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Realistic microscopic traffic simulation is essential for prospective evaluation of the potential impacts of new traffic control
strategies. Freeway corridors with interacting bottlenecks and dedicated lanes generate complex traffic flow phenomena and
congestion patterns, which are difficult to reproduce with existing microscopic simulation models. This paper discusses two
alternative driving behavior models that are capable of modeling freeways with multiple bottlenecks and dedicated lanes over an
extended period with varying demand levels.Themodels have been calibrated using archived data from a complicated 13-mile long
section of the northbound SR99 freeway near Sacramento, California, for an 8-hour time period in which the traffic fluctuated from
free-flow to congested conditions. The corridor includes multiple bottlenecks, multiple entry and exit ramps, and an HOV lane.
Calibration results show extremely good agreement between field data andmodel predictions.Themodels have been cross-validated
and produced similar macroscopic traffic performance.Themain behavior that should be captured for successful modeling of such
a complex corridor includes the anticipative and cooperative driver behavior near merges, lane preference in presence of dedicated
lanes, and variations in desired headway along the corridor.

1. Introduction

Microscopic traffic simulation is a viable and cost effective
approach for prospectively evaluating the potential impacts
of traffic control strategies and shifts in demand patterns.
To achieve this, the microscopic traffic simulation must
realistically represent the microscopic level driving behavior
[1] and generate realistic macroscopic performance.

The widely accepted commercial microsimulation pack-
ages such as Aimsun, VISSIM, and PARAMICS have their
unique proprietary car following and lane changing mod-
els. Under these simulation frameworks, users can adjust

and calibrate the values of behavioral parameters such as
reaction time and maximum acceleration to best reproduce
realistic driving behavior. Recent works in model calibration
have suggested parameter values and proposed optimization
techniques to calibrate the parameters [2–14]. While model
calibration seeks the parameter values that best reproduce
real-world conditions, the performance of simulation pack-
ages is largely constrained by the capability of the embedded
core driver behavior models. Many simulation packages
do not capture the adaptive, anticipative, and cooperative
driver behavior at bottlenecks [15]. As a result, these works
have not been very successful in accurately modeling the
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onset of congestion, capacity drop, queue propagation, and
queue dissipation, when interacting bottlenecks are present
in freeway corridors, as demonstrated by a simulation study
on a 13-mile corridor in Sacramento, California [16, 17].

In addition, dedicated lanes generatemore complex traffic
dynamics on freeway corridors. Friction effect has been
observed on freeways with HOV lanes, characterized by
the speed reduction on the HOV lane when the adjacent
general purpose lane is congested [18–20]. Modeling the dif-
ferences in lane usage and lane change between HOV and
single occupancy vehicles is important to reproduce the
traffic conditions around HOV lanes. Although different lane
changemodels have been proposed to capture this, large scale
simulation and validation of the lane change model have
rarely been reported.

The aforementioned problems motivate the development
of alternative driving behavior models for car following,
merging, lane changing, etc. to better represent the complex
traffic dynamics of large scale freeway corridors with dedi-
cated lanes. Such models will allow users to implement their
external behavioral models using software development kits
to simulate driving behavior with the commercial simulation
platforms such as Aimsun and VISSIM or develop complete
open simulation tools. In addition, it is almost impractical to
develop amodel that is able to perfectly reproduce real-world
observations. Cross-comparison between models has shown
to be beneficial [21], since it makes the analysis more reliable
and the results more defensible, giving more confidence to
users about the simulation results. Unfortunately, there have
not been any well established and cross-validated alternative
car following and lane changingmodels that are applicable for
complex freeway corridors.

In response, this paper introduces two such models and
demonstrates the results of their validation against real-
world data from a 13-mile freeway corridor during an 8
hour period. Although originated from different base models
and developed separately by two teams, the two proposed
alternatives focus on refined description ofmerging behavior,
lane preference, and cooperative car following behavior in
the vicinity of merge and diverge sections. They are validated
against empirical loop detector data and against each other.
The two models show extremely good agreement between
field data and model predictions. Comparison of the two
models and validation results give consistent insights into the
traffic flow models for complex corridors that can be gener-
alized to other simulation tools. Furthermore, both models
performed better than the proprietary driver behaviormodel.

The rest of the paper is organized as follows: the next
section presents an overview of two proposed alternative
driving behavior models. The following section documents
the calibration and cross validation of both models using
archived data from a complex freeway corridor. The final
section summarizes and highlights the contribution of this
paper.

2. Proposed Driver Behavior Models

Microscopic vehicle behavior and interaction with the nearby
vehicles determine overall traffic behavior at the macroscopic

level based upon the following factors: maximum acceler-
ation/deceleration and driver behaviors such as preferred
headway and response time, gap acceptance threshold for
lane changing, and perception advance time period or dis-
tance for lane changing. Those parameters directly affect
density and delays in the simulation, and thus the overall
traffic pattern. Below, we discuss the two alternative models
and highlight the main features.

2.1. Alternative 1: Driving Behavior Model Based on NGSIM
Model. The first proposed driving behavior model (PATH
model) is built upon the basic framework of the NGSIM
oversaturated flow model proposed by Yeo et al. [16]. Some
important extensions and modifications were made in order
to depict detailed car following and lane changing behavior
that were not represented in the original model.

To determine the trajectory of a vehicle at a microscopic
level, it is necessary and sufficient to iteratively determine
its location at each time step, which can be realized through
a discrete kinematic model if the desired acceleration and
current speed are known [22]. The latter is known from
the last step calculation. The former is determined by the
dynamic interactions with the adjacent vehicles, geometric
constraints, and the overall traffic conditions. The dynamic
interactions include time/clearance gaps for safety andmobil-
ity, and possible scenarios associated with lane changes [22].
Those scenarios are further partitioned into fundamental
scenarios (or movement phases) and transitions between
them for continuous/smooth speed trajectories:

(i) CF: regular car following mode
(ii) YCF: yielding (cooperative) car following mode
(iii) LC: lane change mode, which includes discretionary

lane change (DLC) and mandatory lane change
(MLC)

(iv) ACF: after lane changing car following mode (a
driver temporarily adopts a short gap following a lane
change maneuver)

(v) BCF: before lane changing car following mode (a
driver speeds up or slows down to align with an
acceptable gap in the target lane)

(vi) RCF: receiving car following mode (a driver tem-
porarily adopts a short gap after a vehicle from the
adjacent lane merges in front)

The discretized kinematic model is detailed in [22]. As
discussed in [22], Newell’s simplified car following model
with constraints for safety and acceleration [23] is applied.
The Gipps’ deceleration component [1, 24] is used here to
place a safety margin onNewell’s simplified equation. Further
details such as permissible speed and cross-lane friction on
multilane freeways are detailed in [22].

The fundamental scenarios associated with lane changing
(LC) are outlined in Figure 1 and discussed in detail by Lu
et al. [22].

As detailed in [22], there are two types of lane changes.
Mandatory lane change is intended for merging onto or
exiting the freeway. Discretionary lane change is intended for
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Figure 2: Four types of lane change behaviors corresponding to the level of lane change desire [15].

increasing the vehicle’s speed or accessing the high occupancy
vehicle (HOV) lane.Detailedmathematical expressions of the
gap acceptance models of both types of lane change can be
found in Lu et al. [22].

Once a decision for lane change has been made, the
subject vehicle will adopt BCFmode prior to changing lanes.
This involves accelerating or decelerating in order to align
with the gaps available in the adjacent lanes. In addition,
the subject vehicle applies YCF mode to cooperate with the
leading vehicle in the adjacent lanes that has an intent for
a lane change to the current lane of the subject vehicle. The
subject vehicle also adopts RCFmode (reduced headway, jam
gap, and reaction time) after the lane change maneuver is
complete. Similarly, the leading vehicle adopts ACF after the
lane change maneuver, which is similar to RCF and involves
reduced headway, jam gap, and reaction time. Details of these
car following criteria are described in Lu et al. [22].

2.2. Alternative 2: Driving Behavior Model Based on LMRS
and IDM+. Alternative 2 is an extension of the Lane Change
Model with Relaxation and Synchronization (LMRS) [15].
The LMRS is formulated based on lane change desires
and provides a flexible structure to incorporate additional
desires/incentives due to changes in infrastructure or traffic
regulation.

Lane change decisions are made based on comparing lane
utility formulated by a combination of desires/incentives. The
overall lane change desire is calculated by three incentives
that include following the route, gaining speed and keeping
right:

𝑑𝑖𝑗 = 𝑑𝑖𝑗𝑟𝑜𝑢𝑡𝑒 + 𝜃𝑖𝑗V𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 ⋅ (𝑑𝑖𝑗𝑠𝑝𝑒𝑒𝑑 + 𝑑𝑖𝑗
𝑏
) (1)

where 𝑑𝑖𝑗 is the overall lane change desire from lane 𝑖 to lane
j. 𝑑𝑖𝑗𝑟𝑜𝑢𝑡𝑒, 𝑑𝑖𝑗𝑠𝑝𝑒𝑒𝑑, and 𝑑𝑖𝑗𝑏 represent the incentives for the route,
speed, and a bias to the right lane respectively, which can
be set to zero for US traffic. The route incentive is based on
parameters 𝑡0 and 𝑥0 that scope the time-space region before
the merge/diverge. 𝜃𝑖𝑗V𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 is a weighting factor that reflects
the relative importance of discretionary incentives and is a
function of |𝑑𝑟𝑜𝑢𝑡𝑒|, and this reduces the voluntary incentives
as the mandatory incentive is more urgent.

Meaningful lane change desires range from -1 to 1, where
negative values suggest that a lane change is not desired.
Based on the total lane change desire, different types of lane
change behavior can be distinguished by three thresholds:
dfree, dsync, and dcoop, with 0 < dfree < dsync < dcoop < 1. As
shown in Figure 2, a lane change desire 𝑑 smaller than dfree
means that no lane change (No LC) is performed. When 𝑑
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Figure 3: Study site: SR-99 freeway south of downtown Sacramento, CA.

is between dfree and dsync, vehicles execute free lane changes
(FLC). When 𝑑 is within the range of [dsync dcoop], the lane
changing vehicle performs synchronized lane changes (SLC)
where it aligns its speed with that of the leader in the target
lane, but the follower in the target lane does not actively create
a gap for the lane changer. As the desire 𝑑 exceeds dcoop,
cooperative lane changes (CLC) are expected, in which the
lane changer synchronizes its speed with the potential leader
and the potential follower in the target lane to create a gap.
With the increase in lane change desire, drivers tend to accept
smaller headways and larger decelerations.

This incentive-based lane changemodel is integrated with
amodified version of the Intelligent Driver Model, referred as
IDM+ [25], implemented in an open traffic simulation plat-
form named MOTUS [26]. The IDM+ provides the desired
acceleration as the minimum of the acceleration required to
reach the desired speed and the acceleration required to reach
the desired headway. The interaction between the lateral and
longitudinal vehicle behavior is modeled by expressing the
acceptable gap and acceleration level as functions of the
lane change desire. As shown in Figure 2, larger lane change
desires lead to smaller acceptable headways for the lane
changer and larger decelerations of the potential follower in
the target lane. When the lane change desire is above dsync or
dcoop, drivers apply the same car following model as that of
the leading vehicle in an adjacent lane to synchronize speeds

and create gaps to accommodate lane changemaneuvers.This
acceleration is constrained by a minimum value for comfort
and safety.

When modeling HOV lane operations, 𝑑𝑖𝑗
𝑏
is set to a

positive constant for HOVs and to negative infinity for single
occupant vehicles in the HOV lane, when the HOV lane is
active. A similar approach is used to model right lane bias
of truck traffic. In addition, a lane change bias correlated to
the desired speed is added to reproduce the fact that drivers
with higher desired speeds tend to travel on the left lanes of
freeways and vice versa [27].

3. Model Calibration and Cross Validation

The driving behavior model for manually driven vehicles
was calibrated for a relatively complex freeway corridor in
Sacramento, California.

3.1. Selected Site. State Route (SR) 99 northbound was
selected for model calibration. This section of freeway spans
from the Elk Grove Blvd. interchange to the US-50 freeway
interchange south of downtown Sacramento, CA. As indi-
cated by the arrows in Figure 3(a), there are 9 interchanges
with local arterial streets; 4 partial cloverleaf interchanges, 3
full cloverleaf interchanges, and 2 diamond interchanges with
the local arterials. Furthermore, detailed lane configurations
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are shown in Figure 3(b).The on-ramp merging and weaving
sections located at the Sheldon Rd. interchange, the Florin
Rd. interchange, as well as the off-ramp at the US-50 freeway
interchange, contribute to the morning peak recurrent delay
observed in this corridor. This peak period typically begins
at 6:30 AM and ends around 10:00 AM, and the morning
congestion pattern exhibits the typical peak period when
there is high demand for suburb to downtown trips during
the morning hours. Also shown in Figure 3(a), there is a wide
coverage of detectors throughout the corridor. Detectors with
good data quality are shown in blue, thosewith less acceptable
data quality, shown in red, were not used to collect field data
for calibration and validation. Currently, the on-ramps are
metered using the local traffic responsive demand-capacity
approach in order to control the flow of on-ramp traffic and
mitigate the peak hour congestion. Lastly, the traffic demand
consists of almost exclusively passenger cars, with trucks
accounting for only 2% of the overall demand.

3.2. Calibration Criteria and Procedures. Microscopic simu-
lation models were built in the AIMSUN [28] and MOTUS
[26] platforms using the most up to date road geometry, lane
configurations, and speed limits for the selected site. Since
adopting new driver behaviormodels in any simulation pack-
age requires significant effort to ensure error-free simulation,
theAIMSUNandMOTUS simulation packageswere selected
based on relative ease of implementation. Freeway mainline
and on-ramp data obtained from an 8-hour period (4:00 AM
to 12:00 PM) on October 6, 2015 were used for the inputs
in demand and turning percentages. This 8-hour period
encompasses periods prior to, during, and after the peak. For
this corridor, 5-minute interval loop detector data for flow
were obtained from PeMS [29] and used as the demand input
at the most upstream location of the simulation network
and the entry points of the on-ramps, and as the turning
percentages at any applicable mainline-off-ramp split. Two
passenger car equivalence (PCE) was used to represent each
truck in the simulation (HCM, 2010). Ramp metering rates
and algorithms were obtained from Caltrans District 3 and
modeled in AIMSUN simulation via the AIMSUN API
(Application Programming Interface) [28]. However, ramp
metering operation was not explicitly modeled in MOTUS.
As an alternative, flowmeasured immediately downstream of
the ramp meter was used as the on-ramp demand input.

The first proposed driving behaviormodel (PATHmodel)
was simulated in AIMSUN via the MicroSDK (Micro-
Software Development Kit). The latter model was simulated
in MOTUS [15, 27].

Ten replications of the PATH model and five replications
of the MOTUS model with different random number seeds
were run in order to calibrate the models to the conditions
of October 6, 2015. The predicted flows and speeds at
selected locations on the freeway were compared with real
traffic measurements at every 5-minute interval to assess
the accuracy of the simulation models in representing the
observed conditions. The predicted flow is acceptable if on
average of all detectors, for at least 85% of all 5-minute time
intervals, the flow is to satisfy the condition that 𝐺𝐸𝐻(𝑘) < 5
[30].

The GEH statistic is computed as

𝐺𝐸𝐻(𝑘) = √2 [𝑀 (𝑘) − 𝐶 (𝑘)]2𝑀(𝑘) + 𝐶 (𝑘) (2)

where

𝑀(𝑘): simulated flow during the k-th time interval
(veh/hour),𝐶(𝑘): flow measured in the field during the k-th time
interval (veh/hour).

In addition, we required that the Mean-Absolute-
Percentage-Errors (MAPEs) of flows, defined by equation
(3), must be less than 10%.

𝑀𝐴𝑃𝐸 = 1𝑁 ⋅ 𝑇
𝑁∑
𝑛=1

𝑇∑
𝑡=1


𝑀𝑟𝑒𝑎𝑙𝑛,𝑡 −𝑀𝑠𝑖𝑚𝑛,𝑡𝑀𝑟𝑒𝑎𝑙𝑛,𝑡

 (3)

where 𝑁 is the number of detectors and 𝑇 is the number
of time intervals. 𝑀𝑟𝑒𝑎𝑙𝑛,𝑡 and 𝑀𝑠𝑖𝑚𝑛,𝑡 are the field observed and
simulated data (i.e., flow) of detector 𝑛 obtained during time
interval t, respectively.

Furthermore, we required that the Root-Mean Square
Error (RMSEs) of flows, defined by equation (4), must be less
than 15% [13].

𝑅𝑀𝑆𝐸 = √ 1𝑁 ⋅ 𝑇
𝑁∑
𝑛=1

𝑇∑
𝑡=1

(𝑀𝑟𝑒𝑎𝑙𝑛,𝑡 −𝑀𝑠𝑖𝑚𝑛,𝑡𝑀𝑟𝑒𝑎𝑙𝑛,𝑡 )2 (4)

where 𝑁 is the number of detectors and 𝑇 is the number
of time intervals. 𝑀𝑟𝑒𝑎𝑙𝑛,𝑡 and 𝑀𝑠𝑖𝑚𝑛,𝑡 are the field observed and
simulated data (i.e., flow) of detector 𝑛 obtained during time
interval t, respectively.

Lastly, the simulated flow-density relationship and queue
propagation must be visually acceptable [30]. This indicates
that the fundamental diagrams of field observed and sim-
ulated flow versus density should resemble similar patterns
for key bottlenecks along the corridor, and the contour plots
of the field observed and simulated speeds at all 5-minute
intervals should exhibit similar trends over the length of the
corridor as well as the duration of the study period.

Results from the calibrated PATH and MOTUS models
were later compared with results from the calibrated propri-
etary driver behavior model found in AIMSUN. The study
in (Wu et al., 2014) conducted a calibration of the identical
SR99 corridor using the proprietary driver behavior found
AIMSUN; this study used the same calibration criteria but
was limited to calibrating the flow.

3.2.1. PATHModel Calibration Procedures. Realistic values of
various driver behavior parameters were considered in the
model calibration. The range of the parameter values used in
the calibration process are shown in the following:

(i) Reaction time (𝜏𝑟): 0.6 s to 1.2 s, with increment of 0.1s
(ii) Maximum acceleration (𝑎𝑀): 1.2m/s2 to 2.0m/s2 ,

with increment of 0.2m/s2



6 Journal of Advanced Transportation

Table 1: Calibrated PATHmodel parameters of the SR99 corridor.

Parameter/Symbol Mean Standard Deviation
Reaction time (𝜏𝑟) 0.8 s 0.2 s
Maximum acceleration (𝑎𝑀) 2.0 m/s2 0.5 m/s2

Maximum deceleration (𝑏𝑓) 4.0 m/s2 0.5 m/s2

Time headway (𝜏ℎ) 1.40 0.2 s
Coefficient of lane friction (𝑐𝑓) 0.5 0
Speed difference threshold for DLC ((𝑣𝑎𝑛𝑡 − �̃�0)/max(�̃�0,𝑉𝑑𝑙𝑐)) 0.15 0

(iii) Maximum deceleration (𝑏𝑓): 2.0m/s2 to 5.0m/s2,
with increment of 0.5m/s2

(iv) Time headway (𝜏ℎ): 1.00 s to 2.20 s, with increment of
0.20 s

(v) Coefficient of lane friction (𝑐𝑓): 0.5 to 1.0, with
increment of 0.1

(vi) Speed difference threshold for DLC ((V𝑎𝑛𝑡 −
Ṽ0)/max(Ṽ0, 𝑉𝑑𝑙𝑐)): 0.05 to 0.25, with increment
of 0.05

Based on the list of parameter values shown above, there
are numerous possible sets of parameter value combinations.
All combinations of parameters were attempted and for
each set of parameters, 10 replications were simulated to
determine if the particular parameter value combination
yields the macroscopic traffic pattern that is most similar
to the macroscopic traffic pattern observed in the field. The
parameter values that were realistic and provided the best
fit (based on the calibration criteria) were chosen. More
sophisticated parameter search algorithms were avoided in
order to ensure reasonable simulation and computation time
for this complex corridor. As shown in Table 1, simulation
experiments suggest that the following parameters (normally
distributed) provide a good fit.

However, poor visibility near on-ramp merging areas
in the upstream 2-mile section of the corridor required
increasing the reaction time to 1.0 s to better reproduce
the field observations. Furthermore, frequent aggressive and
last-minute lane changes observed in the field required
reducing the reaction time to 0.4s for the short weaving
section between the upstream 12th Ave. on-ramp and the
downstream US-50 off-ramp in order to replicate the high
capacity and relatively uncongested off-ramp bottleneck near
the US-50 freeway interchange. More than half of the SR-99
trafficmake lane changes to access theUS-50 off-ramp during
the morning peak.

3.2.2. MOTUSModel Calibration Procedures. In the MOTUS
platform, the calibrated parameters involves both the lane
change model LMRS and the car following model IDM+
[15, 27].

A systematic search algorithm developed by Schakel et al.
[15] was used. This algorithm iteratively searches for the
optimal parameters set that minimizes the 5-min flow and

speed errors between the simulated data and field data. The
error is defined as follows:

𝜀 = √∑𝑁𝑛=1∑𝑇𝑡=1 (12 ⋅ (𝑞𝑟𝑒𝑎𝑙𝑛,𝑡 − 𝑞𝑠𝑖𝑚𝑛,𝑡 ))2𝑁 ⋅ 𝐻 + 25

⋅ √∑𝑁𝑛=1∑𝑇𝑡=1 (V𝑟𝑒𝑎𝑙𝑛,𝑡 − V𝑠𝑖𝑚𝑛,𝑡 )2𝑁 ⋅ 𝐻 + 𝑚
(5)

where𝑚 is the number of deleted vehicles in the simulation.
The algorithm first calibrates the parameters related

to free-flow traffic conditions and then the parameters
corresponding to oversaturated/congested conditions. The
parameters corresponding to the free-flow conditions are
summarized in the following:

(i) Averaged free-flow speed (Vdes,car): 123 km/h to
127 km/h, with increment of 0.5 km/h

(ii) 𝜎car: 8 km/h to 13 km/h, with increment of 0.25 km/h
(iii) Averaged free-flow speed (Vdes,truck): 80 km/h to

100 km/h, with increment of 5 km/h
(iv) Sensitivity to speed gain (vgain): 50 km/h to 60 km/h,

with increment of 1 km/h
(v) Free lane change criteria (dfree): 0.2 to 0.4, with

increment of 0.05
(vi) Lane change desire per lane (𝑡0): 47 s to 53 s, with

increment of 1 s
(vii) SOV bias (𝑑𝑏): 0.4 to 0.6, with increment of 0.05
(viii) Low desire-speed bias: 0.2 to 0.4, with increment of

0.05
(ix) Local high desire-speed bias: 0.2 to 0.4, with incre-

ment of 0.05

The parameters corresponding to the oversaturated/con-
gested conditions are summarized in the following:

(i) Average maximum headway (Tmax): 1.1 s to 1.5 s, with
increment of 0.05 s

(ii) Average minimum headway (Tmin): 0.5 s to 0.65 s,
with increment of 0.05 s

(iii) Car acceleration (acar): 1.2m/s2 to 1.4m/s2, with
increment of 0.1m/s2
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Table 2: Calibrated MOTUS parameters of the SR99 corridor.

Parameter/Symbol Original values Calibrated values
Sensitivity to speed gain / vgain 69.6 km/h 54 km/h
Car acceleration/ acar 1.25 m/s2 1.25 m/s2

Truck acceleration/ atruck 0.4 m/s2 0.8 m/s2

Free lane change criteria/ dfree 0.365 0.25
Synchronized lane change criteria/ dsync 0.577 0.5
Cooperative lane change criteria/ dcoop 0.788 0.75
Maximum deceleration/ b 2.09 m/s2 2.09 m/s2

Average maximum headway/Tmax 1.2 s 1.4 s
Average minimum headway/Tmin 0.56 s 0.52 s
Lane change desire per lane/ 𝑡0 43 s 52 s
Averaged free-flow speed/ Vdes,car 123.7 km/h 125 km/h𝜎car 12 km/h 8.75 km/h
Averaged free-flow speed/ Vdes,truck 85 km/h 85 km/h𝜎truck 2.5 km/h 2.5 km/h
HOV bias/ dHOV - 0.45
SOV bias/ db - 0.5
Low desire-speed bias - 0.25
Local high desire-speed bias - 0.25

(iv) Truck acceleration (atruck): 0.5m/s2 to 1m/s2, with
increment of 0.1m/s2

(v) HOV bias (dHOV): 0.2 s to 0.6 s, with increment of
0.05m/s

This algorithm first searches a wide range of possible
parameter values prior to converging to a smaller range of
possible parameter values. For each iteration, five replications
with different random seeds were conducted. Lastly, the sim-
ulated results obtained using the optimal parameter values
must satisfy the calibration criteria.

As shown in Table 2, differences can be found in param-
eter values between the calibrated results and default values.
A smaller speed gain in our results implies that simulated US
drivers are more sensitive to the speed change in target lane
and a low value of dfre𝑒 suggests that drivers are more likely
to change lanes compared to the Dutch traffic represented
by the original values. Changes of Tmin and Tmax indicate
a less centralized distribution of vehicle headway in the
simulated corridor and an increased 𝑡0 indicates drivers’ early
preparation prior to exiting at an off-ramp.

Furthermore, a local headway ratio was applied at dif-
ferent segments of the corridor. The local headway ratio
was used to increase or reduce vehicle headways at certain
locations in order to reproduce characteristics that are unique
to certain sections of the corridor. For the segment upstream
of the Calvine Rd interchange, the local headway ratio ranges
from 1.28 to 1.35, and it increases to 1.45-1.58 at the four-
lane segments between the Calvine Rd and the Fruitridge Rd.
interchanges. For the remaining downstream section (up to
US-50), a smaller value of 0.6 was used for the local headway
ratio tomaintain the high flow observed in the field.The local
headway ratios were fine-tuned individually by comparing
the section-based fundamental diagrams.

3.3. Model Cross Validation and Discussion

3.3.1. Quantitative Results. Tables 3–5 summarize the flow
calibration results for the 16 detectors that provided good data
along the 13-mile stretch of northbound SR-99. The HOV
lane data were aggregated with those of the general purpose
lanes because the HOV lane is equally congested and exhibits
nearly the same congestion pattern (bottleneck location and
duration) as the general purpose lanes. It can be seen that on
average, the simulated flows satisfied the calibration criteria.
However, the AIMSUNmodel cannot accurately simulate the
flow of the downstream weaving bottleneck at US-50, under
the GEH,MAPE, and RMSE criteria.This could be attributed
to the limitation that model’s lane changing logic does not
reflect the unusually aggressive and frequent lane change
behavior. Modeling such area may require better developed
lane changing gap acceptance criteria that specifically fit such
an off-ramp bottleneck.

The MOTUS model met the GEH and RMSE criteria
at all the detectors along the whole corridor. Although the
overall MAPE was less than 10%, the MAPEs at 4 locations
(out of 16 detector stations) were slightly higher than 10%.
These correspond to the Elk Grove bottleneck, EB Sheldon
bottleneck, and the EBMack bottleneck, where the simulated
flow was lower than the flow observed in the field.

In addition, Figure 4 shows a scatter plot of all simulated
and field observed flows obtained throughout the corridor
and the entire analysis period. Both the PATH model and
the MOTUS model simulated flows that strongly correlate
with the field observed flows; the MOTUS model performed
slightly better, with an R2 value of 0.9266 instead of an R2
value of 0.8939 achieved by the PATHmodel.

Nevertheless, both the PATH model and the MOTUS
model performed better than the proprietary driver behavior
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Table 3: Calibration of freeway flows under GEH criterion.

Freeway: 5-min flows of SR-99 Northbound
Criterion 1: GEH

Detector Location
(post-mile)

Target AIMSUN MOTUS
%Met Target Met? % Met Target Met?

287.3 GEH < 5 for > 85% of k 100% Yes 94.67% Yes

287.6 GEH < 5 for > 85% of k 97.92% Yes 91.78% Yes

289.3 GEH < 5 for > 85% of k 98.65% Yes 93.78% Yes

289.4 GEH < 5 for > 85% of k 98.54% Yes 94.44% Yes

290.0 GEH < 5 for > 85% of k 98.65% Yes 95.56% Yes

290.7 GEH < 5 for > 85% of k 97.71% Yes 96.44% Yes

291.5 GEH < 5 for > 85% of k 93.54% Yes 95.11% Yes

291.9 GEH < 5 for > 85% of k 91.04% Yes 92.67% Yes

292.4 GEH < 5 for > 85% of k 93.23% Yes 92.00% Yes

292.8 GEH < 5 for > 85% of k 93.13% Yes 92.22% Yes

294.0 GEH < 5 for > 85% of k 92.81% Yes 95.11% Yes

294.7 GEH < 5 for > 85% of k 94.79% Yes 94.22% Yes

295.3 GEH < 5 for > 85% of k 94.90% Yes 95.78% Yes

296.0 GEH < 5 for > 85% of k 88.65% Yes 99.56% Yes

297.9 GEH < 5 for > 85% of k 79.27% No 98.67% Yes

298.5 GEH < 5 for > 85% of k 92.50% Yes 98.44% Yes

Overall GEH < 5 for > 85% of k 94.08% Yes 95.03% Yes

Table 4: Calibration of freeway flows under MAPE criterion.

Freeway: 5-min flows of SR-99 Northbound
Criterion 2: MAPE

Detector Location
(post-mile)

Target AIMSUN MOTUS
MAPE Target Met? MAPE Target Met?

287.3 MAPE < 10% 1.99% Yes 5.58% Yes

287.6 MAPE < 10% 9.36% Yes 11.85% No

289.3 MAPE < 10% 9.17% Yes 10.80% No

289.4 MAPE < 10% 8.61% Yes 9.88% Yes

290.0 MAPE < 10% 6.85% Yes 8.42% Yes

290.7 MAPE < 10% 7.41% Yes 9.08% Yes

291.5 MAPE < 10% 9.92% Yes 10.56% No

291.9 MAPE < 10% 10.38% No 11.21% No

292.4 MAPE < 10% 8.98% Yes 9.59% Yes

292.8 MAPE < 10% 8.02% Yes 9.35% Yes

294.0 MAPE < 10% 8.37% Yes 9.01% Yes

294.7 MAPE < 10% 7.37% Yes 8.26% Yes

295.3 MAPE < 10% 8.01% Yes 8.14% Yes

296.0 MAPE < 10% 10.52% No 7.48% Yes

297.9 MAPE < 10% 14.20% No 7.23% Yes

298.5 MAPE < 10% 14.09% No 8.49% Yes

Overall MAPE < 10% 8.21% Yes 9.06% Yes
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Table 5: Calibration of freeway flows under RMSE criterion.

Freeway: 5-min flows of SR-99 Northbound
Criterion 3: RMSE

Detector Location
(post-mile) Target AIMSUN MOTUS

RMSE Target Met? RMSE Target Met?
287.3 RMSPE < 15% 2.59% Yes 12.54% Yes
287.6 RMSPE < 15% 13.61% Yes 14.46% Yes
289.3 RMSPE < 15% 11.98% Yes 13.10% Yes
289.4 RMSPE < 15% 11.66% Yes 11.96% Yes
290.0 RMSPE < 15% 9.65% Yes 10.19% Yes
290.7 RMSPE < 15% 11.02% Yes 10.41% Yes
291.5 RMSPE < 15% 15.41% No 12.55% Yes
291.9 RMSPE < 15% 15.97% No 13.25% Yes
292.4 RMSPE < 15% 13.61% Yes 11.34% Yes
292.8 RMSPE < 15% 12.78% Yes 11.06% Yes
294.0 RMSPE < 15% 11.74% Yes 9.78% Yes
294.7 RMSPE < 15% 9.39% Yes 9.03% Yes
295.3 RMSPE < 15% 10.05% Yes 8.84% Yes
296.0 RMSPE < 15% 12.63% Yes 8.50% Yes
297.9 RMSPE < 15% 15.43% No 8.63% Yes
298.5 RMSPE < 15% 15.45% No 9.09% Yes
Overall RMSPE < 15% 11.99% Yes 11.35% Yes

Si
m

ul
at

ed
 F

lo
w

 (v
ph

)

Field Observed Flow (vph)
0 1000 2000 3000 4000

PATH
MOTUS

5000 6000 7000 8000 9000 10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

10000

２
2 = 0.8939

２
2 = 0.9266

Figure 4: Scatter plot of simulated versus field observed flows.

model in AIMSUN. As discussed in the calibration study
by Wu et al. (2014), the proprietary AIMSUN model can
only accurately reproduce flows for a portion of the corridor.
The portion of the corridor upstream of the Calvine Rd. on-
ramps (postmile 290.7) was well calibrated; both the GEH
criterion andRMSE criterionused in this studywere satisfied.
However, the portion of the corridor downstream of the
Calvine Rd. on-ramps (accounting for major of the corridor
length) cannot be well calibrated; the best results yielded

the less than satisfactory RMSE values of 15% or higher and
resulted in GEH<5 unsatisfied for more than 85% of the time
steps.

3.3.2. FlowCharacteristics Comparison. Figure 5 summarizes
the simulated versus observed speed contour plots. The
contour plots show the 5-minute average speeds at the
detectors throughout the selected peak period. The first and
last hour (low demand and free-flowing) were omitted from
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Figure 6: Comparison of field observed and AIMSUN andMOTUS simulated flow versus density relationship at Florin Rd. bottleneck (mile
294).

the figures. Both models reproduced the field observed peak
duration and the length of queue fairly accurately, with the
exception of the most upstream bottleneck at Sheldon Rd.,
which the PATHmodel simulated slightly shorter congestion
duration and slightly less queue propagation. Additionally,
the PATH model simulated faster queue dissipation, as
evident in the shorter peak duration shown in Figure 5(b).
This could be attributed to the higher acceleration and decel-
eration rate applied in the PATH model. The lane changing
and gap acceptance criteria required larger acceleration and
deceleration to prevent simulating low bottleneck flows and
severe queue propagation. Such approach ensured accurate
representation of the relatively aggressive driver behavior at
the beginning of the peak. However, the same criteria could
not replicate the slower queue dissipation and longer peak
period, due to the temporal variation of driver behavior from
the beginning to the end of the peak period. This compro-
mised the accuracy of peak duration but can be adjusted
by applying different parameter values and lane changing
and gap acceptance criteria for different time periods of the
day.

The PATH model was able to replicate the speed profiles
of the most downstream bottleneck, which is a complex
weaving section with more than 50% off-ramp traffic. In
MOTUS, a special local headway was applied here to meet
the traffic throughputs but unfortunately the model could not
simulate the slight speed reduction at this bottleneck

Figure 6 shows the field observed and simulated flow-
density relationships of a four-lane mainline section at the
most important bottleneck, the Florin Rd. on-ramps at
mile 294, obtained from two sample replications. In both
replications, the simulated data provided near-perfect match
in the uncongested state, as well as good representation of
the congested state. Both models simulated the free-flow
speed of 67 miles/hour. However, the PATHmodel simulated
slightly lower than observed maximum capacity. This could

possibly be explained by the different methods of generating
discretionary lane changes; the PATH model generates more
discretionary lane changes in free-flow conditions, which
ultimately affects the bottleneck discharge rate. Additionally,
the MOTUS model has a right lane bias and prioritizes
the freeway mainline, which leads to less efficient merging
and more queuing on the on-ramps. This delayed queue
dissipation at the freeway bottleneck and resulted in more
data points corresponding to traffic conditions with higher
densities, as illustrated by the red data points in Figure 6.

4. Discussion

The simulation results show that the two models are capable
of simulating traffic flow characteristics of the complex
corridor with varying demand, interacting bottlenecks, and
an HOV lane. Although originated from different base
models and developed separately by two teams, the two
model approaches focus on refined description of merg-
ing/diverging behavior, lane preference, and cooperative car
following behavior in the vicinity of merge and diverge
sections.

Comparison of the two models and validation results
gives consistent insights into the traffic flow models for
complex corridors that can be generalized to other simulation
tools.

The anticipative behavior of the merging vehicles has
been captured by many models, where the merger aligns
its speed with that of the potential leader in the target lane
on the mainline. However, this may not suffice to replicate
merging behavior in congested traffic conditions, where the
merging vehicle needs to enter the mainline at close spacing.
This requires the cooperative (car following) behavior of
the vehicles in the mainline to yield a gap for the merging
vehicle and an adaptive gap acceptance behavior where
driver behavior of which the merger accepts short gaps to
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change lane and gradually relaxes to the comfortable gaps
[15, 22].

In weaving bottlenecks, the diverging behavior also plays
an important role in the resulting flow features. Existing
models often result in short-sighted driver behavior near
off-ramps, which deteriorates traffic operations at weaving
bottlenecks and leads to more severe congestion than empir-
ical observations. The two models capture the anticipative
behavior of drivers by adding an anticipation time and
anticipation distance before the off-ramp, implying the early
preparation of the exiting maneuvers [15, 22]. This appears
to be an essential feature in weaving bottlenecks according to
our experience.

With activation of HOV lanes, the lane preference of
HOV and SOV are affected. This should be captured by the
model to replicate the HOV lane operations. For models
without an explicit target lane choice component, the discre-
tionary lane change bias (in MOTUS) or discretionary lane
change motivation (in the PATHmodel) toward/outward the
HOV lane can be a simple way to capture this lane prefer-
ence.

Last but not least, both models adopt local behavior
parameters (local desired headway in MOTUS and local
reaction time in the PATH model) for different bottlenecks
to reflect the capacity differences due to road geometrics,
lane markings, etc. Note that for most car following models,
those parameters affect the resulting capacity and traffic flow
stability. It thus influences both the onset and dissipation of
congestion.

Overall, both the PATH model and the MOTUS model
outperformed the proprietary driver behavior model in
AIMSUN. The calibration study by Wu et al. (2014) showed
that the proprietary AIMSUN model can only accurately
reproduce the observed flows in less than half of the identical
corridor.

Despite the successful calibration of the complex free-
way, both models present some limitations. As shown in
Figure 5(b), the PATH model has difficulties in reproducing
the duration of queue dissipation with the current parameter
values, which are suitable for modeling queue formation and
propagation. This implies that the model cannot depict the
inconsistent behavior patterns drivers adopt at the beginning
and at the end of a congestion period. To address this
problem, we can describe key behavior parameters of a
subject driver (e.g., reaction time,maximum acceleration and
deceleration) as a function of the time in congested state.
The driver would act aggressively at the beginning of the
congestion, but become sluggish after spending some time
in congestion. This method should improve the capability
of the PATH model in reproducing the duration of conges-
tions.

MOTUSwas originally developed based onDutch traffic,
where keep-right directive and mainline traffic priority are
applied. The absence of keep-right directive and mainline
priority in the US results in more efficient merging traf-
fic observed in the field data than in the MOTUS sim-
ulation. Although effort had been devoted to mitigating
the problem, we still found vehicles queuing on the on-
ramp, which leads to the late dissipation of queue at Florin

Rd. bottleneck compared to field observations as seen in
Figure 5(c).

Another point of attention is the most downstream part
of the network where nearly half of the traffic performed
lane changes to access the off-ramp at the US-50 interchange.
MOTUS produced more congested traffic than field obser-
vations if a special treatment of a small local headway were
not predefined.This problemmight come from short-sighted
synchronizing vehicles that do not anticipate acceptable gaps
near the downstream section. An alternative is to set local
lane change parameters or no synchronization during low
speeds.

Overall, although it is worth noting the differences
between the simulated data (obtained from bothmodels) and
the field data, the goal of this study is not to precisely calibrate
the model for this specific data set, but to cross-validate and
recommend two generalizable driving behavior models that
can reasonably reproduce the onset of congestion, capacity
drop, queue propagation, and queue dissipation at a complex
corridor with multiple interacting bottlenecks and managed
lanes.

5. Concluding Remarks and Future Work

This paper presented two driving behavior model alternatives
to the driving behavior models in the widely accepted
microscopic simulation packages such as AIMSUN, VISSIM,
and PARAMICS. These models are intended to reproduce
the traffic dynamics of large scale and complex freeway
corridors for longer durations, which can be difficult by
simply relying on the default models in simulation packages
such as AIMSUN, VISSIM, and PARAMICS.

A case study has been conducted using real-world data
from an 8 hour period at a complex freeway corridor
near Sacramento, California, where the two proposed driver
behavior models accurately replicated the locations and
throughput of the freeway bottlenecks, as well as the spatial
and temporal distributions of speeds. The models have been
cross-validated and performed well with similar accuracy.
Most importantly, bothmodels outperformed the proprietary
driver behavior model commercially available in AIMSUN.

Comparison of the two modeling approaches shows that
both models capture the anticipative diverging behavior,
lane preference in presence of dedicated lane, cooperative
behavior of mainline vehicles to facilitate merging at short
spacing at merge and diverge sections, and adaptive desired
time headway settings at different road sections along the
corridor. The consistent insights into the traffic flow models
for complex corridors can be generalized to other simulation
tools.

In the future, the validated models will be improved
and enhanced to simulate and assess the potential benefit of
connected and automated vehicles for real-world freeways.

Data Availability

The data used to support the findings of this study can be
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