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Abstract7 7

The Kagome structure has been shown to be a highly suited micro-architecture for adaptive lattice materials,8 8

in which selected lattice members are replaced by actuators aiming to create shape morphing structures.9 9

It is the combination of in-plane isotropy, high stiffness and low energy requirement for actuation that10 10

makes the planar Kagome structure the best performing micro-architecture known to date. Recently, Pronk11 11

et al. (2017) have proposed a set of topological criteria to identify other micro-architectures suitable for12 12

actuation. In the present paper, four novel lattice topologies are presented which were contrived in light13 13

of these criteria. Matrix analysis is performed to reveal the static and kinematic properties of the pin-14 14

jointed versions of these four structures. The finite element method is used to determine their stiffness and15 15

actuation characteristics. One of the proposed designs is found to match the optimal elastic properties of the16 16

Kagome structure, while it requires less energy for (single member) actuation. However, the displacement17 17

field induced by actuation attenuates faster than in a Kagome lattice. The presented results also show that18 18

the criteria proposed by Pronk et al. (2017) should be refined in two regards: i) statically indeterminate19 19

lattice materials do not necessarily result in high actuation energy and thus should not be ruled out, and20 20

ii) as shown by counterexample, the criteria are not sufficient.21 21

Keywords: Cellular solids, Lattice Materials, Static/kinematic determinacy, Shape morphing, Actuators,22 22

Finite element method23 23

1. Introduction24 24

Lattice materials are a type of cellular solids comprising many slender lattice members (rods or beams),25 25

and are characterised by a repetitive structure. Each cell in a lattice material has exactly the same shape and26 26

dimensions, and the slender members —also referred to as struts— meet on lattice points. This is in contrast27 27

to other cellular solids. For example, open-cell foams comprise members having a range of dimensions and28 28

a random micro-architecture. Consequently, the representative volume element of a foam is relatively large.29 29

The repetitive micro-architecture of a lattice material, on the other hand, can be described by a small30 30

periodic unit cell with only a few struts. In planar (2D) lattice materials, a polygonal unit cell tessellates31 31

the plane, while in spatial (3D) lattice materials, the space is tessellated by a polyhedron.32 32

The term lattice material is used to emphasise that the lattice behaves like a material, i.e. it can be33 33

treated as a homogenised continuum with macroscopic properties such as elastic moduli and yield strength34 34

(e.g. Onck (2002); Wang and McDowell (2004)). This is justified when both the global length scale of the35 35

lattice and the wavelength(s) of loading are much larger than the dimensions of the unit cell. Lattices that do36 36

not comply with these requirements behave like a structure and hence are not classified as lattice materials.37 37

The macroscopic properties of a lattice material are dictated by three factors: material properties of the38 38
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strut material, relative density ρ̄ (volume fraction of struts), and the micro-architecture (Ashby et al., 2000).39 39

The effects of the first two factors on the material properties are limited in comparison to that of the lattice40 40

micro-architecture, which offers the key design freedom to control the macroscopic mechanical properties.41 41

Lattice materials have drawn attention in the context of shape morphing/adaptive materials. Shape42 42

morphing structures can be constructed by replacing selected members of a lattice by actuators, which have43 43

the ability to lengthen or shorten in response to an external stimulus. Length changes of these actuators44 44

cause deformations in the lattice; see e.g. Donev and Torquato (2003), Hutchinson et al. (2003) and Wicks45 45

and Guest (2004).46 46

Depending on the micro-architecture, the actuation energies of lattice materials differ by orders of mag-47 47

nitude. Moreover, the extent to which actuation-induced deformations spread varies greatly between micro-48 48

architectures. Structures that require a small amount of energy for actuation, while the deformations spread49 49

over a large region are of interest, because such structures are capable of effective macroscopic shape change.50 50

Planar adaptive lattice materials can be used to construct 3D shape morphing structures. For example,51 51

a sandwich panel can be constructed featuring an adaptive planar lattice as one or both of its face sheets,52 52

and a core comprising a foam or a regular 3D lattice. Depending on the adaptive lattice micro-architecture53 53

and placement of the actuators, both in- and out-of-plane deformations of the sandwich structure can be54 54

achieved; see e.g. Hutchinson et al. (2003), Wicks and Hutchinson (2004), dos Santos e Lucato et al. (2004)55 55

and dos Santos e Lucato et al. (2005).56 56

The ideal lattice material for actuation features high macroscopic elastic moduli and strength. Isotropic57 57

elasticity is desirable in order for the lattice material to exhibit these mechanical properties irrespective58 58

of the loading direction. Finally, the lattice material should be compliant in response to actuation when59 59

selected members are replaced by actuators. Simultaneous fulfilment of these requirements is rare, as micro-60 60

architectures with high stiffness generally show large resistance to actuation-driven deformation. This does61 61

not rule out all lattice materials from being suitable for actuation, but requires a careful investigation of the62 62

elastic deformation characteristics of different lattices.63 63

Two distinct types of elastic deformation are encountered when lattice materials are subjected to external64 64

loads 1. That is, the deformation of a lattice is dominated by either stretching or bending of its members.65 65

The former results in much higher macroscopic elastic moduli, since the axial stiffness of slender struts is66 66

much higher than their bending stiffness. Whether a lattice micro-architecture is stretching- or bending-67 67

dominated can be determined from the kinematic properties of the equivalent pin-jointed truss. If that68 68

repetitive pin-jointed truss does not have any inextensional mode of deformation (mechanism) that can be69 69

excited by a uniform macroscopic strain state, the corresponding rigid-jointed lattice material is stretching-70 70

dominated. Conversely, the presence of one or more of such mechanisms for the repetitive pin-jointed truss71 71

results in bending-dominated deformation of the equivalent rigid-jointed lattice. Macroscopic elastic moduli72 72

of a stretching-dominated lattice material scale approximately linearly with relative density ρ̄, whereas for73 73

a bending-dominated 2D lattice material, the macroscopic elastic moduli scale with ρ̄3 (Gibson and Ashby,74 74

1997; Deshpande et al., 2001; Wang and McDowell, 2004; Fleck, 2004).75 75

The resistance of a lattice material to actuation also depends on its micro-architecture and can be76 76

quantified by the amount of strain energy that is stored after actuating a single member in a large lattice.77 77

Wicks and Guest (2004) investigated single member actuation of three lattices with different topologies by78 78

means of calculating actuation energy through finite element (FE) analysis. The study revealed that the79 79

fully triangulated lattice, with no mechanisms when pin-jointed, consumes significantly more energy than the80 80

bending-dominated hexagonal lattice. The pin-jointed hexagonal truss does possess mechanisms that can be81 81

excited by a uniform macroscopic strain state. The third structure investigated by Wicks and Guest (2004)82 82

is the Kagome lattice, which is currently unmatched in its performance as an adaptive lattice material.83 83

Although the pin-jointed Kagome truss has a mechanism, the rigid-jointed Kagome lattice shows stretching-84 84

dominated deformation behaviour. Its specific elastic properties are equal to those of the fully triangulated85 85

lattice (Hyun and Torquato, 2002; Wang and McDowell, 2004), which are optimal for an isotropic 2D cellular86 86

solid. Conversely, the energy required for actuation of the Kagome lattice is considerably less compared to87 87

the fully triangulated lattice, (for the same bar stockiness).88 88

1Only uniform macroscopic loading states are considered in this paper and rotation gradients are ignored.
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The kinematic and static properties of the pin-jointed repetitive Kagome truss were investigated by89 89

Guest and Hutchinson (2003). This study concluded that no infinite (repetitive) truss can be simultaneously90 90

kinematically and statically determinate, unlike finite trusses. Moreover, it was found that the static deter-91 91

minacy of a repetitive truss in 2D requires the truss to possess 3 states of self-stress such that it can sustain92 92

any state of planar macroscopic stress. Recently, Pronk et al. (2017) proposed that, for a repetitive lattice93 93

material to be suitable for actuation, its pin-jointed version should be statically determinate and satisfy94 94

Maxwell’s stability criterion (Maxwell, 1864; Pellegrino and Calladine, 1986). A direct consequence of that95 95

for the repetitive truss is to have one mechanism. Pronk et al. (2017) also showed that the existence of such96 96

a mechanism is not detrimental to the macroscopic stiffness of the rigid-jointed lattice material, granted it97 97

is a non strain-producing mechanism, i.e. it cannot be excited by a macroscopic strain state.98 98

Inspired by the Kagome lattice and its unique properties, this paper continues the quest for 2D lattice99 99

designs that can compete with the Kagome micro-architecture. Four candidate structures were contrived100 100

in light of the criteria proposed by Pronk et al. (2017). Section 2 summarises the most important results101 101

of Pronk et al. (2017) and explains the selection of the micro-architectures to be studied. In section 3,102 102

static and kinematic properties of the pin-jointed repetitive trusses are analysed using the matrix method103 103

of Pellegrino and Calladine (1986). Section 4 details how the macroscopic elastic properties of the rigidly104 104

jointed lattices are determined using the FE method, followed by Section 5 in which FE calculations that105 105

quantify the actuation performance of all the lattices are presented. The results of the different analyses are106 106

discussed in Section 6. Section 7 summarises the most salient points of the paper.107 107

2. Preselection108 108

The mechanical properties of a lattice material with rigidly connected struts are closely related to the109 109

rigidity of its pin-jointed counterpart. Therefore, the concepts of statical and kinematical determinacy, which110 110

are central in determining the rigidity of a pin-jointed truss are also key to identifying stretching-dominated111 111

lattice materials with high stiffness.112 112

First, consider a finite truss with no foundational supports. Such a truss can be both statically and113 113

kinematically determinate, i.e. just rigid, if the number of bars b is equal to the total number of degrees114 114

of freedom nj where n = 2 for a two-dimensional (2D) truss and n = 3 in case of a three-dimensional115 115

(3D) truss, and j is the total number of joints. However, simultaneous static and kinematic determinacy is116 116

acquired only if the bars are properly positioned. In other words, the Maxwell condition b = nj is a necessary117 117

but not sufficient criterion for a finite truss to be just rigid.118 118

Recall that lattice materials by definition consist of a large number of unit cells. Therefore, it is appropri-119 119

ate to consider the rigidity of the equivalent repetitive pin-jointed truss for an indication of the mechanical120 120

performance of a lattice material. While a repetitive truss is infinitely large, it can be represented by a121 121

periodic unit cell where loads and deformations are assumed to repeat with the repetition of this unit cell122 122

through n-dimensional space. Equilibrium equations can then be set up, relating the forces acting on the123 123

joints to the tensions arising in the bars of the unit cell. In matrix form, the nj × b equilibrium matrix A,124 124

post-multiplied with the b× 1 vector of bar tensions2 t yields the nj × 1 nodal force vector f , i.e.125 125

At = f . (1)

For a 2D repetitive truss to be rigid, it must be able to sustain any combination of the three possible126 126

remote loadings at infinity (σ11, σ22 and σ12) with zero nodal forces (f = 0) (Guest and Hutchinson, 2003).127 127

This implies that A must be rank-deficient by at least three; the truss must have three or more states of128 128

self-stress, which are represented by the columns of the nullspace of A. Using the method of sections, (linear129 129

combinations of) these states of self-stress must evaluate to the three possible macroscopic stresses in 2D130 130

(Hutchinson and Fleck, 2006).131 131

2It is convenient to use a tension coefficient, defined as tension per member length, instead of the tension for each bar. Then
the corresponding measure of elongation of the bar is an elongation coefficient, defined as elongation times member length. We
shall use the terms tension, elongation in the remainder to refer to these convenient parameters.
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A kinematic assessment of a 2D repetitive truss leads to a another system of equations that can be cast132 132

into matrix form as133 133

Bd = e, (2)

where d is the nj × 1 nodal displacement vector and e is the b × 1 bar elongation vector. B is the b × nj134 134

compatibility matrix and AT = B by virtue of the principle of virtual work. Consequently, the rank of B is135 135

equal to the rank of A. The nullspace of B contains inextensional displacement modes: non-zero displacement136 136

vectors that satisfy Eq. (2) for e = 0. In case of a repetitive truss, such a displacement mode is either a rigid-137 137

body translation or a mechanism. Rigid-body rotation is impossible as it violates the periodicity conditions.138 138

Mechanisms of a repetitive truss can be classified into infinitesimal and finite mechanisms. For finite139 139

mechanisms, joints can displace by finite amounts while the length of each member of the truss is preserved.140 140

An infinitesimal mechanism, on the other hand, leads to small (of second or higher order in terms of joint141 141

displacements) changes in one or more members’ lengths. Consequently, infinitesimal mechanisms tighten142 142

up after infinitesimally small displacements of joints. A key assumption in matrix analysis is that the143 143

displacements of joints are sufficiently small so that the equilibrium/compatibility equations for the reference144 144

(undeformed) configuration remain accurate. That is, the static/kinematic equations are linearised in the145 145

undeformed configuration. The linearised mechanisms found through matrix analysis therefore represent146 146

mechanisms that in reality are either infinitesimal or finite. The analysis cannot distinguish between the147 147

two.148 148

Mechanisms can be also classified into two subgroups depending on whether they are strain-producing149 149

or not. The key characteristic of a non strain-producing mechanism is that its linearised version does not150 150

induce any macroscopic strain. Vice versa, such a mechanism is not excited when the repetitive structure151 151

endures macroscopic strain.152 152

Static and kinematic determinacy for infinite repetitive trusses are not universally defined. Here, the153 153

definitions of Guest and Hutchinson (2003) are adopted: a 2D repetitive structure is statically determinate154 154

if there are exactly three non-zero solutions to the equilibrium equations At = 0 that correspond to the155 155

three possible stress states in 2D. A kinematically determinate 2D repetitive truss is one where the only156 156

solutions to the compatibility equations Bd = 0 are the two rigid body translations, ruling out the existence157 157

of a mechanism. That is, static determinacy requires A to be rank-deficient by three, while kinematic158 158

determinacy requires B to be rank-deficient by two; since AT = B, an infinite repetitive truss cannot be159 159

both statically and kinematically determinate.160 160

The simultaneous requirement of high stiffness and low-energy actuation is the main challenge in the161 161

search for an ideal adaptive lattice micro-architecture. That is, the rigidly jointed lattice material must162 162

deform in a stretching-dominated manner in response to macroscopic loads. Nevertheless, when one or more163 163

bars are replaced with an actuator, a length change of the actuator(s) should cause the remaining lattice164 164

material to deform compliantly; actuation should induce bending-dominated deformation. After thorough165 165

analysis of a number of lattice micro-architectures, Pronk et al. (2017) proposed that for an isotropic 2D166 166

lattice material to be suitable for actuation, its pin-jointed version:167 167

i) must satisfy Maxwell’s stability criterion,168 168

ii) must be statically determinate and169 169

iii) must have one non strain-producing mechanism only.170 170

In generalised form, Maxwell’s rule reads171 171

s−m = b− 2j = 0, (3)

in the absence of foundational constraints. The number of states of self-stress is represented by s, while m172 172

is the number of inextensional displacement modes. If a repetitive pin-jointed structure is also statically173 173

determinate, s = m = 3, leaving the structure with one mechanism in addition to the two rigid-body174 174

translations. The third criterion proposed by Pronk et al. (2017) concerns the mechanism of a statically175 175

determinate truss. The appearing mechanism must be non strain-producing. If so, the periodic truss is176 176

rigid and the equivalent lattice material is stiff owing to a stretching-dominated deformation response to177 177

macroscopic loads. On the other hand, a member replaced by an actuator may excite a mechanism for178 178
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(a) (b) (c) (d)

Figure 1: Lattice micro-architectures investigated: (a) Kagome with concentric triangles (KT), (b) Kagome with concentric
hexagons (KH), (c) Double Kagome (DK) and (d) the Modified Dodecagonal structure (MD).

the truss, causing the equivalent lattice material to deform in a bending-dominated fashion. Such a lattice179 179

material would therefore require low energy for actuation. In fact, the rigidity of a repetitive truss with180 180

the ideal micro-architecture is reminiscent of the rigidity of a finite truss that is just rigid. The Kagome181 181

structure is the only micro-architecture among the regular and semi-regular tessellations of the plane that182 182

satisfies these criteria (Pronk et al., 2017).183 183

The four lattice micro-architectures that are investigated in this paper are shown in Fig. 1. These de-184 184

signs have not been investigated in previous literature, to the best of our knowledge. The first three micro-185 185

architectures, displayed in Figs. 1a–c are closely related to the Kagome lattice. The Kagome with concentric186 186

Triangles (KT) structure is attained by dissecting each triangle in a Kagome lattice into four equilateral187 187

triangles of equal size; see Fig. 1a. Similarly, the Kagome with concentric Hexagons (KH) features an addi-188 188

tional concentric hexagon within each hexagon that is present in a regular Kagome lattice; see Fig. 1b. The189 189

Double Kagome (DK) structure is shown in Fig. 1c. For each (infinitely long) line appearing in the Kagome190 190

structure, the DK structure shows two parallel sets of aligned members. The fourth micro-architecture con-191 191

sidered is the Modified Dodecagonal structure (MD), depicted in Figure 1d. It is based on the 2-uniform192 192

‘3-4-6-12 tiling’ (Critchlow, 1970). Dodecagons are the largest polygons appearing in the 3-4-6-12 tiling. The193 193

MD structure is constructed by dissecting all of the hexagons in the 2-uniform tiling into two equilateral194 194

triangles and two rhombi. This is done such that the six-fold rotational symmetry is preserved. The MD and195 195

Hexagonal Cupola micro-architectures are closely related. Pronk et al. (2017) have investigated the latter196 196

and concluded that it is not suitable for actuation purposes because of its bending-dominated deformation197 197

behaviour. The MD structure is expected to have more favourable mechanical properties. The reason for198 198

this is the fact that there are no uninterrupted (infinite) arrays of parallel members in this structure, which199 199

there are in each of the Hexagonal, Hexagonal Cupola, and 3-4-6-12 architectures. The KT and MD micro-200 200

architectures, depicted in Fig. 1a and d, respectively, have a uniform member length, whereas the KH and201 201

DK micro-architecture shown in Fig. 1b and c, feature members of two different lengths.202 202

Note that all four lattices shown in Fig. 1 are in-plane isotropic owing to the three-fold rotational203 203

symmetry; see e.g. Ayas and Tekoğlu (2018). Furthermore, all four micro-architectures have a valency of204 204

four, giving b = 2j in Eq. (3). Consequently, the structures fulfil the first of the proposed criteria by Pronk205 205

et al. (2017), and thus have square equilibrium and compatibility matrices.206 206

3. Static and kinematic properties of the preselected pin-jointed lattices207 207

It remains to study the kinematic and static properties of the repetitive trusses with the preselected208 208

micro-architectures in order to determine whether the second and third criteria proposed by Pronk et al.209 209

(2017) are also fulfilled. For that purpose, matrix analysis (Pellegrino and Calladine, 1986) is performed on210 210

representative periodic unit cells, illustrated in Fig. 2. First, statics is considered and states of self-stress of211 211

each of the structures are identified. Next, kinematics is considered and inextensional displacement modes212 212

are identified. For the sake of brevity, a detailed description of the matrix analyses are given for the KT213 213

structure only, whereas for other micro-architectures, results are reported and compared only.214 214
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Figure 2: Selected unit cells for matrix analysis of repetitive pin-jointed trusses with the proposed micro-architectures: (a) KT,
(b) KH, (c) DK and (d) MD. Nodes are labelled with Hindu-Arabic numerals, struts are indicated with Roman numerals. A
reference length l0 is defined in each of the unit cells.
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3.1. States of Self-stress215 215

Matrix analysis of a repetitive truss concerns forces on nodes and tensions arising in members within216 216

a chosen unit cell. The KT unit cell depicted in Fig. 2a contains nine nodes numbered with Hindu-Arabic217 217

numerals and eighteen members numbered with Roman numerals. Coordinate systems are also indicated in218 218

Fig. 2. All nodes are situated in the interior of the unit cell. Members that cross a unit cell boundary, such as219 219

member XV, are effectively connected to two nodes of the (same) unit cell. A total of 18 independent nodal220 220

forces are stored in the vector f = [f
(1)
1 f

(1)
2 ... f

(9)
1 f

(9)
2 ]T, where f

(J)
i denotes the force in the xi-direction221 221

acting on node J . A total of 18 bar tension comprise the bar tension vector t = [tI tII... tXVIII]T. Following222 222

Eq. (1), t is directly related to the nodal force vector f through the 18×18 equilibrium matrix A. The entries223 223

of the equilibrium matrix are determined from the unit cell micro-architecture. The equilibrium matrix for224 224

the repetitive KT truss reads225 225

A =



1
2 − 1

2 0 0 0 0 0 0 0 0 0 0 0 0 1
2 − 1

2 0 0√
3
2

√
3
2 0 0 0 0 0 0 0 0 0 0 0 0 −

√
3
2 −

√
3
2 0 0

− 1
2 0 −1 1

2 − 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0

−
√
3
2 0 0

√
3
2

√
3
2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2 1 0 0 1

2 0 0 0 0 0 0 0 0 0 0 − 1
2 0

0 −
√
3
2 0 0 0

√
3
2 0 0 0 0 0 0 0 0 0 0

√
3
2 0

0 0 0 0 0 0 −1 0 0 − 1
2 0 0 0 0 0 0 1

2 1

0 0 0 0 0 0 0 0 0
√
3
2 0 0 0 0 0 0 −

√
3
2 0

0 0 0 0 0 0 1 −1 0 0 1
2 − 1

2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√
3
2

√
3
2 0 0 0 0 0 0

0 0 0 − 1
2 0 0 0 1 −1 0 0 0 1

2 0 0 0 0 0

0 0 0 −
√
3
2 0 0 0 0 0 0 0 0

√
3
2 0 0 0 0 0

0 0 0 0 1
2 − 1

2 0 0 1 0 0 0 0 0 0 0 0 −1

0 0 0 0 −
√
3
2 −

√
3
2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
2 − 1

2 0 0 −1 − 1
2 0 0 0

0 0 0 0 0 0 0 0 0 −
√
3
2 −

√
3
2 0 0 0

√
3
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
2 − 1

2 1 0 1
2 0 0

0 0 0 0 0 0 0 0 0 0 0 −
√
3
2 −

√
3
2 0

√
3
2 0 0



. (4)

The rank of this equilibrium matrix is 15, thus its nullspace contains 18−15 = 3 linearly independent states226 226

of self-stress which are all possible combinations of bar tensions that are in equilibrium with zero nodal227 227

loads,228 228

null(A) =

 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1

T

. (5)

Each of these three states of self-stress is characterised by a set of aligned members sustaining the same229 229

tension. The first and second states of self-stress concern members that are rotated with respect to the x1-axis230 230

by 60◦, clockwise and anti-clockwise, respectively. They are illustrated in Figs. 3a and 3b. The third column231 231

vector in null(A) involves members that are oriented parallel to the x1-direction, see Fig. 3c. The method of232 232

sections can be used to relate these states of self-stress (or their combinations) to average macroscopic stress233 233

states corresponding to loads at infinity. Let S denote the number of macroscopic stress states that a lattice234 234

is able to carry. In 2D, the maximum value of S is three. The 3D space of macroscopic stress states is then235 235

defined by three orthogonal base vectors that can be chosen as i) tension in the x1-direction, ii) tension in236 236

the x2-direction, and iii) shear loading in the x1x2-plane, for example, can be chosen as the three orthogonal237 237

basis vectors for the space of macroscopic stress states. In fact, determining the state of macroscopic stress238 238

corresponding to a state of self-stress can be thought of as determining the projection of an 18 dimensional239 239

vector onto the 3D subspace of macroscopic stress states. By taking linear combinations of the vectors listed240 240

as columns of null(A) in Eq. (5), it is therefore possible to express the three states of self-stress for the KT241 241
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(a) (b) (c)

Figure 3: The three linearly independent states of self-stress of the KT micro-architecture. Members under tension are depicted
bold and red. (a), (b), and (c) represent the first, second and third column of Null(A), respectively.

(a) (b) (c)

Figure 4: The three linearly independent states of self-stress of the KH micro-architecture. Members under tension are depicted
bold and red. (a), (b), and (c) represent the first, second and third column of Null(A), respectively. Null(A) is given in
Appendix.

structure with three new vectors. The projection of each of these vectors onto the subspace of macroscopic242 242

stress states coincides with an orthogonal axis:243 243

Vector 1 = State 3 : Σ11 6= 0, Σ22 = Σ12 = 0.244 244

Vector 2 = State 1 + State 2 − 1
2×State 3 : Σ22 6= 0, Σ11 = Σ12 = 0,245 245

Vector 3 = State 1 − State 2 : Σ12 6= 0, Σ11 = Σ22 = 0,246 246

Clearly, the pin-jointed structure can support all three linearly independent states of macroscopic stress, i.e.247 247

S = 3.248 248

The KH structure has very similar states of self-stress with s = S = 3; see Fig. 4. Thus, rigidly-jointed249 249

lattices with either of these architectures can sustain any macroscopic load without having members endure250 250

a significant bending load. Still, some members, namely those that form the ‘internal’ triangles in the KT251 251

and ‘internal’ hexagons in the KH structure, are stress-free in each of the states of self-stress shown in252 252

Figures 3 and 4. This suggests that, also in a rigidly-jointed KT or KH lattice material, these members253 253

will not contribute significantly to the macroscopic stiffness. Therefore, sub-optimal elastic properties are254 254

expected for lattice materials with either of these micro-architectures.255 255

The DK structure has six linearly independent states of self-stress, see Fig. 5; s = 6 while S = 3. For256 256

this structure, the six states of self-stress can be expressed by an alternative set of six linearly independent257 257

vectors such that the projections onto the subspace of macroscopic stress states for the first three of these258 258

vectors coincide respectively with the three orthogonal axes, and for the remaining three the projections259 259

give zero vectors:260 260
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(a) (b) (c)

(d) (e) (f)

Figure 5: The six linearly independent states of self-stress of the Double Kagome micro-architecture; (a)–(f) represent column
1–6 of Null(A), respectively. The bar tension value is equal to 1 for the red members, and 0 for the black members. See
Appendix for Null(A).

Vector 1 = State 4 + State 6 : Σ11 6= 0, Σ22 = Σ12 = 0.261 261

Vector 2 = State 1 + State 2 + State 3 − 1
2×State 4 + State 5 − 1

2×State 6 : Σ22 6= 0, Σ11 = Σ12 = 0,262 262

Vector 3 = State 1 + State 2 − State 3 − State 5: Σ12 6= 0, Σ11 = Σ22 = 0,263 263

Vector 4 = State 1 − State 2 : Σ11 = Σ22 = Σ12 = 0,264 264

Vector 5 = State 3 − State 5 : Σ11 = Σ22 = Σ12 = 0,265 265

Vector 6 = State 4 − State 6 : Σ11 = Σ22 = Σ12 = 0.266 266

The states of self-stress corresponding to these six vectors are shown in Fig. 6, respectively.267 267

Following the adopted definition, this structure is statically indeterminate, or redundant (overdetermi-268 268

nate). However, looking closer at the states of self-stress depicted in Fig. 5a-f, each of them involves a269 269

(different) set of aligned members, similar to the previous structures. In fact, upon summing all the stress270 270

states in Fig. 5a-f, not only are all members in the truss loaded, but the bar tensions are also equal. This in-271 271

dicates optimal use of material analogous to the Kagome micro-architecture. Therefore, DK lattice material272 272

is anticipated to have high macroscopic elastic moduli.273 273

The MD structure is topologically unrelated to the other structures. It has s = 4 linearly independent274 274

states of self-stress which are visualised in Fig. 7. This implies that the MD structure too is statically275 275

indeterminate. The magnitude of the bar tension differs between members in all four states of self-stress.276 276

The varying levels of tension in the members will affect the the stiffness and strength of an equivalent lattice277 277

material with this micro-architecture. The most heavily stressed members will deform more and fail prior278 278

to others. Similar to the DK structure, the four states of self-stress for the MD structure can be expressed279 279

by an alternative set of four linearly independent vectors such that the projections onto the subspace of280 280

9



(a) (b) (c)

(d) (e) (f)

Figure 6: An alternative set of six linearly independent states of self-stress of the Double Kagome micro-architecture. The bar
tension value is equal to 1 for the red members, -1 for the blue members, -1/2 for the green members, and 0 for the black
members.

macroscopic stress states for the first three of these vectors coincide respectively with the three orthogonal281 281

axes, and for the fourth the projection gives zero vector:282 282

Vector 1 = 1
2×State 1 + 1

2×State 2 + 2×State 3 − 3×State 4 : Σ11 6= 0, Σ22 = Σ12 = 0.283 283

Vector 2 = State 1 + State 2 − 2×State 4 : Σ22 6= 0, Σ11 = Σ12 = 0,284 284

Vector 3 = State 1 − State 2 : Σ12 6= 0, Σ11 = Σ22 = 0,285 285

Vector 4 = State 1 + State 2 + State 3 − 2×State 4 : Σ11 = Σ22 = Σ12 = 0.286 286

The states of self-stress corresponding to these four vectors are shown in Figs. 8, respectively.287 287

3.2. Inextensional displacement modes288 288

Since all the preselected micro-architectures are shown to yield rigid repetitive pin-jointed trusses with289 289

S = 3, the existence of a strain-producing mechanism in either of the micro-architectures is ruled out; the290 290

number of strain-producing mechanisms denoted by ms is zero. Consequently, the third criterion proposed291 291

by Pronk et al. (2017) is fulfilled by all the micro-architectures under consideration. The inextensional292 292

displacement modes are identified below for the sake of completeness.293 293

Recall that a periodic pin-jointed truss with the KT architecture has a square equilibrium matrix A.294 294

Therefore, its compatibility matrix B = AT is also square. Following Eq. (2), the vector of member elon-295 295

gations e = [eI ... eXVIII]T is directly related to the nodal displacement vector d = [d
(1)
1 d

(1)
2 ... d

(9)
1 d

(9)
2 ]T296 296

through the 18 × 18 compatibility matrix B. The rank of this compatibility matrix is 15, indicating it has297 297

a nullspace containing 18− 15 = 3 linearly independent inextensional displacement modes:298 298

null(B) =

 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0√
3 −1

√
3
2 − 1

2

√
3
2 − 3

2 0 −2 0 −1 0 0 0 −1
√
3
2 − 3

2

√
3
2 − 1

2

T

. (6)
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1 0 1

(a) (b)

(c) (d)

Figure 7: The four linearly independent states of self-stress of the MD micro-architecture. Colours indicate levels of bar tension
per the legend shown. (a)-(d) represent column 1-4 of Null(A), respectively. The nullspace is given in Appendix.
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1 0 1

(a) (b)

(c) (d)

Figure 8: An alternative set of four linearly independent states of self-stress of the MD micro-architecture. Colours indicate
levels of bar tension per the legend shown.
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(a) (b)

Figure 9: Linearised representations of the unit cell periodic finite mechanisms of the (a) KT and (b) KH micro-architecture.
The dotted lines form the outline of a unit cell for both the deformed (shown in black) and undeformed (shown in grey)
configuration indicating there is no strain associated with this increment of either of these finite mechanisms.

The first and second columns of null(B) represent rigid body translation in the x2− and x1−direction,299 299

respectively. The third column is a linearised version of a unit cell-periodic finite mechanism, which is300 300

depicted in Fig. 9a. It is characterised by opposed rotations by equal amounts around node 6, where two301 301

triangles meet. Its linearised version is non strain-producing. The Kagome lattice possesses an analogous302 302

unit cell-periodic mechanism, referred to as ”internal rigid body rotation” by Pronk et al. (2017).303 303

The KH and KT structures have exactly the same nodal positions, whereas the layout of the connecting304 304

members differs, c.f. Figs. 2a and 2b. As in case of the KT structure, null(B) of the pin-jointed KH truss305 305

(given in Appendix) contains two rigid body displacements and one unit cell-periodic mechanism. The latter306 306

is depicted in Fig. 9b. The mechanism of the KH structure clearly differs from that of the KT structure.307 307

Still, the linearised version of the KH mechanism is non strain-producing too.308 308

Matrix analysis of the pin-jointed DK truss is performed using the unit cell depicted in Fig. 2c. This unit309 309

cell contains 12 nodes, constituting a total of 24 independent displacements, and 24 members allowing for310 310

24 member elongations. This results in a 24 × 24 compatibility matrix, the nullspace of which reveals four311 311

non strain-producing periodic mechanisms for this structure, in addition to two rigid-body translations. The312 312

periodic mechanisms are illustrated in Fig. 10. The nullspace is given in Appendix.313 313

Finally, the unit cell of the pin-jointed MD truss is depicted in Fig. 2d. It contains 21 nodes and 42314 314

members. The resulting 42× 42 compatibility matrix B is of rank 38; its nullspace (see Appendix) contains315 315

four displacement modes that do not result in any member elongation. As for all other considered structures,316 316

two of those modes are rigid-body translations. The two remaining linearised mechanisms are shown in317 317

Fig. 11. Both mechanisms are non strain-producing.318 318

All of the investigated micro-architectures have only non strain-producing mechanisms. Therefore, none319 319

of the mechanisms can be triggered by any 2D macroscopic load. Periodic pin-jointed trusses with these320 320

micro-architectures are therefore also found to be rigid from a kinematic point of view, in line with the321 321

findings in Section 3.1.322 322

Rigidity was deliberately investigated from a statics point of view first here because of its simplicity. To323 323

establish rigidity based on a kinematic analysis, the existence of strain-producing mechanisms must be ruled324 324

out. Deformation of the unit cell is not considered in conventional matrix analysis (Pellegrino and Calladine,325 325

1986); mechanisms that distort the unit cell can be determined by using the augmented matrix method, see326 326

e.g. Guest and Hutchinson (2003) and Pronk et al. (2017).327 327

4. Elastic properties of the preselected lattice materials328 328

The macroscopic elastic properties of lattice materials with the preselected micro-architectures are deter-329 329

mined numerically through finite element (FE) analysis. The Kagome lattice is also analysed for comparison.330 330

All calculations are performed with the commercial FE program Abaqus (v6.14). Infinitely large sheets of331 331

the 2D lattice materials are modelled using doubly periodic unit cells. Making use of symmetry, it suffices332 332
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(a) (b)

(c) (d)

Figure 10: The four non strain-producing linearised unit cell-periodic mechanisms of the DK micro-architecture.

(a) (b)

Figure 11: The two non strain-producing linearised unit cell-periodic finite mechanisms of the MD micro-architecture.

14



1

2

3 4
x1

x2

l0

l0

(a)

1

2

3 4

5

6

l0

l0

x1

x2

(b)

1

2

3 4

6

5

l0

l0

x1

x2

(c)

1

2

3 4

5 6

7

8

l0

l0

x1

x2

(d)

1 5 7 9

4

108
62

3

l0(3      )+

l0(1      )+

x1

x2

(e)

Figure 12: FE geometries for the mechanical characterisation of lattice materials with the (a) Kagome, (b) KT, (c) KH, (d)
DK and (e) MD micro-architecture. Dash-dotted symmetry lines used for application of boundary conditions are shown.

to model only one fourth of each of the unit cells as depicted in Fig. 12. The dash-dotted lines in Fig. 12333 333

indicate the axes of symmetry while dashed lines represent unit cell boundaries. Each lattice member is334 334

discretised by a single Timoshenko beam element (Abaqus element B22). All beam elements have a rectan-335 335

gular cross-section with in-plane width w and out-of-plane thickness h. The lengths of the struts are at least336 336

10 times greater than the maximum values of w and h. The strut material is linear elastic with Young’s337 337

modulus Es and Poisson’s ratio νs.338 338

Geometrically linear (small strain) uniaxial compression calculations are carried out on the lattice micro-339 339

architectures. The dimensions of the quarter unit cells are indicated in Fig. 12. Note that the unit cells in340 340

Figs. 12a –12d are identical in size while the unit cell of the MD structure (see Fig. 12e) is much larger.341 341

Loading is applied by imposing displacement boundary conditions. For uniaxial tension/compression in
the x1-direction, the boundary conditions for the Kagome lattice read

u
(1)
1 = u

(3)
1 = 0, u

(2)
2 = 0, ϕ(1) = ϕ(2) = ϕ(3) = 0, (7a)

u
(2)
1 = u

(4)
1 , ϕ(4) = 0, (7b)

u
(4)
1 − u

(3)
1 = ε∗11l0, (7c)

where u
(J)
i and ϕ(J) denote the displacement in xi direction and the in-plane rotation of node J , respectively.342 342

The conditions in Eq. (7a) are a direct consequence of symmetry. Those in Eq. (7b) and (7c) enforce343 343

periodicity under the applied strain ε∗11. The macroscopic stress resulting from the imposed deformation is344 344

given as345 345

σ∗ij =
1

Aj

n∑
k=1

f
(k)
i , (8)
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Table 1: Relative densities of the considered structures as a function of in-plane strut width w and mean strut length l.

Structure Kagome KT KH DK MD

ρ̄
√

3
w

l

3
√

3

4

w

l

(
7
√

3

12
+ 1

)
w

l

√
3
w

l

(
7
√

3− 21

2

)
w

l

where there are n nodes on the unit cell boundary that has an area Aj normal to the xj direction. The346 346

reaction force in xi direction on boundary node k = 1, . . . n is denoted with f
(k)
i . Boundary conditions for347 347

the KT, KH, DK and MD structures directly follow the ones given Eqs. (7a) - (7c), and are not given for348 348

the sake of brevity.349 349

The effective macroscopic Young’s modulus is calculated as350 350

E∗ =
σ∗11
ε∗11

(9)

while the macroscopic Poisson’s ratio is351 351

ν∗ = −ε
∗
22

ε∗11
. (10)

The strain ε∗22 is calculated as ε∗22 = (u
(1)
2 − u

(2)
2 )/l0

√
3 for the Kagome lattice, for example.352 352

Fig. 13a shows the normalised macroscopic Young’s moduli Ē = E∗/Es for the different micro-architectures353 353

as a function of relative density. Expressions for the relative density, i.e. the volume fraction of the solid354 354

material are tabulated in Table 1 in terms of the in-plane strut width w and the mean strut length l. Recall355 355

that the Kagome, KT and MD micro-architectures have a uniform strut length whereas the KH and DK356 356

micro-architectures have members with two different lengths. Therefore, the value of l for the KH and DK357 357

structures is determined by taking a weighted average of the lengths of the two types of struts. The density358 358

of a structure is varied by changing the in-plane width w only, while the out-of-plane thickness h is kept359 359

constant. Ē scales (nearly) linearly with ρ̄ for all micro-architectures, indicating stretching-dominated elastic360 360

deformation. Ē values calculated for the Kagome lattice are in perfect agreement with those reported by361 361

Hyun and Torquato (2002).362 362

The Kagome structure is known to be an ideal micro-architecture in terms of stiffness, i.e. its Ē for a363 363

given ρ̄ reaches the upper bound for low-density isotropic lattice materials (Hashin and Shtrikman, 1963).364 364

Note that the DK structure, having an identical Ē versus ρ̄ behaviour, is also a lattice micro-architecture365 365

with optimal isotropic stiffness. The KT and KH structures are much more compliant compared to the DK366 366

as the concentric triangles and hexagons added to the Kagome structure bear negligible load under uniaxial367 367

compression. The MD structure yields the weakest elastic response while the stockiness of its members are368 368

comparable with the KT structure. Therefore, it is shown that the micro-architecture is the key determining369 369

factor for the elastic response of a lattice material.370 370

Recall that all the structures under investigation are in-plane isotropic. Consequently, two elastic moduli371 371

are sufficient to fully capture their elastic properties. Fig. 13b shows the macroscopic Poisson’s ratio ν∗ of372 372

all the micro-architectures as a function of ρ̄. The macroscopic Poisson’s ratio is higher for the MD structure373 373

than for the other structures. The KT, KH and DK lattices have macroscopic Poisson’s ratios close to374 374

ν∗ = 1
3 , i.e. to the analytical result for a periodic Kagome lattice (Wang and McDowell, 2004). Although375 375

the KH and MD lattices are stretching-dominated materials, the struts in them also bend under uni-axial376 376

compression, which leads to a slight decrease in ν∗ with increasing ρ̄.377 377

5. Actuation properties of the preselected lattice materials378 378

Wicks and Guest (2004) quantified the resistance of a lattice material to actuation by calculating the379 379

energy consumed by a single actuator replacing a regular member in the micro-architecture. For an actuator380 380

that works through an actuation strain εa, the actuation energy reads381 381

W = −1

2
tλεa, (11)
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Figure 13: (a) Normalised Young’s modulus Ē = E∗/Es and (b) macroscopic Poisson’s ratio of the investigated structures as
a function of relative density.

where t is the tension in the actuator beam after actuation is complete, and λ is the original member382 382

length. An actuator is assumed to have the same cross-section and material properties as a regular member.383 383

A reference energy W0 is defined as the work done by an actuator if it were surrounded by a fully rigid384 384

structure; the tension in the member after actuation would be t0 = −EsAεa, resulting in385 385

W0 =
1

2
EsAλε

2
a, (12)

where A is the cross-sectional area of the actuator. The normalised actuation energy is defined as Ŵ =386 386

W/W0; a low value of Ŵ indicates an easily actuated lattice micro-architecture.387 387

Actuation energies for the preselected structures are calculated using FE models similar to those used in388 388

Wicks and Guest (2004) and Pronk et al. (2017). Sheets of lattice material of approximately 800l0× 30l0
√

3389 389

are considered. The large size limits boundary effects on the determined Ŵ . Single member actuation390 390

is mimicked by deleting a member at the center and prescribing displacements on the two joints it was391 391

connected to, as illustrated in Fig. 14. If required for symmetric actuation, two actuators are placed. The392 392

lattice members are discretised by Euler-Bernoulli beam elements (Abaqus element B23) with rectangular393 393

cross-sections. Ŵ values are found to be nearly identical when traction free boundary conditions are replaced394 394

with fully clamped conditions on all boundary nodes. The latter (upper bound) results are reported here.395 395

Fig. 15a shows the normalised actuation energy Ŵ for the structures of interest as a function of ρ̄. Energy396 396

required for actuation can be partitioned into the energy associated with bending Wb, and the energy397 397

associated with axial stretching Ws of the beams. Fig. 15b shows Ws/W , i.e. the fraction of W that goes398 398

up in stretching the members of the lattice material.399 399

Note that because of its high level of symmetry, actuation of any member of the Kagome micro-400 400

architecture is equivalent. The other micro-architectures contain members that are not identical; two kinds401 401

of members appear in the KT and KH lattices, three in the DK lattice and there are five different kinds402 402

of struts in the MD micro-architecture. Replaced by an actuator, each kind of strut constitutes a different403 403

mode of actuation. The most compliant mode was selected for each of the preselected structures. Those are404 404

illustrated in Fig. 14.405 405

It is interesting to see that all the considered lattice architectures except for the KH structure result in406 406

similarly low values of Ŵ . The high actuation energy of the KH structure seems to be the logical result of407 407

the predominantly stretching nature of the deformation during actuation; see Fig. 15b. Surprisingly, at low408 408
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(a) (b) (c)

(d) (e)

Figure 14: Center portions of five lattices after ’single member’ actuation. (a) Kagome, (b) KT, (c) KH, (d) DK and (e) MD.
Two members are actuated in the KT and KH lattices to achieve symmetric deformation. Displacements are greatly magnified,
ρ̄ = 0.01.
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Figure 15: Upper bound for (a) the normalised actuation energy Ŵ = W/W0 and (b) the fraction of the actuation energy that
goes up in axial stretching of members Ws/W .

values of ρ̄, the MD structure has a low actuation energy even though almost all of the energy is stored by409 409

stretching of members. This implies that only a limited number of struts are deformed due to the lengthening410 410

of the actuator and/or that the deformations are very small.411 411

Energy cost of actuation is not the only criterion for the selection of an actuation material. Wicks and412 412

Guest (2004) noted that in a Kagome lattice “the distance over which deformation dies away depends on413 413

the stockiness”. The fact that the deformations are stockiness-dependent, and thus dependent on ρ̄, actually414 414

explains the approximately linear dependency of Ŵ on ρ̄.415 415

Fig. 14 shows that actuation effects differ greatly between lattice micro-architectures. The Kagome and416 416

the KT lattices show very similar responses to actuation; lengthening of the actuator(s) is accommodated417 417

by alternating rotations of triangles. In the deformed DK lattice in Fig. 14d, similar rotations of triangles418 418

appear, but here only a single row of triangles is involved. Also, the triangles are not directly connected,419 419

requiring the displacements to be ’passed along’ by deformation of the rhombi and trapeziums in between.420 420

In the actuated MD lattice in Fig. 14e, the affected ’corridor’ is wider. Here too, rotations of triangles and421 421

deformation of rhombi are apparent. The effects of actuation are very localised in the KH lattice as shown422 422

in Fig. 14c. The structure is severely distorted in the direct vicinity of the actuator, but within a distance423 423

of a few unit cells the effects diminish.424 424

Fig. 16a shows the attenuation distances plotted against ρ̄ for all the micro-architectures. Considering425 425

members aligned with the actuator, attenuation distance is defined as the distance from the actuator at426 426

which the deformations, in the direction of actuation, have reduced to 20% of the displacement of the tip(s)427 427

of the actuator. Naturally, the attenuation distance la decreases with increasing density for all structures.428 428

Figure 16b shows exactly how the displacements attenuate with distance (to the right of the actuator) for429 429

ρ̄ = 0.01.430 430

It is interesting to see that a low(er) actuation energy is not necessarily associated with a large(r) atten-431 431

uation distance. Compare for instance the results of the Kagome, KT and DK structures. Still, deformations432 432

are limited to a very small region surrounding the actuator in the KH lattice, which has the highest actu-433 433

ation energy. The MD lattice shows a very different attenuation behaviour than the other structures: after434 434

a large reduction (∼ 60%) of the displacement magnitude within a small distance from the actuator, the435 435

deformations attenuate very gradually.436 436
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Figure 16: (a) Normalised attenuation distance la/l0 as a function of relative density; the distance, measured in line with the
actuator, at which the displacements have damped out to 20% of the displacement of the actuator’s tip(s). l0 is defined in
Fig. 12. (b) Decay of displacements/deformations (in the direction of actuation) with distance from the actuator for ρ̄ = 0.01.
Not all data points are marked to increase clarity. The dotted line indicates the 20%-displacement level of Fig. 16a.

6. Discussion437 437

All the findings of his study are summarised in Table 2. Since all of the preselected micro-architectures438 438

satisfy the Maxwell condition given in Eq. (3), s = m; the number of states of self stress is equal to the439 439

number of inextensional displacement modes. Moreover, (linear combinations of) the states of self-stress440 440

associated with each of the micro-architectures can be linked to each of the macroscopic stresses that exist441 441

in 2D; S = 3. That is, all the micro-architectures considered are rigid when pin-jointed. This rules out442 442

the existence of strain-producing mechanisms; ms = 0. Table 2 includes the static/kinematic properties of443 443

the repetitive Kagome, Hexagonal Cupola and Triangulated micro-architectures, which were gathered from444 444

literature (Wicks and Guest, 2004; Hutchinson and Fleck, 2006; Pronk et al., 2017). Note that the Kagome445 445

and Hexagonal Cupola trusses both satisfy the Maxwell condition whereas s > m for the Triangulated446 446

structure.447 447

Matrix analysis of periodic trusses with the KH and KT micro-architectures showed they have similar448 448

static and kinematic properties. In fact, their entries in Table 2 are identical to the values for the Kagome449 449

structure. In Section 4, lattices with the KH and KT structure were shown to perform very similarly in terms450 450

of macroscopic elastic properties. On the contrary, their actuation performances could not be further apart.451 451

Firstly, Fig. 15a shows that a KH lattice requires by far the highest actuation energy of all the preselected452 452

structures, while the KT structure is amongst the lowest. Secondly, in terms of attenuation the KT and KH453 453

structures actually set the extremes (Fig. 16): deformation hardly spreads away from an actuator in a KH454 454

lattice, while it damps out the slowest in KT lattice material.455 455

For the range of ρ̄ considered, Fig. 15a shows that a DK lattice material requires a lower amount of energy456 456

for actuation than a Kagome lattice. Also, as shown in Figure 13a, the two lattices have equal macroscopic457 457

stiffness values at equal values of ρ̄. Therefore, the DK lattice outperforms the Kagome lattice, albeit458 458

actuation induced deformations do attenuate more quickly in a DK lattice according to Fig. 16. However,459 459

the latter is not independent of scale (in contrast to the normalised actuation energy): if a Kagome and a460 460

DK lattice of the same density ρ̄ are constructed out of beams of identical in-plane width w, the unit cell461 461

dimensions of the DK lattice are twice as large as those of the Kagome lattice. In this case, the attenuation462 462

distance is larger in the DK lattice.463 463

Periodic pin-jointed trusses with the DK and MD micro-architecture have s = 6 and s = 4, respectively,464 464

which implies these structures are statically indeterminate. Therefore, the actuation energy values found for465 465

20



Table 2: Properties of periodic trusses/rigid-jointed lattices with seven different micro-architectures.

Micro-architecture(s)

Property
Kagome

KT
KH

DK MD Triangulated
Hex.

Cupola

s
(Linearly independent states of

self-stress)
3 6 4 6 3

S
(Supported linearly independent

macroscopic stress states)
3 3 3 3 1

m
(Linearly independent

inextensional displacement modes)
3 6 4 2 3

ms
(Linearly independent strain-

producing mechanisms)
0 0 0 0 2

Deformation behaviour Stretching-
dominated

Stretching-
dominated

Stretching-
dominated

Stretching-
dominated

Bending-
dominated

Actuation energy scaling Ŵ ∝ ρ̄1 Ŵ ∝ ρ̄1 Ŵ ∝ρ̄1 Ŵ ∝ ρ̄0 Ŵ ∝ ρ̄2

the DK and MD lattices are surprisingly low. However, it is the presence of non strain-producing mechanisms466 466

that facilitates easy actuation for the DK and MD lattices. The triangulated lattice is another well-known467 467

lattice which is statically indeterminate. Wicks and Guest (2004) found that it has a high actuation energy,468 468

independent of the value of ρ̄. The key difference is that, a repetitive triangulated truss with s = 6 and469 469

m = 2 has no mechanism, which means that actuation-induced deformation in a triangulated lattice results470 470

in strut stretching almost exclusively. In light of these findings, the set of topological criteria to be satisfied471 471

for the suitability of a lattice micro-architecture for actuation can be refined. For an isotropic 2D lattice472 472

material to be suitable for actuation, its pin-jointed version:473 473

i) must satisfy Maxwell’s stability criterion,474 474

ii) must be able to sustain any state of planar macroscopic stress, i.e. S = 3.475 475

The second criterion directly implies that the pin-jointed version of the lattice material has non strain-476 476

producing mechanism(s) only.477 477

7. Conclusion478 478

The lattice micro-architectures presented in this paper allow for the following conclusions to be drawn.479 479

First, there are structures that can compete with the Kagome architecture in terms of suitability for ac-480 480

tuation. Currently, the DK structure is the only serious competitor, but the other proposed designs too481 481

constitute 2D-isotropic stretching-dominated lattices, and all except one result in similar (low) actuation482 482

energies. Secondly, a lattice material with a statically indeterminate structure does not necessarily have a483 483

high actuation energy. Such a structure does not always result in Ŵ ∝ ρ̄0 either. Finally, the current set484 484

of topological criteria for the suitability of a lattice micro-architecture for actuation does not guarantee a485 485

low actuation energy for the corresponding rigid-jointed lattice material. The KH lattice demonstrates the486 486

latter.487 487
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Appendix - Nullspaces488 488

KT:489 489

null(A) =

 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1

T

(A-1)

490 490

null(B) =

 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0√
3 −1

√
3
2 − 1

2

√
3
2 − 3

2 0 −2 0 −1 0 0 0 −1
√
3
2 − 3

2

√
3
2 − 1

2

T

(A-2)

KH:491 491

null(A) =

 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0

T

(A-3)

null(B) =

 1
2 −

√
3
6 0 0 1 0 1

2 −
√
3
6

1
2 −

√
3
2

1
2 −

√
3
6

1
2 −

√
3
2 1 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T

(A-4)

DK:492 492

null(A) =


1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1



T

(A-5)

null(B) =



0 0 0 0 0 0
√
3
2

1
2

√
3
2 −

1
2

√
3
2 −

1
2

√
3
2

1
2 0 0 0 0 0 0 0 0 0 0

−
√
3
2

1
2 0 0 −

√
3
2

1
2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0√

3
2

1
2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

√
3
2

1
2

0 0
√
3
2

1
2

√
3
2

1
2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0



T

(A-6)
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MD:493 493

null(A) =



0 −
√
3
2 0 0

−1 − 1
2 0 0

1 0 0 − 1
2

0 1 0 − 1
2

−
√
3
2 0 0 0
− 1

2 −1 0 0
0 − 1

2 −1 0
− 1

2 0 −1 0
−1 −1 0 − 1

2

0 −
√
3
2 0 −

√
3
2

−
√
3
2 0 0 −

√
3
2

0 0 1 − 1
2

0 1 0 − 1
2

0 −1 −1 − 1
2

0 0 1 − 1
2

−1 0 −1 − 1
2

1 0 0 − 1
2

0 −1 − 1
2 0

0 0 −
√
3
2 −

√
3
2

−1 0 − 1
2 0

0 0 −
√
3
2 −

√
3
2

−1 0 −1 − 1
2

0 −1 −1 − 1
2

−
√
3
2 0 0 −

√
3
2

0 −
√
3
2 0 −

√
3
2

−1 −1 0 − 1
2

− 1
2 −1 0 0

0 1 0 − 1
2

1 0 0 − 1
2

−1 − 1
2 0 0

0 −
√
3
2 0 0

0 0 −
√
3
2 0

−1 0 − 1
2 0

1 0 0 − 1
2

0 0 1 − 1
2

− 1
2 0 −1 0

−
√
3
2 0 0 0

0 0 −
√
3
2 0

0 −1 − 1
2 0

0 1 0 − 1
2

0 0 1 − 1
2

0 − 1
2 −1 0



, null(B) =



0 0 1 0
0 1 0 −1
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0 1 0 0
0 0 1 0
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−
√
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3 0 1 − 2

√
3

3
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3
3 0 1 −

√
3
3
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√
3
2
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√
3
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2

−
√
3
3 0 1 −

√
3
6

1 1 0 1
2

−
√
3
3 0 1 −

√
3
6

1 1 0 3
2√

3
3 0 1

√
3
6

1 1 0 − 1
2√

3
3 0 1

√
3
6

1 1 0 1
2

−
√
3
3 0 1

√
3
3

1 1 0 0

−
√
3
3 0 1

√
3
3

1 1 0 1√
3
3 0 1 2

√
3

3
1 1 0 0√
3
3 0 1 2
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3
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1 1 0 1√
3
3 0 1 −
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3
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1 1 0 1
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3
3 0 1 − 2
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3
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√
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2

0 0 1 −
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3
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2

0 0 1 −
√
3
2

0 1 0 1
2



(A-7)
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