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ABSTRACT
Prior research from the field of music psychology has suggested that
there are factors common to music preference beyond individual
genres. Specifically, research has shown that self-reported ratings
of preference for individual musical genres can be reduced to 4 or 5
dimensions, which in turn have been shown to correlate to relevant
psychological constructs, such as personality. However, the number
of dimensions emerging from multiple studies has varied despite
the care taken in conducting such research. Data-driven approaches
offer opportunities to further this line of research with actual lis-
tening data, at a scale and scope surpassing that of traditional
psychological studies. Although listening data can be considered
more direct and comprehensive evidence of listening preference,
transforming this data into meaningful measurements is non-trivial.
In the current paper, we report on investigations seeking to find
interpretable underlying dimensions of music taste, using implicit
large-scale listening data. Offering a critical reflection on potential
researchers’ degrees of freedom, we adopt an explicit systematic
approach, investigating the impact of varying different parameters,
analysis, and normalization techniques. More precisely, we con-
sider various ways to extract listening preference information from
two large, openly available datasets of music listening behavior,
making use of principal component analysis and variational au-
toencoders to extract potential underlying dimensions. Results and
implications are discussed in light of prior psychological theory,
and the potential of user listening data to further research on music
preference.
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1 INTRODUCTION
Despite interest and research contributions from multiple academic
disciplines, the drivers of musical preference are incompletely un-
derstood. In music psychology, the general assumption is that mea-
surement of music preference should show a finite number of in-
terpretable underlying dimensions that cross genres. One such
example has shown that self-reported preference for metal, alterna-
tive, and rock genres formed an “intense and rebellious" dimension,
while preference for soul/funk, electronica/dance, and hip-hop/rap
formed an “energetic and rhythmic" dimension [21].

While self-reports of music preference are useful in gaining
insight into the minds of listeners, a further demonstration of the
validity of such a dimensional scheme might be to examine implicit
data, rather than explicit ratings of preference. For example, [21]
examined the number of songs from certain genres that appeared
in online music libraries (study 4). Given the prevalence of online
streaming services, a reasonable approach might be to examine
more detailed actual music listening behavior, beyond what songs
simply appear in one’s music library. One recent study used such
data to examined diurnal and seasonal listening patterns [19].

1.1 Research Question
In light of previous studies that have shown evidence for underlying
dimensions of music preference based on self-elicitation methods,
in this work, we aim to assess whether a data-driven approach
will also result in similarly interpretable 4 or 5 dimensional mod-
els as those found in prior research [21], when examining music
listening behavior as opposed to explicit ratings of preference for
music genres. To this aim, we will examine two large, publicly avail-
able datasets of music consumption behavior. As in prior music
psychology research, we will extract principal components with
factor rotations. In addition, we will apply a more recent non-linear
approach from the data sciences: variational auto-encoding.
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1.2 Methodological challenges
The current work is inspired by findings in music psychology, yet
seeks to what extent data-driven approaches may be employed to
replicate these. At present, our data-driven studies rely on existing,
publicly available research datasets on music listening behavior.

Moving from traditional self-report based methodologies to data-
driven methodologies allows for research on larger samples and
larger-scale listening interactions. However, finding similarities
between information obtained through self reports and information
that can be distilled from listening behavior is a non-trivial task.
Generally, for the analysis of music listening behavior, a number
of decisions must be made by the researcher(s) to determine how
to appropriately collect, pre-process, and analyze the data in each
step of the research pipeline. Such decisions, previously referred to
as ‘researcher degrees of freedom’ [30], often only have ambiguous
criteria as guidelines and cause flexibility that may lead to falsely
reporting positive results. In this paper, we seek to explicitly discuss
and reflect on the researcher degrees of freedom encountered in
the analysis of music listening behavior, in particular with regards
to the various ways data may be pre-processed, and the various
ways in which models might be selected for interpretation.

At a higher level, it also should be noted that the social and data-
driven sciences have fundamental differences in methodological
focus points. In the social sciences, theory-driven approaches are
employed, in which the prime concern is demonstrating whether
and towhat degree independent and dependent variables are related,
and interpreting the nature of these relationships. In contrast, data-
driven (machine learning) methodology is particularly concerned
with optimizing the fit of data to corresponding ground truth, while
human interpretability of the variables and found relations is less
of an explicit concern [17].

Thus, in theory-driven social sciences, insights are explicitly
conditioned against relevant human theory and hypotheses, while
in data-driven science, insights are expected to emerge from the
data. With an increasing need for interpretability in many of to-
day’s artificial intelligence applications, an advantage of the former
methodological line is that its research designs and outputs are
designed with interpretability of results as a prime focus. However,
the second methodological line operates on a larger search space,
and thus may give a more comprehensive reading of what informa-
tion may (or may not be) reflected by the data. In this work, while
primarily performing data-driven analyses, we seek to balance these
two viewpoints and to relate to prior psychological theory.

2 BACKGROUND
2.1 Music preference dimensions
The field of music psychology has shown evidence that preferences
across music genres are not independent or random. Specifically,
[21] suggest that personality characteristics are manifest in one’s
music listening behavior. For example, an individual who scores
high in extraversion may have a preference for music that is typ-
ically present in social situations, such as genres one can dance
to. A series of studies has shown evidence in favor of the presence
of such interpretable underlying dimensions to music preferences,
which have further been shown to correlate with psychological
constructs, such as personality [3–5, 8, 10, 16, 21, 25].

Table 1: Previous findings on music dimensions

Papers No. of
Dimensions

No. of
Genres

Rentfrow & Gosling, 2003 [21] 4 14
George et al., 2007 [8] 8 30
Delsing et al., 2008 [4] 4 11
Schäfer & Sedlmeier, 2009 [26] 6 25
Dunn, Ruyter & Bouwhuis, 2011 [5] 6 14
Rentfrow, Goldberg & Levitin, 2011 [20] 5 26
Langmeyer et al., 2012 [16] 4 14
Brown, 2012 [3] 4 12
Greb, Schlotz & Steffens, 2017 [10] 6 19

Akey example is [21], in which Texas students (n > 1k) completed
the Short Test of Music Preferences (STOMP). The researchers
then performed a principal components analysis (PCA) with both
orthogonal (e.g. varimax) and oblique (e.g. oblimin) rotations, and
found 4 dimensions of music preferences. Those dimensions were:
1) Reflective and Complex, comprised of Blues, Jazz, Classical and
Folk, 2) Intense and Rebellious, comprised of Rock, Alternative, and
Heavy Metal, 3) Upbeat and Conventional, comprised of Country,
Sound Tracks, Religious, and Pop, and 4) Energetic and Rhythmic,
comprised of Rap/Hip-Hop, Soul/Funk, and Electronica/Dance. [20]
later updated this model by dividing the Upbeat and Conventional
dimension into Mellow, comprised of Pop, Soft-Rock, Soul and R&B,
and Urban, comprised of Rap, Electronica, and Dance Music. This
five factor model is called the MUSIC model and has now been
used extensively in many studies about the diverse aspects of music
preference, especially with regards to personality [25]. Subsequent
studies showed a number of underlying dimensions, and while 4
dimensions were often found, overall the number varies from 4
[21] to 8 [8]. Reasons for the inconsistency may be differences in
populations, as well as decisions made by researchers such as the
procedure used to elicit preferences, and the number of genres rated
which range from 11 [4] to 30 [8].

2.2 Self-reports vs. listening behavior
Most of the studies on the underlying structure of music preference
are based on self reports, such as Likert-scale responses to assess-
ments like the STOMP, or ratings of musical extracts. One notable
exception is study 4 in [21], which consists of a confirmatory factor
analysis (CFA) of their 4-dimensional model, performed on users’
online music collections. The dataset was compiled by randomly
selecting 20 songs per library, which were hand coded by judges
into one of the 14 music genres present in the STOMP. They then
assessed user’s preference for each genre by the number of songs
of that genre in the sample taken from their library.

One can wonder if self-reported preferences indeed match a
user’s music consumption. [5] collected listening time per genre,
as well as responses to the STOMP for the same users, seeking to
validate the model of [21]. [5] conclude that there are positive cor-
relations, which however remain weak to moderate. This suggests
that self-reported preferences do not perfectly match the listening
behavior of the respondents. Several reasons for this difference
can be evoked: genre definitions and their boundaries can be quite
subjective; self-reported data can suffer from a social desirability
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Dataset # Users # Genres Genre set
LFM1b[27] 120,173 18 Allmuic
MSD[2] 109,959 27 MASD[29]

Table 2: Description of datasets used in the experiments

bias; and people may not listen to songs from genres proportionally
to their liking of those genres. At the same time, listening data
reflects a comprehensive, objective view on what people actually
listened to, and therefore is of interest to us.

3 DATASETS
3.1 Acquisition
We studied diverse users’ genre consumption profiles, which had
previously been collected and processed into 2 publicly available
datasets: LFM-1b [27], and the Million Song Dataset (MSD) [2].
Datasets were primarily chosen because they included the number
of times a song was played by a user, thus resembling listening
behavior. Secondary considerations included their overall size and
the ease with which we could map appropriate genre classifications
to the datasets. Our selection was not exhaustive, and was at least
partially guided by convenience.

For purposes of comparison, we aimed to establish a user genre
profile for both datasets such that the genre classifications of LFM-
1b and MSD were as similar as possible to each other, and to prior
research. The LFM-1b dataset provides user profiles separately from
genre profiles (LFM1b-UGP) [28]. These genre profiles contain two
types of classifications obtained by mapping the consumption data
with data from two separate music catalogues: Allmusic and Free-
base. The genre mappings differ significantly, with the first contain-
ing 20 and the second containing approximately 2000 genres. For
the purposes of our study, we chose the former mapping. The profile
is then established by aggregating the number of listening events
of individual tracks by artist, and then remapping the artist to the
corresponding genre [28]. For the MSD, we employed the Echon-
est user listening profile subset, which has the link to the MSD
track id, which contains the music listening data of the users. For
the experiments, we employed LFM1b-UGP with Allmusic genre
mappings, and MSD with the MSD Allmusic Guide Style Dataset
(MASD) genre mappings, where the vocabulary set is relatively
clearer, and more similar to previous literature. Additionally we
dropped the two most unpopular genres (children’s and spoken
word) from LFM1b-Allmusic, to establish even better resemblance
with previous research. While we did not explore other potential
genre mappings, some of which may have been significantly richer,
it is likely that the specific mapping could have a significant effect
on the results. For the purposes of this study we made a delib-
erate decision to seek out genre classifications that most closely
resembled the number present in prior research.

Comparing our data to that of the most similar prior psycho-
logical study to ours [21], we did not sample a few songs per user,
but used complete listening behavior. We worked with the original
genre associations of the datasets, avoiding hand-coded human
genre mappings (although this results in different taxonomies than
the original study). Details regarding the datasets are described in
Table 2.

Id TF IDF Description
0 cu,д 1 raw count
1 cu,д∑

д′∈G cu,д′
1 user-normalized

2 1 + log cu,д 1 sub-linear
3 1 + log cu,д log |U|

|u∈U:д∈u |
TF-IDF

4 N/A N/A Likert Scale [1..7]
Table 3: Normalization techniques investigated in this work.
cu,д refers to the raw listening count of user u to the genre д,
and the G andU are the set of genres and users, respectively.

3.2 Normalization
In previous work, data was collected using ratings on either 7 or 9
point Likert scales, resulting in all the declared genre preferences
falling within the given range (either [1, 7] or [1, 9]). However, many
publicly accessible datasets have only an implicit proxy of such
preferences, as they often contain the number of times a user has
listened to specific tracks. Since there might be a substantial gap be-
tween such implicit feedback and “true” preference, models derived
using raw listening counts and those established with answers from
questionnaires on musical preferences are not directly comparable.
A further concern is the large number of observations with 0 play
counts in a number of genres. Whether or not the data should be
examined in its raw form, or transformed to better conform to prior
research is an open question.

One relatively simple and intuitive method to estimate the pref-
erence out of such implicit feedback can be to apply an appropriate
normalization technique. As with the genre mappings, the choice
of normalization schemes may affect results. In an attempt to be
as objective as possible, we analyzed the raw results in addition to
four normalization schemes.

In Information Retrieval (IR) and Recommender Systems (RS)
literature, it is common practice to penalize repeated interactions
using normalization. TF-IDF [24] is a common technique developed
in the Information Retrieval (IR) and Natural Language Processing
(NLP) domain, and is also commonly used in the RS field due to
its simplicity and sound rationale. Specifically, we chose 3 differ-
ent variations of TF-IDF strategies, illustrated in Table 3. We also
included another normalization strategy that transforms the dis-
tribution of the given raw count per genre toU(1, 8), discretized
to integers such that the resulted values proportionately resemble
Likert-scale data, ranged 1-7, collected from participants in previous
literature.

4 ANALYTIC STRATEGY
4.1 Principal Components Analysis
Following prior research e.g. [5, 21], we conducted a series of princi-
pal components analyses (PCA). Principal axis factoring techniques
are sometimes also used to determine a number of underlying fac-
tors in data e.g. [20]. However, we opted not to explore the multi-
tude of principal axis factor techniques available, so that our results
would be as comparable as possible to most prior research. To ex-
amine the suitability of the datasets for the analysis of underlying
structures, we computed measures of sampling adequacy (MSA)
using the Kaiser-Meyer-Olkin procedure for the overall datasets

ACM UMAP 2019 Main Track UMAP’19, June 9–12, 2019, Larnaca, Cyprus

287



and each individual genre within each dataset. This procedure esti-
mates the proportion of variance in a dataset and within individual
variables that is common or shared variance. Scores of less than .5
are generally considered to indicate that the dataset is not suitable
for factor analysis. In order to determine the number of factors to
extract, we conducted a parallel analysis, which has been shown to
be a satisfactory method for determining the number components
to extract [35]. Specifically, parallel analysis compares the eigen-
values of the test dataset with those derived from a Monte Carlo
simulation of a correlation matrix of uncorrelated variables, com-
prised of the same number of simulation observations and variables.
Each component extracted from the test dataset is then compared
to each component extracted from the simulated matrix, until the
test components value falls below that of the simulated matrix [35].
The number of components falling above this threshold is then
reported. However, other methods for estimating the number of
factors to extract could have been employed, including visually
inspecting the scree plots, or loadings from a range of extracted
components to determine which model is the most interpretable.

One technique used to assist in determining and interpreting
underlying dimensions commonly used in psychology research is
factor rotation. As latent factors may be oriented in any way in
multidimensional space, several rotations are often carried out until
a simple structure is observed: specifically, that variables have rela-
tively large loadings on one factor, and relatively small or negligible
loadings on all others [7]. The output from the simple structure is
then evaluated in light of what the components or factors could
represent. In our case, we extracted loadings after using the orthog-
onal rotation most commonly reported in prior research, varimax,
a commonly used oblique rotation, direct oblimin, as well as with
no rotation.

4.2 β-VAE
Variational AutoEncoder (VAE) [15] is an unsupervised learning
model that aims for learning distribution pθ (x), from which one can
draw a sample x ∈ Rd . In many real world setups, often the data
domain x depends on certain underlying variables. This allows one
to learn a joint distribution of x and z, where z ∈ Rk is the latent
variable that generates x . Here, instead of finding task-specific
distribution of z, VAE attempts to find it by given task, with a
function f (z;θ ) that is complex enough to generate an object x
and random variable z from simple distribution such as the normal
distribution N(0, I ).

However, to maximize the likelihood Ep(z)[pθ (x |z)], one should
evaluate the integration of the likelihood over z, which is not effi-
cient sincemost points of z will not contributemuch since particular
p(x) of one’s interest would rely only on very small subspace of
z, which means most of the case drawn points will not be helpful
for finding p. To alleviate this problem, one can introduce an in-
ference model qϕ (z |x) which estimates z from the observation x ,
hopefully shares some commonalities with pθ (x |z) since both of
them related to same latent variable z and data domain of x . As a
neural network f (z;θ ) typically embody pθ (x |z), another neural
network д(x ;ϕ) can be chosen for the instance for qϕ (z |x). In this
case, by introducing already highly probable data point x , learning

process can be relaxed. Thus, the main objective of original VAE is
formulated as follows:

L(θ ,ϕ;x , z) = Eqϕ (z |x )[logpθ (x |z)] − DKL(qϕ (z |x) | | p(z)) (1)

The first term of the objective ensures the model has minimal
reconstruction error, and the second term makes sure the inference
model fθ resembles p(z). By finding parameters that maximize this
objective, one can find both an inference model дϕ and a generative
model fθ .

β-VAE [11] introduces a more freedom to control the contribu-
tion of those two terms as follows:

L(θ ,ϕ;x , z, β) = Eqϕ (z |x )[logpθ (x |z)] − βDKL(qϕ (z |x) | | p(z))

(2)
where β is coefficient to control the contribution of the KL diver-

gence term. Tuning β properly allows the latent variable z to have
more “disentanglement” such that each dimension of the variable
has better distinguishable meaning [11]. In our study, we examined
the variability of the model fit with different setup of β along with
the number of dimensions of z, assuring that the resulting latent
dimensions have a more clear, uncorrelated meaning.

As for the architecture of fθ and дϕ , we use a simple structure
that has two hidden layers with h units each. To infer the mean
and log variance, we put two feed-forward layers that project the
hidden activation to the space of z, such that one can draw a sample
z from Q(z |x) = N(µ(x), Σ(x)). Consequentially, we have neural
networks as follows:

fθ (z) = σ (W2 · σ (W1 · z)), z ∼ Q(z |x) (3)

дϕ (x) = σ (W4 · σ (W3 · x) + b4) (4)

µ(x) =Wµ · дθ (x) (5)

Σ(x) = exp (WΣ · дθ (x)) (6)
whereW1 ∈ Rh×h andW2 ∈ Rd×h belong to θ = {W1,W2} and

W3 ∈ Rh×k ,W4 ∈ Rd×h ,b4 ∈ Rd belong toϕ = {W3,W4,b4}.Wµ ∈

Rk×h andWΣ ∈ Rk×h are the weights to transform the output of
дϕ to estimate µ(x) and Σ(x). σ is a non-linear transformation for
which functions such as Rectified Linear Unit (ReLU) [18] is chosen.

In particular, we set h = 1024 and σ = ReLU . Instead of a
bias term, we applied Batch Normalization (BN) [12] for every
layer in fθ and дϕ except the output layer to stabilize the internal
covariate, which is particularly problematic when the input data is
not normalized and has high variance such as the case where raw
playcount per genre is used. As for the optimization, we employed
ADAM [14] and set the learning rate as 0.001 for all the models.

5 EVALUATION
5.1 Model Fit
To evaluate the model fit, we randomly split the samples into train-
ing and testing groups with same number of users in each. We fit
our model on the training group, and evaluated the model fit on
the testing group. Since unified measures are required to evaluate
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between models, we used Root Mean Squared Error (RMSE) and the
coefficient of determination (R2). RMSE measures how accurate the
reconstruction of the model is, and R2 measures the percentage of
variance explained by the reconstructions. We repeated this process
for 5 trials within each normalization scheme, for both the PCA
and β-VAE iterations.

5.2 Measuring the Latent Variable
5.2.1 Disentanglement. To measure the degree to which the ob-
tained latent variable is informative, we employed the disentan-
glement that is proposed in [11]. The rationale of this measure is
to determine to what extent each dimension of the latent variable
z independently affects each particular aspect or property of the
generated data x .

5.2.2 Saliency Map. Considering β-VAE and its non-linearity, it is
not as straight forward as linear models to interpret the relationship
between the latent dimensions and input dimensions. To approxi-
mate such relationships, one of the most prevalent methods is to
traverse from a latent point to its neighbor by changing values of a
specific dimension of interest while fixing other dimension values
in order to confirm which property of the generated data is affected
by that latent dimension. However, since the data dimensions of our
experimental setup hold relatively more independence than such
complex input, one can produce similar estimates by computing
the partial derivative of the generative model f (z) with respect to
input z [1, 31]. The main motivation of this approach is that one
can approximate the linear relationship between the input and the
output of given model by taking its first-order Taylor expansion:

fθ (z) ≈ wT z + b (7)

wherew ∈ Rk is the partial derivative of the generator f to the
drawn point z0, and b is the residual. Specifically,w is computed:

w =
∂ fθ
∂z

���
z0

(8)

As one can see in (7),w approximates the linear dependency of in-
put data to the function output. More specifically, it suggests which
input latent dimension should be changed to affect the generated
data dimensions. Since w is point-wise estimation, we employed
Ez [w] as the estimator of the global linear approximation, which is
drawn from N(0, I ).

6 RESULTS
6.1 Model Fit
6.1.1 PCA. Suitability for factor analysis was estimated with the
KMO procedure. The LFM1B dataset showed better scores, with
MSA scores above .9 for the overall dataset and for individual gen-
res, within most normalization schemes. The MSD fared poorly,
with scores around .6 for the overall dataset and for individual gen-
res. This suggests that the genre mappings for the LFM1B dataset
had more shared variance due to underlying factor structure than
the MSD. To determine the number of factors to extract, we em-
ployed parallel analysis, the results of which can be found in Table 4.
Other than that, we employed the standard pipeline; Singular Value
Decomposition (SVD) is applied on the correlation matrix, from

Normalization LFM1b MSD
raw count 4 9

user-normalized 5 15
sub-linear 3 8
TF-IDF 3 8

Likert [1..7] 3 8
Table 4: Optimal number of factors recommended by the par-
allel analysis. No variation is observed on within normaliza-
tion; different splits does not affect the result.

which we take the top-k components. Although we applied differ-
ent rotation techniques, there was no substantial difference among
them.

6.1.2 β-VAE. Since β is one of the most influential factors that af-
fects both the reconstruction and the disentanglement, we searched
for a reasonable setup by sweeping a fixed range of candidate
values β ′ ∈ {0.001, 0.01, 0.1, 1, 2.5, 5, 10, 25, 50, 100} per all the nor-
malizations and the datasets. From our experiments, both RMSE
and disentanglement is improved with smaller values of β ′. Since
improvement of both measures plateaued in most of cases, we
chose to pick β = 0.001 as the tentatively optimal value for our
experimental setup for the rest of the paper. In most cases, disen-
tanglement reached 1, and RMSE reached its best score. Note, that
the case where the ‘user-normalization’ and ‘TF-IDF’ (on LFM1b)
is applied implies that there might be room for improvement with
lower setting of β .

6.1.3 Between Models. As Figure 1 illustrates, β-VAE in general
shows substantially better fit in terms of the RMSE. The only excep-
tion was found when ‘user-normalization’ and ‘TF-IDF’ are applied
on LFM1b, with latent dimensionality R15. Considering the afore-
mentioned hyper-parameter search for β , this case might have been
underfitted due to the insufficient search range.

However, in terms of R2, PCA surpasses β-VAE’s performance in
most cases on the LFM1b data. This suggests that the PCA can cover
more variance than β-VAE, while pointwise accuracy is better on
β-VAE. On the other hand, β-VAE shows a significantly better per-
formance than PCA on the MSD data. One explanation could be the
different complexity of the genre mappings in the chosen datasets;
the genre set from LFM1b could be relatively well separated linearly
and less skewed compared to MSD, where, for instance, 6 out of
25 genres are sub-genres of ‘rock’. It is also reflected in the result
from parallel analysis, where on average more then 2 times the
minimum number of factors are suggested to fit PCAs. Considering
the result, the non-linearity and high capacity of β-VAE model can
be more adaptable to such complexity.

6.2 Variability of Models
To investigate the variability introduced by different setups, we com-
pute the correlation between normalization techniques between
datasets and models, based on the average distance matrix, com-
puted as follows:

corrn,m = ρ(C̃ni, j , C̃
m
i, j ), i, j ∈ G\i == j (9)

1For visualization purpose, we standardize the RMSE measure per dataset and normal-
ization, which is denoted as RMSEz .
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Figure 1: Comparison betweenmodels in terms ofmodel fit.1

where C̃n refers to the approximated genre correlation matrix
using nomalization n, and ρ is Spearman’s rank correlation. Specif-
ically, C̃ is computed as follows:

C̃ = E[LL⊺] (10)

where L ∈ Rd×k is loadings in the case of PCA, and saliency map
w for β-VAE2. Figure 2 shows that there are substantial differences.
For instance, for both MSD and LFM1b dataset, the PCA model
shows a difference between ‘user normalization’ and other methods.
However, no visible pattern is recognized in the case where β-VAE
is used. We also examined the variability from the different rotation
methods of PCA, but no substantial difference is observed, where
all off-diagonal correlation in the matrix is higher than 0.85.

6.3 Does a Representative Model Exist?
Each permutation induced by different setup can be considered a
different interpretation of the raw data, and as such it is not trivial
to reject or accept each model when the goal of model selection
rests mainly on reaching an understanding of the data. Thus, we
investigated the representative model out of such variability for
the sake of providing a sense of the middle-ground within the
local model space that we studied. More specifically, the ‘average’
loadings are derived by applying the eigen decomposition on C̃ ,
which is the averaged reconstructions of correlation matrix from
each model. More formally:

C̃ = V Σ2V⊺ (11)

where V ∈ Rp×k is the eigenvectors and Σ is eigenvalues of
C̃ . Averaged loadings can be calculated by L̃k = V kΣk , where the
superscript k indicates the loading is derived by using first k compo-
nents. Alongwith themarginalization over different normalizations,
we also aggregated models drawn from different randomized splits.

Firstly, we compared the averaged model from ‘user-normalized’
cases and model averaged over other normalization techniques,
which is indicated as visible clusters from Figure 2. Illustrated in

2We normalized each rows ofw by the L2 norm to regulate the scale introduced by
data normalization techniques.

Figure 5, it indicates that the ‘non-user-normalized’ model is in gen-
eral one column shifted from the ‘user-normalized’ model, where
the 1st to 4th components of the user-normalized model resemble
the 2nd to 5th components of the ‘other’ models. This is confirmed
by pairwise correlation. Considering that only the ‘user normal-
ization’ reflects users normalized listening trend over genres, the
first components of other models can be conjectured as ‘listening
intensity’. It is indeed shown that scores corresponding to the first
principal component have very high correlations with the sum of
normalized listening count (> 0.95), which implies that the listen-
ing intensity is most varying factor in the LFM1b dataset. As 2c
suggests, a similar trend is observed in the MSD as well.

Consequentially, we also considered globally averaged models
over all permutations within dataset and model whose loadings
are illustrated in Figure 4 and 6, respectively. Although compared
models show a large difference, resulted components resemble
each other substantially. Figure 3 illustrates the agreement between
components that are derived from two globally averaged models,
and Table 5 lists 3 genres that scored the highest and lowest values
in the averaged model components, which are again selected based
on the agreement. As one can see in Figure 3a, with LFM1b, absolute
correlation of each component is higher than 0.9 except the first
component that still holds positive correlation 0.733.

However, as depicted in Figure 3b, the two models fit with MSD
dataset do not agree with each other as much as in LFM1b’s case.
It suggests that only a few components agree, while the location
of them varies. We assume it is caused by the complexity of the
MSD dataset, due to its rather complicated vocabulary set. The R2
measure also indicates that MSD dataset is a more difficult dataset
to fit for PCA especially, where k = R15 solution still shows worse
fit than k = R2 model on LFM1b.

7 DISCUSSION
7.1 Is Consensus Enough?
Results show that using various viewpoints on the same data, includ-
ing permutations such as normalization, different models, different
setups, bring different models. Out of this number of possibilities,
choosing a model for further interpretation remains non-trivial
since objectively measuring interpretability is not well established,
to the best of our knowledge. Model fit based on reconstruction
error might not necessarily reflect the degree to which the model
is interpretable. Disentanglement, which at least assures that each
dimension has less intertwined conceptual meaning between latent
variables, helps in one aspect, but does not tackle the “quality” of
such disentangled dimensions. As a result, although VAE in general
performs better than PCA on RMSE and reaches similar level of
disentanglement with our setup, this does not necessarily imply
that the PCA approach is worse than VAE in terms of interpretabil-
ity. Results indicate that individual PCA and VAE often encode
incompatible dimensions from the same dataset.

One least-failing solution might be examining a model on the
intersection of models, which we tried in 6.3. Results suggest that

3p-values for all the correlation indicate they are significant at p < 0.01 level.
4it is sorted by the loading values of each genres to the component. (i.e. the punk and
heavy metal have the most and second most high value on PC1 of the representative
model, and vocal has the lowest value, etc.)
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(a) PCA-LFM1b (b) β -VAE-LFM1b (c) PCA-MSD (d) β -VAE-MSD

Figure 2: Variability introduced by the normalization techniques across datasets and models. Each plot visualizes a correla-
tion matrix, derived from correlations between entries of the distance matrices corresponding to the different normalization
techniques.

LFM1b MSD
Relatedness4 PC1 PC2 PC3 PC4 PC1 PC2

+++ punk rnb country heavy metal Hip_Hop_Rap Electronica
++ heavy metal rap blues blues Pop_Latin Dance
+ rock reggae folk reggae RnB_Soul Reggae

- new age heavy metal new age electronic Punk Pop_Contemporary
– easy listening classical electronic alternative Rock_College Country_Traditional
— vocal new age rap pop Pop_Indie Rock_Contemporary

Table 5: Summary of components that are strongly agreed between two models.

(a) LFM1b model agreement (b) MSD model agreement

Figure 3: Model agreement measured by component-wise
rank correlation. Only significant values (p < 0.01) are dis-
played for clarity.

two models averaged on normalizations reached a certain degree
of agreement on LFM1b. However, on the MSD models results are
rather divergent which is also suggested by substantially higher
dimensionality required to encode the data sufficiently.

Considering the overall results, a formal, comprehensive defini-
tion of the interpretability is the key to solve a substantial amount
of the questions we posed during the present work. If there is no
human factor to determine which model is better, at least for ma-
chine learning approaches it is not trivial how to determine which
solution is more humanly interpretable.

7.2 Limitations
One limitation of the present work is the lack of a sample elicited
genre classification. As no fully objective classification exists, it
is unclear what classification should be employed to answer such
questions. We chose classifications in an effort to make our work
comparable to prior research, yet it remains unclear how different
classifications might change results.

While the sample size in the present work is significantly larger
than that observed in prior research, the population in question
is not fully representative as it is limited to the users of the on-
line services from which the data was released. Therefore, claims
about generalizable dimensions of music listeners worldwide is not
possible from our results. Further, explanatory variables such as
socio-economic status, age, and geographic region were not avail-
able for both datasets, and therefore not employed in our analysis.
Neither were data from personality assessments, which was a pri-
mary theoretical motivation for many of the psychology studies
cited. Furthermore, the demographic data available for our LFM
dataset was not equally distributed across regions, or age groupings.

While the intensity for one’s preference for music overall has
been shown to relate to how specifically one consumes music be-
yond the simple frequency of one’s listening behavior [26], our
only estimate of preference intensity is the overall number of music
streams.

7.3 Future Work
This research opens many leads for further studies. Firstly, an ap-
propriately stratified sample across regions and age groups could
confirm and extend findings. Indeed, only one dataset among those
used included demographic data, which was not evenly distributed
across regions, and was mainly composed of residents of the United
States (20%) that were between 19 and 32 years old (70% of the
total). Further, we were unable to compare the results by age and
by country of users. This would have allowed us to compare the
differences in taste among different populations.

A further extension could be to conduct an analysis more typical
of music psychology research. This might entail conducting prin-
cipal components and/or exploratory factor analyses on datasets
similar to those used in this study. This could be followed up with
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(a) PCA-MSD (b) β -VAE-MSD

Figure 4: Representative loadings from possible models trained on MSD dataset with dimensions k = 9.

(a) user normalized (b) other normalizations

Figure 5: Comparison between average loadings from user-
normalized PCA models and other models

(a) PCA-LFM1b (b) β -VAE-LFM1b

Figure 6: Representative loadings from possible models
trained on LFM1b dataset with dimensions k = 5.

a series of factor rotations, until a simple structure is observed. The
components or factors could then be interpreted by the researchers,
and examined for interpretability in light of the 4 or 5 dimensional
models most commonly observed in music psychology research.
As a final step, a confirmatory factor analysis can be conducted to

assess model fit on a separate dataset comprised of similar genre
mappings, or a randomly split half of the same dataset.

Another interesting step in the continuity of this work would
be to ask users to complete additional questionnaires. Education
level and other socio-demographic information about the users
would allow us replicate, compare, and confirm findings on cultural
omnivores and their characteristics in different countries over the
last 30 years [6, 9, 13, 23, 32–34].

Many researchers have shown correlations between personality
dimensions and music taste, although results are mixed [22, 25]. It
would be useful to further those studies by correlating personality
with dimensions derived from actual consumption data.

8 CONCLUSION
While it is clear that decisions made by researchers have the po-
tential to impact results, we present here a data-driven process by
which some of those effects may be accounted for. It is achieved by
seeking the representative model out of a potential model space,
determined, and potentially greatly inflated by, various decisions
regarding data handling and analysis setups. Nevertheless, results
still indicate variability with respect to the dataset. This suggests
the need for further in-depth investigations on the effect of vari-
ability of dataset, genre-mappings, as well as consumption patterns
on modeling the underlying dimensions of music preference.

If universality exists within music listening preferences as is
suggested in prior research, taking a further step towards contribut-
ing to the development of the theoretical foundations investigated
in the field of Music Psychology may be a potent next step from
which more insight can emerge regarding the modelling of music
listening behavior.
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