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ABSTRACT 
 
Crowding in public transport can be of major influence on passengers’ travel experience and 
therefore affect route and mode choice. Therefore, it is important to understand how 
crowding in urban public transport is perceived by passengers. The availability of individual 
smart card transactions allows us to gain insights in revealed trade-offs between travel time, 
transfers, waiting time and crowding in public transport route choice, instead of using stated 
preference experiments. Our study is the first in which crowding valuation for urban tram and 
bus travelling is determined fully based on revealed preference data. Based on the estimated 
discrete choice model, we conclude that crowding plays a significant role in passengers’ 
route choice in public transport. The crowding multiplier of in-vehicle time equals 1.16 when 
all seats are occupied. The crowding multiplier increases further from 1.16 to 1.40, in case of 
an average density of 4 standing passengers per 𝑚𝑚2. Besides, our estimation results confirm 
the existence of a tram bonus, in which in-vehicle time in a tram is perceived 0.6 times the in-
vehicle time perceived in a bus. The insights gained from our study can support the decision-
making process, by quantifying benefits of measures aiming to reduce crowding levels. 
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1. Introduction 
 
Crowding in public transport can be of major influence on passengers’ travel experience and 
therefore affect route and mode choice. Because of the expected increasing concentration of 
activities within urban agglomerations in many countries worldwide, crowding is expected to 
become an even more dominant factor in urban public transportation in the future. Therefore, 
it is important to understand how crowding in urban public transport is perceived by 
passengers. This facilitates policy makers in the decision-making process regarding topics as 
modal split, urban accessibility, liveability and sustainability. It can also contribute to the 
quantification of societal benefits of measures aiming to reduce crowding levels (see for 
example Prud’Homme et al. 2012; Haywood & Koning 2015; Cats et al. 2016).  
 
Over the years, there are several studies performed aiming to better understand the 
valuation of crowding in public transport. Extensive overviews and meta analyses regarding 
crowding valuation studies can for example be found in Wardman & Whelan (2011) and in Li 
& Hensher (2011). The majority of the studies described in these papers use stated 
preference (SP) experiments to estimate crowding valuation. In some studies SP results are 
validated against a usually limited set of revealed preference (RP) data, for example by using 
surveys, passenger counts or cameras (e.g. Kroes et al. 2014). These SP based results are 
applied in public transport models aiming to improve passenger assignment and predictions, 
see for example Hamdouch et al. (2011), Schmöcker et al. (2011), Nuzzolo et al. (2012), Pel 
et al. (2014), Cats et al. (2016) and Van Oort et al. (2016). It is however known that there can 
be a discrepancy between stated choices of respondents in SP experiments, compared to 
revealed choice behaviour in reality. SP results can therefore be problematic in terms of 
realism. Until recently, the use of RP data could be troublesome especially regarding data 
availability and variability. However, the availability of automatic fare collection (AFC), 
automatic vehicle location (AVL) and automatic passenger count (APC) systems in public 
transport the last years enables the estimation of crowding valuation based on large scale 
revealed preference data. The availability of individual smart card transactions allows us to 
gain insights in revealed trade-offs between (for example) travel time, transfers, waiting time 
and crowding in public transport route choice.  
 
Only recently, Hörcher et al. (2017) estimated discrete choice models incorporating crowding 
valuation in metro systems fully based on revealed preference data, by integrating AFC and 
AVL data. In this study, 32 origin-destination (OD) pairs of the MTR metro network of Hong 
Kong are used to estimate the valuation of the standing probability and crowding density 
(expressed in the number of standing passengers per square meter). Since the AFC system 
in Hong Kong is a closed, station-based system where passengers have to tap-in and tap-out 
at the metro station, the exact route and trip choice needs to be inferred using a passenger-
to-train assignment method. In our study, we elaborate on the work by Hörcher et al. (2017), 
by estimating crowding valuation during urban tram and bus journeys. To the end, we use 
AFC and AVL data of the total urban public transport network of The Hague, the 
Netherlands. Since passengers are required to tap-in and tap-out within each tram or bus 
vehicle, no inference of the exact route or the exact vehicle choice is required. By merging 
AFC and AVL data, it is possible to directly determine the exact route and vehicle each 
passenger used, and to determine the stop-to-stop vehicle occupancy for each vehicle trip 
separately. This allows us to use to direct smart card data to estimate crowding valuation, 
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without the need to apply a relatively complex assignment procedure. Since the urban tram 
and bus network has a higher density compared to a metro network, it is possible to 
incorporate a larger number of OD pairs in our data set of which route choice might partly be 
explained by expected crowding levels on the different route alternatives. Besides, next to 
the crowding estimation based on the density of standing passengers, we explicitly 
incorporate the estimation of a crowding in-vehicle time multiplier for occupancies lower than 
the seat capacity as well. 
 
This paper is structured as follows. Chapter 2 discusses the methodology applied regarding 
data processing (2.1), transfer inference (2.2), selection of OD pairs (2.3), determination of 
attributes and attribute levels (2.4) and model formulation (2.5). Chapter 3 shows the 
estimation results and discusses implications of these results. In chapter 4, conclusions and 
recommendations for further research are formulated. 
 
 
2. Methodology 
 
2.1 Data processing 
 
We use the urban public transport network of The Hague, the Netherlands, to estimate public 
transport crowding valuation. This network consists of 12 tram lines and 8 bus lines, 
operated by the urban public transport operator HTM. Two of these 12 tram lines function as 
light rail service on the agglomerative network level, connecting The Hague with the satellite 
city of Zoetermeer. The other 10 tram lines and all bus lines function as urban lines within 
The Hague. In The Hague, there is no metro system available. When travelling by light rail, 
tram or bus in the Netherlands, passengers are required to tap-in and tap-out at devices 
located within each vehicle. This means that there is a closed, entry-exit fare system applied 
in The Hague. This is different from most urban public transport systems in the world, in 
which especially for busses often an open, entry-only system with flat fare structure is 
applied. This can for example be seen in London (Gordon et al. 2013) or in Santiago, Chile 
(Munigaza & Palma 2012). The fare system as applied in the Netherlands means that for 
each journey leg made by each individual the boarding time and boarding location, as well as 
the alighting time and location, are known. Besides, for each smart card transaction the line 
number, vehicle number, trip number and smart card number are known. This means that 
each journey leg with its corresponding transaction information appears as a separate row in 
the AFC dataset. During an average working day, more than 300.000 AFC transactions are 
made on the urban public transport network in The Hague. In the Netherlands, the AFC data 
is closed data owned by the public transport operator. The AVL data on the other hand is 
open data and publicly available. The AVL dataset contains the scheduled and realized 
arrival time and departure time of each vehicle trip at each station.  
 
The original dataset used for this study contains all AFC and AVL data of 28 days from 
November 2 – November 29, 2015. This means that about 7.4 million AFC transactions and 
about 3.1 million AVL registrations are available in the dataset. In the data processing phase, 
we applied the following steps. 

• Selection of morning peak data (07:00 – 09:00) 
• Removal of morning peaks with disruptions 



Thredbo 15 Yap Cats Van Arem Yu 

Page 4 of 15 
 

• Removal of incomplete AFC transactions  
• Inference and increase of occupancy data 

 
Since the aim of our study is to explore how passengers incorporate crowding in their route 
choice, it is essential that we select a time period in which crowding occurs. Compared to 
crowding levels reached in metro systems in cities like London, Santiago, Beijing or Tokyo, 
the level of crowding in The Hague can be considered quite moderate. Outside peak periods, 
in general no crowding occurs. In peak periods, crowding however does occur on several 
lines. Since public transport demand in the morning peak in the Netherlands is more 
concentrated within a relatively small period, compared to a more uniformly distributed 
demand in the evening peak, we only focus on AFC transactions during the morning peak. 
This means that only journeys of which the tap-in time lies between 07:00 and 09:00 on 
working days (Monday – Friday) are considered.  
 
In our study we focus on explaining route choice based on expected attribute values for 
travel time, waiting time and crowding. Therefore, it is important that only regular, 
undisrupted periods are incorporated in the dataset. Since disruptions can force passengers 
to adjust their route choice, this might lead to bias in the analysis. Based on HTM registration 
data, we removed the AFC data from morning peaks of days where a disruption occurred. 
Given the possibility of second-order effects, in which a disruption on a certain public 
transport line might increase occupancies on other parallel lines, we decided to remove a 
morning peak completely from the data set if a disruption occurred on any line. From the 20 
working days remaining in the dataset, we therefore removed the data from 6 working days. 
For the AFC data of the remaining 14 morning peaks, we removed incomplete transactions.  
 
Transactions can be incomplete due to a system error or due to human error by forgetting to 
tap-out, in both cases leading to a missing tap-out time and/or location. Although there exist 
many destination inference algorithms in scientific literature (e.g. the well-known trip chaining 
algorithm as applied by Trépanier et al. (2007), Zhao et al. (2007) and Wang et al. (2011)), 
we decided to remove all incomplete transactions. This is because the accuracy of 
destination inference algorithms for urban tram and bus systems is not 100%. For example, 
Yap et al. (2017) applied a full validation of the trip-chaining destination inference algorithm, 
showing that about 65-70% of all destinations are correctly inferred. Since only 1.9% of all 
AFC transactions are incomplete, there is no necessity to incorporate possibly inaccurate 
AFC data in this study.  
 
Vehicle occupancies are derived by merging AFC and AVL data. Since both the AFC and 
AVL data contain the trip number, both data sources can be coupled. This results in the 
occupancy of each vehicle trip between each pair of stops. These smart card data based 
occupancies are corrected for the percentage travellers not using a smart card. In the 
Netherlands, most passengers travel using their smart card. Only passengers who buy a 
ticket in the vehicle at the driver or vending machine, and passengers who (un)deliberately 
do not tap in during their trips are not captured. Since our study focuses on experienced 
crowding levels, these passenger groups are relevant. Based on passenger counts 
performed by HTM, for each public transport line a correction factor is determined which can 
be used to increase the smart card based occupancies. This factor varies between 5% and 
14% for different lines.  
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2.2 Transfer inference 
 
For the individual AFC transactions for each trip, it is determined whether an alighting is a 
transfer or a final destination. To this end, we applied the transfer inference algorithm as 
described by Yap et al. (2017). This algorithm is an extension on the algorithm described by 
Gordon et al. (2013), and uses AFC, AVL and inferred occupancy data. Below, this algorithm 
is shortly discussed. For a more detailed explanation, the reader is referred to Yap et al. 
(2017). The algorithm contains of a temporal, spatial and binary criterion to categorize an 
alighting as a transfer: 

• Temporal criterion: an alighting is considered a transfer if a passenger boarded the 
first reasonable vehicle of the next tap-in line passing by the next boarding location. A 
reasonable vehicle is defined as the first vehicle passing by the next boarding 
location – given the alighting time of the previous journey leg and required walking 
time – of which the occupancy does not exceed the norm capacity. 

• Spatial criterion: an alighting is considered a transfer if the distance between the 
alighting location and the next boarding location does not exceed a maximum transfer 
walking distance of 400 Euclidean meter. An exception to this threshold is made in 
case passengers use an intermediate public transport service from another operator, 
of which no AFC data is known.  

• Binary criterion: an alighting is not considered a transfer if the next boarding is on the 
same line as the previous journey stage, since this indicates an activity. An exception 
is made in case of boarding the first passing vehicle of the same line following the 
alighted vehicle, since this can indicate (for example) a transfer from a short-service 
to the long-service vehicle of the same line or a transfer to the same line in case of 
loops. 

 
In total, the dataset contains 628.839 journeys resulting from 14 working days. Figure 1 (left) 
shows the resulting distribution of the number of transfers, whereas Figure 1 (right) shows 
the distribution of journeys over each half-hour period of the morning peak (using the journey 
tap-in time as classification criterion). As can be seen, almost all journeys consist of 0 or 1 
transfer. The busiest part of the morning peak on a network wide level is between 08:00 and 
08:30, containing about 31% of all morning peak journeys. 
 

 
Figure 1. Journey distribution of number of transfers (left) and distribution per half-
hour of the morning peak (right) 
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2.3 Selection of origin-destination pairs 
 
In total, the database consist of 49.231 different chosen routes. This value can be considered 
as the sum-product of the number of revealed OD pairs and the number of chosen route 
alternatives for each OD pair. For a given OD pair, a route is considered different in case 
passengers use a different (combination of) line(s) or use a different transfer location. We 
developed different criteria to select OD pairs to be used to estimate the discrete choice 
model with crowding effects: 

• Minimum of 2 observed routes per OD pair 
• Minimum of 100 observations per OD pair 
• Each observed route is chosen by at least 10% of all passengers of that OD pair 
• Minimum of 2 observed routes which are physically different from each other 
• Existence of a minimum occupancy of 50% on one route 
• Attribute variation over all OD pairs 

 
The first criterion is required, since there should be at least an observed choice between two 
route alternatives. A minimum number of observations for each OD pair is deemed required 
to incorporate sufficient choices of individual passengers to infer generic coefficients from. 
Besides, we only incorporate route alternatives which are systematically chosen by a part of 
the passengers of an OD pair. By setting a minimum value of 10% per chosen route 
alternative, we ignore route alternatives which are chosen only in a very limited number of 
cases. Such route alternatives might be chosen in case of disruptions, delays or a-typical 
passenger behaviour (e.g. passengers travelling for fun). Besides, we checked for each OD 
pair if at least two route alternatives are physically different from each other. In case of a 
bundle of different lines sharing the same infrastructure (e.g. for journeys within the city 
centre), passengers might take the first vehicle passing by suitable for the destination. Given 
our aim to explain route choice, we consider route alternatives as different from each other, 
only if these do not share the route for 100%. Another requirement is that there should be at 
least a certain amount of crowding on (at least) one of the route alternatives of an OD pair. 
Since we want to estimate crowding valuation, we didn’t want to put a crowding constraint a 
priori. However, if no crowding occurs on all route alternatives at all, it is not possible to 
explain route choice (partly) by crowding. Therefore, we used a very light requirement here. If 
the expected seat occupancy exceeds 50% during some period of the morning peak on 
some part of one of the route alternatives, this requirement is fulfilled. A seat occupancy 
threshold of 50% is used, since passengers start having to sit next to each other from a seat 
occupancy of 50% or higher. It is expected that negative crowding experiences might start 
from this value on. At last, we checked over all remaining OD pairs together whether they 
contain all attributes of the discrete choice model to be estimated. This means that at least 
some OD pairs should consist of a transfer, tram or bus, in order to be able to estimate the 
valuation of a transfer or to estimate the in-vehicle time perception in a tram compared to a 
bus. Applying these criteria results in 58 remaining OD pairs, with in total 17,994 journeys (= 
17,994 observations). For all these OD pairs, two route alternatives are observed in the 
dataset. 16% (9 OD pairs) of these OD pairs consist of a route with a transfer. These 17,994 
journeys are made by 7,083 different smart card numbers. Under the assumption that each 
passenger uses one, unique smart card, this means that there are on average ≈2.5 
observations per passenger.  
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2.4 Attributes and attribute levels 
 
In this chapter, we discuss the different attributes and attribute levels for the estimated 
model.  
 
In-vehicle time 
The expected in-vehicle time 𝑖𝑖𝑖𝑖𝑖𝑖 is determined for each journey leg separately. Based on the 
AVL data, we calculated the expected in-vehicle time by taking the average realized in-
vehicle time over all journeys available in the dataset. Since the scheduled travel times are 
fixed during the whole morning peak, the average is calculated over the whole morning peak. 
For each journey leg we introduced a binary variable indicating whether the journey leg is 
made by tram or bus as mode 𝑚𝑚. 
 
Waiting time 
The expected waiting time 𝑤𝑤𝑤𝑤𝑤𝑤 expresses the initial waiting time before boarding the first 
journey leg. Since the AFC system in the Netherlands has only tap-in/tap-out devices within 
the vehicle, it is not possible to empirically derive the passenger arrival time at the initial 
boarding stop from the smart card data. In order to quantify the initial waiting time, we 
assumed a random passenger arrival pattern. Therefore, we set 𝑤𝑤𝑤𝑤𝑤𝑤 equal to half of the 
scheduled headway of the boarding line. Since the frequency of each line remains 
unchanged throughout the morning peak, this value is calculated for the whole morning peak.  
 
Transfer time  
The expected transfer time 𝑡𝑡𝑡𝑡𝑡𝑡 expresses the time between the alighting time of the first 
journey leg and the boarding time of the next journey leg. This means that 𝑡𝑡𝑡𝑡𝑡𝑡 equals the 
sum of the transfer walking time and transfer waiting time, and equals zero in case the 
journey consists of one journey leg. The expected value 𝑡𝑡𝑡𝑡𝑡𝑡 for a certain OD pair is 
calculated by taking the average realized transfer time over all morning peak journeys of that 
OD pair. 
 
Transfer penalty 
𝑡𝑡𝑡𝑡𝑡𝑡 is a binary variable which equals 1 in case a journey consists of more than 1 leg, and 
equals 0 in case a journey consists of 1 leg. This binary variable 𝑡𝑡𝑡𝑡𝑡𝑡 is used to determine the 
perceived transfer penalty, which expresses the penalty due to the fact a transfer has to be 
made, independent from and additional to the perceived transfer time.  
 
Path size  
To correct for overlap between route alternatives, we determined the path size factor. The 
logarithm of the path size factor 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is used in order to be able to estimate a standard MNL 
model. The path size factor is computed distance-based: for each route alternative it is 
determined how many kilometres of the route is shared with the other route alternative of the 
same OD pair, and how many kilometres are a unique part of only one route alternative. 
 
Crowding: seat occupancy and crowding density 
To quantify the valuation of public transport crowding, we use two different attributes: the 
seat occupancy 𝑠𝑠𝑠𝑠 and crowding density 𝑐𝑐𝑐𝑐. The attribute values for both attributes are 
calculated per line, per link (stop-to-stop line segment), per half-hour time period. Given the 
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non-uniformly distributed demand pattern over the morning peak (Figure 1 right), it is not 
sufficient to calculate the average values for 𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐 over the whole morning peak. Since 
crowding levels differ over each trip, using a too large time period can result in the use of 
average crowding levels which do not match with the experienced crowding by passengers 
during the different trips in the morning peak. On the other hand, passengers will usually not 
have knowledge of the expected crowding levels for each trip separately. By dividing the 
morning peak in four periods of 30 minutes, our aim is to find a balance between excluding 
non-uniformly distributed demand on the one hand, and applying a time period for which 
passengers can have realistic crowding expectations on the other hand. 
 
The seat occupancy 𝑠𝑠𝑠𝑠 is calculated using formula (1), and expresses the ratio between the 
expected passenger load 𝑙𝑙 and the seat capacity 𝑐𝑐𝑠𝑠. If the expected occupancy exceeds the 
seat capacity, 𝑠𝑠𝑠𝑠 remains equal to 1. The expected occupancy is calculated based on the 
average realized occupancy per stop-stop line segment per half-hour time period. This 
means that 𝑙𝑙 is calculated as the average realized occupancy over all vehicle trips per 30 
minutes. 𝑐𝑐𝑠𝑠 is determined based on data provided by the operator, based on the vehicle type 
used for each line. To calculate 𝑠𝑠𝑠𝑠 for each journey leg, the weighted average value is 
calculated based on the expected seat occupancy and expected travel time 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎 per link 
𝑎𝑎 ∈ 𝐴𝐴 of the journey leg. 
 

𝑠𝑠𝑠𝑠 = min (
∑ 𝑙𝑙𝑎𝑎

𝑐𝑐𝑠𝑠,𝑎𝑎
∗𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴

𝑎𝑎

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴
𝑎𝑎

; 1)        (1) 

 
The crowding density 𝑐𝑐𝑐𝑐 is calculated using formula (2), and expresses the expected number 
of standing passengers per 𝑚𝑚2. In line with Wardman & Whelan (2011), we use the crowding 
density per 𝑚𝑚2 instead of the occupancy rate if 𝑙𝑙 > 𝑠𝑠𝑐𝑐, in order to incorporate different vehicle 
layouts. If the expected passenger load 𝑙𝑙 does not exceed 𝑐𝑐𝑠𝑠, this value equals zero. This 
expresses the assumption that passengers will stand only when all seats are occupied. 
When 𝑙𝑙 > 𝑠𝑠𝑐𝑐, 𝑐𝑐𝑐𝑐 is calculated by dividing the number of standing passengers by the total 
surface available in each vehicle type for standing 𝑜𝑜. The expected value for 𝑐𝑐𝑐𝑐 is calculated 
by taking the average value per line, per link, per half-hour time period over all realized trips. 
The expected value per journey leg is computed by using the weighted average over all links. 
 

𝑐𝑐𝑐𝑐 = max (
∑ 𝑙𝑙𝑎𝑎−𝑐𝑐𝑠𝑠,𝑎𝑎

𝑜𝑜𝑎𝑎
∗𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴

𝑎𝑎

∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝐴𝐴
𝑎𝑎

; 0)        (2) 

 
Table 1 shows the different vehicle types with their corresponding seat capacity 𝑐𝑐𝑠𝑠 and 
surface available for standing passengers 𝑜𝑜. Table 2 shows the minimum and maximum 
value for 𝑠𝑠𝑠𝑠 and 𝑐𝑐𝑐𝑐 per half-hour time period over the total dataset.  
 
Table 1. Seat capacity and standing surface per vehicle type (HTM data) 
Vehicle type Mode Lines Seat capacity Standing surface 
GTL-8 Tram 1,6,9,11,12,15,16,17 73 25.1 𝑚𝑚2 
Citadis Light rail 3,4,19 86 32.0 𝑚𝑚2 
Avenio Tram 2 70 33.8 𝑚𝑚2 
MAN Bus 18,21,22,23,24,25,26,28 31 8.9 𝑚𝑚2 
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Table 2. Min/max seat occupancy and crowding density in dataset 
Time period Seat occupancy Crowding density 

Min Max Min Max 
07:00 – 07:30 0.10 1.0 0 0.81 
07:30 – 08:00 0.08 1.0 0 2.48 
08:00 – 08:30 0.13 1.0 0 2.04 
08:30 – 09:00  0.11 1.0 0 2.31 
 
2.5 Model formulation 
 
We estimated two models: a model without crowding (model 1) and a model with the 
incorporation of the two crowding attributes (model 2). Model 2 is an extension of model 1. 
Formula (3) shows the calculation of the structural utility 𝑉𝑉. The attributes corresponding to 
the first journey leg are denoted by index 1; attributes corresponding to the second journey 
leg are denoted by index 2. As can be seen, generic coefficients are estimated for the initial 
waiting time and transfer time simultaneously, and for the transfer penalty. Mode-specific 
coefficients are estimated for in-vehicle time. We experienced with all combinations between 
estimating only generic coefficients for 𝑤𝑤𝑤𝑤𝑤𝑤, 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡 and estimating all mode-specific 
coefficients for 𝑤𝑤𝑤𝑤𝑡𝑡, 𝑖𝑖𝑖𝑖𝑖𝑖, 𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡. A model using mode-specific in-vehicle time coefficients, and 
generic waiting+transfer time and transfer penalty coefficients showed to give most 
reasonable results and the highest value for McFadden’s adjusted 𝑅𝑅2. From literature, a 
‘tram bonus’ indicating a lower perceived in-vehicle time for tram/rail travelling compared to 
bus travelled is known (Bunschoten 2013). The selected model allows us to quantify this 
‘tram bonus’ based on RP data as well.  
 

𝑉𝑉 = 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡,𝑚𝑚 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚,1 + 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚,2 + 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
            (3) 
 
Model 2, being an extension of model 1, estimates the same mode-specific in-vehicle time 
coefficients and generic waiting+transfer time and transfer penalty coefficients. Formula (4) 
shows the structural utility calculation when the seat occupancy and crowding density are 
incorporated. As can be seen, the total in-vehicle time coefficient is now equal to the original 
in-vehicle time coefficient 𝛼𝛼𝑖𝑖𝑖𝑖𝑡𝑡, multiplied by a crowding multiplier which is equal to (1 +
(𝛼𝛼𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠)+(𝛼𝛼𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐)) 
 

𝑉𝑉 = 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑤𝑤𝑤𝑤𝑤𝑤 + (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚,1 ∗ (1 + (𝛼𝛼𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠1) + (𝛼𝛼𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐1))) + 𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 ∗
𝑡𝑡𝑡𝑡𝑡𝑡 + (𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑚𝑚 ∗ 𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚,2 ∗ (1 + (𝛼𝛼𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠2) + (𝛼𝛼𝑐𝑐𝑐𝑐 ∗ 𝑐𝑐𝑐𝑐2))) + 𝛼𝛼𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙   (4) 
 
Since we incorporated the logarithm of the path size factor in the structural utility component, 
a correction for overlap between the route alternatives is incorporated in the model. This 
allows us to estimate standard MNL models as basis. We extended the standard MNL model 
by incorporating panel effects, since there are multiple route choice observations made by 
the same smart card number (= the same individual). To correct for the possible correlation 
between choices made by the same respondent, we estimated a mixed MNL model with 
panel effects. Formula (5) shows the calculation of the probability for choosing route 
alternative 𝐴𝐴. We used Biogeme as software package for performing the maximum likelihood 
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estimations (Bierlaire 2003). In order to reduce the number of draws, we performed Halton 
draws from a normal distribution to incorporate the panel structure of the model. In order to 
determine the number of required Halton draws, we started with an initial number of 5 Halton 
draws. We doubled the number of Halton draws and checked whether the model outcome 
can be considered stable. We defined a model outcome as stable, if all estimated coefficients 
after applying 𝑁𝑁 Halton draws did not significantly differ from the estimated coefficients when 
0.5𝑁𝑁 Halton draws were applied. This is the case, when all estimated coefficients do not 
differ more than twice the standard error of the estimate from the previously estimated 
coefficients. The model showed to be very stable directly after doubling the number of Halton 
draws to 10.  
 

𝑃𝑃𝐴𝐴 = ∫ (∏ (𝑃𝑃𝑛𝑛,𝐴𝐴
𝑡𝑡 |𝜗𝜗𝑛𝑛,𝛼𝛼𝑛𝑛) ∗ 𝑓𝑓(𝑇𝑇

𝑡𝑡=1𝜗𝜗𝑛𝑛,𝛼𝛼𝑛𝑛
𝜗𝜗𝑛𝑛,𝛼𝛼𝑛𝑛))𝑑𝑑𝜗𝜗𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛     (5) 

 
 
3. Results and discussion 
 
3.1 Results 
 
Table 3 below shows the number of estimated coefficients, the final log-likelihood, 
McFadden’s adjusted Rho-square and the values of the estimated coefficients with 
corresponding t-values for model 1 (without crowding) and model 2 (with crowding).  
 
Table 3. Estimation results 
 Model 1 

(without crowding) 
Model 2 

(with crowding) 
Number of observations 17,994 17,994 
Number of individuals 7,083 7,083 
Number of Halton draws 10 10 
Number of estimated coefficients 6 8 
   
Final log-likelihood -11,404 -11,384 
Adjusted Rho-square 0.085 0.087 
   
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (in-vehicle time tram) -0.158** (-20.6) -0.151** (-13.7) 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏 (in-vehicle time bus) -0.262** (-15.4) -0.250** (-18.0) 
𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 (waiting+transfer time) -0.398** (-24.9) -0.395** (-24.7) 
𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 (transfer penalty) -0.994** (-9.06) -1.20** (-10.3) 
𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (log-path size factor) 2.65** (3.01) 2.37* (2.65) 
𝜎𝜎 (panel structure) 0.00 (0.00) 0.00 (0.00) 
   
𝛼𝛼𝑠𝑠𝑠𝑠 (seat occupancy) - 0.158** (4.97) 
𝛼𝛼𝑐𝑐𝑐𝑐 (crowding density) - 0.0611* (2.15) 
t-values in parentheses. * p < 0.05; ** p < 0.01 
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Table 4 shows the estimation results for in-vehicle time, waiting+transfer time, transfer 
penalty and crowding, scaled in which the in-vehicle time coefficient for bus 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏 is set 
equal to 1.  
 
Table 4. Scaled estimation results 
 Model 1 

(without crowding) 
Model 2 

(with crowding) 
   
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (in-vehicle time tram) 0.6 0.6 
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑏𝑏 (in-vehicle time bus) 1.0 1.0 
𝛼𝛼𝑤𝑤𝑤𝑤𝑤𝑤 (waiting+transfer time) 1.5 1.6 
𝛼𝛼𝑡𝑡𝑡𝑡𝑡𝑡 (transfer penalty) 3.8 4.8 
   
𝛼𝛼𝑠𝑠𝑠𝑠 (seat occupancy) - 1.16 
𝛼𝛼𝑐𝑐𝑐𝑐 (crowding density) - 1.06 
 
From Table 3 we can see that all estimated coefficients are significant, except for the 𝜎𝜎 
coefficient reflecting the panel structure. Apparently, there is no significant correlation 
between choices made with the same smart card number (made by the same individual). We 
can also see that the direction of all estimated coefficients is negative, which is plausible. 
When incorporating crowding in the estimated model, the adjusted Rho-square increases by 
2.5% from 0.085 to 0.087. Although the explanatory power of model 2 is only slightly higher 
than model 1, the LRS-test shows significant results. The LRS-value of 40.6 is larger than 
the critical 𝜒𝜒 value of 5.99 (corresponding with 8-6 = 2 degrees of freedom).  
 
From the scaled estimation results for model 2 in Table 4, we can see plausible coefficients. 
A clear ‘tram bonus’ can be observed, since 1 minute in-vehicle time by bus is perceived as 
0.6 minute in-vehicle time by tram. Earlier research based on SP experiments indicated 
values between 0.67 and 0.80 (Bunschoten 2013), which means that our research suggest 
an even heavier ‘tram bonus’. One minute waiting time is perceived 1.6 times more 
negatively, compared to one minute in-vehicle time. This is in line with values found in other 
studies (e.g. Balcombe et al. 2004). Also the transfer penalty of almost 5 minutes for each 
(urban) transfer is plausible. In general, we see that RP estimates for the transfer penalty are 
somewhat lower, compared to SP estimates (e.g. Schakenbos et al. 2016).  
 
Table 5. Crowding multiplier as function of seat occupancy and crowding density 

Seat occupancy 𝒔𝒔𝒔𝒔 
(% seats occupied) 

Crowding density 
(standing pass / 𝒎𝒎𝟐𝟐) 

Crowding multiplier 

0 0 1.00 
1 0 1.16 
1 1 1.22 
1 2 1.28 
1 3 1.34 
1 4 1.40 
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Table 5 shows the estimated crowding multiplier as function of the seat occupancy and 
crowding density. As can be seen, the crowding multiplier equals 1.16 when all seats are 
occupied. In case the occupancy level increases further, the crowding multiplier increases 
with 0.06 for each increase in the integer number of standing passengers per 𝑚𝑚2, additional 
to the crowding multiplier of 1.16 at seat capacity. In case of on average 4 passengers per 
𝑚𝑚2, the crowding multiplier thus equals 1.16 + (4 * 0.06) = 1.40. Since we only estimated 
linear crowding effects, the crowding multiplier in our model increases in linear way from 1.00 
to 1.16 when the seat occupancy increases from 0 to 1. However, earlier studies found that 
the crowding multiplier only starts increasing when the seat capacity is about 0.5-0.8. It is 
therefore likely that the crowding multiplier starts increasing at a higher seat occupancy than 
now assumed in our modelling results, and then increases slightly steeper, up to 1.16 when 
all seats are occupied. 
 
3.2 Discussion 
 
The estimated coefficients show plausible results which are in line with values found in 
earlier studies. Also when crowding is incorporated in the model, results seem plausible. The 
crowding multiplier found in our study is lower than values found in SP experiments, for 
example as reported by MVA Consultancy in Wardman & Whelan (2011). In general, there is 
a tendency that values found using SP experiments are higher than values found in RP 
studies. In stated situations, respondents are apparently more inclined to incorporate 
crowding in their route choice, compared to their realized behaviour in practice. When we 
compare our study results with the RP results found for the Hong Kong MTR metro by 
Hörcher et al. (2017), we see that the multipliers found in our study are somewhat lower. 
However, differences between our study and this RP based study are clearly less, compared 
to differences found between our study and previous SP based studies.   
 
In this study, we used the average realized occupancies per line, per link, per half-hour time 
period as expected crowding level. We might hypothesize that the experienced level of 
crowding differs somewhat from the expected crowding level we used in this study, due to 
irregularity and unreliability. Since unreliability and bunching causes more passengers to 
experience more crowding, while less passengers experience less crowding than average, 
there might be some discrepancy between perceived and assumed expected crowding level 
here. We also assume an equal distribution of passengers throughout the vehicle. In reality 
we see that not all locations in the vehicle are equally suitable for standing passengers, for 
example because of the lack of holding possibilities in some parts of the vehicle. Therefore, it 
might be the case that crowding levels in some parts of the vehicle as substantially higher 
than average. This can also lead to a discrepancy between perceived and in our study 
assumed expected crowding levels. 
 
Besides, in our study we did not incorporate any segmentation. It can be expected that 
especially frequent travellers have good expectations regarding crowding levels based on 
their prior travel experiences, whereas infrequent travellers with limited prior experiences 
might hardly incorporate crowding in their route choice. In case a distinction between 
frequent and infrequent travellers would be made in the estimations, it might be possible that 
the crowding multiplier during the morning peak (with usually a relatively high share of 
frequent, experienced travellers) increases.  
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At last, an important limitation for this study is that no information is available regarding the 
realized passenger arrival time at the stop. Our study assumes that passenger route choice 
is fully based on expected crowding levels. Due to the lack of this information, we cannot 
determine whether a passenger boarded the first vehicle passing the stop, or deliberately 
skipped a crowding vehicle for a less crowded alternative. Information about this would 
enable us to investigate to which extent the real-time crowding level of the arriving vehicles 
affects route choice, compared to expected crowding levels based on prior experiences.  
 
 
4. Conclusions 
 
Crowding in public transport can be of major influence on passengers’ travel experience and 
therefore affect route and mode choice. Because of the expected increasing concentration of 
activities within urban agglomerations in many countries worldwide, crowding is expected to 
become an even more dominant factor in urban public transportation in the future. Therefore, 
it is important to understand how crowding in urban public transport is perceived by 
passengers. Over the years, there are several studies performed aiming to better understand 
the valuation of crowding in public transport. The majority of these studies use stated 
preference (SP) experiments to estimate crowding valuation. It is however known that there 
can be a discrepancy between stated choices of respondents in SP experiments, compared 
to revealed choice behaviour in reality. However, the availability of automatic fare collection 
(AFC), automatic vehicle location (AVL) and automatic passenger count (APC) systems in 
public transport the last years enables the estimation of crowding valuation based on large 
scale revealed preference data. The availability of individual smart card transactions allows 
us to gain insights in revealed trade-offs between (for example) travel time, transfers, waiting 
time and crowding in public transport route choice.  
 
Based on the estimated discrete choice model, we conclude that crowding plays a significant 
role in passengers’ route choice in public transport. The crowding multiplier of in-vehicle time 
equals 1.16 when all seats are occupied. In case the occupancy level increases further, the 
crowding multiplier increases with 0.06 for each increase in the integer number of standing 
passengers per 𝑚𝑚2, additional to the crowding multiplier of 1.16 at seat capacity. In case of 
on average 4 passengers per 𝑚𝑚2, the crowding multiplier thus equals 1.16 + (4 * 0.06) = 
1.40. 
 
The estimated models in our study show plausible results. Besides, our study is the first in 
which crowding valuation for urban tram and bus travelling is determined fully based on 
revealed preference data. The insights gained from our study can support the decision-
making process, by quantifying benefits of measures aiming to reduce crowding levels. The 
estimation of segment models, distinguishing between (in)frequent travellers or between 
different travel purposes, is recommended for further research. 
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