponential velocity cases, where
the location at the highest velocity gradient has a less great value of ϕ and ψ between
the full and partial PDE systems. As with the partial PDE, the convection of ψ does not
reach the end while for ϕ, at the right border, an increase in ϕ is present at y = 0. The
rise can be related due to ψ not yet being fully convected to the right border having a
lower influence for the cross destruction term ϕf 1 on the part of the solution, inflating
the peak.

Figure 4.16: The time development of the ϕ field with for the partial PDE shear case with
t = 3.0 s being equal to the final time moment.
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Figure 4.17: The time development of the ψ field with for the partial PDE shear case
with t = 3.0 s being equal to the final time moment.

Figure 4.18 shows the ϕ and ψ budget for the full PDE shear velocity case in time. The
trajectory is similar to the partial PDE with a less great influence on Rϕ. Similar to
the vortex and the exponential velocity cases, it is believed that it is due to the cross
destruction term ϕf 1. There is a slightly earlier convergence than the partial case, but
still the ψ value is far from converging. In ϕ, rather than Rϕ being the leading term, the
destruction is the leading term. Note that for both the partial as well as the full PDE,
the shear case will convergence if given enough time.

Figure 4.18: The budgets of ϕ and ψ for the full PDE system for the shear velocity case
over time, with on the left ϕ and on the right ψ.

4.3 Analyses of Terms
The current section will look into the contribution of each separate function of the PDE
to the overall solution. Subsection 4.3.1 discusses the contributions for the partial PDE
velocity cases while Subsection 4.3.2 for the full PDE velocity cases.

4.3.1 The Partial PDE Analyses

Figure 4.19 show the averaged contributions for all time steps for the partial PDE so-
lutions of the vortex, exponential and shear velocity cases (left to right). The greatest
contribution is found by the production processes f 4, while the cross diffusion process f 3

also has a significant contribution. For the shear case, the contribution of the production
driven processes f 4 are the most prevalent, with f 4 having a share of 63%. For all cases,
the smallest contribution is the diffusion term f 2 and the quartic term ϕ2f 5, having shares
as low as 0 % for f 2 in the vortex case and as low as 0.6 % for ϕ2f 5 in the shear case
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Figure 4.19: Pie chart of the averaged contribution of each step for all time steps for the
partial PDE cases. From left to right, the vortex case, the exponential case and the shear
case.

Figure 4.20 show the maximum amplitude of all of the functional contributions. In Figure
4.20, it can be seen that f 2 has a significant contribution for the shear and the exponential
velocity cases and a more muted response for the vortex case. The f 3 and f 4 terms have
quite a large contribution for the vortex case, but are more muted for other cases. The
f 4 term still has the second greatest contribution for the shear case while ϕ2f 5 has close
to no response in the shear case and has one of the lowest responses in other cases.

Figure 4.20: Maximum amplitude for all the separate functions in the partial PDE with
from left to right the vortex case, the exponential case and the shear case.

4.3.2 The Full PDE Analyses

Figure 4.21 show the averaged contributions for all time steps for the full case of the vortex,
exponential and shear velocity cases(left to right). The most dominant terms are all the
f 4 related terms, with the greatest contribution being the single f 4 term with a peak of
57 % for the shear velocity case. The ϕ2f 5 term is on average the lowest contributing
case, having the highest average contribution in the exponential velocity case of 3.7 %
and the lowest contribution in the shear velocity case of 0.5%.
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Figure 4.21: Pie chart of the averaged contribution of each step for all time steps for the
full PDE case. From left to right, the vortex case, the exponential case and the shear case

Figure 4.22 shows the maximum amplitude for each case, with f 4 and f 2 having the
greatest amplitudes. For the vortex case, other functions such as f 3 and ϕf 4 have a
significant amplitude while for the exponential case by far the largest contribution is due
to f 2. For the shear case, f 4 and f 2 have the most significant amplitude, in line with the
partial PDE solutions. The terms of ϕ2f 4 and ϕ2f 0 have one of the lowest amplitudes for
all the cases.

Figure 4.22: Maximum amplitude for all the separate functions in the PDE with from left
to right the vortex case, the exponential case and the shear case.

For f 2 (the diffusion term) in the vortex velocity case in both PDE systems (Figure 4.21
and 4.19), the value has a contribution of 0.0 % what is in contrast to Figure 4.22. An
explanation might be, that diffusion is inherently related to conservation laws and has no
streamlines crossing the borders in the vortex case, no information about the diffusion is
propagated over the boundary, resulting in an averaged zero contribution as the diffusion
aims at evening the solution over the domain. The same analogy holds for the partial
PDE system.

4.4 Statistics of the Simulations
Appendix F show the correlation coefficient and the variance for all the functions of the
full PDE velocity solutions for all possible candidates (See appendix D for the candidates).
The variance is the diagonal value of the covariance matrix, and the covariance matrix is
given as
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COV(xi, xk) = σ2
y(XijXkj)

−1 (4.13)

In (4.13), COV is the covariance matrix. The standard deviation is given as σy and is
related to the target data, the material derivative in the current work. The standard
deviation is calculated for the whole target dataset. A major assumption is made that
the target data is uncorrelated, what is inherently incorrect. The target data consists of
multiple samples of different t and when the result changes at an earlier t, the future t is
affected and hence the data is correlated. For the purpose of the covariance matrix, it is
not a problem as the standard deviation functions as a scaling parameter so the resulting
error should not affect the analyses.

The correlation coefficient relates each function with one another using the Pearson cor-
relation coefficient (obtained from Hastie [84]) and is defined as

ρcor =
E[fxf y]− E[fx]E[f y]√

VAR[fx]VAR[f y]
(4.14)

In (4.14), E[fx] is the expectation of function fx while VAR[fx] is the variance of function
fx. In Appendix F, heat maps are given for correlation coefficients for each velocity case
for the full PDE.



5. Data Regression

The chapter ’Data Regression’ obtains models using the PDE FIND sparse regression
algorithm for all velocity and regression cases. A selection of all the run simulations for
the specific hyper parameters can be found in Appendix E with all the result found in
Appendix G and a subset of models found in Appendix H. In the current chapter, the
focus shifts away from the partial PDE and more towards the full PDE as the partial
PDE is used as a verification process for PDE FIND.

For the partial PDE system, for both the exponential and vortex velocity cases, the
complete functional form was able to be retrieved from the regression algorithm. For the
full PDE system, only the exponential velocity case was able to retrieve the full functional
form, for only one specific set of λ and tol in a specific search window. The selected models
that do not have the correct model returned, showed good performance on the training
data, in access of a posteriori errors lower than 1 %.

For the incomplete library cases, the case where a small contribution was lacking (the
first incomplete library case) provided low a posteriori and low a priori error models. The
cases where a larger contribution was lacking (the second and third incomplete library
case) proved training to be more difficult. Unreliable models were found for a library with
limited candidate terms, but training improved by including highly correlated candidate
functions for the missing candidate. Replacing the production term (the fourth incomplete
library case) with highly correlated different production terms provided poor a posteriori
error trained models for the vortex trained case but decent models for the exponential
trained case.

In all tests, the most recognised functions where the f 2 and the f 4 terms, being the terms
with the highest amplitude response and the greatest average contribution given in Section
4.3 from Chapter 4. Even for models with a poor a posteriori error, the coefficients of
these functions were reasonable. The terms with a small average contribution, such as
ϕ2f 5 and ϕ2f 4, are often not recognised.

The data regression for the partial PDE systems with a full set of candidate functions can
be found in Section 5.1 and for the the full PDE system it can be found in Section 5.2.
For the incomplete candidate functions, the regression results can be found in Section 5.3.

5.1 Data Regression for the Partial PDE
For the sparse data regression, a full library of candidate functions are used, resulting in

Dϕ

Dt
=

4∑
n=0

5∑
m=0

βnmϕ
nfm (5.1)
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In (5.1), ϕ varies from n = 0 to n = 4 resulting in a total candidate library consisting of
30 functions.

Figure 5.1 shows the log of the a posteriori error versus the a priori error for the partial
case of the vortex. PDE FIND is able to return the complete functional form for ϕ from
the data with an a priori error of 0.032, leading to an average absolute coefficient error
of 0.53 %. The model can be found in Appendix H. Multiple other models with a higher
a priori error are found with a low (less than 1 %) a posteriori error. The complete
functional form still has the lowest a posteriori error for all cases. The lowest a priori
error is found at a λ of 10−5 for a tol of 2.5, 5 and 7.5, as can be seen in Appendix G.

Figure 5.1: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the partial PDE vortex case. On the left the errors
related to ϕ, in the middle the error relate to ψ and on the right the average error of ϕ
and ψ.

Figure 5.2 shows the log of the a posteriori error versus the a priori error for the exponential
case for the partial PDE. Similar to the vortex case, the exponential case is able to return
the complete model, with an a priori error of 0.058, with an average absolute coefficient
error of 0.96 %. There is a model, with a high a priori error that has a lower a posteriori
error than the return of the complete model, suggesting a potential overfit, although
only cross checking would confirm that. Multiple models are found with an a priori error
between 2 and 5 with still decent performance (around a few %) error. The lowest a priori
error that returned the complete functional form is found for multiple hyper parameters,
at a λ of 10−4 and 10−5 for a tol of 1.5, 2.5, 5 and 7.5 and for λ of 10−6 only at a tol of
1.5, as seen in Appendix G.
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Figure 5.2: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the partial PDE exponential case. On the left the
error relate to the a posteriori error of ϕ, in the middle the error relate to the a posteriori
error of ψ and on the right the average error related to the a posteriori error of ϕ and ψ.

Figure 5.3 shows the log of the a posteriori error versus the a priori error for the shear
case of the partial PDE. Compared to the previous cases, the shear case is not able to
return the complete model, having the lowest a priori error of 1.16. From all cases, the
lowest a posteriori error is found in the shear velocity case, being an order of magnitude
smaller than the previous cases. A different search window is used in Figure 5.3 (marked
red), but significantly different models are not found. A lower a posteriori error is found
for the same functional form between the two search windows, as different coefficients are
tuned.

Figure 5.3: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the partial PDE shear case. On the left the errors
related to ϕ, in the middle the error relate to ψ and on the right the average error of ϕ
and ψ. Compared to all other a priori-a posteriori plots, the current plot has a different
x-axis scale.

The lowest a priori model for the partial PDE shear velocity case can be found in Appendix
H. The a priori error is build-up from the lack of ϕ2f 5 term, the quatric term. Looking
at the pie chart and amplitude chart of Figures 4.19 and 4.20, the contribution of the
term in the solution is rather small. For the correct terms that are recognised, a higher
absolute coefficient error is found, being 3.32 %.

PDE FIND is able to find the full model for both the exponential and vortex velocity cases.
For the shear case it is not able to retrieve one functional form. PDE FIND functions well
and other models have a low a posteriori error. For the fully returned functional forms,
the average absolute error of the coefficients is within 1 %.
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5.2 Data Regression for the Full PDE

The candidate functions used for the full PDE regression can be found in Equation (5.1)
and are the same as for the partial PDE. For all three cases, the model training procedure
can be found in Subsection 5.2.1 and Subsection 5.2.2 discusses a subset of viable models
per trained velocity case.

5.2.1 Training of Different Models

Figure 5.4 shows the a priori-a posteriori plot for the full PDE vortex velocity case. The
true model is not able to be returned, but low a priori models are found, with an a priori
error of 1.37. The lowest a priori error is not the lowest a posteriori error and an lower
than 1 % a posteriori error model is found with various levels of a priori errors, ranging
from approximately 4.0 to 8.0.

Figure 5.4: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the full PDE vortex case. On the left the errors
related to ϕ, in the middle the error relate to ψ and on the right the average error of ϕ
and ψ.

Figure 5.5 shows the exponential case. For the full PDE case, only one specific λ, tol and
search window configuration is able to return the full PDE functional form, being at a λ of
10−5 for a tol of 1 for a large search window. For the size of the different search windows,
one is advised to look at Appendix C. The fully returned model has an a priori error of
0.15 with an average absolute coefficient error of 1.8 %, what is greater than the complete
returned models of the partial PDE system, from Section 5.1. Similar to the vortex case,
multiple models are found over a large a priori range that have a low a posteriori training
error (lower than 1 %, and even some lower than 0.5 %).
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Figure 5.5: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the full PDE exponential case. On the left the
errors related to ϕ, in the middle the error relate to ψ and on the right the average error
of ϕ and ψ.

Figure 5.6 shows the a priori-a posteriori graph for the full PDE system of the shear case.
The amount of models are less that have both a low a posteriori error and a low a priori
error compared to the vortex and the exponential training cases. One specific models has
an a priori error of 2.34, what is also the lowest a posteriori error of all the full PDE
velocity cases. The results for ψ are noticeably better than for ϕ.

Figure 5.6: A comparison of the errors for different models resulting from the PDE FIND
procedure with a complete library for the full PDE shear case. On the left the errors
related to ϕ, in the middle the error relate to ψ and on the right the average error of ϕ
and ψ. Note that there is a different x axis compared to others cases.

PDE FIND is able to return the full PDE for one specific set of search criteria, proofing
that even between highly correlated functions, PDE FIND is able to return the full func-
tional form. In an a posteriori sense, PDE FIND is able to return models with a low, and
sometimes lower than true functional form, a posteriori error.

From Figures 5.4, 5.5 and 5.6, three models per velocity case are chosen for further
analyses. The complete functional form of these models can be found in Appendix H and
the a priori and a posteriori errors can be seen in Table 5.1. All chosen models show good
training behaviour, being able to return the model within an a posteriori error of 1 % for
a large range of a priori errors, with an exception for M3,F,3.
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Table 5.1: Candidate models from the trained cases with each trained case being specific
to their own trained trained dataset with the a priori error, a posteriori error and a note
what it represents in the a priori-a posteriori plot.

Model ξprio (-) ξpost,ϕ (%) ξpost,ψ (%) note

M1,F,1 4.59 0.9 0.9 Lowest a posteriori error
M1,F,2 1.73 1.1 1.0 Lowest a priori error

M1,F,3 7.80 0.9 0.9
Low a posteriori error at

a high a priori error
M2,F,1 6.75 0.3 0.1 Lowest a posteriori error
M2,F,2 0.15 0.3 0.1 Lowest a priori error

M2,F,3 9.27 0.4 0.1
lowest a posteriori error in a

different search window

M3,F,1 2.32 0.2 0.02
lowest a posteriori error and

lowest a priori error

M3,F,2 10.25 0.6 0.04
Low a posteriori error at

a high a priori error

M3,F,3 6.05 3.4 0.1
Lowest a priori error in a
different search window

The simulated performance of the trained models from Table 5.1 are shown in Figures 5.7,
5.8, 5.9. All cases show near identical behaviour to the ground truth throughout time.
Only M3,F,3 has a slight offset, but as seen in Table 5.8, the error is still manageable.

Figure 5.7: The development of the average in time of three models for the full PDE vortex
case, obtained from the PDE FIND. The models are compared to the ground truth, with
ϕ on the left and ψ on the right

Figure 5.8: The development of the average in time of three models for the full PDE
exponential case, obtained from the PDE FIND procedure compared to the ground truth,
with ϕ on the left and ψ on the right
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Figure 5.9: The development of the average in time of three models for the full PDE shear
case, obtained from the PDE FIND procedure compared to the ground truth, with ϕ on
the left and ψ on the right

Figures 5.10, 5.11 and 5.12 show the final time step of the selected models. The final
time step is meant as a qualitative measure, to see if the behaviour is similar to the
ground truth. As expected on the bases of Table 5.1 and Figures 5.7, 5.8, 5.9, all models
perform well compared to the ground truth, Figures 4.4, 4.10 and 4.16. The model that
has the largest a posteriori error in Table 5.1, model M3,F,3, still has a good qualitative
performance.

Figure 5.10: The final step for all three model for the full PDE vortex case, with on the
left model M1,F,1, in the middle M1,F,2 and on the right M1,F,3.

Figure 5.11: The final step for all three model for the full PDE exponential case, with on
the left model M2,F,1, in the middle M2,F,2 and on the right M2,F,3.
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Figure 5.12: The final step for all three model for the full PDE shear case, with on the
left model M3,F,1, in the middle M3,F,2 and on the right M3,F,3.

5.2.2 Model Performance of the Full Cases

The difference in coefficients of the model compared to the true model is seen in Figure
5.13. All models are able to (relatively) accurately predicted the f 2 and f 4 terms. For
all models except M3,F,3, f

3 and ϕ2f 0 are recognised with a respectable difference in
coefficient. The ϕf 4 term is also often recognised but with a less accurate coefficient. The
PDE FIND algorithm struggles to find the ϕ2f 5 term, with all the models trained on the
shear case data not even returning the value at all.

Figure 5.13: Bar plot, showing the predicted coefficient in terms of percentages compared
to the true values of the true coefficients of the training data. The data shown here is for
the full PDE case.

The two terms that are most accurately recognised in Figure 5.13 are f 2 and f 4, those
relate as the functions with one of the greatest amplitude responses and average contri-
butions of Figures 4.21 and 4.22. In those figures, ϕ2f 5 is not well represented and that
shows in the returning data of Figure 5.13. The f 3 term is also well recognised, but with
a slightly worse prediction in coefficient. Other terms, such as ϕf 1 and ϕ2f 4 have mixed
results in discovery. The importance of the terms to the average contribution and am-
plitude are less and depending on the hyper parameters, one model has a more accurate
return than others.

5.3 Data Regression for the Incomplete Candidate

Libraries
The section ’Data Regression for the Incomplete Candidate Libraries’ analyses the sparse
data regression results for the incomplete libraries. The section is split in four subsections,
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reflecting the four different incomplete library cases. Subsection 5.3.1 show the results for
leaving out the ϕ2f 5 term, Subsection 5.3.2 for leaving out the f 3 term, Subsection 5.3.3
for leaving out the f 3 term with additional highly correlated candidates and Subsection
5.3.4 for replacing the f 4 terms with the highly correlated f 8 terms.

5.3.1 The First Case Incomplete Candidate Library

Figure 5.14: Pie chart for the averaged contribution at each step, with from left to right
the vortex, exponential and shear case. In red is the function left out from the candidate
library set for regression, the quatric term.

In the current section, analyses is performed for a lack of the quartic term ϕ2f 5. Figure
5.14 shows the share of the full averaged ϕ contribution that is not considered by the
candidate library in red. The resultant incomplete candidate library creates all possible
solutions

Dϕ

Dt
=

4∑
n=0

4∑
m=0

βnmϕ
nfm (5.2)

In (5.2), n and m vary from 0 to 4, resulting in a total of 25 possible candidate equations.

Figures 5.15 and 5.16 show the trained models with PDE FIND for the vortex and ex-
ponential case. Note that for the incomplete section, only the vortex and exponential
velocity cases are considered for training and the shear velocity case only for cross vali-
dation. Both the vortex and exponential case show good training performance, with the
exponential case resulting in models that both have a low a posteriori and a low a priori
error. For the exponential case, the different search window allows for more models. Both
the vortex and exponential case are able to return trained a posteriori errors of less than
1 %.
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Figure 5.15: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the ϕ2f 5 term for the full PDE vortex case.
On the left the errors related to ϕ, in the middle the error relate to ψ and on the right
the average error of ϕ and ψ.

Figure 5.16: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the ϕ2f 5 term for the full PDE exponential
case. On the left the errors related to ϕ, in the middle the error relate to ψ and on the
right the average error of ϕ and ψ. Note that blue and red represent different search
windows.

Based on Figures 5.15 and 5.16, three models per case have been elected and summarised
in Table 5.2. All models in the table have an a posteriori error lower than 1 % for a range
of a priori errors, with the lowest a priori error being 1.34 (Model M2,U1,2). The errors
are similar to the error of the full candidate library case of Section 5.2. The lowest a
priori error is the full functional form, only lacking the ϕ2f 5 term that is excluded from
the candidate library set. The functional form of the models can be found in Appendix
H, where U1 is the incomplete library related to the missing ϕ2f 5 term.
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Table 5.2: Candidate models missing the f 5 term for the vortex and exponential cases
with the a priori error, a posteriori error and a note what it represents in the a priori-a
posteriori plot.

Model ξprio (-) ξpost,ϕ (%) ξpost,ψ (%) note

M1,U1,1 8.74 0.7 0.9 Lowest a posteriori error
M1,U1,2 2.66 1.1 1.2 Lowest a priori error

M1,U1,3 7.21 0.7 1.0
Combination low a posteriori error

and low a priori error
M2,U1,1 8.75 0.3 0.1 Lowest a posteriori error
M2,U1,2 1.34 0.8 0.2 Lowest a priori error

M2,U1,3 3.74 0.5 0.1
Combination lowest a posteriori error

and a priori error

Figures 5.17 and 5.18 shows the models of Table 5.2 to the ground truth. As expected
from the low a posteriori error, the models have near perfect behaviour compared to the
ground truth.

Figure 5.17: The error per time step of the three models for the full PDE exponential
case, obtained from the PDE FIND procedure, with ϕ on the left and ψ on the right.

Figure 5.18: The error per time step of the three models for the full PDE exponential
case, obtained from the PDE FIND procedure, with ϕ on the left and ψ on the right.

Figure 5.19 compares the coefficients of the recognised models for the functional form of
the true model. For the the ϕ2f 0, f 2, f 3 and f 4 terms, the identified models represent the
true coefficient well, in some cases in access of less than 0.1 %. The ϕ2f 4 term, however,
is barely identified by most of the models, and for the two models where it is identified
(M1,U1,1 and M2,U1,1, being both the lowest a priori error models), M2,U1,1 has the lowest
a posteriori error. The terms ϕf 1 and ϕf 4 have less models with accurate coefficients, but
still four models are returned with a decent coefficient.
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Figure 5.19: Bar plot, showing the predicted coefficient in terms of percentages compared
to the true values of the true coefficients of the training data

5.3.2 The Second Case Incomplete Candidate Library

Figure 5.20: Pie chart for the averaged contribution at each step, with from left to right
the vortex, exponential and shear case. In red is the function left out from the candidate
library set for regression, the cross diffusion term.

For the following case, the cross-diffusion term f 3 is disregarded in the candidate library,
resulting in a library given as

Dϕ

Dt
=

4∑
n=0

2∑
m=0

βnmϕ
nfm +

4∑
n=0

5∑
m=4

βnmϕ
nfm (5.3)

In Equation (5.3), n varies from 0 to 4 while m varies from 0 to 5 but skips 3, resulting
in a total of 25 candidate functions. In Figure 5.20, the average contributions of the f 3

term are rather significant, with as much as 31 % in the vortex case not represented by
the candidate functions.

Figures 5.22 and 5.21 show the a priori-a posteriori figures of the vortex and exponential
case. Compared to previous training scenarios, PDE FIND has a more difficult time
finding suitable models. The graphs have a maximum y axis limit imposed as for the
current incomplete library regression case, multiple models with a high a priori error due
to significant coefficients of the true form are found. Similar to the previous section, the
red crosses in Figure 5.21 are models found in a different search window.



73

In general, the exponential case (Figure 5.21) has a better training, having a lower a priori
error with a lower a posteriori error compared to the vortex case.

Figure 5.21: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 3 term for the full PDE vortex case.
On the left the errors related to ϕ, in the middle the error relate to ψ and on the right
the average error of ϕ and ψ

Figure 5.22: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 3 term for the full PDE exponential
case. On the left the errors related to ϕ, in the middle the error relate to ψ and on the
right the average error of ϕ and ψ. Note that blue and red represent different search
windows.

From Figures 5.22 and 5.21, a selection of models are made and are shown in Table 5.3.
As the vortex model is difficult to train, a high a priori model is included in the table as
it carries a (relatively) low a posteriori error (model M1,U2,2). The errors are significant,
with the lowest a posteriori error model being in access of 7 % for ϕ. The value of ψ show
better correspondence, with a posteriori errors being in excess of 5 % for exponential
trained cases and lower than 2 % for model M2,U2,1. The vortex trained models perform
poor and the errors are quite significant, with no low a priori error model having an a
posteriori error lower than 14.5 % for both ψ and ϕ. The full forms of the chosen models
can be found in Appendix H.
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Table 5.3: Errors of the candidate models missing the f 3 term for the vortex and expo-
nential cases with the a priori error, a posteriori error and a note what it represents in
the a priori-a posteriori plot.

Model ξprio (-) ξpost,ϕ (%) ξpost,ψ (%) note

M1,U2,1 11.10 14.5 14.9
Combination low a posteriori error

and low a priori error
M1,U2,2 99.93 9.1 8.3 Lowest a posteriori error
M2,U2,1 7.40 10.3 1.7 Lowest a posteriori error

M2,U2,2 7.28 15.9 5.2
Low a priori error with a
low a posteriori error

M2,U2,3 7.31 17.1 5.4
Low a posteriori error and low a priori error

in a different search window

Figures 5.23 and 5.24 show the temporal development of the models on their own training
data. Model M1,U2,2, with the high a priori error, follows the training data well, having
similar behaviour with an offset to the ground truth. For the exponential trained models,
model M2,U2,1 follows the training data well, but has different behaviour. For both the
training cases, ψ is better estimated than ϕ, in particular for model M2,U2,1. Compared
to the previous section, Section 5.3.2, the trained models performed significantly worse.

Figure 5.23: The error per time step of the two models for the full PDE vortex case,
obtained from the PDE FIND procedure with an incomplete library lacking f 3, with ϕ
on the left and ψ on the right.

Figure 5.24: The error per time step of the three models for the full PDE exponential
case, obtained from the PDE FIND procedure with an incomplete library lacking f 3, with
ϕ on the left and ψ on the right.

The difference in coefficients of the model compared to the true model is seen in Figure
5.25. The functional forms related to the ground truth that are discovered the most
are the f 2 and f 4 terms, being also the only terms that correspond well to the ground
truth. For the exponential case trained models, some of the coefficients of f 4 are close
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to the original coefficient. Note that model M1,U2,2 includes a lot of the true forms with
a significantly different coefficient, as seen for functions ϕ2f 0, ϕf 1, ϕf 4, ϕ2f 4 and ϕ2f 5,
where the coefficients are multiples higher than the true value. The high a priori error
model, model M1,U2,2, includes a lot of terms in the system that are highly correlated and
have high coefficients to compensate.

Figure 5.25: Bar plot, showing the predicted coefficient in terms of percentages compared
to the true values of the true coefficients of the training data for the cases lacking the f 3

term in the library.

5.3.3 The Third Case Incomplete Candidate Library

The current case is an expansion on the previous case. It lacks the f 3 term in the candidate
library, but adds extra candidate function options f 6 and f 7, giving

Dϕ

Dt
=

4∑
n=0

2∑
m=0

βnmϕ
nfm +

4∑
n=0

7∑
m=4

βnmϕ
nfm (5.4)

In (5.4), n varies from 0 to 4 while m varies from 0 to 7, missing 3. The result is a
candidate library consisting of 35 terms.

Figures 5.26 and 5.27 show the a priori-a posteriori plots for the trained vortex and
exponential velocity cases. Compared to Figures 5.21 and 5.22, improvement is found in
the a posteriori error with a greater spread in options in the a priori error, in particular for
the vortex trained case. For the exponential models, multiple models with an a posteriori
error less than 10 % are found. Compared to the full candidate library, and the first
incomplete library case, the performance is still lacking.
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Figure 5.26: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 3 term, but including additional terms
f 6 and f 7 for the full PDE vortex case. On the left the errors related to ϕ, in the middle
the error relate to ψ and on the right the average error of ϕ and ψ.

Figure 5.27: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 3 term, but including additional terms
f 6 and f 7 for the full PDE exponential case. On the left the errors related to ϕ, in the
middle the error relate to ψ and on the right the average error of ϕ and ψ. Note that blue
and red represent different search windows.

Based on the a priori-a posteriori plots of Figures 5.26 and 5.27, three models per case
have been elected and summarised in Table 5.4. From all models, M2,U3,1 has the lowest
a posteriori error for ϕ in excess of 8 %, what is an improvement of 2 % compared to
the case without additional candidate functions. Particularly encouraging are a posteriori
errors of ψ, with model M2,U3,2 lower than 2 %. The vortex models still have difficulty
training, with the two decent a priori models performing worse in the current training task
with the additional functions than without (Subsection 5.3.2, model M1,U2,1 compared to
modelsM1,U3,1 andM1,U3,2). The high a priori error performs better for the vortex trained
model, with the a posteriori error lower than 10 %.
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Table 5.4: Errors of the candidate models missing the f 3 term, but with additional f 6

and f 7 terms for the vortex and exponential cases with the a priori error, a posteriori
error and a note what it represents in the a priori-a posteriori plot.

Model ξprio (-) ξpost,ϕ (%) ξpost,ψ (%) note

M1,U3,1 8.99 19.2 11.4
Low a posteriori error with

a low a priori error

M1,U3,2 7.61 22.6 16.3
Low a priori error with
a low a posteriori error

M1,U3,3 63.38 9.9 8.2 Lowest a posteriori error
M2,U3,1 9.78 8.0 2.2 Lowest a posteriori error
M2,U3,2 5.06 9.9 1.4 Lowest a priori error

M2,U3,3 6.63 8.7 3.5
Lowest a posteriori error

other in a different search window

The temporal development of the models from Table 5.4 can be seen in Figures 5.28 and
5.29. In these plots, the models trained using data of the vortex case (M1,U3,1, M1,U3,2

and M1,U3,3) show a significant difference compared to the training data for both ϕ and
ψ. Different behaviour in the development of the solution is prevalent and the result is
similar to the trained models without the additional functions in Subsection 5.3.2.

ModelsM2,U3,1,M2,U3,2 andM2,U3,3 show better behaviour in Figure 5.29 and in particular
model M2,U3,3 has a satisfactory result, reaching a significantly better steady state value
than other models. For that model, however, the development characteristic is different,
showing a different peak in ϕ compared to the ground truth. In general, all models show
different mechanisms throughout time for the exponential trained models.

Figure 5.28: The error per time step of the three models for the full PDE vortex case,
obtained from the PDE FIND procedure with a candidate library lacking the f 3 terms
but with additional f 6 and f 7 terms. ϕ is on the left and ψ on the right.

Figure 5.29: The error per time step of the three models for the full PDE exponential
case, obtained from the PDE FIND procedure with a candidate library lacking the f 3

terms but with additional f 6 and f 7 terms. ϕ is on the left and ψ on the right.
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Figure 5.30 show a bar chart comparing the coefficients of the true form with the trained
forms. As in the previous case, f 2 and f 4 are the most recognised terms with the trained
coefficients of the exponential case approaching the correct f 4 terms. The ϕf 4 term is also
recognised, but the coefficients are not as accurate as for f 4 and f 2. Similar to M1,U2,2

from Figure 5.25, the overfit of M1,U3,3 is clear with large deviations in coefficients. The
terms ϕ2f 0 and ϕ2f 4 are poorly recognised, with coefficients not close to ground truth
while for ϕf 1 all the vortex trained cases have a different coefficient. The high coefficients
of the vortex trained models contribute to the high a priori errors due to the definition of
the a priori error.

Figure 5.30: Bar plot, showing the predicted coefficient in terms of percentages compared
to the true values of the true coefficients of the training data for the candidate library
cases lacking the f 3 term, with additional f 6 and f 7 terms.

5.3.4 The Fourth case Incomplete Candidate Library

Figure 5.31: Pie chart for the averaged contribution at each step, with from left to right
the vortex, exponential and shear case. In red are the functions replaced in the candidate
library set for regression, being the strain rate terms.

The last case replaces the strain rate squared f 4 terms by the strain rate quadrupled f 8

terms, resulting in a candidate library as

Dϕ

Dt
=

4∑
n=0

3∑
m=0

βnmϕ
nfm +

4∑
n=0

ϕnf 5 + βnm

4∑
n=0

ϕnf 8 (5.5)

In (5.5), n varies from 0 to 4 and m varies from 0 to 8, lacking the 4, 6 and 7 terms
resulting in a total of 30 candidate functions. The f 8 terms highly correlates with the f 4
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terms (Appendix F) and the share of the f 4 related terms to the averaged field solution
can be seen in Figure 5.31. The averaged contribution of the share is significant and more
than 50 % for the vortex and shear velocity cases.

Figures 5.32 and 5.33 show the a priori-a posteriori plots of the tested models. The vortex
case, Figure 5.32 trains poorly, with no a posteriori error lower than 31.6 % for ϕ. The
exponential case, Figure 5.33 provides decent models, with multiple models having a lower
than 10 % a posteriori error. It can be noted that the ψ is more accurate than ϕ even if
the training is not performed on ψ.

Figure 5.32: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 4 term, but including additional term
f 8 for the full PDE vortex case. On the left the errors related to ϕ, in the middle the
error relate to ψ and on the right the average error of ϕ and ψ.

Figure 5.33: A comparison of the errors for different models resulting from the PDE FIND
procedure with an incomplete library lacking the f 4 term, but including additional term
f 8 for the full PDE exponential case. On the left the errors related to ϕ, in the middle
the error relate to ψ and on the right the average error of ϕ and ψ. Note that blue and
red represent different search windows.

From Figures 5.32 and 5.33, Table 5.5 shows a selection of the trained models. The
difference in errors between the vortex and exponential models is quite significant, with
the vortex trained models performing the worst. For the vortex trained models, no a
posteriori error is lower than 20 % with ψ performing better than ϕ in the a posteriori
sense. Model M2,U4,2 has the lowest a priori error, with an error of 5.11. 5.11 is a low
a priori error, regarding that the lack of f 4 terms gives a minimum a priori error of at



80

least 3 and with the addition of at least one f 8 term 4. All the models forms are given in
Appendix H.

Table 5.5: Errors of the candidate models where the f 4 terms are replaced by f 8 terms
in the candidate function for the vortex and exponential cases with the a priori error, a
posteriori error and a note what it represents in the a priori-a posteriori plot.

Model ξprio (-) ξpost,ϕ (%) ξpost,ψ (%) note

M1,U4,1 10.66 31.6 20.2 Lowest a posteriori error

M1,U4,2 7.16 59.0 38.5
Low a priori error

with a low a posteriori error
M2,U4,1 9.52 4.3 1.1 Lowest a posteriori error
M2,U4,2 5.11 5.1 1.4 Lowest a priori error

M2,U4,3 7.56 10.3 2.8
Lowest a posteriori error

in a different search window

Figures 5.35 and Figures 5.34 show the temporal behaviour of the selected models in Table
5.5 compared to the ground truth. The vortex data trained models perform poorly, not
being able to reach the steady state value and not being able to map the characteristic
behaviour for both models. The exponential trained models are better but lack the same
characteristic with regards to the peak in the ground truth. ModelM2,U4,3 does not have a
peak and modelsM2,U4,1 andM2,U4,2 have a later peak at a different magnitude compared
to the ground truth.

Figure 5.34: The error per time step of the two models for the full PDE vortex case,
obtained from the PDE FIND procedure, with ϕ on the left and ψ on the right.

Figure 5.35: The error per time step of the three models for the full PDE exponential
case, obtained from the PDE FIND procedure, with ϕ on the left and ψ on the right.
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Figure 5.36 shows the bar graph of the coefficients compared to the true coefficient. All
coefficients related to the vortex case are poor. For the exponential case, decent behaviour
is found for the f 2 term that is most of the time recognised. For models M2,U4,1 and
M2,U4,2, ϕf

1 is found well with a satisfactory coefficient. The ϕ2f 5 is not recognised by
any model at all, and the f 3 term is only recognised by two models, one per velocity
trained case.

Figure 5.36: Bar plot, showing the predicted coefficient in terms of percentages compared
to the true values of the true coefficients of the training data





6. Data Validation

The chapter ’Data Validation’ discusses the performance of the trained models of Chapter
5 and tests the models on different test cases. For the complete candidate library trained
models, all the velocity cases are cross tested with one another. For the incomplete
library trained models, the shear velocity case acts as the test data. For all models, the
exponential trained models performed better than the vortex trained models, with the
exponential models being able to follow the shear velocity case ground truth better.

For the complete candidate library, the cross tested models performed well. Even if the
true functional form was not returned, the models still performed near perfect and no
worrying discrepancies were found. The incomplete library case where a small average
contribution (the first incomplete library) is lacking, provided near perfect results in cross
testing and the replacement terms didn’t worsen the solution on the test data.

For the incomplete library lacking a large contribution (the second incomplete library
and third incomplete library cases), only one model, model M2,U3,3 is found to have
satisfactory behaviour cross tested on different cases. The model is build from highly
correlated replacement functions to the missing true form and is relatively sparse. For
the library cases where the production term is replaced by a different production term
(incomplete library case four), the models perform poorly and no well tested model is
found.

The z-score (an measure of the likelihood of functions in the solution) are the greatest for
f 2 and f 4. These correspond to the greatest amplitude and greatest average contribution
cases of Section 4.3 from Chapter 4, similar to the results in Chapter 5 where f 2 and f 4

were often found with a satisfactory coefficient.

The ridge regression step is able to damp highly correlated functions well, and together
with the z-score, the importance of correlated functions change depending on the elimina-
tion of one of the functions. In the z-score, often a redistribution among highly correlated
functions is seen, resulting in eliminating the ground truth form and replacing it by a
highly correlated replacement form that has the potential to function well in a model.

Section 6.1 discusses the validation for the full case with the complete library models,
models with F in the model tag. Section 6.2 discusses the validation results for an
incomplete candidate library, models with the tags U1 to U4. Each section will have a
further analyses in the best performing model per trained velocity case, with a focus on
the selection procedure of PDE FIND. Section 6.3 will close the chapter discussing the
results.

83
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6.1 The Complete Candidate Set Validation Results
The current section analyses the models that have F in the model tag. An overview of
the models can be found in Appendix H.

6.1.1 Cross Checking on the Shear Case

Table 6.1 shows a table with all the a posteriori errors for the vortex and exponential
trained models used on the shear velocity case. All models show satisfactory behaviour,
with a low (lower than 1 %) error. Model M2,F,2, having the complete true functional
form, is the best performing model, in particular approaching steady state.

Table 6.1: Errors of the vortex and exponential trained models tested on the shear case
for the full PDE case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,F,1 0.6 0.1 1.2 0.2
M1,F,2 1.0 0.09 1.3 0.3
M1,F,3 0.4 0.1 1.4 0.3
M2,F,1 0.1 0.01 0.5 0.03
M2,F,2 0.2 0.03 0.03 0.02
M2,F,3 0.2 0.02 0.7 0.01

The results from Table 6.1 are shown for the temporal progression in Figures 6.1 and 6.2.
The figures show a good prediction compared to the ground truth. All models trained
with the vortex case does show a difference when approaching steady state, but it is small
and is considered to be acceptable. Even if it is small, the exponential trained models
follow the ground truth better than the vortex trained models.

Figure 6.1: The error per time step of the three trained models for the full PDE vortex
case tested on the shear case, with ϕ on the left and ψ on the right.

Figure 6.2: The error per time step of the three trained models for the full PDE expo-
nential case tested on the shear case, with ϕ on the left and ψ on the right.
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Figures 6.3 and 6.4 compares the cross-section of the models to the ground truth. The
trained models from the exponential case show better behaviour than the models trained
from the vortex case, with Model M2,F,2 approaching the ground truth the best. Model
M2,F,2 is the true functional form, so the best performance is to be expected.

From the comparison plot, major differences are found at the peak of y = 0. ModelM1,F,2

is the least performing model, over predicting the production at y = 0. Models M1,F,1

and M1,F,3 do the opposite and under predict the solution at y = 0. The discrepancies of
the vortex trained models are small and would function as satisfactory models.

Figure 6.3: Cross checking between models for the models trained with the vortex data
tested on the shear case.

Figure 6.4: Cross checking between models for the models trained with the exponential
data tested on the shear case.

6.1.2 Cross Checking on the Vortex Case

Table 6.2 shows a table with all the errors of the exponential and shear trained models
tested on the vortex case. The trained models from the exponential case perform con-
siderably better than the trained models of the shear case, with model M3,F,2 diverging.
From the three shear trained models, model M3,F,1 has the lowest reliable error.

Table 6.2: Errors of the exponential and shear trained models tested on the vortex case
for the full PDE case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M2,F,1 0.6 0.8 0.007 0.2
M2,F,2 0.4 0.7 0.02 0.05
M2,F,3 0.4 0.7 1.0 0.2
M3,F,1 1.1 1.3 0.07 0.7
M3,F,2 NAN NAN NAN NAN
M3,F,3 20.1 13.0 34.8 18.1
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Figures 6.5 and 6.6 shows the temporal progression. The divergence of model M3,F,2 is
clear and the behaviour of modelM3,F,3 is different then the ground truth. The exponential
trained cases, similar to the shear case of Subsection 6.1.1 perform more than satisfactory,
and are close to equal compared to the ground truth.

Figure 6.5: The error per time step of the three trained models for the full PDE expo-
nential case tested on the vortex case, with ϕ on the left and ψ on the right.

Figure 6.6: The error per time step of the three trained models for the full PDE shear
case tested on the vortex case, with ϕ on the left and ψ on the right.

Figures 6.7 and 6.8 compare the models with the ground truth with a cross-cut compar-
ison. The exponential models follow the model and are near identical compared to the
ground truth. From the shear trained models, The diverging model M3,F,2 is not present
and the best performing model from Table 6.2, modelM3,F,1 is near identical to the ground
truth. The other shear model M3,F,3 performs poorly.

Figure 6.7: Cross checking between models for the models trained with the exponential
data tested on the vortex case.
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Figure 6.8: Cross checking between models for the models trained with the shear data
tested on the vortex case.

Looking at the final time step picture of ϕ for the shear trained models, Figure 6.9, model
M3,F,1 is similar to the ground truth in Figure 4.4. Model M3,F,3 is qualitatively different,
with a larger diffusive range and a less prominent core.

Figure 6.9: Final time step of the shear trained models tested on the vortex case.

6.1.3 Cross Checking on the Exponential Case

Table 6.3 shows a table with all the errors of the vortex and shear trained models tested
on the exponential case. The vortex trained models perform better than the shear trained
models. The shear case does perform better than the previous subsection on the vortex
case.

Table 6.3: Errors of the vortex and shear trained models tested on the exponential case
for the full PDE case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,F,1 0.4 0.2 0.3 0.1
M1,F,2 1.4 0.4 1.1 0.6
M1,F,3 0.4 0.2 0.7 0.2
M3,F,1 0.8 0.2 0.8 0.4
M3,F,2 5.1 2.2 6.1 5.3
M3,F,3 7.0 3.2 5.9 4.8

Figures 6.10 and 6.11 show the temporal progression of the models compared to the
ground truth. All vortex trained cases perform satisfactory while for the shear case only
model M3,F,1 performs well, similar to the vortex tested case. Compared to the vortex
tested case of the previous subsection, modelM3,F,2 does not diverge, but it does not have
the same temporal characteristic and has the poorest performance.
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Figure 6.10: The error per time step of the three trained models for the full vortex case
tested on the exponential case, with ϕ on the left and ψ on the right.

Figure 6.11: The error per time step of the three trained models for the full shear case
tested on the exponential case, with ϕ on the left and ψ on the right.

Figures 6.12 and 6.13 show the cross-section comparison between the trained models and
the exponential ground truth. Similar to previous statements, the vortex trained models
perform well and show near perfect results. A large discrepancy is found in the shear
trained cases with model M3,F,2 over predicting the the peaks at the largest gradients
while M3,F,3 under predicts the peaks. Both also show a different mechanism compared
to the ground truth.

Figure 6.12: Cross checking between models for the models trained with the vortex data
tested on the exponential case.
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Figure 6.13: Cross checking between models for the models trained with the vortex data
tested on the shear case.

For the shear models, Figure 6.14 show the final time step solutions for the shear trained
models. A major difference is found between the models. While model M3,F,1 shows an
almost identical solution to the ground truth (Figure 4.10), models M3,F,2 and M3,F,3 are
different, with a particular visual difference found with the largest velocity gradients of
the solution.

Figure 6.14: Final time step of the shear trained models tested on the vortex case.

6.1.4 Analyses of the Models for the Full Candidate Library

The current section will do a further analyses of the regression behaviour of the most
competitive model per velocity training case, being modelsM1,F,1, M2,F,2 andM3,F,1. The
model description as well as the other models used in the section previously can be found
in Appendix H.

ModelM2,F,2, as stated previously, is a model where the full ground truth is returned with
an average coefficient error of 1.8 %. Model M1,F,1 is a model with more terms, having an
extra f 1, ϕ2f 1, ϕf 2, ϕf 3, ϕ3f 3 and ϕ4f 5 term. Some of the coefficients are rather small,
being the coefficients of f 1 and ϕf 2. It is not surprising that the vortex case returns a
significant amount of terms more, as the vortex case has a relatively greater correlation
between functions than the other cases (Appendix F, Figure F.2 for the correlation heat
map). The ϕ2f 1 term is highly correlated with other functional forms containing f 1 and f 0

and has a negative correlation with terms containing f 2. Even if it is not the most sparse
model, the model provided robust behaviour during testing, showing a good resemblance
with the exponential and shear test cases.

Model M3,F,1 is different to Model M1,F,1, as in that it lacks terms compared to the
ground truth model and does not substitute it with other terms. The terms missing are
the ϕ2f 4 and the ϕ2f 5 terms. These are terms that have a low amplitude and average
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field contribution in the solution of the shear case (Figures 4.21 and 4.22 from Chapter
4). The greatest difference in coefficient is found in the coefficient of ϕf 4 with a 24 %
difference. It can be explained as the function is compensating for the loss of the ϕ2f 4

term that is highly correlated with ϕf 4 (Appendix F, Figure F.4). ϕ2f 5 is not necessarily
compensated by other functions that correlate well with ϕ2f 5 and from Figures 4.21 and
4.22 it can be seen that ϕ2f 5 contribution is small and the function might have been lost
in the hard cut-off of the STRidge procedure. All models that are trained and selected
from the shear data have no contribution to the f 5 function.

Figures 6.15, 6.16 and 6.17 show difference between the least squares prediction and the
ridge prediction at the first iteration. Ridge regression has an unique solution, given as

βi = (XkmXki − λδim)
−1Xjmyj (6.1)

In (6.1), XkmXki is a scaled measure for the covariance matrix (4.13), λ the ridge regression
hyper parameter and δim the dirac operator being 1 for i=m and 0 else and y is the target
data. With (6.1), it can be seen that λ affects the largest variances the most, reducing
the importance of regression on the variance (the diagonals of the matrix) and making
the covariance more important.

From Figures 6.15, 6.16 and 6.17, the effect of Ridge Regression is clear. Based on the
variances from Figure F.1 in Appendix F, it can be seen that the terms with a greater
variance are more muted after the ridge regression procedure. From the figures, it can
be seen that in ordinary least squares, often large absolute coefficients are found. The
large coefficients reflect correlation with other functions, as a function with a positive
large coefficient might have a highly correlated function with a negative large coefficient
that in itself has a highly correlated function with a large positive coefficient, creating a
oscillating pattern between functions. For instance, in Figure 6.15, all the f 3 terms shows
a large positive-negative coefficient behaviour and the least squares solution is said to be
over-fit. Ridge regression mutes the behaviour well and reduces the correlation between
the functions. For all cases, f 4 has a large coefficient and as the variance is rather small
keeps a high coefficient after the ridge procedure. In particular, it is the case for Figure
6.16, where not only f 4 is significant, but also f 2 and f 3. It can be interpreted as those
functions correlating well with the ground truth data.

Figure 6.15: The normalised coefficient prediction of least squares and ridge regression
for the vortex case for a full library of terms.
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Figure 6.16: The normalised coefficient prediction of least squares and ridge regression
for the exponential case for a full library of terms.

Figure 6.17: The normalised coefficient prediction of least squares and ridge regression
for the shear case for a full library of terms.

Figures 6.18, 6.19 and 6.20 show the z-score and the amount of iterations for the regression
of the trained models M1,F,1, M2,F,2 and M3,F,1. The z-score is a measure for how likely a
function is a part of the solution, obtained from the book of Hastie [84]. The greater the
z-score, the greater the likelihood, and it is defined as

zi =
βk

σy
√
(XjiXjk)−1

(6.2)

In (6.2), β is the coefficient, σy is the standard deviation of the target test data and z
the z-score. As explained in Section 4.4 of Chapter 4, the standard deviation is taken
as the standard deviation of the complete set, assuming all data is uncorrelated what is
inherently false. Similar to 4.4, the standard deviation works as a scaling factor and it
should not make a difference in the current section, for the current analyses.

From Figures 6.18, 6.19 and 6.20, f 2 and f 4 have the highest z-score, with the highest
likelihood of being in the solution. ϕf 4 also has a significant contribution, in particular for
the exponential case. Model M1,F,1 has the most significant z-score per function, what is
to be expected as the correlation between functions is more significant than for the shear
and exponential case (for heatmaps of the correlation coefficient please look at Appendix
F). The result corresponds to the functional form of model M1,F,1, that has the most
amount of contributions from the three models. For the model M1,F,1, the amount of
iterations is significant, implying that the error is relatively high in the beginning of the
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regression process and the l0 error penalty of PDE FIND has a significant contribution to
the error prediction.

For model M2,F,2, the z-score related to the ground truth is visible and a lot of functions
(in particular related to f 2) get cut at the last iteration (iteration 4), where the l0 penalty
of PDE FIND penalises the extra functions more and searches for a more sparse solution.

In model M3,F,1, after one iteration, the z-score for a lot of functions decreases rather
significantly as a few functions get eliminated after the initial elimination. The cut means
that the need for highly correlated compensation functions decreases and therefore the
z-score of those functions decreases. For instance. ϕ4f 2 is eliminated after one iteration,
leading to all other functions related to f 2 to decrease in z-score.

Figure 6.18: The z-score of model M1,F,1, with a z-score of 0 meaning that a function is
eliminated in the process.

Figure 6.19: The z-score of model M2,F,2, with a z-score of 0 meaning that a function is
eliminated in the process.

Figure 6.20: The z-score of model M3,F,1, with a z-score of 0 meaning that a function is
eliminated in the process.
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6.2 The Incomplete Candidate Set Validation Re-

sults
The current section will validate the models from Section 5.3 from Chapter 5. Subsection
6.2.1 discusses the validation of the models trained on the missing ϕ2f 5 value, Subsection
6.2.2 discusses the validation of the models missing the f 3 term while Subsection 6.2.3
discusses the validation of the models missing the f 3 terms with the additional library
functions consisting of f 6 and f 7. Subsection 6.2.4 discusses the validation of the models
where the f 4 terms are replaced with the highly correlated f 8 terms. All subsections,
similar to the previous section (Section 6.1), have an in depth analyses of the regression
performance of the most well functioning models per case. An overview of the models can
be found in Appendix H.

6.2.1 Cross Checking for the First Incomplete Candidate Li-
brary

The current section analyses the models that have U1 in the model tag. An overview of
the models can be found in Appendix H.

Cross Checking for the First Incomplete Candidate Library

Table 6.4 show the trained vortex and exponential models on the shear case where the
ϕ2f 5 term is lacking from the candidate library. The ϕ2f 5 term has a small contribution
to the average ϕ solution as well as the amplitude of ϕ (Figures 4.21 and 4.22). The result
is that all models function well on the test case, with model M2,U1,1 functioning with a
lower than 0.1 % error.

Table 6.4: Errors of the vortex and exponential trained models tested on the shear case
for the first incomplete library function case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,U1,1 0.5 0.05 1.7 0.3
M1,U1,2 0.7 0.1 0.3 0.02
M1,U1,3 0.3 0.09 0.6 0.1
M2,U1,1 0.08 0.02 0.1 0.09
M2,U1,2 0.8 0.05 0.4 0.3
M2,U1,3 0.8 0.06 2.0 0.4

The average temporal development for the models of Table 6.4 can be found in Figures
6.21 and 6.22. The trained models performed well, and only models M1,U1,1 and M2,U1,3

show a notable deviation, but the performance is still acceptable.

Figure 6.21: The error per time step of the three trained models for the vortex case
missing the ϕ2f 5 term tested on the shear case, with ϕ on the left and ψ on the right.
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Figure 6.22: The error per time step of the three trained models for the exponential case
missing the ϕ2f 5 term tested on the shear case, with ϕ on the left and ψ on the right.

Figures 6.23 and 6.24 compares the trained models to the ground truth. The vortex trained
functions tend to perform better than the exponential trained function at around the y
= 0 station, with model M1,U1,1 following the ground truth the best at the given location.
The models trained with the exponential case tend to over predicted the production value
(the gradient driven functions), what is unexpected given the errors provided in Table
6.4, but note that the figures provide one moment and does not reflect the whole field.

Figure 6.23: Cross checking between models for the models trained with the exponential
data tested on the shear case for the trained cases where the ϕ2f 5 term is lacking from
the candidate library.

Figure 6.24: Cross checking between models for the models trained with the vortex data
tested on the shear case for the trained cases where the ϕ2f 5 term is lacking from the
candidate library.
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Deep Dive for Models with the First Incomplete Candidate Library

The best performing models are M1,U1,3 and M2,U1,1 per trained velocity case. Model
M1,U1,3 consists of more terms that the true functional form, having the terms ϕf 2, ϕ2f 2,
ϕ3f 2, ϕ4f 2, ϕ4f 3 and ϕ3f 4 extra. All the f 2 related functional forms are correlated with
other f 2 and explains the addition of the f 2 terms (Appendix F, Figure F.2 for the
correlation heat map). The ϕ2f 4 term is not present, rather the ϕ3f 4 term is present,
a term that is highly correlated with the original term. The missing ϕ2f 5 term is quite
correlated with the ϕ3f 4, what could also explain the presence of that term.

ForM2,U1,1, also a less sparse then the true functional form is found, with the functions f 1,
ϕ2f 1, ϕ3f 1, ϕ4f 1, ϕf 3, ϕ2f 3, ϕ3f 3, ϕ4f 3 and ϕ3f 4 extra. Similar toM1,U1,3 the presence of
many f 1 and f 3 terms can be explained by the correlation among one another (Appendix
F, Figure F.3 for the heat map). The ϕ2f 5 correlate well with the f 3 term and the
contribution of the term could have been compensated by including multiple f 3 terms.

Figures 6.25 and 6.26 show the least squares and ridge regression steps. In both figures, a
high correlation is found among the f 3 terms, while for the vortex model, a high correlation
is found among the f 2 terms and for the exponential model among the f 1 terms. In Figure
6.25, it is prevalent that the ridge regression step does not mute all the terms regarding
f 2, showing the aforementioned positive-negative fluctuation of highly correlated terms.
The result is a non-sparse trained model M1,U1,3. The high correlation of the forms could
be due to the lack of ϕ2f 5 as those functional forms do correlate well with ϕ2f 5 (Appendix
F, Figures F.3 and F.2 for the correlation heat map of both cases).

A similar explanation for the exponential case can be made, where the terms regarding
f 1 are not damped as much by ridge, explaining the structure of modelM2,U1,1. As the f

1

and f 0 terms are all destruction terms, it can also be related as a redistribution of terms,
giving a different formulation for the destruction terms. In general, similar to Subsection
6.1.4, the terms with the greatest variance from Appendix F Figure F.1 are damped out
the most by ridge regression.

Figure 6.25: The normalised coefficient prediction of least squares and ridge regression
for the vortex case for an incomplete library missing the f 5 related terms.
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Figure 6.26: The normalised coefficient prediction of least squares and ridge regression
for the exponential case for an incomplete library missing the f 5 related terms.

The z-score and the amount of iterations until convergence of models M1,U1,3 and M2,U1,1

are given in Figure 6.27 and 6.28. Similar to Section 6.1, f 2 and f 4 have a high z-score.
For M1,U1,3, the z-score is high for the f 2 related functions and although per iteration
the z-score reduces, it is still significant. An increase in the amount of iterations in the
STRidge algorithm might push the those coefficients to 0, but it is not guaranteed. A
similar conclusion can be drawn for the f 1 functions inM2,U1,1, where there is a downwards
trend in z-score per iteration. For the f 3 related functions in model M2,U1,1, an increase
in z-score is happening per iteration. The f 3 terms are highly correlated with the missing
term what might be a reason. Both models took five iterations to convergence.

Figure 6.27: The z-score and amount of iterations for the vortex trained model M1,U1,3,
lacking the f 5 related terms in the library with a z-score of 0 meaning that a function is
eliminated in the process.

Figure 6.28: The z-score and amount of iterations for the exponential trained model
M2,U1,1, lacking the f 5 related terms in the library with a z-score of 0 meaning that a
function is eliminated in the proces.
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6.2.2 Cross Checking for the Second Incomplete Candidate Li-
brary

The current section analyses the models that have U2 in the model tag. An overview of
the models can be found in Appendix H.

Cross Checking for the Second Incomplete Candidate Library

Table 6.5 show the trained models with the f 3 term lacking in the candidate library
term, tested on the shear velocity case. Compared to the first case, and the complete
candidate library case, the validation of the models is less well. The models trained with
the exponential case show a good overall error, lower than 5 %, but the error in the final
time step is off with significant errors exceeding 20 % for modelsM2,U2,2 andM2,U2,3. The
vortex trained models perform worse, and the lowest ϕ error is 9.7 %.

Table 6.5: Errors of the vortex and exponential trained models tested on the shear case
for the second incomplete library function case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,U2,1 12.6 1.4 28.2 4.9
M1,U2,2 9.7 1.6 26.2 6.3
M2,U2,1 4.7 7.7 9.8 11.5
M2,U2,2 3.8 0.5 20.9 1.9
M2,U2,3 3.9 0.5 23.7 2.2

Figures 6.29 and 6.30 show the temporal development of ϕ for the models. Eventhough
the errors of Table 6.5 are decent, the resulting temporal behaviour is off as the result
converges to different steady state values. Models M2,U2,2 and M2,U2,3 perform well for
ψ, what means that the production term for ψ still develops on average accurate results
even if ϕ is quite different.

Figure 6.29: The error per time step of the two trained models for the vortex case missing
the f 3 term tested on the shear case, with ϕ on the left and ψ on the right.

Figure 6.30: The error per time step of the three trained models for the exponential case
missing the f 3 term tested on the shear case, with ϕ on the left and ψ on the right.
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Figures 6.31 and 6.32 show the cross section of the models compared to the trained data.
No model performs well, showing quite a difference from the boundary to the core, with
different mechanisms in areas with a high gradient and different diffusive properties.

Figure 6.31: Cross checking between models for the models trained with the vortex data
tested on the shear case for the trained cases where the f 3 term is lacking from the
candidate library.

Figure 6.32: Cross checking between models for the models trained with the exponential
data tested on the shear case for the trained cases where the f 3 term is lacking from the
candidate library.

The result at the final time step, Figures 6.33 and 6.34 show that the results are off and
qualitatively not recognisable to the original solution, Figure 4.16, meaning that no model
provides satisfactory and usable behaviour.

Figure 6.33: The final time steps of the models trained with the vortex data for a candidate
library lacking the f 3 term with on the left model M1,U2,1 and on the right model M1,U2,2.
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Figure 6.34: The final time steps of the models trained with the exponential data for a
candidate library lacking the f 3 term with on the left modelM2,U2,1, in the middleM2,U2,2

and on the right model M2,U2,3.

Deep Dive for Models with the Second Incomplete Candidate Library

The best performing models per case are models M1,U2,2 and M2,U2,2. Model M1,U2,2 has
a large a priori error (Table 5.1 from Chapter 5), resulting due to significant values of the
true model coefficients. The model also recognises a lot of functions that are correlated
among one another in the same form (Appendix F Figure F.2 for the correlation heat
map), as there are a lot of f 2 forms for example. The same accounts for f 0, f 1 and f 5.
The f 3 term is the most correlated with the f 5 functional terms, what might explain the
contribution of the f 5 terms in model M1,U2,2.

Model M2,U2,2 is different, as the functional form is rather short, lacking the production
terms ϕf 4 and ϕ2f 4, the quatric term ϕ2f 5 and the destruction terms ϕ2f 0 and ϕf 1.
Rather, M2,U2,2 consists of extra terms not related to the true model such as f 1 and ϕf 5.
The terms ϕf 4 and ϕ2f 4 could have collapsed into f 4, as the coefficient of the form is
different compared to true form and the function correlates well (Appendix F Figure F.3
for the correlation heat map). From the correlation, it can be seen that ϕ2f 5 could have
collapsed in the form of ϕf 5 while ϕ2f 0 and ϕf 1 could have collapsed in f 1. Note that
both M2,U2,2 and M1,U2,2 are models that perform poorly to the ground truth.

Figures 6.35 and 6.36 show the least squares prediction and the ridge regression prediction.
The coefficients of the least squares prediction are significant in both cases, signalling a
high correlation between terms triggered by missing the the f 3 function from the regression
library. For the vortex model, ridge regression is not able to shrink these coefficients
enough, leaving coefficients with a large value, such as the f 2 related terms, creating a
non-sparse final form of the function. Note that this is subject to the size of the hyper
parameter λ. For the exponential data, also significant coefficients are found, but these
are just the forms of f 1 and ridge regression is able to shrink them well. The large
coefficients exhibit a positive-negative fluctuation, related to the correlation among the
terms (Appendix F Figure F.2 and Figure F.3 for the correlation heat maps)
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Figure 6.35: The normalised coefficient prediction of least squares and ridge regression
for the vortex case for an incomplete library missing the f 3 related terms.

Figure 6.36: The normalised coefficient prediction of least squares and ridge regression
for the exponential case for an incomplete library missing the f 3 related terms.

The z-score in Figures 6.37 and 6.38 reflect the findings of Figures 6.35 and 6.36. Model
M1,U2,2 shows a high z-score for a lot of values, pushing all other quantities towards 0
where the z-score is less than 5. As the z-score is a measure of a function that most likely
to be in the solution, the z-score reflects the functional form as an highly non-sparse
solution. Four iterations are needed for convergence, showing that the l0 error penalty
has a difficult time penalising the non-sparse and over fit nature of the trained model.
Increasing the l0 penalty could provide more sparse results, but is not tested in the current
work.

Model M2,U2,2 is different. More iterations are needed for convergence, showing the
strength of the l0 penalty as the addition of a function introduces a less significant reduc-
tion in error than the the l0 penalty. A significant amount of the functional forms show
a significant z-score, with the z-score most of the time lowered per step. The f 2 and f 4

terms have the greatest z-score, similar to previous cases. Some of the true functional
forms increase in importance per iteration step, such as ϕ2f 5 and ϕf 1 but are lowered
in the end. Terms like f 1 and ϕf 5 start with a greater z-score and have a better z-score
throughout the process compared to the true highly correlated counterparts, acting as
potential highly correlated replacement functions for the true counterparts.
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Figure 6.37: The z-score and amount of iterations for the vortex trained model M1,U2,2,
lacking the f 3 related terms in the library with a z-score of 0 meaning that a function is
eliminated in the process.

Figure 6.38: The z-score and amount of iterations for the exponential trained model
M2,U2,2, lacking the f 3 related terms in the library with a z-score of 0 meaning that a
function is eliminated in the process.

6.2.3 Cross Checking for the Third Incomplete Candidate Li-
brary

The current section analyses the models that have U3 in the model tag. An overview of
the models can be found in Appendix H.

Cross Checking for the Third Incomplete Candidate Library

Table 6.6 shows the models for the third case where additional highly correlated functions
f 6 and f 7 are added to the a candidate library lacking the f 3 term. The trained models
perform significantly better than shown in Subsection 6.2.2, with M1,U3,2 having an error
lower than 3 % for ϕ and lower than 0.5% for ψ and model M2,U3,3 having an error for
ϕ lower than 1% and for ψ an error lower than 0.2 %. The results are peculiar, as the
trained models perform less well on their own training data in Subsection 5.3.3 of Chapter
5 Table 5.4 then they do on the testing data.
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Table 6.6: Errors of the vortex and exponential trained models tested on the shear case
for the third incomplete library function case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,U3,1 4.8 0.6 14.8 2.4
M1,U3,2 2.7 0.2 0.7 0.2
M1,U3,3 9.4 1.5 29.1 6.6
M2,U3,1 4.5 0.8 6.6 1.9
M2,U3,2 4.7 7.7 7.5 13.5
M2,U3,3 1.0 0.1 0.7 0.2

The temporal behaviour of the trained models for Table 6.6 are shown in Figures 6.39
and 6.40. In particular model M1,U3,2 and M2,U3,3 show near ground truth accuracy. For
models M1,U3,1 and M2,U3,2, the temporal behaviour of ψ is quite satisfactory. Models
M1,U3,3 and M2,U3,2 are the worst performing per case, but the latter model still functions
well.

Figure 6.39: The average of ψ−ϕ of the three trained models for the vortex case missing
the f 3 term with a additional terms including f 6 and f 7 tested on the shear case, with ϕ
on the left and ψ on the right.

Figure 6.40: The average of ψ − ϕ of the three trained models for the exponential case
missing the f 3 term with a additional terms including f 6 and f 7 tested on the shear case,
with ϕ on the left and ψ on the right.

Figures 6.41 and 6.42 show the cross cut comparisons. ModelM1,U3,2, the best performing
vortex trained model, shows some inaccuracy compared to the ground truth, having a
different behaviour with the production at y = 0, close to the right border. ModelM2,U3,3,
the exponential trained model, follows the ground truth rather well with a small deviation
near the right border.
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Figure 6.41: Cross checking between models for the models trained with the vortex data
tested on the shear case for the trained cases where the f 3 term is lacking from the
candidate library but with additional f 6 and f 7 terms.

Figure 6.42: Cross checking between models for the models trained with the exponential
data tested on the shear case for the trained cases where the f 3 term is lacking from the
candidate library but with additional f 6 and f 7 terms.

The results from Figures 6.39 and 6.40 are visualised in the final step plot of ϕ in Fig-
ures 6.43 and 6.44, where model M1,U3,2 and M2,U3,3 shows similar qualitative behaviour
compared to the ground truth in Figure 4.16.

Figure 6.43: The final time steps of the models trained with the vortex data for a candidate
library lacking the f 3 term with additional f 6 and f 7 terms with on the left modelM1,U3,1,
in the middle M1,U3,2 and on the right model M1,U3,3.
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Figure 6.44: The final time steps of the models trained with the exponential data for a
candidate library lacking the f 3 term with additional f 6 and f 7 terms with on the left
model M2,U3,1, in the middle M2,U3,2 and on the right model M2,U3,3.

It is peculiar that the trained models in the current section perform better on the test
data than on their own training data. To verify the statement, the models have been
tested among one-another, so the vortex trained model with exponential test settings and
visa versa. The results are noted in Table 6.7. The models perform worse than tested
on the shear case, and are in line with the error in the model training phase, with model
M1,U3,2 diverging. Only model M2,U3,3 has shown decent behaviour, where the general
error is low. For model M2,U3,3, note that the final time step error is off and a better final
time step error for ϕ is found with Model M2,U3,2.

Table 6.7: Errors of the vortex and exponential trained models tested on the vortex case
for the exponential models and tested on the exponential models for the vortex models,
for trained models with the third incomplete library function case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,U3,1 8.9 2.4 27.4 9.5
M1,U3,2 10.2 3.1 39.2 16.0
M1,U3,3 NAN NAN NAN NAN
M2,U3,1 15.8 8.5 46.0 26.1
M2,U3,2 8.1 11.0 5.1 25.3
M2,U3,3 2.8 1.7 12.9 4.2

The result from Table 6.7 are seen in Figures 6.45 and 6.46, showing the average develop-
ment of ψ and ϕ. It can be seen that modelsM2,U3,2 andM2,U3,3 performed decently, with
model M2,U3,2 being closer to the steady state value compared to model M2,U3,3. Model
M2,U3,3 has a better initial development than model M2,U3,2. The vortex trained models,
M1,U3,1 and M1,U3,2 are both off and perform poorly with different behaviour overall.

Figure 6.45: The average of ψ − ϕ of the three trained models for the exponential case
missing the f 3 term with a additional terms including f 6 and f 7 tested on the vortex
case, with ϕ on the left and ψ on the right.
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Figure 6.46: The average of ψ−ϕ of the three trained models for the vortex case missing
the f 3 term with a additional terms including f 6 and f 7 tested on the exponential case,
with ϕ on the left and ψ on the right.

Figures 6.47 and 6.48 show the cross sections of the trained models and the ground truth.
No particular model has a perfect fit, but M2,U3,3 shows decent prediction of the slope
and the core of the vortex and has similar characteristics compared to the ground truth.
Model M2,U3,3 is the best performing model from Subsection 5.3.3 of Chapter 5 and the
results are in line with the findings in that section. Model M2,U3,3 is the only decent
functioning model lacking the functional form f 3 term, using additional f 6 and f 7 terms,
even if there is a small deviation with the value in the final step.

Figure 6.47: Cross checking between models for the models trained with the exponential
data tested on the vortex case for the trained cases where the f 3 term is lacking from the
candidate library but with additional f 6 and f 7 terms.

Figure 6.48: Cross checking between models for the models trained with the vortex data
tested on the exponential case for the trained cases where the f 3 term is lacking from the
candidate library but with additional f 6 and f 7 terms.
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Deep Dive for Models with the Third Incomplete Candidate Library

The best performing models per trained velocity case are the M1,U3,2 and M2,U3,3 models.
TheM1,U3,2 model has a single additional ϕf 7 term from the additional candidate options
while also having an additional ϕ3f 1 and ϕf 5 term in the overall model. The model lacks
the ϕ2f 0, ϕ2f 4 and ϕ2f 5 terms of the ground truth. The lack of ϕ2f 0 can be explained
by the high correlation with f 1 and f 0 terms (Appendix F, Figure F.2), resulting in a
redistribution of the destruction term. The ϕ2f 4 term correlates well with the functions
of f 4, and can be explained in the different coefficient of the f 4 terms compared to the
true functional form. In a similar extent, the loss of ϕ2f 5 be explained by the gain of ϕf 5.
ϕf 7 is the only form to be introduced of the candidate library, and is highly correlated
with f 3.

For M2,U3,3, the f
7 term is the only new term from the new candidate library functions.

The model lacks the ϕ2f 4 and ϕ2f 5 terms with an addition in the f 1, ϕ2f 1 and ϕf 5

term. Similar to model M1,U3,2, the lack of ϕ2f 5 and ϕ2f 4 can be explained by the
highly correlated functional forms containing f 5 and f 4. Similar to model M1,U3,2, the
f 7 term is selected to replace the f 3 term and the addition of f 1 and ϕ2f 1 can be seen
as a redistribution of the destruction term among highly correlated terms (Appendix F,
Figure F.3 for the correlation heat map). Models M1,U3,2 and M2,U3,3 have a similar build
up of the equation with different testing results.

Figures 6.49 and 6.50 show the workings of the ridge prediction versus the least squares
prediction. For both cases, the terms that are highly correlated with one another are
damped by the ridge penalty, with high correlation between terms for the f 2 related
functions in Figure 6.50. For Figure 6.49, the f 1, f 2 and f 4 cases are damped significantly
by the ridge penalty eliminating the positive-negative coefficient behaviour discussed in
Section 6.1. The cases with a high variance (Figure F.1 in Appendix F for the variance
figure) are damped more significantly than the lower variance values as expected with
Ridge regression.

Figure 6.49: The normalised coefficient prediction of least squares and ridge regression
for the vortex case for an incomplete library missing the f 3 related terms with additional
f 6 and f 7 terms.
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Figure 6.50: The normalised coefficient prediction of least squares and ridge regression for
the exponential case for an incomplete library missing the f 3 related terms with additional
f 6 and f 7 terms.

The z-score and the amount of iterations can be seen in Figures 6.51 and 6.52. Similar
to previous cases, the z-scores for f 2 and f 4 are high while the z-scores of f 6 and f 7 are
prevalent.

For modelM1,U3,2, all the z-scores for the added candidate functions f 6 and f 7 are high in
value, with some increasing in importance during the iteration procedure before eventually
being eliminated. The term that ends up in the final form does not have a high z-score
from the onset and at the end of iterating only has a low value.

For modelM2,U3,3, more functions carry a higher z-score than modelM1,U3,2, in particular
for functions related to f 2, f 4 and f 5. For the current case, after the first iteration, the
importance on functions related to f 7 increases, but while eventually all multiples with ϕ
go to zero, only f 7 survives on a low z-score, similar to model M2,U3,3. The explanation
might be that the selected functions are not compensating for the presence of other
highly correlated functions (the positive-negative oscillation discussed in Section 6.1).
If a function is eliminated, it might trigger highly correlated functions to be eliminated
at a further stage while the low z-score function is not affected, even if highly correlated.

Figure 6.51: The z-score and amount of iterations for the vortex trained model M1,U3,2,
lacking the f 3 related terms in the library with additional f 6 and f 7 terms with a z-score
of 0 meaning that a function is eliminated in the process..
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Figure 6.52: The z-score and amount of iterations for the exponential trained model
M2,U3,3, lacking the f 3 related terms in the library with additional f 6 and f 7 terms with
a z-score of 0 meaning that a function is eliminated in the process..

6.2.4 Cross Checking for the Fourth Incomplete Candidate Li-
brary

The current section analyses the models that have U4 in the model tag. An overview of
the models can be found in Appendix H.

Cross Checking for the Fourth Incomplete Candidate Library

Table 6.8, show the trained models with a candidate library not including the f 4 terms,
but the highly correlated f 8 terms tested on the shear case. The numbers show quite a
large error for all cases in ϕ and a moderate to acceptable error for ψ. Only the final
step value of model M2,U4,3 shows a low error, but note that the overall error for ϕ is
significant.

Table 6.8: Errors of the vortex and exponential trained models tested on the shear case
for the fourth incomplete library function case.

Model ξpost,ϕ (%) ξpost,ψ (%) ξpost,ϕ at tfin(%) ξpost,ψ at tfin (%)

M1,U4,1 41.0 5.5 27.6 7.0
M1,U4,2 53.3 6.3 38.6 7.8
M2,U4,1 32.8 3.2 35.6 6.0
M2,U4,2 31.2 2.8 23.6 3.8
M2,U4,3 31.7 2.6 3.6 1.3

The poor errors from Table 6.8 can be seen in the temporal time progression in Figures
6.53 and 6.54. Model M2,U4,3 has unique behaviour, with a large error at an early time
stage and a moderate error when approaching steady state. ModelM2,U4,3 shows different
overall behaviour compared to the other models that function more as a scaled solution of
the true value. All models follow ψ well, but an error build-up is present with increasing
time.
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Figure 6.53: The error per time step of the two trained models for the vortex case missing
the f 4 term with a additional terms including f 8 terms tested on the shear case, with ϕ
on the left and ψ on the right.

Figure 6.54: The error per time step of the three trained models for the vortex case
missing the f 4 term with a additional terms including f 8 terms tested on the shear case,
with ϕ on the left and ψ on the right.

The results from Table 6.8 and Figures 6.53 and 6.54 coincide with the findings in the
cross-cut pictures of Figures 6.55 and 6.56, where all models show a different behaviour
compared to the ground truth. All models have difficulty with prediction of the local
production, underestimating the production in all cases. Model M2,U4,3 is an exception,
as it follows the ground-truth the best, but compared to earlier trained models with
incomplete libraries it performs poorly and the behaviour compared to the ground truth
is not similar.

Figure 6.55: Cross checking between models for the models trained with the vortex data
tested on the shear case for the trained cases where the f 4 term is lacking from the
candidate library but with additional f 8 terms.
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Figure 6.56: Cross checking between models for the models trained with the exponential
data tested on the shear case for the trained cases where the f 4 term is lacking from the
candidate library but with additional f 8 terms.

Figures 6.57 and 6.58 show the final time step of the solution and are also not recognisable
compared to the ground truth, Figure 4.16. No model is able to correctly show qualita-
tively similar behaviour and modelM2,U4,3, that arguably has shown the best performance,
shows quite different behaviour.

Figure 6.57: The final time steps of the models trained with the vortex data for a candidate
library lacking the f 4 term with additional f 8 terms with on the left model M1,U4,1 and
on the right model M1,U4,2.

Figure 6.58: The final time steps of the models trained with the exponential data for a
candidate library lacking the f 4 term with additional f 8 terms with on the left model
M2,U4,1, in the middle M2,U4,2 and on the right model M2,U4,3.

Deep Dive for Models with the Third Incomplete Candidate Library

The models used for a further analyses per velocity case are models M1,U4,1 and M2,U4,2.
ModelM1,U4,1 has only the f 2 and f 3 terms of the original model, adding different function
forms such as ϕf 2, ϕ3f 2, f 8, ϕf 8, ϕ2f 8 and ϕ4f 8. All the f 8 terms are highly correlated
among one another and with the replacement f 4 function (Appendix F, Figure F.2 for
the correlation heat map). The result is a positive-negative oscillation, similar to Section
6.1, where significantly varying coefficients of the f 8 functions are found. The additional
f 2 functions can be an explanation of the negative correlation it has with the lacking f 4
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function. As the PDE FIND procedure struggles to find a decent result, additional f 2

functions might be chosen over the desired f 8. The addition of f 2 terms can also be a
replacement for destruction terms as no destruction terms (f 0 and f 1) are present in the
current work. The lacking destruction terms correlate negatively with f 2, but to a lesser
extent than the functions containing f 8.

For model M2,U4,2, only the f 8 term is included as an additional term, with the f 8 term
needed to obtain an initial production for ϕ. Compared to the original, the solution lacks
the ϕ2f 5, ϕ2f 0 and ϕf 1 term. It has an additional ϕf 0 and ϕ3f 1 term. The destruction
functions related to f 1 and f 0 are all highly correlated among one another (Appendix
F, Figure F.3 for the correlation heat map) and different terms for f 1 and f 0 can be
explained as the procedure favouring different highly correlated destruction terms, giving
a redistribution of the terms.

Figures 6.59 and 6.60 show the difference between the least squares prediction and the
ridge prediction. Ridge regression damps out multiple functions that are correlated with
one another, such as the f 1 functions having high fluctuating coefficients in Figure 6.59.
The f 8 related functions are damped less and explains the result that there are multiple
functions with f 8 in the model M1,U4,1. All the highly correlated destruction terms are
damped well by the ridge regressor.

Model M2,U4.2 has a more pronounced damping with the ridge regression. It reduces all
the correlated functions, as in the functions related to f 3 and shrinks the coefficients more
than M1,U4,1.

Figure 6.59: The normalised coefficient prediction of least squares and ridge regression
for the vortex case for an incomplete library missing the f 4 related terms with additional
f 8 terms.
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Figure 6.60: The normalised coefficient prediction of least squares and ridge regression for
the exponential case for an incomplete library missing the f 4 related terms with additional
f 8 terms.

Figures 6.61 and 6.62 show the z-score and the amount of iterations to convergence. The
f 2 term carries a significant z-score, increasing the likelihood that it is involved. Rather
than f 4 having a high z-score, f 8 has a high z-score. The f 8 term is the only function
that is dependent on the velocity of the flow in the current candidate library and is able
to generate ϕ from an initial condition of zero among the domain.

In Figure 6.61, multiple functions carry a z-score greater than 5, including the function
ϕf 2, what is not in the true system. All the f 0 and f 1 related functions have a low z-
score, meaning that ϕf 2 functions are a substitute for those functions. All the f 8 related
functions have a large z-score, a consequence of the not so strong shrinkage of the ridge
regression.

In Figure 6.62, a more similar picture to the true full system result is given, Figure 6.19,
where a greater z-score is given for the destruction driven functions, f 0 and f 1. It is good
to note that after an initial elimination of a few functions, f 2 and f 3 related functions
have a rise in z-score, however the l0 error penalty of PDE FIND works well here and
penalises a less sparse solution, forcing elimination of those terms.

Figure 6.61: The z-score and amount of iterations for the exponential trained model
M1,U4,1, lacking the f 4 related terms in the library with additional f 8 terms with a z-score
of 0 meaning that a function is eliminated in the process..
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Figure 6.62: The z-score and amount of iterations for the exponential trained model
M2,U4,2, lacking the f 4 related terms in the library with additional f 8 terms with a z-score
of 0 meaning that a function is eliminated in the process..

6.3 The Current Work and Turbulence Modelling
There are six different library candidate cases for three specific velocity test cases in the
current report. From the six library cases, there are five main cases that are validated, the
full PDE system, a PDE system where a small contribution of the solution is unknown in
the candidate library (the first incomplete candidate library), a PDE system where a large
contribution of the system is unknown in the candidate library (the second incomplete
candidate library), a PDE system where a large contribution of the system is unknown
in the candidate library with a larger candidate library with highly correlated functions
(the third incomplete candidate library) and a case where the invariant/production term
is incorrect but highly correlated with the true functional form (the fourth incomplete
candidate library). For a full rundown of all the trained models, please look at Appendix
H.

For the full candidate library case, the complete model was able to be returned. That
happened only for the exponential velocity case at just one specific λ and tolerance com-
bination in one specific search window (a λ value of 10−5 with a tolerance of 1). The other
models found for the exponential case, all show good behaviour with the training data
(See Figures 5.7, 5.8 and 5.9 from Chapter 5) and created a near perfect result when cross
checked (Figures 6.12, 6.3, 6.7, 6.13 and 6.4, 6.8). For a complete candidate library, PDE
FIND will find suitable results even if the true form is not detected by the algorithm.

For the case where a small contribution was lacking (The first incomplete library case
from Section 3.3 from Chapter 3), being the quartic/ϕ2f 5 term, satisfying models were
found for both the trained velocity cases. The trained models performed well on their
own data (Figures 5.17 and 5.18 from Chapter 5) and performed well for validating with
the shear case (Figures 6.21 and 6.22). For all cases, but most importantly the shear
case, the quartic/ϕ2f 5 term has a small contribution to the overall result (Figures 4.21
and 4.22), and the replacement functions did not create a worse results. PDE FIND will
find suitable models when a small term is lacking and will not create a worse performing
model where the contribution has a small influence.

The case where a large contribution was lacking, being the cross diffusion/f 3 term, the
two velocity trained models performed poorly (The second incomplete library case from
Section 3.3 from Chapter 3) . The models didn’t provide a good prediction compared to
their own training cases (Figure 5.23 and 5.18 from Chapter 5) and the validation on the
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shear case (Figures 6.31 and for 6.24) was not satisfactory, not providing a reliable result.
The values of ψ were better predicted than ϕ, what could have been due to a single term
connecting ϕ to ψ in the ψ equation that is driven by the strain rate (Please see (3.1)),
damping the affect of an incorrect ϕ prediction. PDE FIND is not comfortable with
finding replacement models for an incorrect candidate library with a large and unique
contribution lacking.

The addition of extra highly correlated functional forms to the missing f 3 term, being
f 6 and f 7, in the incomplete library (The third incomplete library case from Section 3.3
from Chapter 3) provided an improvement. One model was found, being M2,U3,3 that
resembles the trained and two test cases decently. For these cases, it is interesting that
the tested shear cases performed better than the trained a posteriori error. The results
from model M2,U3,3 are satisfactory and the model is sparse (except for the destruction
related f 1 terms). There is a small offset in the solution for the validation with the
vortex case, Figure 6.47, but the characteristic behaviour is similar and the solution is
acceptable. The addition of extra highly correlated functions does help PDE FIND with
finding acceptable models for candidate libraries that lack a significant contribution.

For the incomplete library case where all the strain rate driven (f 4) processes are replaced
by a different highly correlated production terms (The fourth incomplete library case from
Section 3.3 from Chapter 3) poor and unreliable results were found. In the training step,
the a posteriori error and the time development (Figures 5.34 and 5.35 from Chapter 5) for
the vortex trained models are poor while the exponential trained models are satisfactory.
When the models are cross validated with the test shear case (Figures 6.55 and 6.56), both
the vortex and exponential cases showed an unreliable and poor result, with no particular
model able to partially represent the mechanics of the solution. Note that ψ, similar to
previous cases, is predicted rather well, even if there is a poor prediction of ϕ (M2,U4,1

and M2,U4,2).

Through-out the report, different search windows were used by the author on a trial-by-
error basis. Different search windows yield different results for the regression routine. An
overview of the search windows used is given in Appendix C. The true identified model,
M2,F,2 was identified in a specific search window for only one specific case. Similar for
model M2,U3,3 where only one specific search window for one specific condition provided
one good result. Without the different search window, the results described here would
be different.

Through the whole experiment, the functions that were most of the time discovered by
the regression algorithm, were f 2 and f 4. The f 4 function has a large contribution in
the overall solution (Figure 4.21) while f 2 has a large amplitude in the solution (Figure
4.22). The regression algorithm was able to find these functions with coefficients similar
to the true form. The z-scores (Figures 6.18, 6.19, 6.20, 6.27, 6.28, 6.37, 6.38, 6.51, 6.52,
6.61 and 6.62) of f 2 and f 4 were distinctive and PDE FIND was able to reliable find the
functions with often a decent coefficient (often within a few percent with 20 % as the
worst). The f 3 term was similar, but less consistent through-out the whole experiment
and for the incomplete library case with a different production term, the f 3 term was
poorly recognised.

A lot of functions that were highly correlated among one another, showed a redistribution
of terms. Most often it was the case with functions consisting of the f 0 and f 1 terms
(destruction terms), where the ground truth form was not recognised well, but a different
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highly correlated function was recognised. The result is a different, but good performing
a solution. The distributions mostly occurred with the incomplete candidate libraries,
where from the first iterations onwards a higher z-score, and therefore a higher likelihood,
was present for the incorrect correlated function.

The use of sparse regression algorithms for transport equation modelling is two-fold. If a
large part of the functions is known, or a large enough candidate library is used, a potential
solution can be found. Solutions that are slightly non-sparse, such as model M2,U3,3 can
be valid approximations of the solution. However, using incorrect invariant/production
terms or a too sparse of a candidate library can generate poor and unreliable results. With
the sensitivity to the production term, special care should be made to have an extensive
candidate library with viable production terms. The most important functional forms
to the solution will always be found by sparse regression and for recognising the most
important contributions to the solution, PDE FIND will provide insight.

The use of the material derivative rather than the time derivative in PDE FIND was
satisfactory and no problems were found, similar with the use of rotational invariant
functions for the library functions. On the contrary, the use of non-rotational invariant
forms provided difficulty in finding result. For the diffusion term, not grouping the x and
y components together provided cases where often one of the directional components was
not detected. Grouping them together provided robust detection of the form.





7. Conclusions and
Recommendations

Following the results and discussion from the Chapters 4, 5 and 6, an answer to the
research question will be provided. The main conclusion, answering the research question
is written in Section 7.1 while recommendations are given in Section 7.2.

7.1 Conclusion

The current work analysed PDE FIND by Rudy et al [40], for the (future) purpose of
creating a non-local transport equation that is able to model the residual from k-frozen
RANS to create a universal RANS model that is more accurate than the standard models.
The research question reads: How can sparse regression provide a trained model for non-
local temporal behaviour in a model problem to represent the residual in k-frozen RANS?

A model problem was created, dubbed the ψ − ϕ system, where the ψ function modelled
the k-equation and ϕ modelled the Reynolds stress with the main assumption that most
of the residual was contained within the Reynolds stress. On the model problem, six
different model training experiments were performed, being training on a smaller partial
ψ−ϕ system, training on the full ψ−ϕ system and four training cases with an incomplete
candidate library with varying difficulty, aimed to mimic the uncertainties between RANS
and high fidelity data. These models were tested among test cases that were different than
the training case to show the universality of the models.

From the experiments, it can be found that the linear sparse regression routine can provide
satisfactory models for a transport equation. If a large portion of the true functional
form is not represented by the candidate functions, a large candidate library with highly
correlated candidates to the missing form is able to train a well performing model. The
exception is for the invariant/production terms, where a full understanding of those terms
is beneficial for creating a correct transport equation.

Sparse regression is able to correctly identify the most important functions with an ac-
curate enough coefficient, even if a trained model performs poorly. Functions having a
significant contribution to the average solution or having a large amplitude in the solution
are reliably found by PDE FIND with the z-score being a sufficient tool in analysing the
importance of these terms.

For turbulence modelling, a highly correlated set of candidate functions, with a complete
as possible invariant candidate collection could potentially result in a viable transport
equation for the residual in k-frozen RANS, where PDE FIND should be able to find the
most important terms from high fidelity turbulence data.
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7.2 Recommendations
From the current work, multiple recommendations are provided. The recommendations
are split in two specific categories, being an improvement in the testing conditions, Sub-
section 7.2.1 and a future recommendation regarding application of the work, Subsection
7.2.2.

7.2.1 Improvements for the Experiment

The current ψ − ϕ model has limitations. It uses a steady state velocity over the domain
for the purpose of ease and understanding. An unsteady velocity connected to the ϕ
or ψ equations could provide a better representation of the chaotic behaviour found in
turbulence. For the equation, having ϕ as a tensor would be more analogous to the
Reynolds stress it represents, or the analogy should be changed to better argue the use
of a scalar variable.

The test cases are currently two dimensional with no noise. Turbulence is chaotic and
three dimensional in nature and an expansion to a three dimensional test case is advised.
Noise can be added to the problem, to reflect incoherencies in the averaging process used
in data driven turbulence models.

The spatial discretisation is rather poor, with for ψ being about O(10−1.2) and for ϕ about
O(10−1). A better discretisation method could provide a greater compliance to reality
and could improve regression potentially. If improved, the spatial discretisation could also
go down, improving computational efficiency and generating faster (a posteriori) results.

For the a priori-a posteriori diagrams, a specific a priori error was defined, where additional
terms, not included in the true functional form, got a penalty of one. The penalty did not
take into account the size of the coefficients, meaning that a relatively low a priori error
could be found while the coefficients where excessive for the additional, not true functional
form terms. An addition to the a priori error that penalises the size of the coefficients
could work and one could take the norm of the coefficients for instance, although that
might change the way a non-sparsity error is enforced.

The current a priori error also becomes large for the wrong coefficients of the true func-
tional form and masks the penalty of including the wrong terms. A hard limit for such a
value could generate more interesting a priori-a posteriori diagrams and change the result.

The sparse linear regression algorithm used in the current work, PDE FIND, is tuned only
for λ and tol in the experiments. PDE FIND has more hyper parameters, such as µ and
the amount of iterations for STRidge. Performing the same study with different values
for µ could be interesting, in particular an increase in µ. It can allow for different results
as it penalises non-sparse solutions more and provide different models, in particular for
models that have a high correlation among functions.

In the current work, only one specific sparse regression method, being PDE FIND by
Rudy et al [40], was tested. Different regression methods, such as SBL (Zhang et al [47],
Nayek et al [90], Yuan et al [48], Zhang and Ling [49] and [50]) or weak formulation
strategies (group of Grigoriev [51, 52, 53], Messenger and Bortz [54, 55]) and more, exist
for creating sparse models from data. A comparison of methods for incomplete candidate
libraries can be interesting, in particular with a focus on how a method converges to a
result.
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7.2.2 Future Developments and Strategies

The z-score has proven to be a reliable tool for finding the most important functional
forms, even in trained models that perform poorly a posteriori. A good future work will
be to develop a strategy in finding a new transport equations, with sparse linear regression
as a tool to help find functional forms for the solution, rather than creating the solution.
Such a strategy might allow for more control in the model form electing process, and
create a better understanding in how the terms work with one another.

If a good strategy is defined for finding functional forms, real turbulence data such as
the periodic hill can be used to train transport equation models. A more analogous
system can also be considered, one where a more representative, multi-equation system
is used. For using real turbulence data, an extensive study should be performed for all
the terms, having an complete as possible invariant/strain-rate driven term library with
a large set of candidate functions, that do not correlate with other candidates. The most
sparse solution might also not always be the most accurate solution, even if it easier to
understand, and with turbulence data a researcher should be open to vary in the level of
sparsity of a transport function for the residual.

One of the main conclusions found by accident is the sensitivity of the search windows.
Often enough, a specific solution was found for a specific search windows with a specific
set of hyper parameters. The only satisfying model where a large part of the solution was
lacking (incomplete candidate libraries 2 and 3), was model M2,U3,3, found at one specific
condition for one specific set of hyper parameters. The same is for model M2,F,2 where
the true functional form was obtained for one specific search window and one specific
set of hyper parameters. A search window specific study might be interesting and for
the purpose of using sparse regression for finding models, multiple search windows can
definitely provide more satisfactory models.





A. Tensor bases

The current appendix provides the full mathematical bases related to the non-linear
anisotropic generalisation of the eddy viscosity assumption, also known as the gener-
alisation by Pope [17]. The generalisation states that the Reynolds stress can be build-up
from a finite set tensor bases with invariants that can act as coefficients. The following
ten tensor bases are found

T 1
ij = Sij (A.1) T 2

ij = SikΩkj − ΩikSkj (A.2)

T 3
ij = SikSkj −

1

3
δijSmnSnm (A.3) T 4

ij = ΩikΩkj −
1

3
δijΩmnΩnm (A.4)

T 5
ij = ΩikSknSnj − SikSknΩnj (A.5)

T 6
ij = ΩikΩknSnj + SikΩknΩnj−

2

3
δijSlkΩknΩnl

(A.6)

T 7
ij = ΩikSknΩnmΩmj−

ΩikΩknSnmΩmj

(A.7)
T 8
ij = SikΩknSnmSmj−

SikSknΩnmSmj
(A.8)

T 9
ij = ΩikΩknSnmSmj+

SikSknΩnmΩmj −
2

3
δijSlkSknΩnmΩml

(A.9)

T 10
ij = ΩikSknSnmΩmlΩlj−

ΩikΩknSnmSmlΩlj

(A.10)

The invariants, that can form a part of the coefficients are

I1 = SikSkj (A.11) I2 = ΩikΩkj (A.12) I3 = SikSknSnj (A.13)

I4 = ΩikΩknSnj (A.14) I5 = ΩikΩknSnmSmj (A.15)
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B. The Weak Form for the
Simulations

The derivation of the weak form for FEnICsx of the ψ − ϕ of Equation (3.1), (3.2) and
(3.4) are found in the current Appendix.

B.1 The Weak Form

FEniCSx is a finite element solver, and solves the PDE equation in terms of the weak (or
variational) form. The weak form is obtained by multiplying the PDE with a function v
and subsequently integrating it over a certain domain Ω. The result is a PDE of the form
in Equation (B.1). The weak form states that a relation holds over a domain rather than
at a point (as is the case for the hard form, the form used throughout the report) and an
equation is sought that follows

L(f, v) = a(u, v) (B.1)

where a is the bilinear form, L the linear form, u is the parameter of interest, f an arbitrary
source term and v is the test function. The function v is able to vary independently.

In the case of the heat equation,

−∂
2u

∂x2
= f (B.2)

the resulting weak formulation starts with multiplication with the test function v and
integrate it over Ω, resulting in

−
∫
Ω

∂2u

∂x2
v dx =

∫
Ω

fv dx (B.3)

Using integration by parts, (B.3) becomes

∫
Ω

∂u

∂x

∂v

∂x
dx−

∫
∂Ω

∂u

∂n
v ds =

∫
Ω

fv dx (B.4)

At the boundaries, the flux of u is 0 (Neumann boundary condition) resulting in

∫
Ω

∂u

∂x

∂v

∂x
dx =

∫
Ω

fv dx (B.5)
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where the left hand side of the equation is equal to a(u, v) and the right hand side equal
to L(f, v).

In the given weak formulation, the Neumann boundary condition is stated to be natural.
For a Neumann boundary condition in (B.7), the boundary integral of (B.4) becomes

∫
∂Ω

∂u

∂n
v ds = gv ds (B.6)

A Dirichlet boundary condition (As in (B.8)) could be essential and has to be inferred on
the solution. For a Dirichlet boundary condition, the boundary integral of (B.4) drops, as
the trail function v will vanish to zero as the solution for u is known is on the boundary.

∂u

∂x
= g (B.7) u(x) = ud (B.8)

For a more in-depth look into finite element methods and how it is used in FEniCSx,
like for instance the Solobov space, one is recommend to look at the FEniCSx tutorial by
Langtangen and Logg [104] or the finite element book of Brenner and Scott [105]

B.2 The Weak Formulation of ψ

For solving ψ in FEniCSx, the form in (B.1) is sought. The ψ equation is found in (3.1)
and applying an forward-backward Euler scheme, the equation becomes

ψn+1 − ψn

∆t
+ ui

∂ψn+1

∂xi
= c1ϕ

nSijSij + c2
∂2ψn+1

∂xi∂xi
− c3 (ψ

n)2 (B.9)

Here, all non-linear terms take the value from the previous iteration (forward Euler) and
all linear terms take the value from the to be predicted iteration (backward Euler) to
conform to the bi-linear form. The value of ϕ is taken from the previous time step.

Equation (B.9) can be split in the future time step n+ 1 as equation a and the previous
known time step equation n as L. The future time step a grouped together for ψ gives

a(ψn+1) = ψn+1 +∆t

(
ui
∂ψn+1

∂xi
− d2

∂2ψn+1

∂xi∂xi

)
(B.10)

From (B.10), the weak form can be found by integrating the whole system and multiplying
it by the test function q, resulting in

a(ψn+1, q) =

∫
Ω

(
ψn+1 +∆t

(
ui
∂ψn+1

∂xi
− d2

∂2ψn+1

∂xi∂xi

))
q dx (B.11)

From (B.11), the diffusion term can be converted with integration by parts. Using a zero
Neumann boundary condition along the border, the final weak form used in FEniCSx for
a becomes

a(ψn+1, q) =

∫
Ω

(
ψn+1 +∆t

(
ui
∂ψn+1

∂xi
q − d2

∂ψn+1

∂xi

∂q

∂xi

))
dx (B.12)
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For the current time step equation L, the collection of terms are

L = ψn −∆t
(
d1ϕ

nSijSij − d3 (ψ
n)2
)

(B.13)

Equation (B.13) is similar to the a equation and can be integrated and multiplied by the
test function q to obtain the final L equation used for FEnICsx. The L equation in the
weak form becomes

L(q) =

∫
Ω

(
ψn −∆t

(
d1ϕ

nSijSij − d3 (ψ
n)2
))
q dx (B.14)

B.3 The Weak Formulation of ϕ

For the ϕ equation, a similar approach for obtaining a form in like (B.1) can be performed.
The ϕ equation is found in (3.2) and applying a forward-backward Euler scheme, the
equation becomes

ϕn+1 − ϕn

∆t
+ ui

∂ϕn+1

∂xi
= d1ϕ

n+1SijSij + d2
∂2ϕn+1

∂xi∂xi
− d3 (ϕ

n)2 + add (B.15)

Here, all the non-linear terms take the value from the previous iteration (forward Euler)
and all linear terms the to be predicted value (backward Euler) to conform to the bi-
linear form. The value of ψ is taken from the previous time step. The additional terms
associated with Equation (B.15) are

add = d4SijSij + d5
∂ϕn∂ψn

∂xi∂xi
+ d6 (ϕ

n)2 SijSij − d7ψ
nϕn − d8 (ϕ

n)2
∂ϕn

∂xi

∂ϕn

∂xi
(B.16)

Equations (B.15) and (B.16) can be split in the future time step n+ 1 as equation a and
the previous known time step equation n as L. The future time step a grouped together
for ϕ gives

a(ϕ‘n+1) = ϕn+1 +∆t

(
ui
∂ϕn+1

∂xi
− d1ϕ

n+1SijSij − d2
∂2ϕn+1

∂xi∂xi

)
(B.17)

From (B.17), the weak form can be found by integrating the whole system and multiplying
it by the test function q, resulting in

a(ϕ‘n+1, v) =

∫
Ω

(
ϕn+1 +∆t

(
ui
∂ϕn+1

∂xi
− d1ϕ

n+1SijSij − d2
∂2ϕn+1

∂xi∂xi

))
v dx (B.18)

With (B.18), the diffusion term can be converted using integration by parts. Using a zero
Neumann boundary condition along the border, the final weak form used in FEniCSx for
a becomes
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a(ϕn+1, v) =

∫
Ω

(
ϕn+1 +∆t

(
ui
∂ϕn+1

∂xi
− d1ϕ

n+1SijSij

)
v −∆td2

∂ϕn+1

∂xi

∂v

∂xi

)
dx (B.19)

For the current time step equation L, the collection of terms are

L = ϕn −∆t

(
d3 (ϕ

n)2 + d4SijSij + d5
∂ϕn∂ψn

∂xi∂xi
+ d6 (ϕ

n)2 SijSij

−d7ψnϕn − d8 (ϕ
n)2

∂ϕn

∂xi

∂ϕn

∂xi

) (B.20)

Equation (B.11) is similar to the a equation and can be integrated and multiplied by the
test function q to obtain the final L equation used for FEnICsx. The L equation in the
weak form becomes

L(q) =

∫
Ω

(
ϕn −∆t

(
d3 (ϕ

n)2 + d4SijSij + d5
∂ϕn∂ψn

∂xi∂xi
+ d6 (ϕ

n)2 SijSij

−d7ψnϕn − d8 (ϕ
n)2

∂ϕn

∂xi

∂ϕn

∂xi

))
v dx

(B.21)



C. The Sampling Windows

The current appendix provides the reader with the sampling space for each tested velocity
case.

C.1 Sampling Windows for the Partial PDE System

Vortex Velocity Case

Figure C.1: The sampling area for the vortex case for the partial PDE system.

Exponential Velocity Case

Figure C.2: The sampling area for the exponential case for the partial PDE system.

Shear Velocity Case

Figure C.3: The sampling area for the shear case for the partial PDE system, with on
the left the sampling windows denoted with blue marks and on the right the sampling
window denoted with red marks in the a priori-a posteriori diagrams.
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C.2 Sampling Windows for the Full PDE System

Vortex Velocity Case

Figure C.4: The sampling area for the exponential case for the full PDE system.

Exponential Velocity Case

Figure C.5: The sampling area for the exponential case for the full PDE system, with on
the left the sampling windows denoted with blue marks and on the right the sampling
window denoted with red marks in the a priori-a posteriori diagrams.

Shear Velocity Case

Figure C.6: The sampling area for the shear case for the full PDE system, with on the left
the sampling windows denoted with blue marks and on the right the sampling window
denoted with red marks in the a priori-a posteriori diagrams.



D. The Candidate Dictionary

Table D.1 show the full candidate libraries associated with the report for all experiments

Table D.1: All candidates for each experiment used in the current report.

Number Partial Full U1 U2 U3 U4

1 f 0 f 0 f 0 f 0 f 0 f 0

2 f 1 f 1 f 1 f 1 f 1 f 1

3 f 2 f 2 f 2 f 2 f 2 f 2

4 f 3 f 3 f 3 f 4 f 4 f 3

5 f 4 f 4 f 4 f 5 f 5 f 8

6 f 5 f 5 ϕf 0 ϕf 0 f 6 f 5

7 ϕf 0 ϕf 0 ϕ2f 0 ϕ2f 0 f 7 ϕf 0

8 ϕf 1 ϕf 1 ϕ3f 0 ϕ3f 0 ϕf 0 ϕ2f 0

9 ϕf 2 ϕf 2 ϕ4f 0 ϕ4f 0 ϕ2f 0 ϕ3f 0

10 ϕf 3 ϕf 3 ϕf 1 ϕf 1 ϕ3f 0 ϕ4f 0

11 ϕf 4 ϕf 4 ϕ2f 1 ϕ2f 1 ϕ4f 0 ϕf 1

12 ϕf 5 ϕf 5 ϕ3f 1 ϕ3f 1 ϕf 1 ϕ2f 1

13 ϕ2f 0 ϕ2f 0 ϕ4f 1 ϕ4f 1 ϕ2f 1 ϕ3f 1

14 ϕ2f 1 ϕ2f 1 ϕf 2 ϕf 2 ϕ3f 1 ϕ4f 1

15 ϕ2f 2 ϕ2f 2 ϕ2f 2 ϕ2f 2 ϕ4f 1 ϕf 2

16 ϕ2f 3 ϕ2f 3 ϕ3f 2 ϕ3f 2 ϕf 2 ϕ2f 2

17 ϕ2f 4 ϕ2f 4 ϕ4f 2 ϕ4f 2 ϕ2f 2 ϕ3f 2

18 ϕ2f 5 ϕ2f 5 ϕf 3 ϕf 4 ϕ3f 2 ϕ4f 2

19 ϕ3f 0 ϕ3f 0 ϕ2f 3 ϕ2f 4 ϕ4f 2 ϕf 3

20 ϕ3f 1 ϕ3f 1 ϕ3f 3 ϕ3f 4 ϕf 4 ϕ2f 3

21 ϕ3f 2 ϕ3f 2 ϕ4f 3 ϕ4f 4 ϕ2f 4 ϕ3f 3

22 ϕ3f 3 ϕ3f 3 ϕf 4 ϕf 5 ϕ3f 4 ϕ4f 3

23 ϕ3f 4 ϕ3f 4 ϕ2f 4 ϕ2f 5 ϕ4f 4 ϕf 8

24 ϕ3f 5 ϕ3f 5 ϕ3f 4 ϕ3f 5 ϕf 5 ϕ2f 8

25 ϕ4f 0 ϕ4f 0 ϕ4f 4 ϕ4f 5 ϕ2f 5 ϕ3f 0

26 ϕ4f 1 ϕ4f 1 ϕ3f 5 ϕ4f 8

27 ϕ4f 2 ϕ4f 2 ϕ4f 5 ϕf 5

28 ϕ4f 3 ϕ4f 3 ϕf 6 ϕ2f 5

29 ϕ4f 4 ϕ4f 4 ϕ2f 6 ϕ3f 5

30 ϕ4f 5 ϕ4f 5 ϕ3f 6 ϕ4f 5

31 ϕ4f 6

32 ϕf 7

33 ϕ2f 7

34 ϕ3f 7

35 ϕ4f 7
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E. Test Cases and Hyper parameters

The PDE FIND algorithm by Rudy et al [40] uses hyper parameters for the regression
to obtain results. Table (E.1) show the hyper parameters for all test cases in the current
report

Table E.1: Table showing all PDE FIND simulations that are ran through the report

Candidate case Tolerance (-) λ (-)

Partial PDE Vortex 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Shear 1, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Shear
different window

0.25, 0.5, 1.5, 3, 5 10−2 ,10−3, 10−4, 10−5, 10−6

Full PDE Vortex 1, 2, 3, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential
different window

1, 3, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Shear 0.5, 1.5, 3, 5, 7.5 10−2 ,10−3, 10−4, 10−5, 10−6

Shear
different window

0.5, 1, 3.5, 5 10−2 ,10−3, 10−4, 10−5, 10−6

Incomplete Vortex 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

library one Exponential 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential
different window

1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Incomplete Vortex 2.5, 3.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

library two Exponential 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential
different window

1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Incomplete Vortex 1, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

library three Exponential 1.5, 2.5, 5, 7.5, 10 10−2, 10−3, 10−4

Exponential
different window

1, 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Incomplete Vortex 2.5, 5, 7.5, 10, 12.5, 15 10−2 ,10−3, 10−4, 10−5, 10−6

library four Exponential 1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6

Exponential
different window

1.5, 2.5, 5, 7.5, 10 10−2 ,10−3, 10−4, 10−5, 10−6
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F. Statistics of the Candidates

The current Appendix shows the statistics between all the functions giving multiple fig-
ures, with statistics.

The variance of all the data for each case is given in Figure F.1 and is given as the trace
of the covariance matrix,

COV(xi, xk) = σ2
y(XijXkj)

−1 (F.1)

Figure F.1: Variance of all the possible candidate functions for the full PDE case for the
STRridge regression algorithm

The Pearson correlation coefficient shows correlation between data, where one is an ex-
cellent positive correlation and negative one is an excellent negative correlation. The
equation for the Pearson correlation coefficient is

ρcor =
E[fxf y]− E[fx]E[f y]√

VAR[fx]VAR[f y]
(F.2)

Heatmaps are shown in Figures F.2, F.3 and F.4 for the vortex, exponential case and
shear cases.
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Figure F.2: Heatmap of the pearson correlation coefficient between functions related to
the vortex velocity case for the full case where S is the solution.
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Figure F.3: Heatmap of the pearson correlation coefficient between functions related to
the exponential velocity case for the full case where S is the solution.
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Figure F.4: Heatmap of the pearson correlation coefficient between functions related to
the shear velocity case for the full case where S is the solution.



G. Results of the Training
Simulations

The current appendix shows the training result for each specific candidate library and
velocity case. Places denoted with - show setting that have not been elected to run, N/D
is for not determined, and is related to PDE FIND not being able to run a case. It can
be due to threshold ridge regression not being able to eliminate terms or threshold ridge
regression eliminating all of the terms. NAN is for not a number and is stated when a
run has diverged. NAN is only related to the a posteriori error.
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Vortex Velocity with Partial PDE

Table G.1: PDE FIND results for the vortex velocity case with the partial PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 6.94 0.01 0.01 11.52 0.01 0.01 3.52 0.009 0.01 3.61 0.007 0.009 3.25 0.02 0.02
2.5 6.94 0.01 0.01 3.25 0.02 0.02 3.52 0.009 0.01 0.033 0.003 0.004 3.25 0.02 0.02
5 5.58 0.73 0.60 3.25 0.02 0.02 3.25 0.02 0.02 0.033 0.003 0.004 3.25 0.02 0.02
7.5 5.92 0.87 0.81 3.25 0.02 0.02 3.25 0.02 0.02 0.033 0.003 0.004 3.25 0.02 0.02
10 5.92 0.87 0.81 5.58 0.87 0.81 5.58 0.73 0.60 5.58 0.73 0.60 3.25 0.02 0.02

Exponential Velocity with Partial PDE

Table G.2: PDE FIND results for the exponential velocity case with the partial PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 6.31 0.01 0.002 7.54 0.001 0.001 0.058 0.003 0.001 0.058 0.003 0.001 0.058 0.003 0.001
2.5 7.00 0.01 0.002 2.71 0.006 0.001 0.058 0.003 0.001 0.058 0.003 0.001 2.69 0.001 0.009
5 4.40 0.03 0.007 3.30 0.07 0.03 0.058 0.003 0.001 0.058 0.003 0.001 2.69 0.001 0.009
7.5 5.74 0.53 0.24 5.74 0.53 0.24 0.058 0.003 0.001 0.058 0.003 0.001 2.69 0.001 0.009
10 5.74 0.53 0.24 5.74 0.63 0.24 N/D N/D N/D N/D N/D N/D 2.69 0.001 0.009
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Shear Velocity with Partial PDE

Table G.3: PDE FIND results for the shear velocity case with the partial PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1 7.98 0.07 0.009 4.71 0.13 0.01 3.59 0.04 0.004 1.14 0.001 0.0002 N/D N/D N/D
2.5 5.88 0.52 0.05 3.59 0.04 0.003 3.59 0.04 0.004 3.87 0.006 0.0005 4.71 0.13 0.01
5 5.88 0.52 0.05 5.88 0.52 0.05 5.88 0.52 0.05 N/D N/D N/D 4.71 0.13 0.01
7.5 5.88 0.52 0.05 5.88 0.52 0.05 5.98 NAN NAN N/D N/D N/D 4.71 0.13 0.01
10 5.88 0.52 0.05 5.88 0.52 0.05 5.98 NAN NAN N/D N/D N/D 4.71 0.13 0.01
0.25 DSW 3.69 0.04 0.003 3.69 0.04 0.003 3.62 0.004 0.009 1.16 0.0006 0.0001 80.84 0.11 0.01
0.5 DSW 3.69 0.04 0.003 4.68 0.12 0.01 3.69 0.04 0.003 1.16 0.0006 0.0001 11.60 0.01 0.001
1.5 DSW 3.69 0.04 0.003 5.81 0.48 0.03 3.69 0.04 0.003 3.69 0.04 0.003 11.10 0.007 0.001
3 DSW 3.69 0.04 0.003 5.81 0.48 0.03 3.69 0.04 0.003 3.69 0.04 0.003 5.12 0.02 0.002
5 DSW 5.81 0.48 0.03 5.81 0.48 0.03 5.81 0.47 0.03 5.81 0.48 0.03 5.12 0.02 0.002

Vortex Velocity with Full PDE

Table G.4: PDE FIND results for the vortex velocity case with the full PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1 8.78 0.02 0.02 7.41 0.009 0.009 4.59 0.009 0.009 17.3 0.03 0.02 N/D N/D N/D
2 8.78 0.02 0.02 4.85 0.01 0.01 7.80 0.009 0.009 8.14 0.05 0.03 N/D N/D N/D
3 5.40 0.11 0.09 4.85 0.01 0.01 5.45 0.009 0.01 8.14 0.05 0.03 11.0 0.03 0.01
5 7.93 0.89 0.83 4.85 0.01 0.01 5.40 0.11 0.09 1.73 0.01 0.01 4.51 0.03 0.02
7.5 7.93 0.89 0.83 4.51 0.03 0.02 5.40 0.11 0.09 2.47 0.01 0.01 11.0 0.03 0.01
10 7.93 0.89 0.83 4.51 0.03 0.02 5.40 0.11 0.09 1.73 0.01 0.01 4.51 0.03 0.02
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Exponential Velocity with Full PDE

Table G.5: PDE FIND results for the exponential velocity case with the full PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 5.43 0.02 0.005 11.72 0.01 0.005 9.27 0.003 0.001 10.2 0.003 0.001 8.65 0.01 0.004
2.5 4.37 0.02 0.005 4.37 0.02 0.005 4.71 0.007 0.002 4.37 0.02 0.005 16.1 0.003 0.002
5 4.37 0.02 0.005 4.37 0.02 0.005 4.71 0.007 0.002 8.05 0.11 0.03 5.20 0.007 0.002
7.5 8.05 0.11 0.03 4.37 0.02 0.005 4.71 0.007 0.002 8.05 0.11 0.03 5.20 0.007 0.002
10 4.37 0.02 0.005 4.37 0.02 0.005 8.05 0.11 0.03 8.05 0.11 0.03 5.20 0.007 0.002
1 DSW 6.08 0.01 0.002 5.59 0.006 0.002 6.75 0.003 0.001 0.15 0.003 0.001 16.6 0.006 0.002
3 DSW 7.95 0.12 0.04 7.95 0.12 0.04 4.74 0.005 0.001 4.36 0.02 0.005 4.36 0.02 0.005
5 DSW 7.95 0.12 0.04 7.95 0.12 0.04 5.79 0.005 0.001 6.44 0.25 0.07 6.44 0.25 0.07
7.5 DSW 7.95 0.12 0.04 7.95 0.12 0.04 7.95 0.12 0.04 6.44 0.25 0.07 7.81 0.56 0.26
10 DSW 7.95 0.12 0.04 7.95 0.12 0.04 7.95 0.12 0.04 6.44 0.25 0.07 7.81 0.56 0.26
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Shear Velocity with Full PDE

Table G.6: PDE FIND results for the shear velocity case with the full PDE with a full candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

0.5 7.34 0.85 0.08 6.91 0.09 0.01 6.51 0.08 0.008 10.25 0.006 0.0004 291.54 0.13 0.02
1.5 7.90 0.52 0.05 7.34 0.85 0.08 6.51 0.08 0.008 10.25 0.006 0.0004 78.97 0.03 0.003
3 7.90 0.52 0.05 7.90 0.52 0.05 6.51 0.08 0.008 7.90 0.52 0.05 83.40 0.03 0.003
5 7.90 0.52 0.05 7.90 0.52 0.05 7.90 0.52 0.05 7.90 0.52 0.05 11.47 0.009 0.002
7.5 7.90 0.52 0.05 7.90 0.52 0.05 N/D N/D N/D 7.90 0.52 0.05 6.05 0.03 0.001
0.5 DSW 7.16 0.02 0.004 2.32 0.002 0.0002 6.73 0.09 0.008 2.32 0.002 0.0002 138.40 0.02 0.003
1.5 DSW 7.16 0.02 0.004 6.73 0.09 0.008 7.83 0.48 0.04 2.32 0.002 0.0002 49.21 NAN NAN
3.5 DSW 7.83 0.48 0.04 7.83 0.48 0.04 7.83 0.48 0.04 7.83 0.48 0.04 15.33 0.02 0.002
5 DSW 7.83 0.46 0.03 7.83 0.48 0.04 7.83 0.48 0.04 7.83 0.48 0.04 65.92 0.03 0.002

Vortex Velocity with First Incomplete Library

Table G.7: PDE FIND results for the vortex velocity case with the full PDE with the first incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 7.79 0.02 0.02 8.74 0.007 0.009 2.66 0.01 0.01 7.21 0.007 0.01 18.16 0.02 0.02
2.5 4.40 0.11 0.09 3.51 0.03 0.02 2.66 0.01 0.01 7.21 0.007 0.01 3.51 0.03 0.02
5 6.93 0.89 0.83 3.51 0.03 0.02 2.66 0.01 0.01 4.40 0.11 0.09 8.64 0.02 0.02
7.5 6.93 0.89 0.83 3.51 0.03 0.02 6.59 0.75 0.63 6.59 0.75 0.63 8.64 0.02 0.02
10 6.93 0.89 0.83 3.51 0.03 0.02 2.66 0.01 0.01 6.93 0.89 0.83 11.18 0.007 0.009
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Exponential Velocity with First Incomplete Library

Table G.8: PDE FIND results for the exponential velocity case with the full PDE with the first incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 4.43 0.02 0.005 10.95 0.009 0.005 3.37 0.02 0.005 N/D N/D N/D N/D N/D N/D
2.5 3.37 0.02 0.005 7.05 0.11 0.03 3.37 0.02 0.005 3.37 0.02 0.005 12.01 0.01 0.005
5 3.37 0.02 0.005 7.05 0.11 0.03 7.05 0.11 0.03 5.06 0.10 0.01 4.74 0.007 0.002
7.5 7.05 0.11 0.03 7.05 0.11 0.03 7.05 0.11 0.03 7.05 0.11 0.03 4.74 0.007 0.002
10 3.37 0.02 0.03 7.05 0.11 0.03 7.05 0.11 0.03 7.05 0.11 0.03 4.74 0.007 0.002
1.5 DSW 5.21 0.03 0.005 3.36 0.02 0.005 8.75 0.001 0.001 1.34 0.008 0.002 1.34 0.008 0.001
2.5 DSW 6.95 0.12 0.04 6.95 0.12 0.04 3.74 0.001 0.001 3.36 0.02 0.005 3.36 0.02 0.005
5 DSW 6.95 0.12 0.04 6.95 0.12 0.04 3.74 0.001 0.001 5.44 0.25 0.07 5.44 0.25 0.07
7.5 DSW 6.95 0.12 0.04 6.95 0.12 0.04 6.95 0.04 0.04 5.44 0.25 0.07 5.44 0.25 0.07
10 DSW 6.95 0.12 0.04 6.95 0.12 0.04 6.95 0.04 0.04 5.44 0.25 0.07 5.44 0.25 0.07

Vortex Velocity with Second Incomplete Library

Table G.9: PDE FIND results for the vortex velocity case with the full PDE with the second incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

2.5 5.80 0.62 0.47 13.95 NAN NAN N/D N/D N/D N/D N/D N/D N/D N/D N/D
3.5 5.80 0.62 0.47 11.10 0.15 0.15 N/D N/D N/D N/D N/D N/D N/D N/D N/D
5 6.93 0.89 0.83 13.95 NAN NAN 38.42 0.34 0.31 46.20 0.28 0.27 99.93 0.09 0.08
7.5 5.80 0.63 0.47 9.78 NAN NAN 11.51 1.00 1.00 9.52 1.00 1.00 99.93 0.09 0.08
10 6.93 0.89 0.83 6.93 0.89 0.83 8.0 1.00 1.00 9.51 1.00 1.00 99.93 0.09 0.08
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Exponential Velocity with Second Incomplete Library

Table G.10: PDE FIND results for the exponential velocity case with the full PDE with the second incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 7.28 0.16 0.05 N/D N/D N/D N/D N/D N/D N/D N/D N/D - - -
2.5 7.28 0.16 0.05 7.28 0.16 0.05 18.29 NAN NAN N/D N/D N/D - - -
5 7.28 0.16 0.05 7.45 0.34 0.12 18.29 NAN NAN 66.17 NAN NAN - - -
7.5 7.28 0.16 0.05 6.81 0.57 0.26 9.24 NAN NAN 66.17 NAN NAN - - -
10 7.40 0.10 0.02 6.81 0.57 0.26 9.24 NAN NAN 66.17 NAN NAN - - -
1.5 DSW 7.31 0.17 0.05 13.84 NAN NAN 16.59 NAN NAN N/D N/D N/D N/D N/D N/D
2.5 DSW 7.41 0.32 0.11 7.31 0.17 0.05 12.17 NAN NAN 17.43 NAN NAN N/D N/D N/D
5 DSW 6.81 0.56 0.26 6.81 0.56 0.26 6.95 0.12 0.04 12.22 NAN NAN 115.18 NAN NAN
7.5 DSW 6.81 0.56 0.26 6.81 0.56 0.26 6.81 0.56 0.26 6.81 0.56 0.26 115.18 NAN NAN
10 DSW 6.81 0.56 0.26 6.81 0.56 0.26 6.81 0.56 0.26 6.81 0.56 0.26 115.18 NAN NAN

Vortex Velocity with Third Incomplete Library

Table G.11: PDE FIND results for the vortex velocity case with the full PDE with the third incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1 8.93 0.28 0.18 9.44 0.66 0.36 26.45 NAN NAN 63.38 0.10 0.08
2.5 6.58 0.50 0.31 8.98 0.19 0.11 26.45 NAN NAN 16.14 NAN NAN
5 6.58 0.50 0.31 8.98 0.19 0.11 26.45 NAN NAN 16.14 NAN NAN
7.5 6.58 0.50 0.31 6.86 0.86 0.81 13.09 0.20 0.15 16.14 NAN NAN
10 5.85 0.52 0.40 8.98 0.19 0.11 7.61 0.23 0.16 16.14 NAN NAN
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Exponential Velocity with Third Incomplete Library

Table G.12: PDE FIND results for the exponential velocity case with the full PDE with the third incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 5.43 0.09 0.03 N/D N/D N/D N/D N/D N/D - - - - - -
2.5 5.06 0.10 0.01 N/D N/D N/D N/D N/D N/D - - - - - -
5 5.06 0.10 0.01 9.78 0.08 0.02 5.50 0.11 0.03 - - - - - -
7.5 5.06 0.10 0.01 7.05 0.11 0.03 5.50 0.11 0.03 - - - - - -
10 6.81 0.57 0.26 7.05 0.11 0.03 5.50 0.11 0.03 - - - - - -
1 DSW 8.35 0.13 0.05 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
1.5 DSW 7.29 0.11 0.02 83.12 NAN NAN 29.43 0.09 0.03 N/D N/D N/D N/D N/D N/D
2.5 DSW 6.81 0.56 0.26 6.62 0.09 0.03 29.43 0.09 0.03 37.00 0.07 0.03 56.72 NAN NAN
5 DSW 6.81 0.56 0.26 8.36 0.13 0.05 29.43 0.09 0.03 37.00 0.07 0.03 56.72 NAN NAN
7.5 DSW 6.81 0.56 0.26 6.95 0.12 0.04 9.31 0.16 0.05 15.79 NAN NAN 62.46 NAN NAN
10 DSW 6.81 0.56 0.26 6.95 0.12 0.04 5.44 0.25 0.07 10.88 0.15 0.05 56.72 NAN NAN

Vortex Velocity with Fourth Incomplete Library

Table G.13: PDE FIND results for the vortex velocity case with the full PDE with the fourth incomplete candidate library

λ (-) 10−1 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

2.5 6.0 0.94 0.86 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
5 7.0 0.88 0.73 N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
7.5 7.0 0.88 0.73 6.0 0.94 0.86 11.71 NAN NAN 16.93 0.56 0.38 21.29 0.53 0.35 194.56 1.0 1.0
10 6.0 0.94 0.86 8.19 0.59 0.38 7.16 0.59 0.39 23.29 0.48 0.30 21.29 0.53 0.35 194.56 1.0 1.0
12.5 6.0 0.94 0.86 6.0 0.94 0.86 7.16 0.59 0.39 16.93 0.56 0.38 21.29 0.53 0.35 194.56 1.0 1.0
15 6.0 0.94 0.86 6.0 0.94 0.86 6.0 0.94 0.86 6.0 0.94 0.86 10.66 0.32 0.20 194.56 1.0 1.0
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Exponential Velocity with Fourth Incomplete Library

Table G.14: PDE FIND results for the exponential velocity case with the full PDE with the fourth incomplete candidate library

λ (-) 10−2 10−3 10−4 10−5 10−6

tol (-)
error ξprio

(-)
ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

ξprio
(-)

ξpost,ϕ
(%)

ξpost,ψ
(%)

1.5 7.57 0.09 0.03 N/D N/D N/D N/D N/D N/D - - - - - -
2.5 7.57 0.10 0.01 N/D N/D N/D N/D N/D N/D - - - - - -
5 6.0 0.10 0.01 N/D N/D N/D N/D N/D 0N/D - - - - - -
7.5 6.0 0.10 0.01 6.0 0.11 0.03 7.0 0.11 0.03 - - - - - -
10 6.0 0.57 0.26 7.56 0.11 0.03 6.0 0.11 0.03 - - - - - -
1.5 DSW 9.03 NAN NAN N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D N/D
2.5 DSW 4.16 NAN NAN 16.46 NAN NAN 30.46 NAN NAN 9.51 0.04 0.01 N/D N/D N/D
5 DSW 6.0 0.61 0.27 6.09 NAN NAN 24.04 NAN NAN 8.23 NAN NAN N/D N/D N/D
7.5 DSW 6.0 0.61 0.27 5.10 0.05 0.01 14.09 NAN NAN 8.23 NAN NAN 56.72 NAN NAN
10 DSW 6.0 0.61 0.27 7.0 0.38 0.11 24.04 NAN NAN 5.12 0.41 0.13 56.72 NAN NAN



H. Model Dictionary

The current appendix is a summation of all models used through out the report. the
models are subjected as Mx,yy,z what means the following:

• x The model type, with 1 being the vortex case, 2 the exponential case and 3 the
shear case.

• yy The candidate function conditions, with P being the partial set PDE, F the
full PDE and U1, U2, U3 and U4 being the four test with an incomplete candidate
function test.

• z The model number, usually two or three different models are chosen per test case
and candidate function setting.

H.1 The Original Models

H.1.1 The Partial PDE Model

Dϕ

Dt
= −0.75ϕ2f 0 + 0.1f 2 + (1.5 + ϕ)f 4 − 0.35ϕ2f 5 (H.1)

H.1.2 The Full PDE Model

Dϕ

Dt
= −0.75ϕ2f 0 − 3ϕf 1 + 0.1f 2 − f 3 + (1.5 + ϕ+ 0.5ϕ2)f 4 − 0.35ϕ2f 5 (H.2)

H.2 The Partial PDE Linear Regression Trained Mod-

els

M1,P,1

Dϕ

Dt
= −0.75ϕ2f 0 + 0.1f 2 − 1.0f 3 + (1.5 + 1.01ϕ)f 4 − 0.35ϕ2f 5 (H.3)

M2,P,1

Dϕ

Dt
= −0.76ϕ2f 0 + 0.1f 2 − 1.0f 3 + (1.5 + 1.03ϕ)f 4 − 0.35ϕ2f 5 (H.4)

M3,P,1

Dϕ

Dt
= −0.79ϕ2f 0 + 0.1f 2 − 1.01f 3 + (1.50 + 1.08ϕ)f 4 (H.5)

143
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H.3 The Full Case Linear Regression Trained Models

M1,F,1

Dϕ

Dt
= −0.85ϕ2f 0 + (−0.003− 3.26ϕ+ 0.69ϕ2)f 1 + (0.10− 0.0001ϕ)f 2

+ (−0.93− 0.28ϕ− 0.11ϕ3)f 3 + (1.47 + 1.09ϕ+ 0.47ϕ2)f 4 − 0.57ϕ4f 5
(H.6)

M1,F,2

Dϕ

Dt
= −0.55ϕ2f 0 − 3.12ϕf 1 + (0.10)f 2 − 1.01f 3 + (1.46 + 1.30ϕ)f 4 − 0.32ϕ2f 5 (H.7)

M1,F,3

Dϕ

Dt
= −0.85ϕ2f 0+(−0.23−2.37ϕ)f 1+0.10f 2−0.83f 3+(1.46+1.30ϕ)f 4−0.61ϕf 5 (H.8)

M2,F,1

Dϕ

Dt
= −0.74ϕ2f 0 + (0.03 + 3.02ϕ+ 10.22ϕ2 − 22.01ϕ3 + 15.7ϕ4)f 1 + 0.1f 2

− 0.88f 3 + (1.50 + 0.95ϕ+ 0.48ϕ2)f 4 − 0.43ϕf 5
(H.9)

M2,F,2

Dϕ

Dt
= −0.74ϕ2f 0 − 3.02ϕf 1 + 0.1f 2 − f 3 + (1.49 + 1.05ϕ+ 0.47ϕ2)f 4 − 0.39ϕ2f 5 (H.10)

M2,F,3

Dϕ

Dt
= −0.74ϕ2f 0 + (−0.29 + 0.27ϕ− 12.40ϕ2 + 19.33ϕ3 − 10.80ϕ4)f 1 + 0.1f 2

+ (−0.94− 0.38ϕ+ 0.90ϕ3)f 3 + (1.50 + 0.95ϕ+ 0.62ϕ2)f 4 − 1.17ϕ4f 5
(H.11)

M3,F,1

Dϕ

Dt
= −0.79ϕ2f 0 − 2.99ϕf 1 + 0.1f 2 − 1f 3 + (1.48 + 1.24ϕ)f 4 (H.12)

M3,F,2

Dϕ

Dt
= −0.80ϕ2f 0−2.96ϕf 1+0.1f 2−1.02f 3+(1.46+1.88ϕ−4.11ϕ2+7.74ϕ3)f 4 (H.13)

M3,F,3

Dϕ

Dt
= −5.01ϕf 1 + 0.07f 2 − 1f 3 + 1.32f 4 (H.14)
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H.4 The First Incomplete Library case Linear Re-

gression Trained Models

M1,U1,1

Dϕ

Dt
= −0.86ϕ2f 0 + (−0.06− 2.83ϕ)f 1 + (0.10 + 0.03ϕ3)f 2+

(−0.91− 0.33ϕ+ 0.65ϕ3 − 2.75ϕ4)f 3 + (1.51 + 0.66ϕ+ 1.55ϕ2 − 0.40ϕ3)f 4
(H.15)

M1,U1,2

Dϕ

Dt
= (−0.83ϕ2)f 0+(−2.82ϕ)f 1+0.10f 2+(−0.89−0.49ϕ)f 3+(1.45+1.34ϕ)f 4 (H.16)

M1,U1,3

Dϕ

Dt
= −0.81ϕ2f 0 +−2.95ϕf 1 + (0.11− 0.09ϕ+ 0.34ϕ2 − 0.59ϕ3 + 0.42ϕ4)f 2

− (1.0 + 2.54ϕ4)f 3 + (1.50 + 0.98ϕ+ 1.26ϕ3)f 4
(H.17)

M2,U1,1

Dϕ

Dt
= −0.75ϕ2f 0 + (−0.38− 1.91ϕ− 19.34ϕ2 + 30.24ϕ3 − 16.01ϕ4f 1 + 0.10f 2

+ (−0.72− 3.37ϕ+ 13.23ϕ2 − 22.02ϕ3 + 12.01ϕ4)f 3 + (0.93ϕ+ 0.51ϕ2)f 4
(H.18)

M2,U1,2

Dϕ

Dt
= −0.62ϕ2f 0 − 2.94ϕf 1 + 0.09f 2 − 1.06f 3 + (1.50 + 1.02ϕ)f 4 (H.19)

M2,U1,3

Dϕ

Dt
= −0.73ϕ2f 0(−1.63ϕ−4.09ϕ2+5.74ϕ4)f 1+0.10f 2−1.07f 3+(1.49+1.15ϕ)f 4 (H.20)

H.5 The Second Incomplete Library case Linear Re-

gression Trained Models

M1,U2,1

Dϕ

Dt
= (−11.79ϕ+ 25.88ϕ3)f 1 + (0.10− 0.22ϕ+ 0.38ϕ3)f 2 + 1.30f 4 − 0.68ϕ)f 5 (H.21)

M1,U2,2

Dϕ

Dt
= (−11.07ϕ2 + 31.82ϕ3 − 13.96ϕ4)f 0

+ (3.45− 25.44ϕ− 71.76ϕ2 + 385.65ϕ3 − 372.73ϕ4)f 1

+ (0.10− 0.57ϕ− 5.02ϕ2 + 10.94ϕ3 − 7.47ϕ4)f 2

+ (1.44 + 2.57ϕ− 6.70ϕ2)f 4 − (2.42ϕ− 18.42ϕ2 + 32.34ϕ3 − 15.88ϕ4)f 5

(H.22)
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M2,U2,1

Dϕ

Dt
= −0.86f 0 + (1.73− 2.25ϕ)f 4 (H.23)

M2,U2,2

Dϕ

Dt
= −1.51f 1 + 0.08f 2 + 1.60f 4 − 1.13ϕf 5 (H.24)

M2,U2,3

Dϕ

Dt
= −1.56f 0 + (0.08− 1.12ϕ)f 2 + 1.60f 4 (H.25)

H.6 The Third Incomplete Library case Linear Re-

gression Trained Models

M1,U3,1

Dϕ

Dt
= −3.61ϕf 1 + 0.09f 2 + (1.5 + 1.83ϕ2)f 4 − 0.75ϕf 5(−2.86ϕ+ 2.89ϕ2)f 7 (H.26)

M1,U3,2

Dϕ

Dt
= (−6.08ϕ+ 8.14ϕ3)f 1 + 0.09f 2 + (1.29 + 1.34ϕ)f 4 − 0.62ϕf 5 − 1.77ϕf 7 (H.27)

M1,U3,3

Dϕ

Dt
= −12.53ϕ4f 0 + (−0.35ϕ− 91.43ϕ2 + 273.13ϕ3 − 203.67ϕ4)f 1

+ (0.11 + 0.30ϕ3 − 0.65ϕ4)f 2 + (1.45 + 1.93ϕ− 3.24ϕ2 + 8.16ϕ3)f 4

+ (−1.04ϕ+ 1.29ϕ3)f 5 + (−0.03− 0.96ϕ2 + 3.41ϕ3 − 2.25ϕ4)f 6

+ (−0.13 + 2.18ϕ− 15.39ϕ2 + 15.96ϕ3)f 7

(H.28)

M2,U3,1

Dϕ

Dt
= −0.80f 0 − 2.84ϕ2f 1 + 0.08f 2 + (1.54 + 0.40ϕ)f 4 − 0.76ϕf 5

+(−2.28ϕ+ 6.68ϕ4)f 7
(H.29)

M2,U3,2

Dϕ

Dt
= −2.16ϕf 1 + (1.60− 1.72ϕ)f 4 (H.30)

M2,U3,3

Dϕ

Dt
= −0.57ϕ2f 0 + (−0.25− 2.55ϕ+ 0.12ϕ2)f 1 + 0.1f 2+

(1.47 + 1.20ϕ)f 4 − 0.85ϕf 5 − 0.72f 7
(H.31)
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H.7 The Fourth Incomplete Library case Linear Re-

gression Trained Models

M1,U4,1

Dϕ

Dt
= (0.22− 0.50ϕ+ 0.54ϕ3)f 2 − 0.56f 3 + (0.94 + 1.66ϕ− 8.18ϕ2 + 10.21ϕ4)f 8 (H.32)

M1,U4,2

Dϕ

Dt
= 0.08f 2 − 2.81ϕf 30.66f 8 + 0.35f 5 (H.33)

M2,U4,1

Dϕ

Dt
= (−2.42ϕ2+5.73ϕ3)f 0−3.16ϕf 1+0.12f 2−3.80ϕ2f 3(2.52+1.79ϕ−5.81ϕ3)f 8 (H.34)

M2,U4,2

Dϕ

Dt
= 0.11f 2 − 2.90ϕf 1 − 1.54ϕf 3 + 2.65f 8 (H.35)

M2,U4,3

Dϕ

Dt
= (0.64ϕ− 2.16ϕ3)f 0 − 1.36f 1 + 0.09f 2 − 0.58f 3 + 2.23f 8 (H.36)
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