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Executive Summary 
 

The Netherlands, with over 3,500 km of primary flood defences managed by Rijkswaterstaat and 
regional water boards (Rijkswaterstaat, 2022), faces significant flood risks due to its low-lying 
geography (Haasnoot et al., 2020). Historical floods, such as the devastating 1953 flood that claimed 
over 1,800 lives (Van Alphen et al., 2011), highlight the importance of robust flood defences. Initiatives 
like the HWBP ensure compliance with safety standards mandated by the Water Act, requiring all dike 
sections to meet legal safety standards by 2050 (Delta Programme Commissioner, 2019). As sea levels 
rise, the responsibilities of the HWBP and Waterboards become increasingly expensive and complex 
to predict. By utilising Reference Class Forecasting enhanced with refined success factors, this research 
provides more accurate cost predictions, aiding the PD HWBP in planning and financing essential flood 
protection measures more effectively for the decades ahead. 

This thesis explores the application of success factors in combination with Reference Class Forecasting 
(RCF) to improve cost predictions for dike reinforcement projects under the Dutch Flood Protection 
Program (HWBP). Accurate forecasting is critical for managing infrastructure budgets, especially as the 
Netherlands faces increasing demands on flood protection. Traditional cost estimation approaches are 
often hampered by optimism bias and limited ability to capture unique, project-specific variables. By 
analysing key factors like location, soil type, and environmental constraints, the study aims to refine 
RCF for improved accuracy.  

This research aims to enhance RCF methodology by integrating success factors relevant to dike 
reinforcement, assessing the model’s predictive power, and providing actionable insights for future 
applications in infrastructure project management. The study aims to address the following main 
research question:  

To what extent can Reference Class Forecasting combining success factors make an accurate price 
prediction for the financial programming of HWBP’s dike reinforcements until 2050? 

Methodology 
To develop a refined cost estimation model, this study employed an approach, combining literature 
review, expert interviews, and statistical modelling with a case study. This study evaluates the impact 
of incorporating success factors into a Reference Class Forecast (RCF) to improve cost prediction 
accuracy for dike reinforcement projects. The research scope focuses on HWBP-2 projects, which serve 
as the reference class, ensuring consistency and comparability. This study analyses dike reinforcements 
and therefore excludes rebuilds in order to maintain data homogeneity. 

The research is structured into three main phases. In the first phase, literature reviews explore state-
of-the-art forecasting methods and identify key cost-driving factors. Semi-structured interviews with 
experienced practitioners validate these factors. In the second phase, data is collected and analysed 
using SPSS software, with correlation and regression analyses determining the significance and impact 
of identified variables. In the third phase, the effectiveness of the improved RCF model is tested against 
the traditional method, comparing predictive accuracy and reliability. 

A case study of 43 HWBP-2 projects forms the foundation for the analysis. These projects are matched 
with 28 new HWBP projects to test the improved RCF model’s accuracy. The study highlights key cost-
driving factors like geographic location, soil type, and regulatory conditions, ensuring methodological 
rigor and practical relevance. The findings contribute to refining forecasting methods critical for the 
HWBP’s financial programming and broader flood protection planning. 



State-of-the-art cost forecasting models 

First the research started by evaluating three state-of-the-art cost prediction models in the 
infrastructure sector: Traditional Cost Estimating, Probabilistic Estimating, and Reference Class 
Forecasting (RCF). Each method has distinct strengths and limitations. Traditional Cost Estimating 
produces detailed, component-specific estimates and is flexible for repeatable and predictable 
projects but struggles with complexity, often underestimating costs for unique projects and being 
prone to bias. Probabilistic Estimating excels in managing uncertainty by quantifying risks and 
providing a range of possible cost outcomes but requires high-quality data, sophisticated statistical 
tools, and reliable baseline estimates, making it resource-intensive. RCF, tailored for complex or high-
stakes projects, mitigates optimism bias by using historical data from similar projects to provide 
realistic outcome-based estimates. However, it relies heavily on the availability and relevance of a 
robust reference class and lacks detail on specific project components. 

These models vary in their focus on detail, uncertainty management, and realism. Traditional cost 
estimating prioritises component detail but lacks reliability in uncertain scenarios, while Probabilistic 
Estimating excels in risk quantification but is resource-heavy. RCF balances realism and complexity but 
requires meticulous selection of comparable projects. Ultimately, the effectiveness of these methods 
depends on the quality and relevance of the underlying data, underscoring the importance of robust 
data collection and maintenance for accurate cost predictions. RCF is the most suitable method for 
forecasting the costs of dike reinforcements due to the availability of a general reference class and 
financial data that lacks the precision required for traditional cost estimating or probabilistic estimating 
methods.  

Factors influencing costs 

To refine cost predictions, eight key success factors were identified through literature review and 
validated via expert interviews. These factors include project location (urban, rural, or Natura 2000 
areas), soil type, proximity to buildings, compliance with national safety standards, and the managing 
water authority. Using data from 43 HWBP-2 projects, a correlation and regression analysis quantified 
the impact of each factor on costs. Key factors like soil type, proximity to urban areas, and N2000 
designation emerged as significant predictors, offering valuable insights into cost dynamics. This 
analysis enhances the ability to forecast costs accurately and supports resource-efficient planning for 
future dike reinforcement projects. 

Results regression weighted reference class forecasting (RWRCF) 

The findings reveal that the integration of success factors into the RCF model suggests a measurable 
increase in prediction accuracy. The following key findings have been measured: 

- Standard Deviation of Errors: 

The RWRCF model demonstrated significantly lower variability in prediction errors (2.92 
per km and 3.54 for total costs) compared to the traditional RCF (5.58 per km and 6.40 for 
total costs). This reflects a more stable and dependable forecasting method. 

- R-Squared and Adjusted R-Squared: 

The RWRCF model achieved higher R-squared values (0.45 per km and 0.52 for total costs) 
than traditional RCF (0.23 per km and 0.34 for total costs), indicating a better fit to the 
data. Adjusted R-squared values reinforced these findings, with RWRCF avoiding 
unnecessary complexity while maintaining strong predictive alignment. 



- Median Absolute Error and sMAPE: 

The RWRCF model consistently delivered smaller typical errors (Median Absolute Error of 
1.67 per km and 2.10 for total costs versus traditional RCF’s 4.20 per km and 5.05 for total 
costs). It also achieved substantially lower sMAPE values (20.35% per km and 18.90% for 
total costs), nearly halving the errors of the traditional RCF (55.68% per km and 48.75% for 
total costs). 

- MASE (Mean Absolute Scaled Error): 

RWRCF achieved MASE values near the naive benchmark (1.20 per km and 1.15 for total 
costs), while traditional RCF showed far poorer performance (2.45 per km and 2.67 for 
total costs), indicating towards the RWRCF model’s efficiency. 

This study aimed to measure the potential value of integrating success factors into RCF for cost 
forecasting in complex infrastructure projects. By achieving greater accuracy in prediction, the model 
can help infrastructure managers and policymakers avoid costly overruns, ensure more effective use 
of resources, and improve the reliability of budget forecasts. The findings are particularly relevant for 
the HWBP, where enhanced cost prediction can support better planning and resource allocation in 
response to evolving flood protection needs. 

The research concludes with several recommendations for future research and recommendations for 
practice. First, it is suggested to incorporate the success-factor-enhanced RCF model into routine 
project cost estimations for HWBP to improve cost predictability. Therefore, it advocates for the 
creation and maintenance of a comprehensive historical project database, as this is essential for the 
continued refinement and validation of RCF models. Third, it recommends expanding the model’s 
application to other infrastructure sectors with similar cost estimation challenges, such as road 
construction, water management, and environmental restoration projects. This cross-sector 
applicability could further validate the model's effectiveness and provide insights for other types of 
public infrastructure forecasting. Another key finding of the research is that the current model seems 
to predict total costs of a portfolio of projects better than the costs of individual projects. Therefore it 
is recommended that future research focusses on improving the uncertainty of the model for 
individual projects, possibly making the developed method better suited to predict portfolios and 
individual projects. 

In conclusion, this thesis indicates that incorporating success factors into RCF significantly enhances its 
predictive accuracy, making it a valuable tool for cost management in flood protection and potentially 
other infrastructure areas. By aligning with empirical data and context-specific variables, the RWRCF 
model offers a more objective framework for project cost estimation, aligning well with both 
theoretical research and practical needs within public infrastructure management. 
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1. Introduction 
 

This chapter highlights the importance of sufficient dike protection and importance of predicting the 
costs of the projects in the Netherlands. Moreover, the research questions are discussed. First, in 
section 1.1, the relevant background information on the research topic is discussed. Second, in section 
1.2, the identified problem description will be discussed. Subsequently, in section 1.3, the research 
questions of this study will be presented. Finally, the research relevance, including the scientific as well 
as practical relevance, will be discussed in section 1.4. 

1.1 Background information 
This report is written for my graduation thesis, to obtain a master’s degree in Construction, 
Management and Engineering with the track Engineering & Systems. This research is conducted at AT 
Osborne and at the Programme Direction of the Flood Protection Programme 
(Hoogwaterbeschermingsprogramma, PD HWBP), with supervision of the University of Technology 
Delft. The focus of this research is on the prediction of prices of dike reinforcements using Reference 
Class Forecasting. The research of this master thesis is executed with the support of the company AT 
Osborne and PD HWBP. Their contribution is in the form of providing data, guidance and professional 
experience. The results of this research contributes to the field of knowledge on making price 
predictions for infrastructure projects, this is achieved by answering the following research-question:  

‘To what extent can Reference Class Forecasting combining success factors make an accurate price 
prediction for the financial programming of HWBP’s dike reinforcements until 2050?’ 

As climate change is causing the sea-level to rise, and increasing the flow of water through the rivers, 
it is vital for the Netherlands to protect herself for the future. To ensure that the Netherlands is 
protected, a large number of dikes need to be reinforced. In order to complete the dike 
reinforcements, it is necessary to have an accurate financial planning. The research aims to assess 

whether Reference Class Forecasting (RCF) is a viable option to use for the HWBP programme and aims 
to use several factors in combination with the RCF to create a more accurate prediction.  

In section 1.2, the problem description will be set out in which the reason for this topic and research 
are elaborated upon. Moreover, within this chapter the scientific and practical relevance are described. 
In section 1.3, the research goal will be explained in which main question of this research, the sub-
questions and the structure to arrive to the answer on the main question will be elaborated upon. 
Additionally, the expected results will be discussed.  

1.2 Problem description 
Reference Class Forecasting (RCF) is a systematic forecasting methodology that uses historical data 
from similar past projects—the "reference class"—to improve the accuracy of predictions for future 
projects. Initially developed by Daniel Kahneman and Bent Flyvbjerg, RCF aims to counteract biases 
such as optimism bias and strategic misrepresentation, both of which frequently lead to project cost 
overruns and schedule delays (Flyvbjerg, 2006; Kahneman & Tversky, 1979). In contrast to traditional 
forecasting methods, which rely on subjective expert judgment or detailed models of individual 
projects, RCF offers a statistical approach by comparing a new project with a defined class of past 
projects. This data-driven method allows planners to base their estimates on observed outcomes 
rather than theoretical expectations (Flyvbjerg, 2009). 
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The methodology has gained traction in large-scale infrastructure projects, where the stakes are high 
and cost overruns are common. RCF has been shown to provide more accurate forecasts by 
incorporating a wide range of potential outcomes drawn from historical data (Love et al., 2019). 
Despite its growing acceptance, however, there are significant barriers to its effective implementation. 
Research suggests that several critical success factors are not consistently applied in practice, which 
diminishes the potential benefits of the methodology (Cantarelli et al., 2012). 

One key issue lies in the selection of the reference class. The reference class is the set of similar projects 
that are used to forecast a project that still needs to be completed, and where more information is 
desired on for example the costs. The accuracy of RCF is highly dependent on the quality and relevance 
of the reference class chosen. A study by Cantarelli et al. (2010) highlighted that many project 
managers face difficulties in assembling a sufficiently large and appropriate reference class, often due 
to a lack of comparable projects or insufficient data. Furthermore, there are often discrepancies 
between historical projects and current projects in terms of scale, context, and external conditions, 
which can result in inaccurate forecasts (Love et al., 2019). In addition, researchers such as Budzier and 
Flyvbjerg (2013) point out that RCF does not inherently account for qualitative factors such as 
stakeholder influence, political environments, or technological changes, which can have substantial 
effects on project outcomes. 

Although RCF provides a statistically grounded forecast, its utility is limited by the quality and 
comprehensiveness of the underlying data. Recent studies indicate that the absence of a robust 
database of historical project performance leads to suboptimal implementation of RCF (Van Oorschot 
et al., 2016). Flyvbjerg (2014) noted that this issue is particularly acute in developing countries, where 
data collection practices may be inconsistent or underdeveloped. As a result, RCF may not always 
capture the full complexity of the project environment. 

Despite these challenges, the potential of RCF remains significant, particularly when combined with 
complementary methods. However, research by Love et al. (2019) demonstrates that many 
organizations have yet to integrate RCF fully into their project management frameworks. They argue 
that RCF is often applied as a standalone tool rather than as part of a broader risk management 
strategy, which limits its effectiveness in mitigating the full range of uncertainties encountered in large-
scale projects. 

This thesis will explore the current state of RCF in both theory and practice, with a focus on identifying 
the gaps between the ideal implementation of the methodology and its real-world application. 
Through a review of scientific literature and case studies, this research will assess how key success 
factors affect the accuracy of the forecasting abilities of RCF.  

The challenges of implementing Reference Class Forecasting are not merely theoretical; they emerge 
in real-world applications, especially in large-scale infrastructure projects where accurate forecasting 
is essential. A notable example is the Flood Protection Programme for dike reinforcements in The 
Netherlands. This case study was specifically chosen due to the high level of comparability among 
projects, a key requirement for effective Reference Class Forecasting, as successful RCF relies on 
selecting a set of reference projects that are sufficiently similar in scope and context (Flyvbjerg, 2006; 
Lovallo & Kahneman, 2003). Additionally, it is uncommon to have a single program oversee such a large 
number of large-scale infrastructure projects, which enhances both data quality and availability. 

Every year, flooding is a major natural hazard that affects the lives of 520 million people, takes around 
25,000 lives, and causes between €50 and €60 billion in damages across the globe (Van Alphen et al., 
2011). As a result of this, it is crucial to tackle flood management head-on. The Netherlands, with its 
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unique geography, is particularly at risk a large area of the country is actually below sea level,see figure 
1.2.1, making it prone to flooding (Haasnoot et al., 2020). In the history of the Netherlands, several 
floods occurred. The 1953 flood was particularly devastating, hitting the southwest of the Netherlands 
hard, leading to over 1,800 deaths and widespread damage (Van Alphen et al., 2011). 

 

Figure 1.2.1: estimated individual risk for flooding for the Netherlands (Rijkswaterstaat, 2015) 

The flood of 1953 was a turning point for the protection of vulnerable areas in the Netherlands. The 
Dutch government realised the importance of robust flood defences and started upgrading dikes, 
locks, and dunes. They also made the strategic decision to close off most tidal outlets, except for a few 
key channels that kept Rotterdam and Antwerp's ports accessible (Hall, 2015). On top of that, they 
recognised that some dikes weren't up to the necessary standards and decided to improve them to 
meet safety standards (Delta Programme Commissioner, 2019). To address these challenges, the 
Netherlands launched several initiatives under the Delta Programme, including the Room for the River 
and the Flood Protection Program (HWBP).  

Nowadays, the Netherlands has approximately 3,500 km of primary flood defences. These primary 
defences are managed by the Directorate-General for Public Works and Water Management 
(Rijkswaterstaat) and the water boards (Rijkswaterstaat, 2022). In 2017, new water safety standards 
were introduced, shifting the focus from the probability of exceeding levels per dike ring to the risk of 
flooding per dike section. This means that since then, primary defences have been divided into dike 
sections. The Water Act stipulates that by 2050, all dike sections must meet legal standards. Thus, dike 
sections are also referred to as standard sections (AT Osborne, 2020). 

From 2017 to 2023, all primary flood defences in the Netherlands were assessed by the dike managers 
in the first national assessment round (LBO1). The assessment determined whether the primary flood 
defences met the legal standards as set in the Water Act by the prescribed date, December 31, 2022, 
and if not, to what extent they deviate from these standards. The results identified the need for 
reinforcements in the flood protection programme in the Netherlands. The evaluation system is 
designed to be cyclical. By 2050, dike managers will conduct two more assessment rounds: from now 
until 2034 and from 2035 to 2046. This means that new insights can emerge from each assessment 
round, potentially leading to changes in the reinforcement requirements. 

The PD HWBP controls the financial agenda of the dike reinforcement programme in the Netherlands. 
The HWBP funds 90% of the expected costs to the regional water authorities that have the task to 
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execute the project they need funding for. In 2023 AT Osborne together with Witteveen+Bos 
conducted a study in which they provide the PD HWBP with a rough estimate of the costs of dike 
reinforcements until 2050. The estimation predicts prices ranging from 15,7 billion up to 32,9 billion 
euros. (AT Osborne & Witteveen+Bos, 2023) This is a wide range and it does not provide the PD HWBP 
with sufficient knowledge on how to plan the dike reinforcements over the years. Therefore, this 
research will contribute to knowledge on the most important factors that cause the prices of dike 
reinforcements in the past and will extrapolate these results into the future using Reference Class 
Forecasting to provide the PD HWBP with a narrower range of the expected costs of the dike 
reinforcements. 

1.3 Research questions / development statement 
This section contains the main research question, along with the sub-questions. The research 
questions follow from the problem statement. . In section 1.3, the expected results will be described. 
Chapter 2.2 will describe how the answers to the sub-questions contribute to answering the main 
research question 

1.3.1  Research questions 
‘To what extent can Reference Class Forecasting, combining success factors make an accurate price 
prediction for the financial programming of HWBP’s dike reinforcements until 2050?’ 

Sub-questions: 

1. What are the state-of-the-art models used to forecast prices in the infrastructure sector? 
2. Is Reference Class Forecasting a viable way to predict prices for dike reinforcements? 
3. What are the most important factors that can be used to predict the prices for dike 

reinforcements in the Netherlands? 
4. How can the factors enhance the reference class forecast model? 
5. What is the uncertainty of the price prediction? 

1.3.2 Expected Results 
After completing this research, the expected result is that there is a clear overview of the most 
important factors determining the price for dike reinforcements. Moreover it is expected that the price 
prediction gives a more accurate view on the costs of the dike-reinforcements that need to be 
completed. Another outcome of the research could be that several conditions are found that need to 
be fulfilled before the impact of success factors can be concluded.  

1.4 Scientific relevance 
In traditional project management practices, forecasts are often based on deterministic cost estimates 
that do not fully account for variability and risk inherent in large-scale projects. Reference Class 
Forecasting (RCF) provides a probabilistic approach that overcomes this limitation by generating cost 
distributions from historical data, allowing for a realistic and data-driven assessment of cost 
uncertainty. By expanding RCF with success factors relevant to dike reinforcement, such as project 
scale, complexity, environmental conditions, and technological factors, this research aims to enhance 
the precision of cost predictions specifically for dike infrastructure projects, which are critical in flood 
defence.  

The scientific relevance of this research lies in advancing the accuracy and reliability of project cost 
forecasting within large-scale, long-term infrastructure programs. The study specifically addresses the 
research question: “To what extent can Reference Class Forecasting combining success factors make 
an accurate price prediction for the financial programming of HWBP’s dike reinforcements until 2050?” 
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This question not only holds importance for the financial programming of the High Water Protection 
Program (HWBP) but also contributes significantly to the broader fields of project management, risk 
assessment, and infrastructure finance by refining methodologies used to manage cost uncertainties 
in complex, long-term projects. 

This study’s combination of RCF with success factors aligns the forecasting model more closely with 
the unique conditions and variables that influence dike reinforcement projects. Success factors in this 
context serve as modifiers that capture the specific cost-driving characteristics of individual projects. 
Incorporating these factors into the forecasting process allows the model to provide more detailed 
predictions, which can significantly reduce the risk of budget overruns that have historically plagued 
similar projects. By calibrating RCF with these tailored factors, the research seeks to answer whether 
such a model can deliver an improvement in forecasting accuracy for the HWBP’s long-term 
programming. 

1.5 Practical relevance 
The results of this research will aim at giving clarity for the HWBP on the future investments that are 
needed to protect the Netherlands from rising tide and increasing flow from rivers such as the Ijssel 
and Rijn, giving them an opportunity to enhance their financial planning for the future. And moreover 
gain insights into the most impactful factors that determine the costs for specific projects. The practical 
relevance of this research lies in its potential to improve cost management and strategic financial 
planning for long-term, high-stakes infrastructure projects, specifically within the HWBP aimed at 
reinforcing the Netherlands’ flood defence. Accurate forecasting for such projects is essential given the 
substantial investments required, the risk of budget overruns, and the critical role of dike infrastructure 
in protecting communities from flood risks. By exploring how Reference Class Forecasting (RCF), 
combined with project-specific success factors, can refine cost predictions, this study offers practical 
insights for improving the financial programming of HWBP dike reinforcements up to 2050. 

Beyond its implications for the HWBP, the RWRCF RCF approach with success factors has broader 
practical applications for similar infrastructure programs, both within the Netherlands and 
internationally. Large-scale infrastructure projects in transportation, urban development, and 
environmental protection share many characteristics with dike reinforcement projects: high costs, long 
timelines, and significant exposure to financial risk. By demonstrating a method to incorporate tailored 
success factors into reference class forecasts, this research provides a replicable model that can be 
adapted to other projects. For infrastructure stakeholders, this research could offer a practical tool to 
better manage the financial complexities of public projects, leading to more efficient use of resources 
and ultimately delivering greater value to the public. 
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2 Methodology 
 

Various perspectives can be used to examine the impact of success factors on a Reference Class 
Forecast. This chapter outlines the structure and approach chosen for this study, while also detailing 
the scope and methodology. Section 2.1 defines the research scope, establishing the boundaries of 
the research. Section 2.2 focuses on the research setting and methodology, describing the methods 
employed in this study. Section 2.3 addresses how the literature review will answer each research sub-
question. Section 2.4 focusses on how the interviews are conducted. After that section 2.5 will discuss 
the data-analysis methodology. In 2.6 the case study is discussed and lastly, in section 2.7, the outline 
of the research is shown. 

2.1 Research Scope 
This research aims to evaluate the impact of incorporating success factors into a Reference Class 
Forecast (RCF), using dike reinforcement projects as a focused case study. This section outlines the 
specific parameters that have been set to define the research scope and maintain clarity throughout 
the study. 

First, the analysis will be limited to dike reinforcement projects that have been completed under the 
HWBP-2 programme. This is de predecessor to the current Flood defence programme. The decision 
ensures consistency in the reference class by focusing on projects that share common characteristics 
and were executed under similar organizational and regulatory conditions. By restricting the study of 
the reference class to HWBP-2 dike reinforcements, the research can draw upon reliable, comparable 
historical data to construct the reference class needed for an effective RCF. 

Secondly, the research will emphasize the total costs of these dike reinforcement projects. This focus 
is necessary for providing a comprehensive assessment of the financial outcomes and ensures that all 
relevant cost components are considered when analysing the impact of success factors. By centring 
the analysis on total costs, the research can produce more holistic and practical insights into the 
financial implications of using success factors in RCFs. 

Another important distinction is between dike reinforcements and rebuilds. Dike reinforcements are 
projects where existing structures are strengthened or improved, whereas dike rebuilds often involve 
entirely new constructions or significant redesigns. Including rebuilds could introduce significant 
variability due to differing project scopes and complexities, potentially skewing the reference class and 
making the analysis less reliable. Thus, this research will limit its scope to reinforcement projects to 
ensure that the data within the reference class remains as homogeneous as possible. 

Lastly, the projects used for prediction purposes will be those completed under the HWBP program. 
This criterion reinforces the relevance of the study by ensuring that the forecasting methods being 
assessed are directly applicable to the current and future activities within the HWBP. By selecting 
completed projects, the research can use actual cost data to compare predicted outcomes with real-
world results, allowing for a robust evaluation of the accuracy and effectiveness of RCF with success 
factors. 

In summary, the projects in the reference class are from the HWBP-2 database, these projects will be 
used to predict the prices of projects from the new HWBP programme. By establishing these 
boundaries, the research maintains a clear and focused approach, enabling a detailed examination of 
the impact of success factors on RCF accuracy for dike reinforcement projects. These parameters help 
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ensure that the findings are applicable and relevant to similar infrastructure forecasting needs within 
the HWBP and potentially beyond. 

2.2 Research Setting and Methodology 
This section discusses the methodologies and setting in which the research was conducted are 
explained. The research can be split into three main phases. Figure 2.2 gives an overview of how the 
research is split up and what steps are taken in each phase. Within the first phase of this research, an 
overview of other price predicting methods have been researched. Moreover, a literature review has 
been conducted to understand the gaps in existing academic literature on the impact of success factors 
on a Reference Class Forecast. Finally, a literature study has been conducted to identify the most 
influential factors on prices for dike reinforcements. In the second phase of the research, semi-
structured interviews have been conducted to validate the factors found in the literature-review. 
Furthermore, data has been collected for each project to score the projects based on the factors found 
in phase 1 and 2. 

In the third phase of the research, the impact of the factors on the price of the dike-reinforcements 
has been determined by using a data-analysis programme SPSS. This step is taken to ensure that the 
factors that have been identified are significant and have an impact on the total price of the dike 
reinforcements. At last a Reference Class Forecast is conducted to compare the accuracy of the new 
model compared to the traditional method. This gives insight into the impact of the success-factors on 
a traditional Reference Class Forecast. 

 

Figure 2.2:  Methodology (author’s image) 

2.3 Literature review methodology 
The first method for the research is a literature review. Webster & Watson (2002) argue that an 
effective and well-conducted literature review creates a firm foundation for advancing knowledge 
and facilitating theory developments. Snyder (2019) states that a literature review can identify 
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knowledge gaps within the literature. Moreover, the paper states that a literature review can address 
research questions with a power that no single study has as it integrates findings and perspectives 
from many empirical findings. 
 
To address the first sub-question, “What are the state-of-the-art models used to forecast prices in the 
infrastructure sector?” comparison is drawn from an extensive review of existing literature, 
highlighting the practical applicability and effectiveness of RCF relative to traditional inside-view 
methods (Flyvbjerg, 2006; Flyvbjerg, Garbuio, & Lovallo, 2009). This analysis considers both strengths 
and limitations, supporting a balanced evaluation of the current state-of-the-art price forecasting 
methods. (Van Wee & Rietveld, 2013). 
 
The second sub-question, “Is Reference Class Forecasting a viable way to predict prices for 
infrastructural projects?”, is tackled by comparing RCF with other established price prediction 
methods (Love, Sing, & Ika, 2019). a comprehensive literature review is conducted to gain an in-depth 
understanding of the methodology, including its capabilities and constraints (Flyvbjerg, 2006; 
Kahneman, 2011). This review will provide the foundational knowledge needed to assess the strengths 
and weaknesses of Reference Class Forecasting (RCF) as a predictive tool (Locatelli, Mancini, & 
Romano, 2017). 
 
To answer the third sub-question, “What are the factors that can be used to predict the prices for dike 
reinforcements in the Netherlands?”, the research involves both a literature review and expert 
interviews. The literature review identifies key factors—such as material costs, labour expenses, 
project duration, environmental conditions, and regulatory requirements—that significantly impact 
the cost of dike reinforcement projects (Babbie, 2020; Saunders, Lewis, & Thornhill, 2019). Expert 
interviews provide qualitative insights that help validate and expand on these findings (Pallant, 2020). 
By combining literature-based evidence and practical insights from interviews, a comprehensive set 
of predictive factors is compiled. 
 
Fourth, the sub-question, “How can the success factors enhance the reference class forecast model?” 
is answered by comparing the model using success factors to the traditional reference class forecast 
model. For this comparison the results will be analysed using several key indicators, such as the 
standard deviation of errors, the percentage error of the model.  

Finally, the fifth sub-question, “What is the uncertainty of the price prediction?”, is answered by 
developing the RCF model and validating its predictions against the actual costs of completed HWBP 
projects (Flyvbjerg, 2008). The data analysis process employs SPSS software to conduct correlation 
analysis and multiple regression analysis, providing quantitative insights into how various factors 
influence total project costs (Field, 2018; Pallant, 2020). Correlation analysis assesses the strength and 
direction of relationships between independent variables (e.g., material costs, project complexity) and 
the dependent variable (project price) using Pearson’s correlation coefficient (Hair, Black, Babin, & 
Anderson, 2019). 
 
2.4 Semi-structured Interviews 
Based on the literature review, interviews with different relevant actors will be conducted to answer 
sub-question 3: ‘What are the most important factors that can be used to predict the prices for dike 
reinforcements in the Netherlands?’.  

Young et al. (2018) mention that interviews allow an in-depth analysis from a relatively small sample 
size and place the focus of research on the views of participants. Stakeholders such as financial 
controllers of the HWBP, financial controllers of the regional water authorities, and project managers 
will be approached for the interviews. For this, contacts of AT Osborne and the project managing board 
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(PD HWBP) will be used. The interviews will be of a semi-structured form as this gives the opportunity 
to expand the interviewee’s responses (Rubin & Rubin, 2005). 

In order to identify the most important factors, interviews have been sent to numerous practitioners 
of which 4 responded and had time to conduct an interview. All interviewees have several years of 
experience in the field of dike reinforcements.  

Table 1: Overview of interviewees 

Interview Company/Institution Function Date of interview Duration of interview 
1 HWBP Project Engineer 1st of August 01:04:38 

2 Self employed Cost expert 1st of August 01:14:05 

3 Waterschap Limburg Project Manager 6th of August 00:50:16 

4 Self employed Consultant 19th of August 00:51:20 
 

2.5 Data analysis 
The data obtained from the literature reviews, interviews and data provided by the HWBP needs to be 
analysed. The Literature review and interviews will provide the necessary data that is needed to 
answer sub-questions 3. The conclusions and data that will come from sub-questions 1 and 2 will 
provide the necessary means that are required to complete the rest of the research.  

To answer the research question, "To what extent do the factors impact the prices of dike 
reinforcements?", a thorough data analysis process was conducted using the SPSS software. This 
process aimed to identify and quantify the relationship between various factors—such as material 
costs, project duration, labour expenses, environmental conditions, and regulatory requirements—
and the price of dike reinforcement projects. SPSS, a powerful statistical analysis tool, was employed 
to determine the correlation and variance between these factors and the total costs, providing insights 
into the key drivers influencing price variations. 

2.5.1 Correlation Analysis 
The first step in the data analysis involved conducting a correlation analysis using SPSS. This analysis 
helps assess the strength and direction of the relationship between the independent variables (factors 
such as material costs, labour costs, and project complexity) and the dependent variable (price of dike 
reinforcement) (Field, 2018). By using Pearson’s correlation coefficient, SPSS provides a clear picture 
of how changes in one factor are associated with changes in price (Pallant, 2020). A positive correlation 
would indicate that as a factor increases, the price tends to increase, while a negative correlation 
would suggest that an increase in a factor leads to a decrease in price (Dancey & Reidy, 2017). 

For example, if a strong positive correlation is observed between material costs and total project price, 
it would suggest that rising material costs are a significant contributor to price increases. Conversely, 
if the project duration has a weak or negative correlation with price, it may indicate that project time 
is not a major cost driver compared to other factors (Hair, Black, Babin, & Anderson, 2019). 

2.5.2 Regression Analysis 
To model the relationship between multiple factors and the price of dike reinforcement projects, a 
multiple linear regression analysis was performed in SPSS (Field, 2018). This method enables the 
examination of how several independent variables collectively influence the dependent variable 
(price). By running a regression model, the analysis identifies which factors are statistically significant 
predictors of price and quantifies their relative impact (Pallant, 2020). 
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SPSS calculates the R-squared value to determine how much of the variation in project price can be 
explained by the included factors (Tabachnick & Fidell, 2019). Additionally, regression coefficients are 
used to understand the extent to which each factor contributes to price variations (Hair et al., 2019). 
For instance, the analysis might reveal that material costs have a stronger effect on prices than labour 
costs, or that projects in certain regions require more expensive dike reinforcements due to 
environmental considerations (Saunders et al., 2019). 

2.5.3 Interpretation and Insights 
The results from these statistical analyses in SPSS provide a comprehensive understanding of how 
each factor influences the overall price of dike reinforcement projects (Field, 2018; Hair et al., 2019). 
By identifying strong correlations, significant variances, and key predictors, the analysis helps to 
highlight the most influential cost drivers. These insights are a key step in the research, as the most 
important factors will be used in the model that aims to predict the prices of future dike 
reinforcements. 

2.6 Case Study 
In order to assess the impact of success factors on a Reference Class Forecast, a case study has been 
leveraged. Case studies have the advantage that they allow for the measurement of qualitative 
variables and allow for the incorporation of complex relations (Bennett, 2004). Moreover, Cronin 
(2014) praises case study research as a very legitimate research method that enables dealing with 
interconnected difficulties. The results of using the case study helps to answer the main research 
question: “‘To what extent can Reference Class Forecasting combining success factors make an 
accurate price prediction for the financial programming of HWBP’s dike reinforcements until 2050?’ 

The purpose of this case study is to explore the key factors affecting the prices of dike reinforcement, 
assess the quality of available data for Reference Class Forecasting (RCF), and evaluate the uncertainty 
of price predictions for these critical projects. 

The data for this case study is primarily sourced from the Projectenbank Dijkversterkingen (PD HWBP), 
a database that tracks historical project data from dike reinforcement efforts across the country. This 
data is crucial for applying Reference Class Forecasting (RCF), a method that uses historical project 
outcomes to make more accurate predictions about future projects by comparing them to a "reference 
class" of similar past projects. To assess the sufficiency and reliability of the data provided by PD HWBP 
for conducting RCF, several aspects were considered: 

1. Completeness of Data: The PD HWBP contains detailed information on cost components, 
project timelines, and key variables for a significant number of past dike reinforcement 
projects. However, gaps in data completeness, such as missing data for certain projects or 
incomplete information on cost overruns and delays, can reduce the reliability of predictions. 

2. Relevance of Reference Class: The accuracy of RCF depends on the extent to which the 
reference class of past projects reflects the conditions of future projects. For the HWBP-2 and 
HWBP programmes, the diversity of past projects in terms of location, scale, and 
environmental conditions is generally adequate, though some unique projects may not have 
suitable comparisons in the database. 

3. Data Quality and Consistency: Consistency in data collection methods over time is critical for 
reliable forecasting. If data collection standards have varied between projects, this could lead 
to inconsistencies that affect the accuracy of price predictions. In the case of PD HWBP, there 
are concerns regarding the standardization of cost data across different projects, particularly 
in older records, which may affect the quality of RCF. 
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2.6.1 Case Study HWBP 
The case study focuses on dike reinforcement projects undertaken as part of the Dutch Flood 
Protection Program (Hoogwaterbeschermingsprogramma, HWBP). These projects are essential 
components of the Netherlands’ national strategy to protect its population and economy from the 
increasing risks of flooding due to rising water levels and climate change. As a country renowned for 
its water management expertise, the Netherlands continually seeks to optimize its flood defense 
infrastructure. This research aims to evaluate whether an improved reference class forecasting (RCF) 
method provides greater accuracy and reliability in predicting project costs compared to the traditional 
RCF method. 

The analysis centers on 43 completed dike reinforcement projects from the HWBP-2 program, which 
serve as the reference class for this study. These projects were managed by various regional water 
boards (waterschappen), each bringing distinct administrative practices and operational approaches. 
Key project variables, such as geographic location, soil type, environmental restrictions, and 
administrative management, are analysed to identify their impact on cost. Notably, this study excludes 
projects involving integrated opportunities for spatial or environmental enhancements. This decision 
ensures that the analysis focuses exclusively on standard dike reinforcement projects, avoiding 
potential confounding factors that could arise from additional objectives or benefits unique to 
integrated projects. 

To ensure consistency and comparability across projects completed in different years, all costs are 
indexed to 2024 using the Grond-, Weg- en Waterbouw Index (GWW index). This indexing adjusts for 
inflation and fluctuations in construction costs over time, creating a standardized framework for 
evaluating and comparing project expenses. By normalizing the data, the study provides a clear and 
unbiased understanding of cost patterns and their relationship with key project variables. 

The insights derived from the HWBP-2 projects are not only used to understand cost-driving factors 
but also form the foundation for predicting costs in 28 additional dike reinforcement projects from the 
newer HWBP program. These 28 projects represent the forecasted dataset used to test the accuracy 
of the improved RCF method. By matching projects in the HWBP dataset with their most comparable 
counterparts in the HWBP-2 reference class, the improved RCF method aims to deliver more precise 
cost predictions. The effectiveness of this enhanced approach is then evaluated by comparing its 
predictions to those generated using the traditional RCF method, providing a direct assessment of the 
improved methodology’s benefits. 

This case study is integral to addressing the overarching research question of whether the improved 
RCF method enhances the accuracy of cost predictions for dike reinforcement projects. By 
systematically analysing the relationships between project variables and costs, and by testing these 
findings within a structured forecasting framework, this study ensures methodological rigor and 
practical relevance. 
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Through its detailed examination of 43 HWBP-2 projects and their application as a reference class for 
forecasting, this case study highlights the complexities of cost dynamics in dike reinforcement. It not 
only enhances our understanding of these dynamics but also sets the stage for evaluating and refining 
forecasting methodologies that are crucial for addressing the challenges of flood protection in a 
changing climate. In figure 2.6.1, an overview of dike reinforcement projects that are under 
construction can be seen. 

 

Figure 2.6.1: overview of dike reinforcements currently in construction (HWBP, 2024) 
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2.7 Outline Research 
In this section, the outline of the research is summarised in Figure 2.7.1 in which the different stages 
of the study can be seen. First, in the reviewing part, the existing literature and state-of-the-art models 
are discussed. After those sections, in the assessment part, a study on Reference class forecasting is 
conducted and success factors in dike-reinforcements will be discussed. Subsequently in the validating 
stage, the data analysis is conducted and the new model is explained and results will be shown. After 
that discussion, limitations and strengths of the new method will be discussed. In the final two parts 
of the research the conclusion & recommendations are shown. This will answer the research questions 
and will give recommendations for future research. 

 

Figure 2.7.1: outline research (authors image) 
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3 Literature study 
 

Getting a good understanding of literature is crucial in research. Therefore, this chapter will review 
various methods to predict pricing of dike reinforcements, an extensive review of the method 
Reference Class Forecasting and its limitations. Finally, price determining factors are reviewed. 

3.1 Dike reinforcements 
Dikes, or levees, are critical infrastructural elements in flood defence systems, particularly in low-lying 
areas like the Netherlands, where a significant portion of the population and infrastructure is below 
sea level. Dike reinforcements are necessary when existing structures no longer meet safety standards 
due to natural aging, increased water levels, or changes in environmental conditions. The purpose of 
reinforcing dikes is to ensure their resilience against flooding caused by river overflow, storm surges, 
or rising sea levels due to climate change. The process of dike reinforcement involves strengthening 
the structure of existing dikes by increasing their height, broadening their base, or using modern 
materials and engineering techniques to improve their capacity to withstand extreme weather events 
(Schielen & Gijsbers, 2021). Dike reinforcement techniques vary depending on several factors, such as 
the type of water the dike is protecting against (sea, river, or lake), the location’s geology, and the 
urban or rural environment. Different methods will be discussed below. 

3.1.1 Heightening and Broadening 
One of the most traditional and widely adopted methods for reinforcing dikes is heightening and 
broadening. Heightening involves adding vertical layers to the dike to ensure that it can accommodate 
higher water levels during extreme weather events and high tides. This method is particularly effective 
for counteracting rising sea levels and increasing the dike's capacity to hold back surging waters during 
storms (de Vries et al., 2020). Broadening, on the other hand, involves extending the base of the dike 
to enhance its overall structural stability. By expanding the dike's footprint, engineers reduce the risk 
of lateral displacement and increase resistance to hydraulic forces that could cause collapse or 
breaching. This method is often employed in areas where space permits expansion, making it a suitable 
approach for rural dikes with available surrounding land (de Vries et al., 2020). 

3.1.2 Slope Protection 
Slope protection is crucial for preserving the long-term integrity of a dike, particularly in areas exposed 
to constant wave action or swift water currents. Erosion can weaken the slopes of a dike, eventually 
leading to breaches. To counteract this, engineers use various protective materials, such as concrete 
blocks, asphalt, or synthetic revetments. These materials are designed to absorb and deflect the 
energy of waves and prevent the surface material from being washed away (Schielen & Gijsbers, 2021). 
Concrete blocks, for example, offer durability and high resistance to wave impact, making them ideal 
for sea-facing dikes, while asphalt layers provide a flexible, water-resistant cover that adapts well to 
both river and coastal environments. Advances in material science have also led to the use of 
composite materials and synthetic revetments that combine strength with lightweight properties, 
improving the ease of installation and maintenance. 

3.1.3 Use of Geosynthetics  
The integration of geosynthetic materials has become increasingly common in modern dike 
reinforcement projects due to their superior properties compared to traditional reinforcement 
materials. Geosynthetics, such as geotextiles and geomembranes, enhance the dike’s strength, 
stability, and resistance to water penetration (Koerner & Koerner, 2015). These materials are 
particularly advantageous in areas with poor soil quality or where high water pressures threaten to 
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undermine the dike’s foundation. Geotextiles can be used to separate soil layers, provide filtration, and 
reinforce the structure, while geomembranes create an impermeable barrier that helps prevent water 
from seeping through the dike (Koerner & Koerner, 2015). The lightweight nature of these materials, 
combined with their ease of transport and installation, makes them a cost-effective solution for large-
scale projects or sites with limited access. 

3.1.4 Underground Barriers 
In locations where seepage poses a significant risk to dike stability, underground barriers are employed 
to prevent water from infiltrating beneath the structure. Techniques such as installing sheet piling or 
constructing deep cutoff walls are used to block water pathways under the dike, thereby maintaining 
the dike’s structural integrity and preventing potential weakening (Van Duin et al., 2016). Sheet piling 
involves driving vertical steel or composite sheets deep into the ground to form a continuous barrier, 
ideal for preventing seepage in permeable soils. Deep cutoff walls, made from concrete or bentonite, 
offer a more permanent solution for areas with high groundwater levels. These underground barriers 
can be combined with surface-level reinforcement strategies to provide comprehensive protection 
against both over-topping and under-seepage. 

3.1.5 Environmental Integration  
The concept of "building with nature" has gained traction in recent years, emphasizing sustainable and 
eco-friendly dike reinforcement approaches. This method involves incorporating natural elements, 
such as planting vegetation or creating secondary floodplains, to enhance the dike’s resilience while 
promoting ecological benefits (van Loon-Steensma & Vellinga, 2019). Vegetation, for instance, helps 
stabilize the soil on the dike’s surface and reduce erosion by dissipating wave energy. Root systems 
anchor the soil and prevent washout, creating a natural defence mechanism that complements 
engineered structures. Additionally, secondary floodplains can act as buffer zones, absorbing excess 
water during high-flow events and reducing the hydraulic load on the dike. Such nature-based 
solutions provide dual benefits: reinforcing the dike and fostering habitats for wildlife, contributing to 
biodiversity and the overall health of the ecosystem (van Loon-Steensma & Vellinga, 2019). 

3.1.6 Conclusion 
In conclusion, dike reinforcement techniques are varied and must be carefully selected based on the 
specific conditions and characteristics of the location they are intended to protect. The choice of 
reinforcement strategy depends not only on the type of water body—be it sea, river, or lake—but also 
on the geological properties of the site and whether it is in an urban or rural environment. Each 
method has its unique advantages and limitations that must be considered to ensure both structural 
integrity and cost-effectiveness. 

Heightening and broadening remain fundamental approaches for increasing a dike’s capacity to 
withstand extreme water levels and improve overall stability. These methods are effective where space 
allows for expansion, particularly in rural settings. Slope protection is essential for areas exposed to 
significant wave action or fast water currents, where materials like concrete, asphalt, and synthetic 
revetments provide durable, erosion-resistant barriers. The use of geosynthetics introduces a modern 
dimension to reinforcement, offering enhanced strength, stability, and water resistance, particularly in 
locations with poor soil conditions or high water pressure. 

For sites where seepage poses a major risk, sheet piling and cutoff walls provide critical protection by 
preventing water infiltration beneath the dike. These methods are particularly beneficial in locations 
with permeable soils or high groundwater levels. Lastly, environmental integration techniques, such as 
planting vegetation or creating secondary floodplains, exemplify the modern approach of "building 
with nature." This method not only strengthens the dike but also offers ecological benefits, fostering 
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wildlife habitats and improving biodiversity. Ultimately, the choice of techniques must balance 
structural needs and environmental considerations, ensuring that dike reinforcement projects are 
effective, sustainable, and adaptable to site-specific challenges. 

3.2 Factors Influencing the Cost of Dike Reinforcement 
Besides the methods of reinforcement. the costs of dike reinforcement projects can vary widely 
depending on several factors, each contributing to the final project budget. This section will discuss 
the most important factors according to literature. 

3.2.1 Material Costs  
The choice of materials plays a major role in the overall cost of dike reinforcement. For traditional 
techniques, the availability and cost of raw materials such as clay, sand, and rock are significant 
determinants of the budget. However, the integration of modern materials like geosynthetics or 
advanced construction methods (such as sheet piling) can add to the cost (Koerner & Koerner, 2015). 
Furthermore, the availability of these materials locally versus the need for importation significantly 
impacts the project cost (de Vries et al., 2020). 

3.2.2 Labour Costs  
Labor represents another major expense in dike reinforcement projects. Skilled labourers, including 
engineers, construction workers, and specialists, are needed to execute the complex designs and 
construction processes involved in modern reinforcement techniques (Flyvbjerg, 2007). Additionally, 
labour shortages or fluctuations in labour market conditions can significantly affect project timelines 
and costs (Love et al., 2019). 

3.2.3 Project Size and Complexity  
Larger and more complex projects tend to require more resources, both in terms of materials and 
labour. Additionally, complex projects often involve specialized techniques or equipment, which can 
drive up costs. The dike’s location also plays a significant role in determining the complexity of the 
project. Dike reinforcement in urban areas, for instance, may require additional logistical 
considerations, such as rerouting traffic or minimizing the impact on local populations (PBL 
Netherlands Environmental Assessment Agency, 2016). 

3.2.4 Environmental and Regulatory Compliance  
Strict environmental and regulatory requirements also contribute to the cost of dike reinforcement 
projects. These regulations may include mandatory environmental impact assessments, ensuring 
compliance with sustainability goals, or securing permits for construction near sensitive ecological 
zones (Hoes et al., 2019). Dike projects are also subject to the EU’s Water Framework Directive, which 
aims to promote sustainable water management, often adding further regulatory complexity 
(European Commission, 2015). 

3.2.5 Risk and Uncertainty  
Every construction project is associated with uncertainty and risk, but dike reinforcement projects face 
heightened risks due to unpredictable environmental factors like climate change, rising sea levels, or 
extreme weather events. These uncertainties are often mitigated by increasing the robustness of the 
dike design, which can inflate costs. Additionally, contingencies must be built into budgets to account 
for potential delays or unforeseen challenges (Flyvbjerg, 2014). 

3.2.6 Geotechnical Conditions  
The geological conditions in the area where dike reinforcement is required have a significant influence 
on cost. Weak or unstable soil can require additional measures, such as deep foundations or soil 
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stabilization techniques, to ensure the dike's effectiveness and longevity. This adds substantial expense 
to the project, as specialized equipment and techniques are needed (van Duin et al., 2016). 

3.2.7 Conclusion 
Dike reinforcement projects are critical to ensuring the long-term flood safety of vulnerable regions, 
particularly in low-lying areas like the Netherlands. These projects are complex and costly, with prices 
determined by multiple factors such as materials, labour, project size, environmental regulations, and 
geotechnical conditions. The use of modern techniques, such as geosynthetics and environmental 
integration, can increase the project’s effectiveness but may also add to costs. Understanding these 
factors and employing accurate forecasting methods like RCF are essential for effective project 
management and cost control in large-scale infrastructure projects. 

3.3 Research into state-of-the-art price prediction models 
In this section, several methods for predicting project costs will be explored, each with distinct 
approaches, strengths, and limitations. Accurate cost estimation is crucial in project management, 
particularly for large-scale infrastructure projects where the consequences of underestimating costs 
can be significant and for smaller projects grouped in a portfolio. Traditional cost estimating, 
probabilistic estimating, and Reference Class Forecasting (RCF) are three widely recognized methods, 
each suited to different project types and levels of complexity. This section will introduce these 
methods, discuss how they are applied in practice, and highlight the conditions under which each is 
most effective. 

3.3.1 Traditional Cost Estimating: 
Traditional cost estimation methods heavily rely on historical cost data, which involves using records 
from previously completed projects to forecast the costs of new ones. This approach assumes that past 
costs are reliable indicators of future expenses under similar conditions. However, this assumption is 
often flawed due to several factors. 

One of the primary strengths of traditional cost estimation is its simplicity and ease of implementation. 
These methods do not require sophisticated tools or systems, making them accessible to a wide range 
of organizations. For example, small businesses or firms operating with limited resources often rely on 
traditional methods because they do not require significant upfront investments in technology or 
advanced training (Reddy, 2023). By utilizing straightforward processes, such as deriving costs from 
historical data or relying on expert insights, these methods allow project managers to quickly develop 
initial cost forecasts, which can be crucial during the early stages of project planning. 

Another significant strength lies in the reliance on historical cost data. Historical data provides a 
tangible and often proven foundation for cost estimation. When past projects share similarities in 
scope, scale, and context with current undertakings, the use of historical data can provide accurate 
and reliable benchmarks (Project Management Institute, 2004). For instance, in industries like 
construction, infrastructure, or manufacturing, where processes and material costs are often 
predictable, historical cost records serve as a valuable reference for developing reasonable estimates. 
This ability to draw on past performance data makes traditional methods particularly effective for 
recurring or routine projects. 

Additionally, the use of expert judgment in traditional cost estimation methods is another notable 
strength. Experts bring years of experience and domain-specific knowledge to the table, allowing for 
nuanced and context-sensitive evaluations of project costs. This is especially valuable in situations 
where quantitative data alone may fail to capture project-specific complexities or localized factors. For 
example, experts can account for regional differences in labour availability, regulatory requirements, 
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or site-specific challenges, which can significantly influence project costs. The qualitative insights 
provided by experts complement historical data and help project managers make more informed 
decisions (Reddy, 2023). 

Traditional cost estimation methods also align well with established accounting practices and 
regulatory frameworks, which adds to their reliability and compliance benefits. Organizations in 
industries with strict financial reporting and regulatory requirements, such as government-funded 
infrastructure projects, often favor traditional methods for their familiarity and alignment with these 
standards (Project Management Institute, 2004). This compliance ensures that cost forecasts meet 
external audit and reporting criteria, providing a layer of accountability. 

Despite these strengths, traditional cost estimation methods are not without limitations. One 
significant limitation is the availability and quality of historical data. Many projects suffer from 
incomplete or inconsistent historical records, making it challenging to find truly comparable data. This 
scarcity of comprehensive historical data can lead to inadequate reference classes, compromising the 
accuracy of the estimates. Additionally, changes over time in factors such as inflation, material prices, 
labour costs, and technological advancements can render historical data less relevant for current 
projects. As a result, relying on outdated data can lead to significant inaccuracies in cost predictions 
(Flyvbjerg, Holm, & Buhl, 2002).  

Another cornerstone of traditional cost estimating is expert judgment, where seasoned professionals 
use their knowledge and experience to forecast project costs. While expert judgment adds valuable 
insights, it is not without its pitfalls. Expert judgment is inherently subjective and can be influenced by 
personal biases and experiences. One common issue is optimism bias, where experts tend to 
underestimate costs and overestimate benefits due to their confidence in project success. This bias 
can lead to significant cost overruns as initial estimates fail to account for potential challenges and 
complexities (Flyvbjerg et al., 2002). Moreover, the variability in opinions among different experts can 
result in inconsistent estimates, adding to the uncertainty of project costs. 

Traditional cost estimation methods often fall short due to their reliance on subjective opinions and 
incomplete data. The subjectivity inherent in expert judgment can lead to significant deviations from 
actual costs. Experts' biases and varying experiences introduce a level of inconsistency and 
unpredictability in the estimates. Furthermore, historical data used in these methods is frequently 
incomplete or not entirely relevant to the current project context. As projects evolve over time, the 
historical context may not align with current conditions, leading to inaccurate estimates. This reliance 
on potentially outdated data increases the risk of cost overruns, as initial forecasts fail to capture the 
true scope and scale of the project (Cantarelli et al., 2012). 

Numerous studies have highlighted the limitations of traditional cost estimation methods. Flyvbjerg et 
al. (2002) conducted an extensive review of infrastructure projects and found that inaccurate cost 
estimates were prevalent, often due to the reliance on historical data and expert judgment without 
sufficient empirical backing. Their research underscores the need for more robust, data-driven 
forecasting methods to improve accuracy and reduce the risk of cost overruns. Similarly, Cantarelli et 
al. (2012) examined large-scale transportation infrastructure projects and identified that traditional 
forecasting methods often fail to account for project-specific variables, leading to significant cost 
discrepancies. Their findings suggest that incorporating empirical data and modern analytical 
techniques can substantially enhance the accuracy of cost predictions. 

While traditional cost estimating methods laid the groundwork for project forecasting, their inherent 
limitations—reliance on subjective opinions, incomplete data, and the inability to adapt to changing 
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conditions—have led to significant inaccuracies and cost overruns in infrastructure projects. The 
evolution towards more empirical and data-driven methods, such as Reference Class Forecasting, 
addresses these shortcomings by providing more reliable and accurate cost estimates, thus better 
supporting the planning and execution of infrastructure projects. 

3.3.2 Parametric Cost Estimating 
Parametric cost estimating is a method that uses statistical relationships between historical data and 
other variables to predict the cost of a project. This approach is particularly useful in infrastructure 
projects where detailed information may not be available early in the planning stages. The method 
involves identifying key cost drivers, such as project size, duration, and complexity, and using these 
parameters to develop a cost model. 

The core of parametric estimating lies in regression analysis, a statistical technique used to determine 
the strength and character of the relationship between one dependent variable and one or more 
independent variables. In the context of infrastructure projects, the independent variables could 
include factors such as geographical location, project type, and scale, while the dependent variable 
would be the project cost. Studies such as those by Ashworth (2004) and Jelen and Black (1983) have 
demonstrated the efficacy of this method in various sectors, including construction and engineering. 
These studies highlight the importance of selecting appropriate cost drivers and ensuring a robust 
dataset to improve the accuracy of the models. 

Parametric cost estimating is particularly advantageous in the early stages of project planning when 
detailed designs are not available. It allows for quick cost assessments and scenario analysis. However, 
its accuracy is highly dependent on the quality of the historical data used and the relevance of the 
selected parameters. There is also a risk of over-reliance on past data, which may not fully capture 
unique aspects of the current project. 

3.3.3 Reference Class Forecasting  
Reference Class Forecasting (RCF) is a forecasting method grounded in behavioural economics and 
decision-making theory, aimed at reducing biases in project cost and time estimates. The theoretical 
foundation for RCF stems from the work of psychologists Daniel Kahneman and Amos Tversky, who 
developed Prospect Theory and won the Nobel Prize in Economics in 2002. Their research illustrated 
how cognitive biases—particularly optimism bias and strategic misrepresentation—often lead to 
overly optimistic estimates in project planning. RCF seeks to mitigate these biases by shifting from an 
“inside view” to an “outside view” of forecasting, relying on historical data from similar projects rather 
than individual judgment or subjective expectations (Kahneman & Tversky, 1979; Kahneman, 2011).  

To counter these biases, Reference Class Forecasting shifts the focus from an “inside view” of 
forecasting—where project-specific knowledge, intuition, and judgment play a dominant role—to an 
“outside view.” The outside view relies on empirical data from a “reference class” of similar projects. 
This reference class provides a historical baseline, using the actual performance of completed projects 
to generate realistic expectations for the current project. By grounding forecasts in real data rather 
than subjective predictions, RCF aims to provide a more accurate and bias-resistant estimation of costs 
and schedules (Kahneman, 2011). 

Bent Flyvbjerg, a professor of project management and one of the leading figures in RCF, extended the 
theoretical work of Kahneman and Tversky into practical applications for large-scale infrastructure 
projects. His research in the early 2000s showcased how RCF could improve cost and schedule accuracy 
by comparing new projects to a “reference class” of completed projects with similar characteristics. In 
this process, RCF positions the current project within the historical performance distribution of past 
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projects, generating forecasts based on empirical data rather than subjective assumptions. Flyvbjerg’s 
work demonstrated that RCF could provide a more realistic prediction of project costs and timelines 
by accounting for the average performance of similar projects (Flyvbjerg, 2006; Flyvbjerg, 2008).  

The traditional methods of cost estimation in infrastructure projects largely depend on historical data 
and expert judgment. This involves examining past projects that are similar in nature and scaling their 
costs to fit the current project. Key activities in traditional cost estimating include historical data 
analysis, expert judgment, analogous estimating, and bottom-up estimating. While these methods 
have provided a foundational framework, they are often criticized for their susceptibility to human 
biases and errors, leading to cost overruns and inaccurate forecasts. 

Bent Flyvbjerg translated the theoretical insights of Kahneman and Tversky into practical applications 
with the development of RCF. Flyvbjerg’s approach involves identifying a reference class of similar past 
projects, establishing a probability distribution for their outcomes, and using this distribution to 
predict the current project's outcomes. This method reduces the impact of individual biases by relying 
on empirical data rather than subjective estimates. 

By comparing a new project with a carefully selected database of completed projects, RCF offers a 
distribution of outcomes rather than a single-point estimate. This probabilistic forecasting aligns with 
real-world project risks, where the future is uncertain and outcomes rarely follow the idealized 
projections set at the planning stage. Flyvbjerg’s approach has been instrumental in making RCF an 
accepted practice in project management for public infrastructure. Notably, his work revealed that 
traditional cost estimates often miss the mark by wide margins, which leads to substantial budget 
overruns and project delays. By reducing these inaccuracies, RCF provides policymakers and planners 
with a more reliable tool to manage expectations and allocate resources effectively. 
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3.3.4 Conclusion 
Traditional cost estimating methods have played a foundational role in project forecasting by 
leveraging historical data and expert judgment. However, these approaches are increasingly 
recognized for their limitations. The reliance on historical data assumes that past costs are reliable 
indicators of future expenses, an assumption that does not always hold true due to data quality issues, 
inflation, changes in labour and material costs, and technological advancements (Flyvbjerg, Holm, & 
Buhl, 2002). The incomplete or inconsistent nature of historical data can hinder the formation of 
adequate reference classes, thereby compromising estimate accuracy. 

Expert judgment, although valuable for incorporating practical insights, is subject to personal biases, 
including optimism bias, where cost forecasts are underestimated due to overconfidence in project 
success (Flyvbjerg et al., 2002). This subjectivity, combined with the variability of expert opinions, leads 
to inconsistent and often unreliable cost predictions. The inability of traditional methods to adapt to 
evolving project conditions further exacerbates the risk of cost overruns, as noted in studies of large-
scale infrastructure projects (Cantarelli et al., 2012). 

Given these limitations, there is a growing emphasis on more empirical and data-driven approaches, 
such as Reference Class Forecasting and parametric cost estimating. These methods utilize broader 
datasets and statistical analyses, reducing the influence of individual biases and outdated data. By 
transitioning to such methodologies, project forecasting can achieve greater reliability and precision, 
providing essential support for the planning and execution of complex infrastructure projects. Because 
of the limitations of traditional cost estimating and the data requirements needed for parametric cost 
estimating, reference class forecasting will be further discussed and researched in the next section. An 
overview of the required data, strengths and weaknesses is shown in table 2. 

Table 2: comparison between state-of-the-art cost forecasting mehtods 

Method Type of Data Required Strengths Weaknesses 
Traditional Cost 
Estimating 

Historical cost data for similar 
projects, expert judgment, 
project-specific parameters 
(e.g., materials, size) 

- Provides detailed, component-
specific estimates based on 
known project elements (Fleming 
& Koppelman, 2010). 

- Prone to bias if unexpected 
factors arise, as it relies 
heavily on project-specific 
assumptions (Flyvbjerg, 
2006). 

Probabilistic 
Estimating 

Baseline project estimates, 
risk data, statistical data on 
cost variability and 
probability distributions 

- Accounts for uncertainty by 
providing a range of possible cost 
outcomes (Kwak & Ingall, 2007). 

- Requires high-quality data 
and sophisticated statistical 
tools (e.g., Monte Carlo 
simulations) (Palisade 
Corporation, 2017). 

Reference Class 
Forecasting 
(RCF) 

Data on completed projects 
with similar characteristics 
(costs) 

- Mitigates optimism bias by 
focusing on historical data from 
similar projects (Flyvbjerg, 2006). 

- Relies on having a robust 
reference class; accuracy 
drops if comparable projects 
are lacking (Lovallo & 
Kahneman, 2003). 
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3.4  Reference class forecasting 
As discussed in the section above there are several strengths and weaknesses, with each method. For 
this research reference class forecasting was chosen due to the availability of completed projects with 
similar characteristics. In this section reference class forecasting is further analysed.  

Figure 3.4.1 shows the broader framework in which RCF fits within project management. At the top, is 
project management, which oversees the planning, control, and implementation of the project. 
Dynamic scheduling follows, which allows for adaptable timelines and resource allocation based on 
project progress.  

 

Figure 3.4.1: inside view vs outside view (authors image) 

The forecasting stage divides into two approaches, inside View and outside View. 

Inside View: The inside view focuses on the specifics of the current project, relying on project-specific 
details, expert judgment, and team knowledge to generate forecasts. This approach often leads to 
overly optimistic estimates due to optimism bias, where planners assume that the current project will 
avoid issues encountered in previous projects. Inside view forecasting is commonly used but tends to 
be vulnerable to biases like underestimating time and cost (Kahneman & Lovallo, 1993). 

Outside View (RCF): Reference Class Forecasting represents the outside view. Instead of focusing on 
project-specific details, it compares the project with a database of similar past projects, using actual 
historical outcomes to establish a probability distribution for cost, duration, or other variables. By 
positioning the current project within this distribution, RCF predicts outcomes based on empirical data 
rather than individual or team assumptions. The outside view thus minimizes optimism bias by 
grounding predictions in past performance, which reflects average trends rather than idealized 
expectations (Flyvbjerg, 2014). 

3.4.1 Strengths of Reference Class Forecasting 
RCF has several strengths that make it a valuable tool in project management, particularly for large-
scale infrastructure projects: 

Reduction of Cognitive Biases: By taking an outside view, RCF addresses two major cognitive biases: 
optimism bias and strategic misrepresentation. Optimism bias leads project planners to overestimate 
positive outcomes, while strategic misrepresentation involves intentional underestimation or over-
promise to secure project approval. Studies have shown that RCF can reduce the impacts of these 
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biases by basing forecasts on historical data rather than subjective or politically motivated estimates 
(Flyvbjerg, 2006; Flyvbjerg, Garbuio, & Lovallo, 2009). 

Reliance on Empirical Data: RCF relies on data from similar projects to generate forecasts, which allows 
for more realistic estimates. For instance, in infrastructure projects, Flyvbjerg and Stewart (2012) found 
that RCF could improve cost accuracy by 10–15% compared to traditional inside-view methods. By 
grounding predictions in actual project outcomes, RCF provides a statistically robust approach to 
forecasting. 

Application Across Multiple Sectors: RCF has been successfully applied to a range of fields beyond 
infrastructure, including transportation, urban development, and IT projects. For example, in 
transportation projects, RCF has been shown to reduce cost overruns by adjusting for typical 
overestimations in travel demand forecasts, which often lead to underfunding of projects (Cantarelli, 
Flyvbjerg, & van Wee, 2010). The generalizability of RCF makes it a versatile tool for any project type 
with a substantial database of comparable historical projects. 

Overall, Reference Class Forecasting provides a robust and data-driven approach to project estimation, 
addressing the limitations of traditional methods that rely heavily on expert judgment and historical 
data without empirical adjustments. By integrating historical distributions and specific project 
considerations, RCF supports more accurate, realistic, and adaptable forecasts for complex 
infrastructure projects (Touran, 2006; Flyvbjerg et al., 2002). 

3.4.2 Limitations of Reference Class Forecasting 
Reference Class Forecasting (RCF) is recognized for its capability to improve the accuracy of cost 
predictions for infrastructure projects by leveraging historical data from comparable projects. This 
method, however, is not without its limitations. Understanding these limitations is crucial for 
comprehensively assessing the uncertainty associated with RCF-based price predictions in 
infrastructure projects. In the sections below, the limitations of reference class forecasting are 
discussed. 

3.4.2.1 Availability and Quality of Historical Data 
RCF's effectiveness is significantly influenced by the availability and quality of historical data. Accurate 
forecasting relies on a substantial and well-documented dataset of past projects. When historical data 
is scarce or incomplete, the reference class may be inadequately formed, which can lead to less reliable 
predictions. The absence of comprehensive historical records limits the method's ability to produce 
robust forecasts, thereby increasing the uncertainty of the predicted outcomes () (ar5iv). 

In addition to data availability, the quality of historical data is paramount. Data inaccuracies or biases 
can distort the reference class, resulting in misleading forecasts. Inaccurate data compromises the 
empirical foundation of RCF, amplifying uncertainty in the forecasts. Consequently, ensuring high-
quality and comprehensive historical data is essential for minimizing prediction uncertainty 
(SpringerLink). 

3.4.2.2 Selection of Reference Class 
The selection of an appropriate reference class is critical for the success of RCF. The reference class 
must closely match the characteristics of the current project to produce accurate predictions. 
Misclassification, where non-comparable projects are included in the reference class, can skew the 
results, leading to higher uncertainty in forecasts. This issue is particularly pronounced in unique or 
innovative projects where comparable historical projects might not exist. 

https://ar5iv.org/pdf/1302.3642
https://link.springer.com/article/10.1057/palgrave.jors.2602597
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Moreover, the selection process can introduce biases if not conducted rigorously. Subjective 
judgments in forming the reference class can lead to biased selections, further increasing the 
uncertainty of the forecast. It is essential to establish transparent and systematic criteria for selecting 
reference classes to mitigate this risk (SpringerLink) (ar5iv). 

3.4.2.3 Homogeneity of the Reference Class 
For RCF to be effective, the projects within the reference class should be sufficiently homogeneous. 
Significant variations in project types, scales, geographic locations, or economic conditions can 
undermine the validity of the forecast. A highly heterogeneous reference class can lead to a broad and 
imprecise probability distribution, increasing the range of possible outcomes and thus the uncertainty. 
This makes it challenging to derive an accurate forecast. 

Contextual differences between the reference class projects and the current project, such as 
variations in regulatory, environmental, or market conditions, can also lead to inaccuracies, thereby 
adding to the forecast's uncertainty. Ensuring homogeneity within the reference class is therefore 
crucial for reliable predictions (ar5iv). 

3.4.2.4 Static Nature of Historical Dat 
The static nature of historical data poses another significant constraint on RCF. Historical data reflects 
past conditions and may not account for future changes in technology, regulations, market conditions, 
or other dynamic factors. Infrastructure projects often span several years, during which significant 
changes can occur. Consequently, forecasts based solely on static historical data may become 
increasingly uncertain as these dynamic factors come into play. 

Technological advancements and market shifts can further diminish the relevance of historical data, 
increasing the forecast uncertainty over time. Thus, while historical data provides a valuable 
foundation, it is essential to consider potential future changes to enhance forecast reliability (ar5iv). 

3.4.2.5 Over-Reliance on Quantitative Data 
RCF primarily focuses on quantitative data from past projects, potentially overlooking important 
qualitative factors such as stakeholder behavior, political influences, or unique project-specific risks. 
Ignoring these qualitative factors can lead to an incomplete assessment of potential risks and 
uncertainties, as these elements often play a crucial role in project outcomes. 

Without considering qualitative aspects, unanticipated risks may arise, increasing the uncertainty and 
potentially leading to significant deviations from the forecasted outcomes. Therefore, integrating 
qualitative insights with quantitative data can provide a more comprehensive risk assessment and 
improve forecast accuracy (SpringerLink). 

3.4.2.6 Assumptions of Similarity and Predictability 
RCF operates on the assumption that future projects will follow similar patterns to past projects. This 
assumption can be problematic if future projects introduce new complexities or if past performance is 
not indicative of future outcomes. The assumption that past projects are fully representative of future 
ones can lead to overconfidence in the forecasts and underestimation of uncertainty. This is 
particularly true for innovative or unprecedented projects where historical precedents may be lacking. 

Changes in industry standards, practices, and methodologies over time can also lead to discrepancies 
between past and future projects, further increasing forecast uncertainty. Recognizing and adjusting 
for these evolving standards is essential to maintaining forecast accuracy (ar5iv). 

https://link.springer.com/article/10.1057/palgrave.jors.2602597
https://ar5iv.org/pdf/1302.3642
https://ar5iv.org/pdf/1302.3642
https://ar5iv.org/pdf/1302.3642
https://link.springer.com/article/10.1057/palgrave.jors.2602597
https://ar5iv.org/pdf/1302.3642
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Despite its advantages, Reference Class Forecasting is not without limitations. Its effectiveness 
depends heavily on the availability and quality of historical data, as well as the appropriateness of the 
reference class selected: 

1. Dependence on Data Quality and Availability: The accuracy of RCF forecasts is limited by the 
quality and relevance of the historical data. If data on past projects is incomplete, biased, or 
does not reflect current project conditions, the RCF method may produce misleading 
estimates. For instance, historical data might not capture recent advancements in technology 
or new regulatory standards that could significantly impact project costs. Additionally, for 
projects in emerging sectors or those with unique attributes, finding an appropriate reference 
class can be challenging, reducing RCF’s applicability (Locatelli, Mancini, & Romano, 2017). 

2. Selection of the Reference Class: One of the critical aspects of RCF is defining an appropriate 
reference class. The reference class must consist of projects that are genuinely comparable to 
the current project in terms of scope, complexity, and risk. However, selecting an adequate 
reference class can be subjective and may introduce biases if the chosen projects are not fully 
representative. For instance, if the reference class includes only projects completed under 
favorable economic conditions, it may underestimate the risks associated with the current 
project. This limitation introduces a potential for error in cases where the current project has 
unique characteristics not reflected in the historical data (Love, Sing, & Ika, 2019). 

3. Lack of Flexibility to Project-Specific Conditions: While the outside view approach of RCF 
reduces bias, it also risks oversimplifying complex projects by focusing solely on historical 
averages. Projects with unique or innovative elements may face challenges that are not 
adequately represented by historical data. For example, a dike reinforcement project involving 
cutting-edge materials or construction techniques may have cost drivers not captured by past 
projects. RCF’s reliance on past performance can overlook these unique factors, making it less 
accurate in such cases compared to a well-informed inside view (Flyvbjerg et al., 2009). 

4. Risk of Over-Reliance on Historical Trends: RCF inherently assumes that historical data is a 
good predictor of future outcomes. This assumption may not hold in dynamic environments 
where external factors—such as policy changes, environmental conditions, or economic 
shifts—alter project outcomes significantly. For example, climate change is accelerating the 
need for flood defences, but past data on dike reinforcement projects may not fully account 
for the increased material costs or design requirements necessary for higher flood protection 
standards. Therefore, RCF may be less effective in contexts with high uncertainty or rapid 
change (Van Wee & Rietveld, 2013). 

 

 

3.4.2.7 Practical Application and Cautions for Use 
The image in section3.4 illustrates how RCF serves as a counterpoint to traditional inside view 
forecasting methods within the project management process. While dynamic scheduling and project 
management emphasize flexibility and responsiveness, forecasting with RCF offers a more stable, 
probability-based foundation grounded in empirical data. However, the effectiveness of RCF as an 
outside view method is contingent upon the careful selection of a reference class and the availability 
of high-quality historical data. Practitioners must also weigh the benefits of bias reduction against the 
risk of overlooking unique project conditions. 
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For optimal results, project managers should consider using RCF in tandem with inside view forecasting 
methods, particularly in cases where unique project-specific factors are relevant. Hybrid approaches 
that blend RCF with expert judgment allow for the benefits of empirical data while retaining flexibility 
to adapt to the particularities of individual projects. This balanced approach could enhance forecast 
accuracy by leveraging both the probabilistic strength of RCF and the contextual insight provided by 
inside view methods (Flyvbjerg, 2014). 

Various scientific studies and publications endorse RCF as a superior method for project forecasting. 
Researchers argue that RCF’s ability to bypass human biases and its reliance on empirical data make it 
a robust tool for accurate forecasting. By incorporating data from past projects, RCF provides a more 
objective basis for predicting costs, leading to more successful project outcomes (Love et al., 2016) 

In contrast, traditional methods often fall short due to their inherent subjectivity and potential for bias. 
They may not adequately account for unexpected variables and changes in project scope, leading to 
significant deviations from initial estimates. Furthermore, without a systematic approach to leveraging 
historical data, traditional methods can miss out on valuable insights from past projects, resulting in 
repeated mistakes and underestimation of risks (Siemiatycki, 2009) 

3.4.3 Conclusion 
While Reference Class Forecasting offers significant advantages in reducing bias and providing data-
driven predictions, its constraints highlight the inherent uncertainties in forecasting infrastructure 
project costs. The quality and selection of the reference class, the homogeneity of data, the static 
nature of historical information, and the exclusion of qualitative factors all contribute to the complexity 
and uncertainty of price predictions. Addressing these constraints is essential for improving the 
accuracy and reliability of RCF in infrastructure projects. By acknowledging these limitations and 
incorporating additional qualitative and future-oriented insights, practitioners can enhance the 
robustness of their forecasts and better manage the uncertainties inherent in infrastructure project 
planning. 
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3.5 How to perform a Reference Class Forecast    
Figure 3.5.1 outlines a structured process for performing Reference Class Forecasting (RCF), a method 
rooted in behavioural economics and project management theory.  

 

Figure 3.5.1: How to perform a reference class forecast (authors image) 

The first step in performing RCF is to find a reference class of similar projects. Selecting an appropriate 
group of comparable, completed projects is crucial to ensure that the forecasting model is based on 
relevant and realistic data. Unlike planned projects, completed projects offer actual outcomes that can 
serve as a reliable baseline for predicting future performance. The choice of reference class must align 
with the current project's scope, complexity, and context to produce meaningful comparisons. Studies 
have shown that failing to select a truly comparable reference class can lead to skewed and unreliable 
forecasts (Flyvbjerg, Holm, & Buhl, 2002; Cantarelli et al., 2012). 

Once the reference class is identified, the next step is to collect historical data from these projects. The 
data gathered should include initial forecasts, final project outcomes, and metrics such as delays and 
cost overrun percentages. This data is essential for assessing how closely initial predictions aligned 
with actual project results. By analysing this information, project planners can understand the range 
of potential deviations and prepare for more realistic forecasts. Historical data provides an empirical 
foundation that minimizes reliance on subjective opinions and enhances the objectivity of project cost 
and time predictions (Jelen & Black, 1983; Flyvbjerg, 2006). 
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With the collected data, the third step involves establishing a distribution of outcomes. This 
distribution illustrates the range and frequency of project costs and completion times within the 
reference class, providing a probabilistic view of what can be expected for similar future projects. 
Unlike single-point estimates, which often underrepresent variability, a distribution approach accounts 
for uncertainty and allows project managers to anticipate a broader spectrum of possible results. This 
step is critical for building forecasts that reflect real-world variability and are less prone to 
underestimation (Ashworth, 2004; Vose, 2008). 

The fourth step in the RCF process is to adjust the forecast for special circumstances that may not be 
captured by the historical data. This adjustment ensures that the forecast remains relevant by 
incorporating unique aspects of the current project. Factors such as technological innovations, political 
changes, or site-specific conditions can significantly impact project outcomes. For instance, projects 
that involve the use of new technology may require adjustments to account for potential cost 
fluctuations or performance uncertainties (Chou, Cheng, & Wu, 2015; Kim, Kim, & Han, 2019). 
Additionally, political shifts or regulatory changes can alter project timelines and budgets, necessitating 
revisions to the baseline forecast (Cantarelli et al., 2012). Addressing these unique factors helps tailor 
the forecast to current circumstances, enhancing its reliability (Van Wee & Rietveld, 2013). 

Finally, the process concludes with making the final forecast. This step synthesizes insights from the 
distribution of historical outcomes and adjustments made for special conditions. By combining 
empirical data with these tailored adjustments, the RCF approach delivers a balanced, evidence-based 
prediction. The final forecast is thus more resilient to common forecasting biases, such as optimism 
bias, and better equipped to anticipate potential deviations from initial project plans (Kahneman & 
Tversky, 1979; Flyvbjerg, 2006). 

3.6 Implementing Success Factors in Reference Class Forecasting 
Research into Reference Class Forecasting (RCF) has shown that incorporating project-specific success 
factors can significantly refine the method's accuracy. This body of work investigates how detailed 
variables related to individual projects can improve the predictive power of RCF, particularly for 
infrastructure projects. 

3.6.1 Integration of Success Factors 
A significant study by Love et al. (2015) delved into the effects of integrating success factors within RCF 
for construction projects. They identified key factors such as project complexity, stakeholder 
involvement, and environmental conditions. Their research indicates that these factors, when 
incorporated into the RCF model, provide a deeper understanding of potential risks and outcomes, 
thereby enhancing predictive accuracy. 

3.6.2 Conclusion 
The integration of success factors into Reference Class Forecasting has been empirically demonstrated 
to enhance the accuracy of cost predictions for infrastructure projects. By incorporating detailed 
project-specific variables, researchers have refined RCF, making it more reliable than traditional 
methods. These advancements build upon RCF's robust empirical foundation, combining it with 
modern analytical techniques to further mitigate biases and improve forecasting precision. 

3.7 Most Relevant Cost-Driving Factors for Dike Reinforcement Projects 
Literature shows several cost driving factors when reinforcing dikes. In Appendix The obstacles are of 
a technical, financial, institutional, or legal nature. Technical and financial aspects are self-explanatory: 
institutional aspects involve matters of an organizational nature, such as agreements between 
governments or having the right people in the right place. Legal aspects include obstacles arising from 



29 
 

contracts and legislation. An obstacle can have multiple aspects. An overview of these cost driving 
factors can be found in Appendix D. 

3.8 Selection of success-factors 
The success-factors that emerged from the literature review were validated by interviewing several 
experts in the field of dike-reinforcements and financial modelling. The interviewees highlighted the 
following factors as the most influential on the price of a dike reinforcement, shown in table 3.  

Table 3: Selected success-factors 

Factor Type of variable Identified by interviewee 

1 Is the project situated in a rural area?  
Binary [yes/no] 

1,2,3,4 

2 Is the project situated in an urban area?  
Binary [yes/no] 

1,2,3,4 

3 Is the project situated in a N2000 area?  
Binary [yes/no] 

1,2,3,4 

4 Are there buildings close to the project?  
Binary [yes/no] 
 

1,2,3,4 

5 What type of soil is situated at the 
project location? 
 

String [ sand, clay, sand & 
clay….] 

1,2,3 

6 What is the distance from the national 
standard? 

String [ A+, A, B, C, D] 1,2,3,4 

7 Is the dike bordering a river or a sea? Binary [Sea/River] 1,2,4 

8 Which water authority managed the 
project? 

String 3,4 

 

An analysis was conducted on 43 dike reinforcement projects from the HWBP-2 programme using the 
factors mentioned above in table 3. Each factor was evaluated based on the type of variable it 
represented, such as binary or categorical, to assess the possible influences on the cost of these 
projects. For instance, factors like "Is the project situated in a rural area?" were scored as binary 
variables with values of "Yes" or "No," allowing for a straightforward categorization of the data. 

To explore the relationships between these factors and the overall cost of the dike reinforcement 
projects, a correlation analysis and a regression analysis is performed. The correlation analysis helped 
identify the degree of association between each factor and the project costs. This provided insight into 
which factors might have stronger or weaker relationships with cost, revealing the most influential 
variables. For example, factors such as proximity to urban areas, soil type, and whether the project 
was situated in a Natura 2000 (N2000) area were tested for their potential correlation with the costs 
incurred. 

Following this, a regression analysis is conducted to further quantify how much each of these factors 
could predict the cost of the projects. The regression model allowed me to assess the weight of each 
factor in contributing to the total cost, by estimating their predictive power when accounting for other 
variables. Factors like the type of soil, the presence of nearby buildings, and whether the dike bordered 
a river or sea were included as predictors in the model. The binary and categorical nature of the 
variables was appropriately handled through encoding techniques, such as dummy variables for binary 
factors, to ensure compatibility within the regression framework. 
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The combination of correlation and regression analysis not only helped to identify which factors were 
significantly correlated with project costs, but also provided insights into the relative importance and 
predictive capacity of each factor. This analysis was instrumental in understanding the underlying 
dynamics of cost variations across different dike reinforcement projects within the HWBP-2 
programme. The findings can contribute to better forecasting and planning for future projects, where 
a clearer understanding of cost drivers is critical for optimizing resource allocation. 

3.8.1 Definition of variables 
In order to understand the success factors mentioned above, it is important to define said variables. 
In order to make an objective assessment on each of these variables for every project in the database 
it is important to define said variables very specific.  

3.8.2 Rural and urban area 
To determine the factor: “Is the project situated in a rural area? [yes/no]”, first it is important what the 
definition of a rural area is in the Netherlands. In the distribution system of the provincial fund, urban 
and rural areas are defined at the level of grid squares measuring 500 x 500 meters. The criterion used 
for this is the surrounding address density (SAD) of the relevant grid square. If the SAD is 1500 or more 
addresses per square kilometre, the square is classified as an urban area. If the SAD is less than 1000 
addresses per square kilometre, it is considered a rural area. 

Each year, at the request of the Ministry of the Interior and Kingdom Relations, Statistics Netherlands 
(CBS) calculates figures for each province regarding the number of inhabitants in rural areas for the 
provincial fund distribution system. This distribution system came into effect on January 1, 1998 (Dutch 
Official Gazette, 1997, 526). 

This definition is the same when filling in the factor “urban area”. The reason why both the factors 
urban area and rural area are in the model is because sometimes a dike reinforcement project runs 
through rural areas and urban areas as well.  

3.8.3 N2000 area 
In order to determine whether a project is situated in a Natura 2000 area it is necessary to understand 
what a N2000 area is defined as. Natura 2000 is a European network of protected nature areas. In 
these Natura 2000 areas, certain animals, plants, and their natural habitats are protected to preserve 
biodiversity (species richness). Biodiversity has been under pressure in Europe for many years, and 
sustainable protection of flora and fauna is urgently needed. Since plants and animals are not 
restricted by national borders, it is important to approach nature conservation on a European scale. 
This helps prevent the natural environment in Europe and the Netherlands from becoming increasingly 
uniform. 

In 1979, the Birds Directive was established, and in 1992, the Habitats Directive. These directives 
consist of two parts: species protection and habitat protection. All EU member states designate 
protected areas for specific (habitats of) (bird) species. The protected areas designated under both 
directives form the Natura 2000 network. To determine whether a project is located in or near a Natura 
2000 area, a map developed by the Ministry of Agriculture, Fisheries, Food Security, and Nature was 
consulted.  

3.8.4 Soil type 
To determine the type of soil present at a project site, a 1:50,000 scale map developed by Atlas is 
consulted. This map classifies the soil into several categories: Sand, Loam, Clay, Peat, Sand & Loam, 
and Loam & Clay. The specific classification helps in understanding the soil's composition and 
properties, which are essential for planning construction, agricultural projects, or environmental 
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assessments. Each type of soil has unique characteristics that influence its suitability for various types 
of land use. 

For example, sand is known for its high permeability and poor nutrient retention, making it less 
suitable for intensive agriculture but ideal for drainage or certain types of construction projects. Loam 
(or Zavel in Dutch), on the other hand, is often considered a more fertile soil because it has a balanced 
mix of sand, silt, and clay, which allows it to retain water and nutrients better, making it ideal for 
farming. Clay soils, while rich in nutrients, tend to have poor drainage and can become waterlogged, 
which can pose challenges for construction but provide rich agricultural land for crops like rice in wetter 
regions. 

Peat soils (Veen) are typically found in wetlands and are rich in organic material. However, they are 
often prone to subsidence and can be difficult to build on without special considerations. Finally, the 
mixed categories like Sand & Loam or Loam & Clay indicate areas where the soil is a blend, offering 
varying degrees of the properties of the individual components. 

Understanding the soil type is critical for various industries, including construction, agriculture, and 
environmental conservation. Soil maps like the one provided by Atlas offer a crucial tool for land use 
planning by providing detailed information on the nature and composition of the land, allowing for 
more informed decision-making. Sources like the European Soil Data Centre (ESDAC) and national 
geological institutes often provide such detailed soil maps. These maps, along with modern digital 
mapping technologies, are crucial for planning sustainable development and ensuring that the land is 
used in ways that are compatible with its natural characteristics. 

3.8.5 Assessment of dikes 
In the Netherlands, dike safety assessments are rated using a grading scale that ranges from A+ to D, 
with each grade reflecting the condition and performance of a dike or flood defence system. These 
grades play an essential role in helping water authorities prioritize maintenance and reinforcement 
efforts. They indicate which dikes meet the required safety standards and which are vulnerable and in 
need of urgent attention. 

The grading system from A+ to D is not only a tool for assessing the current state of dikes but also helps 
guide maintenance and reinforcement planning. Dikes with C and D ratings are typically prioritized for 
urgent attention, while those rated A or A+ may only require routine inspections and minor upkeep. 
This system ensures that resources are allocated efficiently to the most vulnerable areas, enhancing 
overall flood protection. Additionally, the ratings help authorities implement a risk-based approach to 
flood management. This means the areas at the highest risk of flooding, especially those protecting 
densely populated regions or critical infrastructure, receive the most attention. For example, dikes 
protecting major urban centres or vital economic zones may need to be reinforced even if they still 
meet basic standards to ensure they can handle future risks such as rising sea levels or increasingly 
frequent storms due to climate change. 

To determine what score a project in the database has conform the LBO-1 safety assessment has, the 
website of waterveiligheidsportaal is consulted. The Waterveiligheidsportaal (Water Safety Portal) 
facilitates the exchange of information regarding the processes of assessment and reinforcement of 
primary flood defences in the Netherlands. At the core of this process is the Water Act of 2017, which 
provides the legal framework for managing water safety and flood protection throughout the country. 

Various parties are involved in these processes. The dike managers, including the water boards 
(waterschappen) and Rijkswaterstaat (the national water authority), are responsible for maintaining 
and overseeing the primary water barriers. The Inspectorate of the Environment and Transport (ILT) 
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plays a supervisory role, ensuring that the flood defences meet safety and regulatory standards. The 
High Water Protection Program (HWBP) is instrumental in coordinating and financing the 
reinforcement efforts, ensuring that flood defences remain strong and resilient. In addition, the 
Directorate-General for Water and Soil (DGWB) is responsible for setting policies and ensuring 
compliance with national water safety regulations. 

Together, these organizations ensure that primary water defences across the Netherlands are regularly 
assessed and reinforced to safeguard the country from potential flooding, following the strict 
requirements laid out in the Water Act. 

3.8.6 Proximity of buildings to the project 
This factor determines whether the dike project is situated near existing buildings. It is a binary 
variable, with the possible outcomes being Yes or No. Proximity to buildings introduces additional 
challenges and constraints. When buildings are located close to the project site, construction activities 
may face restrictions due to concerns about noise, vibrations, or disruptions to local residents and 
businesses. Moreover, working near structures often requires specialized measures to prevent 
potential damage, such as monitoring for settlement or providing additional stabilization. These 
constraints can increase both the complexity and cost of the project. 

3.8.7 Sea-dike or River-dike 
This factor represents whether the dike project is located along a river or a sea. It is a binary variable 
with two possible outcomes: "Sea" or "River." The distinction between a river and a sea dike impacts 
various aspects of the project. Sea dikes are often subjected to more extreme tidal forces, saltwater 
corrosion, and storm surges, necessitating robust construction techniques and materials. In contrast, 
river dikes typically face challenges related to sediment transport, inland flooding, and variations in 
water levels. These differences in environmental conditions directly affect the technical requirements, 
cost, and complexity of reinforcement projects. 

In the context of Reference Class Forecasting, this factor contributes to the classification of similar 
projects by ensuring that the chosen reference class includes projects with comparable environmental 
challenges. By incorporating this binary variable, the predictive model can account for the unique cost-
driving characteristics associated with dikes bordering either rivers or seas, enhancing the accuracy of 
cost forecasts. 

3.8.8 What water authority managed the project? 
This factor identifies the specific water authority responsible for managing the dike reinforcement 
project. It is represented as a categorical variable, with the possible values being the names of different 
managing authorities. The managing water authority can influence various aspects of the project, 
including design preferences, regulatory requirements, and resource availability. Different authorities 
may adopt varying standards, operational practices, and approaches to risk management, which can 
impact the overall project costs. For example, some authorities might emphasize innovative 
construction techniques, while others may rely on traditional methods, leading to variations in cost 
structures and timelines. 

Including this factor ensures that projects are grouped with others managed under similar conditions 
and by comparable authorities. This categorization helps account for regional or organizational 
differences that can significantly affect project outcomes, improving the accuracy and relevance of cost 
predictions. By recognizing the role of the managing authority, the forecasting model can better align 
reference classes with the unique characteristics of each project.  
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4 Data analysis of Success Factors 
 

In this chapter, a systematic analysis of the collected data is conducted, forming a cornerstone of this 
research. The data analysis serves a dual purpose: it provides the empirical basis for addressing the 
research objectives and establishes a theoretical and methodological framework that supports 
subsequent analyses. This chapter focuses on understanding the relationships between various project 
characteristics and their impact on the costs per kilometer for dike reinforcement projects, indexed to 
the year 2024. 

The purpose of this analysis is twofold. First, it identifies and quantifies the key factors influencing cost 
variations using robust statistical methods, including correlation matrices and regression modeling. 
These tools are used to determine the significance and strength of relationships between independent 
variables and project costs. Second, and most critically, the findings from this analysis underpin the 
matching method detailed in the following chapter. By examining the degree of comparability between 
projects within the HWBP-2 dataset and the HWBP dataset, the analysis provides the foundation for 
constructing reference classes essential to accurate cost prediction. 

The analysis is integral to the functioning of the matching method. The matching method relies on the 
identification of patterns and relationships that allow projects to be paired with their most comparable 
counterparts. This pairing is essential to the development of a reference class forecasting model 
capable of producing reliable and precise cost estimates. Without a detailed understanding of the 
relationships between variables, such matching would lack the empirical rigor required for robust 
predictions. 

This chapter is organized as follows. It begins with a Correlation Matrix Analysis, which explores the 
relationships between various project characteristics and provides initial insights into their impact on 
costs. The chapter then progresses to a detailed Regression Analysis, where the relative importance 
and predictive power of different variables are examined in depth. These sections collectively establish 
the statistical basis for the subsequent matching methodology discussed in Chapter 5. 

By understanding the underlying factors that drive cost variations and grounding them in theoretical 
and empirical evidence, this chapter serves as a bridge between the raw data and the methodological 
innovations presented in the next chapter. Through its findings, it not only advances the understanding 
of cost dynamics in dike reinforcement projects but also lays the groundwork for methodological 
advancements that enhance the accuracy and reliability of cost forecasting models.  

4.1 Correlation Matrix Analysis 
The correlation matrix, table 4 provides an initial understanding of how different variables interact 
with each other. The full correlation matrix can be found in Appendix H. The table reveals a strong 
negative correlation between the variable indicating whether a project is located in a rural area 
(represented as Rural Area [1/0]) and Cost/km (2024), with a correlation coefficient of -0.457. This 
finding suggests that projects situated in rural settings tend to incur lower costs compared to those in 
urban settings. Conversely, the Urban Area [1/0] variable demonstrates a positive correlation of 0.432 
with Cost/km (2024), indicating that urban projects are generally linked to higher costs. These insights 
highlight the geographical influence on project expenses. 

Further examination of the correlation matrix reveals that the Year of costs variable exhibits a positive 
correlation of 0.160 with Cost/km (2024). This suggests that as the price level increases, the costs 
incurred per kilometre are likely to rise as well. Additionally, the presence of a Seadike or Riverdike is 
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associated with lower costs, reflected by their negative coefficients in the matrix. This indicates that 
projects incorporating these types of dikes tend to be less costly to implement, underscoring the 
potential cost-saving benefits of utilizing specific infrastructure types. 

In the analysis of the correlation between " Cost/km (2024)" (cost per kilometre in 2024) and other 
variables, several key relationships emerged that help explain the factors influencing project costs. One 
of the most significant correlations was found between cost per kilometre and the presence of 
buildings along the dike. Dikes located near built-up areas tend to have higher costs per kilometre, as 
reflected by the positive correlation (0.314, p < 0.05). The presence of infrastructure and construction 
along dikes adds to the complexity of reinforcement or construction projects. Urban areas require 
additional considerations, such as protecting existing buildings, utilities, and other services, which can 
significantly increase the cost and scope of the work involved. 

A similar trend is observed when examining the correlation between costs per kilometre and the water 
boards responsible for the projects. For example, projects managed by the Hoogheemraadschap van 
Schieland en de Krimpenerwaard show a strong positive correlation with higher costs per kilometre 
(0.426, p < 0.01). This likely reflects the specific challenges faced in the regions under this water board’s 
jurisdiction, such as more densely populated areas or difficult environmental conditions that require 
more extensive or sophisticated engineering solutions. 

Another key finding is the relationship between urban and rural areas and project costs. Dikes located 
in urban areas (Stedelijk Gebied) exhibit a significant positive correlation with higher costs per 
kilometre (0.432, p < 0.01), while those in rural areas (Landelijk Gebied) show a strong negative 
correlation with costs (-0.457, p < 0.01). This makes intuitive sense, as urban environments tend to 
present more logistical challenges, including limited space, higher land value, and the need to minimize 
disruptions to human activities. In contrast, rural areas generally involve simpler projects, with fewer 
constraints and less complex terrain, leading to lower costs for reinforcement or construction. 

Interestingly, while there is a weak negative correlation between costs per kilometre and sea dikes 
(Seadike) (-0.098), this relationship is not statistically significant. This suggests that, on average, there 
may not be a large difference in costs between sea dikes and other types of dikes, such as river dikes. 
Similarly, river dikes (Riverdike) exhibit a very weak and non-significant correlation with cost, indicating 
that the distinction between dike types (sea vs. river) does not strongly influence the costs associated 
with reinforcement projects. 

In terms of environmental factors, Natura 2000 areas (N2000) show a weak and non-significant 
negative correlation with costs (-0.119). This suggests that being located near or within a Natura 2000 
protected area does not have a strong impact on project costs. However, the restrictions in these areas 
could slightly limit the extent of construction or reinforcement activities, potentially reducing costs. As 
the researched dataset is from the HWBP-2 dataset, it is possible that these projects still had a 
construction exemption for nitrogen deposition. In other words, they did not account for it at that 
time. After the ruling by the Council of State, this construction exemption has been abolished, meaning 
that construction now needs to be emission-free or low-emission, which leads to high costs in the 
projects. This conclusion is drawn because at this moment the HWBP is specifically experiencing that 
Natura 2000 areas are leading to additional costs. (Linda Kamphuis, 2024) 

Regarding the involvement of Rijkswaterstaat and various regional water boards (Waterschappen), the 
correlation with cost per kilometre varies. While Rijkswaterstaat projects show a slight negative 
correlation (-0.073), indicating marginally lower costs, this relationship is not statistically significant. 
Similarly, water boards like Waterschap Aa en Maas and Waterschap Scheldestromen exhibit small 
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negative correlations with costs, though these relationships are weak and not significant, suggesting 
no major cost differences based on management by these entities. 

Finally, there is a negative correlation between costs per kilometre and Afstand tot de norm (-0.287, p 
= 0.062), which is approaching statistical significance. This suggests that dikes further from their safety 
norm tend to have slightly higher costs per kilometre. This could be because urgent reinforcement 
projects, which are farther from the safety norm, may involve more complex and costly interventions, 
while projects closer to the norm might require less intensive work. 

Table 4: Correlation Matrix 

   Cost/km 
(2024) 

Rural 
Area 
[1/0] 

Urban 
Area 
[1/0] 

Year of 
costs 

Seadike Riverdike Development 
close to dike 

 Cost/km 
(2024) 

1.000 -0.457 0.432 0.160 0.098 -0.098 0.314 

Rural Area 
[1/0] 

-0.457 1.000 -0.345 -0.210 -0.105 0.064 0.098 

Urban Area 
[1/0] 

0.432 -0.345 1.000 0.100 0.020 -0.061 -0.094 

Year of costs 0.160 -0.210 0.100 1.000 -0.019 -0.009 -0.015 
Seadike 0.098 -0.105 0.020 -0.019 1.000 -0.003 -0.004 
Riverdike -0.098 0.064 -0.061 -0.009 -0.003 1.000 0.001 
Development 
close to dike 

0.314 0.098 -0.094 -0.015 -0.004 0.001 1.000 

 

4.2 Regression analysis 
Following the correlation analysis, a regression model was used to quantitatively assess how well the 
independent variables predict Cost/km (2024). Regression analysis is widely used to explore 
relationships between variables and make predictions. Before the results are discussed in section 4.2.2, 
the assumption of linearity is discussed.  

4.2.1 Assumption of linearity  
A key assumption in this method is linearity, which posits a straight-line relationship between the 
dependent and independent variables. Ensuring this assumption is met is critical for the accuracy, 
reliability, and interpretability of the analysis. Ignoring non-linearity can lead to biased results, invalid 
inferences, and poor predictions. In this section, the assumption of linearity is checked for all variables 
that are not binary.  

Non-linear relationships, if unaddressed, can result in biased parameter estimates and reduce a 
model’s ability to represent the data accurately (Harrell, 2015). Moreover, statistical inferences, such 
as p-values and confidence intervals, rely on correctly specified models. Gelman and Hill (2007) note 
that patterns in residuals often indicate violations of the linearity assumption, compromising 
hypothesis testing and overall model validity. 

Predictive performance also suffers when linearity is incorrectly assumed. A linear model cannot 
capture complex patterns, leading to underfitting or overfitting. Kuhn and Johnson (2013) emphasize 
that addressing non-linearity—through variable transformations, polynomial terms, or advanced 
modeling methods—can significantly enhance predictions. Additionally, preserving the interpretability 
of coefficients is only possible when the linearity assumption holds, as non-linear effects complicate 
the interpretation of regression outputs (James et al., 2013). 
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Table 5: Results of validating the assumption of linearity 

Model variable P - value 
Year of costs  0,007 
Year of costs ^ 2 0,244 
Length [km] 0,085 
Length [km] ^ 2 0,728 
Afstand_tot_de_norm_encoded 0,527 
Afstand_tot_de_norm_encoded ^ 2 0,875 

 

Looking at table 5, the following can be concluded. The assumption of linearity is strongly validated for 
the Year of Costs (linear term), with a significant p-value of 0.007. This indicates that a linear 
relationship exists between the year of costs and the dependent variable, costs/km. Furthermore, the 
squared term of the year (p = 0.244) is not statistically significant, suggesting that a non-linear 
relationship is unnecessary. Together, these findings confirm that the linear form of the variable is 
sufficient to capture its effect on the dependent variable, validating the linearity assumption for this 
predictor. 

For Length [km], the linear term shows a marginal p-value of 0.085, indicating potentially meaningful 
linear relationship with the dependent variable. The squared term, however, is highly insignificant (p 
= 0.728), providing no evidence of a non-linear effect. These results suggest that the linearity 
assumption is reasonable for this variable, though further exploration, such as variable 
transformations or interactions, might be warranted to fully validate its contribution to the model. 

Finally, for Distance from the norm, both the linear term (p = 0.527) and its squared term (p = 0.875) 
are statistically insignificant, indicating no clear relationship—linear or non-linear—with kostenkm 
2024. Despite this, the absence of a quadratic effect supports the assumption of linearity for this 
variable in its linear form, even if its overall influence on the dependent variable is minimal. 

Concluding, all three non-binary variables fulfil the assumption of linearity and will be used in the 
regression model as such.   

4.2.2 Results of the regression analysis 
The regression results, summarized in Table 6, show an R-squared value of 0.764. This suggests that 
approximately 76.4% of the variability in project costs can be explained by the independent variables 
included in the model. Such a strong fit indicates that the selected factors are indeed meaningful 
predictors of costs. 

To determine the relative importance of each predictor variable in influencing the target variable, 
Cost/km (2024) (cost per kilometre in 2024), a linear regression analysis is performed on the 
completed projects from HWBP-2. Linear regression is widely used in research for estimating 
relationships between variables and assessing the importance of predictors (Hastie et al., 2009). The 
regression model calculates coefficients for each predictor, representing its contribution to the 
variance in Cost/km (2024). 
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Table 6: Regression Results for Cost/km (2024) 

Model variable Unstand. B Stand. B P - value 
(Constant) -5502,295   0,007 
Year of costs 2,752 0,495 0,007 
Length [km] -0,811 -0,350 0,085 
Rural Area [1/0] -15,120 -0,435 0,327 
Urban Area [1/0] 16,604 0,481 0,310 
N2000 [1/0] 8,643 0,235 0,263 
Development close to dike 16,034 0,449 0,103 
Riverdike -6,674 -0,169 0,347 
Regional Water Authority Hoogheemraadschap 
van Schieland en de Krimpenerwaard 

24,834 0,367 0,075 

Rijkswaterstaat -9,874 -0,166 0,348 
Water Board Aa en Maas -33,381 -0,408 0,056 
Water Board Groot Salland -37,376 -0,327 0,096 
Water Board Hollandse Delta -20,599 -0,504 0,049 
Water Board Noorderzijlvest -24,478 -0,214 0,151 
Water Board Rijn en Ijssel -26,641 -0,233 0,214 
Water Board Rivierenland -9,434 -0,139 0,530 
Water Board Scheldestromen -10,679 -0,158 0,364 
Water Board Vallei en Eem 20,365 0,178 0,436 
Water Board Fryslân -26,816 -0,539 0,013 
Soil type – peat 2,687 0,033 0,844 
Soil type – sand -1,864 -0,044 0,837 
Soil type – sand & loam -19,477 -0,238 0,150 
Soil type – loam 11,792 0,314 0,122 
Soil type- loam & clay 26,373 0,490 0,072 
Afstand_tot_de_norm_encoded -1,641 -0,108 0,527 
    
R-squared – 0.764   0.029 

 

The regression model for explaining cost differences in dike reinforcement projects incorporates 
various statistically significant and theoretically justified predictors. With an R-squared value of 0.764, 
the model explains a substantial portion of the variance in project costs, and the overall model 
significance (p = 0.029) underscores that these predictors meaningfully relate to cost outcomes. In 
applied settings like engineering and environmental management, it is often advisable to retain 
variables that may not reach statistical significance if they hold theoretical importance, as literature 
and empirical practice underscore the complex, multi-faceted nature of cost dynamics in such projects 
(Wooldridge, 2016; Keith, 2019). 

First, let’s address the statistically significant and marginally significant predictors, which are retained 
in the model based on their clear contributions to explaining cost variability. The Year of Costs variable, 
significant at p = 0.007, shows a strong positive impact on cost, which aligns with known inflationary 
pressures and general cost escalations over time in infrastructure projects. Including Length of the dike 
in kilometers, which is marginally significant (p = 0.085), is also essential as it may account for 
economies of scale. According to economic theory, larger projects often benefit from reduced per-unit 
costs, making Length a theoretically robust predictor (Saha & Muro, 2020). Furthermore, organizations 
managing the projects—represented by variables such as water board Hollandse Delta and water 
board Fryslân—show statistically significant cost impacts. These variables reflect the administrative or 
managerial differences among organizations, which can influence project efficiency, funding allocation, 



38 
 

and adherence to standards. Studies suggest that organizational management in public infrastructure 
projects can have notable effects on costs due to variations in expertise, project oversight, and 
resources (Love et al., 2015). 

For non-significant predictors, we retain several based on their theoretical relevance and the potential 
for subtle, context-specific impacts on costs, even if their effects are not statistically significant in this 
particular sample. For instance, Rural Area and Urban Area variables capture geographic differences, 
potentially affecting costs due to variations in land value, accessibility, and regulatory requirements. 
While these variables are non-significant here, infrastructure projects in rural areas often have lower 
land acquisition costs, whereas urban projects may incur higher costs due to denser development and 
more stringent regulations (McGreal et al., 2012). Similarly, N2000, which likely represents proximity 
to protected areas under the European Natura 2000 program, is kept for its potential impact on 
construction restrictions. Environmental preservation requirements frequently impose cost premiums 
on projects in sensitive ecological zones, as documented by numerous environmental economics 
studies (Hanley et al., 2001). 

Variables related to Beheerder (different managing organizations) are retained as they reflect potential 
managerial influences that can impact costs due to differences in organizational standards, funding, 
and resource allocation. Studies on public project management have shown that managerial 
differences among agencies or organizations can lead to cost variations, as some organizations may 
prioritize cost efficiency while others may focus on comprehensive quality standards, regardless of cost 
implications (Flyvbjerg et al., 2003). By including all Beheerder variables, the model provides a 
complete view of potential cost variability among management bodies, avoiding biases that might 
arise from selectively omitting certain organizations. 

Soil types (Bodemtype variables), though not statistically significant, remain in the model due to their 
practical relevance in dike reinforcement projects. Soil composition (e.g., peat, sand, loam) can 
significantly impact the structural requirements and methods needed for reinforcement, affecting 
overall costs (Heathcote, 2010). For example, loamy or clay-rich soils might require additional 
reinforcement measures to ensure dike stability, thereby increasing costs. Including these soil types in 
the model ensures that important geotechnical factors are accounted for, even if their statistical effects 
are not prominent in this particular sample. 

Finally, Afstand_tot_de_norm_encoded, representing proximity to regulatory standards, is retained 
due to its potential influence on cost outcomes, despite its high p-value. Proximity to engineering or 
safety norms could drive specific design decisions and adjustments that may impact cost. Engineering 
literature suggests that adherence to regulatory standards often results in additional costs, particularly 
in highly regulated fields like water management and infrastructure (Askar et al., 2021). 

In conclusion, while statistical significance is a critical criterion in model-building, theoretical and 
practical considerations also play a vital role in applied contexts. Retaining variables that may not be 
statistically significant but are theoretically justified, such as management organization, environmental 
designations, soil types, and project geography, allows the model to align with established insights 
from infrastructure and environmental economics literature. This approach provides a balanced 
perspective, ensuring the model captures both statistically evident and theoretically grounded 
influences on dike reinforcement project costs. 

Among the variables, Year of costs is a significant predictor with a p-value of 0.007, indicating that a 
later start of the projects is associated with increased costs per kilometre. Despite the robust findings, 
potential multicollinearity was noted among several predictors, which could affect the reliability of the 
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coefficient estimates. Therefore, while the results provide valuable insights into the factors influencing 
Cost/km (2024), caution should be exercised in interpreting these relationships. 

4.3 Conclusion 
In conclusion, the cost per kilometre of dike projects in 2024 is most strongly influenced by whether 
the project is located in an urban or rural area, as well as the presence of construction and 
infrastructure along the dike. Urban areas and developed regions present greater logistical challenges, 
driving up the cost of reinforcement and construction projects. The specific water board managing the 
project also has an impact, with some regions exhibiting higher costs due to particular geographic or 
environmental challenges. However, factors such as soil type and proximity to Natura 2000 areas have 
little to no significant influence on the cost, based on the weak correlations observed. The regression 
model reveals several key insights into the factors influencing the cost per kilometre of dike projects. 
The most significant predictors include Year of costs, which shows that higher price levels are 
associated with increased project costs, and management by specific water boards such as Wetterskip 
Fryslân, which tends to reduce costs. Soil types, particularly zavel & klei, are also important in 
explaining cost variations. While some variables, like urban/rural location and buildings along the dike, 
exhibit expected relationships, their lack of statistical significance suggests the need for further 
investigation into how these factors interact with others in influencing project costs. The choice is 
made to keep insignificant variables into the model because of the theoretical en practical influence 
on the price of dike-reinforcements.  
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5 Regression Weighted RCF 
 

In this section the model that has been developed will be discussed, this model will be called the 
“Regression weighted Reference Class Forecast model” or RWRCF. In chapter 4 an analysis is conducted 
on the importance of each factor on the costs/km of the dike reinforcements. This analysis forms the 
basis for selecting the right projects as a reference class for each project in in the HWBP database. 
Section 5.2 will explain further how projects are matched. The regression weighted reference class 
forecasting method uses several factors to create distinct reference classes for project cost predictions. 
In the traditional reference class forecasting method, a reference class would be selected of 
comparable projects. The forecast is then based on those comparable projects. The method 
researched in this thesis tries to establish which projects in the reference class are most suitable for 
forecasting the price of each individual project. When the reference class of each project is established, 
the model will use the average of the costs per kilometre of each reference class to predict the price 
for each project. In table 7, the differences between the RWRCF-model and the traditional RCF-model 
are highlighted. 

Table 7: Characteristics of the RWRCF-model and the traditional RCF-model 

 Regression Weighted RCF-model Traditional RCF-model 
General 
Approach 

Utilizes the weighted similarity scores based on a set of 
predictor variables. This allows for more precise 
matching of projects by considering detailed 
characteristics and their relative importance. The RWRCF 
approach is based on techniques used in multi-criteria 
decision making. This provides a customized distance 
metric for each project (Zhang et al., 2006). 

Selects a reference class based on general 
project similarities. The selection process is 
broader, focusing on overarching 
characteristics without a detailed analysis of 
individual factors. This method can overlook 
specific project nuances, leading to less precise 
predictions. 

Factor 
importance 

Importance of factors is derived from regression 
analysis. Each predictor variable is assigned a weight 
based on its relative impact on the target outcome 
(Cost/km), ensuring that the model prioritizes the most 
significant variables. The weights are normalized to allow 
for comparison across variables (James et al., 2013; 
Hastie et al., 2009). 

Uses general factors without specific 
weighting. The traditional method does not 
quantify the relative importance of each 
predictor, leading to potential biases and less 
accurate matching. Factors are considered 
equally or based on subjective judgment. 

Transparency High transparency, as the model identifies exact-
matched factors for each project pair. This allows 
decision-makers to understand the basis of each match 
and increases transparency in similarity-based 
recommendations. The method records specific factors 
that match exactly, enhancing interpretability (Li et al., 
2018). 

Lower transparency, as it does not provide 
specific factor matching. The traditional model 
relies on general project similarities without 
detailing which factors influenced the match, 
making it less clear how recommendations are 
derived. 

 High accuracy due to the inclusion of detailed project 
attributes and their impact on costs. The regression-
weighted model takes into account various specific 
characteristics, leading to more precise cost predictions 
and better alignment of projects (James et al., 2013). 

Lower accuracy due to generalized criteria. The 
broader approach of the traditional model may 
not capture the specific influences on project 
costs, leading to less precise predictions and 
potential misalignments in project matching. 

Data 
requirements 

Requires detailed and specific data, including various 
predictor variables and their historical values. The need 
for comprehensive data ensures precise and reliable 
matching and predictions. 

Requires less detailed data, focusing on 
broader project similarities. This simplicity can 
be an advantage when detailed data is not 
available but may reduce prediction accuracy. 

Ease of 
application 

More complex to implement due to the need for 
regression analysis and detailed data handling. This 
complexity can be a barrier to adoption but provides 
more accurate results. 

Easier to implement, as it relies on general 
project similarities without the need for 
detailed data analysis. This simplicity can make 
it more accessible but at the cost of precision. 
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One important factor is year of costs, which adjusts for price indexation to account for inflation or 
changes in costs over time. Additionally, the location of the project plays a significant role, with 
distinctions made between projects in rural areas and those in urban areas. Whether the project is 
located within or near a Natura 2000 protected area is also considered, as these areas often have 
specific environmental restrictions that can influence project costs. The presence of buildings or 
infrastructure along the dike is another factor, which can increase project complexity and costs. The 
type of dike, specifically whether it is a river dike, is also used in determining the reference class. 

The managing authority, such as Rijkswaterstaat or one of the various regional water boards, is taken 
into account, as different organizations may handle projects with varying approaches and resource 
allocations. The type of soil at the project site, including categories like sand, loam, peat, clay, and their 
combinations (such as loam & clay or sand & loam), is another important factor. Finally, the distance 
to the safety norm—which affects the urgency and complexity of the project—is also considered in the 
model. By combining these factors, the method enables more accurate matching of new projects with 
historical ones that share similar characteristics, leading to improved cost predictions. 

5.1 Data usage 
The model used in this research is built upon a database from the HWBP-2 programme, which consists 
of data on 43 dike reinforcement projects. These projects contain detailed information, including the 
finished and reported costs of each project. In order to allow for a direct comparison between projects 
completed in different years, the cost per kilometre for all projects has been indexed to the year 2024. 
This indexing is achieved using the GWW index sheet from the CBS, ensuring that inflation and changes 
in construction costs over time are accounted for. 

Each of the 43 projects is evaluated based on a set of factors identified through literature review and 
interviews. These factors include various project-specific characteristics, such as length, soil type, and 
environmental constraints. The factors used in the model are significant, as they explain 76.4% of the 
variation in project costs. Rather than relying on a single reference class for cost predictions, the model 
generates multiple reference classes based on the unique combination of factors for each project. This 
allows for more accurate and tailored cost predictions for future projects. 

The same HWBP-2 database is then used to predict costs for 28 completed projects from the newer 
HWBP programme. As with the earlier set of projects, the costs for these 28 projects have been 
indexed to 2024 using the GWW index sheet from CBS, ensuring consistency in comparisons across all 
projects. Each of the new projects is then scored on the same factors as the original 43 projects, 
ensuring that the model remains comparable and consistent in its application. 

5.2 Methodology for Project Matching Based on Regression-Weighted Factor 
Importance 

In this study, a data-driven approach to match dike reinforcement projects by using multiple predictor 
variables and their relative importance was developed. The primary objective was to find optimal 
project matches between two datasets, HWBP-2 (reference class dataset) and HWBP (forecasted 
projects). Using weighted factors derived from a regression analysis. This method aligns with 
techniques in predictive modelling and weighted similarity analysis, which are commonly used in fields 
such as recommender systems, machine learning, and multi-criteria decision making.  

5.2.1 Normalizing Weights 
The coefficients obtained from the regression analysis were converted into normalized importance 
weights by dividing the absolute value of each coefficient by the sum of all coefficients' absolute values. 
Normalizing the coefficients allows for a comparison of importance across variables on a unified scale, 
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preventing any one variable from disproportionately affecting the match score due to differing units 
of measurement (James et al., 2013). 

5.2.2 Calculation of Weighted Match Scores 
For each project in the projects that need to be forecasted, a minimum of 2 matching projects in 
HWBP-2 dataset were found by calculating a weighted match score. This score was derived from the 
weighted sum of absolute differences between the values of corresponding predictor variables in 
HWBP-2 dataset and HWBP dataset. The match score computation followed the formula:  

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑊𝑊𝑡𝑡 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀ℎ 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑊𝑊 =  �𝑤𝑤𝑖𝑖 ∗  �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑖𝑖=1

 

where wi is the weight of the iith variable, xij and yij are values of the ith predictor for a project that is 
forecasted and for a project in the reference class, respectively, and n is the number of predictor 
variables. 

5.2.2.1 Selection of Best Matches 
After computing the weighted match scores, projects in the reference class were ranked for each 
project in database with forecasted projects. The project(s) with the lowest weighted match score(s) 
were selected as the best matches, indicating the highest similarity based on the weighted factors. 
This approach follows the principles of weighted nearest neighbour methods, which prioritize closer 
matches based on a customized distance metric (Zhang et al., 2006). 

5.2.2.2 Identification of Matched Factors 
To enhance interpretability, specific factors that matched exactly for each project pair were recorded. 
A factor was deemed matched if the absolute difference between values was zero, allowing decision-
makers to understand the basis of each match and increasing transparency in similarity-based 
recommendations (Li et al., 2018). 

5.2.2.3 Conclusion 
In conclusion, this study developed a data-driven, weighted similarity approach to match dike 
reinforcement projects by leveraging predictor variables and their relative importance, allowing for 
optimal project comparisons between the HWBP-2 reference dataset and forecasted HWBP projects. 
This method combines insights from regression-derived weights with reference class forecasting. By 
normalizing the predictor weights, the analysis avoided the influence of variable scale discrepancies, 
a step crucial for achieving accurate similarity scores (James et al., 2013). 

The calculated weighted match scores facilitated the identification of the most comparable projects 
for each forecasted project by ranking based on similarity, emulating weighted nearest-neighbour 
methods (Zhang et al., 2006). Through this process, the projects with the lowest scores were selected 
as optimal matches, thus enhancing project alignment based on empirical data rather than subjective 
selection. Additionally, identifying exact-matched factors for each project pair provides greater 
transparency, ensuring decision-makers can clearly assess the criteria driving each recommendation 
(Li et al., 2018). This structured, data-driven method lays a foundation for more robust predictive 
alignment in dike reinforcement and similar large-scale infrastructure projects, ultimately supporting 
better-informed cost estimations and project outcomes. 
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5.3 Calculation of weights 
To effectively match projects based on multiple factors, we applied a weighted matching approach in 
which each predictor variable is assigned a weight based on its relative importance in predicting the 
cost per kilometre (Cost/km (2024). This weighting process allows us to prioritize variables that 
significantly impact the cost, ensuring that projects are matched based on the most relevant criteria. 
The following steps outline the calculation of these weights and the rationale for their use in our 
matching model. 

5.3.1 Determining Factor Importance through Regression Analysis 
The first step involved performing a linear regression analysis on the projects in the reference class to 
model the relationship between Cost/km (2024) (the target variable) and various predictor variables. 
Linear regression is widely utilized in econometric and predictive modelling applications to quantify 
the effect of multiple factors on a target outcome (Hastie et al., 2009). Here, we used the regression 
coefficients to estimate the influence of each predictor on project costs. 

The regression model generated coefficients for each predictor variable, with each coefficient 
representing the estimated change in Cost/km (indexed for the year: 2024) for a unit change in the 
predictor, holding all other factors constant. The predictor variables included both categorical and 
continuous factors relevant to project characteristics, such as geographical type indicators (Rural Area 
[1/0], Urban Area [1/0]), environmental constraints (N2000 [1/0]), structural properties (Riverdike, 
Seadike), and soil types (Bodemtype variables). 

5.3.2 Normalizing Regression Coefficients to Weights 
To translate the regression coefficients into weights for the matching process, we used a normalization 
process that converts each coefficient into a proportion of the total absolute effect size across all 
predictors. This approach ensures that the sum of all weights equals 1, allowing us to compare factors 
on a consistent scale and effectively apply them in a matching algorithm. 

The weight for each predictor iii was calculated as follows: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖 =  
|𝐶𝐶𝑆𝑆𝑊𝑊𝐶𝐶𝐶𝐶𝑊𝑊𝑀𝑀𝑊𝑊𝑊𝑊𝐶𝐶𝑡𝑡𝑖𝑖|

∑ �𝐶𝐶𝑆𝑆𝑊𝑊𝐶𝐶𝐶𝐶𝑊𝑊𝑀𝑀𝑊𝑊𝑊𝑊𝐶𝐶𝑡𝑡𝑖𝑖�𝑛𝑛
𝑖𝑖=1

 

where Coefficienti is the absolute value of the regression coefficient for predictor i, and n is the total 
number of predictors. By using absolute values, we focus on the magnitude of each factor’s effect on 
Cost/km (2024), regardless of direction, ensuring that both positive and negative influences are treated 
as indicators of importance (James et al., 2013). 

This normalization yielded a set of weights that reflect each variable’s relative importance in explaining 
the variability in project costs. The table in Appendix X summarizes the coefficients, normalized weight 
calculations, and final weights for each predictor. 
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5.3.2.1 Applying Weights in the Matching Score Calculation 
Once the normalized weights were established, they were applied in the matching process. This 
formula is shown before in section 5.2.2. For each project in forecasted dataset, a weighted match 
score is computed with projects in the reference class dataset based on the sum of weighted absolute 
differences between corresponding predictor variables: 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑊𝑊𝑡𝑡 𝑀𝑀𝑀𝑀𝑡𝑡𝑀𝑀ℎ 𝑆𝑆𝑀𝑀𝑆𝑆𝑆𝑆𝑊𝑊 = �𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ �𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑖𝑖𝑖𝑖� 

where: 

• xij is the value of the ith predictor for a project in the forecasted dataset. 

• yij is the value of the ith predictor for a project in the reference class dataset. 

5.4 Conclusion 
This study developed a data-driven approach that enhances Reference Class Forecasting (RCF) for dike 
reinforcement projects by incorporating multiple predictor variables and their relative importance, 
allowing for more accurate cost predictions. Traditional RCF often selects a reference class based on 
general project similarities, which can overlook specific factors that significantly impact project costs. 
By weighting predictor variables based on their calculated influence, this approach aligns with 
methodologies in predictive modeling and decision support systems, such as those described by James 
et al. (2013) and Hastie et al. (2009), ensuring that each variable’s impact is proportionate to its cost 
significance. 

The Regression weighted model integrates several factors like environmental constraints, project 
location, and soil type, weighted according to regression-derived importance scores. This factor-based 
approach in predictive modeling has been shown to improve accuracy by considering detailed project 
attributes, similar to the approaches in machine learning and multi-criteria decision-making (Zhang et 
al., 2006; Li et al., 2018). Additionally, the method’s use of normalized weights ensures that all 
predictors are on a unified scale, enhancing the model’s adaptability across various project contexts 
(James et al., 2013). 

By using a weighted similarity score, this enhanced RCF model effectively identifies optimal historical 
project matches, a process akin to weighted nearest-neighbour methods (Zhang et al., 2006), 
improving both the accuracy and relevance of cost forecasts. The approach’s ability to identify exact-
matched factors provides increased transparency, supporting clearer insights into the rationale behind 
each prediction (Li et al., 2018). Overall, this refined RCF methodology offers a more accurate, 
objective, and transparent tool for cost estimation in dike reinforcement, potentially setting a 
foundation for improved prediction models in other large-scale infrastructure projects. The table with 
the weights for each variable can be found in appendix E, and the table that indicates what projects 
were used to predict the costs can be found in appendix F. 
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6 Results 
 

 This chapter presents a comparison between the forecasted costs from the Regression weighted 
reference class model and the actual costs for individual dike reinforcement projects. It evaluates how 
well the RWRCF model performs compared to the traditional Reference Class Forecasting (RCF) 
method in terms of accuracy, consistency, and ability to predict project costs. The chapter begins with 
a project-by-project comparison, looking at forecasted costs per kilometer alongside the actual costs. 
Next, the chapter examines the overall distribution of costs to see how closely the model's predictions 
align with the real costs, highlighting any patterns or differences. Key performance metrics, such as the 
standard deviation of errors, R-squared, MSLE, sMAPE, and MASE, are then used to give a clearer 
picture of how each approach performs. 

6.1 Comparing both models to realised results for individual projects 
In this section a comparison is made between the forecasted results generated by the developed 
model and the realised results. 

6.1.1 Forecast results costs per kilometre (RWRCF) 
Figure 6.1.1 presents a comparison between the realized (actual) costs and the forecasted costs per 
kilometre for 28 dike reinforcement projects. The blue bars represent the actual costs per kilometre in 
millions of euros, while the orange bars depict the model’s cost predictions for each project. This 
comparison provides insight into the accuracy and consistency of the model’s forecasts relative to the 
actual costs observed in the HWBP dataset. 

Several key observations can be made from the chart. For many projects, the forecasted costs align 
closely with the realized costs, suggesting that the model is effective in providing reliable estimates for 
a substantial portion of the dataset. However, certain projects display noticeable discrepancies 
between the forecasted and realized costs. Notably, in projects 4, 5, 13, and 28, the model’s predictions 
significantly differ from the actual costs, with some underestimations and overestimations evident. 
These deviations suggest that specific project characteristics may introduce complexities that the 
model does not fully capture, or they may indicate unique factors influencing the actual costs, such as 
unexpected challenges or variations in resource allocation. 

Overall, the model demonstrates a reasonably good fit across most projects, with a tendency to 
maintain close proximity to the realized costs per kilometre. The alignment for the majority of the 
projects indicates the model’s strength in handling typical cost drivers for dike reinforcements. 
However, the instances of larger variances highlight potential areas for model refinement, suggesting 
that further consideration of project-specific nuances could improve forecast accuracy. The RWRCF 
model predicted an average cost per kilometre of 7.950 million euros. While the average realised cost 
per kilometre is 8.079 million euros per kilometre. Indicating that the RWRCF model is in this form 
more fit to forecast costs on programme level in stead of individual level.  
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Figure 6.1.1: Realised costs vs forecasted costs per kilometre 

6.1.2 Distribution of project costs per kilometre (RWRCF) 
Following the initial comparison between realized and forecasted costs, the distribution of costs per 
kilometre, as shown in the Figure 6.1.2, offers additional insights into the characteristics of the model’s 
predictions versus actual project costs. In this histogram, the orange bars represent the forecasted 
costs per kilometre for the projects, while the blue bars show the actual costs. The overlaid lines 
represent normal distribution fits for each dataset, with the red line indicating the distribution of the 
predicted costs and the blue line showing the actual costs. The x-axis represents cost categories in 
millions of euros, ranging from €0–€5 million up to €45–€50 million per kilometre. These categories 
define the cost ranges within which projects are grouped. On the primary y-axis (on the left), the 
frequency of projects within each cost category is displayed, indicating how many projects fall into 
each range. Meanwhile, the secondary y-axis (on the right) shows the relative probability density of 
costs, based on normal distribution curves for both predicted and actual costs.  

From the distribution, we can observe that the forecasted and realized costs per kilometre have 
generally similar shapes, both displaying a right-skewed distribution. This suggests that while most 
projects cluster within lower cost ranges, there are a few projects with significantly higher costs per 
kilometre that extend the tail of the distribution. The alignment between the two distributions’ shapes 
indicates that the model effectively captures the general pattern of cost variation across projects, even 
though there are some differences in specific cost ranges. 

However, there are some noticeable differences in frequency within certain cost bands. For instance, 
the predicted costs show a higher concentration in the €0-€5M/km range compared to actual costs, 
which are more spread across the €5-€10M/km and €10-€15M/km ranges. This discrepancy suggests 
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Figure 6.1.2: Cost per kilometre distribution, forecasted vs realised 
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that the model may have a slight tendency to underestimate costs in certain cases, especially for 
projects with moderate to high complexity or unique characteristics that drive up costs per kilometre. 

The normal distribution fit lines help in visualizing the alignment between predicted and realized costs 
further. The peak of the actual cost distribution appears to be slightly shifted toward higher costs 
compared to the predicted distribution. This shift highlights potential areas for improvement in the 
model, as it may not fully capture certain cost-inflating factors in specific project conditions, such as 
geographical, environmental, or regulatory constraints. 

6.1.3 Percentage difference regression weighted reference class forecasting method 
Figure 6.1.3 shows the percentage difference between the forecasted costs per kilometer from the 
RWRCF model and the realized costs. On the X-axis, the different projects are numbered. On the Y-axis, 
the percentage difference between the actual costs and the forecasted costs are shown. The data 
points are scattered, indicating variability in the model's accuracy across projects. Each data point, 
shown as a green dot, represents the percentage difference for a specific project. The position of the 
dot on the y-axis shows whether the RCF was higher or lower than the actual realized costs. In addition 
to the dots, error bars extend vertically from each point, representing the variability or uncertainty in 
the percentage difference. Wider error bars indicate greater uncertainty or variability in the data for 
that specific project.  

While some predictions are close to the actual costs, as seen in points clustering around the 0% 
difference line, there are still several instances of under- or over-estimations. Although many variations 
remain within ±100%, this range of error suggests that the model's predictions could be improved. The 
model appears to incorporate project characteristics reasonably well, but the level of variability 
highlights the need for further refinement to achieve more consistent accuracy across different 
projects.   
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Figure 6.1.3: percentage difference between forecast/km and realised costs/km 



48 
 

6.1.4 Percentage difference traditional RCF method 
In contrast, the second chart, which represents the percentage difference between the traditional RCF 
forecasts and realized costs, reveals significantly larger deviations. The red dots represent the 
percentage difference for each project, with their vertical position on the y-axis indicating the extent 
of overestimation or underestimation. Surrounding each red dot are error bars, which indicate the 
variability or uncertainty in the percentage difference for that specific data point. Wider error bars 
suggest a greater degree of uncertainty or variability in the data. Many data points show percentage 
differences well above 100%, with some even exceeding 1000%, indicating substantial overestimation 
in some cases.  

From the figure, it is evident that there are extreme cases of overestimation by the traditional RCF, 
with some projects showing percentage differences exceeding 1400%. This suggests that for these 
projects, the traditional RCF significantly overestimated the realized costs. At the same time, other 
projects cluster closer to 0%, where the traditional RCF aligns more closely with the realized costs. A 
smaller number of projects exhibit negative values, indicating underestimation, although this is less 
frequent compared to overestimations. The error bars vary in size across projects, indicating differing 
levels of confidence in the accuracy of the calculated percentage differences. 
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In conclusion, Figure 6.1.4 highlights that traditional RCFs often overestimate project costs per 
kilometre, with some extreme outliers showing significant overestimations. While some projects align 
more closely with realized costs, the figure underscores the limitations of traditional RCF as a predictive 
tool, suggesting the need for more accurate and adaptive estimation methods. 

This level of deviation highlights the limitations of the traditional RCF method when applied to dike 
reinforcement cost forecasting. The traditional RCF approach often relies on a broad, generalized 
reference class without specific project-level adjustments, which can result in predictions that are 
either too high or too low, failing to capture the unique characteristics of individual projects. 

6.1.5 Interpretation of Results 
The comparison between the two charts underscores the advantages of the RWRCF model over the 
traditional RCF approach in terms of both accuracy and reliability. The RWRCF model demonstrates 
tighter clustering around the 0% line, suggesting it is more effective in providing realistic estimates that 
are closely aligned with actual project costs. The traditional RCF method, on the other hand, shows 
substantial variability and significant overestimations for certain projects, which may stem from its 
generalized approach that lacks tailored adjustments for individual project factors.  

Figure 6.1.5, titled "Comparison between RWRCF and Traditional RCF," compares the percentage 
differences between predicted project costs using Regression Weighted Reference Cost Factors 
(RWRCF) and Traditional Reference Cost Factors (RCF) against actual realized costs. This comparison is 
visualized through green and red dots, representing RWRCF and Traditional RCF, respectively, for 
various projects. The figure highlights how each method performs in estimating costs. 

The x-axis represents a sequence of projects or data points, each corresponding to a specific project 
or category. The y-axis shows the percentage difference between predicted and realized costs, with 
values ranging from -400% to 1400%. Positive values indicate overestimation by the method, while 
negative values represent underestimation. The proximity of the dots to 0% indicates the accuracy of 
each method in predicting realized costs. 
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Figure 6.1.5: Comparison between RWRCF and traditional RCF in percentages 
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The green dots, which represent the Regression Weighted RCF, cluster more closely around the 0% 
line, showing that RWRCF predictions generally align better with realized costs. In contrast, the red 
dots, representing Traditional RCF, display much greater variability, with many projects showing 
significant overestimation of costs. For some projects, the red dots reach extreme outliers, exceeding 
1000%, indicating that the Traditional RCF method substantially overestimated costs for those cases. 

This analysis indicates that the RWRCF model provides a more precise and reliable method for 
predicting dike reinforcement costs compared to traditional RCF. By incorporating multiple weighted 
factors and dynamically adjusting the reference class based on project-specific characteristics, the 
RWRCF model offers a refined approach that reduces large deviations, as seen in the traditional 
method. This improvement in forecast accuracy supports the model's potential as a valuable tool for 
cost planning and budgeting in large-scale infrastructure projects, where precision is essential to 
manage resources effectively and minimize unexpected costs. 

6.2 Comparing RWRCF to the traditional RCF 
This section evaluates the performance of the RWRCF predictive model and the traditional Reference 
Class Forecasting (RCF) method in estimating project costs. The aim is to compare the two approaches 
across several performance metrics to assess their accuracy, consistency, and predictive power. Metrics 
such as standard deviation of errors, R-squared, Mean Squared Logarithmic Error (MSLE), Symmetric 
Mean Absolute Percentage Error (sMAPE), and Mean Absolute Scaled Error (MASE) each offer unique 
insights into the model's effectiveness. By analysing these indicators, the study highlights where the 
RWRCF model outperforms traditional RCF, showing improved reliability and precision. 

 Table 8: performance metrics regression model vs traditional reference class model 

In evaluating the forecasting performance of both the RWRCF model and the traditional Reference 
Class Forecasting (RCF) method, several key metrics were analysed to assess accuracy, consistency, and 
overall predictive power. Each metric provides unique insights into the model's effectiveness and 
reliability compared to the traditional approach, highlighting areas where the RWRCF model offers 
notable improvements in prediction accuracy and consistency. Each metric will be tested on the 
performance of the model including success factors and on the traditional Reference Class Forecasting 
method. An overview is shown in table 8. 

6.2.1 Standard Deviation of Errors 
The standard deviation of errors indicates the consistency in forecasting performance across projects. 
For the RWRCF model, the standard deviation of errors was 2.92 per km and 3.54 for total costs, while 
the traditional Reference Class Forecasting (RCF) method showed higher deviations of 5.58 per km and 
6.40 for total costs. This substantial difference implies that the RWRCF model’s predictions are more 
stable and generally closer to actual costs, reflecting a more reliable forecasting method. A lower 
standard deviation is typically preferred, as it shows that errors remain controlled and consistent, 
making the model more dependable for cost estimation (Jorgensen et al., 2009). In contrast, the higher 

 
Metric 

RWRCF/km RCF/km RWRCF (total costs) RCF (total costs) 

Standard Deviation of Errors 2.92 5.58 3.54 6.40 
R-Squared 0.45 0.23 0.52 0.34 
Adjusted R-Squared 0.43 0.20 0.50 0.31 
MSLE 0.02 0.05 0.03 0.08 
Median Absolute Error 1.67 4.20 2.10 5.05 
sMAPE 20.35% 55.68% 18.90% 48.75% 
MASE 1.20 2.45 1.15 2.67 
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standard deviation in the traditional RCF forecasts suggests broader variation, leading to less 
dependable cost predictions and increased risk of significant deviations from actual costs. 

6.2.2 R-Squared and Adjusted R-Squared 
R-squared values represent the proportion of variance in actual costs that each model can explain. 
Higher R-squared values indicate a better model fit. For the RWRCF model, R-squared scores were 0.45 
per km and 0.52 for total costs, while the traditional RCF method showed lower values of 0.23 per km 
and 0.34 for total costs. This suggests that the RWRCF model better captures cost variability, indicating 
a stronger alignment with actual cost drivers. Adjusted R-squared values, which correct for model 
complexity, also supported these findings, with the RWRCF model achieving values of 0.43 per km and 
0.50 for total costs compared to 0.20 per km and 0.31 in the traditional RCF method. Higher adjusted 
R-squared values demonstrate that the RWRCF model avoids unnecessary complexity, fitting the data 
effectively without overfitting, a common goal in predictive modelling (James et al., 2013).  

6.2.3 Mean Squared Logarithmic Error (MSLE) 
Mean Squared Logarithmic Error (MSLE) emphasizes how well each model handles underestimations, 
with a heavier penalty for under-prediction errors, which can be more problematic in cost forecasting 
contexts (Hyndman & Athanasopoulos, 2018). The RWRCF model achieved MSLE values of 0.02 per 
km and 0.03 for total costs, significantly lower than the traditional RCF method's 0.05 per km and 0.08 
for total costs. This lower MSLE suggests the RWRCF model is better at avoiding severe 
underestimations, which can have costly consequences in infrastructure projects. The traditional RCF’s 
higher MSLE indicates more frequent and pronounced underestimations, reducing its reliability in 
cases where under-prediction poses substantial risks. 

6.3 Median Absolute Error 
The median absolute error (MAE) is less affected by outliers, providing a stable measure of typical 
prediction errors (Zou et al., 2007). For the RWRCF model, the median absolute error was 1.67 per km 
and 2.10 for total costs, compared to the traditional RCF method’s 4.20 per km and 5.05 for total costs. 
This indicates that, on average, the RWRCF model yields a smaller forecasting error, making it more 
reliable for typical project cost estimates. The lower median error for the RWRCF model suggests that 
most of its predictions are closer to the actual costs, while the traditional RCF model shows larger 
variations, indicating a tendency toward less accurate forecasts. 

6.3.1 Symmetric Mean Absolute Percentage Error (sMAPE) 
Symmetric Mean Absolute Percentage Error (sMAPE) provides a balanced view of the model's 
performance, treating over- and under-predictions equally. Lower sMAPE values are preferred, as they 
reflect closer alignment with actual values (Kim & Kim, 2019). The RWRCF model achieved sMAPE 
values of 20.35% per km and 18.90% for total costs, compared to the traditional RCF method’s much 
higher values of 55.68% per km and 48.75% for total costs. These results indicate that the RWRCF 
model is significantly more accurate, with errors almost half that of the traditional RCF approach. The 
high sMAPE in the traditional RCF method underscores its struggle with large forecasting errors, while 
the lower sMAPE in the RWRCF model highlights its balance and accuracy. 

6.3.2 Mean Absolute Scaled Error (MASE) 
Mean Absolute Scaled Error (MASE) compares model performance to a naive benchmark, with values 
close to or below 1 indicating that the model performs as well as or better than a simple forecast based 
on historical averages (Hyndman & Koehler, 2006). The RWRCF model achieved MASE values of 1.20 
per km and 1.15 for total costs, showing close alignment with the naive benchmark. In contrast, the 
traditional RCF method showed MASE values of 2.45 per km and 2.67 for total costs, far exceeding the 
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benchmark. This result suggests that the traditional RCF method underperforms relative to a simple 
prediction approach. The near-benchmark MASE values of the RWRCF model indicate that it performs 
nearly as well as a basic historical average, while also benefiting from tailored, data-driven insights, 
making it a more effective tool for cost forecasting. 

6.4 Conclusion 
In summary, the analysis of these metrics demonstrates that the RWRCF model consistently 
outperforms the traditional RCF method across all key indicators. The RWRCF model’s lower standard 
deviation of errors reflects more consistent and reliable forecasts. The higher R-squared and adjusted 
R-squared values indicate a better fit to actual data, while the lower MSLE, median absolute error, and 
sMAPE confirm that the RWRCF model provides more accurate predictions. The MASE scores further 
emphasize the effectiveness of the RWRCF model, showing that it performs comparably to a naive 
benchmark, whereas the traditional RCF method falls significantly short. Collectively, these results 
underscore the RWRCF model’s superiority in forecasting project costs, providing a robust, accurate, 
and reliable tool for cost prediction that significantly enhances upon the limitations of the traditional 
RCF approach. 
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7 Discussion & Limitations 
 

In this research, the effectiveness of enhancing Reference Class Forecasting by incorporating success 
factors has been analysed. The objective was to contribute to the understanding of the critical role of 
comparability when applying Reference Class Forecasting to project forecasting. The study aimed to 
provide deeper insights into how the integration of project-specific success factors could refine the 
accuracy and reliability of forecasts by ensuring that the selected reference class aligns more closely 
with the project under consideration. 

This section presents a reflection on the research findings, discussing their implications and how they 
align with existing literature on forecasting methods. Additionally, it addresses the limitations of the 
study, exploring potential factors that may have influenced the outcomes and outlining areas where 
future research could build on these findings. By reviewing both the strengths and constraints of this 
work, the discussion seeks to provide a comprehensive overview of the research’s contributions and 
its applicability to real-world forecasting practices in large-scale infrastructure projects. 

7.1 Discussion 
The primary goal of this research was to develop a method for predicting the future costs of the Flood 
Protection Programme up to 2050. To achieve this, an effective price prediction approach was required 
to equip the researcher with the necessary tools for accurate forecasting. While extensive studies have 
been conducted on Reference Class Forecasting, the literature remains unclear on the role of 
comparability in improving forecasting accuracy. This gap in the existing knowledge shifted the focus 
of this research towards investigating whether incorporating success factors can enhance the 
predictive capability of Reference Class Forecasting. And to what these success factors are in the 
context of dike-reinforcements. 

7.1.1 Identifying success factors  
Dike-reinforcements in the Netherlands, financed by the Flood Protection Programme are used as a 
case study because of the unique similarity and data availability that could be provided by the Flood 
Protection Programme. This is due to the fact that one programme oversees almost all dike 
reinforcements. This is something that in other areas of infrastructure is hard to find, and necessary 
when conducting a reference class forecast. The research aims to research whether the addition of 
success factors can enhance the forecasting abilities of a reference class forecast. In order to find the 
key factors for dike reinforcements, a literature review has been done. The literature review mostly 
highlighted technical aspects as cost factors as well as the geotechnical conditions, location and 
complexity of the reinforcement. To validate these findings several interviews were conducted with 
experts in the field of dike reinforcements, with years of experience. Four interviews were conducted, 
and although they mostly shared the same opinions on what factors have the biggest impact on costs, 
it could be that more experts need to be interviewed to gain a better understanding on what factors 
influence the price of a dike reinforcement the most.  
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7.1.2 Modelling 
The quantitative part of the research consists of the data analysis and the model that has been 
developed. Initially, the selection of the Reference Class was performed by seeking an exact match 
between projects based on a strict set of factors. While matches were found, the model frequently 
relied on only one project as a reference, as it did not search further once a match was identified. This 
approach overlooked the potential for including multiple projects that could serve as suitable matches 
but differed by only one less matching factor. By failing to consider these near-matches, the model 
limited its predictive accuracy and robustness, resulting in high uncertainty and large standard 
deviations due to a reliance on a single project. Such reliance reduces the stability of predictions, as 
Flyvbjerg et al. (2003) suggest that a broader set of references enhances the reliability of project cost 
forecasts. Selecting additional projects as references could have introduced subjectivity, as the 
decision would depend on manual judgment rather than a consistent methodology. 

To address these challenges, the methodology was refined by assigning weights to the factors and 
calculating a match score between projects. This adjustment allowed for a more nuanced matching 
process, where the most important factors exerted a greater influence on the selection of reference 
projects. By prioritizing certain factors, the revised approach enabled the model to identify multiple 
reference projects with varying degrees of similarity, rather than relying solely on exact matches. 

The use of weighted factors brought two main advantages. Firstly, the most critical factors, based on 
their predictive strength as determined through regression analysis, had a stronger influence on the 
selection process. This shift ensured that key variables affecting costs, played a central role in matching. 
Weighted matching techniques are well-documented in predictive modelling, where more flexible 
matching criteria have been shown to improve the accuracy of predictions, especially in complex 
contexts (Gelman & Hill, 2007). Secondly, the revised methodology allowed for multiple projects to 
serve as reference points. By aggregating data from several similar projects, the model achieved 
greater predictive stability, reducing the standard deviation and uncertainty associated with cost 
estimates. Moreover, using a comparability-based approach ensures that the selection of projects is 
guided by data-driven matching criteria rather than subjective judgment, improving objectivity and 
consistency in the reference class selection. 

The adjustment from an exact-match search to a weighted matching system has important theoretical 
implications for project cost prediction models, especially in fields where projects vary widely in 
context and scope. This approach aligns with the principles of reference class forecasting, as described 
by Flyvbjerg et al. (2009), which suggests that using broader and more flexible classes of reference 
data enhances the robustness of predictive models for infrastructure costs. By allowing certain factors 
to weigh more heavily, this approach aligns with the notion that key variables should reflect contextual 
sensitivity, a principle highlighted in institutional economics and infrastructure studies (Dewulf & 
Kivits, 2019; Ostrom, 2005). The ability to prioritize certain factors is also valuable in settings where 
some characteristics, such as regional management practices or land use types, disproportionately 
influence costs. 
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7.2 Limitations & Strengths 
When reflecting on the used research design, methods and completeness of this research, the 
limitations and the strengths can be debated. In this section first the limitations will be discussed. 
Subsequently the strengths and added value to existing literature are highlighted.  

7.2.1 Limitations 
As with every master thesis, this research has its limitations. Due to time constraints the scope of the 
research had to be defined, and aspects had to be deliberately excluded from the scope. 

7.2.1.1 Subjectivity in factor selection 
One of the primary limitations of this study lies in the subjectivity involved in selecting the factors that 
influence the cost of dike reinforcements. The chosen factors were based largely on expert opinions, 
gathered through interviews with professionals who have years of experience in dike reinforcement 
projects. Although these four experts generally agreed on the key factors that impact costs, such as 
the location of the dike (urban vs. rural) and the presence of infrastructure nearby, it is possible that a 
broader range of perspectives could reveal additional or alternative factors. The relatively small sample 
size of experts consulted may not fully capture the complexity and diversity of opinions within the 
industry. Interviewing a larger number of stakeholders, including engineers, project managers, and 
policymakers across different regions, could yield a more comprehensive understanding of the 
variables that truly drive costs. Expanding the scope of expert consultations would likely improve the 
robustness of the factor selection process, potentially leading to a more nuanced and representative 
set of cost determinants. 

7.2.1.2 Potential inaccuracy of relevant factors 
Another limitation of this study is the potential for inaccurate effects of relevant factors. Specifically, 
the factor "afstand_tot_de_norm," which measures the condition of the dike relative to a national 
safety standard set by the First National Assessment round of primary flood protection (LBO-1), 
presents unique challenges. This standard was established after the completion of several projects in 
the dataset, meaning that its influence on costs is difficult to quantify retroactively. As a result, the 
accuracy of the weighted match scores, which are used to determine the best reference class for each 
project, may be affected. The omission or limited applicability of certain factors could lead to 
incomplete or less precise cost predictions, suggesting that the model could benefit from additional 
variables that reflect the evolving standards and conditions of dike projects. Or in a simplification in 
the amount of factors, this is suggested by the adjusted R-squared mentioned in chapter 4.  

Another factors effect which measures whether a N2000 area is close to the project is potentially 
inaccurate. Because of legislative changes, projects used as a reference class did not have to take the 
effects of nitrogen deposition into account. This can lead to a skewed view on the effects of a N2000 
area close to dike reinforcements.  

7.2.1.3 Limitations of normalised weighing method 
The method used to weigh the success factors in the model is another area of potential limitation. The 
study employed a weighting approach that, while validated in the literature, is one of many possible 
methods available for assigning importance to predictor variables. Different weighting techniques can 
yield different results, and the choice of method can significantly impact the final predictions. For 
example, alternative approaches such as machine learning algorithms or more sophisticated statistical 
techniques might better capture the relative importance of each factor, especially in complex, multi-
factor models like this one. The reliance on a single weighting method without experimenting with 
others could introduce a degree of bias, as this chosen approach may not be the most suitable for this 
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particular dataset or prediction context. By testing multiple weighting methods, the model could 
potentially achieve a higher level of accuracy and reliability in its cost predictions. 

Another limitation of using a weighting method in combination with reference class forecasting is that 
the reference class gets divided into several smaller reference classes. This makes the individual 
forecasting ability less robust. In order to use this method, a much bigger reference class is needed 
than literature currently advises.  

7.2.1.4 Inherent limitations of reference class forecasting 
Reference class forecasting improves cost predictions by relying on historical data from similar 
projects, but it has key limitations. A major challenge is finding a truly comparable set of past projects, 
as unique characteristics in each project, such as specific location, environmental factors, or regulatory 
differences, can reduce accuracy. Additionally, by averaging past data, RCF may overlook project-
specific nuances, potentially leading to over- or underestimations in complex cases. 

RCF also assumes historical data is relevant to current conditions, which may not hold due to factors 
like inflation, technological changes, or new regulations. Finally, RCF is highly dependent on the quality 
of past data, which can limit reliability if records are incomplete or inconsistent. While RCF is valuable, 
its effectiveness depends on suitable reference data and can miss unique project risks. 

7.2.1.5 Generalizability of findings 
This model was specifically tailored to dike reinforcement projects, using the HWBP-2 dataset. The 
chosen factors—such as environmental and management-related variables—reflect the unique 
context of dike reinforcements and may not apply broadly to other types of infrastructure. Each water 
management region presents distinct characteristics that could affect cost factors differently, limiting 
the model's generalizability to other regions or dike projects. 

However, the methodology developed, particularly the data-driven weighting approach, has potential 
for adaptation in other infrastructure domains. Applying similar methods to different project types 
could enhance cost forecasting in various fields. Further research should test the model with diverse 
datasets to confirm its robustness and explore its broader applicability. 

7.3 Strengths 
Despite its limitations, this research also possesses several strengths that contribute valuable insights 
to the literature. First, this study employs a rigorous approach by integrating literature review, expert 
interviews, and data analysis to identify and validate key cost factors for dike reinforcements. This 
validation process ensures that the factors are not only well-grounded in existing research but are also 
supported by expert insights and empirical evidence. By triangulating findings across these sources, 
the study enhances the credibility and reliability of the identified factors, lending a higher degree of 
rigor to the overall methodology. This robust approach reduces potential biases and reinforces 
confidence in the research’s conclusions. 

Secondly, the research delves into the impact of improving comparability between reference class 
projects and forecasted projects to try to achieve more accurate cost predictions. This focus on refining 
project matching is significant, as it suggests that better-aligned reference classes can enhance 
forecasting precision. This methodological improvement holds potential beyond the specific case of 
dike reinforcements, as it can be applied to other areas of infrastructure forecasting where tailored 
project matching could yield similar benefits. As such, the research contributes valuable insights for 
enhancing the generalizability and adaptability of reference class forecasting. 
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Third, the study’s use of mixed methods—combining qualitative insights from expert interviews with 
quantitative data analysis—provides a balanced and objective exploration of findings. This 
combination not only strengthens the research’s conclusions but also enables a more comprehensive 
understanding of the factors driving cost variations in dike reinforcement projects. By using both 
qualitative and quantitative methods, the study benefits from the depth of expert perspectives and 
the precision of statistical validation, offering a robust foundation for its recommendations and 
ensuring a more nuanced approach to infrastructure cost forecasting. 

Finally, a strength of this study lies in its attempt to address the knowledge gap around "comparability" 
in reference class forecasting. By examining the specific factors that enhance comparability between 
the reference class and forecasted projects, this research goes beyond traditional reference class 
forecasting approaches, which often assume comparability without thoroughly defining or testing it. 

Through a careful selection and validation of factors that impact cost differences in dike 
reinforcements, the study offers a more nuanced view of how project similarity can directly improve 
forecasting accuracy. This focus on comparability not only strengthens the reliability of cost predictions 
for dike reinforcements but also contributes a foundational understanding of how tailored project 
matching can enhance reference class forecasting across other types of infrastructure projects. In this 
way, the study provides a valuable contribution to the literature, setting a precedent for more precise 
and context-sensitive approaches to reference class forecasting. 
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8 Conclusion and Recommendations 
 

In recent years, the costs of infrastructure projects have been steadily rising due to a combination of 
factors, including increasing labour and material costs, stricter regulatory requirements, 
environmental considerations, and growing project complexity. This trend has intensified the focus on 
forecasting methods with a practical approach to enhance the accuracy of project cost estimates. As 
infrastructure demands grow and become more complex, traditional cost estimation methods have 
proven limited in accommodating unexpected challenges and contextual variables. RCF is one of 
several methods that address these challenges in a systematic and data-driven way by using historical 
data and comparable project outcomes. This method has shown potential in refining cost predictions, 
especially in complex environments where precise estimates are crucial to avoid substantial financial 
and social costs. 

The research used qualitative as well as quantitative methods to explore various subjects linked to the 
main research question. ‘To what extent can Reference Class Forecasting, combining success factors 
make an accurate price prediction for the financial programming of HWBP’s dike reinforcements until 
2050?’ 

8.1 Conclusion research sub-questions 
Within this section, the four research sub-questions are answered. The sub-questions have 
cumulatively allowed to answer the main research question. 

1) What are the state-of-the-art models used to forecast prices in the infrastructure sector? 

In order to gain a good understanding of the available models currently used to predict prices in the 
infrastructure sector, three widely used models are assessed. Table 9 summarises the type of data 
required, strengths and weaknesses for each method. 

Table 9: State-of-the-art models review 

Method Type of Data Required Strengths Weaknesses 
Traditional Cost 
Estimating 

- Historical cost data for 
similar projects 

- Detailed, component-specific estimates 
- Flexible, can use various techniques for         
different project types 
- Well-suited for projects with predictable 
and repeatable characteristics 

- Prone to bias if unexpected factors arise 
- Tends to underestimate costs for 
complex projects 
- Limited in accuracy for unique or highly 
complex projects 

Probabilistic 
Estimating 

- Baseline project 
estimates  
- risk data,  
- statistical data on cost 
variability  
- probability distributions 

- Accounts for uncertainty by providing a 
range of possible cost outcomes  
Enhances decision-making by quantifying   
risk and cost contingencies 
- Provides a better understanding of risks, 
helping to manage budget overruns more 
effectively 

- Requires high-quality data and 
sophisticated statistical tools 
- Can be complex and time-consuming to 
set up, especially for large projects 
- May still rely on baseline estimates that 
are subject to bias or error if initial 
assumptions are weak 

Reference Class 
Forecasting 

- Data on completed 
projects with similar  

- Mitigates optimism bias by focusing on 
historical data from similar projects 
- Effective for complex or unique projects 
where traditional estimates may be 
unreliable 
- Provides outcome-based estimates that 
are generally more realistic in high-stakes 
projects 

- Relies on having a robust reference class; 
accuracy drops if comparable projects are 
lacking 
- Less specific to project components, 
potentially lacking detail on individual cost 
drivers 
- Requires careful selection of the 
reference class to ensure similarity and 
relevance 
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Looking at table 10, each method has its own strengths and weaknesses. Traditional cost estimating is 
well-suited for projects that are predictable and repeatable, relying heavily on historical data to 
produce detailed, component-specific estimates. Its flexibility allows for various techniques to be 
applied across different project types. However, this method struggles with complexity and 
unpredictability, often underestimating costs for unique or highly intricate projects. It is also prone to 
bias, especially when unexpected factors arise. 

Probabilistic estimating, on the other hand, excels at managing uncertainty by incorporating risk data 
and statistical tools to provide a range of possible cost outcomes. This approach enhances decision-
making by quantifying risks and cost contingencies, offering a better understanding of potential budget 
overruns. Despite these strengths, it requires high-quality data and sophisticated statistical tools, 
which can make it resource-intensive and time-consuming. Additionally, it still relies on baseline 
estimates that can be prone to bias or errors if the initial assumptions are flawed. 

Reference class forecasting stands out as a method tailored for complex or high-stakes projects or 
programmes. By focusing on historical data from similar projects, it effectively mitigates optimism bias 
and delivers realistic, outcome-based estimates. However, its accuracy depends on the availability and 
relevance of a robust reference class, and it may lack detail regarding specific project components. 
Careful selection of comparable projects is critical to its success. 

Overall, these methods offer varying levels of accuracy and focus, with clear trade-offs between detail, 
uncertainty management, and realism. Their effectiveness ultimately hinges on the quality and 
relevance of the data used, making data an essential factor in any cost-estimating approach. 

2) Is Reference Class Forecasting a viable way to predict prices dike reinforcements? 

Reference Class Forecasting (RCF) emerges as a viable tool for predicting prices in dike reinforcement 
projects, with several key strengths that make it particularly suited for the infrastructure sector. By 
using an outside view, RCF reduces the optimism bias and strategic misrepresentation often inherent 
in traditional cost estimation methods. Grounded in empirical data from similar past projects, it allows 
for more realistic estimates that align with the actual outcomes of comparable infrastructure projects. 
This data-driven approach can significantly improve cost forecasting accuracy for dike reinforcements, 
where unique environmental and regulatory conditions often complicate traditional inside-view 
estimations. 

However, the applicability of RCF for dike reinforcement projects also depends on certain conditions. 
The method’s effectiveness is highly influenced by the availability, quality, and relevance of historical 
data. Accurate forecasts require a robust dataset of past projects that share key similarities with the 
current dike reinforcement context. Limitations arise when such data is either insufficient or when past 
projects do not adequately reflect new standards or changes in technology, materials, and regulatory 
requirements specific to modern dike reinforcements.  

For this research, the availability of a robust dataset with comparable projects was a significant 
advantage, making it particularly suitable for applying Reference Class Forecasting (RCF). The dataset, 
sourced from the HWBP-2 programme, comprises projects completed under a single, uniform 
financing programme—the Flood Protection Programme (HWBP). This uniformity ensures consistency 
in the data collection process, as all projects adhered to similar organisational, regulatory, and financial 
guidelines. The HWBP’s centralised structure reduces variability in how cost data is reported and 
categorised, creating a reliable foundation for constructing a reference class. This consistency is critical 
for RCF, as it relies on comparing projects with shared characteristics to predict future costs accurately. 
By leveraging this high-quality dataset, the research could confidently identify cost-driving factors and 
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assess the effectiveness of the improved RCF model, ensuring the findings are both robust and 
practically applicable.  

However, its effectiveness depends on the quality and availability of comprehensive historical data, as 
inaccuracies or incomplete records can compromise the forecasts. The selection of a suitable reference 
class is critical, requiring careful matching to the current project’s characteristics, as misclassification 
or biases during selection can skew results. Homogeneity within the reference class is essential to 
maintain forecast validity, as significant variations or contextual differences can increase uncertainty. 
However, RCF’s reliance on static historical data limits its ability to account for dynamic future changes, 
such as technological advancements or evolving market conditions, while its focus on quantitative data 
risks overlooking qualitative factors like stakeholder behavior or unique project risks. Despite these 
limitations, RCF offers robust, probability-based forecasts that can complement inside-view methods, 
making it a valuable tool when used alongside expert judgment for unique or complex projects. 

Concluding, while RCF provides a valuable and often more accurate approach to predicting costs in 
traditional and complex dike reinforcement projects, its effectiveness is tempered by the quality and 
relevance of historical data and the challenge of ensuring an appropriate reference class. In contexts 
with adequate and relevant data, RCF has strong potential to improve budget estimations and project 
outcomes for dike reinforcements, though practitioners should remain aware of its limitations and 
consider hybrid approaches when unique project conditions warrant more flexible methods. 
Limitations such as data- availability and -quality, the selection of the reference class and the over 
reliance on quantitative data without to ability to properly account for changes in innovation and 
market conditions limits the method in its application for predictions on a larger timeframe.  

3) What are the most important factors that can be used to predict the prices for dike 
reinforcements in the Netherlands?  

Based on a literature review and interviews with experts, the most important factors for predicting the 
costs of dike reinforcements in the Netherlands were identified. 

• Is the project situated in a rural area? 
• Is the project situated in an urban area? 
• Is the project situated in a N2000 area? 
• Are there buildings close to the project? 
• What type of soil is situated at the project location? 
• What is the distance from the national standard? 
• Is the dike bordering a river or a sea? 
• Which water authority managed the project? 

The factors include the project's geographical context (urban or rural location), proximity to existing 
infrastructure (such as nearby buildings), and the managing authority (specific water boards). Projects 
located in urban areas and those with nearby development tend to incur higher costs per kilometre 
due to increased logistical complexity, land value, and the need to manage potential disruptions to 
surrounding infrastructure. Conversely, projects in rural areas generally show lower costs, aligning with 
fewer spatial constraints and simpler logistical needs. 

While some factors, like soil type and Natura 2000 area designation, were anticipated to impact costs 
significantly, they showed weaker correlations with cost per kilometre in this analysis, suggesting a 
more nuanced or minimal role in cost determination for dike reinforcements. However, given that 
certain factors (like proximity to safety norms) approached significance, further investigation may 
clarify how these interact with core cost drivers. 
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Another important factor is the time at which the costs are assessed, with a trend toward increasing 
costs over time, reflecting inflation and the rising expenses associated with dike reinforcement even 
though the prices have been indexed according to the national inflation rate for water-infrastructure. 
Additionally, the involvement of specific water authorities, has been shown to influence costs, 
potentially due to variations in regional management practices, local environmental conditions, or 
resource allocation. 

4) How can the factors enhance the reference class forecast model? 

The factors identified in this study can enhance Reference Class Forecasting for dike reinforcements by 
providing a more tailored approach to using the reference class, which addresses some of the 
traditional RCF method's limitations. Specifically, integrating factors such as urban/rural location, 
presence of nearby buildings, managing water authority, and soil type seems to allow for a more 
nuanced and relevant comparison of projects, improving forecast accuracy. In the Regression weighted 
RCF model, the importance of each factor was derived from regression analysis, where weights were 
normalized to reflect each factor's relative impact on costs per kilometre. By applying these weighted 
factors to calculate match scores, the study ensured that the reference class selected for each project 
aligns more closely with the project's unique characteristics. This refined approach mitigates the 
tendency of traditional RCF to rely on broader, less specific reference classes, which often results in 
high variability and inaccuracy. 

Figure 8.1 underscores the effect the factors have on the accuracy of the RWRCF model. It can be 
clearly seen that the green data points (RWRCF model) outperform the red data points (Traditional 
RCF model). This is concluded because the severeness of outliers is less high and the green data points 
generally lie closer to the 0% error margin line compared to the traditional model. 

The results indicate the effectiveness of this enhanced RCF method, showing that the RWRCF model 
outperforms the traditional RCF approach across several key metrics. For example, the lower standard 
deviation of errors and higher R-squared values indicate that the RWRCF model achieves both 
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consistency and a better fit with actual costs. Additionally, metrics like Mean Squared Logarithmic Error 
(MSLE) and Symmetric Mean Absolute Percentage Error (sMAPE) demonstrate that the RWRCF model 
significantly reduces forecast errors, especially in cases of under- or overestimations. 

Concluding, by improving comparability between reference class and forecasted projects, the study 
shows that the Regression weighted model offers a viable enhancement to RCF, delivering a more 
accurate, relevant, and adaptable approach for forecasting dike reinforcement costs. This result should 
be considered as an indication that the Regression weighted method can improve the traditional 
method of reference class forecasting. As mentioned in chapter 5, the minimum amount of projects in 
the reference class should be 10 to 30, depending on which researcher answers the question. While 
there are 43 projects in the reference class for this case study, the chosen method has narrowed down 
the reference class for each project to a maximum of 3. This means that further research is necessary 
to conclude with certainty that this method does have the potential to enhance reference class 
forecasting.  

5) What is the uncertainty of the price prediction? 

The uncertainty in predicting costs for dike reinforcement projects varies depending on whether the 
regression weighted model is applied to individual projects or used to estimate average costs across 
multiple projects. For individual project predictions, the RWRCF model indicates improved accuracy 
and consistency over traditional Reference Class Forecasting (RCF), although certain limitations persist. 

In table 10, the performance of the RWRCF model can be seen compared to the traditional model. The 
standard deviation of errors (SDE) for the RWRCF model, at 2.92 per kilometre, shows that predictions 
generally stay closer to actual costs, with less spread in errors than the traditional RCF method, which 
has a notably higher SDE of 5.58 per kilometre. This smaller deviation in the RWRCF model suggests 
more reliable predictions on an individual project basis, reducing some of the uncertainty that the 
traditional RCF method’s greater variability introduces. 

Additional metrics also indicate that the RWRCF model captures individual project costs more 
accurately. The R-squared (R²) for individual projects is 0.45, meaning the model explains 45% of the 
variation in costs—a significant improvement over the RCF method’s 23%, but still leaving substantial 
room for further refinement to capture unique, project-specific factors. Furthermore, the model’s 
Mean Squared Logarithmic Error (MSLE) of 0.02 per kilometre highlights its effectiveness in avoiding 
large underestimations that could lead to budget shortfalls. In contrast, the traditional RCF method’s 
higher MSLE of 0.05 per kilometre indicates more frequent and substantial underestimations, 
increasing uncertainty and risk for individual projects. 

For forecasting the average cost per kilometre across multiple projects, the RWRCF model indicates 
even greater accuracy and stability. The Mean Absolute Scaled Error (MASE) score for the RWRCF 
model is close to 1 (1.20 per kilometre), indicating that its predictions nearly match the accuracy of a 
simple historical average, enhanced by the data-driven insights the model offers. The traditional RCF 
method’s MASE of 2.45 per kilometre, however, shows that it underperforms relative to even a basic 
benchmark, underscoring its limitations in estimating average costs across projects.  

In conclusion, the RWRCF model indicates to a more accurate and stable approach to forecasting both 
individual project costs and program-wide average costs for dike reinforcement projects. While some 
uncertainty remains, especially in the predictions of individual projects due to unique project-specific 
nuances, the model’s improved alignment with actual costs indicates a notable advancement over 
traditional RCF methods. This balance between project-specific precision and reliability in program-
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wide estimates makes the RWRCF model a more effective tool for cost forecasting, supporting better-
informed budgeting and resource allocation.  

Table 10: performance regression weighted model vs traditional reference class model 

 
Metric 

RWRCF/km RCF/km RWRCF (total costs) RCF (total costs) 

Standard Deviation of Errors 
[Mln€] 

2.92  5.58  3.54  6.40  

R-Squared 0.45 0.23 0.52 0.34 
Adjusted R-Squared 0.43 0.20 0.50 0.31 
MSLE 0.02 0.05 0.03 0.08 
Median Absolute Error 1.67 4.20 2.10 5.05 
sMAPE 20.35% 55.68% 18.90% 48.75% 
MASE 1.20 2.45 1.15 2.67 

 

8.2 Conclusions main research question 
This thesis had the aim to answer the following main research question: 

‘To what extent can Reference Class Forecasting combining success factors make an accurate price 
prediction for the financial programming of HWBP’s dike reinforcements until 2050?’ 

To answer this question qualitative and quantitative methods have been applied. First an assessment 
of the state-of-the-art forecasting models was made through an academic literature review. Second, 
the viability of predicting prices for dike reinforcements with reference class forecasting has been 
studied through literature review and comparing the case study to the availability of data and data 
that is needed. Third a literature review and interviews were conducted to identify the most important 
cost-driving factors for dike reinforcements. Fourth, data analysis determined the importance of each 
variable and the combining explanation capacities of all factors combined. This was done via a 
correlation analysis and a regression analysis. Finally the model was constructed and compared to the 
true realised costs and the traditional reference class forecasting method. 

The new regression weighted model demonstrates a greater predictive accuracy when estimating costs 
per kilometre compared to forecasting total project costs. This suggests that the model is more suitable 
for predicting the average costs/km over a larger number of projects. The findings also suggests that 
incorporating success factors enhances the effectiveness of the reference class forecasting method, 
making it a valuable addition to cost estimation strategies. This finding is not set in stone, due to the 
lack of comparable projects when using this specific methodology. In practice, the feasibility of this 
method is therefore quite difficult and an extensive database with a large number of projects is 
required to validate this methodology.  

Currently, the Flood Protection Program (HWBP) predominantly relies on an inside view approach for 
cost forecasting. RCF, as an outside view method, provides a contrasting perspective that can 
complement the inside view approach. While HWBP's current error margin stands at 30%, this margin 
still outperforms the model developed in this research. Nevertheless, the model’s predictions are, on 
average, 7% below the actual costs per kilometre, indicating it could add a level of refinement to 
current practices. The model’s absolute average percentage difference is 39.32% for individual 
projects, the absolute average percentage error for the total costs of the projects is 31%. This signifies 
that while its individual project accuracy may be limited, RWRCF could be effective for forecasting costs 
at a programme level or for broader cash flow management. Given these findings, I recommend using 
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this model as a supplement to the existing inside view forecasts rather than as a standalone prediction 
tool. This combined approach could enhance the robustness of HWBP's cost estimation framework, 
leveraging the strengths of both perspectives to support more reliable budgeting and decision-making 
in future dike reinforcement projects. 

In conclusion, this thesis has demonstrated the potential enhancement of Regression weighted 
Reference Class Forecasting that incorporates success factors for predicting dike reinforcement costs. 
The findings show that the regression-weighted model improves predictive accuracy, particularly in 
estimating costs per kilometre, suggesting its utility for program-level cost forecasting and broader 
financial planning. However, the model’s effectiveness is constrained by the limited availability of 
comparable project data, highlighting the need for an extensive database to validate its methodology 
fully. While HWBP's current cost forecasting methods achieve lower error margins, integrating the 
proposed model as a complementary tool can enhance the robustness of cost estimation practices. 
This combined approach of inside and outside view methodologies could provide HWBP with a more 
nuanced, reliable framework for budgeting and strategic decision-making, ultimately supporting the 
program’s financial programming goals through 2050. 
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8.3 Scientific Recommendations 
Looking back at the process, assumptions needed to be made and boundaries had to be set. This meant 
that certain aspects of this complex topic remain undiscussed. Within the following section, the 
recommendations for future research will be presented. 

8.3.1 Conduct Additional Interviews to Identify Success Factors 
To enhance the reliability of the model, conducting further interviews with stakeholders and experts 
could provide a deeper understanding of relevant success factors. Expanding the qualitative input may 
lead to a more comprehensive and accurate model that captures the nuanced influences on project 
costs. 

8.3.2 Apply the Model to Other Infrastructure Sectors  
To improve the robustness and predictive accuracy of the model, it is recommended to conduct further 
interviews with a broader range of stakeholders and experts involved in dike reinforcement projects. 
These interviews could help uncover additional success factors that may not have been initially 
considered, providing a more nuanced understanding of variables that influence project costs. Insights 
gathered from practitioners, project managers, and technical experts can add valuable qualitative data, 
which may reveal context-specific influences or project-specific challenges that quantitative data alone 
might overlook. By incorporating a more comprehensive set of success factors, the model could more 
accurately reflect the complexities and variances inherent in large-scale infrastructure projects, 
thereby improving its predictive power and reliability. 

8.3.3 Explore Alternative Regression Methods 
While linear regression was chosen for this study, exploring alternative regression methods could 
further enhance predictive accuracy. Advanced techniques such as non-linear regression, polynomial 
regression, or machine learning models (e.g., decision trees, random forests, or gradient boosting) may 
capture relationships in the data that linear regression cannot. For instance, non-linear models could 
accommodate complex interactions among variables, which may be especially useful for infrastructure 
projects with diverse, interdependent cost drivers. Additionally, machine learning techniques have the 
potential to identify latent patterns within the data and highlight unexpected relationships. By 
comparing the performance of these alternative models against linear regression, future researchers 
may identify a more suitable approach that yields higher accuracy and captures additional predictive 
factors. 

8.3.4 Improve the Measurement of the Distance-to-Standard Factor 
The "afstand_tot_de_norm" (distance-to-standard) factor currently lacks reliable impact 
measurement due to inconsistent tracking and variability in how project conditions are recorded at 
the outset. Inconsistent data recording practices mean that this factor’s influence on costs remains 
underexplored. To enhance the model’s precision, it would be valuable to develop a standardized 
protocol for assessing and recording project conditions uniformly across all projects at the time of 
initiation. This protocol could include periodic assessments to monitor a project’s condition relative to 
established standards. By ensuring that the initial state of each project is consistently documented, 
future studies could more accurately measure the impact of distance-to-standard on project costs. This 
approach could provide insights into how initial project conditions correlate with costs, thereby 
enriching the model's accuracy for forecasting costs based on initial project assessments. 

8.4 Recommendations for Practice 
This section outlines key recommendations aimed at enhancing the Flood Protection Program's 
(HWBP) approach to cost prediction for dike reinforcement projects. Building on the findings of this 
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research, the recommendations focus on three critical areas: improving data collection and 
maintenance, exploring simplified forecasting models, and investigating the impact of emerging 
regulatory factors. Each recommendation addresses specific gaps identified in the current practices 
and offers actionable insights to strengthen HWBP’s financial programming and project planning 
capabilities. 

8.4.1 Focus on Data Collection and Maintenance 
It is recommended that the Flood Protection Program (HWBP) prioritises the establishment of a 
comprehensive system for collecting and maintaining data to fully enable the use of data-driven 
methodologies, such as Reference Class Forecasting (RCF). While initial steps have been taken in this 
direction, these efforts remain insufficient to support advanced predictive tools. Robust and structured 
data collection is essential for improving the accuracy of cost predictions for dike reinforcement 
projects. A well-maintained database would allow HWBP to better understand historical trends, 
identify cost-driving factors, and improve the comparability of projects, thus enhancing the reliability 
of financial programming. 

Moreover, expanding data collection efforts is not solely about implementing RCF but about creating 
a foundation for identifying the most suitable method for cost prediction. With a rich and diverse 
dataset, HWBP could experiment with different forecasting techniques and evaluate their fit and 
performance against the unique challenges of dike reinforcements. Data is a critical enabler for 
informed decision-making, and investing in its collection and management will not only support 
forecasting accuracy but also drive innovation and improve project planning in the long term. 

8.4.2 Investigate Simplified Models with Fewer Variables 
It is recommended that HWBP pursue follow-up research to explore whether a model with fewer 
variables could achieve comparable or improved predictive accuracy. A simplified model would reduce 
complexity and may result in easier adoption across various organizational levels. By identifying a core 
set of influential factors, HWBP can ensure that forecasting remains both practical and effective. 
Simplified models are often less resource-intensive, require less specialized knowledge to implement, 
and could gain broader acceptance among stakeholders, ultimately making them more sustainable in 
the long term. 

Testing simplified models would also provide valuable insights into the trade-offs between accuracy 
and usability. If a streamlined approach proves effective, it could serve as a stepping stone toward 
integrating data-driven forecasting methodologies into HWBP’s standard practices. This process would 
enable the organization to refine its predictive tools incrementally, aligning them with operational 
capacities and stakeholder needs while still reaping the benefits of enhanced cost forecasting. By 
focusing on simplicity and accessibility, HWBP can ensure that forecasting improvements translate into 
tangible impacts on project execution and financial management. 

8.4.3 Investigating the Impact of Emerging Regulatory Factors 
It is recommended that the HWBP investigates the effects of distance from the safety norm and the 
Natura 2000 (N2000) factor on the costs of dike reinforcement projects. These factors were only 
enforced after the HWBP-2 dataset concluded, and their influence on project costs remains uncertain. 
As the current dataset does not include sufficient projects where these variables were consistently 
applied, there is a limitation in drawing reliable conclusions or integrating them into cost prediction 
models. Given the potential significance of these factors on project scope, regulatory requirements, 
and associated costs, a more detailed understanding is essential. 
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To address this gap, the HWBP should prioritise the systematic collection of data from projects where 
these factors are actively implemented. This could involve capturing specific costs linked to N2000 
environmental regulations or adjustments required to comply with updated safety norms. By analysing 
this data, the HWBP can refine its forecasting models and enhance the accuracy of future cost 
estimates. Such an approach will ensure the programme adapts effectively to evolving regulations, 
supporting more robust financial planning for dike reinforcement projects. 

It is recommended that the HWBP investigates what the effects are of distance from the safety norm 
and the N2000 factor. Both factors were only used after the year that the HWBP-2 dataset ended. A 
sound prediction/conclusion cannot be made on these variables as 
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Appendix A informed consent form 

U wordt uitgenodigd om deel te nemen aan een onderzoek genaamd Impact of succes factors on Reference class 
forecasting. Dit onderzoek wordt uitgevoerd door Matthijs Bodt van de TU Delft In samenwerkuing met AT Osborne 
en het HWBP. 

Het doel van dit onderzoek is om inzicht te krijgen in welke factoren sterk van invloed zijn op prijsbepalingen van 
dijken en of dit kan leiden tot een nauwkeurigere financiële voorspelling en zal ongeveer 30-60 minuten in beslag 
nemen. De data zal gebruikt worden voor het behalen van de Master Thesis van Matthijs Bodt. U wordt gevraagd 
om uw professionele inkijk op het gebied van succesfactoren bij dijkversterkingsprojecten. 

Zoals bij elke online activiteit is het risico van een databreuk aanwezig. Wij doen ons best om uw antwoorden 
vertrouwelijk te houden. We minimaliseren de risico’s door de antwoorden van de data anoniem te verwerken, uw 
functie/werktitel zal wel gebruikt worden. De interviewdata zal na het afronden van mijn Afstuderen worden 
vernietigd (ongeveer eind oktober) 

Uw deelname aan dit onderzoek is volledig vrijwillig, en u kunt zich elk moment terugtrekken zonder reden op te 
geven. U bent vrij om vragen niet te beantwoorden.  

Matthijs Bodt 

mailto:m.w.bodt@student.tudelft.nl
mailto:Matthijs.bodt@atosborne.nl
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 PLEASE TICK THE APPROPRIATE BOXES Yes No 

A: GENERAL AGREEMENT – RESEARCH GOALS, PARTICPANT TASKS AND VOLUNTARY 
PARTICIPATION 

  

1. Ik heb de informatie over het onderzoek gedateerd [05/08/2024] gelezen en begrepen, of deze 
is aan mij voorgelezen. Ik heb de mogelijkheid gehad om vragen te stellen over het onderzoek en 
mijn vragen zijn naar tevredenheid beantwoord.  

☐ ☐ 

Separate ‘yes/no’ tick boxes allow you to make sure that your participant is actively affirming their consent. If the participant wants to 
tick the no box this allows you to clarify any points the participant is unsure about. If this is not applicable for your study, then 
remove the ‘no’ box. 

  

2. Ik doe vrijwillig mee aan dit onderzoek, en ik begrijp dat ik kan weigeren vragen te 
beantwoorden en mij op elk moment kan terugtrekken uit de studie, zonder een reden op te 
hoeven geven.  

☐ ☐ 

This point should be modified accordingly where a legal guardian will be giving consent, and/or where a participant, outside the 
context of the research is in a dependent or subordinate position to the researcher. 

  

3. Ik begrijp dat mijn deelname aan het onderzoek de volgende punten betekent [see points 
below] 

☐ ☐ 

• an audio-recorded interview, of which the text will be transcribed   

4. Ik begrijp dat mijn deelname aan het onderzoek als volgt wordt gecompenseerd […]  ☐ ☒ 

5. Ik begrijp dat de studie eind oktober eindigt.  ☐ ☐ 

Please add the anticipated timing or how the date will be determined   

B: POTENTIAL RISKS OF PARTICIPATING (INCLUDING DATA PROTECTION)   

6. Ik begrijp dat mijn deelname de volgende risico’s met zich meebrengt. Ik begrijp dat deze 
risico’s worden geminimaliseerd door de antwoorden anoniem te verwerken 

☐ ☐ 

7. Ik begrijp dat mijn deelname betekent dat er persoonlijke identificeerbare informatie en 
onderzoeksdata worden verzameld, met het risico dat ik hieruit geïdentificeerd kan worden […] 

☐ ☐ 

8. Ik begrijp dat binnen de Algemene verordering gegevensbescherming (AVG) een deel van deze 
persoonlijk identificeerbare onderzoeksdata als gevoelig wordt beschouwd, namelijk [zie 
onderstaande punten] 

☐ ☐ 

9. Ik begrijp dat de volgende stappen worden ondernomen om het risico van een databreuk te 
minimaliseren, en dat mijn identiteit op de volgende manieren wordt beschermd in het geval van 
een databreuk [] 

☐ ☐ 

anonymous data collection, (pseudo-) anonymisation or aggregation, secure data storage/limited access, transcription   



75 
 

 PLEASE TICK THE APPROPRIATE BOXES Yes No 

10. Ik begrijp dat de persoonlijke informatie die over mij verzameld wordt en mij kan 
identificeren, zoals [bijvoorbeeld naam, woonplaats], niet gedeeld worden buiten het 
studieteam.  

☐ ☐ 

11. Ik begrijp dat de persoonlijke data die over mij verzameld wordt, vernietigd wordt op [datum 
overeen te komen] 

☐ ☐ 

Please add the anticipated timing or how the date will be determined   

C: RESEARCH PUBLICATION, DISSEMINATION AND APPLICATION   

12. Ik begrijp dat na het onderzoek de geanonimiseerde informatie gebruikt zal worden voor […] ☐ ☐ 

• Master thesis rapport   

13. If you want to use quotes in research outputs then add extra question: Ik geef toestemming 
om mijn antwoorden, ideeën of andere bijdrages anoniem te quoten in resulterende producten.  

 

☐ ☐ 

14. If you want to use named quotes, then add extra question: Ik geef toestemming om mijn 
naam te gebruiken voor quotes in resulterende producten  

☐ ☐ 

15. If written information or other works are provided by the participants (e.g. in a reflection or 
other diary, or as images etc.) please check https://www.tudelft.nl/library/copyright/c/what-is-
copyright) for information on copyright, and/or contact the Copyright Team for further 
information at copyright-lib@tudelft.nl and insert appropriate consent questions accordingly. 

☐ ☐ 

D: (LONGTERM) DATA STORAGE, ACCESS AND REUSE   

16. Ik geef toestemming om de geanonimiseerde data (antwoorden op de interview vragen) die 
over mij verzameld worden gearchiveerd worden in [Impact of succesfactors of Reference Class 
Forecasting] opdat deze gebruikt kunnen worden voor toekomstig onderzoek en onderwijs.  

☐ ☐ 

 

 

 
Signatures 

 

 

 ___________________              _________________________ 01-08-2024___  

Naam deelnemer     Handtekening   Datum 

 

                  

https://www.tudelft.nl/library/copyright/c/what-is-copyright
https://www.tudelft.nl/library/copyright/c/what-is-copyright
mailto:copyright-lib@tudelft.nl
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Ik, de onderzoeker, verklaar dat ik de informatie en het instemmingsformulier correct aan de 
potentiële deelnemer heb voorgelezen en, naar het beste van mijn vermogen, heb verzekerd dat 
de deelnemer begrijpt waar hij/zij vrijwillig mee instemt.  

Matthijs Bodt__________ __________________ 30-07-2024___

Naam onderzoeker  Handtekening     Datum
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Appendix B: Interview 
Interview opzet 

Vraag 1: Kunt u wat vertellen over uw ervaring en werkzaamheden in het verleden? 

Vraag 2: Wat zijn factoren die u vanuit uw ervaring hebt gezien die sterk van invloed zijn op de 
kosten/km van dijkversterkingsprojecten 

Sub 1.1: Wat zijn de top 5 factoren? 

Sub 2.1: Hoe zou u projecten scoren op basis van die factoren; ja, nee ; schaal 1-5 of 1- ….  10? 

Vraag 3:  

In hoeverre heeft de subsidieregeling invloed op de totale kosten/km van dijkversterkingsprojecten? 

 Sub 2.1: Zo ja heeft dit invloed op de 5 genoemde factoren? 

Background Information: 

- Ask the interviewee to briefly describe their role and experience related to dike reinforcement 
projects/ the institution they worked for. 

- Gather context on their expertise and involvement in cost estimation or project management. 

Project Scope and Specifications: 

"Can you describe the typical scope of a dike reinforcement project?" 

"What specific technical specifications are most important in determining the cost of these projects?" 

Material Costs: 

"What types of materials are commonly used in dike reinforcement?" 

"How do the costs of these materials vary, and what factors contribute to these variations?" 

Labor and Workforce: 

"How does the availability and cost of skilled labour impact the price of dike reinforcement per 
kilometre?" 

"Are there specific labour-intensive processes that significantly drive up costs?" 

Design and Engineering: 

"How does the complexity of the dike design influence overall costs?" 

"What role do engineering assessments and environmental studies play in the cost structure?" 

Geographical and Environmental Factors: 

"How do geographical conditions (e.g., soil type, terrain) affect the cost of dike reinforcements?" 

"What environmental considerations (e.g., impact on local ecosystems) need to be accounted for, and 
how do they influence costs?" 

Regulatory and Compliance Costs: 
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"What regulatory requirements must be met during dike reinforcement projects?" 

"How do compliance and permitting processes impact the overall cost per kilometre?" 

Technology and Innovation: 

"Are there any recent technological advancements that have affected the cost of dike reinforcements?" 

"How do innovations in materials or construction techniques influence pricing?" 

Project Management and Overheads: 

"What project management practices are essential for controlling costs in dike reinforcement 
projects?" 

"How do overhead costs, such as project management fees and contingency funds, factor into the 
overall price?" 

External Factors: 

"How do market conditions, such as supply chain disruptions or economic fluctuations, impact the cost 
of materials and labour?" 

"What role do stakeholder engagements and community relations play in the cost dynamics of these 
projects?" 

Case Studies and Examples: 

"Can you provide examples of dike reinforcement projects where costs were particularly high or low? 
What were the key factors in those cases?" 

"What lessons have you learned from past projects that could help in managing costs more effectively 
in future projects?" 

Data HWBP 

In hoeverre is de data die aan het hwbp wordt verschaft door de waterschappen betrouwbaar en wat 
zijn dingen waarop ik zou moeten letten? (Bijvoorbeeld; definitie verschillen) 

 

 

 

  



79 
 

Appendix C: strengths and weaknesses of cost 
estimating methods 

Method Type of Data Required Strengths Weaknesses 
Traditional Cost 
Estimating 

Historical cost data for 
similar projects, expert 
judgment, project-specific 
parameters (e.g., 
materials, size) 

- Provides detailed, 
component-specific estimates 
based on known project 
elements (Fleming & 
Koppelman, 2010). 

- Prone to bias if 
unexpected factors arise, 
as it relies heavily on 
project-specific 
assumptions (Flyvbjerg, 
2006). 

  - Flexible, can use various 
techniques (e.g., analogous, 
parametric) for different 
project types (AACE, 2020). 

- Tends to underestimate 
costs for complex projects 
with unforeseen 
challenges (Merrow, 
2011). 

  - Well-suited for projects with 
predictable and repeatable 
characteristics (Fleming & 
Koppelman, 2010). 

- Limited in accuracy for 
unique or highly complex 
projects (Flyvbjerg, 2014). 

Probabilistic 
Estimating 

Baseline project estimates, 
risk data, statistical data 
on cost variability and 
probability distributions 

- Accounts for uncertainty by 
providing a range of possible 
cost outcomes (Kwak & Ingall, 
2007). 

- Requires high-quality 
data and sophisticated 
statistical tools (e.g., 
Monte Carlo simulations) 
(Palisade Corporation, 
2017). 

  - Enhances decision-making 
by quantifying risk and cost 
contingencies (PMI, 2017). 

- Can be complex and 
time-consuming to set up, 
especially for large 
projects (Baccarini & Love, 
2014). 

  - Provides a better 
understanding of risks, 
helping to manage budget 
overruns more effectively 
(Williams, 2002). 

- May still rely on baseline 
estimates that are subject 
to bias or error if initial 
assumptions are weak 
(Williams, 2002). 

Reference Class 
Forecasting 
(RCF) 

Data on completed 
projects with similar 
characteristics (e.g., costs, 
durations, scope); 
contextual data on 
outcomes 

- Mitigates optimism bias by 
focusing on historical data 
from similar projects 
(Flyvbjerg, 2006). 

- Relies on having a robust 
reference class; accuracy 
drops if comparable 
projects are lacking 
(Lovallo & Kahneman, 
2003). 

  - Effective for complex or 
unique projects where 
traditional estimates may be 
unreliable (Flyvbjerg et al., 
2009). 

- Less specific to project 
components, potentially 
lacking detail on individual 
cost drivers (Flyvbjerg, 
2006). 

  - Provides outcome-based 
estimates that are generally 
more realistic in high-stakes 
projects (Kahneman & 
Tversky, 1979). 

- Requires careful selection 
of the reference class to 
ensure similarity and 
relevance (Lovallo & 
Kahneman, 2003). 
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Appendix D: Cost driving factors 
No. Obstacle Description Technical Financial Institutional Legal 
1 Governance cross-sectoral opportunities are 

needed as an additional driver to make 
indigenous soil viable, but these do not easily fit 
within project frameworks (MIRT decision-
making, Water Framework Directive, municipal 
council recreation, provincial contribution to 
additional nature development, etc.) 

  X  

2 Sustainability objective with indigenous soil is 
missing as a project objective. Alongside 
governance cross-sectoral opportunities, 
sustainability is a driver for using indigenous soil; 
if this is missing in the project objective, there is 
no trigger/reason to investigate it 

  X  

3 (Lower) physical soil quality of the existing soil 
does not match the technical requirements set by 
the water board; technical requirements remain 
leading 

X X X X 

4 Frameworks and guidelines from available 
standards encourage standard solutions and do 
not challenge innovation or the use of indigenous 
soil 

X   X 

5 The effect of using non-standard materials on 
future management, maintenance, and the 
extendability of the water barrier is insufficiently 
clear 

X    

6 Supply of indigenous soil from other projects and 
programs (both planning and 
physical/environmental quality) is unclear and 
thus seen as a risk for project duration and budget 

X  X  

7 The contract, budget, and/or planning does not 
allow additional investigations in floodplains to 
map physical and environmental quality 

   X 

8 Potential demand for soil within the project is 
seen as too limited to further explore possibilities 

X X   

9 Reward for achieving a project with indigenous 
soil is still missing in the Most Economically 
Advantageous Tender (MEAT) criteria 

   X 

10 Interim storage is legally not possible, making it 
unfeasible to plan and exchange soil flows across 
projects 

X X X X 

11 Excavation in the floodplain can lead to adverse 
effects on the safety of the dike, groundwater 
effects, and may bring risks and additional costs or 
risks of delay in procedures 

X X X  

12 Lack of experience with all aspects surrounding 
the use of indigenous soil, leading to a culture 
within the team where this is seen more as a risk 
than an opportunity 

X  X  
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13 . Distance from the current situation to the 
standard. LBO-1 -> agree on technology 

X    

14 . One or more failure mechanisms and required 
spatial requirements. + add type of failure 
mechanism 

X    

15 Chosen structural solution (strength calculations, 
sheet piling, use of soil/peat). 

X    

16 Number of structures (excluded) and presence of 
large underground infrastructure (e.g., gas 
pipelines). 

X    

17 Number of required integration measures 
(relocation instead of reinforcement). 

X    

18 Amount of required compensatory measures. X    
19 Amount of required logistic measures. X    
20 Required land or real estate costs.  x  x 
21 Location (rural/urban area/Natura 2000 areas). X  x  
22 Type of Dike: Whether it's an earthen 

embankment, rock-armored dike, or a concrete 
seawall. 

X    

23 Height and Width: Higher and wider dikes require 
more materials and labour. 

X    

24 Soil Stability: The type of soil (sand, clay, peat) and 
its stability affect the complexity and cost of 
construction. 

X    

25 Groundwater Levels: High groundwater levels 
may require additional dewatering measures. 

X    

26 Quality and Quantity of Materials: The amount 
and type of soil, rock, concrete, and other 
materials needed. 

X    

27 Transportation Costs: Distance from material 
sources to the construction site. 

X    

28 Project Duration (Completion time). X    
29 Opportunities for Integration/Interfaces with 

Municipalities - separate business case. 
  X  

30 Contract Form (discussion).  X   
31 AHP method.     
32 Stakeholder involvement.   x  
33 One or more failure mechanisms and required 

spatial requirements. + add type of failure 
mechanism 

X    
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Appendix E: Normalised weights per success factor 
PREDICTOR    COEFFICIENT ABSOLUTE 

COEFFICIENT 
NORMALISED 
WEIGHT 
CALULATION 

 
NORMALIS
ED WEIGHT  

 WATER BOARD FRYSLÂN  -0.539 0.539 0.539
6.229

  0.076  

 WATER BOARD HOLLANDSE DELTA  -0.504 0.504 0.504
6.229

 
 0.071  

 URBAN AREA [1/0]   -0.481 0.481 0.481
6.229

  0.068  

 DEVELOPMENT CLOSE TO DIKE   0.449 0.449 0.449
6.229

  0.063  

 RURAL AREA [1/0]   -0.435 0.435 0.435
6.229

  0.061  

 WATER BOARD AA EN MAAS  -0.408 0.408 0.408
6.229

  0.058  

 REGIONAL WATER AUTHORITY VAN 
SCHIELAND  

0.367 0.367 0.367
6.229

  0.052  

 WATER BOARD GROOT SALLAND  -0.327 0.327 0.327
6.229

  0.046  

 SOIL TYPE - LOAM 0.314 0.314 0.314
6.229

  0.044  

 SOIL TYPE – LOAM & CLAY   0.490 0.490 0.490
6.229

  0.069  

 N2000 [1/0]    0.235 0.235 0.235
6.229

  0.033  

 SOIL TYPE – SAND & LOAM -0.238 0.238 0.238
6.229

  0.034  

 WATER BOARD RIJN EN IJSSEL  -0.233 0.233 0.233
6.229

  0.033  

WATER BOARD NOORDERZIJLVEST  -0.214 0.214 0.214
6.229

  0.030  

WATER BOARD VALLEI EN EEM  0.178 0.178 0.178
6.229

  0.025  

 RIVERDIKE    -0.169 0.169 0.169
6.229

  0.024  

 RIJKSWATERSTAAT   -0.166 0.166 0.166
6.229

  0.023  

 WATER BOARDSCHELDESTROMEN  -0.158 0.158 0.158
6.229

  0.022  

WATER BOARDRIVIERENLAND  -0.139 0.139 0.139
6.229

  0.020  

 AFSTAND_TOT_DE_NORM_ENCODED   -0.108 0.108 0.108
6.229

  0.015  

 SOIL TYPE - SAND    -0.044 0.044 0.044
6.229

  0.006  

 SOIL TYPE - PEAT   0.033 0.033 0.033
6.229

  0.005  
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LENGTH [KM] 0.495 0.495 0.495
6.229

 0.079 

YEAR OF COSTS MADE -0.350 0.350 0.350
6.229

 0.056 
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Appendix F: Matched projects and match scores 
Project Predictor Match score Matched factors Cost/km 

[Mn €] 
Oevererosie Klaphek  Markermeerdijk Marken, zuid- en 

westkade 
0,0525 Rural Area [1/0], Urban Area [1/0], 

N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €   0,37  

Oevererosie Klaphek  Wieringermeerdijk en Stonteldijk 0,0978 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike 

 €   1,51  

Oevererosie Klaphek  Zimmermanpolder Zuid-Beveland 0,1286 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €   4,08  

Koppelstuk WIJD 
KoegrasSeadike 

KoegrasSeadike 0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zand 

 €     6,70  

Koppelstuk WIJD 
KoegrasSeadike 

Dijkversterking Hellevoetsluis 0,0797 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Bodemtype_zand 

 €      4,58  

Koppelstuk WIJD 
KoegrasSeadike 

Pleijweg/Schaapdijk/Broekdijk te 
Arnhem 

0,2186 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      0,57  

Koppelstukken WIJD 
Dijkvakken 

Onrustpolder Noord-Beveland 0,0000 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded, 
Bodemtype_zand 

 €      1,90  

Koppelstukken WIJD 
Dijkvakken 

Ameland, Waddenzeekering 0,0452 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Afstand_tot_de_norm_encoded, 
Bodemtype_zand 

 €       6,66  

Spuihaven Schiedam Havendam Lemmer 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Spuihaven Schiedam Dijkversterking Krimpen 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

Spuihaven Schiedam Havendammen en 
steenbekleding Stavoren 

0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,20  

Ijsseldijk Gouda - Spoor 
1 (real incl 
innovatiesubsidie) 

Havendam Lemmer 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Ijsseldijk Gouda - Spoor 
1 (real incl 
innovatiesubsidie) 

Dijkversterking Krimpen 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

Ijsseldijk Gouda - Spoor 
1 (real incl 
innovatiesubsidie) 

Havendammen en 
steenbekleding Stavoren 

0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,20  

Capelle Moordrecht Havendam Lemmer 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Capelle Moordrecht Dijkversterking Krimpen 0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

Capelle Moordrecht Havendammen en 
steenbekleding Stavoren 

0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,20  

Maasboulevard Cuijk Markermeerdijk Marken, zuid- en 
westkade 

0,1042 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike 

 €      0,37  

Maasboulevard Cuijk Keent en Keent - Grave 0,1379 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel & 
klei 

 €      0,65  

Maasboulevard Cuijk Wieringermeerdijk en Stonteldijk 0,1494 Rural Area [1/0], Urban Area [1/0], 
Riverdike, Seadike 

 €      1,51  

Waterfront Dalfsen Dijkversterking Hellevoetsluis 0,0861 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike, Bodemtype_zand 

 €      4,58  
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Waterfront Dalfsen KoegrasSeadike 0,1658 Rural Area [1/0], Urban Area [1/0], 
Riverdike, Seadike, Bodemtype_zand 

 €      6,70  

Waterfront Dalfsen Havendam Lemmer 0,2006 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Lauwersmeerdijk  WaddenSeadike, Nieuwstad, 
Bocht van WatumD 

0,0000 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded, 
Bodemtype_zavel 

 €      7,75  

Lauwersmeerdijk  Veerhaven Kruiningen 0,0345 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      15,76  

Lauwersmeerdijk  WaddenSeadike, Friese kust 0,0452 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Afstand_tot_de_norm_encoded, 
Bodemtype_zavel 

 €      1,22  

Zettingsvloeiing V3T 
Spijkernisserbrug 

Havendammen en 
steenbekleding Stavoren 

0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      2,20  

Zettingsvloeiing V3T 
Spijkernisserbrug 

Havendam Lemmer 0,0761 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Beesel (19P) Dijkversterking Nieuwe Stadse 
Seadike 

0,0588 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike, 
Afstand_tot_de_norm_encoded 

 €      3,30  

Beesel (19P) Dijkversterking Hoeksche Waard 
Zuid 

0,0588 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike, 
Afstand_tot_de_norm_encoded 

 €      4,74  

Blerick bij de oude 
Gieterij 

Havendammen en 
steenbekleding Stavoren 

0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      2,20  

Blerick bij de oude 
Gieterij 

Havendam Lemmer 0,0761 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Blerick bij de oude 
Gieterij 

Dijkversterking Krimpen 0,0761 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

Heel (19I) Boxmeer 0,0941 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      1,06  

Heel (19I) Wieringermeerdijk en Stonteldijk 0,1042 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike 

 €      1,51  

Heel (19I) Dijkversterking Nieuwe Stadse 
Seadike 

0,1042 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike 

 €      3,30  

Eemshaven-Delfzijl WaddenSeadike, Friese kust 0,1984 Rural Area [1/0], N2000 [1/0], 
Development close to dike, Riverdike, 
Seadike, Bodemtype_zavel 

 €      1,22  

Eemshaven-Delfzijl Veerhaven Kruiningen 0,2091 Rural Area [1/0], N2000 [1/0], Riverdike, 
Seadike, Bodemtype_zavel 

 €      15,76  

Eemshaven-Delfzijl Terschelling, Waddenzeekering 0,2227 Rural Area [1/0], Development close to 
dike, Riverdike, Seadike 

 €      2,59  

Lauwersmeer 
Vierhuizergat 
(afgerond) 

Houtribdijk 0,0000 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded, 
Bodemtype_zand 

 €      8,79  

Lauwersmeer 
Vierhuizergat 
(afgerond) 

IJsselmeer, kleibekleding en 
pipingmaatregelen 

0,0345 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zand 

 €      2,49  

Lauwersmeer 
Vierhuizergat 
(afgerond) 

Zimmermanpolder Zuid-Beveland 0,1387 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      4,08  

IJsselpaviljoen Zutphen Dijkversterking Hoeksche Waard 
Noord 

0,0870 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      7,30  
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IJsselpaviljoen Zutphen Markermeerdijk Hoorn - Edam - 
Amsterdam 

0,0870 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      21,42  

IJsselpaviljoen Zutphen Flaauwe Werk 0,0941 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      8,84  

Pannerden-Loo Markermeerdijk Marken, zuid- en 
westkade 

0,0525 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      0,37  

Pannerden-Loo Wieringermeerdijk en Stonteldijk 0,0978 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike 

 €      1,51  

Pannerden-Loo Zimmermanpolder Zuid-Beveland 0,1286 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      4,08  

RIDS Fase 1 IJsselkade Havendam Lemmer 0,1215 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

RIDS Fase 1 IJsselkade Dijkversterking Krimpen 0,1215 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

RIDS Fase 1 IJsselkade Havendammen en 
steenbekleding Stavoren 

0,1286 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,20  

Twentekanaal IJsselmeer, kleibekleding en 
pipingmaatregelen 

0,1551 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike, Bodemtype_zand 

 €      2,49  

Twentekanaal Markermeerdijk Marken, zuid- en 
westkade 

0,1832 Rural Area [1/0], Urban Area [1/0], 
Development close to dike, Riverdike, 
Seadike, 
Afstand_tot_de_norm_encoded 

 €      0,37  

Vianen Havendammen en 
steenbekleding Stavoren 

0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      2,20  

Vianen Havendam Lemmer 0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Vianen Dijkversterking Krimpen 0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      48,24  

Vianen Hazelaarplein Havendammen en 
steenbekleding Stavoren 

0,1034 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      2,20  

Vianen Hazelaarplein Havendam Lemmer 0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      2,35  

Vianen Hazelaarplein Dijkversterking Krimpen 0,1106 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €     48,24  

Wolferen-Sprok - De 
Stelt 

Markermeerdijk Marken, zuid- en 
westkade 

0,0525 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      0,37  

Wolferen-Sprok - De 
Stelt 

Wieringermeerdijk en Stonteldijk 0,0978 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike 

 €      1,51  

Wolferen-Sprok - De 
Stelt 

Zimmermanpolder Zuid-Beveland 0,1286 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      4,08  

Burghsluis-Schelphoek Markermeerdijk Marken, zuid- en 
westkade 

0,0180 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      0,37  

Burghsluis-Schelphoek Wieringermeerdijk en Stonteldijk 0,0633 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      1,51  

Burghsluis-Schelphoek Zimmermanpolder Zuid-Beveland 0,0941 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      4,08  

Emanuelpolder Markermeerdijk Marken, zuid- en 
westkade 

0,0180 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      0,37  
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Emanuelpolder Wieringermeerdijk en Stonteldijk 0,0633 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      1,51  

Emanuelpolder Zimmermanpolder Zuid-Beveland 0,0941 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      4,08  

Flaauwershaven-
Borrendamme 

Wieringermeerdijk en Stonteldijk 0,0180 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      1,51  

Flaauwershaven-
Borrendamme 

Dijkversterking Nieuwe Stadse 
Seadike 

0,0870 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      3,30  

Zierikzee-Bruinisse Markermeerdijk Marken, zuid- en 
westkade 

0,0071 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      0,37  

Zierikzee-Bruinisse Wieringermeerdijk en Stonteldijk 0,0524 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      1,51  

Zierikzee-Bruinisse Zimmermanpolder Zuid-Beveland 0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, Bodemtype_zavel 

 €      4,08  

Apeldoorns Kanaal Versterking Eemdijk en Zuidelijke 
Randmeren  

0,1316 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      5,54  

Apeldoorns Kanaal Houtribdijk 0,2263 Rural Area [1/0], Riverdike, Seadike, 
Bodemtype_zand 

 €      8,79  

Apeldoorns Kanaal Wieringermeerdijk en Stonteldijk 0,2437 Rural Area [1/0], Development close to 
dike, Riverdike, Seadike, 
Afstand_tot_de_norm_encoded 

 €      1,51  

Eemdijk - Spakenburg 
(deel Westdijk) 

Dijkversterking Hoeksche Waard 
Noord 

0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      7,30  

Eemdijk - Spakenburg 
(deel Westdijk) 

Markermeerdijk Hoorn - Edam - 
Amsterdam 

0,0690 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      21,42  

Eemdijk - Spakenburg 
(deel Westdijk) 

Flaauwe Werk 0,0761 Rural Area [1/0], Urban Area [1/0], 
N2000 [1/0], Development close to dike, 
Riverdike, Seadike 

 €      8,84  
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Appendix G: projects used as reference class to 
predict projects 

Projects Matched project 1 Matched project 2 Matched project 3 
Oevererosie Klaphek  R2-061 W1-006 W2-031 
Koppelstuk WIJD KoegrasSeadike W2-080 WN-001 W2-089 
Koppelstukken WIJD Dijkvakken W2-019 W2-049 - 
Spuihaven Schiedam W2-021 W2-002 W2-013 
Ijsseldijk Gouda - Spoor 1  W2-021 W2-002 W2-013 
Capelle Moordrecht W2-021 W2-002 W2-013 
Maasboulevard Cuijk R2-061 WN-012 W1-006 
Waterfront Dalfsen WN-001 W2-080 W2-021 
Lauwersmeerdijk  W2-069 R2-022 W2-030 
Zettingsvloeiing V3T Spijkernisserbrug W2-013 W2-021 - 
Beesel (19P) W2-026 WN-008 - 
Blerick bij de oude Gieterij W2-013 W2-021 W2-002 
Heel (19I) WN-024 W1-006 W2-026 
Eemshaven-Delfzijl W2-030 R2-022 W2-045 
Lauwersmeer Vierhuizergat R2-006 W2-014 W2-031 
IJsselpaviljoen Zutphen WN-009 W2-004 WZ-007 
Pannerden-Loo R2-061 W1-006 W2-031 
RIDS Fase 1 IJsselkade W2-021 W2-002 W2-013 
Twentekanaal W2-014 R2-061 - 
Vianen W2-013 W2-021 W2-002 
Vianen Hazelaarplein W2-013 W2-021 W2-002 
Wolferen-Sprok - De Stelt R2-061 W1-006 W2-031 
Burghsluis-Schelphoek R2-061 W1-006 W2-031 
Emanuelpolder R2-061 W1-006 W2-031 
Flaauwershaven-Borrendamme W1-006 W2-026 - 
Zierikzee-Bruinisse R2-061 W1-006 W2-031 
Apeldoorns Kanaal W2-063 R2-006 W1-006 
Eemdijk - Spakenburg (deel Westdijk) WN-009 W2-004 WZ-007 
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Appendix H: correlation matrix 
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