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Abstract

The inherent uncertainty of the fleet planning problem has hindered the emergence of sophisticated mod-
els to support airlines with strategic decision-making. For many years, airlines have been applying similar
top-down deterministic approaches when planning their fleet development. In fact, spreadsheets are still
commonly used tools by many airlines. This lack of sophistication is somewhat striking considering the im-
portant contributions that operations research has made to other domains in the airline planning process. In
particular, the operations research community has shown a clear preference for multistage stochastic mod-
els when it comes to drawing adaptive fleet policies under demand uncertainty. Because of their recursive
structure, one of the most popular methods to solve multistage stochastic models has been dynamic pro-
gramming, based on the backward induction of their equivalent scenario trees. Nevertheless, this has often
led to complex models whose computational and memory requirements go beyond the capabilities of cur-
rent commercial optimisers, thereby hampering the development of fleet planning models. In this context,
approximate dynamic programming (ADP) has emerged as an optimising simulator since it proposes a solv-
ing strategy based on the flexibility of Monte Carlo simulations and the power of operations research, both
combined with machine learning. This blend of disciplines makes ADP a novel and promising method to
solve multistage stochastic problems, whose computation have appeared to be so far intractable with back-
wards exact methods. Indeed, ADP allows to decompose large-scale problems by approximating unknown
value functions, thus reducing the computational times required by dynamic programming.

Therefore, the objective of this MSc thesis is to contribute to the development of adaptive policies in the
context of airline fleet planning under demand uncertainty by (a) modelling and solving with Approximate
Dynamic Programming a multi-period adaptive fleet planning problem that integrates stochastic demand
and by (b) detecting useful signposts for fleet planners.

With the aim of meeting this research objective, the developed methodology is split into two parts. Firstly,
the problem is modelled as a dynamic program thanks to the suitable application of a state-space modelling
framework. Next, an ADP algorithm based on value function iterations is implemented. The proposed ADP
algorithm applies local value function approximations resulting from Gaussian kernel regressions to esti-
mate future airline operating profits. Likewise, kernel regressions need to be trained with an initial set of
structured observations, which provide meaningful information of the problem. The full multi-period adap-
tive fleet planning problem is then optimised by decomposing it into subproblems. To take full advantage
of the computational power of commercial optimisers as well as the two-stage overlapping structure existing
between subsequent subproblems, each maximisation subproblem is simultaneously decomposed into two
independent parts A and B. Part A is solved directly with Gurobi and refers to the calculation of operations-
related actions once previous fleet decisions have been made. Likewise, part B corresponds to the problem of
selecting the fleet-related decisions that will impact future operations. For this part, an epsilon-greedy sub-
routine based on simulated annealing is developed to let the algorithm explore the state space and discover
other states with high potential.

By applying this methodology, a 4-period fleet planning problem of 20 routes and 3 aircraft types is solved
in both its deterministic and stochastic versions. Optimal and near-optimal solutions are achieved for the
deterministic case with an average optimality gap of 0.2%: a magnitude which is highly comparable to the
optimality gaps currently seen in ADP literature. Nevertheless, the ADP algorithm does not offset the compu-
tational performance of Gurobi, which can reach the same optimality gaps in 35s compared to the 120s of the
ADP algorithm. Despite this, the potential benefits of ADP are expected to be more visible for the stochas-
tic version of the problem. Indeed, it is in this context that the ADP adaptive policy proves to be the most
robust fleet planning method: across the majority of scenarios it clearly excels the profits resulting from the
optimal fleet plan solved for the most-likely scenario. Evidently, the most-likely solution performs better in
those scenarios similar to the most-likely scenario. However, its performance starts to stall towards differing
scenarios. Indeed, its worst scores are found in the neighborhood of the extreme scenarios: for the most
pessimistic scenarios the most-likely solution could imply weekly operating losses ranging between 3% and
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6%, whereas in the most optimistic scenarios losses remained between 2% and 1%. In contrast, the adaptive
fleet policy mitigates losses in all extreme scenarios, which never surpass the 1.1%. By analyzing the general
expected performance, it is concluded that the adaptive policy could reduce by 50 % the losses entailed by
the most-likely solution.

Apart from this, a verification analysis has proven the stable behaviour of the ADP algorithm. By modify-
ing the parameters of the baseline case within different intervals, it is confirmed that the kernel approxima-
tion strategy can still be trained successfully using the same dataset of initial observations. Furthermore, a
sensitivity analysis is carried out to understand better the influence of the most relevant parameters within
the ADP algorithm. On the one hand, the learning rules with the fastest value function updates provided the
best results for the value iteration algorithm. On the other hand, the correct calibration of the control pa-
rameter regulating the impact of the initial value function approximation becomes essential to guarantee the
convergence of the ADP algorithm as well as the coherence of the adaptive policy.

The conclusions obtained with the proof of concept unveil the advantage of applying adaptive fleet poli-
cies to hedge against demand uncertainty, apart from their capability to successfully reproduce the fleet plan-
ning decision-making process. Indeed, the obtained adaptive policies can capture the existent path depen-
dency between the recommended fleet plans and the historical demand evolution.

Finally, an extended case study and expert survey carried out at Kenya Airways (KQ) have provided valu-
able insights to validate the performance of the developed ADP support tool in the air transport industry. The
ADP tool has been capable of tackling successfully a 5-period fleet planning problem with 5 aircraft types
and 64 routes aggregated per market growth regions. The proposed case study tackles 64 routes and 5 aircraft
types, and consists in moving backwards in time to year 2015 with the objective of reproducing a 5-year ex-
pansion plan formerly defined by Kenya Airways. In this way, ADP recommendations are compared to the
past reality. The results obtained from this validation analysis highlight the capability of the ADP algorithm to
capture back in 2015 realistic and meaningful trends applicable to the present and upcoming years. Despite
not considering the interactions between captured demand and frequency nor fuel or competition uncer-
tainty, the ADP support tool is able to provide a future fleet policy, whose profitability performance proves to
be notably better than the actual fleet plan followed by Kenya Airways from 2015 onwards. Even better, the
ADP tool forecasts successfully the operating profits that KQ actually earned in 2016. Likewise, a network-
frequency analysis presents a satisfactory correlation between the ADP recommended frequencies and the
real frequency levels currently operated by KQ. Apart from this, the introduction of fleet maps and opera-
tional maps has allowed KQ fleet planners to quickly identify valuable signposts and general trends. Lastly,
it is concluded that many of the recommendations provided by the ADP support tool back in 2015 strongly
agree with the current strategy of Kenya Airways. In other words, this case study proves that the ADP sup-
port tool can adjust well to reality while providing meaningful adaptive policies to hedge against uncertainty,
which indeed could make a difference in airline fleet planning.
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�
An introduction to airline fleet planning

This chapter aims at introducing the reader to the subject of this Master Thesis: airline fleet planning. In
Section 1.1, the fleet planning problem and its implications will be generally defined within the framework of
transportation industry. Then, Section 1.2 will go through the characteristics of fleet planning in the context
of the airline industry and its current modeling techniques.

1.1. The fleet planning problem
Fleet planning is a long-term strategic problem faced by all transportation companies, which mainly consists
in deciding the quantity and composition of vehicles to be acquired along the future years in order to meet
market demand and maximise profits.

Fleet planning is of paramount importance to transportation companies since it is the stage at which
high capital investment decisions are made in order to materialize a previously defined strategy into future
operations. Indeed, fleet composition and size can determine operations performance and thus, the ac-
complishment or failure of a strategy. For a long time, this issue has raised the interest of many researchers
and companies, who have developed several different techniques to tackle this problem. While operations-
related problems have undergone a dramatic improvement owing to progressively sophisticated computa-
tional techniques, the fleet planning problem has not benefited in the same way given its inherent uncertainty
(Barnhart et al.; 2003). In fact, uncertainty might be considered in different shapes such as demand, oper-
ating costs, market competition and disruptions, as well as in different intensity levels, from clear-enough
futures to true ambiguity passing through alternate scenarios (Courtney et al., 1997). In light of this, the way
of embracing uncertainty into fleet planning decision-making models has been for many years a primary fo-
cal point.

By definition, fleet planning can be considered a supply-demand matching problem and thus, it shares
many analogies with other general strategic problems faced by manufacturing and energy companies such
as technology investments and capacity expansion. In terms of carrying out research, this fact is very relevant
to consider since it may broaden the scope of study and obtain richer literature.

1.2. Fleet planning within the airline industry

1.2.1. Context
It goes without saying that the deregulation of the airline industry meant a turning point for airline man-
agement. The introduction of competition into market led to dramatic pricing reductions, thereby forcing
airlines to reduce costs by focusing on operations optimisation. While in a regulated environment, profitabil-
ity, technology advancements and operations efficiency were not a matter of concern, deregulation shaped a
new landscape in which the airline planning process had to be redefined.

1



2 1. An introduction to airline fleet planning

Nowadays, the core steps of airline planning are fleet planning, schedule planning, revenue management
and crew scheduling. Belobaba et al. (2015) explained thoroughly the main characteristics of each of these
activities. In his PhD. thesis, Lohatepanont (2002) drew a clear scheme of all the sequential steps integrating
the airline planning process as it is performed by the major airlines. This scheme is shown in Figure 1.1, where
every stage is positioned according to the type of decision made - strategic to tactic- and the time horizon -
from several years to days -.

As in other industries, fleet planning is considered to be a long-term strategic problem that is the starting
point of the entire company’s planning process. Indeed, the definition of a fleet will affect future route and
schedule development and eventually, the efficiency and profitability of its operations. This means that the
airline’s fleet will also have a long lasting financial impact that will become visible during a 10-year horizon
at the very least by means of operating and depreciation costs, long-term debt and corresponding interest
expenses (Belobaba et al., 2015).

Figure 1.1: The airline fleet planning process (Lohatepanont, 2002)

Apart from that, an airline takes into account many aspects when choosing amongst aircraft types. On the
one hand, aircraft performance characteristics play an important role in the deliberation. In fact, the range
of an aircraft will constrain the selection of routes in which it is operated, while its capacity will define the
number of seats available in each flight. Besides, and not less important, operating costs in terms of fuel,
maintenance and airport taxes will also have a great impact on fleet composition and efficiency. On the other
hand, an airline may be forced to select an aircraft type due to current constraints set by its previous fleet
composition as well as its current maintenance expertise and infrastructure. Nevertheless, there might be
other non-technical reasons such as the current financial health of the airline, political issues, international
trades or airport restrictions.

1.2.2. Fleet planning models
As previously commented, fleet planning decisions result from a complex trade-off in which many technical
and non-technical aspects must be evaluated. Strikingly, airlines do not make use of really sophisticated
mathematical models to support their decision-making. In contrast, spreadsheets are still commonly used
tools to analyse the impact of a fleet on a system of routes and develop their fleet plans according to it.
Regardless of the analytical detail, Belobaba et al. (2015) summarises the fleet planning evaluation process as
depicted by Figure 1.2. From this scheme, it can be inferred that the overall process is carried out iteratively,
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following three main steps. Firstly, the model is fed with traffic demand and yield forecasts to estimate load
factors and available seats per mile (ASM) required. Secondly, the fleet composition and its size is defined
taking into account the available seats per mile required as well as corresponding operating costs. Finally,
financial sustainability is assessed once operating profit margins and expense forecasts are performed.

Figure 1.2: Fleet planning economic evaluation process (elaborated from Belobaba, 2009)

Depending on the level of detail applied to the above fleet planning evaluation process, literature classifies
fleet planning models into two types (Belobaba et al., 2015):

• Top-down or macro approach, in which the fleet planning problem is modelled at a high aggregate
level. General forecasts, aircraft data and many assumptions are taken as inputs for this type of analysis.
They usually consist in more or less sophisticated spreadsheets that assess the hypothetical financial
impact of a certain fleet on a set of routes. It provides rough but quick estimations that tend to be
generally accepted by the airline industry due to the high level of uncertainty faced.

• Bottom-up or micro approach, in which the fleet planning problem is modelled in detail taking into
account many system complexities. Instead of accepting general data, these models aim at being as
much realistic as possible by means of taking into account all characteristics of the subsystem studied
(e.g. origin-destination market demand forecasts, specific aircraft constraints, demand and compe-
tition uncertainty, fuel costs variability and alliance strategies). Nevertheless, increasing the level of
detail adds complexity to the model, thereby requiring higher computational times to obtain more de-
tailed results. The key issue is obtaining fair enough detailed inputs, which can be problematic due to
uncertainties associated to long-term horizons.

Despite the improvement of computational power, the top-down approach is still in many cases the pre-
ferred technique by many airlines. This is due to the fact that it provides quick but sufficient estimations to
make strategic decisions under uncertainty. Even though a bottom-up approach might provide more detailed
and optimal solutions under a certain scenario, the question is how beneficial this approach might be when a
long-term horizon implies inherent uncertainty, thereby holding a wide range of possible scenarios. As it will
be reported in Chapter 2, the operations research community has dedicated high effort to move from deter-
ministic to stochastic environments with the objective of obtaining robust enough-detailed solutions under
different scenarios. Nevertheless, this has often led to complex models whose computation requirements
go beyond the capabilities of current commercial optimisers. In fact, this dilemma is one of the reason why
fleet planning models and corresponding solving techniques have not developed at the same pace as other
airline planning-related problems. As reported by Barnhart et al. (2003), during the last decades, schedule de-
velopment, revenue management and crew scheduling problems have undergone a dramatic improvement
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thanks to several contributions from the operations research discipline. Furthermore, differences in time-
horizon from several years to some days in advance have also prevented fleet planning from being integrated
into the rest of the airline planning process. Therefore, it can be seen that a common trend in literature is
to take an airline’s fleet as given and as a fixed input to the rest of the subsequent optimisation problems
(Lohatepanont, 2002).

1.3. Summary
The inherent uncertainty of the fleet planning problem has hindered the emergence of sophisticated models
to support airlines with strategic decision-making. For many decades, airlines have been applying similar
top-down approaches when planning their fleet development. In fact, spreadsheets are still commonly used
tools by many airlines. This lack of sophistication is somewhat striking considering the important contribu-
tions that operations research has made to other domains in the airline planning process such as schedule
planning, revenue management and crew scheduling. In this type of problems, bottom-up models have been
able to provide optimal solutions or at least, better than the ones obtained in a high-level aggregate way (Be-
lobaba et al., 2015;Barnhart et al., 2003). In light of this, the question constantly raised in literature is how
the fleet planning problem can take full advantage of bottom-up models while allowing for the uncertainty
effects of a long-term horizon. As discussed in next chapter, fleet planning models have not experienced a
significant evolution, thus remaining very similar along the years.



�
Literature review

For decades, fleet planning has risen the interest of many researchers and companies, who have been com-
ing up with different models and solving techniques to tackle this problem. In its origins, fleet planning was
tackled with deterministic models and linear programming. Nevertheless, in industries characterised by high
capital investments with long-term impact, fleet planning is a problem in which long-term horizons must be
considered so as to be useful and capture reality successfully. By definition, long-term horizons lead to inher-
ent uncertainty, which can be present in different dimensions such as demand, competition, operating costs,
disruptive events, etc. This is the particular case of the airline industry, a fast-paced and competitive market
where uncertainty plays an essential role impossible to overlook in fleet planning models. In light of this, the
fleet planning problem evolved from deterministic to stochastic modelling so as to include uncertainty in the
decision-making process.

In this context, the aim of the present chapter is to review the existent literature related to fleet planning
and any other analogue problems relevant to it, with a particular interest in the airline industry. Deterministic
fleet planning models are discussed in Section 2.1, while Section 2.2 presents the different trends found in
stochastic fleet planning models. Next, Section 2.3 goes beyond the performance of a single company and
looks at the major contributions made in terms of market interactions modelling in the context of strategic
planning. Finally, Section 2.4 will conclude this literature review by identifying the current knowledge gap in
fleet planning.

2.1. Deterministic fleet planning models
From 1957 onwards, several researchers devised deterministic models to solve the fleet planning problem
applied to the transport industry, mainly airlines and rail companies. Throughout the years, two main ap-
proaches were followed to model the fleet planning problem: a strategic perspective and a tactical perspec-
tive.

2.1.1. Strategic fleet planning models
On the one hand, there was a research stream (e.g. Shube and Stroup, 1975; Schick and Stroup, 1981; Bazargan
and Hartman, 2012) adopting a strategic perspective which aimed at developing multistage models with long-
term horizons at the expenses of simplifying the details in fleet management. Despite the existent time lapse
between their publications, it can be concluded that multistage fleet planning problems did not experience
much of an improvement in modelling when compared to the pioneering model of Shube and Stroup (1975).
To the best of the writer’s knowledge, Shube and Stroup were the first ones in designing a multistage prob-
lem to model fleet states in different time moments. This novel characteristic allowed to account for future
demand evolution and aircraft lifespan. In other words, the model of Shube and Stroup became the basis of
future contributions and reaffirmed the need to invest in computational techniques such as linear program-
ming. In fact, the developed fleet planning model belonged to the problem category of linear programming
(LP) since all its mathematical expressions were linear. Regarding its solving strategy, Shube and Stroup re-
ferred to the simplex method as a straight-forward technique to solve small dimensional problems. Never-
theless, the authors also looked ahead to the computational limitations that larger problems would entail.
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6 2. Literature review

Machine programming was already envisaged as a necessary investment to tackle fleet planning problems of
a realistic size.

2.1.2. Tactical fleet sizing models
On the other hand, there was a more tactical research stream (e.g. Bartlett, 1957; Gertsbach and Gurevich,
1977; Sayarshad and Ghoseiri, 2009) that developed fleet sizing models by means of adopting a short-term
perspective with a high-detailed representation of operations. Bartlett (1957) was one of the first authors in
addressing the problem of fleet planning by means of designing an algorithm that calculates the minimum
number of transport units to maintain a fixed schedule of a small network. Despite his specific focus on
rail transportation, Bartlett explicitely adopted a general problem formulation using generic wording such as
transport units for railcars or runs for trips. In this way, other industries could also benefit from the algorithm.
In the same line as Bartlett (1957), Gertsbach and Gurevich (1977) designed a more sophisticated technique
to come up with an optimal fleet for a transportation schedule. Again, fleet sizing was performed in a short-
term basis and came as a result of a predetermined schedule. The proposed method was not applied to any
specific industry unlike Bartlett’s work. Indeed, the formulation of the problem was so abstract that it could
be applied to either a transportation or production schedule. Furthermore, Sayarshad and Ghoseiri (2009)
employed a deterministic model to study a multi-periodic rail-car fleet sizing problem and solved it by means
of heuristics. Their objective was to integrate two problems in the rail industry that are still often solved
independently: fleet sizing and fleet assignment. If extrapolated, their study could be valuable to the airline
industry, where problems are also optimised subsequently rather than in an integrated way. Furthermore, it
was claimed that one of the advantages of the proposed model was the optimal use of rail-cars throughout
the different time stages of demand. This characteristic breaks with the past tendency of modelling static
fleet sizing problems (see for example Bartlett, 1957; Gertsbach and Gurevich, 1977). The reader should take
into account that the time scale considered by Sayarshad and Ghoseiri are operating days. Therefore, this
model adopts a tactical perspective rather than a strategic perspective (operating years) seen in the models
from Schick and Stroup (1981) and Shube and Stroup (1975).

2.1.3. Follow-up research
In conclusion, both research streams contributed in different ways to the fleet planning problem. While a
multistage approach was more useful to support fleet planning decisions along the years, the adoption of
a short-term perspective contributed more to the integration of fleet management and planning problems.
In any case, both approaches led eventually to large-scale integer programs that required a high computa-
tional effort to be solved. It is for this reason that a great academic effort (e.g. Nemhauser and Wolsey, 1988;
Barnhart et al.,1998, 2000, 2004) was concentrated in developing optimisation methods to solve huge integer
programming problems significantly connected to fleet planning (e.g. fleet assignment and scheduling prob-
lems). Many other problems such as revenue management or crew scheduling greatly benefited from the
achievements made in the field of optimisation methods (e.g. Branch & Bound , Branch & Cut). Nevertheless,
the fleet planning problem did not experience the same improvement due to its inherent uncertainty. Nowa-
days, it is not longer common to find recent literature dedicated to deterministic planning models since sev-
eral researchers started to question the usefulness of deterministic planning when high levels of uncertainty
prevail within a long-term horizon. In other words, finding an exact solution to a specific future situation
was not longer a research priority given that this situation is uncertain to happen eventually. Therefore, the
current development of deterministic models revolves around reasons other than offering an exact solution.
In many cases, modern deterministic models are used to simplify certain parts of a problem so as to allow a
neater study of a specific characteristic such as the performance of an algorithm or the integration of some
modelling aspects (Sayarshad and Ghoseiri, 2009; Bazargan and Hartman, 2012).

2.2. Stochastic fleet planning models
Until now, the reviewed fleet planning models have considered deterministic systems, where all future input
values and parameters were assumed to be known. Nevertheless, the reality is that all industries face some
kind of uncertainty and risk, which implies the existence of random processes affecting future states. This is
the special case for transport industry, where uncertainty and risk can have a dangerous impact on operating
profits if companies do not account for them appropriately in their strategic plans. Furthermore, uncertainty
and risks can take several forms, affecting a specific or several parts of the profits structure of a company.
Indeed, airlines are constantly dealing with uncertainty and risk elements: Figure 2.1 shows an overview of
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the different uncertainty dimensions that may affect either airline revenues, operating costs or both. In such
a competitive and demanding market, the importance of embracing uncertainty is more alive than ever and
it could definitely determine the success or bankruptcy of an airline. Therefore, it can be inferred that airlines
operate in a system which differs greatly from a deterministic model. In this context, many researchers in
the transport field (e.g. List et al., 2003; Listes and Dekker, 2005; Hsu et al., 2011) proved that deterministic
models were not well suited for providing optimal fleet plans since their optimality was only valid for a certain
scenario. This idea is what drove many researchers to eventually delve into stochastic systems.

Operating costs

• Brand reputation

• Competition

• Passengers preferences

• Market deregulations & 

regulations

• Fuel  price & currency fluctuation

• Key supplier risks

• Airports operational constraints

• Government intervention

• Global economic slowdown 

• Debt funding and credit crunch

• Employee mindset & behaviour

• Environmental policies

Revenues

Airline financial health

Figure 2.1: Potential risks and uncertainties in airline’s operations ( elaborated from British Airways, 2008-09)

For many years, there was an important research trend towards the development of sophisticated fore-
casts by means of logistic regressions (also known as logit models) and variations. Companies and research
academies used to employ these forecasting methods in order to mitigate the faults of deterministic planning
models (e.g. Brooke et al., 1994; Hansen and Weidner, 1995; Hess et al., 2013). In doing so, the available
planning models were providing deterministic solutions for forecasted scenarios. In fact, main strategies
consisted in trying to predict the future as a way to deal with uncertainty. Consequently, strategic plans were
more prone to fail if future did not turn out as expected.

Considering that a wide range of scenarios could occur within a long-term horizon, by 1990’s a parallel
research stream started to gain momentum basing its foundations on stochastic programming. Stochastic
programming (SP) became a mathematical optimisation discipline that allows to model and solve problems
with uncertainty by means of introducing random parameters. Using the notation of Kali and Wallace (1994),
the general formulation of a stochastic problem is:

min (or max) f (x,ª) (2.1)

subject to the constraints:

gi (x,ª) ∑ 0, i = 1, ...,m (2.2)

x 2 X ΩRn (2.3)

where x is the vector of decision variables and ª represents a random vector taking values from a set
•ΩRk with a known or unknown probability distribution P.

As synthesized by Shapiro et al. (2014), SP models were drawn from a combination of optimisation, prob-
ability and statistics as well as functional theories. Dantzig (1955) was one of the pioneers in laying down the
mathematical principles which would define stochastic programming: recourse modelling, two-stage and
multistage programming models. From that moment on, several articles proliferated during decades, driving
the need of unifying the available literature in textbooks. Kali and Wallace (1994), Higle (2005), Shapiro and
Philpott (2007) and Shapiro et al. (2014) contributed to this objective by strengthening the basis of stochastic



8 2. Literature review

programming for further studies. Indeed, stochastic programming has definitely been established as the pri-
mary tool for researchers when it comes to model uncertainty.

From literature, it can be inferred that stochastic fleet planning models and relevant problems have been
expressed either in a two-stage or multistage structure. While two-stage structures have commonly been
used to model problems with a short-term or tactical perspective (e.g. Oum et al., 2000; List et al., 2003;
Listes and Dekker, 2005; Naumann and Suhl, 2013), multistage structures have finally been considered the
best technique to draw optimal planning policies in the long-term strategic perspective (e.g. Hsu et al., 2011;
Khoo and Teoh, 2014).

2.2.1. Major contributions based on two-stage stochastic structures
By means of modelling a two-stage stochastic problem, Oum et al. (2000) aimed at providing an optimal mix
of leased and owned capacity. They focused their study on the operational effects of aircraft leasing in a con-
text where demand is uncertain and cyclical. Backed up by many financial studies, Oum et al. stated that
aircraft leasing offered airlines the possibility of sharing risks, lowering their debt and increasing their oper-
ational flexibility in exchange of assuming higher operating costs. Consequently, the authors highlighted the
importance of carrying out a trade-off optimisation between capacity flexibility and higher costs. The prob-
lem was formulated in a very analytical way without considering any sort of discretization for programming.
Instead, an empirical examination was performed based on 23 major airlines to determine their optimal de-
mand for leased capacity. In this way, the different components of the airline profit function (e.g. variable
costs, revenues, etc.) were estimated based on time-series data observed during the period 1986-1993. Fur-
thermore, the probability distribution of demand for each carrier was considered to follow the shape of a
normal distribution, whose mean and standard deviation were determined from available statistical data.
Finally, Oum et al. concluded that the optimal proportion of leased aircraft would be between 40 to 60%.
Concerning these results, one could note that the study of Oum et al. (2000) adopts an aggregate perspective.
For instance, it just gives information about the general rate between leased-owned aircraft but it does not
specify any fleet composition. On the other hand, the study discriminates regions according to their demand
forecasts and the cost premium of lease.

In the context of robust optimisation, List et al. (2003) presented a fleet planning study under uncertainty
with a particular focus on freight industry. In their paper, a formulation and a solution technique were pro-
posed to tackle the problem of fleet sizing under uncertain demand and uncertain operating conditions. To
the best of the writer’s knowledge, List et al. were the first authors in incorporating two simultaneous sources
of uncertainty in a transportation planning problem. In order to justify their contribution, List et al. criticised
the fact that previous robust optimisation models applied a mean-variance trade off, giving equal weight to
all deviations with respect to the mean. According to List et al., that solution robustness was not applicable
to specific cases such as fleet sizing in the transportation industry, since that method could lead to inefficient
results in real life. Therefore, List et al. aimed at strengthening that weakness by means of defining a new
measure of robustness, which was more sensible to the impact of extreme scenarios.and could lead to rea-
sonable results for the transportation industry.

Likewise, Listes and Dekker (2005) were pioneers in introducing stochastic demand to the airline fleet siz-
ing problem. However, they took a fleet management perspective to come up with a strategic solution. That
is to say, they used a fixed schedule as input to determine the optimal fleet size and composition with the
highest level of flexibility to confront demand uncertainty. On the basis of their problem definition, it can be
drawn that this model would be suitable for mid-term decisions, but not for designing a complete strategic
fleet plan since different time periods are not considered.

The formulation built on a deterministic multicommodity flow problem applied to a time-space network,
commonly used for fleet assignment problems. Then, Listes and Dekker (2005) included demand uncertainty
by considering several demand scenarios, which resulted from sampling values of a normal probability dis-
tribution F (µ,æ) at equally spaced quantiles, as shown in Figure 2.2. Therefore, the demand uncertainty is
defined by a set of scenarios {d1, ...,dS }.

The main objective of Listes and Dekker was to find an optimal fleet composition that performed sat-
isfactorily under different scenarios, thereby providing flexibility against uncertain demand. Consequently,
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Figure 2.2: Technique for gathering sampling values (Listes and Dekker, 2005)

Listes and Dekker aimed at maximising the expected objective value across all sampled scenarios. Their cor-
responding stochastic problem was as shown below:

SP Max
S
X

s=1
ps f (z, ys , xs , s) (2.4)

s.t. (z, ys , xs ) 2C 8s = 1, ...,S (2.5)

where Listes and Dekker saw a two-stage stochastic problem. The fleet composition vector z consisted of
first-stage decision variables independent from any scenario parameter s with probability ps , while ys and xs
were second-stage decision variables whose value depended on each scenario.

Finally, Naumann and Suhl (2013) gave another perspective to strategic airline planning by assessing the
impact of demand and jet fuel price uncertainty on frequency planning. Even though their objective was
not directly related to fleet planning, their contribution gives interesting insights about how to approach fuel
price uncertainty and develop a fleet planning model based on that. The objective of Naumann and Suhl was
to come up with an optimal route frequency plan together with a fuel acquisition strategy to hedge against
uncertainty, while maximising the expected airline profits. To achieve that, Naumann and Suhl introduced a
two-stage stochastic linear model where jet fuel prices and demand were uncertain parameters. In order to
include uncertainty into the model, a set of scenarios F S and DS were generated for fuel price and demand
respectively.

2.2.2. Major contributions based on multistage stochastic structures
Multistage structures have proven to be well suited to adopt a strategic perspective and draw optimal fleet
planning policies to match demand throughout the years. In the current decade, several researchers have
developed multistage planning models to come up with optimal fleet renewal and replacement policies for
different sectors, mainly the airline industry (Hsu et al., 2011; Khoo and Teoh, 2014) and the maritime indus-
try (Pantuso et al., 2014, 2015).

Since recursion can be found in multistage stochastic models, dynamic formulations are generally pre-
ferred when modelling subsequent time stages and scenario trees. Indeed, it can be stated that there is a
clear research motivation behind dynamic planning models: the combination of dynamic programming and
scenario trees offers a very intuitive way to model multistage fleet planning problems under uncertainty. In
fact, the recursive property of dynamic equations and the discretization of a stochastic process by means of
a scenario tree have proven to capture effectively the main issues related to fleet planning problems ( Hsu
et al., 2011; Khoo and Teoh, 2014).

More particularly, Hsu et al. (2011) used dynamic programming to model a multistage stochastic fleet
planning problem within the airline industry. As Oum et al. (2000) previously did with a two-stage stochastic
model, Hsu et al. (2011) aimed at optimising the proportion between purchased and leased aircraft in order to
mitigate the effects of demand uncertainty. Both models built on a given schedule of route flight frequencies.
Nevertheless, the work of Hsu et al. went one step further by capturing better the reality:
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• Their model was able to choose from several aircraft types throughout different time periods, whereas
Oum et al. (2000) considered a homogeneous fleet along two time periods. From an airline’s perspec-
tive, the model of Hsu et al. is more realistic and practical since it also assumed a given fleet as initial
condition. In contrast, Oum et al. sized the fleet from the very starting point without considering the
current state of the airline.

• As far as the modelling of demand uncertainty is concerned, Hsu et al. employed a Grey forecasting
model to develop a Markov-chain process, which was represented by the scenario tree depicted in Fig-
ure 2.3. In fact, Hsu et al. acknowledged the Grey system theory (Julong, 1989) as a useful predictive
method to draw a demand forecast from very poor information. As for the model of Oum et al., it used
statistical data from major airlines and assumes a normal distribution of demand. Moreover, it is inter-
esting to point out that Hsu et al. included the concept of market share for each route. That is to say,
the airline forecast of captured demand for each route resulted from multiplying its market share to the
overall forecasted route demand. Nevertheless, the model did not consider any interactions with other
market players.

Figure 2.3: Proposed scenario tree for fleet planning under demand uncertainty by Hsu et al. (2011)

• Given the multistage stochastic structure of the problem, Hsu et al. leaned on dynamic programming
equations to minimise the expected sum of costs from period t forward. Apart from considering op-
erating and replacement costs, Hsu et al. included an innovative term into the cost function: a cost
penalty whose weight depended on the inaccuracy level of the demand forecast.

• The vector d t of replacement decisions had as components the number of aircraft purchased N B t
q ym

and the number of aircraft leased N Lt
q ym at time period t . As observed, aircraft were also associated with

a detailed status (q, y,m) which tracked its type q , remaining available years y and mileage travelled
m. By letting these variables take negative values, the model captured the selling and termination of
leasing contracts. In this way, the model tried to reduce the number of decision variables. Yet, it can be
inferred from looking at the detailed definition of N B t

q ym and N Lt
q ym , that the dynamic program had to

deal with a great number of decision variables.

Regarding the solving technique, Hsu et al. (2011) relied on backwards induction to determine the op-
timal replacement strategy for each period. Eventually, the optimal solution º would correspond to the set
of replacement decisions for each period: º=

©

d 1,d 2, ...,d n™

. The obtained conclusion were consistent with
the previous results of Oum et al. (2000): leasing is preferred for operating market with high fluctuations in
demand. Furthermore, it was concluded that airlines should reduce fleet heterogeneity in order to achieve
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economies of scale in maintenance and operating costs. Another important contribution of Hsu et al. (2011)
was the determination of threshold values which could be used as singposts in adaptive policies to make de-
cisions. Figures 2.4 and 2.5 are examples of it.

Figure 2.4: Purchase/lease decision threshold in function of
lease cost and aircraft age (Hsu et al., 2011)

Figure 2.5: Replacement threshold in function of variable
maintenace cost and aircraft age (Hsu et al., 2011)

Khoo and Teoh (2014) contributed to the research stream of Hsu et al. (2011) by presenting a new method
for modelling demand uncertainty. In spite of just capturing stochastic demand trends, Khoo and Teoh put
forward a Stochastic Demand Index (SDI) with the intention of capturing the potential occurrence of disrup-
tive event with positive or negative effects. SDI was calculated by means of Monte Carlo simulations. Apart
from that, Khoo and Teoh (2014) stated the need of integrating service frequency planning into fleet planning.

In two subsequent studies, Pantuso et al., (2014, 2015) explored the fleet renewal problem in the context
of the maritime industry. Even though they used the notation of Hierarchical Stochastic Programs (HSP), the
model that they formulated was still a multistage stochastic program whose objective consisted in minimis-
ing the expected total cost of operating and owning ships within a planning horizon. Nevertheless, they put
higher emphasis on devising a solution technique which exploited the scenario tree structure in an efficient
way. To that end, they decomposed the problem into a master problem and several independent linear pro-
gramming subproblems. In this way, LP subproblems were solved to optimality, while a heuristic method was
implemented for solving the master problem.

2.2.3. The curses of dimensionality and approximate dynamic programming
From the literature discussed, it can be inferred that dynamic programs suffer from great dimensionality
problems due to its recursion nature. Powell (2007) referred to these dimensionality problems as the curses
of dimensionality, which classified into three types: state-space, outcome space and action space. The idea
behind this concept is that when the problem features higher dimensions, the volume of potential states,
decisions and random processes increases at exponential rates. This fact entails the need for great computa-
tional efforts and storing memory to the extent that exceeds current computer capabilities. Due to this fact,
many stochastic problems formulated as dynamic programs have been constrained in terms of dimensions
(Hsu et al., 2011; Khoo and Teoh, 2014;Pantuso et al., 2014, 2015).

When the number of scenarios is very large or even infinite, a common method to reduce the set of sce-
narios to a reasonable size are Monte Carlo simulations. Relevant literature (Kleywegt et al., 2002; Schütz
et al., 2009; Shapiro et al., 2014) referred to this method as sample average approximation (SAA). The idea
consists in sampling the probability distribution of ªt so as to obtain N different values

©

ª1
t , ...,ªN

t

™

. Then, if
the values are distributed independently from each other, the probability of each sample p j becomes 1/N .
In this way, the problem is approximated as:

Min (or Max)
xt

ft (xt ,ªt )+ 1
N

N
X

j=1
Qt+1(xt ,ª j

[t+1]) (2.6)

Moreover, Heitsch and Römisch (2009) discussed the issues of modelling a multivariate stochastic input
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process in the form of a scenario tree. They proposed a heuristic technique with backward and forward con-
struction algorithms to create scenario trees out of a series of predefined scenarios. In this way, the obtained
scenario tree could be an approximated representation of the stochastic process. To illustrate their idea,
Heitsch and Römisch(2009) provided a case study in the context of electricity portfolio management.

In any case, the challenging dimensions associated to high dimensional dynamic systems have led to the
stagnation of realistic fleet planning models. Many researchers have concluded that backwards induction is
not convenient nor efficient for solving problems with multidimensional variables given the available com-
puter power ( Powell, 2007; Papageorgiou et al., 2014; Simão et al. (2009, 2010). Indeed, multistage planning
models have undergone severe difficulties when it comes to broaden the range of possible uncertainties, de-
cision variables, time stages as well as possible outcomes. This is due to the fact that current optimizers
(e.g. CPLEX, Gurobi) and decomposition techniques are not able to reach or even to be close to an optimal
solution within acceptable time limits ( Cristobal et al., 2009; Pantuso et al.,2014, 2015 ). In consequence,
researchers have been prevented from applying their models to realistic case studies (e.g. Hsu et al., 2011).
Therefore, the main challenge to be addressed consists in finding an efficient solving technique against the
well-known dimensionality problems faced by dynamic programming.

In light of this, current research streams have revolved around this concern. While some academic groups
have focused on the development of powerful heuristic methods to solve planning problems (e.g. List et al.,
2003), other communities have moved towards a new research trend, which has gained a lot of ground in dif-
ferent communities such as control theory, artificial intelligence and operations research. Even though the
vocabulary and terms used were different for each community, the idea was still the same: stepping forward
through time across the scenario tree, thereby avoiding backward induction and recursion. As for its notation,
this method has been named in many different ways across communities: neuro-dynamic programming for
control theory community, reinforcement learning for the artificial intelligence community and many other
publications have refer to it as approximate dynamic programming, forward dynamic programming, adap-
tive dynamic programming, heuristic dynamic programming or iterative dynamic programming. According
to Powell (2007), the term that has been increasingly accepted within the operations research community is
approximate dynamic programming (ADP). Thus, the present MSc thesis will use this term hereinafter.

In order to step forward through time and avoid backward induction across the scenario tree, approxi-
mate dynamic programming consists in initially approximating the recursive value function Vt for all time
stages and then, improve these estimations through subsequent Monte Carlo simulations until reaching a
near-optimal policy. Analysing this general concept, ADP can be considered as an optimising simulator since
it offers a solving strategy based on the flexibility of simulations and the power of optimisation together with
feedback learning (Powell et al., 2014). This concept makes ADP a novel and promising method to solve mul-
tistage stochastic problems, whose computation have appeared to be so far intractable with backwards exact
methods. Indeed, ADP allows to decompose large-scale problems and reduce the required computational
times. In the same vein, Sutton and Barto (1998) proposed a similar algorithmic strategy to solve problems in
the field of control. They referred to it as reinforcement learning since the algorithmic approach was based on
learning-by-doing: at each iteration the approximations of the value function were adjusted and improved,
thereby approaching progressively to the optimal solution.

In any case, there are still many challenges to tackle in terms of value function approximation methods,
updating techniques and scenario tree exploration policies. Indeed, ADP is a flourishing discipline whose
foundations have been studied from a mathematical perspective during the last two decades. This may
explain the scarcity of ADP-based applications in current industry. Indeed, well-known problems in liter-
ature such as the newsvendor problem or the multicommodity-flow problem were applied at small-scale
by Godfrey and Powell (2001, 2002a, 2002b) and Topaloglu and Powell (2006) so as to verify approximation
techniques against exact methods. In these publications, several approximation methods were introduced
and tested at different levels of complexity: a linear value-function approximation, a piecewise-linear value-
function approximation as well as a hybrid value-function approximation. A restricting feature of their pro-
posed methods was that they only could deal with concave functions. In any case, the obtained numerical
results looked promising since they provided near-optimal solutions within acceptable computational times.
Figure 2.6 shows the typical performance of three approximation methods applied to a time-staged inte-
ger multicommodity flow problem (Topaloglu and Powell, 2006). The hybrid (PL) and piece-wise linear (P)
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value-function approximation techniques achieved successful results within the 1%-2% of the objective up-
per bound, whereas the linear (L) approximation fluctuated more but still remained within the 10%.

Figure 2.6: Typical performances for linear (L), piece-wise linear (P) and hy-
brid (PL) value-function approximations for a deterministic multicommodity flow
problem (Topaloglu and Powell, 2006)

Given the clear potential of approximate dynamic programming, from 2000s onwards there has been a
rising interest in the application of ADP to more realistic and larger operational problems under uncertainty.
In the domain of operations research, some of the diverse problems already studied have been mainly tacti-
cal such as the vehicle routing problem under demand uncertainty (Secomandi, 2000), maritime inventory
routing problems (Papageorgiou et al., 2014), the empty container allocation problem (Lam et al., 2007) or
the resource allocation problem in hospitals (Hulshof et al., 2016). Moreover, Simão et al. (2009, 2010) proved
that an ADP algorithm could capture the large-scale fleet management operations for Schneider National.
Indeed, their model was capable of optimising over time a highly detailed system with an extremely high
number of decision variables. Furthermore, the objective of Simão et al. (2009, 2010) was not to provide a
better solution, but rather to closely match several operational statistics to validate the simulation. From a
planning perspective, one of the most important contributions has been the implementation of an optimis-
ing simulator to support locomotive planning at an American rail transport company (Powell et al., 2014). In
their work, Powell et al. (2014) used the ADP modelling and algorithmic framework to create a highly detailed
model that supported fleet sizing decisions based on historical metrics. The obtained policies proved to be
near-optimal, robust and adaptive to different scenarios. Thus, ADP appeared to be effective for the cases
studied. To the writer’s knowledge, this is the first time in which ADP has been employed taking a strategic
planning perspective rather than a tactical one.

In conclusion, the recently obtained results with ADP have shed light on the computation of dynamic
models and thus, the solution of multistage fleet planning models. Yet, there is still a wide range of possibili-
ties for research.

2.3. Fleet planning and market interactions
The fleet planning and other relevant models introduced until now focused on the performance of a single
company in a deterministic or stochastic environment. That is to say, the company performance depended
only on their decisions and the environment conditions (demand, disruptions and operating costs), without
being influenced by the possible presence of other companies competing for the same market. Yet, the pos-
sible presence of players in the market could bring a higher degree of uncertainty.

For many years, competition in the airline industry was investigated as a central problem by means of
applying game theory in several forms such as simultaneous games and two-stage games. This allowed the
comprehension of different competitive behaviors (e.g. Wei and Hansen, 2007; Adler, 2001). Furthermore,
many researchers (Simpson, 1970; Gelerman and De Neufville, 1973; De Neufville and King, 1979; Powell,
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1982; Wei and Hansen, 2005) contributed to the study of demand-supply interactions under competition.
Nevertheless, it is evident that the integration of competition models into planning models has been enor-
mously constrained by the limited computational power available. In fact, modelling any kind of interaction
between independent entities involves a coupling expression, which is prone to entail nonlinear programs
that need to be solved with heuristic method as shown by Teodorović and Krcmar-Nozić (1989), Wei and
Hansen (2007) and Wang et al. (2015). What is more, computing complexity would increase dramatically if
demand uncertainty was to be added. Consequently, this fact may explain the reason for which competition
elements have not been included yet in stochastic planning models.

2.4. Conclusions: Knowledge gap
Once reviewed the existent literature related to fleet planning, the mind map technique is a useful way to
structure all relevant information and understand where the current knowledge gap is. Figure 2.7 shows the
current research status of fleet planning in different areas: core modelling elements, problem extensions
and optimisation methods. Blue areas correspond to elements frequently included in publications, orange
areas to elements partially seen in publications and yellow areas to issues barely or never studied in existent
literature related to fleet planning.
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Figure 2.7: Knowledge gap mind map

Fleet planning models have not experienced great modelling changes with respect to the first contribu-
tion of Shube and Stroup (1975). Indeed, the major part of models do not go beyond the representation of the
core defining elements of the problem: demand, operating costs, a portfolio of routes, fleet characteristics
and replacement decisions. Yet, a medium-size multistage deterministic version of the problem may already
lead to a large-scale integer program challenging to solve (e.g. Sayarshad and Ghoseiri; 2009).

Taking into account the importance of including uncertainty into fleet planning models, demand has fre-
quently been tested as a random variable in both two-stage and multistage stochastic models (e.g. Hsu et al.,
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2011; Khoo and Teoh, 2014). The uncertainty of fuel costs has also been studied following a two-stage struc-
ture (e.g. Naumann and Suhl, 2013) but not in a multistage structure yet. Apart from that, the simultaneous
analysis of demand and fuel uncertainties needs to be further developed. In fact, current studies have either
focused on the effect of demand uncertainty or fuel uncertainty without analysing their interrelations.

While the transition from deterministic to stochastic models was an essential step to develop more ro-
bust fleet plans under uncertainty, the consideration of different scenarios has extremely complicated the
computation of real-sized applications. Consequently, a lot of academic effort has been dedicated to de-
velop efficient dynamic programs and heuristic methods to deal with this challenge. Nowadays, approximate
dynamic programming seems a promising field of study, which has not yet been tested in the context of air-
line fleet planning. Its good results in the locomotive domain position ADP as a possible method to tackle
the dimensional constraints of multistage stochastic fleet planning models. If implemented sucessfully, ADP
could pave the way for developing more realistic fleet planning models. Indeed, the inclusion of extensions
in fleet planning models may allow to capture better reality and help airlines to take better strategic decisions.

Until now, it is evident that the integration of any extensions into the fleet planning problem has been
constantly limited by the current computational power available. In general, an increase in the level of de-
tail leads to an unmanageable number of possible scenarios to explore. Nevertheless, this has not prevented
researchers from testing in small-scale cases the inclusion of fleet management issues into fleet planning
models (e.g. Hsu et al., 2011; Khoo and Teoh, 2014). Likewise, competition and demand-supply models have
been studied as possible extensions to frequency planning (e.g. Teodorović and Krcmar-Nozić, 1989) or more
recently, as extension to the fleet planning problem (e.g. Wang et al., 2015). In any case, modelling any kind
of interaction between independent entities involves a coupling expression, which is prone to entail multi-
objective nonlinear programs that need to be solved with heuristic methods as shown by Teodorović and
Krcmar-Nozić (1989), Wei and Hansen (2007) and Wang et al. (2015). On top of that, adding uncertainty to
this kind of problems would do nothing more than increase dramatically their computational complexity. All
these reasons may explain why extensions have not been included yet in stochastic planning models.

As a result, the multistage fleet planning models proposed until now focused on the performance of a
single company in a deterministic or stochastic environment. That is to say, the company performance de-
pended only on its decisions and the environment conditions (demand, disruptions and operating costs),
without being influenced by the possible presence of other companies competing for the same market. This
is quite unrealistic since the possible presence of players in the market can bring a higher degree of uncer-
tainty. Yet, competition uncertainty has not been explored from all perspectives. As it can be observed, many
researchers have focused solely on modelling global competitive behavior with game theory and have come
up with complex multiobjective programs difficult to couple with stochastic planning models.

Nevertheless, competition could be modelled from the perspective of a single airline in a more simple and
useful way, which would allow the integration of competitive elements into fleet planning models. Instead of
using game theory, the impact of competition on fleet plans could be modelled as the uncertainty entailed by
the probability of other airline entering into a market. Indeed, an airline may invest in its fleet expansion so
as to exploit a promising market with high growth rates. Nevertheless, any optimistic forecasted results may
increase the probability of other airlines entering into the same market, thereby leading to a fleet surplus and
its corresponding losses. This new idea would still capture the relevant effects of competition in fleet plan-
ning while keeping the model dimensions within acceptable limits.

In view of the above, it can be concluded that the development of multistage stochastic fleet planning
models has been enormously constrained by the limitations of dynamic programming on solving wide sce-
nario trees. Nevertheless, the implementation of ADP represents a promising knowledge gap in the field. In
fact, no airline fleet planning model has been based on this discipline before and results in the locomotive
industry have proven to be successful. In other words, its effective implementation would mean a step for-
ward towards the development of multi-period adaptive fleet planning policies in the airline industry. Finally,
it could also represent a viable solving technique for more complex planning models, which may eventually
combine demand, fuel and competition uncertainty.
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Research Scope

Given the current knowledge gap existent in fleet planning literature, the aim of this chapter is to establish
the research boundaries of this MSc thesis. Firstly, the research objective is defined in Section 3.1. Next,
Section 3.2 introduces a research framework, which will help formulate the corresponding research questions
in Section 3.3. To answer these questions and achieve the research objective, a experimental set-up will be
detailed in Section 3.4. Finally, Section 3.5 discusses the expected outcome and relevance of this MSc thesis.

3.1. Research objective

The objective of this MSc thesis is to contribute to the development of adaptive policies in the context of
airline fleet planning under demand uncertainty by (a) modelling and solving with Approximate Dynamic
Programming a multi-period adaptive fleet planning problem that integrates stochastic demand and by (b)
detecting useful signposts for fleet planners.

3.2. Research framework

In order to achieve the research objective, it is convenient to draw a research framework that permits the
identification of the essential pillars to follow during the project. Its scheme is outlined in Figure 3.1. Conse-
quently, this technique facilitates the formulation of research questions as well as the definition of the project
plan.
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Figure 3.1: MSc thesis research framework
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The research framework can be explained and structured as follows: (A) An initial literature study is car-
ried out so as to identify the main elements of all relevant disciplines to the problem, define a set of assump-
tions and design the mathematical model. (B) A trade-off is performed between the complexity of the model
and the solving implementation strategy so as to create an ADP-based decision support tool. (C) The verifica-
tion criteria is defined and the developed tool is tested with a small case. (D) The tool validation is performed
by means of a real case study and an experts survey. Furthermore, it must be noted that phases B, C and D are
interrelated by the simultaneous improvement of the tool performance. (E) The final project stage consists in
providing a final assessment of the obtained ADP-based tool and recommendations for future research.

3.3. Research questions
Research questions are formulated based on the structure of the research framework.

(A) What should be the main characteristics of a multistage stochastic model that provides an adaptive
policy for fleet planning?

(a.1) What are the essential elements that model a fleet planning problem?

(a.2) Should fleet management be integrated to the fleet planning problem and if so, at which level of
detail?

(a.3) How can the model account for market interactions?

(a.4) What are the most appropriate solving techniques to solve the problem?

(B) What is an efficient way to implement the model?

(b.1) Has the designed model any programming constraints that should be taken into account?

(b.2) Amongst all candidate solving techniques, which one should be chosen?

(b.3) What are the main advantages of the programming language used?

(C) Can the already operating tool be verified?

(c.1) What is the most appropriate small test to verify the behaviour of the operating tool?

(c.2) What are the relevant criteria to assess the quality of the obtained results from the small test case?

(c.3) Which model and algorithm parameters should be analysed with a sensitivity analysis?

(c.4) Does the support tool feature any weakness that can affect the quality of the results?

(D) Can the already verified model be validated?

(d.1) Is there a real case study that could validate the model and if so, to what extent can the model
capture reality?

(d.2) What is the evaluation of fleet planning experts concerning the model?

(E) Has the support tool contributed to the development of adaptive fleet plan policies?

(e.1) Does the model feature any advantage with respect to the current available ones?

(e.2) Which aspects need to be improved?

(e.3) Is the support tool practical to support decision-making?

3.4. Experimental Set-up
The proposed MSc thesis implies experiments which will mainly consist in carrying out computer simula-
tions and expert surveys within the air transport industry.

As far as computer simulations are concerned, the experimental setting can be defined by the hardware
and software used. In terms of hardware, it will be used a MacBook Pro consisting of one processor Intel
Core i5 with 2.7 GHz speed and 16 GB 1867MHz RAM memory. Although the implementation of approximate
dynamic programming requires a lot of computational memory, this computer is expected to have enough
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power to meet the MSc thesis objective. When it comes to software, Python 2.7 is chosen as programming
language with the aim of facilitating a collaboration with industry experts in the validation phase (D). Given
the fact that Python is open-source but still very powerful, the developed decision support tool can easily be
tested within a company. Moreover, Python will be installed within Anaconda, which is a Python open-source
distribution and environment manager including a vast collection of Python extensions (SciPy, PySP, Pandas,
Matplotlib,etc.) as well as useful interfaces such as Spyder and IPython. Apart from this, the commercial
optimiser Gurobi will be used due to its efficient interface with Anaconda and well-documented Python API.
Despite its commercial purposes, Gurobi can provide free licenses to students and young graduates. Apart
from this, other open-source Python packages such as ete3 will be employed for specific modelling purposes.

In the verification stage, the input data for the test case will be taken from previous work of the Air Trans-
port Operations (ATO) Department of TU Delft Aerospace Faculty. This will allow a reliable evaluation of the
algorithm performance when solving the test case. After having verified the model, the validation stage will
require the use of real input data from a reference airline. This will be possible thanks to the collaboration of
the ATO department with Kenya Airways. Furthermore, validation experiments will be carried out right in the
field so as to interview industry experts and gather realistic feedback on the tool.

3.5. Results, Outcome and Relevance
Since fleet planning is an optimisation problem, the data will be structured in an objective function to be
maximised upon a set of different constraints. In this way, the data will consist of variables modelling the
system: an airline deciding on when and how many aircraft of each type to buy in order to maximise profits
while meeting as best as possible a stochastic demand. Depending on its main function, variables will be
classified as parameters and decision variables:

• Parameters: will define the main characteristics and constraints of the system. For instance, they will
represent necessary information such as airline route fares, fixed and operating costs aircraft charac-
teristics or the stochastic demand along different time periods.

• Decision variables: represent the set of strategic decisions to make in order to maximise the objective
function. In this case, the decision variables will consist of the number of aircraft of each type to buy
or discard for different time periods and demand scenarios. When optimality is reached, decision vari-
ables become the results for the problem given a set of predefined parameters. Decision variables are
expected to be in an integer form. Nevertheless, they could be considered continuous in order to relax
the problem and reduce its computational requirements.

As it can be concluded, the solution to an approximate dynamic programming problem is a random vari-
able x̄t (ª[t ]) since its value depends on a random process ª[t ] defined by a stochastic demand. Therefore,
instead of providing a single best solution, approximate dynamic programming offers the best rule for mak-
ing decisions in function of the available information at that time. This rule is what is known as policy (Powell,
2007). Therefore, the main outcome is supposed to be an adaptive fleet plan policy capable of giving recom-
mendations that adapt to every possible demand scenario. The impact of obtaining such an adaptive policy
is very relevant since it would mean a strong basis for eventually building a reinforced learning system to sup-
port fleet planning decisions. Most importantly, the relevance of this MSc thesis lays on proving approximate
dynamic programming as an effective method to solve the multi-period adaptive fleet planning problem un-
der demand uncertainty. In fact, its successful implementation could boost the development of currently
stagnated fleet planning models, thus paving the way for more sophisticated tools combining demand, fuel
and competition uncertainty.





�
Methodology

Chapter 4 discusses the methodology followed to achieve the proposed research objective. To this end, Sec-
tion 4.1 introduces the required mathematical background to understand the concept of approximate dy-
namic programming within the context of the multi-period adaptive fleet planning problem. Next, in Section
4.2 the problem will be formulated as a dynamic program, which will enable the effective implementation of
approximate dynamic programming. Finally, Section 4.4 will present the ADP algorithm employed to solve
the multi-period adaptive fleet planning problem as well as the strategies created for its implementation.

4.1. Mathematical background for approximate dynamic programming
Before modelling any problem, it is very important to have a deep understanding of its main mathematical
essence as well as the fundamentals of its possible optimisation methods. Carrying out this exercise facili-
tates the identification of problem distinctive characteristics and consequently, their implication in terms of
mathematical modelling and optimisation. Apart from that, a single problem can be modelled and solved in
multiple ways.

In light of this, the present section will begin with a brief analysis of fleet planning in the context of se-
quential decision problems and dynamic programming. This will be followed by a description of a state-space
framework suitable for modelling dynamic programs. Lastly, the concept of approximate dynamic program-
ming will be described together with its expected contribution to the multi-period adaptive fleet planning
problem.

4.1.1. Multi-period adaptive fleet planning as a sequential decision problem
The multi-period adaptive fleet planning problem is a long-term strategic problem faced by all transportation
companies, which mainly consists in deciding the quantity and composition of vehicles to be acquired and
disposed along the future years in order to maximize profits by meeting future uncertain demand. Therefore,
this problem can be seen as a sequential decision process over time periods and under uncertainty.

Throughout the years and in different industries (e.g. finance, production, energy, transportation and lo-
gistics), sequential decision problems under uncertainty have been modelled by means of multistage stochas-
tic models. These models can be seen as the natural extension of two-stage stochastic models over T +1 time
periods t = 0,1, ...,T . Thus, the inputs of a multistage stochastic model are multivariate random processes
ª[t ] := (ª1,ª2...,ªT ), whose values over time t , ªt , are given by a certain probability function P. If the values
taken at each stage ªt are stochastically independent from the previous values ªt°1, the process is considered
stage-wise independent and is commonly called Markov Chain. In general, multistage models cover decision
processes in the form of Figure 4.1 (Shapiro et al., 2014). Decisions chosen at a time period t , xt , are only
made upon observations ªt available up to time t and not on future observations (nonanticipativity). The
key point is that current decisions will have an impact on future problem conditions, which at the same time
are still uncertain.
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Figure 4.1: Decision process scheme elaborated from Shapiro et al., (2014)

As far as airline fleet planning is concerned, it can be stated that a Markov chain model would grasp the
full essence of the strategic problem. Decisions to acquire or dispose aircraft at a particular time t are made
upon current airline performance and available demand forecasts, which can be treated as Markov chain
observations at time t . Apart from this, current decisions to acquire or dispose certain aircraft will not only
impact current but also future operational performance of the airline.

By extending the general formulation of a two-stage stochastic problem and using the notation of Shapiro
et al. (2014), a T-stage model can be expressed in a nested general form:

Min
x02¬0

f0(x0,ª0)+E

∑

inf
x12¬1(x0,ª1)

f1(x1,ª1)+E

∑

... + E[ inf
xT 2¬T (xT°1,ªT )

fT (xT ,ªT )]
∏∏

(4.1)

where ¬t represents the region of feasible solutions for xt defined by the set of constraints of the t-stage
subproblem. Likewise, these constraints are determined by a set of parameters which are function of previous
decisions xt°1 and the most recent observations of the stochastic variable ªt . However, the idea remains the
same as in the two-stage stochastic problem: find the optimal actions xt which will not only optimize (in this
case minimize) the current function ft , but also the expected function value for the next stage t +1. Similarly,
in the airline fleet planning problem the objective is to maximize current airline profits as well as the expected
profits for the next uncertain years:

sup
x02¬0

Profit0(x0)+E

"

sup
x12¬1(x0,ª1)

Profit1(x1,ª1)+E

"

... + E[ sup
xT 2¬T (xT°1,ªT )

ProfitT (xT ,ªT )]

##

(4.2)

Nevertheless, these cumbersome nested formulations can be simplified by taking advantage of their re-
cursive mathematical structure. This is depicted by Equation 4.3, which is commonly known as Bellman
equation or dynamic programming equation:

Vt = Min (or Max)
xt2¬t (xt°1,ªt )

°

ft (xt ,ªt )+E {Vt+1}
¢

(4.3)

In this expression, Vt is called value function and denotes the value of taking a series of optimal decisions
x[t ] from period t onwards. As inferred from Equation 4.3, the value function Vt is defined mathematically by
its own definition. Following this logic, it can be drawn that the value function in the initial period V0 is equal
to the objective function of the entire problem.

This recursive relationship between value functions is very distinctive of any multi-period planning prob-
lem and represents the basis of dynamic programming. Indeed, dynamic programming is a well-known
mathematical optimisation method which consists in tackling the entire recursive problem V0 by breaking
it into smaller nested subproblems Vt which overlap throughout the time periods and need to be solved at
least once. Therefore, it can be concluded that the multi-period fleet planning problem can be modelled and
solved intuitively as a dynamic program.
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4.1.2. Framework for modelling dynamic programs
When it comes to solving dynamic programs such as the multi-period fleet planning problem, it is very mean-
ingful to firstly adopt a sound modelling framework so as to take full advantage of the problem structure and
solving strategies. Indeed, the way in which a problem is modelled plays an essential role during the algo-
rithm implementation of the optimisation method. Whithin the operations research community, Bertsekas
and Tsitsiklis (1995a, 1995b) and Powell (2007) led the way in the use of a simple but very powerful framework
to represent dynamic programs efficiently. Based on control theory, this framework consists in a state-space
representation of the problem and is composed by six essential elements:

• State vector (St ), which contains all necessary information to take decisions and describe the system
evolution over time.

• Decision vector (at ), which can be understood as the controller actions of the process.

• Exogenous information (![t ]), which represents a stochastic process whose random variables !t are
revealed gradually at the start of each time stage.

• Transition function (St+1 = SModel (St , at ,!t )), which indicates the manner in which the system evolves
from the state St to the state St+1 in function of the previous decisions made at and the most recent
realisation of exogenous information !t .

• Contribution function (Ct (St , at )), which indicates the costs incurred or rewards received based on the
decisions made during each time stage.

• Objective function, where Powell explicitly states the maximisation (or minimisation) of all aggregate
contributions Ct along a certain time horizon T .

Using Powell’s framework, the Bellman equation can be rewritten as follows:

Vt (St ) = Max
at2At

°

Ct (St , at )+∞E {Vt+1(St+1(St , at )) | St }
¢

(4.4)

where the state variable St contains the exogenous information !t and ∞ denotes a time discount factor.
Furthermore, the conditional expectation is defined as:

E {Vt+1(St+1(St , at )) | St } =
X

s02S

P(St+1 = s0 | St , at )Vt+1(s0)) (4.5)

whereP corresponds to the probability of next state St+1 becoming s0 once actions at are taken under cur-
rent state St . Finally, the objective function of the problem becomes the maximisation of the initial contribu-
tion function together with the expected value of future contributions functions throughout next uncertain
periods:

V0(S0) = Max
a02A0

°

C0(S0, a0)+∞E {V1(S1(S0, a0)) | S0}
¢

(4.6)

Given this framework for modelling dynamic programs, the multistage stochastic problem can also be
schematized with a scenario tree representation, as depicted in Figure 4.2. The circles represent the differ-
ent possible states describing the system at time stage t . In particular, the purple circle denotes the initial
state of the problem, whereas the green circles its future possible states. As inferred from the definition of the
transition function, these future states result from previous random realizations of exogenous information
!t , which are represented by the discontinuous branches. Finally, squares represent the moments in which
decisions must be taken depending on future forecasts of exogenous information as well as the current per-
formance indicated by the contribution function. As highlighted with a yellow shadow, every sequence of
events (here

©

!0
1,!0

2,!0
3

™

) linking the initial with the final states ( here S0 and S3 ) will correspond to each spe-
cific scenario that can take place in the problem. In any case, the reader should note that Figure 4.2 represents
a discrete representation of the problem; however, the number of possible scenarios could also be infinite.

All in all, this state-space representation of dynamic problems is commonly seen in operations research
and as will be discussed shortly, it represents the modelling basis for other emerging disciplines such as ap-
proximate dynamic programming.
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Figure 4.2: Scenario tree representation for multi-period fleet planning problems

4.1.3. Foundations of approximate dynamic programming

Even though there are many computer algorithms based on dynamic programming , one of the most common
and intuitive techniques to solve the Bellman equation has been backward induction. As its name implies,
backward induction consists in optimising the problem backward in time. That is to say, the optimisation
starts by solving the value function at the final stage to then determine the series of previous optimal actions.
In this way, all possible value functions need to be exactly computed at least once in order to make decisions.
Hence, this method is specially intended for solving finite-horizon discrete-time dynamic programs.

Following the logic of backward induction, one can start considering the last-stage subproblem (t = T ):

Max
aT 2AT (aT°1,!T )

CT (ST , at ) (4.7)

whose optimal solution is denoted by VT (ST ). Then, for the earlier stages t = 0,1, ...,T °1 the problem is
written as:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1E {Vt+1(St+1)|St }
¢

= max
at2At

√

Ct (St , at )+∞t+1
X

s02S

P
°

s0|St , at
¢

Vt+1(s0)

! (4.8)

Moving backwards across the scenario tree as shown in Figure 4.3, the problem for the initial stage can be
eventually solved:

V0(S0) = max
a02A0

°

C0(S0, a0)+∞1E {V1(S1)|S0}
¢

= max
a02A0

√

C0(S0, a0)+∞1
X

s02S

P
°

s0|S0, a0
¢

V1(s0)

! (4.9)
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Figure 4.3: Scheme of backward induction across scenario tree.
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Figure 4.4: Scheme of forward induction across scenario tree.

Nevertheless, it was concluded from the literature review that this technique only remains effective for
small scenario trees and few stages (Hsu et al., 2011; Khoo and Teoh, 2014; Pantuso et al., 2014, 2015)). More
particularly, it was discussed that dynamic programs suffer from the curses of dimensionality due to their re-
cursive nature and thus, large multistage stochastic problems become intractable with backward induction
(Powell; 2007). This is due to the fact that backward induction requires so high computational efforts and
storing memory that current computer capabilities are frequently exceeded. Consequently, many stochas-
tic problems formulated as dynamic programs are constrained in terms of dimensions. It is precisely under
these conditions that approximate dynamic programming plays an important role. Using the notation of
Powell (2007), the foundation of ADP is explained hereunder.

As previously introduced in Chapter 2, the idea of approximate dynamic programming lays on an algo-
rithmic strategy which allows to step forward throughout the time periods. This novel concept breaks with
the common tendency of solving dynamic programs by means of backward induction and recursion. How-
ever, its modelling framework remains the same state-space representation used in dynamic programming,
whose suitability has been proven by many papers implementing ADP algorithms (Godfrey and Powell, 2001,
2002a, 2002b; Topaloglu and Powell, 2006; Secomandi, 2000;Papageorgiou et al., 2014; Lam et al., 2007; Hul-
shof et al., 2016; Simão et al., 2009, 2010; Powell et al., 2014).

Figure 4.4 outlines the idea of approximate dynamic programming: stepping forward across the scenario
tree. This is achieved by initially approximating the next value function Vt+1 so as to make decisions at :

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1E {Vt+1(St+1)|St }
¢

º max
at2At

≥

Ct (St , at )+∞t+1E
n

V t+1(St+1)|St

o¥ (4.10)

where V t+1 denotes an approximation of the next value function Vt+1. Once obtained the initial approxi-

mated values V 0
t at an initial iteration n = 0, one could start solving the Bellman equation for the next iteration

n = 1:
bv1

t = Max
a1

t 2A 1
t

≥

Ct (S1
t , a1

t )+∞t+1E
n

V 0
t+1(S0

t+1) | S0
t

o¥

(4.11)

In this case, a1
t would be the value of at that solves the approximated maximisation problem for period t in

iteration n = 1 and bv1
t its corresponding optimal value observed. When stepping forward through time stages,
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a random scenario is chosen. That is to say, a Monte Carlo simulation will dictate a sample path !1
[t ], which

will indicate the realisation of the next random variables. Likewise, the system evolution is captured by the
transition function:

St+1 = SModel (St , at ,!t+1) (??)

In this way, a new set of values bv1
t (St ) are generated throughout the time periods based on the initial

approximation, and will be used to update the former approximated values of the scenario studied. If the
scenario chosen by the Monte Carlo simulation does not pass through certain nodes, then the value at these
nodes will remain with their previous approximated values:

V n
t (St ) =

(

F Update(bvn
t ), if St = Sn

t

V n°1
t (St ), otherwise

(4.12)

Value function observations are generally updated taking the form of a weighted function between prior
value function observations and the most recent observation:

V n
t (Sn

t ) = (1°Æn°1)V n°1
t (Sn

t )+Æn°1 bvn
t (4.13)

where Æn°1 is called stepsize and defines the rate at which the value function approximation is updated
throughout the iterations. Its value ranges between [0,1], being 1 the fastest updating rate and 0 the cancella-
tion of the value function update.

Once all approximated values are updated, a new iteration n starts. A new Monte Carlo simulation is
performed to determine the new scenario path !n

[t ] to analyse and the previously explained process starts
again by solving Equation 4.14:

bvn
t = Max

at2A n
t

≥

Ct (Sn
t , an

t )+∞t+1E
n

V n°1
t+1 (Sn

t+1) | Sn
t

o¥

(4.14)

Furthermore, it should be noted that the number of iterations required (N ) depends on problem dimen-
sions and the value function approximation. Generally speaking, the closer the approximation technique is
to the real function, the less iterations the algorithmic strategy needs to reach convergence (Topaloglu and
Powell, 2006).

In conclusion, approximate dynamic programming can be considered as an optimising simulator since it
offers a solving strategy based on the flexibility of Monte Carlo simulations and the power of OR optimisation,
both combined with machine learning (Powell et al., 2014). This blend of disciplines makes ADP a novel and
promising method to solve multistage stochastic problems, whose computation have appeared to be so far
intractable with backwards exact methods. Indeed, ADP allows to decompose large-scale problems by ap-
proximating unknown value functions, thus reducing the required computational times needed in dynamic
programming.

4.2. The multi-period adaptive fleet planning model
Having discussed the dynamic essence of strategic fleet planning and the suitability of the state-space frame-
work to capture its mathematical characteristics, this section focuses on modelling the multi-period adaptive
fleet planning problem in an efficient way to implement an ADP-based algorithm. To begin with, a set of
assumptions are defined so as to draw the boundaries of the model. Then, the multi-period adaptive fleet
planning problem is formulated as a state-space system.

4.2.1. Problem assumptions
To formulate the multi-period adaptive fleet planning problem, it is highly convenient to employ an already
existing model as a baseline to assess the effectiveness of a new ADP-based algorithm. Indeed, it should be
recalled that the main contribution of this MSc thesis revolves around developing a solution methodology
rather than a modelling method. Therefore, the same assumptions from the model of Repko and Santos
(2017) are taken. Even if their model is simplified in certain aspects, the assumptions made can still provide
a meaningful strategic perspective without a high relevant loss of accuracy. The set of assumptions is listed
hereafter:
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• Inelastic demand: The model takes the demand already captured by the airline and considers it as
fixed and independent of the offered route frequency. While overall route demand is function of socio-
economical variables, in reality the demand captured by each airline depends on the level of frequency
offered in that route amongst other factors such as pricing and schedules. Nevertheless, the model
makes this assumption to avoid non-linear expressions, thereby reducing significantly computational
power. In any case, results should be examined carefully since the model will tend to reduce frequency
and increase load factors, especially in low-demand scenarios. Nevertheless, the establishment of a
minimum frequency could avoid a significant reduction in route market shares.

• Star network and leg-based demand: The airline is assumed to operate a hub network, in which pas-
sengers are transported between nodes and the hub. Consequently, direct flights between nodes are
not considered and demand is leg-based. On the one hand, the assumption of a star network avoids
the need of including continuity constraints for aircraft in the network, since both inbound and out-
bound legs of a route will be operated by the same aircraft. If any triangular route was to be considered,
then it would need to be modelled as a single flight. On the other hand, the assumption of a leg-based
demand allows to only model the routes rather than all possible itineraries. While this assumption re-
duces the problem dimensions, it also prevents the model from considering network effects regarding
transported and spilled passengers.

• Average week demand: The demand of a representative week is taken as a reference for all the weekly
demands occurring throughout a year. Therefore, seasonal behaviours and weekly fluctuations are not
considered in the model. Furthermore, the optimisation is carried out on a weekly basis and annual
profits result from aggregating the weekly profits of 52 weeks.

• Frequency schedule: Following the pattern of other strategic planning models, frequency schedule is
preferred over a time-based schedule. The reason for this choice is that frequency planning only needs
assigning aircraft types to routes rather than a specific aircraft tail as the case for time-based schedules.
Due to this fact, frequency schedule is more efficient from a strategic perspective.

• No revenue management and single cabin: By overlooking revenue management, a single average
fare is considered for each route. Indeed, it is very hard to meaningfully and efficiently model the
impact of revenue management with a long term perspective. Since an average fare is already assumed,
the adoption of a single cabin configuration does not entail a high loss of accuracy and is considered
necessary to reduce problem dimensions.

• No cargo: Even though revenues from transporting cargo can be very relevant for certain airlines, the
model relaxes this assumption. Therefore, the impact of cargo is not considered within the airline op-
erating performance.

• Demand uncertainty: As previously commented, the airline industry must deal with different sources
of uncertainty: demand, competition and fuel price are the variables that are most uncertain. While the
impact of competitors and fuel price changes shall never be dismissed from a strategic perspective, de-
mand is often considered the only stochastic variable when modelling dynamic problems. In fact, this
restriction in modelling is due to the computational limitations entailed by solving dynamic programs
with backward induction. Since the objective of this MSc thesis is to prove Approximate Dynamic Pro-
gramming as an efficient way to solve the fleet planning problem, it is considered convenient to limit
the study to just one stochastic process representing demand uncertainty. In this way, a potential suc-
cess of this proof-of-concept may pave the way for including other sources of uncertainty.

4.2.2. Problem formulation
Taking into account the set of assumptions recently discussed, the nomenclature as well as the formulation
of the multi-period adaptive fleet planning problem follows up the work of Repko and Santos (2017). Even
though all the essence of their model is fully respected, the problem formulation has been slightly adjusted
to define the six essential elements of the state-space framework.
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Sets
Within the problem, three sets are defined as follows:

T := set of discrete time periods considered within a time horizon T with t = 0 denoting the initial

conditions, {0,1, ...,T };

I := set of aircraft types, being I the total number of aircraft types, {1,2, ..., I };

R := set of routes, with R as total number of routes considered, {1,2, ...,R}

State vector
With the aim of defining the state vector of the fleet planning problem, the following elements are denoted.

Rti := number of aircraft of type i available at time stage t ;

Dtr := average weekly demand for each of both legs of route r at time stage t .

Let [Rti ]i2I and [Dtr ]r2R be the resource vector Rt and demand vector Dt respectively.

Rt := [Rti ]i2I

Dt := [Dtr ]r2R

Then, the system state vector can be defined as the concatenation of both resource and demand vectors,
which will provide the necessary information to describe the system evolution throughout a time period t :

St = (Rt Dt ) (4.15)

Decision vector
As for the decision vector, the actions to control the system are assumed to be:

xbuy
ti := number of aircraft of type i acquired at time stage t and to be delivered in next time period t +1;

xdi sp
ti := number of aircraft of type i assigned at time stage t to be disposed in next time period t +1;

yti r := assigned weekly frequency of aircraft type i on route r in period t ;

qtr := number of passengers transported weekly on route r per leg in time period t .

Following the same procedure as with the state vector, the decision vector is denoted as:

at =
≥

xbuy
t xdi sp

t yt qt

¥

(4.16)

where:

xbuy
t :=

h

xbuy
ti

i

i2I

xdi sp
t :=

h

xdi sp
ti

i

i2I

yt :=
£

yti r
§

i2I ,r2R

qt :=
£

qtr
§

r2R

Exogenous information
Passenger demand evolution can be simulated as a stochastic process of subsequent random events, thereby
being revealed gradually at the start of each time stage. Nevertheless, it is very convenient to perform a trans-
formation of random variables: instead of directly considering passenger demand a stochastic variable, we
take demand growth as an equivalent stochastic variable. This transformation of random variables allows to
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reduce the dimensions of the model without losing the problem essence.

Let ≠ be a set of all possible demand outcomes with probability function P and let ! be a real random
variable that maps the set of outcomes with a measurable real number indicating the percentage of global
demand growth. This is expressed mathematically like:

!t : ≠!R (4.17)

where R represents the set of real numbers. Furthermore, the random variable can either be a scalar or a
vector. Next, demand uncertainty is modelled by means of the following stochastic process:

![t ] := (!0,!1, ...,!T°1) (4.18)

which represents the history of demand growth. In this way, each possible combination of ![t ] defines
each possible scenario. If ≠ is a finite space of possible events, then the model will feature a finite number
of scenarios and the probability function P will be discrete. Likewise, if ≠ is continuos, then the number of
possible scenarios is infinite and probability function Pwill be continuos.

Finally, the absolute growth of passenger demand bDt can be obtained by applying the transformation
below:

bDt+1 =!t+1Dt (4.19)

Transition function
As commented previously, the transition function dictates the dynamics of the system. It indicates the man-
ner in which the system evolves from the state St to the state St+1 in function of the previous decision made
at and the most recent realisation of exogenous information !t+1.

St+1 = SModel (St , at ,!t+1)

St+1 =
∑

Rt+1
Dt+1

∏

=
"

Rt +xbuy
t °xdi sp

t
Dt + bDt+1

#

=
"

Rt +xbuy
t °xdi sp

t
(1+!t+1)Dt

# (4.20)

On the one hand, the transition function imposes the condition of continuity in the fleet throughout time.
In other words, the impact of all fleet-related decisions taken at a current time stage t will be visible in next
time period. Indeed, this component of the transition function is deterministic. On the other hand, the value
taken by demand vector Dt+1 is uncertain and will only be known once the random variable bDt+1 is revealed.

Contribution function
In the context of strategic fleet planning, the contribution function can be correlated to the annual operating
profit of an airline. As a reminder to the reader, the airline operating profit is defined as the amount of money
earned from its core business operations:

Operating Profit = Operating Revenue°Operating Expenses°Disposal costs°D&A (4.21)

where D&A stands for Depreciation and Amortization. By analysing Equation 4.21, it is clear that operat-
ing profit can be employed as a key performance indicator (KPI) to measure the resulting rewards from the
decisions made during each time stage.

With the aim of writing the contribution function as the annual operating profits of an airline, the follow-
ing problem parameters are written:

fr := average fare paid by a passenger for one leg on route r ;

cvar
ti r := cost of operating route r with aircraft type i ;

cown
ti := average weekly cost of owning an aircraft of type i in time period t ;

cdi sp
ti := penalty cost of disposing an aircraft of type i in time period t ;

nt := number of operating weeks considered in time period t .
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Then, the contribution function can be formulated following the definition of the airline operating profits
specifically introduced by Repko and Santos (2017):

Ct (St , at ) = nt

X

i2I

X

r2R

≥

2 fr qtr ° (cvar
ti r yti r + cown

ti Rti + cdi sp
ti xdi sp

ti )
¥

(4.22)

As observed, the annual operating profit is expressed as the aggregation of all nt average weekly operating
profits. Therefore, all terms within the summation signs are expressed in a weekly basis. The first term in
brackets represents the weekly revenue obtained from transporting passengers on route r . It must be noticed
that this term is multiplied by two so as to account for both legs of route r . The second term corresponds to
the weekly operating costs, which are calculated on a route and frequency basis. It is assumed that operating
costs encompass airport and en-route taxes, fuel, crew and maintenance costs for both legs of a route . The
third term indicates ownership costs, which can be understood as either lease costs or D&A costs per period
due to aircraft purchase. This type of cost is applied to each aircraft in the fleet, but it is independent from
any route operation performed. Finally, the fourth term is associated to the total penalty cost of disposing
aircraft expressed on a weekly basis. On the one hand, this penalty cost may result from returning leased
aircraft before the end of a leasing contract. On the other, if aircraft were purchased this cost may be incurred
due to an existent difference between the aircraft selling value and its accounted value.

Objective function
It has already been mentioned that in the case of airline fleet planning, the objective is to maximize cur-
rent airline profits as well as the expected profits within the next uncertain years. By taking advantage of its
recursion nature, the objective function is finally expressed in the form of Bellman equation:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1E {Vt+1(St+1)|St }
¢

= max
at2At

√

Ct (St , at )+∞t+1
X

s02S

P
°

s0|St , at
¢

Vt+1(s0)

! (4.23)

where ∞t+1 is the discount factor translating the profit of period t + 1 into its present day value and At
is the set of feasible decisions at at time t . Furthermore, it should be noted that the solution of a dynamic
problem is a random variableAt (St (!t )), since its value depends on a random process![t ]. Therefore, we are
not looking for a single optimal decision but an optimal policy Aº(St ): the best rule for making decisions at
in function of the given state St at that time, which results from the previous multivariate stochastic process
![t ] (Powell , 2007):

at = Aº(St ) (4.24)

If demand uncertainty was not considered, then the objective function would be simplified for the determin-
istic case by eliminating the expectation of the value function:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1Vt+1(St+1)
¢

(4.25)

Constraints
In the same way as the contribution function, the model constraints are adopted from the work of Repko and
Santos (2017). Nevertheless, instead of defining a general set of constraints for all time stages, the present
model will differentiate a set of constraints for each time period. In other words, the problem constraints
compose the set At of feasible decisions at at time t . This is done to respect the state-space modelling frame-
work. Before introducing its mathematical expression, the following problem parameters are defined below:

OTr := average time required to fly a leg of route r ;

T ATi := turnaround time of aircraft type i ;

BTi := block time or maximum number of operating hours that an aircraft of type i is allowed per week;

capi := seat capacity of aircraft type i ;

LFr := maximum load factor on route r ;

Y Mi n
tr := minimum frequency imposed on route r at time t ;

Ri ni ti al
i := number of aircraft of type i initially owned by the airline.
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Given Rt and St , the set of feasible decisions at time t is expressed as follows:

At (Rt ,Dt ) =
n

at : 2
X

r2R

(OTr +T ATi )yti r ∑ BTi Rti 8i 2I (4.26)

qtr ∑ Dtr 8r 2R (4.27)
X

i2A

capi LFr yti r ∏ qtr 8r 2R (4.28)

X

i2I

yti r ∏ Y Mi n
tr 8r 2R (4.29)

R0i = Ri ni ti al
i 8i 2I

o

(4.30)

with:
Rti 2Z+, xbuy

t 2Z+, xdi sp
t 2Z+, yti r 2Z+, qtr 22R+ (4.31)

The first set of Constraints 4.73 prevents the airline from assigning to an aircraft type i more operating
hours than the maximum allowed per week, given the number of aircraft of type i available at time t . In
doing so, route frequency assignments to aircraft types are consistent with the number of operating hours
available based on current fleet size and composition. Likewise, the set of Constraints 4.74 ensures that the
number of passengers transported on each flight leg of route r does not exceed existent demand at time t .
The third set of Constraints 4.75 indicates that the total number of passengers transported per route is limited
to the total available seats assigned to each specific route. Due to political or strategic reasons for instance, it
might be compulsory to operate certain routes over a minimum frequency independently of their profitabil-
ity. These constraints are reflected by the equation set 4.76. Finally, the last set of constraints make sure that
the fleet composition and size at the starting period t = 0 matches with the airline current fleet status.

To complete the formal formulation of the mathematical model, we need to interrelate the different time
periods by adding consistency between the decisions made at and their impact on next state variable St+1.
This is achieved by defining a set of feasible combinations (at ,Rt+1) ruled by the dynamics of the problem:

Yt (Rt ,Rt+1) =
n

(at ,Rt+1) : Rti +xbuy
ti °xdi sp

ti = Rt+1i 8i 2I
o

(4.32)

4.2.3. Model summary
Having defined all problem elements, the problem can be summarised as follows. Given a state variable St
and decision vector at at time stage t

St = (Rt Dt ) (4.15)

at =
≥

xbuy
t xdi sp

t yt qt

¥

(4.16)

and considering demand evolution as a multivariate stochastic process

![t ] := (!0, ...,!T°1) (4.18)

with

Dt+1 = Dt + bDt+1 = (1+!t+1)Dt (4.33)

,
the objective of the airline fleet planning problem is to find the best policy Aº(St )

at = Aº(St ) (4.24)

that maximises the expected airline operating profits aggregated throughout the years:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1E {Vt+1(St+1)|St }
¢

(4.23)
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In Equation 4.23 Ct (St , at ) corresponds to the airline operating profit earnt at time stage t :

Ct (St , at ) = nt

X

i2I

X

r2R

≥

2 fr qtr ° (cvar
ti r yti r + cown

ti Rti + cdi sp
ti xdi sp

ti )
¥

. (4.22)

Likewise, At (Rt ,Dt ) denotes the set of feasible decisions at time stage t , while Yt (Rt ,Dt ) defines the set
of feasible combinations (at ,Rt+1) dictated by the dynamics of the problem and that interrelate subsequent
time periods:

At (Rt ,Dt ) =
n

at : 2
X

r2R

(OTr +T ATi )yti r ∑ BTi Rti 8i 2I (4.73)

qtr ∑ Dtr 8r 2R (4.74)
X

i2A

capi LFr yti r ∏ qtr 8r 2R (4.75)

X

i2I

yti r ∏ Y Mi n
tr 8r 2R (4.76)

R0i = Ri ni ti al
i 8i 2I

o

(4.77)

Yt (Rt ,Rt+1) =
n

(at ,Rt+1) : Rti +xbuy
ti °xdi sp

ti = Rt+1i 8i 2I
o

(4.80)

with:
Rti 2Z+, xbuy

t 2Z+, xdi sp
t 2Z+, yti r 2Z+, qtr 22R+ (4.81)

In conclusion, the multi-period adaptive fleet planning problem is formulated as a finite-horizon discrete-
time dynamic program, which meets the properties of a Markov chain and can also be represented with a
scenario tree scheme.

4.3. Implementation of scenario tree model
Previous sections showed that the multi-period fleet planning formulation leads to a hierarchical data struc-
ture characteristic of scenario trees. When it comes to implementing an ADP algorithm, it is in fact very
convenient to take full advantage of this type of structures so as to track efficiently all the information gener-
ated at every stage of the scenario tree (St , at ,!t ). The reason for this lies in the fact that an ADP algorithm
must perform a vast number of computational operations to learn iteratively better policies. The more ef-
ficiently the algorithm handles data, the faster computational operations will be performed, thus reducing
overall computational times. Therefore, it is highly important to track, access and modify very easily all ADP
framework elements describing the full problem. Otherwise, running a sufficient amount of iterations might
become unmanageable in terms of computational time.

Given this important requirement, the scenario tree model of the problem will be built upon object-
oriented programming (OOP). The choice of this programming paradigm is justified by the fact that it allows
to simulate each state-space framework element in a very straightforward and structured way. Indeed, OOP
consists in the definition of objects which possess different characteristics, also known as attributes. As for
the multi-period fleet planning problem, these objects can be related to the different situations that an airline
can face within the time horizon considered. In this way, each situation possesses a series of attributes, which
correspond to the state-space framework elements describing its context (e.g. current demand, fleet status,
and airline actions amongst others).

For this purpose, the present MSc thesis uses a Python framework especially developed by Huerta-Cepas
et al. (2016) to work with tree data structures: Environment for Tree Exploration (ETE). With a clear academic
background in bioinformatics, ETE was initially developed as a tool for analysing phylogenetic trees. Never-
theless, this Python toolkit boasts a wide range of features which are very efficient for handling other type of
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Figure 4.5: Scenario tree modelled with clustered nodes (left) and equivalent ETE clustered tree (right).

complex data tree structures. Amongst all these possibilities, ETE facilitates automated building, manipula-
tion, analysis and visualization of hierarchical trees.

Using the notation of ETE, the scenario tree of the multi-period fleet planning problem can be described
with the following terms:

• Node: Being the essential component of the scenario tree, a node stores all structured data related to
a situation in period t§ resulting from a chain of outcomes ![t ] that occurred in t < t§. Therefore,
every node is assigned a series of attributes that characterise the entire situation in period t§. For the
multi-period fleet planning problem, the most important attributes are the state vector, decision vector,
value function approximation, total demand growth and total probability. Likewise, the full set of nodes
defines the ETE clustered tree, which is equivalent to the modelled scenario tree for multi-period fleet
planning.

• Branch: A branch links a pair of nodes and takes place whenever the random variable !t takes a new
value.

• Parents and children: Nodes can be followed by a range of possible outcomes, each of which is repre-
sented by a children node also referred as descendant. Likewise, a node results from a past situation,
which is modelled by the ancestor or parent node.

• Root: A root node is the starting point of the scenario tree, it defines the problem initial conditions (e.g.
initial fleet and route demands) and thus, has no parents.

• Leaf: A leaf is any node that has no children and represents the planning horizon within the multi-
period fleet planning problem.

• Subtree: A subtree is the set of nodes and branches that is below a specific node.
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Taking into account all these concepts, a specific scenario will be defined unequivocally as the path link-
ing the root node and a specific leaf. Therefore, the number S of possible scenarios represented in tree will
increase at exponential rates in function of the number of stages T and possible outcomes m:

S = mT°1 (4.34)

As will be discussed, the exponential relationship between number of scenarios and outcomes will play an
essential role in defining the explorations versus exploitation problem as well as the number of iterations
required by the algorithm. Figure 4.6 shows the particular growth behaviour for a scenario tree with three
finite outcomes in function of different time stages.
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(a) T=3 & S=9
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(b) T=4 & S=27
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(c) T=5 & S=81
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Figure 4.6: Exponential growth of scenario tree in function of number of stages

4.4. Implementation of ADP algorithm
By analysing the fundaments of ADP, it is concluded that the number of possible algorithmic strategies to im-
plement is endless, highly dependent on the structure of the problem tackled. Nevertheless, a common pat-
tern can be identified amongst all ADP algorithm versions; they always feature six common building blocks:

• Step 0: Value function approximation

• Step 1: Generation of Monte Carlo sample

• Step 2: Problem optimisation

• Step 3: Simulation of next period impact

• Step 4: Value function update

• Step 5: Stop criteria
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The same steps are also followed to deploy an ADP algorithm suitable for the multi-period adaptive fleet
planning problem, which will be based on approximate value iteration. To distinguish it from further algo-
rithm improvements that will be performed later in Chapter 6, this initial version is denoted as baseline ADP
algorithm. The developed algorithm is presented hereunder, whose main building blocks will be described
in the upcoming subsections.

Algorithm 1 Baseline ADP algorithm: Approximate value iteration for time-discrete finite horizon problem

1: procedure : STEP 0. INITIALIZATION OF VALUE FUNCTION APPROXIMATION

2: Step 0a. Initialize an approximation for the value function V 0
t (S0

t , a0
t ) for all states St and decisions

at 2At (Rt ,Dt ) given t = {0,1, ...,T °1}.
3: Step 0b. Set n = 1.
4: Step 0c. Initialize S1

0.

1: procedure FORWARD PASS

2: STEP 1.GENERATION OF MONTE CARLO SAMPLE

3: Observe the random variable !t and set multivariate sample path !n
[t ].

4: STEP 2. PROBLEM DECOMPOSITION AND OPTIMISATION

5: for t = {0,1, ...,T °1} do
6: Determine the action using ≤-greedy. With probability ≤, choose randomly an action an

t 2 At based on
a SA-inspired policy. With probability 1°≤, choose an

t using

an
t = arg max

at2A n
t

V n°1
t (Sn

t , at ).

7: STEP 3. SIMULATION OF NEXT PERIOD IMPACT

8: Step 3a. Choose a random sample of outcomes b≠n Ω ≠,then sample W n
t+1 = Wt+1(!n) and simulate

the next state St+1 = SModel (St , at ,!t+1).
9: Step 3b. Compute

bvn
t = Max

at2A n
t

≥

Ct (Sn
t , an

t )+∞t+1E
n

V n°1
t+1 (Sn°1

t+1 ) | Sn°1
t

o¥

º Max
at2A n

t

√

Ct (Sn
t , an

t )+∞t+1
X

!2b≠n

pn
t (b!n

t+1)V n°1
t+1

≥

SModel °

Sn
t , at ,!t+1

¢

¥

!

10: STEP 4. UPDATE VALUE FUNCTION

11: Update the value function approximation V n
t using

V n
t (Sn

t ) = (1°Æn°1)V n°1
t (Sn

t )+Æn°1 bvn
t .

12: STEP 5. START NEW ITERATION AND EVALUATE STOP CRITERIA

13: Increment n
14: if n ∑ Nstop then
15: go to procedure: STEP 1.

1: procedure : STEP 6. RESULTS POSTPROCESSING

2: Return the value functions (V n
t )T°1

t=0 and best policy found Aº(St ).
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4.4.1. Step 0. Approximation strategy for value function
To tackle complex dynamic programs, ADP avoids the curses of dimensionality at expenses of finding an ef-
fective approximation strategy for the value function. As stated by Powell (2007), the major difficulty in ADP
lies in the capability of creating a policy by approximating the unknown future value of being in a state. In
fact, the value function approximation should be considered as the cornerstone of any ADP algorithm, since
it has a decisive impact on its success.

Mathematical analysis of the value function
When it comes to approximating the value function, it is essential to have a clear picture of the mathematical
structure of the problem as well as the manner in which all its framework elements interrelate. For this reason,
it is well worth analysing in detail the components of the value function:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1E {Vt+1(St+1)|St }
¢

º max
at2At

≥

Ct (St , at )+∞t+1E
n

V t+1(St+1)|St

o¥ (4.23)

As already highlighted in the modelling section, the value function in period t (Vt ) consists of the contri-
bution function at the same time t (Ct ) as well as the expected value function in next period (E {Vt+1}). From
this definition, the recursive nature of the problem is clearly visible. Even though it may appear evident, this
concept should always be taken into account while studying the problem and defining the approximation
strategy. More particularly, the reader should remember that the contribution function Ct measures how well
a decision at performs in state St , whilst the expected value function represents the aggregate impact of our
current decisions at on future contributions from t+1 onwards. Then, it follows that the objective function of
any dynamic problem corresponds to the value function at the initial time stage (V0). As for the multi-period
fleet planning problem, the airline objective is to maximise the operating profits of the current period Ct as
well as the future operating profits expected throughout the years E {Vt+1}. In other words, the goal is to find a
fleet plan policy Aº(St ) that recommends which are the best actions to maximise profits given future uncer-
tain demand growth and current conditions.

By looking at the mathematical expression of the airline operating profits,

Ct (St , at ) = nt

X

i2I

X

r2R

≥

2 fr qtr ° (cvar
ti r yti r + cown

ti Rti + cdi sp
ti xdi sp

ti )
¥

(4.22)

it can be inferred that the contribution function only depends explicitly on certain components of the
state vector and decision vector. These components are the number of passengers transported qtr , the route
frequency assigned to each aircraft type yti r , the number of aircraft to be disposed per type in next period
xdi sp

ti as well as the total number of aircraft owned per type Rti :

Ct (St , at ) :=Ct

≥

Rt , xdi sp
t , yt , qt

¥

(4.35)

This does not imply however, that the demand vector Dt and decision variables xbuy
t do not have a sig-

nificant influence upon the problem. Whereas the impact of Dt is clearly seen through the set of constraints
At (Rt ,Dt ) and thus transmitted by the number of passengers carried qtr , the variables xbuy

t play an essential
role in defining the set Yt (Rt ,Dt ) of feasible combinations (at ,Rt+1) between periods.

Amongst all mentioned variables, the resource vector Rt+1 stands as an evident mathematical link be-
tween the contribution function Ct and the expected value function E {Vt+1}. Given the transition function of
the problem, it is clear that the resource vector Rt+1 depends directly on the fleet-related decisions xbuy

t and

xdi sp
t taken during previous time period.

St+1 = SModel (St , at ,!t+1)

St+1 =
∑

Rt+1
Dt+1

∏

=
"

Rt +xbuy
t °xdi sp

t
Dt + bDt+1

#

=
"

Rt +xbuy
t °xdi sp

t
(1+!t+1)Dt

# (4.20)
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Likewise, current network-related decisions qt and yt are made based on both resource vector Rt and
demand vector Dt of time period t . Therefore, it is possible to discern an overlapping structure as shown
below.

v

Subproblem t-1 Subproblem t Subproblem t + 1

Time

1st-stage dv for 
subproblem t1

1st-stage dv for 
subproblem t+11

v2nd-stage dv for 
subproblem t 1

v2nd-stage dv for 
subproblem t-1 

1

v2nd-stage dv for 
subproblem t+1 

1

Figure 4.7: Interrelation of decision vector with both current and subsequent subproblems

The conclusion that can be drawn from Figure 4.7 is that the decisions taken at time stage t will have an
impact on present and future operations, which will be measured by the contribution function Ct (St , at ) and
the expected value of aggregated profits throughout next time periods ∞t+1E {Vt+1(St+1)|St }. In light of this,
the decision vector at can be decomposed in two groups of decisions variables:

at = ( xbuy
t xdi sp

t
| {z }

1st -stage dv for
next subproblem t+1

yt qt
| {z }

2nd -stage dv for
current subproblem t

)

• Fleet decisions
≥

xbuy
ti , xdi sp

ti

¥

act as first-stage decision variables of next subproblem t +1, since future
airline operations in period t + 1 will be constrained by fleet modifications agreed during period t .
Therefore, fleet decisions mainly focus on maximising future expected operating profit by means of
optimising the fleet composition and size for the next time period.

• Network decisions
°

qtr , yti r
¢

act as second-stage decision variables of current subproblem t , since they
will be treated as recourse measures to optimise the current performance of an airline, whose fleet was
modified during previous subproblem (first-stage decisions variables). That is to say, network decisions
are intended to maximise current operating profits by optimising the current fleet operations, which are
constrained by the previous fleet-related decisions.

Taking into account the variable dependencies of the contribution function shown in previous Equation
4.35

Ct (St , at ) :=Ct

≥

Rt , xdi sp
t , yt , qt

¥

, (4.35)

it can be appreciated that Ct (St , at ) can be divided into two parts, thereby following the same two-stage
structure presented by the decision variables of the problem:

Ct (St , at ) = eCt (St , yti r , qtr )°
X

i2I

cdi sp
ti xdi sp

ti . (4.36)

In this reformulation, eCt (St , yti r , qtr ) denotes the annual operating profits in period t without considering
the disposal costs:

eCt (St , yti r , qtr ) = nt

X

i2I

X

r2R

°

2 fr qtr ° (cvar
i r yt ar + cown

ti Rt a)
¢

(4.37)



38 4. Methodology

Since eCt (St , yti r , qtr ) does not depend on any decisions
≥

xbuy
ti , xdi sp

ti

¥

impacting next period, this expres-
sion could be understood as both the contribution and objective function of an equivalent 1-stage fleet plan-
ning problem (1-FPP). Taking advantage of this new concept, the value function of the problem can be rewrit-
ten as:

Vt = Max
at2At

√

eCt (St , yti r , qtr )+∞t+1E {Vt+1(St+1) | St }°
X

i2I

cdi sp
ti xdi sp

ti

!

(4.38)

This reformulation has a major role to play in the definition of the value function approximation. Indeed,
considering this two-stage decomposition and assuming that an airline will always try to optimise their cur-
rent performance, the following deduction can be made:

Provided that the demand vector value for next period Dt+1 was known, the selection of current fleet deci-

sions
≥

xbuy
ti , xdi sp

ti

¥

would imply the knowledge of next resource vector Rt+1 and consequently the entire state
vector St . This fact would lead automatically to the unique identification of the optimal recourse actions
°

qt+1r , yt+1i r
¢

, which maximise the ailine operating profits eCt+1(St+1, yt+1i r , qt+1r ) independently of its dis-
posal plans.

In other words, the potential identification of the future state vector St+1 = (Rt+1 Dt+1) would allow
to solve an equivalent 1-stage fleet planning problem (1-stage FPP) whose decision vector at+1 would be
reduced to

°

qt+1r , yt+1i r
¢

. Since any airline will try to optimise its current performance, this fact leads to
the hypothesis that optimal recourse actions will always be chosen. This reasoning, which may appear self-
evident for some readers, provides crucial information for drawing an effective value function approximation:
it allows to reduce the number of explicit variables to track the maximum values of the contribution function
without considering disposal costs, eCt :

eC§
t (St , yti r , qtr ) ! eC§

t (St ) (4.39)

Indeed, Equation 4.39 shows that eC§
t can be expressed as function of the state vector solely. Furthermore,

solving the equivalent 1-stage FPP allows to estimate the impact of previous fleet decisions
≥

xbuy
t°1i , xdi sp

t°1i

¥

on
current airline profits. By forcing several fleet sizes and compositions Rti to this problem, one could simu-
late a wide range of situations in which the operations of an airline are constrained by former fleet decisions,
whose impact might have been positive or negative for the financial performance of the airline. What is
more, this reasoning allows to determine the mathematical relationship between the 1-stage FPP contribu-
tion function eCt and the resource vector Rt . Taking advantage of this concept, a reduced state space (Rt ,Dt )
can be browsed so that the profit impact of meaningful fleet sizes and compositions is observed for a par-
ticular demand vector Dt . In other words, one could force some values of the resource vector Rt and solve
its corresponding 1-stage FPP, so as to shed light on the mathematical behaviour of eC§

t . For a 1-stage FPP
featuring three aircraft types and a specific demand per route, eC§

t takes the form shown in Figure 4.8.

ac1

�5
0

5
10

15
20

25

ac2

�5
0

5
10

15
20

25

co
nt

ri
bu

tio
n

($
)

⇥
10

8

�0.5

0.0

0.5

1.0

1.5

2.0

2.5

ac0 = 0 ac0 = 1 ac0 = 2 ac0 = 3

Figure 4.8: Baseline situation: impact of different fleet composition and sizes on eC§
t for three aircraft types: ac0, ac1 and ac2
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More specifically, Figure 4.8 shows the maximum operating profits that an airline could make given a cer-
tain fleet under fixed demand conditions without regard to disposals: aircraft of type 1 and 2 are represented
with axis x and y respectively, while the colour legend tracks the amount of aircraft of type 0. Therefore, every
coordinate (x,y) and colour corresponds to a certain contribution value.

Although the demand vector Dt does not appear explicitly in the contribution function, its influence act-
ing from the set of constraints At (Rt ,Dt ) is evident. Figure 4.9 shows how the contribution function behaves
upon demand growth:
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Figure 4.9: Impact of demand growth on contribution function eC§
t for three aircraft types: ac0, ac1 and ac2

Evidently, the operating profits increase for higher levels of demand captured. Nevertheless, the locations
of the greatest values in profits do not remain steady; instead, they shift to major fleet sizes and different com-
positions with respect to the baseline situation. This trend is highlighted by the discontinuous black segment
in Figure 4.9, whose extremes connect the locations of the maximum values of both cases studied. Indeed,
this change in optimal fleet can be expected since a larger and different fleet composition might be required
to take the greatest advantage of an increase in demand captured.

By analysing the general shape of the contribution function of the 1-stage fleet planning problem in func-
tion of the state vector eC§ , two main characteristics can be drawn and extrapolated to the original contribu-
tion function:

• The relationship between the airline operating profits Ct and the number of aircraft owned per type Rti
is a non-linear concave function.

• The marginal contribution of having Rti aircraft of type i to the overall profit function Ct is dependent
on the entire fleet combination and size Rt as well as the existent demand Dt . That is to say, the value
of aircraft of type i1 is clearly influenced by the number of aircraft of other types i 6= i1 owned already by
the airline. Therefore, it exists a coupling relationship amongst the marginal value of all aircraft types.
For instance, the marginal value of acquiring a certain amount of aircraft of type i would definitely have
a positive impact on overall profits if the airline fleet size was zero. Whereas, this same acquisition could
have a negative impact, provided that the airline owned already other aircraft types acting as substitute
resources with respect to aircraft type i .

All in all, these two conclusions are crucial for the selection of an effective value function approximation
strategy, a fact which will be discussed hereafter.

Selection of the value function approximation strategy
As far as approximation strategies are concerned, approximate dynamic programming has drawn upon a
vast range of contributions from statistics and machine learning communities. Powell (2007) sums up very
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well the most popular methods applied within the ADP community, which can be classified into: lookup
tables, parametric models and nonparametric models. With the aim of selecting an effective value function
approximation for the multi-period fleet planning problem, the main characteristics of each of these three
family methods are analysed:

• Lookup tables: Ideally suited for discrete state spaces, lookup tables consist in associating to every
possible state St an estimation of the value of being on that state V t (St ).

– Advantages: Lookup tables provide an intuitive and flexible way to represent value functions with-
out the need to analyse its mathematical form in detail. Due to their flat representation between
states, lookup tables work very well for discrete state spaces, in which they can eventually achieve
value function approximations with a high degree of precision.

– Disadvantages: The use of lookup tables implies the need to store an estimated value V t (St ) for
every possible state St in the problem. When it comes to a discrete state space of small dimen-
sions, this may not represent a problem; whereas for problems with higher dimensions, this may
entail excessive memory requirements. It is for this reason that state aggregation methods are
combined with lookup tables to reduce unmanageable dimensions. Furthermore, it should be
taken into account that the update of the estimated value of being in a state St only occurs when
that specific state is visited. Likewise, the value function update in that specific state will not help
improve the estimation of other states. Consequently, this requires deciding on whether choosing
the most promising actions based on current estimates or other less promising actions just for the
sake of learning a better estimation of the value function. This trade-off is commonly known in
ADP literature as the exploration versus exploitation problem.

• Parametric models: Preferred for estimating values throughout a continuous state space, parametric
models revolve around finding analytic functions V t (St |µ) parametrized by a vector µ featuring much
smaller dimensions than the number of possible states.

– Advantages: The use of a regression model to approximate the value function implies the esti-
mation of a parametric vector µ, whose dimensions are theoretically much smaller than the state
space. Therefore, the ADP algorithm has no longer to update the value functions estimations for
each of the states; instead, just these parameters need to be updated. This highly powerful feature
allows to estimate simultaneously the value of being in states not yet visited.

– Disadvantages: From a vast set of possible mathematical forms F , any parametric model re-
quires the initial selection of a series of basis function ¡ f (St ) and their corresponding parametric
coefficient µ f , both of which provide essential information regarding Vt :

V t (St |µ) =
X

f 2F

µ f ¡ f (St ) (4.40)

As can be inferred from Equation 4.40, parametric models differ from lookup tables in a way that
the former introduce much more rigidity when it comes to approximate a function. Indeed, the
most challenging part of designing a successful regression function is to determine what is the
best mathematical form of these basis functions ¡ f and coefficients µ f , which will provide a
meaningful information regarding the behaviour of the value function. While there is no doubt
of the approximation power entailed by a well-fitting parametric model, the truth is that seeking
for the right mathematical form is very time-consuming and may end up being an entire prob-
lem itself. What is more, a poor regression model may introduce so many constraints that may
eventually ruin the search of a good fleet policy. Nevertheless, there have been numerous papers
in resource allocation and inventory management (e.g. Godfrey and Powell,2001, 2002a, 2002b;
Topaloglu and Powell, 2006; Papageorgiou et al., 2014) which have proved the efficiency and flex-
ibility of separable piecewise-linear approximations to estimate nonlinear value functions. These
generally take the following mathematical form:

V t (Rt ) =
X

i2I

V ti (Rti ) (4.41)

where V ti (Rti ) is a scalar piecewise-linear function. For this specific function, it must be high-
lighted that the contributions of each of the resource types are decoupled from each other.
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• Nonparametric models: Based on nonparametric statistics, nonparametric models perform local ap-
proximations to the value function by learning from a series of observations, rather than using analyti-
cal functions with a preset behaviour. In fact, nonparametric models lie in between parametric models
and lookup tables, being closer to the latter.

– Advantages: These type of models avoid the challenging need of predefining a parametric mathe-
matical form, thereby providing a high level of flexibility when approximating the value function.
In contrast to lookup tables, nonparametric models facilitate the updating of the value function
estimations in states not visited yet.

– Disadvantages: Local approximations can either be built upon averages (k-nearest neighbour),
weighted sums (kernel regression) or learnt basis functions (neural networks) from prior obser-
vations tuned with parameters. This means that the quality of the approximations will usually
depend on parametric tuning, the quantity of observations of the value function available, the
quality of these own observations as well as the existent dispersion between observations. As the
case of lookup tables, this fact may imply the need of solving the exploration versus exploitation
problem commented before. Evidently, this will depend basically on the specific nonparametric
method chosen. Furthermore, the major inconvenience is that nonparametric models aggregate
points in a multidimensional space. In fact, the more density of observations there is, the greater
likelihood to find an effective approximation there will be. Unfortunately, problems featuring
higher dimensions will usually face more difficulties due to dispersion: the density of points in
a large multidimensional space will tend to be low, thereby becoming difficult the aggregation of
observations to generate an effective approximation.

Once discussed the pros and cons of the different approximation methods and having already considered
the mathematical structure of our problem, it is now possible to choose with more awareness an approxima-
tion strategy.

By just looking at the problem formulation, an estimation of the dimensions of the problem can be made.
If the objective is to deal with a realistic case in the air transport industry, the state vector of the model can
surpass very easily the 50 dimensions. This estimation results directly from the size of both resource and
demand vectors, which are purely proportional to the number of aircraft types and routes considered re-
spectively. Indeed, it is quite common to see airlines either boasting networks of over 50 destinations or
fleets composed by more than 5 aircraft types or configurations. However, the state-space dimensions could
be reduced significantly if routes with common characteristics were transformed into segmented groups
g 2G =

©

0,1, ...,GReg i on °1
™

.

Sg
t = F Reducti on(St ) (4.42)

For instance, the most intuitive strategy would be to group routes according to geographical regions or
classify them according to common market trends. In this way, a group of routes could be simply tracked by
their averaged total common growth ¢t g with respect to their initial conditions D0r :

St = (Rt Dt ) ! Sg
t = (Rt ¢t ) (4.43)

where ¢t :=
£

¢t g
§

g2G and evidently GReg i on << R. This reduction of variables would not imply a loss
of information if the grouped routes were undergoing similar rates of demand growth. Likewise the random
variable !t , which indicates demand growth between periods would be treated as a vector !t := [!t g ]g2G .
Without losing information, it can be derived from the previous formulated model that:

bDt+1r =!t+1r Dtr ! b¢t+1g =!t+1g¢t g (4.44)

and thus, the new transition function would be:
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Apart from this, the number n of possible values taken by the growth vector !t can either be finite or
infinite depending on whether we assume a discrete or continuous probability function. In any case, the
number of possible scenarios will scale with the number of time periods t at the exponential rate of mt°1.
For instance, the combination of three outcomes and six periods will result in 243 scenarios to analyse. All
in all, the estimated problem dimensions together with the need of estimating the value of every each of the
states lead to the conclusion that the use of lookup tables may entail an excessive need for storage memory
and computation.

Furthermore, we already know that the behaviour of the contribution function Ct with respect to the state
vector St is non-linear and concave. Then, we can deduce from this statement that the value function will
also be non-linear and concave, since the value function is composed of the contribution function and the ex-
pected value function of next stage. As commented previously, many nonlinear and concave value functions
have been approximated by means of using separable piecewise-linear approximations. Its clear success and
flexibility proven by many papers dealing with resource allocation and inventory management problems,
may encourage the use of this type of regression functions. However, it must be reminded the second conclu-
sion drawn from analysing the behaviour of the contribution function with respect to St , as shown in Figure
4.9: it exists a coupling relationship amongst the marginal value of all aircraft types. Because of this fact, the
piecewise-linear function for a given aircraft model V ti (Rti ) should be indexed according to the fixed com-
position of the other aircraft types, which would act as parameters. In any case, this strategy may be feasible
when there is just another resource type. Nevertheless, Powell (2007) warns about the steep price to pay when
additional resource types also influence the behaviour of the contribution function with respect to Rti . This
fact can easily be extrapolated to the multi-period fleet planning problem. By just looking at Figure 4.9, one
can imagine the vast number of piecewise-linear functions required to be indexed in function of the different
fleet compositions and demand rates.

The above mentioned constraints lead us to pay special attention to nonparametric models, which rep-
resent a research area of high potential, actively investigated by the ADP community. Even if less academic
references proving its ADP application can be found compared to the case of parametric regressions, non-
parametric methods result very promising for our type of problem tackled. In fact, they are expected to pro-
vide more flexibility than traditional regression models while still reducing the need of storage memory and
computational power. Furthermore, they allow the updating of values in states not yet visited. However, it
should be taken into account that nonparametric models need to be initialised with a series of observations,
which still need to be computed. Apart from this, the dispersion effects on the ADP algorithm should be care-
fully monitored.

The exploration of pros and cons of the different approximation methods to our problem prompts us to
choose a nonparametric model to approximate the value function of the multi-period fleet planning prob-
lem. Nevertheless, the family of nonparametric models is very comprehensive and includes different tech-
niques based on statistical learning. According to Powell (2007), some of the most popular methods that have
received major attention from the ADP community are: k-nearest neighbour, kernel regression, local polyno-
mial regression and neural networks. Based on the summary review carried out by Powell (2007), the main
characteristics of each method are discussed:

• Neural networks are reviewed as the most powerful technique. Indeed, their level of maturity is such
that they have provided many industry applications with a highly flexible framework capable of esti-
mating completely unknown functions. In consequence, neural networks have led to a vast research
field, thus presenting an extensive literature. When comparing them with other simpler strategies,
Powell (2007) warns about the fact that it is not possible to know in advance which problem classes
will benefit the most from the additional generality brought by neural networks. From his review, it can
also be inferred that it might be worth to firstly assess the performance of simpler methods which will
most likely take less time to implement. In case these fail, then it will make more sense to invest more
time in developing neural networks.

• K-nearest neighbour is described as the simplest form to implement non-parametric regressions. This
technique approximates the value of being in a queried state by performing an average sum of the
priorly observed values in the k nearest points to the query (training dataset). This entails tuning the
number k of points taken for the estimation. Even though the implementation of k-nearest neighbour
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is expected to be fast, a weakness of this technique is that the obtained approximation for the queried
state changes abruptly according to the number of k-nearest points considered. Therefore, this may
lead to significant instabilities in the ADP algorithm.

• kernel regressions have been a recurrent topic in statistical learning literature and frequently explored
by the machine learning community; however, they have not been widely tested in ADP algorithms.
This approximation technique follow the idea of k-nearest neighbour since they apply a weighted sum
of prior observations. Nevertheless, the instabilities faced by k-nearest neighbour are mitigated due to
the introduction of a weighting function (kernel), whose value decreases with the distance between the
observed and queried states. In this way, the value function approximation changes smoothly between
queried states and becomes more stable. As far as implementation time is concerned, the application
of kernel regression is not expected to be much more complex than k-nearest neighbour.

• Local polynomial regressions are a generalization of kernel regressions, in which linear regression
models are calculated at the local surroundings of the queried states. This is achieved by solving a least
squares problem that minimizes a weighted sum of least squares: instead of weighting the value func-
tion observations, this technique applies a classical linear regression to the existent deviation between
the observed and queried values. Powell (2007) highlights a significant improvement in approximation
accuracy at the expenses of a visible increase in complexity. Unlike neural networks, it could be argued
that the accuracy level achieved with this method might not pay off its time cost.

In light of the main conclusions drawn from the review of Powell (2007), Table 4.1 aims at making an
evaluation of the discussed methods according to three criteria relevant for the MSc thesis. Due to the thesis
tight schedule, both the estimated implementation time and the availability of previous references have been
considered as much important as the approximation accuracy that could potentially be obtained with each
of the methods. Therefore, all three dimensions are assigned an equal weight for comparison.

Table 4.1: Comparison between different nonparametric techniques scored from 1 (worst) to 5 (best)

Dimensions K-nearest neighbour Kernel regressions Local polynomial regressions Neural networks

Approximation accuracy 1 3 4 5

Implementation time 5 5 2 1

Past references in ADP 1 2 2 3

Total score 7 10 8 9

Certainly, neural networks appear to be one of the most sophisticated techniques in terms of approxi-
mation accuracy: it presents an important track record of successful implementations in several engineering
applications. Nevertheless, its effectiveness also depends on the problem type tackled. Given this fact, there
is no clear guarantee of how well neural networks could work for the multi-period fleet planning problem.
This uncertainty combined with the estimated implementation time and the lack of specific ADP references
in the air transport industry, leads us to pay more attention to the other simpler methods. Indeed, the idea
behind this preference is to take advantage of lesser implementation times so as to be able to discard rapidly
the selected method in case it fails.

Amongst the simpler methods, k-nearest neighbour is discarded straightforwardly given its low accuracy
expected. On the other hand, the estimated potential of kernel regressions applied to the multi-period fleet
planning problem looks promising in the context of the MSc thesis: it allows to reach an acceptable level of
approximation accuracy within a reasonable timeframe. Apart from this, the theoretical fundamentals of ker-
nel regressions are clear and sound, fact which compensates for the scarcity of ADP references using kernel
regressions. Finally, local polynomial regressions do not seem worth exploring: if it were the case that a more
sophisticated method was required, then it would be preferred to invest more time in developing neural net-
works than local polynomial regressions. As discussed previously, it could be argued that the accuracy level
achieved with local polynomial regressions might not pay off its time cost, whereas this would most probably
be the contrary for neural networks.

In light of the above discussion, the value function approximation strategy chosen is kernel regressions.
Apart from all the mentioned reasons, it must be added the fact that a successful implementation of kernel
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regressions may entail a significant contribution to the development of new ADP algorithms based on non-
parametric approximations. Therefore, the opportunity to contribute to the ADP community is worth the risk
of applying a technique that is less established in the field.

Application of kernel regressions

As previously introduced, kernel regression estimate the value V n
t (S§

t ) of being in an unvisited state S§
t (query),

by applying a weighted sum of M prior observations V m
t of the value function Vt (St ):

V n(S§
t ) =

PM
m2Mt

Kh(S§
t ,Sm

t )V m
t

PM
m2Mt

Kh(St ,Sm
t )

(4.46)

where Kh(St ,Sm
t ) is a weighting function that declines with the distance between the queried state point

and the measured state point Sm and h acts as a bandwidth parameter to be tuned. For this particular prob-
lem, the weighting function will take the form of a Gaussian kernel, which is well established in statistics
literature and is commonly referred as radial basis function. Denoting the Euclidean norm as ||.||, the Gaus-
sian kernel is defined as follows:
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From Equation 4.47, it can be inferred that one of the main advantages of Gaussian kernel is its ability to
provide smooth and continuous approximations V n(S§

t ). Nevertheless, it should be noted that a major vari-
ation to the general form of kernel regression has been introduced: for this particular problem, the weighted
sum is constrained to all those observed states Sm

t sharing the same resource vector Rm
t as the one of the

queried state S§
t . This constraint is introduced with the set of states Mt :
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t
™

(4.48)

In fact, the introduction of this constraint simplifies the scaling of the Euclidean norm since it allows us to
calculate the norm based on the same unit of measurement. From a mathematical viewpoint, it is considered
very impractical to add up the differences in aircraft quantity together with the differences in total demand
growth. If this was done, the weight of the Gaussian kernel would very likely be biased due to the wrong mix
of dimensions within the same calculation. Taking this into account, the Euclidean norm can be calculated
as follows:
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However, the calculation of kernel weights can be simplified to reduce the computational time of the
entire kernel regression. This is achieved by aggregating the total demand growth experienced by each region
¢t g into the equivalent total demand growth experienced by the entire network ¢t :

¢t =
P

g2G xt g¢t g
P

g2G xt g
(4.50)

where xt g is the number of routes agrregated in region g . Indeed, ¢t results from weighting the total
demand growth rates experienced by each of the routes across the network. Without losing much accuracy,
an equivalent Euclidean norm is drawn:
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Finally, an initial set of observations of the value function V 0
t (St ) is needed at iteration n = 0 as a training

dataset for the kernel regression. In terms of accuracy it would be ideal to gather some observations of the
real value of Vt (St ). However, this would require the use of backwards induction, which is basically what we
are trying to avoid with approximate dynamic programming. Therefore, this initial set of observations will
also be approximated so as to minimise the need for computational power.

In this context, the objective is to generate a training set of meaningful and structured observations across
the scenario tree so as not to compromise significantly the accuracy of kernel regression:



4.4. Implementation of ADP algorithm 45

• Meaningful observations: By targeting at meaningful observations we mean that it is desirable to
preserve the essential information of the value function and transmit it to the kernel regression. For
this purpose, it is necessary to capture the nonlinear behaviour of Ct with respect to St as well as the
coupled relationship existing amongst all resource types Rti . By means of browsing a limited state
space and solving the corresponding 1-FPP problem, the following approximation can be obtained:

V 0
t (St ) = ∏ (T ° t ) eC§

t (St ) (4.52)

In Equation 4.52, the value function is approximated as the deterministic aggregation of operating prof-
its from period t onwards, which are all assumed to be equal to eC§

t (St ): the operating profits that would
be obtained when solving the 1-stage fleet planning problem applied to current period t and state vec-
tor St . Furthermore, ∏ denotes a control parameter to manage the impact of the initial approximated
observations on the entire ADP algorithm. Its important role will be discussed in Chapter 4 but we
can advance that its main objective is to expressly underestimate the value of the initial observations
V 0

t (St ). Therefore, depending if the operating profits are positive or negative it can take values as fol-
lows:

∏ 2
(

[0,1] , if eC§
t (St ) ∏ 0

[1,T ] , if eC§
t (St ) < 0

(4.53)

where T corresponds to the number of stages of the scenario tree. It must be noted that the interval
[0,1] is intended to underestimate positive values of the value function, while the interval [1,T ] does
the same for negative values.

• Structured observations: While capturing meaningful observations is crucial to improve the accuracy
of kernel regression, it is key to decide on which nodes of the scenario tree these approximated obser-
vations will take place. Indeed, observed states need to be spread in a smart way so as to minimise
the negative impact of dispersion. For this purpose, it is decided to initially fill with approximated ob-
servations the nodes composing the central and extreme scenarios of the scenario tree, highlighted
with orange in Figure 4.10. Likewise, the value function in non-observed scenarios will be estimated
dynamically from kernel regressions during the subsequent iterations of the ADP algorithm. That is
to say, the kernel regression will only be activated when needed. Furthermore, even though Gaussian
kernels are designed to decline with the distance between a query and measured point, it may happen
that Gaussian kernels still transmit a certain impact coming from very distant points. This transmis-
sion may entail adverse effects on the kernel regression and to avoid this, the ADP algorithm makes
use of separable kernel approximations. The main idea is to separate the kernel regression according
to, at least, two different intervals of the averaged total demand growth ¢t seen in nodes: the upper
interval (U) will be bounded by the growth values of the central scenario and the most optimistic one
h
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t

i

, while the lower interval (L) will be defined by the values of the most pessimistic scenario

and the central one as well
h
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where the observed values feeding the separable kernel regression are filtered according to the sets MU
t

and M L
t defined below:
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and the Gaussian kernels KhU and KhL have different bandwidth values according to the different intervals:
hU and hL respectively.

As can be inferred from equations 4.54 to 4.56, the nodes, whose averaged total demand growth is very far
apart from the one of the queried state, will be automatically not counted for the estimation of that queried
state. In this way, the adverse effect of distant nodes with respect to the query is mitigated significantly.
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Figure 4.10: Reference scenarios and separable kernel regressions

Calibration of kernel bandwidth
With the aim of achieving an effective weighted sum of observations, the bandwidth parameter h needs to be
calibrated within the Gauss kernel expression, where it plays the role of the standard deviation:
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Indeed, h is a tunable parameter which determines the range of influence of measured observations. Fur-
thermore, it can be drawn from Figure 4.10 that the value of h should change over time periods since the range
of possible scenarios and thus, possible observed ¢m

t values spreads considerably between time stages. That
is to say, the more dispersion there is between observed values, the broader the scope of the gaussian kernel
must be. Indeed, if the radius of the gaussian kernel was constant over time periods and independent of the
amount of observations obtained throughout the ADP algorithm, the kernel regression would be unstable
since it would not be able to eventually capture any observation for higher levels of dispersion. To take into
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account this dependency, h will be proportional to the standard deviation of the observed values in each of
the intervals A and B in period t :

hU (t ) =GætU (4.59)

hL(t ) =GætL (4.60)

where G is a gain factor, while ætU and ætL correspond to the standard deviation of the observed ¢m
t

values found in intervals U and L in period t respectively:

ætU =

v

u

u

t

1
NU

NU
X

m2MU
t

≥

¢m
t °µtU

¥2
(4.61)

ætL =

v

u

u

t

1
NL

NL
X

m2M L
t

≥

¢m
t °µtL

¥2
(4.62)

with NU and NL being the number of available observations in the upper and lower intervals at stage t re-
spectively, and µtU and µtL denoting the mean of the averaged total demand growth values ¢m

t observed.
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Several values of the gain factor G must be tested to assess its impact on the Gaussian kernel and se-
lect the best performing one. In order to carry out this calibration, a 6-stage scenario tree with three scalar
outcomes !t 15% (H), 5% (M) and -5% (L) will be considered. Let IHHHHH, IMMMMM and ILLLLL be the
most-optimistic scenario, central scenario and most pessimistic scenario respectively. Therefore, the total
averaged demand growth for each scenario in the sixth period would be +101%, +27% and -22% accordingly.
All nodes composing this scenarios have an observed value function with the form V 0

t (St ) = ∏ (T ° t )C§
t (St ).

The rest of scenarios must be estimated applying the kernel regression.

Figures 4.11 and 4.12 illustrate the behaviour of the Gaussian kernel for the separable kernel regression
U. The reader should notice how the weight of the Gaussian kernel goes right down to zero for the interval
where demand growth is lower than the one of the central scenario. This is due to the separable kernel regres-
sion: the demand growth of the central scenario IMMMMM defines the boundary between the two different
kernel regressions. Any queried state whose demand growth is below the one of the central scenario should
be estimated with the separable kernel regression L. Furthermore, it is noticeable how an increase in gain G
enables to capture better the impact of distant observed nodes and mitigate kernel dispersion. Indeed, the
greater the gaussian kernel weight of an observation is, the more influence will have on the kernel weighted
sum to estimate the queried state. However, it can be inferred that too high values of G such as 5 or 10 will
overestimate the impact of the most distant nodes with respect to the queried state.

Likewise, low values of G such as 0.1 till 1, will reduce too much the kernel bandwidth, thereby con-
straining the capability of detecting meaningful observations for the kernel regression and enhancing kernel
dispersion. For all these reasons, G = 3 appears to be a good trade-off that allows to mitigate kernel dispersion
without overestimating excessively the impact of distant observations.

Once gain G is calibrated, Figure 4.13 shows how for a queried state with +38% demand growth, the ker-
nel bandwidth increases throughout the stages. That is to say, the kernel bandwidth changes dynamically
depending on which stage the state is found. Since higher stages are prone to have more dispersion, the
kernel bandwidth will broaden so as to have enough observations.
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Figure 4.11: Impact of bandwidth gain G on overall kernel weight in period 4 for queried node IHHM
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Figure 4.12: Impact of bandwidth gain G on overall kernel weight in period 5 for queried node IHHMMH

Figure 4.13: Variation of kernel weight according to time periods for G = 3
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Proposal for generalising the creation of training datasets
While the discussed dynamic control of kernel bandwidth has proven effective between stages 0 to 5, it is
evident that it starts to present some limitations for a higher number of stages: points might be so dispersed
from the queried state that it is useless to incorporate them into the kernel weighted sum. A solution to this
limitation would be to previously estimate more approximated observations in other non-observed scenar-
ios so as to reduce points dispersion. Indeed, this is an area for further research since it would be ideal to
determine a correlation between the number and position of required observations and the dimensions of
the scenario tree. In any case, follow-up research could revolve around the introduction of a dispersion factor
that would help determine an optimal training dataset in terms of number and location of observations.

In the field of probability theory and statistics, Cox and Lewis (1966) defined a normalized measure of
data dispersion, also known as the variance-to-mean ratio (VRM) or index of dispersion:

Dt X =
æ2

t X

µt X
(4.65)

For the case being studied, µt X and æt X would correspond to the mean and standard deviation of the
states observed within a given interval X of total demand growth, as defined by previous Equations 4.61 and
4.63. In this way, the index of dispersion would help measure how clustered or dispersed the points would be
in each period t and interval X (i.e. for the previous case formulated X refers to either upper or lower inter-
vals). Following this logic, one could determine the level of admissible dispersion D§

t X which, if surpassed,
would trigger the partition of the current interval suffering from dispersion. For the sake of simplicity, this in-
terval could be divided in two sub-intervals, whose boundary would be defined by that node with the closest
¢t value to the mean µt X of the recently partitioned interval. This node would mark the beginning of a new
observed path of consecutive nodes. To guarantee structured observations, this path would follow the next
central outcomes M, starting from the given node onwards.

Nonetheless, the computational time that is required to generate the training dataset must not be taken
for granted. Evidently, the larger the explored state-space is, the longer its computational time is. Thus, a
trade-off must be made between both the minimisation of dispersion and computational time. An alterna-
tive to this problem could be the application of kernel regression throughout the observed scenarios: instead
of observing a complete scenario from the start to end as done for the extreme and central scenarios, another
possibility could be just to observe certain nodes for each of these scenarios and estimate the non-observed
ones with other kernel regressions. In this way, there would be two types of separable kernel regressions: a
type going along each observed scenario throughout the time periods and another one going in perpendic-
ular to the scenarios in a given time period. Figure 4.14 provides an overview of both proposals to generalise
the creation of training datasets.
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Verification of kernel regression performance
To verify the correct performance of the designed kernel regression tuned with G = 3, it is worth to analyse
the correspondence between the estimated value function obtained with kernel regression, and the real ap-
proximated value that would be obtained if the value function was initially observed with ∏ (T ° t ) eC§

t (St ).
Figures 4.15 to 4.16 show the effective correlation obtained for nodes not belonging to the extremes or cen-
tral scenarios in different periods. The blue line represents a 1:1 bisection while the green dots refer to the
correspondence between the value function estimations obtained for different queried states S§

t . In this way,
it can be appreciated by how much the non-parametric observations differ from the observed value function
using ∏ (T ° t ) eC§

t (St ).

While a good correspondence exists throughout all time stages, the impact of dispersed observations is
noticeable for the later stage 5: there are kernel value function approximations differing significantly from
correlation 1:1 since either they are overestimated or underestimated. Nevertheless, there is a low probability
that high correlation errors will affect significantly the ADP algorithm since they happen to be in the least
promising states, which will seldom be selected for exploration. What is important to infer from this correla-
tion test is that kernel regression captures the problem structure effectively, thereby allowing the successful
identification of the most promising states for the fleet planning problem. Lastly, Figure 4.17 shows the great
importance of calibrating well the kernel bandwidth: for instance, an unaware selection of G = 1000 may lead
to wrong correlations unable to capture the essential information of the problem. An extended discussion
related to kernel regression errors can be found in Appendix A.
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Figure 4.15: Effective value function correspondence at stage 2 with G = 3
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Figure 4.16: Effective value function correspondence at stage 5 with G = 3
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Figure 4.17: Unstable value function correspondence at stage 5 with G = 1000
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4.4.2. Step 1. Monte Carlo simulations: sampling random demand scenarios
It was stated that approximate dynamic programming can be seen as an optimising simulator since it com-
bines an OR-based optimisation with the flexibility of Monte Carlo simulations and machine learning tech-
niques. In this context, Monte Carlo simulations are employed to provide the ADP algorithm with a se-
quence of sample realizations of the random variable !t . For the multi-period fleet planning problem, this
Monte Carlo sampling is performed based on extracting random values from a known distribution of demand
growth. Depending on the discrete or continuous nature of the known distribution, we can either have a finite
or infinite number of possible random outcomes, thus having a finite or infinite number of possible scenario
tree branches. Therefore, the reader should note that all scenario tree schemes presented in the report feature
a finite number of possible random outcomes.

A series of N sampled realizations of the random variable !t can be extracted computationally assuming
a continuous probability function such as the normal distribution:

f (Z |µ,æ2) = 1
p

2ºæ2
e°

(Z°µ)2

2æ2 (4.66)

b!s
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so that the probability of each realization b!s
t is defined as:
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In this way, it is ensured that the accumulation of all outcome probabilities gives 1:
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Furthermore, instead of considering a continuous distribution another possibility would be to assume a
finite probability function based on experts opinions, which would also have to fulfill Equation 4.69. There-
fore, given a set of possible outcomes, every random variable realization would be assigned a certain proba-
bility:
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When it comes to choosing a continuous or discrete representation of the stochastic process, both options
present different advantages and disadvantages. In terms of modelling, it is evident that real demand growth
evolves in a continuous form and that assuming its discrete evolution would definitely entail a biased and
incomplete representation of the actual reality. In this sense, adopting a continuos random variable is then
preferred since it allows to model the stochastic demand growth in a more realistic way. However, assuming
!t as a continuous random variable implies dealing with an infinite range of random outcomes, fact which
enhances the slow convergence of the ADP algorithm: since there is a vast number of possible branches to
explore across the scenario tree, the ADP algorithm faces more hurdles to learn better approximations of
the value function. Furthermore, the continuous generation of new branches implies a continuous learning,
thereby hampering fast convergence and algorithm stability. On the other hand, a finite distribution function
represents the opposite: since the range of finite outcomes is already constrained by Equation 4.70, the num-
ber of scenario tree branches will also be constrained. This means a worse representation of reality than the
one of a continuous distribution, but, in turn, it provides a faster value function update and consequently, a
faster convergence of the ADP algorithm as well as more stable results.

In this MSc thesis, a finite distribution function such as equation 4.70 will be considered to prove the ef-
fectivity of approximate dynamic programming as solving method. The reason for this choice is that a finite
distribution function allows to assess better the converging behaviour of the ADP algorithm during its proof
of concept. Nonetheless, a normal distribution function will then be tested in Section 5.3.5 of Chapter 5 to
compare the performance of both Monte Carlo sampling techniques.
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4.4.3. Step 2. Problem decomposition and optimisation
In section 4.4.1, the mathematical analysis of the value function led to the a very convenient reformulation of
the problem, which was crucial to determine an approximation strategy:

Vt = Max
at2At

√

eCt (St , yti r , qtr )+∞t+1E {Vt+1(St+1) | St }°
X

i2I

cdi sp
ti xdi sp

ti

!

(4.38)

Even better, the same reformulation becomes very powerful since it allows to take full advantage of OR
commercial optimisers by means of exploiting a two-part decomposition. Indeed, Equation 4.38 can be de-
composed into two parts that will be solved independently by the ADP algorithm:
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• Part A: corresponds to the subproblem of calculating the recourse actions
°

qn
tr , yn

ti r
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once previous

first-stage decisions
≥

xbuy,n
t°1i , xdi sp,n

t°1i

¥

have been made and the state vector Sn
t is already known. There-

fore, this subproblem, which can be solved by Gurobi independently from part B and without losing
accuracy, can be written in the following way:
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subject to:
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with:
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• Part B: refers to the subproblem of choosing the first-stage decision variables for next subproblem
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subject to:
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with:

Rn
ti 2Z

+,Rn
t+1i 2Z

+, xbuy,n
t 2Z+, xdi sp,n

t 2Z+ (4.81)

Part B will need Rn
t as input and will be solved based on the outputs of the kernel regression approxi-

mation and the subroutine shown in Algorithm 2:
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Algorithm 2 Subroutine for part B optimisation

1: procedure CALCULATION OF NEXT EXPECTED VALUE FUNCTION

2: Step 0. Extract from subproblem Part A current resource vector Rn
t

3: Step 1. Extract from previous observations a reduced space S n
t+1 of state vectors St+1 whose approx-

imated performance across all observed tree nodes in period t + 1 stays above a given performance
threshold µ.

S n
t+1 :=

n

8bSt+1 | V n°1
t+1 > µ 8 b!s

t+1

o

(4.82)

4: Step 2. Calculate expected value function approximation:
5: for each child of current node do
6: if child has already been observed then
7: Extract its corresponding V n°1

t+1 (bSn
t+1) 8bSn

t+1 2S \
t+1.

8: else
9: Activate kernel regression to obtain its corresponding V n°1
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11: if for any i 2I : bRn
t+1i °Rn

ti < 0 then
12: Add up the disposal costs of aircraft of type i :
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13: procedure SELECTION OF FIRST-STAGE DECISION VARIABLES

14: Step 3. Rank all bSn
t+1 from highest V n°1

t+1 (bSn
t+1) to lowest and take the 10 best candidates

15: Step 4. Choose the future state Sn
t+1 to explore or exploit out from the 10 best candidates by applying

an ≤-greedy rule based on a simulated-annealing approach

16: Step 5. Infer the first-stage decisions
≥

xbuy,n
ti , xdi sp,n

ti

¥

from transition function:

Rn
ti +xbuy,n

ti °xdi sp,n
ti = Rn

t+1i (4.85)

17: Step 6. Return expected value function approximation and first-stage decisions

Exploration versus exploitation problem: Epsilon-greedy rule based on a simulated-annealing approach
It should be reminded that the exploration versus exploitation problem plays a major role within any ADP al-
gorithm combined with kernel regressions. This fact requires deciding on whether choosing the most promis-
ing actions based on current estimates or other less promising actions just for the sake of learning a better
estimation of the value function.

The technique of ≤-greedy is used as a strategy to explore the state-space and thus, learn better value
function approximations. This is achieved by escaping from optimal actions, which are currently estimated
at a given ADP iteration n. Indeed, at that iteration n there might be other actions unexplored, which have
been considered suboptimal but whose value has actually been underestimated. Therefore, the principle of
≤-greedy consists in preventing the algorithm from always choosing the best candidate actions known at it-
eration n: with probability ≤ it chooses randomly a suboptimal action an

t 2A n
t , while with probability 1°≤ it

chooses the estimated best candidate actions.

Nevertheless, a complete random selection of actions makes little sense for the multi-period fleet plan-
ning problem. Indeed, it can be deduced straightforwardly that a fleet performing really badly at the initial
approximation V 0

t (St ) = ∏ (T ° t )C§
t (St ) will most likely not be the right candidate to explore. Following this
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logic, a simulating annealing (SA) approach is applied so as to control more efficiently the random selection
of candidate actions. First of all, the subroutine in algorithm 2 extracts a top-10 list of the best candidate
states bSn

t+1 at iteration n. The probability of the algorithm choosing this list is 1, thereby filtering completely
the selection of actions amongst the estimated 10 best. It must be noted that between iterations, the 10 best
candidates can vary due to the obtention of new estimations. Given this list, the SA controller enhances
state exploration at the early stages and exploitation at the last stages. To do so, the SA controller reduces the
probability ≤monotonically throughout iterations and modifies its distribution across the 10 best candidates.

Given five ordered iteration numbers N1 < N2 < N3 < N4 < Nstop , the following intervals can be defined:

• Free exploration: occurs in early-mid iterations (around 43% of total iterations) between 0 < n < N1.
At that iteration, all 10 candidates are giving the same probability (≤= 0.1) to be chosen. Therefore, the
algorithm is allowed to explore freely amonst the 10 best candidates.

≤= [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]

• Selective exploration: takes place in mid iterations (around 31% of total iterations) between N1 < n <
N2 and the probability starts to be greater for the three best candidates, while the 5 last are discarded.

≤= [0.4,0.2,0.2,0.1,0.1,0,0,0,0,0]

• Exploitation with punctual explorations: occurs in mid-advanced iterations between N2 < n < N3
(around 12% of total iterations) and the probability of selecting the best performing candidates accen-
tuates more.

≤= [0.75,0.1,0.05,0.05,0.05,0,0,0,0,0]

• Exploitation of best candidates: is found in the last number of iterations between N3 < n < N4 (around
6% of total iterations) and just considers the two best candidates.

≤= [0.85,0.15,0,0,0,0,0,0,0,0]

• Exploitation of best candidate: takes place in the very last iterations between N4 < n < Nstop (around
8% of total iterations) and consists in exploiting the best estimated solution.

≤= [1,0,0,0,0,0,0,0,0,0]

4.4.4. Step 3. Simulation of next period impact
Once the optimisation subproblem has been decomposed and its corresponding parts A and B have been
solved, the simulation of next period impact is directly obtained from Equation 4.86:
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where the optimal values bv A
t and bvB

t are already calculated from parts A and B. Furthermore, the knowl-
edge of decision vector at as well as the sampling of next random realization !t+1 allows to simulate next
state Sn

t+1:
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4.4.5. Step 4. Value function update
In approximate dynamic programming complex dynamic problems are decomposed into small approxi-
mated subproblems which are optimised stepping forward in time. This core idea is necessary but not suf-
ficient to achieve a good policy. Indeed, as its name suggests, approximate dynamic programming is based
on performing just approximations of the value function and thus, several Monte Carlo simulations needs to
be run so as to improve iteratively the quality of these approximations. Therefore, another core aspect of any
ADP algorithm is its ability to learn iteratively as well as its ability to update the value function approxima-
tions. In this context, this section will focus on the different strategies available to update the value function.

As shown in algorithm 1, the most recently calculated observation bvn
t will be used to update the value

function approximation V n
t (Sn

t ) of the following manner:

V n
t (Sn

t ) = (1°Æn°1)V n°1
t (Sn

t )+Æn°1 bvn
t (4.87)

where Æn°1 denotes a stepsize controlling the updating impact of the new observation on the value func-
tion approximation. Its value ranges between [0,1]. From Equation 4.87, it can be inferred that for Æn°1 = 1
the value function approximation will automatically be updated to bvn

t . Likewise, for lower stepsize values
the updated value function will result from a weighted sum between prior observations and the most recent
observation. Generally speaking, higher values ofÆn°1 are recommended in an early exploration phase since
they allow for faster value function learning rates. Likewise, lower Æn°1 values are preferably chosen to en-
hance the algorithm stability during exploitation phases, where the best candidate policies start to be more
defined.

Powell (2007) defines stepsize rule or learning rate schedule as the method for choosing the stepsize Æn°1.
Moreover, he warns about the great influence that the selection of stepsizes has in the family of approximate
value iteration algorithms, which is indeed the type of algorithm being used in our problem. Indeed, a poor
selection of Æn°1 values may hamper seriously the convergence of the algorithm. Consequently, it must be
ensured that the stepsize rule guarantees a convergent behaviour of the algorithm. What is more, the most
effective stepsize rule would be the one that provides the fastest rate of convergence. In any case, it is often
stated in ADP literature that the selection of an effective stepsize rule is problem dependent and highly exper-
imental. That is to say, there is not a clearly established rule for selecting Æn°1. Nevertheless, Powell (2007)
refers to three basic conditions that any stepsize rule must fulfill to guarantee convergence:

1. Any stepsize value must be greater or equal to zero for all iterations:

Æn°1 ∏ 0 n = 1,2, . . . , Nstop (4.88)

2. The infinite sum of all stepsize values must be divergent:

1
X

n=1
Æn1 =1 (4.89)

3. The infinite sum of all squared stepsize values must be convergent:

1
X

n=1

°

Æn1

¢2 ∑1 (4.90)

Taking into account this conditions, our ADP algorithm will be tested with several deterministic stepsize
rules. For our proof of concept, a staircase stepsize rule will be applied of the form:
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1, if n < N1

Æ1, if N1 ∑ n < N2

Æ2, if N2 ∑ n < N3

Æ3, if N3 ∑ n < N4

Æ4, if N4 ∑ n < Nstop

(4.91)

where values follow Æ1 ∏ Æ2 ∏ Æ3 ∏ Æ4 to meet the three previous conditions for convergence. For the proof
of concept case, Æn takes the sequence of values {1,1,0.5,0.4,0.4}. Nevertheless, a sensitivity analysis will be
carried out to benchmark the performance of other stepsizes rules such as:

• Constant stepsize rule

Æn°1 =
(

1, if n = 1

Æ, otherwise
(4.92)

• Inverse stepsize rule

Æn°1 =
1
n

n = 1,2, . . . , Nstop (4.93)

• Generalized harmonic stepsize rule

Æn°1 =
a

a +n °1
a > 1 and n = 1,2, . . . , Nstop (4.94)

4.4.6. Step 5. Stop criteria
For the moment, the number of algorithm iterations is controlled based on a simple stop criteria: if the nth

iteration surpasses a limit number Nstop of iterations, then the algorithm stops and postprocesses the best
ADP policy found. Another possibility would be to implement a dynamic stop criteria so that the own algo-
rithm was capable to stop whenever the error between observations was small enough. This feature is not
implemented for the proof-of-concept since having the full control of the ADP algorithm is preferred to anal-
yse its performance more easily. Consequently, the limit Nstop will be determined based on the dimensions
of the problem tested as well as its complexity. In general, Nstop will increase according to higher dimensions.
Chapter 5 will provide a deeper overview on this topic.

4.4.7. ADP Implementation summary
With the objective of solving the multi-period adaptive fleet planning problem by means of approximate dy-
namic programming, the developed methodology has been split into two parts. Firstly, the mathematical
structure of the problem has been analyzed in the form of a Markov chain and scenario tree of decisions. In
this context, it has been defined a modelling framework suitable for the implementation of an ADP support
tool applied to the scenario tree. As previously summarized, this consisted of a state vector, decision vector,
random variable, transition function, contribution function and value function together with a set of con-
straints defining the feasible space of actions. Secondly, once defined the problem, an ADP algorithm has
been chosen and structured in its main building blocks:

• Implementation of a scenario tree model: an object-oriented programming perspective has been ap-
plied to reproduce the scenario tree by means of a tree data structure. Thus, all state and decision
vectors are organised in nodes. Simultaneously, nodes possess problem descriptive attributes as well
as parent and children classes to respect the Markov chain model.

• Value function approximation strategy: the development of an effective value function approxima-
tion strategy is crucial for the successful implementation of the ADP algorithm. To this end, several
approximation methods have been benchmarked, leading to the conclusion that nonparametric re-
gressions are the most suitable strategy to approximate the value function of the multi-period adaptive
fleet planning problem. In particular, a separable Gaussian kernel regression has been applied to ob-
tain smooth approximations across all non observed scenarios. As for its initialisation, an initial set
of approximated observations is required to be calculated to provide kernel regression with essential
problem information.
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• Monte Carlo simulations: the ADP algorithm requires several iterations and sample realizations of the
random demand growth to learn iteratively better policies for the scenario tree. This is carried out
with Monte Carlo sampling, which consists in extracting random values from a known distribution of
demand growth. Depending on the discrete or continuous nature of the known distribution, we can
either have a finite or infinite number of possible random outcomes, thus having a finite or infinite
number of possible scenario tree branches. While a continuous distribution can match better the actual
demand uncertainty by slowing down the algorithm convergence, a finite distribution allows for faster
learning rates of the ADP algorithm at the expense of less modelling accuracy. Therefore, a trade-off
between these two aspects must be made.

• Problem decomposition and optimisation: with the aim of taking full advantage of the computational
power of commercial optimisers, the maximisation subproblem is decomposed into two independent
parts A and B. Part A is solved directly with Gurobi and relates to the calculation of operations-related
actions once previous fleet-related decisions have been made. Likewise, part B corresponds to the
problem of selecting the fleet-related decisions that will impact future operations. In this case, an
epsilon-greedy subroutine based on simulated annealing is developed to let the algorithm explore the
state space and choose other states with high potential.

• Simulation of next period impact: Once part A and B are solved, the addition of their maximal values
leads to a new observation of the value function at that given state, which measures the impact of
current decision on next period. Likewise, since all decisions are known, the next state can be simulated
with the transition function.

• Value function update: By applying a learning schedule rate, new value function observations are
accounted in the next estimation of the value function. Depending on the learning schedule rate as-
signed, the value function approximation will be more or less sensitive to new observations and thus
will be updated faster or more slowly. In any case, all updating rules must meet the three mentioned
conditions to guarantee convergence.

All in all, the combination of the above mentioned blocks composes the ADP algorithm which is applied
to solve the multi-period adaptive fleet planning problem.
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Proof of concept

The aim of this chapter is to prove the developed ADP algorithm as an effective method to solve the multi-
period adaptive fleet planning problem. For this purpose, Chapter 5 will analyse the results obtained for
two sets of experiments based on the model parameters initially presented in Section 5.1. The first set of
experiments discussed in Section 5.2 consists in solving several deterministic versions of the multi-period
fleet planning problem, where future demand evolution is assumed to be known. The interest behind this
deterministic versions is that they can be formulated as a mixed integer linear program (MILP), which in-
deed allows to obtain tight bounds to their optimal objective values. In this way, this first set of experiments
will allow to verify and benchmark the quality/CPU performance of the ADP algorithm against the classical
methods used by commercial optimisers such as Gurobi. Once verified its correct performance in a deter-
ministic experimental setup, the ADP algorithm will be tested in a second set of experiments in Section 5.3,
where the multi-period fleet planning problem will be solved in its stochastic version. In this same section,
the correct behaviour of the ADP algorithm will be verified, followed by a sensitivity analysis of the most im-
portant parameters of the ADP algorithm. Furthermore, since obtaining upper bounds is not longer possible
for stochastic problem, the profitability impact of applying ADP policies will be compared to the airlines best
practice of planning for the most-likely forecast.

5.1. Model parameters
The parameters describing the model used for the experimental setup can be mainly classified in global,
aircraft-related, route-related and aircraft/route-related parameters. The latest three can be found in Table
5.1, 5.2 and 5.3 respectively. It must be noted that all data presented in these tables have been based on Repko
and Santos (2017), who extrapolated data from a reference airline.

In terms of global parameters, it is assumed that every stage is equivalent to a year so the number of weeks
per stage considered is nt = 52. For the initial proof of concept, a total of 4 stages will be considered starting
from year 0. Apart from this, since the main goal of the proof of concept is to assess the performance of the
ADP algorithm and the discount factor ∞t+1 has barely no influence on it, it is decided to set ∞t+1 equal to 1.
This implies that all future values are equal to their present day value.

From the tables, it can be inferred that the experimental model is based on a medium to long-haul star
network of 20 routes with an averaged load factor of 90%. Three types of wide-body aircraft can be chosen
to operate this network: B777-200, B777-300 and B787-800. These aircraft present different capacity and cost
features as shown in Table 5.1, so they can be treated as competitors aircraft types within the fleet plan. It is
important to notice that the fixed and disposal costs are expressed on a weekly basis and are assumed to be
constant throughout the time stages considered in the different experimental tests. Furthermore, the airline
is assumed to own already 10 B773s and 8 B788s.

As for route-related parameters, Table 5.2 shows the operating time per flight leg OTr , the average fare
fr which is assumed to be constant through the years, the average demand existing at the initial period for
each of the flight legs of a route D0r , the load factor LFr and the minimum frequency per route Y mi n

tr , which

59
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Table 5.1: Aircraft-related parameters

c f i x
t i capi BTi T ATi cdi sp

ti I Fi

Aircraft [$/week] [-] [h/week] [h/flight] [$/weekly based] [-]

B772 140000 322 96 1.5 10000 0

B773 175000 401 96 1.5 10000 10

B788 96000 234 96 1.0 10000 8

Table 5.2: Route-related parameters.

OTr fr D0r LFr Y mi n
tr

Route [h/flight] [$/flight leg] [-/weekly] [%] [-/week]

1 9.00 435 3365 0.9 0

2 6.10 267 3091 0.9 0

3 8.70 504 1724 0.9 0

4 5.25 226 2137 0.9 0

5 9.00 500 2569 0.9 0

6 3.50 298 768 0.9 0

7 3.00 260 729 0.9 0

8 4.25 325 2655 0.9 0

9 9.60 350 5000 0.9 0

10 10.50 477 1366 0.9 0

11 9.05 418 840 0.9 0

12 8.25 389 2010 0.9 0

13 7.63 386 3450 0.9 0

14 8.71 387 1500 0.9 0

15 5.96 282 2808 0.9 0

16 4.09 326 911 0.9 0

17 5.55 330 1316 0.9 0

18 4.45 314 1311 0.9 0

19 5.43 236 829 0.9 0

20 5.00 353 980 0.9 0

Table 5.3: Aircraft-route variable costs

cvar
i [$/ operated route]

Route B772 B773 B788

1 207000 249000 150000

2 132000 158000 95000

3 207000 249000 150000

4 113000 136000 82000

5 225000 269000 161000

6 72000 87000 52000

7 75000 90000 54000

8 93000 112000 67000

9 200000 240000 144000

10 240000 288000 173000

11 210000 251000 151000

12 205000 242000 146000

13 190000 222000 126000

14 207000 249000 150000

15 128000 154000 91000

16 91000 109000 62000

17 119000 142000 85000

18 98000 117000 72000

19 117000 140000 82000

20 105000 125000 77000

is set to 0 to allow the algorithm more freedom when selecting which routes to operate. On the other hand,
the aircraft-route variable costs correspond to the operating costs of operating a route with an aircraft type,
which are found in Table 5.3.

Finally, a global demand growth rate is considered for all routes in the network, thereby making the as-
sumption that all routes share common market trends. This leads to define the random variable!t as a scalar.
Likewise, !t is expected to take three finite outcomes, which correspond to the most optimistic, most likely
and the most pessimistic scenarios respectively. The values are:

!t 2
©

!0
t ,!1

t ,!2
t
™

= {H,M,L} = {+15%,+5%,°5%}

and its discrete probability distribution is assumed to be:

pn
t (b!s

t ) = ps
t =

8

>

<

>

:

30%, if b!s
t =+15%

50%, if b!s
t =+5%

20%, if b!s
t =°5%
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5.2. Deterministic experiments
As introduced, the first set of experiments consists in solving several deterministic versions of the multi-
period fleet planning problem. In any deterministic version, future demand evolution is known in advance so
that!t has only one possible outcome at every stage t . This fact leads to a simplification of Bellman equation
since there is no longer need to calculate future expected values given by the presence of uncertainty:

Vt (St ) = max
at2At

°

Ct (St , at )+∞t+1Vt+1(St+1)
¢

(4.25)

Indeed, this problem can be easily written in its equivalent mixed integer linear program (MILP) and
consequently, be solved with exact methods. In this way, it is possible to obtain tight bounds to their optimal
objective values and compare them to the results obtained with the ADP algorithm. Therefore, deterministic
experiments provide the advantage of assessing both the effectivity and the limitations of the ADP algorithm
in a much clearer setup than another characterised by the influence of stochastic processes. This first set
of experiments is seen then as a preparation to fully implement the ADP algorithm in a stochastic scenario.
To this end, the 4-stage scenario tree depicted in 5.1 is taken as reference to carry out these deterministic
experiments: each of its 27 scenarios are treated as deterministic and independent, solved one-by-one with
both Gurobi and the ADP algorithm. Regarding the ADP algorithm, 80 iterations were run within an averaged
time of 120s and with in order to run several ADP pure loops, it was required to calculate one time beforehand
a training dataset of observations, which lasted 2h. As for Gurobi, a time limit of 1000s was imposed. The
results of these experiments are shown in Table 5.4, where demand variation represents the ratio between the
final stage and initial demands.
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Figure 5.1: 4-stage scenario tree

Table 5.4: Results comparison between Gurobi and ADP algorithm per each de-
terministic tree scenario - profits expressed in USD on an averaged weekly basis

Gurobi solution ADP solution with ∏ = 0.6

ID Stage Scenario Demand variation Optimality Gap OF Dif.Best OF

0 3 IHHH 52.1% 0.03% 4858543 0.00% 4858543

1 3 IHHM 38.9% 0.06% 4733020 -0.10% 4728376

2 3 IHHL 25.6% 0.05% 4596565 -0.11% 4591591

3 3 IHMH 38.9% 0.02% 4616520 -0.20% 4607262

4 3 IHMM 26.8% 0.14% 4489211 0.02% 4489949

5 3 IHML 14.7% 0.02% 4371340 -0.16% 4364476

6 3 IHLH 25.6% 0.06% 4372230 -0.22% 4362763

7 3 IHLM 14.7% 0.02% 4264448 -0.24% 4254063

8 3 IHLL 3.8% 0.04% 4150656 -0.15% 4144385

9 3 IMHH 38.9% 0.10% 4512719 -0.25% 4501661

10 3 IMHM 26.8% 0.11% 4390457 -0.17% 4383097

11 3 IMHL 14.7% 0.07% 4268208 -0.10% 4264018

12 3 IMMH 26.8% 0.08% 4294605 -0.07% 4291778

13 3 IMMM 15.8% 0.06% 4185912 0.00% 4185912

14 3 IMML 4.7% 0.13% 4067694 -0.10% 4063596

15 3 IMLH 14.7% 0.01% 4064153 -0.18% 4056916

16 3 IMLM 4.7% 0.07% 3961840 -0.23% 3952813

17 3 IMLL -5.2% 0.03% 3859255 -0.06% 3856892

18 3 ILHH 25.6% 0.07% 4171585 -0.14% 4165896

19 3 ILHM 14.7% 0.07% 4062362 -0.20% 4054393

20 3 ILHL 3.8% 0.04% 3950261 -0.29% 3938892

21 3 ILMH 14.7% 0.01% 3964795 -0.21% 3956298

22 3 ILMM 4.7% 0.04% 3862483 -0.26% 3852568

23 3 ILML -5.2% 0.07% 3758912 -0.02% 3758080

24 3 ILLH 3.8% 0.15% 3747829 -0.15% 3742278

25 3 ILLM -5.2% 0.20% 3654140 -0.05% 3652352

26 3 ILLL -14.3% 0.12% 3570850 0.00% 3570850

Average 0.07% 4177800 -0.13% 4172211

From these results, it can be stated that within a limit of 1000 seconds Gurobi solutions present an aver-
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age, maximum and minimum optimality gap of 0.07%, 0.20% and 0.00% respectively. By comparison, ADP
results take an average time of 120 seconds to provide an accurate fit to the optimal results obtained with
Gurobi, with an average, maximum and minimum optimality gap of 0.20%, 0.35% and 0.00% respectively.
When benchmarking their CPU performance, Gurobi takes an average of 35s to provide optimality gaps of
the same order of magnitude as the ones presented by the ADP algorithm. This represents a quarter of the
120 seconds taken by Gurobi to run 80 iterations. The given result does not come as a surprise since the
performance of Gurobi is completely optimised to solve these small test cases. Therefore, the benefits of the
ADP algorithm are expected to be noticeable in those problems with a vast number of decision variables and
multiple stages.

As a comparative indicator, the first column of the ADP solution (Dif.Best) shows the relative error be-
tween the objective value calculated with ADP and the one with Gurobi. What is important to infer from these
results is the influence of positioning well the number of initial approximated observations that will train the
kernel regression. Indeed, it is noticeable that scenarios featuring a higher density of observed nodes gener-
ally present lower relative errors than the ones fully estimated with kernel regressions. For instance, optimal
solutions are obtained for the extreme and central scenarios (IHHH, IMMM, ILLL), while there is a slight error
of 0.05% to 0.10% for scenarios with relatively less density of observations (e.g. IMMH, ILLM,IHHM). Like-
wise, scenarios with the highest dispersion of available observations (e.g. ILHL, ILMM, IMHH) may reach a
maximum error of 0.3%, which is deemed acceptable for the kernel regression. This slight general increase in
error occurs due to the fact that these scenarios have been fully estimated using kernel regressions. Despite
this general trend, Table 5.4 proves that kernel regressions may not always perform worse than Gurobi. In-
deed, the particular case of IHMM represents an exception to this tendency since its optimality gap is 0.12%
and the one of Gurobi is 0.14%. Even though there is not a great difference between values, the similarity
between all results is another reason to back up the ADP algorithm developed.

Overall, the average ADP relative error is 0.13%, which implies an average optimality gap for ADP of 0.2%.
This magnitude is highly comparable to the optimality gaps currently seen in ADP literature. For instance,
a similar behaviour was seen in Figure 2.6, where Topaloglu and Powell (2006) illustrate the typical perfor-
mances for linear (L), piece-wise linear (P) and hybrid (PL) value-function approximations for a deterministic
multicommodity flow problem. This fact encourages to further investigate kernel regression as an effective
value function approximation strategy.

Despite these encouraging good results, a critical perspective must be applied still so as to increase the
awareness regarding the limitations of the ADP algorithm and its kernel regression in particular. Figures 5.2
to 5.7 show an overview of the general learning behaviour presented by the ADP algorithm, when solving
the extreme scenarios (IHHH,ILLL) and the central one (IMMM) for different values of ∏: in early iterations,
the algorithm learns better value function approximations due to the free and selective exploration phases,
where high levels of noise are appreciated during the first set of observations. When the number of iterations
advances, the algorithm reaches the exploitation phases and starts to converge, thereby reducing signifi-
cantly the standard deviation between observations. However, this general behavior is highly influenced by
the value of ∏, which was previously introduced as a control parameter to manage the impact of the initial
approximated observations on the entire ADP algorithm. Since the initially approximated value function is
assumed to be the deterministic aggregation of equal operating profits eC§

t from period t onwards

V 0
t (St ) = ∏ (T ° t ) eC§

t (St ) , (4.52)

it may happen that the value function is overestimated or underestimated in certain scenarios. This can be
easily noticed amongst the first observations: if the first observations are above the optimal value, then the
initial approximation is overestimated and viceversa. From Figure 5.6, it is crucial to realize that overestima-
tions have adverse effects on the convergence of the ADP algorithm. Indeed, since the value of being in all
states is initially overestimated, the subsequent updating of values will make high potential states fall from
the most promising category to the least promising ones. Since all states might be overestimated, this will
trigger the adverse loop of continuously visiting the most promising candidates, which will in turn fall from
the best to least promising positions. It is not until all states have been visited and updated that this loop
will stop and the algorithm will start to converge. Evidently, visiting all possible states is infeasible in terms of
time and should be completely avoided. For this reason, the control parameter∏ is introduced as a mitigating
measure. Its high impact is very visible from the left to right figures. For this particular case, a reduction of ∏
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from 1 to 0.6 guarantees the convergence of the ADP algorithm in the extreme and central scenarios (IHHH,
IMMM and ILLL). However, it should be taken into account that the lower the value of ∏ is, the higher level
of noise will be found amongst observations, thereby slowing down the rate of convergence. Therefore, low-
ering too much the value of ∏ can also entail negative effects on convergence. Due to the satisfactory results
obtained with ∏ = 0.6, the same value was applied to solve the rest of the deterministic scenarios shown in
Table 5.4. Furthermore, it should be highlighted that if the value of eC§

t was negative, ∏ equal to 0.6 would not
do anything else apart from enhancing the overestimation. In this case, ∏ should be at least greater than 1 to
decrease more the negative value function V 0

t (St )

Finally, the behavior of the ADP algorithm is quite similar across the observed and non observed scenar-
ios. That is to say, kernel regression does not affect significantly the algorithm rate of convergence once ∏
is properly fixed to avoid overestimations. In case the reader is interested to see this behavior, Appendix B
presents the ADP behavior seen in other scenarios fully estimated with kernel regressions. The optimal fleet
plans for each of the independent scenarios can also be found in the same appendix.
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Figure 5.2: IHHH scenario with ∏= 1
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Figure 5.3: IHHH scenario with ∏= 0.6
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Figure 5.4: IMMM scenario with ∏= 1
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Figure 5.5: IHHH scenario with ∏= 0.6

0 10 20 30 40 50 60 70 80
iteration number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

lp
ro

fit
s

($
)

⇥109

Observed ADP value of total profit
Optimal value obtained with Gurobi

Figure 5.6: ILLL scenario with ∏= 1
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Figure 5.7: ILLL scenario with ∏= 0.6
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5.2.1. Conclusions of deterministic experiments
The assessment of the baseline ADP algorithm in a deterministic setup leads to the following conclusions:

• Firstly, the ADP results provide an accurate fit to the optimal results obtained with Gurobi. While
Gurobi solutions present an average, maximum and minimum optimality gap of 0.07%, 0.20% and
0.00% within a limit of 1000 seconds, the ADP algorithm reaches within less than 120 seconds (80 it-
erations) an average, maximum and minimum optimality gap of 0.20%, 0.35% and 0.00% respectively.

• Secondly, Gurobi stands as the best technique to solve these small test cases in terms of CPU perfor-
mance: it takes an average of 35s to provide optimality gaps of the same order of magnitude as the ones
presented by the ADP algorithm within 120s. Nevertheless, a time limit of 1000s is imposed to Gurobi
when solving each independent scenario, since it can easily take more than 1h to reach a fully optimal
solution for certain scenarios.
This results are not surprising as the benefits of the ADP algorithm are expected to be noticeable in
those problems with a vast number of decision variables and multiple stages. Indeed, it is in that con-
text that the initial 2h-calculation of the kernel training dataset starts to make sense.

• Thirdly, the approximation strategy provides a good initial estimation and a fast convergence: in less
than 40 iterations an optimality gap of 0.5% is achieved. Nevertheless, the control parameter ∏ needs
to be correctly tuned so as to avoid convergence issues due to adverse value function overestimations.

• Lastly, the ADP algorithm has proven to be a satisfactory robust method to solve effectively the deter-
ministic version of the multi-period fleet planning problem.

5.3. Stochastic experiments
For the proof of concept, the stochastic version of the multi-period fleet planning problem is modelled with
a 4-stage scenario tree to model the impact of demand uncertainty. In contrast to the previous deterministic
experiments, here the demand outcome in next stages is uncertain and modelled by different tree branches
stemming from common nodes. Thus, each branch represents a possible outcome of the stochastic demand.
That is to say, the multi-period adaptive fleet planning problem will be solved as a Markov-chain with all its
scenarios coupled. By coupled scenarios is meant that the model takes into account all interdependencies
existent amongst scenarios with common nodes. Therefore, scenarios will no longer be solved independently
as done in the deterministic experiments, but making sure that the same decisions are taken in their common
nodes. Consequently, the introduction of stochastic processes eliminates predictability since value function
updates are also completely coupled amongst them: the value update of being in a state under certain sce-
nario conditions may affect the value of being in another state under different scenario conditions.

It must be reminded that the approximation parameters are set to the same values as in the deterministic
version: ∏= 0.6 and G = 3. This choice is initially based on the satisfactory results reported by the verification
of the deterministic experiments. Nevertheless, the reader must note that these values are subject to be tuned
in next sections: what performs well in a deterministic setup may not necessarily be the most adequate option
within a stochastic environment. It is for this reason that a sensitivity analysis and calibration of the most
important ADP parameters will be carried out after having verified the algorithm behaviour for the firstly
selected parameters.

5.3.1. Verification of the ADP algorithm behaviour
A 4-stage stochastic fleet planning problem is solved with the same model parameters presented in Section
5.1. Even though the parameters are the same as the ones used in the deterministic experiments, the stochas-
tic case is completely different since it integrates all node interdependencies existent amongst scenarios. In
contrast to a single deterministic scenario, a much higher number of iterations is expected to be necessary
to guarantee the convergence of the ADP algorithm. Given that the stochastic problem features multiple sce-
narios, longer exploration times are needed to visit a wider range of possible states. In this way, the initial
value function approximation will be improved iteratively until reaching convergence and coherent results.

Figure 5.8 illustrates the behaviour of the ADP algorithm when solving the stochastic problem for 3000
iterations. As in the deterministic experiments, the green dots correspond to the observations of the total
operating profit expected to be earned during the 4 periods: V0(S0). The red line shows the rolling average
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for the last 20 subsequent observations. The latter has been plotted so as to picture the general trend of the
observations throughout iterations.
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Figure 5.8: Behaviour of the ADP algorithm in solving the 4-period fleet planning problem for 3000 iterations

The behaviour of the ADP algorithm shares certain similarities to the one appreciated in a deterministic
setup, but introduces more complexities. As expected, the algorithm is highly influenced by the presence of
the stochastic process ![t ]: Monte Carlo simulations sample continuously different scenarios, thus making
state exploration more complex across scenarios. In addition to this, value function estimates are continu-
ously updated with random observations coming across all time periods and scenarios. Since value function
updates are completely coupled amongst them, the value update of being in a state under certain scenario
conditions may affect the value of being in another state under different scenario conditions. This leads to
high levels of noise in early iterations and thus, higher margins for the standard deviation between value func-
tion observations. This is clearly seen in Figure 5.9 and 5.10, where the rolling mean and standard deviation
for 20 subsequent observations are plotted together for the iterations intervals [0,1500] and [1500, 3000]. In
fact, both graphs illustrate in a more neater way the main trends of the ADP algorithm behavior together with
an overview of its CPU performance.

Figure 5.9 shows that despite the high oscillations experienced in the initial iterations, the algorithm keeps
steadily improving its estimations of the value function. Starting from $4x108 and eventually surpassing
$8.5x108, it is during the first half of iterations that the algorithm presents the best value function learn-
ing rate and starts to reach convergence. In fact, Figure 5.10 shows that a smaller improvement is still made
during the last half of iterations. Although this improvement may not be seen as essential, the performance
of different simulations has shown that it is precisely during this last phase that the best found ADP policy
achieves major coherence and thus, higher quality. Apart from this, it is interesting to see the exponential
reduction experienced by the rolling standard deviation. This tendency is depicted in both figures 5.11 and
5.12. Starting from high levels during the exploration phases, the standard deviation values are exponentially
reduced when reaching the exploitation phases.

Even though a minimum of 1500 iterations is needed to reach convergence, several simulations led to
the conclusion that 3000 iterations provided much better values of the objective function as well as a more
coherent ADP policy. Nevertheless, running 3000 times the algorithms presented in Chapter 4 (ADP pure
loop) translates into a CPU time cost of 17804s (º 5h), without considering the creation of the training dataset
that lasted 4h. The reader can see the computational timeline of the ADP pure loop in both Figures 5.9 and
5.10. The sharp increase in computational time is evident, thus becoming a crucial matter to be particularly
discussed and investigated in upcoming Chapter 6.
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Figure 5.9: Rolling mean and standard deviation for the first half of iterations
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Figure 5.10: Rolling mean and standard deviation for the second half of iterations
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Figure 5.11: Overview of the exponential reduction in standard
deviation
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Figure 5.12: Detail of exponential reduction after abrupt decay of
the highest deviation values existing in early iterations
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5.3.2. Recommended ADP fleet policy and its profitability impact
While presenting the methodology in Chapter 4, it was stated that solving a multistage stochastic program
does not lead to a single result, but a policy Aº(St ): the best rule for making decisions at in function of the
given state St in time t , which results from the previous multivariate stochastic process ![t ].

After finishing the 3000 iterations, the ADP algorithm recommended the adaptive fleet policy outlined in
Figure 5.13. All fleet data is expressed in the vector format (B772/B773/B788). In this way, blue vectors express
each of the values of the resource vector Rti associated to a state St . For instance, the initial resource vector
describes the initial fleet status of the airline: it has 0 aircraft of type B772, 10 aircraft of type B773 and 8 aircraft
of type B778. Likewise, yellow vectors correspond to the fleet related decisions (xbuy

t , xdi sp
t ) recommended

to be made during period t given the state St . Thus, positive values imply new aircraft acquisitions for next
year whereas negative values, disposals for next year.

Table 5.5: Optimal fleet plans for deterministic scenarios
Optimal fleet for independent scenarios

ID Stage Scenario Total probability Demand variation year 0 year 1 year 2 year 3

0 3 IHHH 2.70% 52.1% 0/10/8 0/10/12 0/13/12 0/16/12

1 3 IHHM 4.50% 38.9% 0/10/8 0/10/12 0/13/12 0/14/12

2 3 IHHL 1.80% 25.6% 0/10/8 0/10/12 0/12/12 0/12/12

3 3 IHMH 4.50% 38.9% 0/10/8 0/10/12 0/11/12 0/13/13

4 3 IHMM 7.50% 26.8% 0/10/8 0/11/10 0/12/11 0/12/12

5 3 IHML 3.00% 14.7% 0/10/8 0/10/12 0/11/12 0/10/12

6 3 IHLH 1.80% 25.6% 0/10/8 0/10/11 0/10/11 0/12/12

7 3 IHLM 3.00% 14.7% 0/10/8 0/10/11 0/10/11 0/10/12

8 3 IHLL 1.20% 3.8% 0/10/8 0/10/11 0/10/11 0/9/11

9 3 IMHH 4.50% 38.9% 0/10/8 1/10/8 1/12/9 1/15/9

10 3 IMHM 7.50% 26.8% 0/10/8 1/10/8 1/12/9 1/12/11

11 3 IMHL 3.00% 14.7% 0/10/8 1/10/8 1/12/9 0/12/9

12 3 IMMH 7.50% 26.8% 0/10/8 1/10/8 0/11/9 0/14/9

13 3 IMMM 12.50% 15.8% 0/10/8 1/10/8 0/11/9 0/11/11

14 3 IMML 5.00% 4.7% 0/10/8 1/10/8 1/11/8 1/10/8

15 3 IMLH 3.00% 14.7% 0/10/8 1/10/8 0/10/8 0/10/12

16 3 IMLM 5.00% 4.7% 0/10/8 1/10/8 0/10/8 1/10/8

17 3 IMLL 2.00% -5.2% 0/10/8 1/10/8 0/10/8 0/10/8

18 3 ILHH 1.80% 25.6% 0/10/8 0/10/8 0/11/9 0/12/12

19 3 ILHM 3.00% 14.7% 0/10/8 0/10/8 0/11/9 0/11/10

20 3 ILHL 1.20% 3.8% 0/10/8 0/10/8 0/11/9 0/10/9

21 3 ILMH 3.00% 14.7% 0/10/8 0/10/8 0/10/8 0/10/12

22 3 ILMM 5.00% 4.7% 0/10/8 0/10/8 0/10/8 1/10/8

23 3 ILML 2.00% -5.2% 0/10/8 0/9/9 0/9/9 0/9/9

24 3 ILLH 1.20% 3.8% 0/10/8 0/9/9 0/8/9 1/9/10

25 3 ILLM 2.00% -5.2% 0/10/8 0/9/8 1/8/8 1/8/9

26 3 ILLL 0.80% -14.3% 0/10/8 0/9/9 0/8/9 0/8/8
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Figure 5.13: ADP fleet policy

Given an airline with an initial fleet of 18 aircraft in total (0/10/8) and the route demands seen in Table 5.2,
the best action to take at that moment is to acquire one B788 more. The fleet (0/10/9) is expected to be the
best performer across all forecasted scenarios of possible demand growth (H,M,L) within next year 1. Once
the demand for year 1 is less uncertain, the ADP policy will provide different recommendations depending
on the stochastic development of demand growth forecasted for year 2. In very optimistic scenarios (IH),
all 20 long-haul routes would experience a global demand increase of 15%, which would imply the recom-
mendation to buy 3 aircraft more: one B773 and two B788. However, this situation is only likely to happen
at a maximum probability of 30%. Indeed, the most-likely scenario with 50% probability is the one in which
demand experiences a general growth of 5% for next period (IM). Since in this scenario demand still grows
but at lower rate, the recommendation consists in acquiring just one B788 more. A possible decay of -5% in
demand should also be considered with 20% of probability. If this outcome happened to be certain for year 1,
then the fleet policy would advise to dispose one B788 for next year 2. Throughout the subsequent time pe-
riods, fleet recommendations are simultaneously based on current airline performance and future demand
forecasts. This is clearly appreciated in year 2 and 3: higher levels of aircraft investment are noticeable for
those states benefiting from a history of continuous growth (IHH, IHM, IMH, IMM) and a good outlook for
demand. Whereas, states affected by a decay in demand will most likely face worse demand forecasts and
thus, will be advised with more preventive measures consisting of maintaining the fleet size or even reducing
it (IHLL, IMLL, ILLL).
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In light of these results, it is evident that the fleet policy adapts to the different conditions defining each
of the states. This is the reason why multistage stochastic models lead to an adaptive fleet policy, whose rec-
ommendations are intended to adjust as much as possible to the optimal fleet plans for each independent
scenario. This is appreciated when comparing both the optimal fleet plans for each deterministic scenario
in Table 5.5 and the fleet policy schematized in Figure 5.13. Even though the recommended fleet might not
be exactly the same for a given scenario, in most of the cases the fleet size is adjusted so as to have the best
performance across all common states branching from each node. Furthermore, these differences tend to
be minimized to respect as much as possible the optimal fleet compositions and sizes, which would indeed
correspond to the equivalent deterministic scenarios. Apart from that, it must be noticed that the scenarios
with higher probability exert greater influence on the resulting fleet policy, which is adjusted more closely to
their optimal fleet sizes and compositions. Indeed, the combined probability of forecast H and M amounts
to 80%, which implies a higher weight when considering next fleet decisions. Nevertheless, a total fit is very
hard to happen since the adaptive policy also takes into account the potential occurrence of other scenar-
ios with less probability. For instance, it may happen that a certain fleet, which is deemed suitable for the
next forecasted optimistic scenarios, performs so poorly for the pessimistic ones that it could be immedi-
ately rejected by the ADP algorithm. All in all, the presence of demand uncertainty explains why the overall
adaptive policy tends to be more conservative in its decisions, when compared to the deterministic scenarios.

Furthermore, a very unique feature of the adaptive fleet policy is its capability of capturing the path de-
pendency effect amongst the different results. Indeed, it may happen that two scenarios in year 3 share the
same total demand variation with respect to year 0. An example of this situation can be seen in scenarios
IHHL and IHLH shown in Table 5.6. Both with a total demand variation of 25.6% in year 3, the two scenarios
have different fleet compositions and sizes eventually. This is a direct consequence of the different stochastic
demand process![t ] undergone by each of the scenarios. On the one hand, IHHL benefits from an outstand-
ing continuous growth until the last period, where an abrupt demand decay takes place. In this context, a
higher risk is taken by the algorithm due to the excellent financial performance experienced so far and the
good demand prospects expected: there is only a 20% probability that the total demand variation will be
lower than 25.6% in stage 3. This results in having the fleet (0/12/12). On the other hand, IHLH attains the
same demand variation by experiencing a different stochastic chain of events. Due to a sudden reduction of
-5% in year 2, its fleet expansion is slowed down significantly, thereby taking more precautions against future
demand uncertainty. Indeed, at that stage the forecasted probability of attaining the same total growth as in
IHHL is just 30%. Clearly affected by the path followed, the fleet in year 3 of scenario IHLH only reaches a size
of (0/10/11). However, the adaptive policy is also capable of overcoming the adverse effects of a past demand
reduction provided that a positive sequence of demand growth follows. This is appreciated in scenario ILHH,
where the airline fleet is initially reduced - (0/10/8) - due to a demand decrease in year 1 and then expanded
for next year due to demand recovery - (0/10/11) -. In this situation, the path dependency is still very visible
between ILHH and IHHL: even though IHHL has the same total demand variation, it features a greater fleet
of (0/12/12) due to its good historical data.

Table 5.6: Example of path dependency amongst scenarios with same demand variation

Recommended fleet plan

ID Scenario Total probability Demand variation year 0 year 1 year 2 year 3

2 IHHL 1.8% 25.6% 0/10/8 0/10/9 0/11/11 0/12/12

6 IHLH 1.8% 25.6% 0/10/8 0/10/9 0/11/11 0/10/11

18 ILHH 1.8% 25.6% 0/10/8 0/10/9 0/10/8 0/10/11

In light of the previous discussion, it is important to understand that adaptive fleet policies offer a new
perspective in resource planning: they do not aim at simply forecasting the future, but at including uncer-
tainty into the decision-making process. As will be seen in Chapter 7, the final objective of solving wide
scenario trees consists in generating meaningful big data so as to draw signposts for fleet planners. In other
words, the solution of wide scenario trees would pave the way for the development of advanced analytics
tools capable of defining preventive, corrective and even predictive measures to steer strategic plans towards
success.
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Since obtaining an upper bound is not longer possible for stochastic problems, the profitability impact
of applying ADP policies will be compared to the airlines best practice of always planning for the most-likely
forecast (IMMM). Indeed, it is a common practice amongst airlines to forecast the most-likely scenario and
plan their fleet according to it, regardless of the existent uncertainty that other very different scenarios may
occur in the future.

In this sense, Table 5.7 shows a comparison between the profits that would be obtained when just plan-
ning for the most-likely scenario and the ones that would be expected when following the fleet planning
recommendations from the adaptive policy. With the aim of providing an effective reference for the anal-
ysis, every scenario composing the tree is also optimized individually as an equivalent deterministic prob-
lem. Evidently, their optimal objective values coincide with the values presented in the deterministic exper-
iments, since they do not consider uncertainty nor the interdependencies between scenarios at every tree
node. Therefore, the optimal fleet plan obtained for a single deterministic scenario will always be better or
equal to the one recommended by the ADP policy for that specific scenario. Applying the same logic, the
optimal fleet plan for the most-likely scenario does not necessarily have to be the optimal fleet plan for the
rest of scenarios and thus, its corresponding objective value does not imply a maximum.

In view of the above, Table 5.7 is divided into three main columns: best solution for independent scenar-
ios, most-likely solution and ADP policy. Each column shows the weekly average operating profits that would
be obtained from applying each method. As discussed, the best solutions for independent scenarios can be

Table 5.7: Performance analysis of recommended ADP policy against most-likely fleet plan and optimal fleet plans for independent
deterministic scenarios - operating profits expressed on an averaged weekly basis in USD

Best deterministic solution Most-likely solution ADP policy

ID Stage Scenario Total probability Demand variation Optimality Gap OF Dif.Best OF Dif.Best OF

0 3 IHHH 2.70% 52.1% 0.03% 4858543 -1.65% 4778148 -0.89% 4815384

1 3 IHHM 4.50% 38.9% 0.06% 4733020 -1.21% 4675713 -0.56% 4706454

2 3 IHHL 1.80% 25.6% 0.05% 4596565 -0.89% 4555486 -0.38% 4579012

3 3 IHMH 4.50% 38.9% 0.02% 4616520 -0.90% 4575030 -0.46% 4595088

4 3 IHMM 7.50% 26.8% 0.14% 4489211 -0.52% 4465826 -0.20% 4480146

5 3 IHML 3.00% 14.7% 0.02% 4371340 -0.49% 4350090 -0.49% 4350065

6 3 IHLH 1.80% 25.6% 0.06% 4372230 -0.33% 4357830 -0.46% 4352260

7 3 IHLM 3.00% 14.7% 0.02% 4264448 -0.27% 4253117 -0.40% 4247546

8 3 IHLL 1.20% 3.8% 0.04% 4150656 -0.99% 4109537 -1.12% 4103967

9 3 IMHH 4.50% 38.9% 0.10% 4512719 -0.64% 4483846 -0.46% 4491971

10 3 IMHM 7.50% 26.8% 0.11% 4390457 -0.36% 4374641 -0.31% 4377028

11 3 IMHL 3.00% 14.7% 0.07% 4268208 -0.22% 4258906 -0.50% 4246948

12 3 IMMH 7.50% 26.8% 0.08% 4294605 -0.14% 4288516 -0.27% 4283176

13 3 IMMM 12.50% 15.8% 0.06% 4185912 4185912 0.00% -0.08% 4182543

14 3 IMML 5.00% 4.7% 0.13% 4067694 -0.68% 4039959 -0.28% 4056129

15 3 IMLH 3.00% 14.7% 0.01% 4064153 -0.54% 4042312 -0.46% 4045551

16 3 IMLM 5.00% 4.7% 0.07% 3961840 -1.32% 3909490 -0.36% 3947527

17 3 IMLL 2.00% -5.2% 0.03% 3859255 -2.49% 3763271 -0.73% 3831189

18 3 ILHH 1.80% 25.6% 0.07% 4171585 -0.48% 4151630 -0.82% 4137477

19 3 ILHM 3.00% 14.7% 0.07% 4062362 -0.38% 4046916 -0.53% 4040630

20 3 ILHL 1.20% 3.8% 0.04% 3950261 -1.19% 3903337 -0.45% 3932507

21 3 ILMH 3.00% 14.7% 0.01% 3964795 -0.95% 3927296 -0.43% 3947860

22 3 ILMM 5.00% 4.7% 0.04% 3862483 -1.76% 3794475 -0.40% 3846972

23 3 ILML 2.00% -5.2% 0.07% 3758912 -2.94% 3648255 -1.01% 3720966

24 3 ILLH 1.20% 3.8% 0.15% 3747829 -2.99% 3635870 -0.58% 3726117

25 3 ILLM 2.00% -5.2% 0.20% 3654140 -4.21% 3500408 -0.39% 3639948

26 3 ILLL 0.80% -14.3% 0.12% 3570850 -5.75% 3365645 -0.76% 3543811

Expected Values 0.07% 4243477 -0.82% 4208652 -0.40% 4226538
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seen as a reference which bounds the maximum profits achievable in each scenario of the tree. In order to
measure the performance of both the ADP policy and the most-likely solution, their respective OF values will
be compared to the best deterministic OF value for each independent scenario. The differences with respect
to the best value (Dif.Best) are expressed in percentage.

By analyzing the percentage difference between the objective values of each method in every scenario, it
can be concluded that the adaptive policy is the most robust method since it clearly outperforms the most-
likely solution in the majority of scenarios. Yet, the ADP lowest scores do not differ significantly from the ones
presented by the most-likely solution, thereby making clear the robustness of the adaptive policy. Evidently,
the most-likely solution performs better in the most-likely scenario but its performance starts to stall the fur-
ther we move away from the scope of the most-likely scenario. Its worst scores are found in the neighborhood
of the extreme scenarios: For the most pessimistic scenarios the most-likely solution can imply weekly oper-
ating losses ranging between 3% and 6%, whereas in the most optimistic scenarios losses remain between 2%
and 1%. In contrast, the adaptive fleet policy mitigates losses in all extreme scenarios, which never surpass
the 1.1%.

Finally, the last row of Table 5.7 shows the expected weekly operating profits for the most-likely fleet plan
and the ADP policy. By analyzing these last results, it can be concluded that the adaptive policy reduces by
50 % the percentage difference of the most-likely solution. This conclusion reaffirms the advantage of apply-
ing adaptive fleet policies and most importantly, proves approximate dynamic programming as an effective
method to calculate them.

5.3.3. Verification of ADP results
The objective of this subsection is to verify that the ADP algorithm behaves as it is intended to do. To this
end, the response of the ADP algorithm will be measured according to several changes in input data so as to
assess the logic of the ADP results. It is important to notice that only model parameters will be changed in
this analysis so as to decouple the impact of the ADP parameters (e.g. ∏ , G , Nstop ). Furthermore, the ADP
kernel regression will only be trained by the original dataset of initial observations, which were generated
using the baseline parameters of the model. In other words, initial observation will not be updated according
to the changes in input data. This is intended to assess the robustness of the approximation strategy and thus,
the ADP algorithm in general when varying parameters such as fixed, variable and disposal costs as well as
demand growth.

Impact of varying fixed and variable costs
Once set the baseline case as the multi-period fleet planning problem defined with the model parameters of
Section 5.1, two additional variations of the baseline case were solved for modified values of fixed and vari-
able costs. The first variation represents a 50% increase with respect to the baseline fixed and variable costs,
while the second case consists in a 50% cost reduction.

Figure 5.14 shows the responses of the ADP algorithm when varying both costs: due to a sharp reduc-
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Figure 5.14: Responses of the ADP algorithm when varying fixed and demand costs
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tion in costs (¢ = °50%), the total expected profits increase substantially with respect to the baseline case.
In the same way, the total expected profits undergo a significant reduction given the 50% increase in costs.
Therefore, it can be concluded that the ADP response behaves as expected. Furthermore, all value functions
reach convergence, thereby implying the effective stabilization of the approximation strategy despite using
only initial observations from the baseline case. However, it can be inferred from the case ¢=°50% that the
further the initial approximated observations are from the real tested case, the harder will be to reach con-
vergence. Indeed, even though the value function observations improve steadily along the observations for
¢=°50%, a higher degree of noise is visible for a longer interval of iterations. This local instabilities experi-
enced by the value function are definitely caused by poor initial estimations. Likewise, the case comprising
a 50% increase in cost happens to be closer to the initial estimations, thereby converging much faster than
the previous case. This good performance may appear unexpected since the initial set of observations was
generated for the baseline case. However, it should be reminded that the the values of these initial obser-
vations were intentionally reduced by calibrating ∏ = 0.6, as a way to prevent the adverse effects entailed by
potential overestimations. Consequently, it is deduced that the ADP algorithm will start to fail for a cost in-
crease greater than 50%. If this was needed, then the kernel regression should be initialized with a new set
of approximated observations generated from the new required parameters. A similar logic could be applied
when decreasing the costs: if a reduction of more than 50% is needed, it would take more iterations for the
algorithm to converge. Nevertheless, the probability of requiring a cost reduction of more than 50% is quite
low. In this sense, it can be concluded that the behavior of the ADP algorithm is robust and highly stable,
boasting a range of [-50% , 50%] for changing cost values without losing accuracy.
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Figure 5.15: Fleet impact on increasing 50% fixed and variable costs

Finally, the impact of increasing by 50% the costs is also very visible in the recommended fleet policy.
Figure 5.15 shows how the ADP policy tends to reduce the fleet size for the majority scenarios, as a measure
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to reduce the negative effects of an increase in costs for the same levels of demand. In terms of notation,
the scenarios are labelled by their own stochastic process of demand growth. Being I the node representing
initial conditions, IMMM is equivalent to I_1.05_1.05_1.05 since 0.05 is the corresponding demand growth
for outcome M. Likewise, ILLL would be I_0.95_0.95_0.95 and IHHH would be I_1.15_1.15_1.15, since the
respective demand growth of outcomes L and H is -0.05 and and 0.15 respectively.

Impact of varying disposal costs
Changes in disposal costs are not affected by the initial set of approximated observations feeding the ker-
nel regression. This is due to the fact that the initial approximated observations are taken from V 0

t (St ) =
∏ (T ° t ) eC§

t (St ), where disposal costs do not intervene in the optimal values of the contribution function
eC§

t . Therefore, the influence of the disposal costs is directly transmitted by the Algorithm 2 presented in the
methodology chapter. This allows to vary the disposal costs as much as desired and independently of the
ADP parameters and initial observations.
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Figure 5.16: Fleet policy with cdi sp
t = 0
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Figure 5.17: Fleet policy with cdi sp
t = 100000

To verify the correct performance of the ADP algorithm, the disposal costs were varied from $0 to $1000000.
In this context, the most intuitive aspect to assess is how an increase in disposal costs impacts on the recom-
mended fleet policy. Figures 5.16 and 5.17 show the expected behavior: low disposal costs will lead to more
flexible policies in which several fleet changes are easily allowed between stages. In contrast, high disposal
penalizations will translate into more uniform fleet policies, where aircraft are less likely to be disposed in
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high quantities.

Apart from that, it must be highlighted that higher disposal costs will lead to a more difficult convergence:
the search for the best policy gets harder for the ADP algorithm since it has to perform a complex trade-off
between approaching to the optimal fleets and facing higher disposal costs due to the corresponding fleet
modifications.

0 500 1000 1500 2000
iteration number

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

ob
se

rv
ed

ob
je

ct
iv

e
va

lu
e:

to
ta

lp
ro

fit
s

($
)

⇥108

cdisp = $0

cdisp = $10000

cdisp = $100000

cdisp = $1000000

Figure 5.18: ADP response for different disposal costs
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Figure 5.19: Exacerbated noise amongst value function
observations due to an increase in disposal cost of $1000000

Impact of varying demand growth

The ADP response to varying demand growth can directly be extracted from previous Table 5.7. By plotting
the profits earned per scenario in function of their corresponding demand variation, it is verified then that
for scenarios with higher demand growth, more passengers are carried, thus making more profit in general.
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Figure 5.20: Profit growth in function of total demand variation per scenario

This general tendency is depicted in Figure 5.20, where the effect of capturing path dependency can also
be appreciated amongst scenarios sharing similar demand growths. As previously commented, different sce-
narios can attain the same total demand variation by experiencing different stochastic growth processes![t ].
This leads to the choice of different fleet compositions, since each scenario has been constrained by its own
probability of happening as well as the node interdependencies existing with other scenarios branching out
from common nodes. On this basis, it can be concluded that the ADP algorithm behaves logically and as
intended.
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5.3.4. Sensitivity analysis and calibration
In the methodology chapter, the entire ADP algorithm was described together with the introduction of its
most important parameters. In particular, it was mentioned the high importance of calibrating well the fol-
lowing parameters:

• Control parameter to manage the impact of the initial approximated observations, ∏

• Stepsize rule defining the value function learning rate, Æ

• Gain factor controlling the radius of Gauss kernels, G

Since the impact of the gain factor G was already analyzed and calibrated during the methodology chap-
ter, the goal of this sensitivity analysis is to understand better how the other two most important ADP param-
eters influence the behavior of the algorithm and how this impacts the quality of the results. Based on this
knowledge, the parameters ∏ and Æn°1 will be calibrated so as to achieve optimal behavior for the algorithm.

Influence of ∏
The parameter ∏ allows to control the impact of the initial approximated observations and its values range
between:

∏ 2
(

[0,1] , if eC§
t (St ) ∏ 0

[1,T ] , if eC§
t (St ) < 0

(4.53)

As introduced in the deterministic experiments in Section 5.2, the reason for its existence is its capability
of avoiding the negative effects entailed by the presence of initial overestimations of the value function. It
should be reminded that a situation in which the majority of states are overestimated will trigger the adverse
loop of continuously visiting the most promising candidates, which will in turn fall from the best to least
promising positions. Due to this fact, convergence is not guaranteed within an admissible computational
time and thus, the obtained policies will most probably lack in coherence and quality. It must be noted that
the interval [0,1] is intended to underestimate positive values of the value function, while the interval [1,T ]
does the same for negative values.

With the aim of understanding better the influence of ∏ and its impact on ADP results, several experi-
ments were run for different values of ∏. Figure 5.21 summarizes the ADP behavior observed when varying ∏.
As all observed eC§

t are positive, the sensitivity analysis focuses on the range [0,1].

Figure 5.21: Impact of varying ∏ on ADP algorithm behaviour
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Given these ADP responses, one could appreciate certain similarities between the behavior visible in Fig-
ure 5.21 and the one already seen in 5.14. Even if both situations are different, once again we can see that
the more we underestimate the value of the initial approximation (in this case underestimation is done by
decreasing ∏ and not decreasing the cost parameters), then the longer it takes for the algorithm to converge.
Indeed, the value function starts to oscillate more for lower∏ values (∏∑ 0.6), but its approximation keeps im-
proving to the extent that in some occasions, it surpasses the value function observations made with higher
∏ values (∏ > 0.6). On this basis, Table 5.8 provides a performance comparison between the different values
of ∏ tested.

Table 5.8: Performance of ADP results for different values of ∏ - OF operating profits expressed in USD on a weekly basis

Deterministic Most-likely solution ∏= 0 ∏= 0.1 ∏= 0.3 ∏= 0.6 ∏= 0.8 ∏= 1 ∏= 1.2

Scenario OF Dif.Best OF Dif.Best OF Dif.Best OF Dif.Best OF Dif.Best OF Dif.Best OF Dif.Best OF Dif.Best OF

IHHH 4858543 -1.65% 4778148 -15.18% 4120869 -1.12% 4804080 -1.18% 4801077 -0.89% 4815384 -1.11% 4804382 -0.89% 4815384 -2.33% 4745547

IHHM 4733020 -1.21% 4675713 -17.40% 3909515 -0.72% 4699111 -0.85% 4692921 -0.56% 4706454 -0.69% 4700176 -0.56% 4706454 -1.53% 4660721

IHHL 4596565 -0.89% 4555486 -19.84% 3684623 -0.57% 4570269 -0.71% 4563814 -0.38% 4579012 -0.46% 4575564 -0.38% 4579012 -1.44% 4530544

IHMH 4616520 -0.90% 4575030 -18.67% 3754726 -0.58% 4589861 -0.71% 4583779 -0.46% 4595088 -0.46% 4595088 -0.46% 4595088 -1.91% 4528524

IHMM 4489211 -0.52% 4465826 -20.83% 3554320 -0.30% 4475805 -0.43% 4469886 -0.20% 4480146 -0.20% 4480146 -0.20% 4480146 -1.10% 4439867

IHML 4371340 -0.49% 4350090 -23.72% 3334619 -0.38% 4354541 -0.62% 4344027 -0.49% 4350065 -0.49% 4350065 -0.49% 4350065 -2.27% 4272162

IHLH 4372230 -0.33% 4357830 -24.79% 3288296 -0.42% 4353691 -0.52% 4349331 -0.46% 4352260 -0.57% 4347318 -0.62% 4345267 -2.32% 4270893

IHLM 4264448 -0.27% 4253117 -27.47% 3092846 -0.27% 4253099 -0.39% 4247636 -0.40% 4247546 -0.44% 4245624 -0.46% 4245013 -2.55% 4155757

IHLL 4150656 -0.99% 4109537 -29.93% 2908546 -0.79% 4117921 -0.72% 4120604 -1.12% 4103967 -0.77% 4118592 -0.52% 4128866 -3.31% 4013079

IMHH 4512719 -0.64% 4483846 . -17.33% 3730593 -0.44% 4492846 -0.51% 4489906 -0.46% 4491971 -0.58% 4486353 -0.46% 4491971 -3.51% 4354331

IMHM 4390457 -0.36% 4374641 -19.60% 3529999 -0.29% 4377904 -0.43% 4371783 -0.31% 4377028 -0.34% 4375320 -0.31% 4377028 -2.88% 4263948

IMHL 4268208 -0.22% 4258906 -22.44% 3310298 -0.48% 4247823 -0.75% 4236304 -0.50% 4246948 -0.31% 4254931 -0.50% 4246948 -2.75% 4150646

IMMH 4294605 -0.14% 4288516 -24.38% 3247381 -0.19% 4286410 -0.35% 4279458 -0.27% 4283176 -0.27% 4283176 -0.27% 4283176 -1.03% 4250519

IMMM 4185912 0.00% 4185912 -27.13% 3050261 -0.03% 4184730 -0.17% 4178825 -0.08% 4182543 -0.08% 4182543 -0.08% 4182543 -1.77% 4112017

IMML 4067694 -0.68% 4039959 -29.74% 2857762 -0.57% 4044424 -0.38% 4052411 -0.28% 4056129 -0.28% 4056129 -0.28% 4056129 -3.02% 3944862

IMLH 4064153 -0.54% 4042312 -28.21% 2917524 -0.63% 4038648 -0.45% 4045905 -0.46% 4045551 -0.57% 4040814 -0.72% 4035000 -2.39% 3966840

IMLM 3961840 -1.32% 3909490 -30.65% 2747606 -0.69% 3934598 -0.42% 3945017 -0.36% 3947527 -0.41% 3945554 -0.53% 3940828 -1.93% 3885543

IMLL 3859255 -2.49% 3763271 -33.23% 2576706 -1.54% 3799909 -1.04% 3819011 -0.73% 3831189 -0.39% 3844064 -0.36% 3845352 -2.96% 3745128

ILHH 4171585 -0.48% 4151630 -28.16% 2996786 -0.73% 4141109 -0.35% 4157063 -0.82% 4137477 -0.82% 4137584 -0.62% 4145886 -1.62% 4104152

ILHM 4062362 -0.38% 4046916 -31.04% 2801336 -0.45% 4044262 -0.20% 4054090 -0.53% 4040630 -0.53% 4040827 -0.42% 4045295 -1.78% 3990178

ILHL 3950261 -1.19% 3903337 -33.75% 2617035 -0.36% 3936139 -0.82% 3917797 -0.45% 3932507 -0.54% 3929088 -1.02% 3910116 -1.55% 3888874

ILMH 3964795 -0.95% 3927296 -33.88% 2621430 -0.59% 3941419 -0.26% 3954407 -0.43% 3947860 -0.59% 3941551 -0.77% 3934228 -2.79% 3854092

ILMM 3862483 -1.76% 3794475 -36.55% 2450857 -0.44% 3845478 -0.16% 3856383 -0.40% 3846972 -0.42% 3846291 -0.50% 3843279 -2.18% 3778359

ILML 3758912 -2.94% 3648255 -39.33% 2280611 -0.57% 3737605 -0.50% 3740045 -1.01% 3720966 -0.38% 3744802 -0.24% 3749839 -2.27% 3673709

ILLH 3747829 -2.99% 3635870 -36.05% 2396632 -0.92% 3713232 -0.79% 3718404 -0.58% 3726117 -0.65% 3723353 -0.98% 3711221 -1.32% 3698205

ILLM 3654140 -4.21% 3500408 -38.70% 2240115 -1.73% 3591074 -0.60% 3632235 -0.39% 3639948 -0.43% 3638375 -0.72% 3627904 -1.08% 3614594

ILLL 3570850 -5.75% 3365645 -41.59% 2085624 -3.07% 3461277 -0.97% 3536098 -0.76% 3543811 -0.57% 3550596 -1.84% 3505283 -0.87% 3539819

Expected value 4243477 -0.82% 4208652 -25.57% 3158499 -0.50% 4222752 -0.47% 4223186 -0.40% 4226538 -0.41% 4226011 -0.42% 4225545 -2.07% 4155786

Just for the sake of clarity, the ADP results for ∏= 1.2 are included so as to provide a clearer understanding
of the effects of overestimating the value function approximation. However, ∏ is not intended to take higher
values than 1, thereby representing a percentage controlling the impact of the initial value function approx-
imation. From the performance data shown in Table 5.8, it can be drawn that both too low (∏< 0.1) and too
high values of ∏ (∏> 1) worsen completely the ADP performance to the extent of expecting a general score as
low as -26% for ∏ = 0 and -2.07% for ∏ = 1.2. Having introduced these scores, it is well worth to remind the
reader about the paramount importance of providing meaningful observations, which preserve the essential
information of the problem. Indeed, setting ∏ equal to 0 cancels completely the transmission of the problem
structure and thus, the algorithm lacks any guidance when it comes to visit potential states: actions are defi-
nitely chosen at random. In light of this, it does not come as a surprise that ∏= 0 performs very poorly across
all scenarios. In contrast, the situation of ∏= 1.2 is slightly different: since it enhances overestimation across
all states, the continuous search of the most promising states makes them be revalued and fall down into the
least promising categories. In this way, the algorithm will most likely keep on looking for other overestimated
values which apparently look more promising than the ones already visited. Eventually, this adverse loop will
wreck all problem structure previously transmitted to the kernel regression.

Evidently, both results go beyond the targeted order of magnitude set by the most-likely solution, which is
expected to perform at a -0.82% difference with respect to the deterministic upper reference. Since the reason
for solving wide scenario trees is indeed the improvement of current airline best practices, the ADP algorithm
will only prove to be a better method in those ∏ intervals where its performance score surpasses the one of
the most-likely fleet solution. Therefore, we are only interested in Dif.Best scores greater or equal to -0.82%,
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which happen to be found in Table 5.8 between the interval 0.1 ∑ ∏ ∑ 1. Although all these ADP responses
surpass clearly the most-likely solution, they still present certain differences in terms of performance. On
the one hand, significant reductions in ∏ (∏ < 0.6) will lead to a general deterioration in profits across all
scenarios. This is a direct consequence of underestimating the value function approximation since in doing
so, the algorithm takes more time to converge and reach better policies. On the other hand, greater values
(∏> 0.8) will entail the presence of some scenarios being overestimated, thus penalizing too much the overall
good performance of the policy across the rest of scenarios. From these observed trends, it follows that a
trade-off must be done to calibrate correctly the value of ∏. For this purpose, it is insightful to perform a
spline interpolation between the expected performance scores found in the last row of Table 5.8. For the sake
of clarity, the values ∏= 0 and ∏= 1.2 are not accounted due to the abrupt discontinuity they entail and their
lack of interest for the calibration of ∏.
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Figure 5.22: Unstable value function correspondence at stage 5 with G = 1000

From Figure 5.22 it can be concluded that optimal ADP performances will be found between the interval
0.6 ∑ ∏∑ 0.8, being more close to 0.6 than 0.8. Thus, ∏ can either be calibrated to 0.6 or 0.7 since both values
are expected to provide the best ADP results possible. By extrapolating this results to a case where eC§

t is
negative, the calibrated interval would be found in between 1.2 ∑∏∑ 1.4.

Influence of Æ
As discussed in Chapter 4, the stepsizeÆn°1 indicates the rate at which the value function is updated through-
out the iterations:

V n
t (Sn

t ) = (1°Æn°1)V n°1
t (Sn

t )+Æn°1 bvn
t (4.87)

The stepsize values range between [0,1]. The closer Æn°1 is to 1, the faster the value function approxima-
tion will be updated to the current observation bvn

t . In the same way, the lower is its value, then the more slowly
the value function will be updated. In other words, the stepsize can be understood as a parameter to control
the updating response of the algorithm: Lower stepsize values will provide more stability and thus, will slow
down the response of the algorithm. This is due to the fact that the algorithm will take more iterations to
update the value function estimations. As previously commented, higher values of Æn°1 are recommended
in an early exploration phase since they allow for faster value function learning rates. Likewise, lower Æn°1
values are preferably chosen to enhance the algorithm stability during exploitation phases, where the best
candidate policies start to be more defined.

With regard to all these considerations, several simulations are run so as to assess the response of the
ADP algorithm to several stepsize rules, which are depicted in Figure 5.23. By just looking at the form of the
different learning rules, it can be expected that stepsizes decreasing too fast throughout the iterations (e.g.



5.3. Stochastic experiments 77

0 500 1000 1500 2000 2500 3000
iteration number

0.0

0.2

0.4

0.6

0.8

1.0
st

ep
si

ze
a

n�
1

Generalized harmonic stepsize: a = 1000
Generalized harmonic stepsize: a = 5000
Generalized harmonic stepsize: a = 10000
Inverse stepsize rule

Constant stepsize : ā = 0.9
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Figure 5.23: Stepsize evolution according to different learning rates schedules
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Figure 5.24: ADP responses to different learning rates schedules

inverse step) will lead to the stalling of value function updates: after the first iterations, the value function
estimates will not improve. In the same way, those rules maintaining significant values of Æn°1 for the later
stages (e.g. generalized harmonic stepsizes, staircase stepsize), will continue to help improve the subsequent
observations of the value function. This behavior is appreciated in Figure 5.24: in the inverse stepsize the
iterative improvement of the value function decays completely after few iterations. Meanwhile, it remains
steady for those stepsize rules that eventually preserve the highest stepsize values for a longer time such as
the generalized harmonic stepsizes for a = 10000 and a = 5000, the constant stepsize rule for Æn°1 = 0.9 and
the staircase stepsize. Furthermore, it is visible how lower initial values like Æn°1 = 0.5 present a less steep
learning curve than the ones with initial higher values. Overall, the learning rate that has shown best results
is the generalized harmonic stepsize for a = 5000. Nevertheless, it must be noted that all stepsize rules main-
taining high values ofÆn°1 present much better results than the ones with lower valuesÆn°1 = 0.5 or decaying
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too fast (e.g. inverse stepsize and generalized harmonic stepsize for a = 1000) .

This general preference for higher values of Æn°1 can be explained by the characteristics of the approx-
imation strategy used combined with the way in which the exploration vs exploitation problem is solved.
When it comes to updating the value function, kernel regressions resemble more lookup tables in its func-
tioning than parametric regressions. Indeed, in a kernel regression the value of being in a state is updated at a
local level. Even if this new observation will influence the estimations in other states, its impact will be much
less noticeable than the one transmitted by updating the parameters of a global parametric approximation.
While this prevents the algorithm from updating much faster the value function, this brings the advantage of
obtaining more reliable approximations at a local level. This is the main reason why maintaining high step-
size values is beneficial for our ADP algorithm. Additionally, it must be highlighted that the ADP algorithm
features a SA controller to handle more efficiently the epsilon-greedy approach when choosing decisions at
random. This also enhances the preference for higher values of Æn°1: it is rather improbable that the value
function approximation suffers too high instabilities by the exploration of new values, which is basically what
lower values of Æn°1 are intended to mitigate. Therefore, there is no real need to decrease the value of Æn°1.
Indeed, it can be assumed that the following simplification of the value function update may result effective:

V n
t (St ) =

(

bvn
t , if St = Sn

t

V n°1
t (St ), otherwise

(5.1)

5.3.5. Monte Carlo sampling of a normal distribution
This section provides an overview of the major differences found when sampling![t ] with two different prob-
ability functions: a discrete and a normal probability distribution with µ= 5% andæ= 5%. The rest of param-
eters remain the same with respect to the stochastic baseline case with discrete outcomes. In this context,
Figure 5.25 shows the behaviour of the ADP algorithm for both methods.
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Figure 5.25: Performance comparison between discrete sampling and continuous sampling

The trends observed confirm the discussion hold in previous Section 4.4.2: assuming !t as a continuous
random variable leads to the infinite branching of nodes across the scenario tree. This lack of restriction on
generating new scenarios hinders the convergence speed of the algorithm. For every iteration, a new scenario
is generated, thereby increasing exponentially the state space of solutions. In light of this, the frequencies of
visiting again the same scenarios or even the same states are substantially reduced. Thus, the ADP algorithm
faces more hurdles to learn better approximations of the value function. Furthermore, the continuous gener-
ation of new branches implies a continuous learning which avoids the possibility to stabilize at some point.
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All these translates into slow convergence and algorithm instability. Nevertheless, it should not be overlooked
that sampling a continuous distribution provides much more realistic scenarios, embracing a wide range of
possible outcomes. Due to its unmanageable dimensions, Appendix C shows some details of the continuous
scenario tree obtained with normal distribution sampling.

5.3.6. Conclusions of stochastic experiments
Based on the full set of stochastic experiments, the following points can be concluded:

• Modelling stochastic processes with a scenario tree introduces a coupling relationship amongst all sce-
narios with common nodes: value function estimates are continuously updated with random observa-
tions coming across all periods and states. This fact leads to an increase in noise levels, thereby compli-
cating the convergence of the ADP algorithm. Whereas only 80 iterations were required to achieve op-
timal or near-optimal solutions for the deterministic case, the stochastic version of the problem needs
around 3000 iterations to reach convergence and provide a coherent policy.

• In terms of computational performance, running 3000 iterations translates in a CPU time cost of 5h,
without considering the 2h punctually invested in creating an initial set of observations to train the
kernel regression. Thus, the sharp increase in computational time with respect to the deterministic
case is evident and must definitely be improved in case of tackling real-sized problems.

• Solving the stochastic version of the multi-period fleet planning problem does not lead to a single re-
sult, but to an adaptive fleet policy: the best rule for making fleet and operational decisions in function
of a certain demand and financial conditions happening in a given time period. In this context, it can
be concluded that the resulting fleet policy adjusts as much as possible to the optimal fleet plans cor-
responding to each deterministic scenario solved independently. A very unique feature of the adaptive
fleet policy is its capability of capturing the path dependency effect amongst different scenarios. There-
fore, the adaptive policy simulates the decision-making process of fleet planning in a very realistic way.

• When it comes to profitability performance, the adaptive policy is the most robust method for fleet
planning: across the majority of scenarios it clearly excels the performance of the optimal fleet plan for
the most-likely scenario. Evidently, this most-likely solution performs better in those scenarios similar
to the most-likely scenario. Nevertheless, its performance starts to stall towards differing scenarios.
Indeed, its worst scores are found in the neighborhood of the extreme scenarios: For the most pes-
simistic scenarios the most-likely solution can imply weekly operating losses ranging between 3% and
6%, whereas in the most optimistic scenarios losses remain between 2% and 1%. In contrast, the adap-
tive fleet policy mitigates losses in all extreme scenarios, which never surpass the 1.1%. By analyzing
the general expected performance, it can be concluded that the adaptive policy reduces by 50 % the
losses entailed by the most-likely solution.

• Apart from this, the verification analysis proves the stable behaviour of the ADP algorithm. By modi-
fying the parameters of the baseline case within different intervals, it is concluded that the kernel ap-
proximation strategy can still be trained reasonable well using the same dataset of observations. Fur-
thermore, a sensitivity analysis helps understand better the influence of the most relevant parameters
within ADP algorithm. On the one hand, higher stepsize values (Æn°1 º 1) provide the best results for
value iteration. On the other hand, the correct calibration of the control parameter ∏ is essential to
guarantee the convergence of the ADP algorithm as well as the coherence of the obtained results. In-
deed, the problem of value function overestimations represent a major challenge to tackle in follow-up
research.

• Lastly, the application of a continuous random variable normally distributed has been benchmarked
against the performance of discrete random variables. This experiment has led to the statement that the
use of continuous random variables entails slow convergence and higher instability for the algorithm.
In any case, it should not be overlooked that sampling a continuous distribution provides much more
realistic scenarios, thus embracing a wide range of possible outcomes. Nevertheless, the size of the
scenario tree becomes unmanageable.

All in all, this set of conclusions confirm the advantage of applying adaptive fleet policies and most im-
portantly, proves approximate dynamic programming as an effective method to calculate them.





6
Algorithm CPU performance enhancement

In previous Chapter 5 it was concluded that for a experimental problem setting of 20 routes and 3 aircraft
types, the ADP algorithm required a minimum of around 1500 iterations to reach convergence. However,
much better values of the objective function and a more coherent ADP policy were achieved for 3000 iter-
ations, which entailed a CPU time cost of 17804s (º 5h). Indeed, this represents a very sharp increase in
computational time with respect to the 2 minutes required in a deterministic setting, where tight optimal-
ity gaps of 0.2% and optimal solutions could be achieved easily. As for the initial dataset to train the kernel
regression, its punctual calculation required 2 hours regardless of whether the problem was stochastic or de-
terministic.

Evidently, the ADP algorithm as it stands right now would most likely face several time constraints if
more realistic sizes of the multi-period fleet planning problem under demand uncertainty were required to
be solved. Since the final aim of this MSc thesis is to assess the performance of the ADP support tool in a real
working environment, this issue becomes a crucial matter to be particularly analyzed and improved in this
chapter. To tackle this problem, a decision tree analysis is initially carried out in Section 6.1 to pinpoint the
main sources of CPU time loss and implement measures to mitigate them. Once implemented in the code,
Section 6.2 discusses the results of the algorithm performance enhancement.

6.1. Algorithm performance analysis
Figure 6.1 illustrates the structure of this decision tree as well as the several levers that have been imple-
mented in the code.

The analysis starts from the core objective already mentioned: increasing the code efficiency to tackle
problems of more realistic dimensions. To do so, it is well worth to identify where the code spends the most
part of the computational time. The most time-consuming tasks are estimated for the stochastic baseline
case previously solved. These are expressed as an indicative percentage for reference:

• The initialization of the value function approximation is estimated to spend 30% of the total CPU
time (ADP pure loop plus generation of training dataset) for the stochastic baseline problem, which
means an average of 2 hours. This percentage is estimated to increase in function of the initial state
space explored, whose dimensions are defined by the number of aircraft types considered as well as the
number of tree nodes observed.

• Solving Part A of the 1-stage FPP subproblem with the Gurobi module is estimated to spend around
40% of the total CPU time (º 3h). However, the more routes and aircraft types are considered, the more
it will take to Gurobi to reach optimality and thus, the higher the time percentage will be.

• Solving Part B of the 1-stage FPP subproblem with the subroutine module is estimated to spend
around 30% of the total CPU time (º 2h). Nevertheless, it should be pointed out that this percent-
age increases with the number of observations performed. The code takes more time to analyze the
estimated values of each state assigned to every tree node observed and thus, the subroutine slows
down considerably in those problems featuring more than 3 aircraft types.
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Figure 6.1: Decision tree analysis for increasing CPU efficiency
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As schematized in the decision tree analysis, several levers have been implemented to reduce significantly
the computational impact of the most time-consuming tasks. From the scheme, it can be inferred that the
principal measures taken to boost the code efficiency are:

1. Provide a MIP start to Gurobi so as to reduce the initial MIP Gap of the optimisation of part A

2. Relax significantly the optimality gap (º 1°2%) when generating the initial set of observations to feed
the kernel regression

3. Relax moderately the optimality gap (º 0.2°0.3%) when solving part A of the 1-FPP subproblem

4. Avoid recalculations with Gurobi in part A of states already visited

5. Reduce the state space explored so as to speed up subroutine in part B as well as the initialization of
kernel regression

In any case, it is highly recommended to pay close attention to all the details presented in Figure 6.1,
since this helps to have a better understanding of how each implemented lever reduces the computational
time required by every task.

6.2. Results of the algorithm performance improvement
Having implemented all levers, it is time to assess their impact on time reduction by comparing the optimised
algorithm with the baseline algorithm. For the sake of clarity, we refer to the baseline algorithm as the original
algorithm without any implemented lever.

To begin with, it must be noted that by just relaxing the optimality gap to 2%, the initial 2 hours spent
in initialising the value function approximation are reduced to 20 minutes. Indeed, this is a very powerful
lever that allows for an 80% reduction of CPU time and thus, enhances the possibility of dealing with more
aircraft types and larger fleet sizes. Nevertheless, it should be taken into account that this presents certain
limits, given the fact that the required calculation times will increase exponentially with the number of air-
craft types considered. Taking this improvement into account, the remainder of this section will discuss the
improvements achieved for the actual ADP loop.
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To begin with, it is insightful to compare the evolution of the required computational times when the
number of stages is increased for both baseline and optimized algorithms with a fixed number of iterations.
Figure 6.2 shows that for a very reduced problem of 10 routes, 3 aircraft types and 800 iterations the compu-
tational increase is moderate, whereas it becomes sharp when augmenting the number of routes. This visible
trend stresses again the importance of enhancing the algorithm efficiency if problems of more realistic di-
mensions are targeted. The effect of the optimized algorithm is indicated by the grey bars. While a significant
reduction of 70-60% can be appreciated across different stages, it is a bit surprising to see a deterioration in
computational gain for higher stages.

To shed some light on this curious behavior, we can fix the number of stages and the problem dimensions
while increasing the number of iterations. In this way, the trend of the computational gain can be assessed
in Figures 6.3 and 6.4 below. Interestingly, it can be appreciated that for more stages the computational gain
increases as well. Therefore, the optimized algorithm performs better when a higher number of iterations is
run.
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Figure 6.3: Performance of the optimized algorithm in function of the number of
iterations for the problem with 20 routes, 3 aircraft types and 4 stages

This pattern is mainly due to the implemented lever of avoiding recalculations with Gurobi in part A: ev-
ery node in the scenario tree is assigned a track record attribute of the already visited states as well as their
corresponding eC§(St ) values. In this way, the algorithm is prevented from wasting time in solving parts al-
ready calculated: whenever a state is revisited, then the algorithm takes its corresponding value previously
calculated. The impact of this measure is clearly seen in Figure 6.5, where the number of iterations is repre-
sented against the required computational time to process them. In this context, it can be appreciated that
the speed at which nodes are processed is not constant and varies in function of time and number of stages:
for 800 iterations, the algorithm achieves greater velocity the lower the number of stages is. However, the
most interesting aspect is found in the curves of 3 and 4 stages: the number of processed nodes per time in-
creases gradually until reaching a maximum speed. Indeed, this behavior is explained by the fact that in early
iterations the algorithm is exploring new states, thereby calling more times Gurobi. When a certain num-
ber of iterations has passed, the algorithm is less likely to fall into an unvisited state and consequently, will
eventually invest less time optimising part A with Gurobi. More particularly, there is a moment in which the
algorithm reaches maximum velocity by avoiding completely Gurobi and just operating with the data stored
in the track records of tree nodes. In the same way, the more stages a scenario tree has, the more states there
are available to visit. Given this fact, it is reasonable to see that for higher stage numbers, the algorithm will
initially take more time to process as many iterations as in the case of 3 stages. Evidently, a 6-stage prob-
lem will have more scenarios and states to explore than a 3-stage case and thus, Gurobi will be called more
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Figure 6.4: Performance of the optimized algorithm in function of the number of
iterations for the problem with 20 routes, 3 aircraft types and 6 stages

times before the algorithm can use completely the node track records. This is why the algorithm performs
better when increasing the number of iterations for problems of higher stages. For more iterations run, the
algorithm is more likely to avoid recalculations and consequently, saves more computational time. Indeed,
this behavior is seen in Figure 6.6, where the same 4-stage problem is solved for 3000 iterations and adopts
a similar form to the 3-stage curve in Figure 6.5. The increased efficiency translates into a great computa-
tional saving of 74%, thereby reducing the computational time from 5h to 1h. Indeed, while the speed of the
optimised algorithm undergoes a gradual augmentation, it remains basically constant for the baseline algo-
rithm. In any case, it should be noted that the speed of the baseline algorithm improves moderately for the
latest iterations. This is due to the last exploitation phase in which more similar solutions are recalculated,
thereby reducing the starting MIP gap and saving some time. All in all, it can be stated that the fact of avoiding
recalculations with Gurobi is the measure providing the biggest impact in terms of time reduction.

0 1000 2000 3000 4000 5000 6000
CPU time (s)

0

100

200

300

400

500

600

700

800

nu
m

be
ro

fp
ro

ce
ss

ed
ite

ra
tio

ns

3 stages
4 stages
5 stages
6 stages

Figure 6.5: Processing speed of optimised algorithm in function of
number stages with N= 800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
CPU time

0

500

1000

1500

2000

2500

3000

nu
m

be
ro

fp
ro

ce
ss

ed
ite

ra
tio

ns

Baseline algorithm
Optimised algorithm

Figure 6.6: Comparison between processing speeds of the
optimised and baseline algorithm when solving the 4-stage

problem with 20 routes, 3 aircraft types and N = 3000

Since the main reason for implementing an ADP algorithm was to be able to cope with more realistic sizes
of the multi-period fleet planning problem under demand uncertainty, the optimised performance of the
algorithm will be assessed for an extended version of the baseline problem. This extended problem features
the same 20 routes and aircraft types presented in chapter 5 but including 6 time stages. As can be observed
in Figure 6.7, both optimised and baseline algorithms performances were tested for 800, 1500, 3000 and 5000
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iterations. Once again it can be appreciated that the computational gain increases in function of the total
number of iterations run. This trend is of great importance since high dimensional problems will entail the
need of running more iterations to reach convergence and obtain results of good quality. By analysing the
CPU times in Figure 6.7, it can be drawn that the algorithm optimisation was completely necessary to pave
the way for solving more realistic problems: in order to solve the 6-stage problem, running 5000 iterations
with the baseline algorithm would lead to a computational time of 22h, whereas the optimised algorithm
would reduce it to 5h. Still, more complex problems are expected to require more than 5000 iterations. Finally,
Figure 6.8 shows how running a too low amount of iterations may affect completely the convergence and the
quality of results for problems of higher dimensions: while the non-convergent value function reaches an
observed total profit of $1.3x108, the convergent value function can attain a value of $1.4x108.
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6.3. Conclusions
The results obtained with the enhancement of the algorithm efficiency bring forth the following conclusions:

• The decision tree analysis has led to define 5 major levers to improve the algorithm performance. These
consist in (1) providing a MIP start to Gurobi, (2) relaxing the optimality gaps when generating the
training dataset and (3) solving part A of the 1-FPP problem, (4) avoiding unnecessary recalculations
with Gurobi in part A of the 1-FPP problem as well as (5) reducing the state space explored to accelerate
the subroutine in part B.

• When initialising the value function approximation of the stochastic baseline case, the relaxation of the
optimality gap to 2% allows to reduce the initial 2 hours required to 20 minutes. This translates into
an 80% reduction of CPU time and thus, enhances the possibility of dealing with more aircraft types
and larger fleet sizes. However, this presents certain limits, given that the required calculation times
increase exponentially with the number of aircraft types considered. On the other hand, this relaxation
does not entail a significant loss in the accuracy of the adaptive policy.

• Regarding the ADP loop enhancement, the fact of avoiding recalculations with Gurobi is the lever that
has the greatest impact. Indeed, it can be appreciated that the speed at which nodes are processed is not
constant and accelerates throughout the iterations: during the exploration phase the algorithm spends
more time calculating the value of states visited for the first time; however, the number of processed
iterations increases when the algorithm starts to exploit states already visited and calculated. As far as
the stochastic baseline case is concerned, the algorithm enhancement allows for a great computational
saving of 74%, thereby reducing the computational time from 5h to 1h.

• The improvement of the algorithm performance was completely necessary tackle problems of more
realistic dimensions. For instance, running 5000 iterations of the 6-stage fleet planning problem with
the baseline algorithm would lead to a computational time of 22h, whereas the optimised algorithm
would reduce it to 5h. Still, more complex problems are expected to require more than 5000 iterations.
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Kenya Airways Case Study

Until now, several reduced problems have been used as a experimental setup to verify the correct perfor-
mance of the ADP algorithm as well as to identify and mitigate its possible limitations. In these assessments,
the ADP algorithm has proven capable of providing effective adaptive policies, which can definitely excel the
profitability results expected from a deterministic fleet plan forecasted with a most-likely scenario. Despite
the positive results obtained so far and the code optimisation made in Chapter 6, the key remaining question
is whether the optimised ADP algorithm can tackle successfully a problem of realistic dimensions while still
being capable of providing an effective adaptive policy.

In light of this, the objective of Chapter 7 is to perform a realistic case study based on a reference airline so
that the potential of the developed ADP support tool is completely assessed. The general context and purpose
of this case study will be described in Section 7.1, while Section 7.2 will present the model parameters used.
Next, the ADP algorithm behaviour and adaptive fleet policy will be discussed in Section 7.3, and Section
7.4 will show how the obtained adaptive policy can be employed to extract useful signposts for fleet planers.
Finally, a validation of the ADP results will be carried out in Section 7.5 by performing an expert survey and
comparing the ADP results to real data from the reference airline.

7.1. Case study context
The proposed case study revolves around a former 5-year plan developed by the international carrier Kenya
Airways (KQ) as part of its network expansion strategy dated from 2015. Within KQ strategy, a rollout plan
for the opening of new routes was expected to be followed for the next 5 years. According to this plan, by the
ends of 2014 Kenya Airways was considering to enlarge its passenger fleet to meet increases in future demand
as well as to standardize it into 3 main aircraft types. In that regard, KQ corporate information described the
following fleet development plan (Kenya Airways, 2015, 2016, 2017):

Table 7.1: Passenger fleet evolution from 2015 to 2017 and expected fleet plan for the upcoming years

Category Operated Aircraft 2015 2016 2017 2018 2019

Wide body

Boeing 777-200 4 2 0 0 0

Boeing 777-300 3 3 0 0 0

Boeing 787-800 6 9 7 ∏ 5 ∏ 5

Narrow body

Boeing 737-700 4 2 2 0 0

Boeing 737-800 6 8 8 ∏ 5 ∏ 5

Embraer 170 3 2 0 0 0

Embraer 190 15 15 15 º 18 º 18

89
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In 2014 Kenya Airways publicly stated that within the next 5 years its fleet was expected to be more homo-
geneous by disposing progressively of all aircraft older than 8 years old (B737-700) and reducing fleet types
from 7 to 3. Indeed, the fleet plan for 2019 was defined on the basis of the most-likely 5-year demand forecast
dated from 2015. As for the B777s recently acquired, Kenya Airways determined that they were too big to be
suitable for its network and thus, they were expected to be subleased to other airlines.

Given this background, the proposed case study consists in moving backwards in time to year 2015 in or-
der to reproduce the former KQ 5-year plan and obtain from the ADP-based tool its corresponding adaptive
fleet policy. Then, the recommended adaptive fleet policy will be assessed for the current conditions of year
2017 and compared to KQ actual plan. To this end, a 5-period fleet planning problem under demand uncer-
tainty is modelled based on the 2015 available KQ forecasts and cost data. In light of this, the reader should
notice that this case study is intended to get as close as possible to a validation analysis.

7.2. Model parameters
For the KQ case study, the model parameters can be classified following the same structure presented in the
proof of concept: global, aircraft-related, route-related and aircraft/route-related parameters. However, as
will be discussed shortly some new parameters have been introduced to simulate the dynamic opening of
new routes. Furthermore, it must be reminded that the data presented hereafter has been extrapolated from
the 2015 KQ 5-year plan and 2014 relevant cost data. Apart from this, all routes analysed are named with an
ID code for the sake of ensuring confidentiality.

To reproduce as close as possible the 2015 KQ 5-year plan, the multi-period adaptive fleet planning prob-
lem consists of 5 periods (T = 5), where each period represents a year composed of 52 weeks (nt = 52). In this
way, year 2015 corresponds to period 0 and year 2019 to period 4. Furthermore, the discount factor ∞t+1 is set
to 1 for the same reasons mentioned in the proof of concept. Figure D.1 in Appendix D illustrates a scheme
of the scenario tree used for the KQ case study.

Taking into account the major aircraft families operated by Kenya Airways in 2015 as well the possible
time constraints presented by the ADP-based tool, a representative aircraft type selection is carried out for
the case study. As inferred from Table 7.2, the existent B737-700, which all have around 12 years, are merged
with the initial amount of B737-800 (from 6 to 10 B738s). This is based on the mentioned KQ disposal policy,
the model inability to account for aircraft age as well as the similarities existent between both configurations.
Apart from that, B777-300 is neither considered into the model since its acquisition was determined based
on an overestimated forecast and thus, was planned to be subleased for the next years. The same conditions
applied to B777-200s but in this particular case, they have been included into the model so as to provide
more realistic dimensions and assess the model performance when having two competing aircraft types in
long-range (B772 and B788). As for the short-medium haul routes, both Embraer 170 and 190 are modelled
together with Boeing 737-800. All in all, the ADP-based tool will deal with a total of 5 aircraft types, which are
thought to be representative enough of the KQ fleet status back in 2015.

Table 7.2: Aircraft-related parameters

c f i x
i capi BTi T ATi cdi sp

i I Fa

Aircraft [$/week] [-] [h/week] [h/flight] [$/weekly based] [-]

E70 50400 69 110 0.75 10000 3

E90 58000 107 110 0.75 15000 15

B738 102000 150 110 0.75 20000 10

B788 220000 234 96 1.00 25000 6

B772 200000 322 96 1.50 25000 4
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In terms of route related parameters, the case study accounts for the entire network of Kenya Airways as
well as the potential opening of new routes targeted by the KQ 5-year plan. In figures, this means a total of
64 routes amongst which 16 are planned to be opened in the next 5 years. These routes are assigned an iden-
tification number (from 1 to 64) to protect KQ confidentiality. Table D.1 in Appendix D shows the operating
time per flight leg OTr , the average fare fr assumed to be constant through the years, the average demand
existing at the first operating period for each of the flight legs of a route D§

0r , the load factor LFr and the min-
imum frequency per route Y mi n

tr , which varies according to the minimum market shares targeted by Kenya
Airways. More particularly, potential new routes are not assigned a minimum frequency. In this way, the ADP
algorithm is encouraged to provide advice on whether entering a specific market or not. On the other hand,
Table D.2 show the aircraft-route variable costs corresponding to the variable costs of operating a route with
an aircraft type. It should be noticed that for those routes exceeding the maximum allowed range of a certain
aircraft, a big M cost is assigned to prevent the algorithm from choosing infeasible aircraft-route combina-
tions.

With the aim of keeping the model as much realistic as possible, the case study also differs from the proof
of concept in the fact that the 64 routes are aggregated into segmented market regions characterized by dif-
ferent traffic growth forecasts. Indeed, it is not longer possible to consider a global traffic growth !t since
Kenya Airways serves very different markets. For instance, 2015 KQ annual reports stated that more than half
of the growth in passenger travel was due to emerging markets such as Asia-Pacific and the Middle East: while
Middle East was growing at a double digit, some African regions were barely growing. Based on these state-
ments and KQ region forecasts, the random variable !t is transformed from a scalar into a random vector
!t := [!t g ]g2G , where G represents the set of aggregated regions. Therefore, !t is expected to take the values
of three finite outcome vectors (!0

t ,!1
t ,!2

t ), which correspond to the best case (H), most likely (M) and worst
case (L) scenarios respectively.

!t 2
©

!0
t ,!1

t ,!2
t
™

= {H,M,L}

The annual traffic growth values forecasted for each of these scenario vectors are found in Table 7.3,
whereas a more detailed table showing the aggregation of routes can be found in Table D.3 of Appendix D. As
done for the routes, each region is denoted with a letter from A to J for confidentiality reasons.

Table 7.3: Demand forecasts per aggregated region of routes

. Region Number of routes Best case Most-likely case Worst case

A 9 0.00% 0.00% -8.00%

B 3 5.00% 2.00% -1.00%

C 11 8.00% 4.45% -3.00%

D 5 5.00% 0.69% -4.00%

E 4 5.00% 0.98% -1.00%

F 4 9.00% 5.00% -3.00%

G 6 5.00% 2.00% -6.00%

H 14 10.00% 5.00% -3.00%

I 7 8.00% 3.00% -5.00%

J 1 5.00% 1.00% 0.00%

For the case study, these annual growth values are assumed to be constant year over year. However, the
ADP support tool provides the possibility to change them dynamically to simulate a possible stagnation in
future market growth. Furthermore, their corresponding discrete probability distribution is slightly varied
with respect to the proof of concept. Taking into account that Kenya Airways faced certain market instabilities
in the recent years due to terrorist attacks and epidemic diseases, the potential decrease in demand will be
assigned a higher probability of occurrence.
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Finally, it must be reminded that by 2014 Kenya Airways was planning to open 16 new routes as part of
its expansion strategy. This was reflected in a 5-year rollout plan as illustrated in Table 7.4, where each route
is identified with its ID number. Thus, the ID numbers that appear in the table refer to either newly opened
or closed routes, whereas absent ID numbers represent those routes already operated by 2014. According to
this plan, 6 routes were targeted in year 2016, 1 exit and 3 entries in year 2017 and 7 new routes for 2018.

Table 7.4: KQ rollout plan where routes are identified by their ID number from 1 to 64

Rollout years 2015 2016 2017 2018 2019

New route exits 2

New route entries

7 1 8

21 6 18

22 64 26

41 28

55 32

56 36

38

To simulate the dynamic expansion of Kenya Airways a new model parameter called entry-into-market
indicator ±tr is introduced:

±tr =
(

1, if route r is already operated or planned to be opened in period t

0, if route r is not planned to be opened in period t
(7.1)

In this way, the route demand for period 0 is

D0r = ±0r D§
t0, (7.2)

while for periods other than the initial one the route demand is deduced as follows:

Dt+1r =
°

bDt+1r +Dtr
¢

±t+1r =¢t+1r D§
t0±t+1r 8t 2 {1, ...,T°1} (7.3)

where ¢t+1r denotes the total demand growth experienced from the first operating period of that route,
whose demand is D§

0r . In this context, ¢t+1r is reformulated as:

¢t+1r =
(

1, if ±tr±t+1r = 0

(1+!t+1g )¢tr , if ±tr±t+1r = 1
(7.4)

Equation 7.4 can be understood as follows: If a route is not opened yet (±t+1r = 0) the total demand
growth¢t+1r is set to 1, implying that the demand has not varied from period 0, thereby being kept as zero by
Equation 7.3. Likewise, if it is the first period in which that route is open (±t+1r = 1 and ±tr = 0), then the total
demand growth is also set to 1 to prevent the demand discontinuity entailed by opening a new route. In this
situation, it is concluded from equation 7.3 that Dt+1r = D§

t0. Finally, if a route is already being operated for
at least 1 period (±t+1r = 1 and ±tr = 1) , then the total demand growth will be equivalent to the sum of last
period total demand growth and the stochastic growth variation for the present year:

¢t+1r =¢tr + b¢t+1r =¢tr +!t+1g¢tr = (1+!t+1g )¢tr (7.5)

In light of the above definitions, it must be considered the fact that a new route will most likely not share
the same total demand growth of the region to which it belongs:

¢t+1r 6=¢t+1g (7.6)
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For this reason, if there is any recently opened route, then its corresponding growth ¢tr must be ac-
counted independently from the overall region growth ¢t g . Thus, all new growth parameters resulting from
recently opened routes, ¢§

t := [¢tr ]r 02Rnew , will be concatenated to the original vector, ¢g
t := [¢t g ]g2G , which

tracks total demand growth for each region:

¢t :=
°

¢
g
t ¢§

t
¢

(7.7)

St = (Rt Dt ) ! Sg
t = (Rt ¢t ) (4.43)

To conclude, the ADP stepsize parameter Æn°1 is regulated with the already presented staircase rule:

Æn°1 =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

1, if n < N1

Æ1, if N1 ∑ n < N2

Æ2, if N2 ∑ n < N3

Æ3, if N3 ∑ n < N4

Æ4, if N4 ∑ n < Nstop

(7.8)

where values follow Æ1 ∏ Æ2 ∏ Æ3 ∏ Æ4 to meet the three previous conditions for convergence. For the
present case study, Æn takes the same sequence of values as in the proof of concept: {1,1,0.5,0.4,0.4}. On the
other hand, the control parameter ∏ is calibrated to 0.6 for positive values of eC§

t (profits) and 1.4 for negative
values (losses). These selections have been based on the results obtained from their sensitivity analysis in the
proof of concept. In terms of iteration number, it is decided to carry out a long simulation of 15000 iterations
to ensure the highest possible quality of results. Maintaining the exploration/exploitation proportion recom-
mended in Chapter 4, the iteration parameters are:

°

N1 N2 N3 N4 Nstop
¢

= (6450 11100 12900 13800 15000)

7.3. Results
In this section the results for the case study are presented and structured into two parts. The first part focuses
on the algorithm learning behavior, whereas the second part analyzes the adaptive fleet policy obtained with
the ADP algorithm.

7.3.1. Learning behavior of the enhanced ADP algorithm
The enhanced ADP algorithm presents an iterative learning behavior which shares many similarities to the
one seen in the proof of concept.

Figure 5.8 illustrates the behavior of the ADP algorithm when solving the stochastic problem for 15000
iterations. As in the other experiments, the green dots correspond to the observations of the total operating
profit expected to be earned during the 5 periods: V0(S0). Likewise, the red line shows the rolling average for
the 20 subsequent observations obtained during the last 20 iterations, which allows to identify the general
trend throughout the iterations.

In comparison to the stochastic problem solved for the proof of concept, this case study requires longer
exploration times to start converging: while the previous small test case started to stabilize by the first 500
iterations, the KQ case study does it for the first 2000 iterations. This is explained by the greater dimensions
of the present problem. Furthermore, the increased complexity of this case study leads to higher levels of
noise throughout the iterations and thus, higher margins for the standard deviation between value function
observations. Taking this behaviour into account, the number of iterations must be increased significantly to
learn coherent policies.

Over the iterations, the standard deviation decreases steadily since the algorithm is learning better ap-
proximations of the value function, fact which reduces the noise amongst observations. Figures 7.2 and 7.3
illustrate this trend by plotting together the rolling mean and standard deviation for the iterations intervals
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Figure 7.1: 5-period scenario tree applicable to the KQ case study.

[0,6000] and [6000, 15000]. By analyzing both figures, it becomes apparent the importance of balancing the
exploration and exploitation phases: exploration allows for faster learning rates and provides a solid value
function approximation, upon which the exploitation phase can build an accurate adaptive policy. Indeed,
exploitation can increase the objective function by 5% more, which implies an average increase in annual
operating profits of $ 2 million.
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Figure 7.2: Rolling mean and standard deviation during
exploration phase
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Figure 7.3: Rolling mean and standard deviation during
exploitation phase

Apart from this, Figure 5.11 shows in particular that the standard deviation decreases exponentially dur-
ing the exploration phase. However, it decreases at a lower pace than in the proof of concept. This fact is a
direct consequence of the longer exploration times. On the other hand, during the exploitation phase shown
in Figure 5.12 the exponential behavior is less noticeable and thus, it takes more time to mitigate the standard
deviation.

In terms of computational time, the entire simulation with the enhanced ADP algorithm lasted 10h. Nev-
ertheless, it should be noted that initialization tasks took around 60% of the total time when compared to the
previous 30% estimated during the proof of concept. This increase is mainly due to the fact of dealing with a
more complex case study of higher dimensions: 5 aircraft types and 64 routes. Indeed, the algorithm needs to
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Figure 7.4: Exponential reduction of standard deviation in
exploration phase
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Figure 7.5: Reduction of standard deviation in exploitation phase

browse a wider state space to obtain a useful initial set of observations to train the kernel regression and start
the ADP pure loop. Fortunately, the enhanced algorithm performance makes up for the longer initialization
tasks by reducing sharply the simulation time of the pure ADP loop down to 2 hours. The CPU performance
for the pure ADP algorithm without the initialization tasks can be appreciated in Figure D.13 in the Appendix
D.

In any case, it should be reminded that the kernel training only needs to be solved once, thereby allow-
ing independent runs of different ADP loops. Apart from this, it must be reminded from previous sensitivity
and verification analysis that observations are obtained from a baseline case. This means that the more the
assessed case differs from the baseline, the less confidence the ADP support tool will perform at its best. All
in all, the algorithm proved to be very robust in previous analysis, where wide confidence intervals were de-
termined as well. Should any desired parameter exceed the confidence interval, then it is necessary to repeat
the initialization tasks for that specific case.

7.3.2. Adaptive fleet policy
Given the size of the case study, the obtained fleet policy appears to be more complex than the one presented
in the proof of concept. Figure 7.6 illustrates how the recommended fleet adapts to each of the 81 scenarios
composing the 5-stage scenario tree. All fleet data related to each aircraft type is presented in format (E70,
E90, B737, B788, B772). As a reminder, blue vectors express the number of aircraft of each type Rti that KQ
is advised to possess at a certain state St . On the other hand, yellow vectors correspond to the fleet related
decisions (xbuy

t , xdi sp
t ) recommended to be made during period t given the state St : positive values imply

new aircraft acquisitions for next year whereas negative values, disposals for next year.

By analyzing the evolution of the initial fleet status, the first fact to be noticed is that KQ is considered to
have too many B772s for the existent demand across its network. From the adaptive policy, it is concluded
that it is more profitable to assume the disposal costs of all 4 aircraft rather than still operating them. Indeed,
B772 type is more suitable for those routes with high density of passengers and lower levels of frequency. In
turn, it is preferable to invest in 3 more Dreamliners: despite its lower capacity, B788 type is more efficient
when it comes to operate long-haul routes with the levels of demand expected by KQ. As for the short-medium
range fleet, it can also be appreciated a shift in composition. The adaptive policy advices to dispose two E70s,
one E90 and one B738 with the objective of adjusting more the fleet size to the existent demand of regional
routes. In conclusion, KQ would have been advised to possess a fleet of 1 E90s, 14 E70s, 9 B737s and 9 B788s
in year 2016.

Over the following periods, the adaptive policy provides different recommendations in function of how
demand evolves. In doing so, it tries to respect as much as possible the optimal fleet plans obtained for each
scenario solved independently. Indeed, the advised fleet plans tend to be really similar to the optimal fleet of
each independent scenario, which are all shown in Table D.5 of Appendix D.
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Figure 7.6: ADP recommended fleet policy for KQ 5-year plan.
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In this context, some trends can be identified if these recommendations are examined in more detail. For
instance, one could observe that the number of aircraft E70 advised eventually decreases when approach-
ing scenarios with higher demand growth, meanwhile the number of recommended B737 and E90 increases.
Indeed, for higher levels of demand, it is more profitable to slightly increase the capacity of the aircraft op-
erated. Evidently, there is a limit to this behaviour since demand is highly influenced by frequency levels
and consequently, a minimum frequency must be maintained so as not to lose market share. In any case,
it must be highlighted that the number of B737 recommended does not experience major changes, ranging
from 9 in the worst scenarios and 11 in the best cases. What is surprising is that in the last period the airline is
recommended to rebuy a B772 in the majority of scenarios and independently of their demand growth evo-
lution. Nevertheless, this is mainly due to two reasons. Firstly, for those scenarios experiencing the greatest
decay in demand, the adaptive fleet policy does not advise to possess one B772 until the last period. This can
be understood as a way to minimise costs by reducing frequency while still carrying the maximum amount
possible of passengers. Therefore, this recommendation is a direct consequence of not considering demand
elasticity with respect to frequency in the model formulation: the algorithm will tend to minimize frequen-
cies to reduce costs. The second reason is applicable to those scenarios featuring higher demand growth in
year 2018: once demand has grown steadily from year 2015 onwards, the adaptive policy considers this is
the adequate time to operate long-haul routes with one B772. Nevertheless, the majority of high-density and
long-haul routes are still operated with Dreamliners. In any case, the adaptive policy underpins the already
known fact that the acquisition of 4 B772s back in 2014 was a result of an overestimated forecast.

Apart from this, path dependency is still present in the adaptive policy. As discussed in the proof of con-
cept, adaptive policies capture the influence of reaching the same conditions from different histories of de-
mand evolution. Table 7.5 provides a clear example by showing the recommended fleet evolution for three
scenarios with same total demand variation but different stochastic processes. By comparing their fleets, it
can be concluded that scenario IMHML and IMMHL face less financial risk to invest in more aircraft (36 in
total), whereas the scenario IMLMH has invested in a cheaper fleet composition due to experiencing insta-
bilities in demand growth (35 in total). Indeed, differences in fleet composition are also quite visible: the
scenarios with less risks (IMHML and IMLMH) deal with more expensive aircraft in general, whereas the sce-
nario that has priorly experienced decreases in demand (IMLMH) invests in cheaper aircraft such as E70.

Table 7.5: Example of path dependency amongst scenarios with same demand variation

Recommended fleet plan

ID Scenario Total probability Demand variation year 0 year 1 year 2 year 3 year 4

32 IMHML 1.5% 22% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/1 1/15/9/10/1

48 IMLMH 1.5% 22% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/9/1 2/13/9/10/1

66 IMMHL 1.5% 22% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/15/10/10/0

In terms of economical impact, Table D.6 in Appendix D presents a comparison between the average
weekly operating profits that would be earned, by either following the optimal fleet plan of the most-likely
scenario or either following the recommendations of the adaptive fleet policy. As previously described in the
proof of concept, both options are compared to the maximum operating profits that could be obtained if
every scenario was deterministic and independent. This difference is expressed in the form of relative error
with respect to the best value (Dif.Best). An overview of some of the results is provided in Table 7.6.

The first notable observation is that the order of magnitude of the Dif.Best values are much higher than
those previously seen in the proof of concept. This is entailed by the fact of dealing with a much larger and
complex network: any fleet modification as well as any suboptimal operational decision makes a higher im-
pact across the network. In this context, the percentage difference between the objective values of each
method shows that the adaptive policy clearly outperforms the most-likely fleet plan when applied to the
most extreme scenarios. In turn, the most-likely solution performs better in those scenarios similar to the
most-likely scenario. This is not surprising since the most-likely fleet plan has been calculated regardless
of the possibility of other uneven scenarios happening. In contrast, the solution provided by the adaptive
policy accounts for this uncertainty. However, it must be highlighted that the ADP worst scores do not differ
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Table 7.6: Extract of Table D.6: performance analysis of recommended ADP policy against most-likely solution and
independent-scenario solutions - operating profits expressed on a weekly basis in USD

Independent scenarios Most-likely solution ADP adaptive policy

ID Scenario Total probability Demand variation Optimality Gap OF Dif.Best OF Dif.Best OF

0 IHHHH 0.39% 32.02% 0.82% 1289499 -5.30% 1221168 -0.87% 1278281

1 IHHHM 0.78% 26.76% 0.78% 1233933 -4.58% 1177390 -0.96% 1222100

2 IHHHL 0.39% 18.89% 0.52% 1121545 -3.66% 1080508 -2.11% 1097912

3 IHHMH 0.78% 27.19% 0.94% 1172776 -3.59% 1130704 -0.92% 1162025

4 IHHMM 1.56% 22.14% 0.66% 1114352 -3.23% 1078317 -0.83% 1105112

5 IHHML 0.78% 14.57% 0.60% 1009371 -2.86% 980456 -1.29% 996338

36 IMMHH 1.56% 23.08% 0.90% 901812 -1.56% 887708 -0.84% 894259

37 IMMHM 3.13% 18.21% 1.03% 835186 -0.69% 829404 -0.88% 827838

38 IMMHL 1.56% 10.90% 0.78% 740436 -1.13% 732101 -2.12% 724710

39 IMMMH 3.13% 18.64% 0.95% 781678 0.16% 782945 -0.59% 777054

40 IMMMM 6.25% 13.96% 1.29% 728496 0.00% 728496 -0.22% 726902

41 IMMML 3.13% 6.93% 0.83% 629653 -0.84% 624386 -0.96% 623584

78 ILLLH 0.39% 0.40% 1.50% -124688 -37.33% -171234 -20.52% -150273

79 ILLLM 0.78% -3.53% 1.50% -185460 -30.90% -242773 -11.11% -206070

80 ILLLL 0.39% -9.33% 1.50% -298990 -28.94% -385524 -7.66% -321899

Expected values 618438 -1.99% 606154 -1.59% 608596

significantly from the better ones presented by the most-likely solution. Furthermore, the worsening impact
of the most-likely fleet plan becomes much more evident the more the scenarios differ from the most-likely
case. As in the proof of concept, the worst scores are found in the neighborhood of the extreme scenarios:
For the most pessimistic scenarios the most-likely solution can imply weekly operating losses with a Dif.Best
ranging between -37% and -29%, whereas in the most optimistic scenarios losses remain between 6% and
4%. In contrast, the recommendations of the adaptive fleet policy can help reduce the Dif.Best by more than
50% with respect to the most-likely case.

Finally, the last row of Table 7.6 shows the expected weekly operating profits for the most-likely fleet plan
and the ADP policy. By analyzing these last results, it can be concluded that the adaptive policy reduces by 20
% the profit losses of the most-likely solution. The reader may notice that this reduction is inferior to the 50%
reduction presented in the proof of concept. The main reason for this result is the level of growth disparity
existing between the extreme scenarios and the most-likely scenario. If these extreme scenarios happened to
present a demand variation less different with respect to the most likely case, then the most-likely fleet would
perform better than in a problem with more uneven scenarios. Indeed, scenarios would be more uniform and
similar to the most-likely one, which would enhance the performance of the most-likely fleet and reduce the
advantage presented by the adaptive fleet policy. All in all, this explains why the adaptive fleet policy presents
slightly less advantage with respect to the most-likely solution: in the proof of concept the random variable
!t happened to take more uneven values (15%, 5% and -5%) that in the case study. In any case, both proof
of concept and case study prove the adaptive fleet policy as the most robust method to take decisions under
uncertainty. Even more importantly, approximate dynamic programming has proven to be a very powerful
method to solve efficiently a multi-period fleet planning problem of realistic dimensions.

7.4. From an adaptive policy to the definition of signposts

Adaptive fleet policies are meant to include uncertainty into the decision-making process of planning the
future fleet of an airline. As previously seen in Figure 7.6, a policy consists in providing the best rule for mak-
ing decisions given certain conditions. Since it does not provide a single solution, decision-makers might
find challenging to draw clear conclusions from the scenario tree structure. Taking into account this fact,
the results from the adaptive policy can be represented in a more general way where useful signposts for
fleet planners could be detected more intuitively. In this context, the following subsections propose different
methods to post-process the recommendations of the adaptive policy.
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7.4.1. Fleet maps
Fleet maps consist in colored area plots displaying the probability of the adaptive policy recommending a
certain fleet status given some demand conditions and time period. This type of plots are created by means
of browsing the different fleet status recommended for every demand variation in each period. That is to say,
a fleet map results from adding up all the probabilities of recommending in a certain period a certain fleet
composition and size for different demand growth. Eventually, fleet maps are a way to represent the proba-
bility distribution of the recommendations provided by the adaptive policy.

When dealing with a discontinuous scenario tree such as in Figure 7.6, the probability distribution be-
comes discontinuous and can also be represented by a table like the one presented below.

Figure 7.7: Table of discrete probability for every fleet-demand variation combination

The colors scale goes from green to red intense, denoting the lowest and highest probability values re-
spectively. Following this logic, it can be appreciated that a fleet size of 34 aircraft will be advised by the ADP
tool with 62.5% probabilities. However, it has also been seen that demand variation plays an important role
when it comes to advise fleet size. Indeed, it must be highlighted that a smaller fleet is more likely to be
advised for scenarios with low demand growth, while a larger fleet is more probable for scenarios with high
demand. Apart from this, Figure 7.8 shows that there are fleet compositions with higher probability to be
recommended than others given the same fleet size and demand variation.

Figure 7.8: Discrete probability assigned to different fleet composition in scenarios with low demand variation

Nevertheless, the utility of these tables can be questioned easily since they provide a discrete representa-
tion of reality. Even though this is a direct consequence of assuming a discrete scenario tree, extrapolation
of results can mitigate this arguable weakness. This is done by means of applying a kernel density estimator,
with the objective of approximating the continuous density probability function based on the finite set of
adaptive recommendations. An example of the corresponding results for the total fleet size and an aircraft
type are shown in Figures 7.9 and 7.10. The reader is referred to Appendix D for the analysis of the rest of fleet
maps obtained.

The analysis of the fleet maps allows to identify the following general trends:

• Total fleet size: Starting from a total fleet size of 38 aircraft in period 0, a reduction to 33 aircraft is rec-
ommended uniformly across the different demand variations in period 1. This is due to the tree struc-
ture adopted. For later periods 2, 3 and 4 the area of probability spreads considerably as a consequence
of the higher levels of uncertainty faced and thus, lowers down the overall probabilities amongst fleet-
demand combinations recommended. In any case, a clear trend is visible: since demand is forecasted
with a slight tendency to grow, the best performing fleet sizes will tend to grow as well with the periods.
This can be identified by the most intense colors in the fleet map of each period. In fact, grey and red-
dish colors represent those combinations of fleet size-demand variation most likely to occur. Generally
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speaking, the best performing fleet sizes will be those covering a wider demand variation interval. The
wider the demand variation is, the more robust the fleet size will be. Likewise, the fleet map can also
provide information in the opposite direction: Given a demand growth variation interval, the fleet map
illustrates the range of aircraft sizes more suitable for those assessed conditions. This allows to adopt
different ranges of confidence when analyzing the suitability of a fleet: either pessimistic, most prob-
able or optimistic studies. In light of this, fleet planners could identify the boundaries of each desired
envelope as useful signposts to make decisions.

The same type of analysis can be performed for each type of aircraft so as to draw the most suitable fleet
composition under different conditions.

• E70: From the fleet map of aircraft E70, it can be inferred that the ADP tool tends to recommend more
disposals when higher levels of demand growth are expected. In the same way, a higher quantity of two
E70s is recommended for the worst case scenarios. As commented previously, this is explained by its
low fix and operating costs as well as its reduced capacity: the adaptive policy captures a lower demand
and consequently, saves costs by reducing the number of available seats provided.

• E90: Embraer-190 type shows a higher degree of robustness across the different demand growth sce-
narios. The number of aircraft of this type ranges between 13 and 16. There is slight trend to recom-
mend more E90s when demand grows; however, it can also be appreciated that a lower quantity of 14
aircraft is recommended in very similar scenarios. Either choosing one quantity of E90 or another will
depend on the resulting fleet composition of the airline. For instance, if demand has not grown in pe-
riod 4 (demand variation is equal to zero) and the airline already has 2 E70s, then the most probable
recommendation will be to have 13 E90s rather than 15. This is due to the fact that E70 and E90 types
are mainly substitutes.

• B738: The quantity of B738s increases for higher demand growth expected. However, by analyzing its
fleet map evolution, it can be stated that the B738 type is stabilized in 9 aircraft across the majority of
scenarios, thus proving to be robust under uncertainty. More specifically, the most recommended fleet
size is 9 in period 1 and 2 and then turns into 10 for period 4. Apart from this, it can also be noticed
that the type B738 is very polyvalent, thereby becoming competitor of both short-haul aircraft (E70 and
E90) and medium-long haul aircraft (B788).

• B788: For the case of the Dreamliner, it is clear that the probability of recommending to increase
its quantity is proportional to the levels of demand growth expected. Since demand forecast tend to
present a slight tendency towards growth, it is not surprising that the most probable recommendations
pass from possessing 6 B788s to 9 or even 11. Again, the quantity of Dreamliners is highly influenced
by future demand variation and the traffic growth estimated for long-haul routes. Indeed, wide-body
aircraft are more profitable for those routes featuring high density.

• B772: The fleet map for the B772 backs up the fact that the initial four B772s resulted from an overesti-
mated demand growth. Indeed, the adaptive policy recommends to dispose them all for periods 1 and
2. As explained earlier, in the last period the airline is recommended to rebuy a B772 in the majority
of scenarios and independently of their demand growth evolution. Nevertheless, this was mainly due
to two reasons. On the one hand, for those scenarios experiencing the greatest decay in demand, the
acquisition of one B772 can be understood as a way to minimise costs by reducing frequency while still
carrying the maximum amount possible of passengers. It must be reminded that this recommendation
is a direct consequence of not considering demand elasticity with respect to frequency in the model
formulation: the algorithm will tend to minimize frequencies to reduce costs. On the other hand, for
those scenarios featuring higher demand growth by period 3, the adaptive policy considers that it is the
right moment to operate long-haul routes with one B772. Nevertheless, the majority of high-density
and long-haul routes are still operated with Dreamliners.
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Figure 7.9: Evolution of total fleet size map Figure 7.10: Evolution of B788 fleet map
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7.4.2. Operational maps
Operational maps are meant to provide an overview of the operating-related decisions advised by the adap-
tive policy. Although the main focus has been so far on fleet planning, it should be remembered that the
adaptive policy can also provide an operational perspective to the problem. Nevertheless, the analysis of
operating decisions is significantly hindered by the complexities of browsing wide scenario trees with mul-
tiple stages. In light of these constraints, the goal of operational maps is to provide a more intuitive way to
analyze the results in terms of weekly operating profits, weekly route frequency and passengers carried per
week. In doing so, they illustrate the accumulated impact of each of the routes in the network, which are
presented in a descendant order according to their averaged contributions. Furthermore, this characteristic
of operational maps allows to obtain Pareto representations of the most important routes concerning either
profit, frequency or volume of passengers carried. In other words, it helps fleet planners to identify the crucial
routes within KQ network: those routes providing the highest/lowest operating profit, those routes taking the
major/minor number of slots as well as those ones with high/low density of passengers.

Figure 7.11 illustrates the operational maps extracted from the adaptive fleet policy applied to the KQ case
study in period 4. The full evolution of the operational maps throughout the periods can be found in section
D.6 of Appendix D. They represent the profits, route frequencies and volume of passengers carried through-
out the different stages of the scenario tree. As already seen in the fleet maps, the range of possible demand
variations spreads considerably with the number of periods as a result of dealing with higher levels of uncer-
tainty. Dashed blue lines between the bars represent the interpolation between the different discrete values
so as to provide continuity. Apart from this, it must be stated that every colored bar represents the averaged
aggregation of different possible scenarios facing the same demand variation. In fact, since the adaptive pol-
icy captures the path dependency across scenarios with same demand variation, an average has to be made
amongst all the accumulated values. This is the reason for which there are some errors bars plotted, which
show the existent standard deviation between values across scenarios with similar demand variationmulti-
period. However, the impact of this error is minor when it comes to drawing the main operational trends.
Color legend applies grey/reddish colors to the most impactful routes and dark blue black to the ones barely
operated or even not opened.

By analyzing the graphs, it is appreciated how operating profits are expected to be higher when demand
growth increases. Indeed, these are more sensitive to demand variation than the level of frequencies oper-
ated, whose response is more uniform and stable. Evidently, the number of passengers transported highly
depends on demand growth, thereby behaving similarly to the response of the operating profits. Finally, it
should be noticed that it is also possible to analyze the assignment of route frequency for each aircraft type.
This study could be helpful for analyzing the utilization rates of each aircraft type.

7.5. Validation

To the greatest extent possible, this section attempts to validate the results of this case study by benchmark-
ing them against the actual KQ historical data dating from 2015. This set of validation experiments have been
carried out right on the network planning department of Kenya Airways, fact which allows for an unbiased
review of the validation results.

First of all, the historical demand evolution experienced by Kenya Airways will be reproduced across the
scenario tree. In this way, it is possible to determine which fleet plan would have been recommended by the
adaptive policy starting from 2015 onwards. Then, this fleet plan will be compared to the actual development
of the KQ fleet plan over the years. This allows to evaluate the profitability performance of the ADP recom-
mended fleet plan and the one actually followed by Kenya Airways.

For the sake of completeness, a comparison is also carried out between the ADP network related deci-
sions and the current situation of Kenya Airways. The fact of contrasting both networks enables a better
understanding of the fleet related decisions and thus, it helps draw the full picture of the problem.

Finally, the validation is concluded by an expert survey which gathers realistic feedback on the tool.
Transavia’s network department must also be acknowledged for its collaboration with the survey.
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Figure 7.11: Average weekly operating profits, route frequency and passengers carried per scenario in year 4
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7.5.1. Fleet evolution and their profitability performance
By analysing the actual number of passengers carried from 2015 onwards, it can be estimated that the KQ
history of captured demand is found in between scenarios IMM and IML. The reader should notice that only
the first 3 periods of the scenario tree can be visualized. This is due to the fact that periods 4 and 5 refer to
future years 2018 and 2019, whose related information is still unavailable except for their demand forecasts.

Table 7.7: Actual KQ fleet evolution

FY 0 FY 1 FY 2

Operated Aircraft 2015 2016 2017

ADP

Boeing 777-200 4 0 0

Boeing 787-800 6 9 9

Boeing 737-800 10 9 9

Embraer 170 3 1 1

Embraer 190 15 14 14

Table 7.8: Recommended fleet evolution by ADP policy

FY 0 FY 1 FY 2

Operated Aircraft 2015 2016 2017

KQ

Boeing 777-200 4 2 0

Boeing 787-800 6 9 7

Boeing 737-800 10 10 10

Embraer 170 3 2 0

Embraer 190 15 15 15

Considering this demand evolution, Table 7.7 shows the fleet plan that the ADP adaptive policy would
recommend under those conditions of growth. The advised fleet plan can then be compared to the actual
fleet changes made by Kenya Airways. At first sight, it is appreciated that both fleet sizes and composition
present a similar order of magnitude. In particular, the following conclusions can be drawn:

• By 2015, the recommended fleet policy would have captured the need to dispose the B772s and invest
in more Dreamliners, since these ones have proven to adjust better to the size of KQ network. It is
pointed out, however, that two B788s have been subleased to other airlines in 2017. This decision was
imposed with the company turnaround strategy to reduce costs after several years of financial losses.
In fact, those disposals turned into a subleasing contract with another African airline. This explains the
reason for which Kenya Airways finds more profitable to dispose of two B788s rather than operating
them. Evidently, this opportunities cannot be captured my the multi-period fleet planning model.

• Initially, the ADP policy would have also advised to reduce the number of aircraft operating short-
medium haul routes. As can be observed, the ADP fleet plan recommends to have one aircraft less
for all B788, E90 and E70 types. Interestingly, experts of Kenya Airways commented that they always
tend to keep one aircraft of each type on the ground, thus supporting the validation of the ADP results.
What is interesting to highlight is the different fleet composition existent between E70 and E90. While
Kenya Airways eventually disposes of all E70s, the adaptive policy recommends to keep at least one for
operating short and thin routes. This advice will be discussed in more detail shortly.

Once both fleet plans are identified, their corresponding impact on KQ operating profits is assessed. Table
7.9 shows the annual profits earned by operating the network with each of the fleet plans under the condi-
tions of all possible scenarios. It must be highlighted that the bolded rows refer to the scenarios IMM and
IML defining the boundaries of the actual historical demand growth experienced by KQ.

The first noticeable point is that in 2015 the ADP policy presents higher losses than the KQ fleet plan. This
is because of the higher disposal costs entailed by the decision of changing the fleet for next period. In this
sense, the KQ fleet undergoes less changes from 2015 to 2016. Nevertheless, the losses from the ADP policy
can be understood as an initial investment, since its value is clearly offset by the profits earned within the
next years. This is appreciated in the column of aggregated results, where the total performance of the KQ
fleet plan appears as well. Indeed, it is very visible that for the following years the performance of Kenya
Airways would have significantly improved if the recommendations of the ADP policy had been followed. In
figures, the 3-year aggregated profits would have been bounded between $ 41M and $15M for the ADP policy,
whereas the actual aggregated profits of KQ will remain between $10M and $-18M. Indeed, the ADP policy
could achieve a profit gain between 300% and 180% with respect to the profit obtained with the real KQ plan.

Finally, It is interesting to highlight how well the model captures the reality: KQ 2017 press statements
have accounted for a total operating profit of $8M in 2016, while the model indicates $7.6M for the same
year under very similar demand conditions. Once again, this results prove the ADP algorithm as an effective
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Table 7.9: Comparative analysis of the profitability of KQ fleet plan
and ADP policy for all scenarios from year 2015 to 2017

Annual operating,profits ($)

Scenario FY 0 FY 1 FY 2 Aggregated

operating profits ($)2015 2016 2017

ADP

policy

IHH -32515267 46813513 67583740 81881986

IHM -32515267 46813513 54579935 68878181

IHL -32515267 46813513 28360863 42659109

IMH -32515267 31891386 54268219 53644338

IMM -32515267 31891386 41656523 41032641

IML -32515267 31891386 15561791 14937909

ILH -32515267 3054794 31758341 2297868

ILM -32515267 3054794 16427055 -13033418

ILL -32515267 3054794 -14246537 -43707010

KQ

fleet plan

IHH -27315267 23980902 62402477 59068112

IHM -27315267 23980902 46239366 42905000

IHL -27315267 23980902 17795945 14461580

IMH -27315267 7610701 46239366 26534800

IMM -27315267 7610701 30077222 10372656

IML -27315267 7610701 1341116 -18363449

ILH -27315267 -25552496 18661209 -34206553

ILM -27315267 -25552496 2206381 -50661382

ILL -27315267 -25552496 -32293261 -85161024

Table 7.10: Potential profit gains obtained with the ADP policy with
respect to KQ fleet plan

Annual operating profit gain (%)

Scenario FY 0 FY 1 FY 2 Aggregated

profit gain (%)2015 2016 2017

ADP/KQ

IHH -19.04% 95.21% 8.30% 38.62%

IHM -19.04% 95.21% 18.04% 60.54%

IHL -19.04% 95.21% 59.37% 194.98%

IMH -19.04% 319.03% 17.36% 102.17%

IMM -19.04% 319.03% 38.50% 295.58%

IML -19.04% 319.03% 1060.36% 181.35%

ILH -19.04% 111.95% 70.18% 106.72%

ILM -19.04% 111.95% 644.52% 74.27%

ILL -19.04% 111.95% 55.88% 48.68%

method capable of providing meaningful insights to fleet planning.

7.5.2. Frequency-network analysis
In order to understand the main differences between the ADP and actual fleet plans presented, it is very in-
sightful to analyse how the KQ network is operated at a frequency level. This helps us understand the reasons
upon which the ADP algorithm bases its fleet decisions.

The first key aspect to examine is whether the ADP-based tool opens the same routes that Kenya Airways
wanted to open according to its 5-year expansion plan. Table 7.11 summarizes the network actions made by
both KQ and the ADP algorithm until the present year 2017:

Table 7.11: Comparison between network expansion decisions made by the ADP algorithm and Kenya Airways

ID Route ADP ADP decisions KQ decisions Distance (km)

2016

7 Open Not operated 3064

21 Not operated Not operated 2400

22 Open Open 3480

41 Not operated Not operated 3200

55 Open Open 3440

56 Open Open 5720

2017

1 Open Open 2811

6 Open Not operated 858

64 Not operated Not operated 12002

From the comparative analysis, it is inferred that the ADP algorithm agrees with the majority of the expan-
sions decisions made by the KQ network planning department. It can also be appreciated that the expansion
strategy of Kenya Airways evolved slightly differently as initially planned in 2014. Over the years, some routes
were not considered profitable enough and were not operated. The ADP policy draws mainly the same con-
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clusions except for two very few exceptions: routes with ID 7 and 6, which correspond to a medium and short
haul routes respectively. Yet, these differences can be explained with Figure 7.12, where ADP route frequen-
cies are benchmarked against KQ frequencies currently operated.

In Figure 7.12, the bars represent the flight frequencies that the ADP policy assigns to each route per
aircraft type distinguished by color. Likewise, dark blue dots refer to the actual frequency levels that Kenya
Airways is providing for each route, whereas orange dots represent the minimum flight frequencies required
to maintain the targeted market share for each route.

Overall, it is concluded that the correlation between ADP and KQ actual route frequencies is satisfactory:
the ADP policy is able to provide realistic levels of route frequencies and even better, assign aircraft types in a
way that makes sense. As expected beforehand, the ADP model tends to slightly reduce the amount of flights
per each route. This general tendency results from the assumption previously made: the amount of captured
demand is supposed to be independent of the level of frequency offered. Evidently, this hypothesis is far from
reality and sometimes makes the model assign bigger aircraft to certain routes, thus carrying more passen-
gers in less flights. Fortunately, this trend is not really accentuated so the aircraft type assignments carried
out by the ADP policy are very similar to the ones made by Kenya Airways. Figure D.12 in Appendix D shows
how wide-body aircraft are assigned to long-haul routes, while single-aisle aircraft cover short-medium haul
routes.

In this situation, the frequency-network analysis helps identify as well the main reasons by which some
fleet decisions and route openings are made. For instance, it explains why the ADP policy opens routes 6 and
7 and KQ has not. By analysing in detail these routes in Figure 7.12, it can be concluded that the ADP algo-
rithm decides to operate these routes with bigger aircraft such as B738 or even a B788. From a mathematical
perspective this makes sense since with one single flight, Kenya Airways would be able to earn more profits
from those routes. Nevertheless, this is hardly possible in real life, since demand would most likely decrease
dramatically provided that one single frequency was offered wit a big aircraft. This fact enhances the need
to adopt a critical perspective regarding the fleet advised by the ADP policy. Given this general preference
for bigger aircraft, it should be assessed in more detail whether the quantity of wide-body aircraft is slightly
overestimated.

Furthermore, other fleet-related decisions can also be explained. In fact, the ADP policy decides to main-
tain at least one E70 so as to assign it to short haul routes with very low demand. These type of routes are
considered as thin routes by Kenya Airways and they are actually fully operated by E90s. Despite this deci-
sion, the ADP algorithm concludes that is more profitable to invest in smaller aircraft to reduce operating
costs and increase the load factors. Indeed, the load factor characteristic of this type of routes is around 40%.

7.5.3. Expert survey
As a complementary activity to validate the practicability of the ADP support tool within the airline industry,
several experts in network planning were surveyed. Based on various interviews carried out on-site at Kenya
Airways as well as Transavia, the following conclusions can be drawn:

Regarding the application of adaptive policies to strategic fleet planning,
• Both Kenya Airways and Transavia are conscious of the fact that demand uncertainty plays an essential

role in their profitability performance. However, their best practice to hedge against uncertainty is to
plan their future fleet according to deterministic forecasts and certain sensitivity analysis of demand.
Spreadsheets are the preferred technique to carry out this type of analysis. Therefore, it consists more
in a trial-and-error process rather than a sophisticated mathematical optimisation.

• Despite being conscious of the importance of accounting for demand uncertainty, the truth is that no-
body is studying new techniques to improve their current best practices. Indeed, uncertainty becomes
an unpleasant topic for discussion since it challenges one of the most entrenched traditional methods
within the company. In this context, the concept of adaptive policy is not very familiar; however, the
scenario tree format is considered an intuitive way to model demand uncertainty and represent future
possible scenarios.
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Figure 7.12: Route frequency assigned to each aircraft type in period 2
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Regarding the multi-period adaptive fleet planning model:
• Experts generally agree with the mathematical formulation of the multi-period adaptive fleet planning

model. However, expert feedback varies depending on the conditions faced by each airline.

• Kenya Airways experts pointed out as important weakness the fact that the model does not consider
fuel price uncertainty, which has sometimes amounted to the 40% of their operating costs. In fact, the
impact of stochastic fuel prices was assigned the same level of importance as demand uncertainty. Sur-
prisingly, the concept of minimum frequency was deemed appropriate to model market interactions.

• Transavia highlighted the need to include a new model constraint to take into account the maximum
number of slots that an airline owns in a saturated airport. Indeed, this cannot be dismissed in those
situations in which an airline operates at a saturated airport (e.g. Heathrow and Schiphol) where its
flight frequencies are constrained. Furthermore, the planning horizon at Transavia is much shorter
than the one of Kenya Airways since the former deal with a more seasonal demand. Given this fact,
periods were recommended to be shortened in six months and average prices were required to be dy-
namic throughout the periods.

Regarding the practicability of the ADP support tool:
• All fleet planners interviewed highlighted the benefits of having an interface that allowed the intro-

duction of model parameters via Excel. As for the ADP results, fleet maps and operational maps were
considered a quick method to pinpoint the general trends in fleet planning.

• In particular, Transavia fleet planners acknowledged the potential of the ADP results. Nevertheless, it
was questioned whether the benefits of applying an adaptive policy would paid off the time invested
in mastering such a complex model. Indeed, the model characteristics were seen as too complex in
comparison to the simplicity of Transavia business model: Transavia has a stagnated market due to the
current slot saturation of its main airports, and yet its fleet is mainly homogeneous.

• The feedback of Kenya Airways contrasts sharply with the vision of the low-cost carrier. The possibility
of having a general overview of the impact of their fleet decisions was clearly welcomed by the Head of
Network and the Head of Strategy and Performance. Indeed, fleet maps and operational maps proved
to be very suitable for executives. In a very short time, they were able to identify the main trends in fleet
and network planning. Even better, they agreed with many of the recommendations inferred from the
adaptive policy. For instance, they recognized that they were analysing the possibility to acquire new
smaller aircraft such as the E70 to cover thinner routes more efficiently. Apart from this, they also agreed
with the recommendation of operating new B737 MAX in certain long-haul routes, where demand is
not sufficient enough to afford wide-body aircraft flights. Finally, KQ fleet planners were also thinking
about increasing the frequencies of some specific routes where the ADP policy was already advising
to increase the frequency. All in all, it was concluded that the ADP support tool was very capable to
provide valuable information to support strategic decisions.

7.6. Conclusions
The present case study has provided valuable insights upon which the following conclusions can be based:

• The computational times of this case study make clear that a problem of such dimensions could not
have been solved without the previous enhancement of the algorithm performance. In fact, a total of
15000 iterations were needed to reach convergence and coherent results. In contrast to the previous
results obtained with the baseline algorithm, the enhanced algorithm allowed to solve this problem
within a total CPU time of 10 hours: 4 hours to run the ADP loop and 6 hours to generate an sufficient
number of meaningful observations to train the kernel regression.

• The enhanced ADP algorithm presents an iterative learning behavior which is comparable to the proof
of concept except for the higher levels of noise experienced. Therefore, this case study requires longer
exploration times to start converging: while the previous small test case started to stabilize by the first
500 iterations, the KQ case study does it for the first 2000 iterations. This is explained by the larger
dimensions of the problem itself.
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• The case study has also identified the adaptive fleet policy as the most robust method to take decisions
under uncertainty, thereby outperforming the profitability performance of the optimal fleet plan for
the most-likely scenario. Indeed, the worsening impact of the most-likely fleet plan becomes much
more evident the more the scenarios differ from the most-likely scenario. This is particularly true in
those extreme scenarios where the most-likely solution can entail weekly operating losses by more of
30% with respect to the deterministic upper bound. In contrast, the recommendations of the adaptive
fleet policy can help reduce these losses by more than 50% with respect to the most-likely case.

• Nevertheless, the expected profit gain achieved with the adaptive policy (20%) is lower than the one
presented by the stochastic case of the proof of concept (50%). This advantage reduction can be ex-
plained by the level of growth disparity existing between the extreme scenarios and the most-likely
scenario. The greater the variations are in terms of demand outcomes, the better the adaptive policy
will perform against the most-likely fleet. Indeed, this case study featured demand growth outcomes
whose difference was less accentuated when compared to the ones of the proof of concept.

• A 5-stage scenario tree leads to adaptive fleet policies which are more difficult to interpret. However, it is
still possible to identify the path dependency by just looking at the adaptive fleet policy recommended.
In this context, fleet and operational maps offer the possibility to extract general trends at first sight,
thus being well received by decision makers.

• Finally, the results obtained from the validation analysis highlight the capability of the ADP algorithm to
capture realistic and meaningful trends back in 2015. Despite not considering the interactions between
captured demand and frequency offered nor fuel or competition uncertainty, the ADP support tool was
able to provide a future fleet policy whose profitability performance proved to be notably better than
the actual fleet plan followed by Kenya Airways. Even better, the ADP tool forecasted extremely well
the actual operating profits that KQ achieved in 2016. Apart from this, the network-frequency analysis
presented a very reasonable correlation between the recommended and real frequency levels currently
operated by KQ. Finally, it is very encouraging to see how many of the recommendations provided by
the ADP support tool agree with the airline future strategy.

All in all, this case study has become a proof that the ADP support tool can adjust well to reality while
providing meaningful adaptive policies to hedge against uncertainty, which indeed could make a difference
in airline fleet planning.





8
Conclusions and recommendations

In this chapter, the main conclusions drawn from this MSc thesis are presented in Section 8.1 , followed by a
set of recommendations in Section 8.2, which define the guidelines for future research.

8.1. Final conclusions
The inherent uncertainty of the fleet planning problem has hindered the emergence of sophisticated models
to support airlines with strategic decision-making. For many decades, airlines have been applying similar
top-down deterministic approaches when planning their fleet development. In this context, the objective
of this MSc thesis was to contribute to the development of adaptive policies in the context of airline fleet
planning under demand uncertainty by (a) modelling and solving with Approximate Dynamic Programming
a multi-period adaptive fleet planning problem that integrates stochastic demand and by (b) detecting useful
signposts for fleet planners.

With the objective of solving the multi-period adaptive fleet planning problem by means of approximate
dynamic programming, the developed methodology was split into two parts. Firstly, the problem was mod-
elled as a dynamic program thanks to the suitable application of a state-space modelling framework. This
consisted of a state vector, decision vector, random variable, transition function, contribution function and
value function together with a set of constraints defining the feasible space of actions. Next, the objective
function representing the maximisation of the airline operating profits was reformulated in the form of Bell-
man equation. Taking advantage of the dynamic formulation of the problem, an algorithm based on approx-
imate dynamic programming was chosen and implemented following its main building blocks.

Amongst all the parts of the ADP algorithm, the development of an effective value function approximation
strategy became crucial for the successful implementation of a decision support tool. To this end, several ap-
proximation methods were benchmarked, leading to the conclusion that nonparametric regressions are the
most suitable strategy to approximate the value function of the multi-period adaptive fleet planning problem.
In particular, a separable Gaussian kernel regression was applied to obtain smooth approximations across all
non observed scenarios. As for its initialisation, an initial set of approximated observations had to be com-
puted to train the kernel regression with meaningful problem information.

The full multi-period adaptive fleet planning problem was optimised by decomposing it into subprob-
lems. With the aim of taking full advantage of the computational power of commercial optimisers as well
as the two-stage overlapping structure existing between subsequent subproblems, each maximisation sub-
problem was simultaneously decomposed into two independent parts A and B. Part A was solved directly
with Gurobi and referred to the calculation of operations-related actions once previous fleet decisions had
been taken. Likewise, part B corresponded to the problem of selecting the fleet-related decisions that would
impact future operations. In this case, an epsilon-greedy subroutine based on simulated annealing was de-
veloped to let the algorithm explore the state space and choose other states with high potential.

Apart from this, the ADP algorithm required several iterations and sample realizations of the random
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demand growth to learn iteratively better policies for the scenario tree. This was carried out by means of
Monte Carlo sampling, which helped extract random values from a known distribution of demand growth.
Depending on the discrete or continuous nature of the known distribution, we could either have a finite or
infinite number of possible random outcomes, thus having a finite or infinite number of possible scenario
tree branches. While a continuous distribution could match better the actual demand uncertainty by slowing
down the algorithm convergence, a finite distribution allowed for faster learning rates of the ADP algorithm at
the expense of less modelling accuracy. Therefore, a trade-off between these two aspects was made, leading
to the selection of a discrete random variable so as to facilitate the convergence of the algorithm.

The developed ADP algorithm was denoted as the baseline algorithm that would be verified in both deter-
ministic and stochastic experimental settings. For the deterministic version of the multi-period fleet planning
problem, the ADP results were compared to the optimal solutions obtained from solving the equivalent MILP
problem with Gurobi. This comparative analysis led to the conclusion that the ADP results provided an accu-
rate fit to the optimal values provided by Gurobi. Overall, the average optimality gap presented by ADP was
of 0.2%, a magnitude which is highly comparable to the optimality gaps currently seen in ADP literature. This
fact encouraged to further investigate kernel regression as an effective value function approximation strat-
egy. In terms of CPU performance, Gurobi stood as the best technique to solve these small test cases: it took
an average of 35s to provide optimality gaps of the same order of magnitude as the ones presented by the
ADP algorithm within 120s. These results are coherent since the potential benefits of the ADP algorithm are
expected to be noticeable in those problems with a vast number of decision variables and multiple stages.
Indeed, it is in that context that the initial 2h-calculation of the kernel training dataset starts to make sense.

As for the stochastic version, the introduction of demand uncertainty as a stochastic process entailed sev-
eral complexities. Indeed, the coupling of scenarios with common tree nodes made the update of the value
function very unpredictable and difficult to track. In turn, this led to an increase in noise levels, thereby com-
plicating the convergence of the ADP algorithm. Whereas only 80 iterations were required to achieve optimal
or near-optimal solutions for the deterministic case, the stochastic version of the problem needed around
3000 iterations to reach convergence and provide a coherent policy. In terms of computational performance,
running these 3000 iterations translated in a CPU time cost of 5h, without considering the 2h punctually in-
vested in creating an initial set of observations to train the kernel regression. Thus, the sharp increase in
computational time with respect to the deterministic case was evident and it was concluded that it had to be
definitely improved in case of tackling more realistic problems.

Furthermore, solving the stochastic version of the multi-period fleet planning problem did not provide a
single result, but an adaptive fleet policy: the best rule for making fleet and operational decisions in function
of a certain demand and financial conditions happening in a given time period. In this context, it was con-
cluded that the resulting fleet policy adjusted as much as possible to the optimal fleet plans corresponding
to each deterministic scenario solved independently. Moreover, a very unique feature of the adaptive fleet
policy was its capability of capturing the path dependency effect amongst different scenarios. Indeed, the
adaptive policy assigned different fleets to states with the same level of demand, which were coherent with
their previous demand history experienced. Therefore, the adaptive policy was able to simulate in a realistic
way the decision-making process of airline fleet planning.

As for profitability performance, the adaptive policy was the most robust method for fleet planning: across
the majority of scenarios it clearly excelled the profits resulting from the optimal fleet plan for the most-likely
scenario. Evidently, the most-likely solution performed better in those scenarios similar to the most-likely
scenario. Nevertheless, its performance started to stall towards differing scenarios. Indeed, its worst scores
were found in the neighborhood of the extreme scenarios: For the most pessimistic scenarios the most-likely
solution could imply weekly operating losses ranging between 3% and 6%, whereas in the most optimistic
scenarios losses remained between 2% and 1%. In contrast, the adaptive fleet policy mitigated losses in all
extreme scenarios, which never surpass the 1.1%. By analyzing the general expected performance, it was
concluded that the adaptive policy could reduce by 50 % the losses entailed by the most-likely solution.

Apart from this, the verification analysis proved the stable behaviour of the ADP algorithm. By modifying
the parameters of the baseline case within different intervals, it was confirmed that the kernel approximation
strategy could still be trained reasonable well using the same dataset of observations. Furthermore, a sensi-
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tivity analysis helped understand better the influence of the most relevant parameters within ADP algorithm.
On the one hand, higher stepsize values (Æn°1 º 1) provided the best results for the value iteration algorithm.
On the other hand, the correct calibration of the control parameter ∏ became essential to guarantee the con-
vergence of the ADP algorithm as well as the coherence of the adaptive policy. Indeed, the problem of value
function overestimations represents a major challenge to tackle in follow-up research.

Likewise, the application of a continuous random variable normally distributed was experimented. This
analysis reaffirmed the hypothesis that the continuously distributed Monte Carlo sampling would provoke
slow convergence and higher instability for the algorithm. In any case, it should not be overlooked that sam-
pling a continuous distribution provides much more realistic scenarios, thus embracing a wide range of pos-
sible outcomes. Nevertheless, the size of the scenario tree became unmanageable to assess it thoroughly.

The conclusions obtained with the proof of concept unveiled the advantage of applying adaptive fleet
policies and most importantly, proved approximate dynamic programming as an effective method to cal-
culate them. Nevertheless, the corresponding computational times warned about the need to improve the
algorithm efficiency. To do so, a decision tree analysis was carried out to pinpoint the major sources of CPU
waste and define five major levels to improve the algorithm accordingly. These consisted in (1) providing a
MIP start to Gurobi, (2) relaxing the optimality gaps when generating the training dataset and (3) solving part
A of the 1-FPP problem, (4) avoiding unnecessary recalculations with Gurobi in part A of the 1-FPP problem
as well as (5) reducing the state space explored to accelerate the subroutine in part B. In this sense, the com-
putational times of the subsequent case study carried at Kenya Airways made clear that a problem of such
dimensions could not have been solved without the previous enhancement of the algorithm performance. In
fact, a total of 15000 iterations were required to reach convergence and coherent results. In contrast to the
previous results obtained with the baseline algorithm, the enhanced algorithm allowed to solve this problem
of realistic dimensions within a total CPU time of 10 hours: 4 hours to run the ADP loop and 6 hours to gen-
erate a sufficient number of meaningful observations to train the kernel regression.

The extended case study carried out at Kenya Airways provided valuable insights to validate the ADP sup-
port tool in the air transport industry. The ADP tool was capable of tackling successfully a 5-period fleet
planning problem with 5 aircraft types and 64 routes aggregated per market growth regions. The proposed
case study consisted in moving backwards in time to year 2015 with the objective of reproducing a 5-year
expansion plan formerly defined by Kenya Airways.

First of all, the adaptive fleet policy was once again identified as the most robust method to take decisions
under uncertainty. Indeed, the worsening impact of the most-likely fleet plan became much more evident
in extreme scenarios, where it entailed weekly operating losses by more than 30% with respect to the de-
terministic upper bound. In contrast, the recommendations of the adaptive fleet policy could help reduce
profit losses by more than 50% with respect to the most-likely case. Moreover, a 5-stage scenario tree pro-
vided adaptive fleet policies which were more difficult to interpret. However, it was still possible to identify
the path dependency by just looking at the adaptive fleet policy recommended. In that context, fleet and op-
erational maps offered the possibility to extract general trends at first sight, thus being well understood and
received by decision makers.

To conclude, the results obtained from the validation analysis enhanced the capability of the ADP al-
gorithm to capture realistic and meaningful trends back in 2015. Despite not considering the interactions
between captured demand and frequency offered nor fuel or competition uncertainty, the ADP support tool
was able to provide a future fleet policy whose profitability performance proved to be notably better than
the actual fleet plan followed by Kenya Airways from 2015 onwards. Even better, the ADP tool forecasted ex-
tremely well the actual operating profits that KQ achieved in 2016. Apart from this, the network-frequency
analysis presented a very reasonable correlation between the recommended and real frequency levels cur-
rently operated by KQ. Finally, it was confirmed that many of the recommendations provided by the ADP
support tool back in 2015 agreed with the current airline strategy. All in all, the case study became a proof
that the ADP support tool can adjust well to reality while providing meaningful adaptive policies to hedge
against uncertainty, which indeed could make a difference in airline fleet planning.
For all the above mentioned conclusions, it can finally be stated that the research objective of this MSc thesis
has been satisfactorily met.



114 8. Conclusions and recommendations

8.2. Final recommendations
While carrying out this MSc thesis, several recommendations could be identified to follow up with this work.
These are presented according to different areas of research.

8.2.1. Modelling
When it comes to modelling, many proposals can be made. Nevertheless, it should be taken into account
that any extension to the multi-period fleet planning problem will most likely entail additional computa-
tional performance. It is for this reason that the combination of both modelling and algorithm development
is highly encouraged.

With this in mind, it seems quite fast to implement some of the suggestions put forward by the surveyed
airlines. For instance, Transavia highlighted the need to include a new model constraint to take into account
the maximum number of slots that an airline owns in a saturated airport. Indeed, this cannot be dismissed
in those situations in which an airline operates at a saturated airport (e.g. Heathrow and Schiphol) where its
flight frequencies are constrained. This requirement could be easily formulated as

X

r2R

X

i2I

yti r ∑ Y M ax
t 8t 2T (8.1)

where Y M ax
t refers to the maximum number of slots available in a given time period. Again, the impact

of this constraint on the optimisation of the problem should be assessed. Nevertheless, it is not expected to
introduce major computational challenges.

Furthermore, it may happen that demand is so seasonal for certain airlines that it could not be dismissed.
In this case, it is recommended to shorten the periods into at least six months. Likewise, average prices could
be modelled dynamically throughout different time intervals with the objective of increasing the model accu-
racy. Another interesting option to explore would be the introduction of a cost factor penalising the hetero-
geneity of the fleet: the more fleet types owned, the higher its value would be so as to take into account costs
associated to maintenance and crew trainings. Indeed, a current best practice amongst airlines is to move
towards leaner fleets with less aircraft types so as to minimise costs.

Apart from this, it must be reminded that Kenya Airways experts pointed out as important weakness the
fact that the model does not consider fuel price uncertainty, which has sometimes amounted to the 40% of
their operating costs. In fact, they considered the impact of stochastic fuel prices as much important as the
effects of demand uncertainty. Therefore, a very interesting research field would be to model the volatility
of fuel prices, while providing recommendations on hedging measures to minimise the costs entailed by this
uncertainty. One reasonable way to initially tackle this problem would be to study the independent effects of
fuel price uncertainty. Having then understood the main essence of this problem, it would be ideal to com-
bine both demand and fuel price uncertainties. However, this would challenge the way of representing the
global scenario tree as well as the approximation strategy for the corresponding value functions.

Another important factor to study would be the effect of competition uncertainty, which has mostly been
modelled with game theory in literature. Nevertheless, competition could be modelled from the perspective
of a single airline in a more simple and useful way, which would allow the integration of competitive elements
into fleet planning models. Instead of using game theory, the impact of competition on fleet plans could be
modelled as the uncertainty entailed by the probability of other airline entering into a market. Indeed, an air-
line may invest in its fleet expansion so as to exploit a promising market with high growth rates. Nevertheless,
any optimistic forecasted results may increase the probability of other airlines entering into the same market,
thereby leading to a fleet surplus and its corresponding losses. This new idea would still capture the relevant
effects of competition in fleet planning while keeping the model dimensions within acceptable dimensional
limits. Yet surprisingly, the majority of surveyed experts considered that the concept of minimum frequency
was deemed appropriate to model market interactions.

In this line, another important recommendation could be given: it would be very meaningful to model the
elasticity existing between the demand captured by an airline and the level of frequencies provided. Indeed,
the absence of this trait becomes a notable weakness when it comes to plan network frequencies: by not
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considering demand elasticity with respect to frequency, the ADP algorithm tends to select larger aircraft to
carry more passengers while minimising frequencies and operating costs. From a mathematical perspective
this seems logical, but it does not clearly adjust to reality.

8.2.2. Approximate Dynamic Programming algorithm
Approximate Dynamic Programming consists in a vast emerging field offering plenty of opportunities for re-
search. Even though kernel regressions have proven suitable to approximate the value function of the multi-
period fleet planning problem, the truth is that neural network presents a potential impossible to overlook:
some applications have already benefited from their highly flexible framework capable of estimating com-
pletely unknown functions. Encouraged by the good results initially obtained with approximate dynamic
programming, a natural choice would be to gain more expertise in the domain of statistical learning and
more particularly, neural networks applied to the multi-period fleet planning problem.

Nevertheless, the field of kernel regressions also faces many challenges ahead. While the applied dynamic
control of kernel bandwidth has proven effective for a maximum number of six periods, it is evident that it
starts to present some limitations for a higher number of stages: observations might be so dispersed from the
queried state that it is useless to incorporate them into the kernel weighted sum. A solution to this limitation
would be to previously estimate more approximated observations in other non-observed scenarios so as to
reduce point dispersion. Indeed, this is an area for further research since it would be ideal to determine a
correlation between the number and position of required observations and the dimensions of the scenario
tree. In any case, follow-up research could revolve around the introduction of a dispersion factor that would
help determine an optimal training dataset in terms of number and location of observations. Apart from this,
parallel kernel regression across observed scenarios could also be studied. Besides, another important point
to be addressed would be to find a general rule to completely mitigate the adverse effect of value function
overestimations. What is more, it would be very insightful to determine the maximum values of the optimal-
ity gaps for which the ADP algorithm could provide coherent results.

Finally, it is always beneficial to improve as much as possible the efficiency of the ADP algorithm so as
to tackle even larger networks and fleets. For instance, the next step could be the introduction of dynamic
control criteria to automatically stop the ADP loop once an acceptable level of stability has been reached.
Another possibility could be to optimise the exploration versus exploitation problem by means of defining a
general rule describing the best trade-off between exploration and exploitation phases. Finally, it would be
very insightful to determine the limits of the optimality gap relaxation interval, for which the ADP algorithm
provides stable and coherent adaptive policies. This knowledge could help speed up the process of creating
a training dataset of observations.

8.2.3. Validation
One of the last proposed recommendations goes in line with the validation of the current ADP model but it
is only applicable to 5 years from now. The case study solved in this MSc thesis was intended to reproduce
past decisions until the present. Nevertheless, it would have been even better to work with older data, which
has been very difficult to find for this MSc thesis. In light of this, it would be highly interesting to carry out a
similar validation analysis in 2022 so as to compare the validity of the adaptive policy obtained now.

To conclude, it must be admitted that further work needs to be done in terms of signposts. If these were
further researched, the solution of wide scenario trees could pave the way for the development of more ad-
vanced analytics tools capable of defining preventive, corrective and even predictive measures to steer strate-
gic plans towards success.





A
Appendix for kernel regressions

This is an appendix for section 4.4.1 in chapter 4, where the performance of kernel regression will be discussed
in more detail.

A.1. Verification of kernel regression performance
To verify the correct performance of the designed kernel regression tuned with G = 3, it is worth to analyse
the correspondence between the estimated value function obtained with kernel regression, and the real ap-
proximated value that would be obtained if the value function was initially observed with ∏ (T ° t ) eC§

t (St ).
Figures 4.15 to 4.16 show the effective correlation obtained for nodes not belonging to the extremes or cen-
tral scenarios in different periods. For the sake of clarity, it should be reminded that the interval notation is
{0,1, ...,T °1}. Therefore, even though we are referring to stage 5, the scenario tree considered has 6 periods
and 0 refers to the initial state I. The blue line represents a 1:1 bisection while the green dots refer to the corre-
spondence between the value function estimations obtained for different queried states S§

t . In this way, it can
be appreciated by how much the non-parametric observations differ from the observed value function using
∏ (T ° t ) eC§

t (St ). While a good correspondence exists throughout all time stages, the impact of dispersed ob-
servations is noticeable for the later stages 4 and 5: there are kernel value function approximations differing
significantly from correlation 1:1 since either they are overestimated or underestimated. In fact, maximum
kernel relative errors can amount to 15% respect the observed value in stage 5. Nevertheless, in the same
stage correlation errors are strongly mitigated up to 2% for the states with higher value functions, which are
indeed the best candidates for exploration and exploitation during the ADP algorithm. In other words, there
is a low probability that high correlation errors will affect significantly the ADP algorithm since they will sel-
dom be selected for exploration. Furthermore, relative errors of 2% are considered admissible since it should
be reminded that all observations feeding the kernel regressions in this verification test are initial approx-
imated observations and not real observations of the value function. Indeed, these errors are expected to
reduce along the subsequent ADP iterations. This is due to the fact that more algorithm iterations will pro-
vide more and better approximated observations, which will help improve the quality of kernel regression.
What is important to infer from this correlation test is that kernel regression captures the problem structure
effectively, thereby allowing the successful identification of the most promising states for the fleet planning
problem. Lastly, Figures A.5 to A.6 show the great importance of kernel bandwidth: an unaware selection of
G = 1000 may lead to wrong correlations unable to capture the essential information of the problem.
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Figure A.1: Effective value function correspondence at stage 2 with G = 3
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Figure A.2: Effective value function correspondence at stage 3 with G = 3
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Figure A.3: Effective value function correspondence at stage 4 with G = 3
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Figure A.4: Effective value function correspondence at stage 5 with G = 3
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Figure A.5: Unstable value function correspondence at stage 4 with G = 1000
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Figure A.6: Unstable value function correspondence at stage 5 with G = 1000



B
Appendix for deterministic experiments

This is an appendix for section 5.2 in chapter 5. It presents the optimal fleet plans for each determinisitc
scenario solved independently as well as the behaviour of the ADP algorithm observed when solving non-
observed scenarios.

B.1. Optimal fleet plans for each independent scenario

Table B.1: Optimal fleet plans for each deterministic scenario solved independently

Optimal fleet for deterministic scenarios

ID Stage Scenario Total probability Demand variation year 0 year 1 year 2 year 3

0 3 IHHH 2.70% 52.1% 0/10/8 0/10/12 0/13/12 0/16/12

1 3 IHHM 4.50% 38.9% 0/10/8 0/10/12 0/13/12 0/14/12

2 3 IHHL 1.80% 25.6% 0/10/8 0/10/12 0/12/12 0/12/12

3 3 IHMH 4.50% 38.9% 0/10/8 0/10/12 0/11/12 0/13/13

4 3 IHMM 7.50% 26.8% 0/10/8 0/11/10 0/12/11 0/12/12

5 3 IHML 3.00% 14.7% 0/10/8 0/10/12 0/11/12 0/10/12

6 3 IHLH 1.80% 25.6% 0/10/8 0/10/11 0/10/11 0/12/12

7 3 IHLM 3.00% 14.7% 0/10/8 0/10/11 0/10/11 0/10/12

8 3 IHLL 1.20% 3.8% 0/10/8 0/10/11 0/10/11 0/9/11

9 3 IMHH 4.50% 38.9% 0/10/8 1/10/8 1/12/9 1/15/9

10 3 IMHM 7.50% 26.8% 0/10/8 1/10/8 1/12/9 1/12/11

11 3 IMHL 3.00% 14.7% 0/10/8 1/10/8 1/12/9 0/12/9

12 3 IMMH 7.50% 26.8% 0/10/8 1/10/8 0/11/9 0/14/9

13 3 IMMM 12.50% 15.8% 0/10/8 1/10/8 0/11/9 0/11/11

14 3 IMML 5.00% 4.7% 0/10/8 1/10/8 1/11/8 1/10/8

15 3 IMLH 3.00% 14.7% 0/10/8 1/10/8 0/10/8 0/10/12

16 3 IMLM 5.00% 4.7% 0/10/8 1/10/8 0/10/8 1/10/8

17 3 IMLL 2.00% -5.2% 0/10/8 1/10/8 0/10/8 0/10/8

18 3 ILHH 1.80% 25.6% 0/10/8 0/10/8 0/11/9 0/12/12

19 3 ILHM 3.00% 14.7% 0/10/8 0/10/8 0/11/9 0/11/10

20 3 ILHL 1.20% 3.8% 0/10/8 0/10/8 0/11/9 0/10/9

21 3 ILMH 3.00% 14.7% 0/10/8 0/10/8 0/10/8 0/10/12

22 3 ILMM 5.00% 4.7% 0/10/8 0/10/8 0/10/8 1/10/8

23 3 ILML 2.00% -5.2% 0/10/8 0/9/9 0/9/9 0/9/9

24 3 ILLH 1.20% 3.8% 0/10/8 0/9/9 0/8/9 1/9/10

25 3 ILLM 2.00% -5.2% 0/10/8 0/9/8 1/8/8 1/8/9

26 3 ILLL 0.80% -14.3% 0/10/8 0/9/9 0/8/9 0/8/8
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B.2. ADP algorithm behaviour examples for non-observed scenarios
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Figure B.1: IHHL scenario with ∏= 0.6
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Figure B.2: IHHM scenario with ∏= 0.6
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Figure B.3: ILMM scenario with ∏= 0.6
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Figure B.4: IMHM scenario with ∏= 0.6
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Figure B.5: ILHH scenario with ∏= 0.6
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Figure B.6: ILHL scenario with ∏= 0.6
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Figure B.7: ILLH scenario with ∏= 0.6
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Figure B.8: ILLM scenario with ∏= 0.6
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Figure B.9: IHLL scenario with ∏= 0.6 Figure B.10: ILHM scenario with ∏= 0.6
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Figure B.11: IMHH scenario with ∏= 0.6

0 10 20 30 40 50 60 70 80
iteration number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

to
ta

lp
ro

fit
s

($
)

⇥109

Observed ADP value of total profit
Optimal value obtained with Gurobi

Figure B.12: IMLL scenario with ∏= 0.6





C
Appendix for continuous scenario tree

This is an appendix for section 5.3.5 in chapter 5. It illustrates particular extractions of the vast continuous
scenario tree generated with the Monte Carlo sampling of a normal probability distribution.

C.1. Details of the continuous scenario tree obtained with normally dis-
tributed demand growth outcomes

Figure C.1: Detail of optimistic branches from continuous
scenario tree.

Figure C.2: Detail of pessimistic branches from continuous
scenario tree.
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126 C. Appendix for continuous scenario tree

Figure C.3: Detail of most optimistic branches from continuous
scenario tree.

Figure C.4: Detail of most-likely/optimistic branches from
continuous scenario tree.



D
Appendix for Kenya Airways case study

This is an appendix for chapter 5. On the one hand, it contains all relevant model parameters that have been
used to solve the case study applied to Kenya Airways. On the other, this appendix presents the most relevant
analysis and ADP results upon which the report discussions and conclusion have been based.

D.1. 5-stage scenario tree model
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Figure D.1: 5-period scenario tree applicable to the KQ case study.

D.2. Case study parameters of KQ network
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128 D. Appendix for Kenya Airways case study

Table D.1: Route-related parameters.

OTr Distance fr D0r LFr Ymi n

Route [h/flight] [km/ flight leg] [$/flight leg] [-/weekly] [%] [-/week]

1 3.51 2811 326 274 0.7 0

2 3.05 2436 326 393 0.7 3

3 3.88 3104 314 237 0.7 0

4 3,86 3086 327 517 0.7 4

5 3.01 2410 301 459 0,7 7

6 1.07 858 301 141 0.7 0

7 3,83 3064 327 125 0,7 0

8 3.55 2842 301 155 0.7 0

9 3.60 2880 329 127 0.7 0

10 0.35 280 90 1717 0,7 27

11 0.53 424 100 5506 0.7 62

12 0.52 412 103 510 0.7 14

13 1.13 904 142 1428 0.7 3

14 0.84 668 178 2232 0.7 35

15 1,97 1579 225 301 0.7 7

16 0.65 523 147 3042 0.7 35

17 2.82 2252 270 212 0,7 5

18 0.58 464 178 385 0.7 0

19 2.62 2099 264 284 0.7 4

20 2.81 2251 354 702 0.7 7

21 3,00 2400 147 657 0.7 0

22 4.35 3480 535 153 0.7 0

23 2.30 1840 159 812 0.7 7

24 8.34 6672 509 1570 0.7 7

25 8,55 6841 519 1308 0.7 7

26 6.73 5386 529 573 0.7 0

27 8.54 6830 529 1670 0.7 7

28 7.88 6301 529 546 0.7 0

29 11,13 8901 387 1150 0.7 4

30 11.13 8904 395 750 0.7 3

31 10.86 8685 428 650 0.7 3

32 11.53 9225 484 451 0.7 0

33 5,67 4534 282 1895 0.7 14

34 4.45 3556 236 1900 0.7 11

35 3.20 2556 263 178 0.7 2

36 4.62 3696 274 201 0.7 0

37 4.00 1719 195 815 0.7 9

38 2.04 1632 259 241 0.7 0

39 1.13 905 255 859 0.7 14

40 2.43 1940 253 386 0.7 7

41 4,00 3200 195 250 0.7 0

42 2.00 1600 140 646 0.7 14

43 1.93 1546 416 179 0.7 4

44 2.05 1636 298 291 0.7 3

45 2.08 1661 216 548 0.7 3

46 3.54 2831 341 248 0.7 5

47 3.64 2910 330 2626 0.7 21

48 3,44 2755 284 216 0.7 3

49 1.79 1428 232 188 0.7 7

50 2.39 1916 240 345 0.7 0

51 2.26 1809 278 143 0.7 7

52 2.61 2086 277 1036 0.7 7

53 3.45 2762 292 332 0.7 5

54 3.88 3103 520 273 0.7 3

55 4.30 3440 414 290 0.7 0

56 7.15 5720 450 389 0.7 0

57 8.03 6421 418 598 0.7 3

58 4.35 3483 310 189 0.7 3

59 7.82 6252 387 384 0.7 3

60 4.79 3831 353 572 0.7 7

61 4.92 3937 364 386 0.7 3

62 10.30 8240 600 950 0.7 7

63 11.30 9040 600 750 0.7 7

64 15.00 12002 587 541 0.7 0

Table D.2: Aircraft-route variable costs

cvar
i [$/ operated route]

Route E70 E90 738 788 772

1 M 30383 47698 62393 96137

2 M 27314 44069 54499 84928

3 M M 52173 68549 104880

4 M M 51898 68171 104342

5 M 27101 35533 53952 73774

6 13878 14399 17817 25283 37759

7 M M 51569 67718 103699

8 M 30637 48172 63045 97063

9 M 29102 41088 63845 98199

10 7018 7261 8974 9117 20482

11 8340 8834 12500 18148 33158

12 8031 10749 10993 11895 24428

13 18293 18566 24673 32252 39134

14 11738 12249 16535 21284 32080

15 21034 22606 28848 36460 59311

16 10345 10836 14740 22232 27746

17 M 25808 39145 50626 79428

18 9967 11174 11789 12990 25982

19 26195 27769 32167 47405 74854

20 M 25993 33675 50605 79398

21 M 27019 41410 53741 83852

22 M 35858 57934 76474 116134

23 23625 22436 32842 41954 67112

24 M M M 143664 211166

25 M M M 147221 216599

26 M M 87095 116594 173107

27 M M M 146989 229053

28 M M M 135854 200457

29 M M M 190582 278175

30 M M M 190645 278264

31 M M M 186036 271718

32 M M M 197402 287859

33 M M 54958 98660 134561

34 M M 50116 78074 115169

35 M 27526 39241 57025 88515

36 M M 61238 81021 122591

37 20606 24860 52113 55407 63496

38 21560 20733 29659 37576 60895

39 16680 15232 18536 22273 39164

40 22272 21690 32924 44059 70102

41 M 33567 53650 70581 107765

42 21243 20472 29170 36902 59939

43 20362 18046 28343 35765 58324

44 21600 20766 29720 37660 61015

45 21843 25531 37042 38175 61747

46 M 30083 41650 62814 96735

47 M 29242 42232 64476 94913

48 M 28644 44663 61214 94463

49 20218 20167 33595 38281 54797

50 28720 25343 39116 43543 77525

51 23317 22182 32367 41301 66186

52 25715 26641 38210 47121 76401

53 M 27878 36562 61361 94672

54 M M 52165 68539 104865

55 M 35531 57322 75632 114938

56 M 54191 92206 123625 183091

57 M M 96896 138380 204044

58 M M 57979 76538 116224

59 M M 113260 134823 198993

60 M M 52700 83863 126626

61 M M 65123 86094 129794

62 M M 130762 176669 258417

63 M M 143002 193508 282330

64 M M M 255856 370867
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Table D.3: Annual route traffic growth forecast ag-
gregated per region and dated 2015

Route demand growth aggregated per region

Region . Route Best case Most-likely case Worst case

Region A

1 0.00% 0.00% -8.00%

2 0.00% 0.00% 0.00%

3 15.00% 7.85% 2.00%

4 15.00% 7.85% 2.00%

5 15.00% 7.85% 2.00%

6 0.00% 0.00% 0.00%

7 15.00% 7.85% 2.00%

8 0.00% 0.00% 0.00%

9 15.00% 7.85% 2.00%

Region B

10 5.00% 2.00% -1.00%

11 5.00% 2.00% -1.00%

12 5.00% 2.00% -1.00%

Region C

13 8.00% 4.45% -3.00%

14 8.00% 4.45% -3.00%

15 8.00% 4.45% -3.00%

16 8.00% 4.45% -3.00%

17 8.00% 4.45% -3.00%

18 8.00% 0.00% -3.00%

19 8.00% 4.45% -3.00%

20 8.00% 4.45% -3.00%

21 8.00% 4.45% -3.00%

22 8.00% 4.45% -3.00%

23 8.00% 4.45% -3.00%

Region D

24 5.00% 0.69% -4.00%

25 5.00% 0.69% -4.00%

26 5.00% 0.69% -4.00%

27 5.00% 0.69% -4.00%

28 5.00% 0.69% -4.00%

Region E

29 5.00% 0.98% -1.00%

30 5.00% 0.98% -1.00%

31 5.00% 0.98% -1.00%

32 5.00% 0.98% -1.00%

Region F

33 9.00% 5.00% -3.00%

34 9.00% 5.00% -3.00%

35 9.00% 5.00% -3.00%

36 9.00% 5.00% -3.00%

Region G

37 5.00% 2.00% -6.00%

38 5.00% 2.00% -6.00%

39 5.00% 2.00% -6.00%

40 5.00% 2.00% -6.00%

41 5.00% 2.00% -6.00%

42 5.00% 2.00% -6.00%

Region H

43 10.00% 5.00% -3.00%

44 10.00% 5.00% -3.00%

45 10.00% 5.00% -3.00%

46 10.00% 5.00% -3.00%

47 10.00% 5.00% -3.00%

48 10.00% 5.00% -3.00%

49 10.00% 5.00% -3.00%

50 10.00% 5.00% -3.00%

51 10.00% 5.00% -3.00%

52 10.00% 5.00% -3.00%

53 10.00% 5.00% -3.00%

54 10.00% 5.00% -3.00%

55 10.00% 5.00% -3.00%

56 10.00% 5.00% -3.00%

Region I

57 8.00% 3.03% -5.00%

58 8.00% 3.03% -5.00%

59 8.00% 3.03% -5.00%

60 8.00% 3.03% -5.00%

61 8.00% 3.03% -5.00%

62 8.00% 3.03% -5.00%

63 8.00% 3.03% -5.00%

Region J 64 5.00% 1.00% 0.00%

Table D.4: Year-over-year entry-into-
market indicators for KQ rollout plan

Entry-into-market indicator ±r t

Route FY 0 FY 1 FY 2 FY 3 FY 4

1 0 0 1 1 1

2 1 1 0 0 0

3 1 1 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1

6 0 0 1 1 1

7 0 1 1 1 1

8 0 0 0 1 1

9 1 1 1 1 1

10 1 1 1 1 1

11 1 1 1 1 1

12 1 1 1 1 1

13 1 1 1 1 1

14 1 1 1 1 1

15 1 1 1 1 1

16 1 1 1 1 1

17 1 1 1 1 1

18 0 0 0 1 1

19 1 1 1 1 1

20 1 1 1 1 1

21 0 1 1 1 1

22 0 1 1 1 1

23 1 1 1 1 1

24 1 1 1 1 1

25 1 1 1 1 1

26 0 0 0 1 1

27 1 1 1 1 1

28 0 0 0 1 1

29 1 1 1 1 1

30 1 1 1 1 1

31 1 1 1 1 1

32 0 0 0 1 1

33 1 1 1 1 1

34 1 1 1 1 1

35 1 1 1 1 1

36 0 0 0 1 1

37 1 1 1 1 1

38 0 0 0 1 1

39 1 1 1 1 1

40 1 1 1 1 1

41 0 1 1 1 1

42 1 1 1 1 1

43 1 1 1 1 1

44 1 1 1 1 1

45 1 1 1 1 1

46 1 1 1 1 1

47 1 1 1 1 1

48 1 1 1 1 1

49 1 1 1 1 1

50 1 1 1 1 1

51 1 1 1 1 1

52 1 1 1 1 1

53 1 1 1 1 1

54 1 1 1 1 1

55 0 1 1 1 1

56 0 1 1 1 1

57 1 1 1 1 1

58 1 1 1 1 1

59 1 1 1 1 1

60 1 1 1 1 1

61 1 1 1 1 1

62 1 1 1 1 1

63 1 1 1 1 1

64 0 0 1 1 1
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D.3. Optimal fleet plans for each independent scenario

Table D.5: Optimal fleet for each scenario solved independently

Optimal fleet for independent scenarios

ID Scenario Total probability Demand variation year 0 year 1 year 2 year 3 year 4

0 IHHHH 0.39% 32.02% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/12/0 1/14/10/12/0

1 IHHHM 0.78% 26.76% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/12/0 1/14/9/12/1

2 IHHHL 0.39% 18.89% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/1 1/14/9/11/1

3 IHHMH 0.78% 27.19% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/9/12/0

4 IHHMM 1.56% 22.14% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/9/11/1

5 IHHML 0.78% 14.57% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/9/11/0

6 IHHLH 0.39% 19.79% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/9/12/0

7 IHHLM 0.78% 15.05% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1 1/14/9/10/1

8 IHHLL 0.39% 7.98% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/15/9/10/0 1/15/9/10/0

9 IHMHH 0.78% 27.25% 3/15/10/6/4 1/14/9/9/0 1/15/9/9/0 1/15/9/10/1 1/15/9/11/1

10 IHMHM 1.56% 22.20% 3/15/10/6/4 1/14/9/9/0 2/14/9/9/0 1/14/9/10/1 1/14/9/11/1

11 IHMHL 0.78% 14.63% 3/15/10/6/4 1/14/9/9/0 2/14/9/9/0 1/14/9/10/1 1/14/9/10/1

12 IHMMH 1.56% 22.63% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1 1/14/9/11/1

13 IHMMM 3.13% 17.78% 3/15/10/6/4 1/14/9/9/0 2/14/9/9/0 1/14/9/10/1 1/14/9/10/1

14 IHMML 1.56% 10.51% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1 1/14/9/10/1

15 IHMLH 0.78% 15.54% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0 1/14/9/11/0

16 IHMLM 1.56% 10.98% 3/15/10/6/4 1/14/9/9/0 1/13/9/10/0 1/14/9/10/0 1/14/9/10/1

17 IHMLL 0.78% 4.19% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0 1/14/9/10/0

18 IHLHH 0.39% 20.00% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/1 1/14/9/11/1

19 IHLHM 0.78% 15.25% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/11/0 1/14/9/11/0

20 IHLHL 0.39% 8.18% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/15/9/9/1 1/15/9/9/1

21 IHLMH 0.78% 15.68% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0

22 IHLMM 1.56% 11.12% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1

23 IHLML 0.78% 4.32% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0

24 IHLLH 0.39% 9.08% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/1 2/14/9/9/1

25 IHLLM 0.78% 4.79% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

26 IHLLL 0.39% -1.57% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 2/14/9/9/0 2/14/9/9/0

27 IMHHH 0.78% 27.66% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1 1/15/9/11/1

28 IMHHM 1.56% 22.58% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/9/11/1

29 IMHHL 0.78% 14.98% 3/15/10/6/4 1/14/9/8/1 1/14/9/9/1 1/14/9/10/1 1/14/9/10/1

30 IMHMH 1.56% 23.02% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0 1/14/10/11/0

31 IMHMM 3.13% 18.15% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1 1/15/9/10/1

32 IMHML 1.56% 10.84% 3/15/10/6/4 1/14/9/9/0 2/14/9/9/0 1/14/9/10/1 1/14/9/10/1

33 IMHLH 0.78% 15.89% 3/15/10/6/4 1/14/9/8/1 1/14/9/9/1 1/14/9/9/1 1/14/9/10/1

34 IMHLM 1.56% 11.31% 3/15/10/6/4 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0 1/14/9/10/1

35 IMHLL 0.78% 4.48% 3/15/10/6/4 2/13/9/9/0 1/13/9/10/0 2/13/9/10/0 2/13/9/10/0

36 IMMHH 1.56% 23.08% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/1 1/14/9/11/1

37 IMMHM 3.13% 18.21% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/1 1/14/9/10/1

38 IMMHL 1.56% 10.90% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/1 1/14/9/10/1

39 IMMMH 3.13% 18.64% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/12/0

40 IMMMM 6.25% 13.96% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0

41 IMMML 3.13% 6.93% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0

42 IMMLH 1.56% 11.80% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0

43 IMMLM 3.13% 7.40% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

44 IMMLL 1.56% 0.84% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

45 IMLHH 0.78% 16.10% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1

46 IMLHM 1.56% 11.51% 3/15/10/6/4 1/14/9/9/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1

47 IMLHL 0.78% 4.68% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

48 IMLMH 1.56% 11.95% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/1 2/13/9/10/1

49 IMLMM 3.13% 7.54% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/1 2/13/9/9/1

50 IMLML 1.56% 0.97% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

51 IMLLH 0.78% 5.58% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0

52 IMLLM 1.56% 1.44% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/0 2/13/9/9/1

53 IMLLL 0.78% -4.70% 3/15/10/6/4 2/13/9/9/0 2/13/9/9/0 2/13/9/9/0 2/13/9/9/0

54 ILHHH 0.39% 21.15% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/1 1/15/9/10/1

55 ILHHM 0.78% 16.34% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/1 1/14/9/10/1

56 ILHHL 0.39% 9.17% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/15/9/10/0 1/15/9/10/0

57 ILHMH 0.78% 16.77% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/0 1/14/9/11/0

58 ILHMM 1.56% 12.16% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/9/1 1/14/9/10/1

59 ILHML 0.78% 5.26% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/0

60 ILHLH 0.39% 10.08% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0 2/14/9/10/0

61 ILHLM 0.78% 5.74% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

62 ILHLL 0.39% -0.70% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/14/9/9/0 2/14/9/9/0

63 ILMHH 0.78% 16.84% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/0 1/16/9/10/0

64 ILMHM 1.56% 12.22% 3/15/10/6/4 2/14/9/8/0 1/14/9/9/0 1/14/9/10/0 1/14/9/10/1

65 ILMHL 0.78% 5.33% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

66 ILMMH 1.56% 12.65% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0 2/13/9/11/0

67 ILMMM 3.13% 8.22% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0 2/13/9/10/0

68 ILMML 1.56% 1.59% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/9/1 2/13/9/9/1

69 ILMLH 0.78% 6.23% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/9/0 2/13/9/10/0

70 ILMLM 1.56% 2.06% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/9/0 2/13/9/9/1

71 ILMLL 0.78% -4.14% 3/15/10/6/4 2/13/9/8/0 2/13/9/9/0 2/13/9/9/0 2/13/9/9/0

72 ILLHH 0.39% 10.29% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/9/1 2/13/9/10/1

73 ILLHM 0.78% 5.94% 3/15/10/6/4 2/14/9/8/0 2/13/9/8/0 2/13/9/10/0 2/13/9/10/0

74 ILLHL 0.39% -0.51% 3/15/10/6/4 2/14/9/8/0 2/14/9/8/0 2/14/9/9/0 2/14/9/9/0

75 ILLMH 0.78% 6.37% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/9/0 2/13/9/10/0

76 ILLMM 1.56% 2.20% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/8/1 2/13/9/9/1

77 ILLML 0.78% -4.01% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/9/0 2/13/9/9/0

78 ILLLH 0.39% 0.40% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/9/0 2/14/9/9/0

79 ILLLM 0.78% -3.53% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/9/0 2/13/9/9/0

80 ILLLL 0.39% -9.33% 3/15/10/6/4 2/13/9/8/0 2/13/9/8/0 2/13/9/8/1 2/13/9/8/1
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D.4. Profitability analysis
Table D.6: Performance analysis of recommended ADP policy against most-likely solution and independent-scenario

solutions - operating profits expressed on a weekly basis in USD

Independent scenarios Most-likely solution ADP adaptive policy

ID Scenario Total probability Demand variation Optimality Gap OF Dif.Best OF Dif.Best OF

0 IHHHH 0.39% 32.02% 0.82% 1289499 -5.30% 1221168 -0.87% 1278281

1 IHHHM 0.78% 26.76% 0.78% 1233933 -4.58% 1177390 -0.96% 1222100

2 IHHHL 0.39% 18.89% 0.52% 1121545 -3.66% 1080508 -2.11% 1097912

3 IHHMH 0.78% 27.19% 0.94% 1172776 -3.59% 1130704 -0.92% 1162025

4 IHHMM 1.56% 22.14% 0.66% 1114352 -3.23% 1078317 -0.83% 1105112

5 IHHML 0.78% 14.57% 0.60% 1009371 -2.86% 980456 -1.29% 996338

6 IHHLH 0.39% 19.79% 0.67% 966618 -1.53% 951818 -0.96% 957296

7 IHHLM 0.78% 15.05% 0.72% 912058 -1.51% 898319 -1.46% 898729

8 IHHLL 0.39% 7.98% 0.86% 810288 -1.71% 796459 -1.17% 800777

9 IHMHH 0.78% 27.25% 0.64% 1117959 -3.10% 1083301 -0.54% 1111962

10 IHMHM 1.56% 22.20% 0.85% 1054732 -2.26% 1030913 0.03% 1055025

11 IHMHL 0.78% 14.63% 0.73% 950646 -1.85% 933052 -0.42% 946665

12 IHMMH 1.56% 22.63% 0.83% 1004434 -1.34% 991010 0.14% 1005870

13 IHMMM 3.13% 17.78% 0.61% 941270 -0.83% 933490 -0.11% 940259

14 IHMML 1.56% 10.51% 1.37% 839001 -0.21% 837241 -0.36% 835944

15 IHMLH 0.78% 15.54% 0.56% 805490 -0.05% 805059 -1.13% 796404

16 IHMLM 1.56% 10.98% 1.11% 745383 0.16% 746546 -0.52% 741478

17 IHMLL 0.78% 4.19% 1.28% 647763 -1.03% 641114 -2.16% 633761

18 IHLHH 0.39% 20.00% 0.74% 817268 -0.35% 814367 -1.91% 801695

19 IHLHM 0.78% 15.25% 0.89% 762071 -0.16% 760868 -1.71% 749025

20 IHLHL 0.39% 8.18% 1.04% 661245 -0.34% 659008 -2.19% 646765

21 IHLMH 0.78% 15.68% 0.51% 714757 0.07% 715241 -2.09% 699815

22 IHLMM 1.56% 11.12% 0.55% 658090 -0.21% 656728 -1.93% 645362

23 IHLML 0.78% 4.32% 0.92% 559152 -1.40% 551304 -4.10% 536248

24 IHLLH 0.39% 9.08% 1.40% 513058 0.35% 514840 -3.81% 493513

25 IHLLM 0.78% 4.79% 1.50% 459691 -1.70% 451861 -5.79% 433098

26 IHLLL 0.39% -1.57% 1.50% 346216 -5.42% 327444 -13.55% 299310

27 IMHHH 0.78% 27.66% 1.06% 1061817 -3.20% 1027822 -0.60% 1055474

28 IMHHM 1.56% 22.58% 1.01% 1001501 -2.43% 977136 -0.11% 1000381

29 IMHHL 0.78% 14.98% 1.44% 891306 -1.43% 878596 0.02% 891523

30 IMHMH 1.56% 23.02% 1.06% 950226 -1.46% 936391 0.25% 952557

31 IMHMM 3.13% 18.15% 0.98% 885261 -0.81% 878086 0.20% 887026

32 IMHML 1.56% 10.84% 0.90% 789039 -1.05% 780783 -0.98% 781335

33 IMHLH 0.78% 15.89% 1.50% 742195 0.98% 749486 -0.31% 739865

34 IMHLM 1.56% 11.31% 1.03% 691858 -0.11% 691126 -0.98% 685046

. 35 IMHLL 0.78% 4.48% 0.98% 596172 -1.48% 587353 -2.96% 578516

36 IMMHH 1.56% 23.08% 0.90% 901812 -1.56% 887708 -0.84% 894259

37 IMMHM 3.13% 18.21% 1.03% 835186 -0.69% 829404 -0.88% 827838

38 IMMHL 1.56% 10.90% 0.78% 740436 -1.13% 732101 -2.12% 724710

39 IMMMH 3.13% 18.64% 0.95% 781678 0.16% 782945 -0.59% 777054

40 IMMMM 6.25% 13.96% 1.29% 728496 0.00% 728496 -0.22% 726902

41 IMMML 3.13% 6.93% 0.83% 629653 -0.84% 624386 -0.96% 623584

42 IMMLH 1.56% 11.80% 1.17% 592897 0.35% 594942 -1.03% 586771

43 IMMLM 3.13% 7.40% 1.50% 534780 -0.56% 531792 -2.11% 523509

44 IMMLL 1.56% 0.84% 1.50% 436702 -3.12% 423085 -4.89% 415344

45 IMLHH 0.78% 16.10% 1.18% 597866 0.47% 600702 0.08% 598315

46 IMLHM 1.56% 11.51% 1.12% 542146 0.04% 542342 0.07% 542542

47 IMLHL 0.78% 4.68% 1.44% 445621 -1.58% 438569 -2.07% 436387

48 IMLMH 1.56% 11.95% 1.50% 490875 0.75% 494557 -0.33% 489256

49 IMLMM 3.13% 7.54% 1.50% 436117 -1.06% 431473 -1.76% 428424

50 IMLML 1.56% 0.97% 1.50% 338349 -4.63% 322700 -5.30% 320401

51 IMLLH 0.78% 5.58% 1.41% 290836 -5.36% 275236 -7.70% 268440

52 IMLLM 1.56% 1.44% 1.50% 229574 -9.86% 206928 -7.15% 213163

53 IMLLL 0.78% -4.70% 1.50% 121143 -35.57% 78049 -17.45% 100006

54 ILHHH 0.39% 21.15% 1.20% 668880 -2.06% 655134 -1.92% 656043

55 ILHHM 0.78% 16.34% 1.11% 615721 -1.83% 604434 -1.85% 604353

56 ILHHL 0.39% 9.17% 1.41% 510695 -2.12% 499879 -2.24% 499274

57 ILHMH 0.78% 16.77% 1.50% 559650 -0.70% 555739 -0.90% 554601

58 ILHMM 1.56% 12.16% 1.50% 504072 -1.19% 498086 -0.95% 499290

59 ILHML 0.78% 5.26% 1.50% 404215 -3.16% 391442 -2.50% 394104

60 ILHLH 0.39% 10.08% 1.46% 368197 -2.64% 358494 -2.42% 359272

61 ILHLM 0.78% 5.74% 1.50% 312198 -4.76% 297347 -3.16% 302323

62 ILHLL 0.39% -0.70% 1.50% 202656 -11.97% 178397 -6.60% 189273

63 ILMHH 0.78% 16.84% 1.50% 499508 -0.55% 496772 -1.71% 490978

64 ILMHM 1.56% 12.22% 1.50% 446221 -1.59% 439119 -2.24% 436240

65 ILMHL 0.78% 5.33% 1.50% 347411 -4.30% 332475 -5.43% 328535

66 ILMMH 1.56% 12.65% 1.21% 399089 -2.02% 391021 -3.15% 386525

67 ILMMM 3.13% 8.22% 1.50% 339472 -3.32% 328205 -3.01% 329254

68 ILMML 1.56% 1.59% 1.50% 240680 -9.22% 218500 -9.00% 219024

69 ILMLH 0.78% 6.23% 1.50% 194918 -10.19% 175051 -13.38% 168846

70 ILMLM 1.56% 2.06% 1.50% 135788 -20.32% 108192 -18.41% 110794

71 ILMLL 0.78% -4.14% 1.50% 27374 -155.29% -15135 -138.91% -10651

72 ILLHH 0.39% 10.29% 1.50% 196031 -7.14% 182037 -16.04% 164580

73 ILLHM 0.78% 5.94% 1.50% 144590 -16.46% 120794 -13.57% 124972

74 ILLHL 0.39% -0.51% 1.50% 37108 -94.84% 1916 -102.93% -1089

75 ILLMH 0.78% 6.37% 1.50% 83306 -30.86% 57602 -27.39% 60488

76 ILLMM 1.56% 2.20% 1.50% 23720 -139.03% -9257 -117.40% -4128

77 ILLML 0.78% -4.01% 1.50% -82369 -60.72% -132385 -21.32% -99928

78 ILLLH 0.39% 0.40% 1.50% -124688 -37.33% -171234 -20.52% -150273

79 ILLLM 0.78% -3.53% 1.50% -185460 -30.90% -242773 -11.11% -206070

80 ILLLL 0.39% -9.33% 1.50% -298990 -28.94% -385524 -7.66% -321899

Expected values 618438 -1.99% 606154 -1.59% 608596

D.5. Fleet maps
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Figure D.2: Evolution of total fleet size map Figure D.3: Evolution of B738 fleet map
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Figure D.4: Evolution of B772 fleet map Figure D.5: Evolution of B788 fleet map



134 D. Appendix for Kenya Airways case study

Figure D.6: Evolution of E70 fleet map Figure D.7: Evolution of E90 fleet map
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Figure D.8: Average weekly operating profits, route frequency and passengers carried per scenario in year 0
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Figure D.9: Average weekly operating profits, route frequency and passengers carried per scenario in year 1
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Figure D.10: Average weekly operating profits, route frequency and passengers carried per scenario in year 2
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Figure D.11: Average weekly operating profits, route frequency and passengers carried per scenario in year 3
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Figure D.12: Aircraft frequency assignments in function of route distance.
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D.7. CPU performance
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Figure D.13: 5-period scenario tree applicable to the KQ case study.
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D. Teodorović and E. Krcmar-Nozić. Multicriteria model to determine flight frequencies on an airline network
under competitive conditions. Transportation Science, 23(1):14–25, 1989.



144 Bibliography

H. Topaloglu and W.B. Powell. Dynamic-programming approximations for stochastic time-staged integer
multicommodity-flow problems. INFORMS Journal on Computing, 18(1):31–42, 2006.

Y. Wang, H. Sun, J. Zhu, and B. Zhu. Optimization model and algorithm design for airline fleet planning in a
multiairline competitive environment. Mathematical Problems in Engineering, 2015, 2015.

W. Wei and M. Hansen. Impact of aircraft size and seat availability on airlines’ demand and market share in
duopoly markets. Transportation Research Part E: Logistics and Transportation Review, 41(4):315–327,
2005.

W. Wei and M. Hansen. Airlines’ competition in aircraft size and service frequency in duopoly markets. Trans-
portation Research Part E: Logistics and Transportation Review, 43(4):409–424, 2007.


