
Procedural music generation with Hierarchical
Wave Function Collapse

Visualizing HWFC-generated music and "locking in" parts of the

output for later reiteration

Daniel Lihotský
Supervisor: Rafael Bidarra

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Daniel Lihotský
Final project course: CSE3000 Research Project
Thesis committee: Rafael Bidarra, Joana de Pinho Gonçalves

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Procedural music generation with Hierarchical Wave Function
Collapse:

Visualizing HWFC-generated music and "locking in" parts of the
output for later reiteration

Daniel Lihotský
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Procedurally generating a coherent and emotionally resonant piece
of music can be very challenging. The Wave Function Collapse
(WFC) algorithm is very effective when it comes to generating
randomized patterns and maps that resemble an input sample. A
version of this algorithm using a hierarchy of sections, chords and
melody was used to create a model capable of generating music.
In this paper, we extend the capabilities of this model to improve
its utility and help composers more effectively utilize this music
generation method to create engaging pieces. Our model offers im-
provements over previous methods by allowing composers to retain
desirable elements of the music output while regenerating others,
thus streamlining the iterative nature of music composition. We
consider and compare different music visualization techniques and
explore various user interface (UI) interaction methods to facilitate
the effective selection of elements from the output. We designed and
implemented this model with the conclusion that it significantly
enhances the user experience and allows for creating a much more
sound and complete piece of music compared to the original.

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; •Human-
centered computing → Visualization techniques; User inter-
face design.

KEYWORDS
Wave function collapse, proceduralmusic generation,mixed-initiative,
music visualization, user interface interaction

ACM Reference Format:
Daniel Lihotský. 2024. Procedural music generation with Hierarchical Wave
Function Collapse: Visualizing HWFC-generated music and "locking in"
parts of the output for later reiteration. In Proceedings of Research Project
(CSE3000). ACM, New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.
XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSE3000, June 23, 2024, Delft
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Procedural content generation (PCG) is a field of computer science
that has seen a rise in popularity in recent years with the intro-
duction of large language models (LLMs) such as ChatGPT. It is
important that we research the full potential of these PCG models
to really see what value they can bring to our day-to-day lives. One
of the prominent PCG algorithms is the Wave Function Collapse
(WFC) algorithm [3]. This algorithm was originally created to gen-
erate randomized patterns and maps but has since been repurposed
and modified to create a model for generating music, where in-
stead of images, the output is comprised of sections, chords and
melody [7].

This music generation model uses user-specified constraints to
guide the algorithm. Mixed-initiative PCG is an approach where
humans and algorithms collaborate to create content. This concept
combines the strengths of human creativity and machine efficiency,
resulting in a more effective and innovative content-creation pro-
cess.

Creating music is inherently an iterative process, where pro-
ducing a satisfactory piece requires multiple versions that slightly
improve on one another. The current model, proposed by Varga
and Bidarra [7], enables composers to define constraints and then
generate an initial output. However, if the composer is not satisfied
with the generated piece in its entirety, they must start over.

We propose a model that allows composers to selectively retain
parts of the generated output for subsequent iterations. This ap-
proach enables continuous refinement of the piece across multiple
generations, eliminating the need to start over after each iteration.

In the remainder of this paper, we explore how we can modify
Varga and Bidarra’s model, to allow the composer to lock in parts
of the output for later reiteration, and how to visualize such output
to facilitate effective selection of said parts.

2 RELATEDWORK
2.1 Wave Function Collapse
The Wave Function Collapse Algorithm, developed by Maxim Gu-
min in 2016 [3], has garnered significant attention in the field of
procedural content generation, mainly for its effectiveness in cre-
ating textures and patterns for video games and digital art. The
algorithm derives its name from a concept in quantum mechanics,
where a wave function representing a superposition of multiple
states, reduces to a single state.

The basic principle of this algorithm is similar: a canvas of cells
is created with each cell initially in a ’superposition’ of potential

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


CSE3000, June 23, 2024, Delft Daniel Lihotský

Figure 1: Visualization of the hierarchical structure proposed
by Varga and Bidarra [7]

states. Through iterative steps, the algorithm progressively narrows
down the possible states for each cell, based on neighboring cells
and predefined rules between them, until a coherent solution is
achieved. This process ensures that the generated output adheres
to the local constraints defined by the input sample.

2.2 Mixed-initiative Systems
Mixed-initiative content generation is an emerging research area
that explores collaborative content creation between humans and
computers. This approach integrates human input to guide PCG.
Langendam and Bidarra introduced a model incorporating mixed-
initiative concepts into WFC [4]. These enhancements improve
user interaction and control, enabling direct influence over the
generation process. A mixed-initiative approach not only enhances
the intuitiveness of WFC for users, but also expands its utility
in creative domains such as game-level design and graphic arts.
These advancements, which facilitate interactive algorithm steering,
manual editing, and manipulation of generation parameters, have
opened new avenues for creative expression and design flexibility
in procedural content generation.

2.3 Music Composition with Hierarchical WFC
The original WFC algorithm was expanded upon by Alaka and
Bidarra [1], through the introduction of a hierarchical structure to
the canvas cells. Each cell can belong to a group that shares specific
constraints, with the group itself having overarching constraints.
For instance, in a video game map, a canvas of forests, plains and
cities is generated, with each region itself being a canvas that con-
sists of smaller elements, like buildings and roads for a city. Alaka
and Bidarra’s model illustrates how integrating a hierarchy of cells
can enrich the design process.

Varga and Bidarra introduced a procedural music generation
model utilizing the WFC algorithm with this hierarchical struc-
ture [7]. In their model, the canvas is divided into sections that
contain chords, that contain melody notes. Constraints are inher-
ited hierarchically, with each level deriving constraints from its
parent (see Figure 1).

In thismodel, composers can establish specific constraints at each
level. This can be achieved by directly assigning notes or chords
to specific positions, or by defining relationships that neighboring
cells must adhere to. Some constraint parameters may depend on
values chosen for higher-level cells in the hierarchy. Moreover, the
model allows for the definition of prototypes; selecting a prototype

as the value for a cell triggers the imposition of corresponding
constraints on the canvases beneath it in the hierarchy.

2.4 Visualization of Music
Music visualization has evolved significantly since its inception.
Modern advancements in technology and computational methods
have expanded the scope and complexity of music visualizations.
An extensive survey of music visualization techniques has been
conducted by Hugo B. Lima et al. [5]. It gives a clear overview of
a large variety of music visualization methods grouping them by
what main aspect of music they visualize (structure, pitch, harmony,
melody, etc.) and how they do it (color, shapes, line graph, etc.).

3 VISUALIZING HWFC-GENERATED MUSIC
The selection of parts from the music output heavily relies on the
exact way the musical elements are visualized to the composer. It is
crucial to present the output in a manner that makes the selection
of desired elements easy and intuitive. In visualizing music, we
have an almost limitless array of options to consider. We need to
narrow down our options to fit our specific use case. This can be
achieved by defining the properties that our visualization model
should exhibit to facilitate effective selection.

3.1 Required Properties
1. Show chords and melody. While it may seem self-evident,

many music visualization techniques do not prioritize display-
ing the precise notes being played, instead focusing on other
intrinsic properties of the music piece they are conveying [5].
Our model must clearly indicate the specific chord and melody
notes in chronological order, as this is what our HWFC algo-
rithm is producing. It should also distinctly differentiate between
chord notes and melody notes.

2. Clearly indicate the hierarchical structure. Since our model
is based on the one proposed by Varga and Bidarra [7], the
generated output will be hierarchically structured, as illustrated
in Figure 1. It is essential to clearly indicate to the composer
which chords belong to which section and which melody notes
belong to which chord.

3. Notes and chords indicate their pitch. The visualized chords
and notes must clearly indicate their pitch. This can be achieved
through explicit notation (e.g., C, D# for chords and A5, E5 for
melody notes) or with some kind of symbol or their position on
the canvas, similar to staff notation. This is crucial for composers
to easily identify what different parts of the output comprise,
without needing to play that particular part.

4. The duration of the note is indicated. The visualization must
clearly indicate the duration of each note. This can be achieved
through various means, such as the physical length of the note,
specific symbols or shapes representing different durations, or
numerical indicators.

3.2 Possible Visualization Techniques
In this section, we consider and compare a couple of music vi-
sualization techniques that most align with our goals. For each
technique, we assess whether it satisfies the properties defined in



Procedural music generation with Hierarchical Wave Function Collapse:
Visualizing HWFC-generated music and "locking in" parts of the output for later reiteration CSE3000, June 23, 2024, Delft

Figure 2: One section of a HWFC-generated music output
visualized using staff notation

Subsection 3.1, to what extent it does so, and how to modify it so it
fully satisfies these criteria.

Sheet Music - Staff Notation. When discussing the visualization
of music, the first method that often comes to mind is sheet music,
more specifically staff notation. Staff notation is the traditional and
most widely recognized method for representing musical composi-
tions. It provides a detailed and precise notation of pitches, rhythms,
dynamics, and articulations, allowing musicians to accurately per-
form a piece as intended by the composer. We visualized how a
piece of music generated by our HWFC algorithm would look like
using this notation (see Figure 2).

It shows one section of four chords, each with four melody notes.
It clearly displays both melody and chords, satisfying property 1.
The sheet is divided into measures (denoted by single vertical lines),
and our chords are always a full note which spans one measure.
This division visually distinguishes between chords and indicates
which melody notes correspond to those chords. Our sections, how-
ever, are not any tangible element when it comes to music notation.
When generating more sections, we would not see where one ends
and another begins. This can be easily remedied by adding separa-
tors.

The time signature, in this case 4/4, determines themelody length
(the top number/numerator), and the beats per minute (BPM) are
indicated in the top left corner as ˇ “= 120. Properties 3 and 4 are also
satisfied. Any person able to read sheet music, can determine the
pitch and duration of the notes from their vertical position on the
staff (the five lines) and their shape.

A problem with this visualization, however, is that it is too com-
plex for our use case. Staff notation is designed to provide compre-
hensive details necessary for performing a piece of music, which
are not necessary for our purpose. Another issue is that although
whole notes ( ¯ ), which form chords, have the same duration as the
four melody quarter notes combined, they do not occupy the same
amount of space on the staff; they end much earlier. For our goal of
selecting parts of the output, it would be more advantageous if the
parts played simultaneously were always vertically aligned.

Piano roll layout. Let us consider a more simplistic approach, one
that is commonly used for viewing and editing music digitally. This

Figure 3: One section of a HWFC-generated music output
visualized using a piano roll

visualization technique is often used in digital audio workstations
(DAWs). It displays notes as horizontal bars on a grid, with the
vertical axis representing pitch and the horizontal axis representing
time. Using a DAW, we visualized the same output shown in Figure
2, using a piano roll layout (see Figure 3).

It satisfies property 1. Property 2 is not as visually clear as in the
previous example, but we observe that melody notes consistently
appear above their corresponding chords. Numbering at the top
demarcates where a chord ends and another begins, also indicating
quarter note separations (with 1.2, 1.3, etc.). Section separation is
not shown for the same reason as in our previous example, but this
is easily addressable. Property 3 is handled similarly to our previous
example. The vertical position of the note indicates the pitch. A
nice addition is that this information is also explicitly written on
the note itself. The duration of the notes (property 4) is shown
with physical length along the horizontal axis. Consequently, parts
of the output with the same duration occupy the same length on
the axis. This eliminates the shortcoming of staff notation, where
duration is only indicated with the shape/symbol of the note.

4 SELECTING GENERATED ELEMENTS
Now with a clear vision on what properties we expect our HWFC-
generated music output visualization to have and which techniques
we can use, we explore how we can enable the composer to interact
with these visuals to select parts of the output. Selecting elements
in a 2D space involves creating an intuitive and responsive interface
that also allows for precision.

4.1 Selection Preferences
In this subsection, we discuss which elements the composer is likely
to want to select together and provide reasons for these choices.

Selecting entire sections. Our music output is generated in sec-
tions. These sections encompass the underlying chords and can
give them some higher meaning. Composers can define constraints
specifically imposed only for that section. A section can represent
for example an intro to a song or the chorus. Given that chord



CSE3000, June 23, 2024, Delft Daniel Lihotský

progressions can vary greatly from section to section, the composer
will often want to keep/regenerate entire sections for this reason.

Selecting chords and melody in isolation. Our music output
combines the sound of melody notes being played over underlying
chords. The precise combination of these two elements is what
makes the music emotionally resonant, structurally sound, and
engaging for listeners. If a composer does not like the sound of a
subsection (a chord and its melody) of the output, it is most often
times because the chord does not compliment the melody well
or the melody is not pleasant. This is why it is crucial that the
composer is able to keep/regenerate just chords, or just melody for
a specified area on the horizontal axis.

Selecting individual notes of a chord. Each of our chords is
comprised of four notes played simultaneously. We always select
these notes together, because regenerating only a part of these
would still result in a fundamentally different chord. Providing
the ability to select these individual notes would unnecessarily
complicate the UI interaction without offering additional utility to
the composer.

Selecting individual notes of the melody. The smallest ele-
ments in our output are individual notes in the melody. It is evident
why selecting the melody over a chord or over the entire section
is crucial. Sometimes the melody over one chord might be much
longer than what we saw in our examples in Subsection 3.2. With
a longer melody there might be passages that a composer wants to
keep but for example, does not like how it culminates. We want to
give the composer the ability to select even the smallest parts of
the melody to maximize utility.

4.2 Element Selection Methods
In this subsection, we compare various UI interaction methods and
assess their suitability for enabling composers to efficiently select
parts of the output in all the ways deemed crucial in Subsection 4.1.

Lasso (freeform) selection. This type of selection offers the great-
est flexibility for choosing elements within a 2D space. Users can
freely draw any continuous shape using their cursor, and upon
closing the shape, any element contained within it will be selected.
It facilitates precise selection of individual elements in the output,
and for groups of notes forming a chord that do not need indi-
vidual selection, those can always be selected together. However,
this method is less efficient for selecting larger parts of the output
because continuously drawing a shape for every selection could
become tedious. This method is better suited for selecting elements
arranged in irregular shapes.

Rectangular selection (bounding box). This selection allows
the user to drag their cursor and the start and end points form the
opposing corners of a rectangle. This method is simpler and more
intuitive than lasso selection but offers less precision. Given that
elements in the visualization techniques we explored in Subsection
3.2 are typically arranged in rectangular forms, makes this method
better suited for our use case.

Select by label. Both methods mentioned so far are not optimal
for selecting larger portions of the output simultaneously. We can

streamline selecting entire sections by labeling them and allowing
the user to click on the section label to select it. We can do the
same to allow selection of the entire chord progression or the en-
tire melody. Combining these functionalities enables users to, for
example, select all chords within a section. However, this approach
lacks the desired precision as it is not feasible to label every single
element individually.

4.3 Deselection
The method for deselection depends on which selection technique
we use. When using methods such as clicking a label or button to
select, deselection is straightforward. The button or label will act as
a toggle: if not every element encompassed by that label is selected,
clicking it will select everything; if all elements are already selected,
clicking it will deselect them.

When selecting with a shape, one approach is to have each
new selection deselect everything else, akin to selecting files on
a desktop. This method prevents users from selecting multiple
non-continuous areas simultaneously. To address this limitation,
users could hold the shift key to add a new selection to the already
selected areas. However, this adds an additional layer of complexity.
Another approach is to always add the new area to the existing
selection, and then deselect by selecting an already selected area.
The downside is that deselecting multiple areas can become tedious.

4.4 Visualization of Selection
There are several ways to indicate which UI elements are currently
selected, all of which are applicable in our case. These are all fairly
straightforward and self-explanatory, so we list them without going
into detail.

• Distinct colors - Change the selected elements to bright or
contrasting colors.

• Color highlighting - Change the background or border
color of the selected elements.

• Outlined elements - Use thicker outlines or borders for the
selected elements.

• Highlighting with opacity - Increase the opacity of se-
lected elements while dimming the non-selected ones.

• Shading effects - Apply shadow or glow effects to selected
elements.

5 DESIGN
From the visualization models discussed in Subsection 3.2, we have
chosen to base our model on the piano roll layout, mostly because
it is simpler and fits our use case the best.

The possible output notes generated by our model range from
C(-1) all the way to G9. To accommodate this range, our canvas
needs to be divided horizontally into 128 rows, each representing
a distinct note. We have decided to label each note with its pitch
value as seen in Figure 3. This is to allow the composer to compare
pitch values of notes that are not immediately adjacent without
needing to guess if they are in the same row or count the difference.
Consequently, there is no necessity to label the rows or explicitly
define the vertical axis.

Providing sufficient vertical space for 128 rows to accommodate
legible text on a single page is impractical. We needed to introduce



Procedural music generation with Hierarchical Wave Function Collapse:
Visualizing HWFC-generated music and "locking in" parts of the output for later reiteration CSE3000, June 23, 2024, Delft

Figure 4: Diagram visualizing the main aspects of our design.

vertical scrolling. Typically, the generated output resides within
the central 64 rows. Therefore, we have set our visible window to
be 64 rows in height, aiming to minimize the need for extensive
vertical scrolling in most scenarios.

The width of each note corresponds directly to its duration,
allowing us to have a consistent time scale along the horizontal
axis. Theoretically, the number of sections, chords per section and
melody length are not limited, that means our canvas has to ac-
commodate an output of any length. We can achieve this by adding
horizontal scrolling if the output length exceeds what we are able
to display on a single page. The canvas is divided into sections,
chords and individual melody notes by vertical lines with varying
thickness.

Under each section, we have a button that toggles the selection
of that entire section. It is clearly indicated with a bracket, which
elements fall under that button. These buttons scroll together with
the sections as they move horizontally.

On the left side, we have two anchored buttons that toggle focus.
The top button focuses on the melody, while the bottom button
focuses on the chords. If neither button is activated, focus is on
both melody and chords. Elements that are out of focus are visually
indicated by reduced opacity. This is to allow the composer to
constrain their current selection to only chords or only melody.
Since chord and melody notes can overlap when they share the
same pitch at the same time, this feature allows for distinct selection
of these overlapping elements.

It is always clear whether we are selecting chords, melody or
both. Therefore, we chose to have our element selection method
be line selection, where the vertical position of the cursor does
not matter. Similar to rectangular selection, except the rectangle
always spans the height of the canvas. As the cursor is dragged
along the canvas, the background color of the affected area changes,
and selected notes are highlighted in a different color. Upon release,
the background color reverts, while the selected notes remain high-
lighted. Subsequent selections of other areas do not affect previously
selected elements.

The composer can deselect elements either by selecting them
again or by clicking the universal deselect all button on the bottom
left of the canvas. This button was included to simplify deselecting
larger areas.

Once selected, elements are considered locked in for subsequent
generations and remain selected in the new output until manually
deselected. We have opted for the selection to indicate elements to
retain rather than those to regenerate. This choice stems from the
fact that composers typically wish to preserve only a minority of
elements, and therefore need to select less.

This design was visualized using a simple diagram (see Figure
4). The green notes indicate selected notes and the gray window
indicates the area currently being selected. The opaque notes indi-
cate notes in focus and transparent are out of focus. Note that the
size of the notes and distances on the vertical axis are not to scale.

6 IMPLEMENTATION
For the paper on which we based our model [7], Varga and Bidarra
developed a web application enabling users to set constraints and
generate music using HWFC through a graphical user interface
(GUI) [2]. In their original implementation, the output is visualized
in a minimalistic way in a small floating window at the bottom
of the page. We implemented our design as an extension to this
application. This extension introduces a dedicated page where users
can view an enlarged version of the output, complete with all the
functionality proposed in this paper.

The application was developed in TypeScript using the React
framework. TypeScript’s static type checking enhances code reli-
ability and maintainability, while React’s component-based archi-
tecture facilitates the creation of robust, scalable, and maintainable
user interfaces. The application was deployed using Vite, a modern
build tool that ensures efficient loading and hot module replacement
during development.

We maintained consistency with the existing application theme
by preserving the background image and button appearance. Dur-
ing the development, we closely adhered to our design, only having
made minor adjustments and improvements. Notably, we expanded
the section buttons to span the entire width of their respective
sections. This allows users to select a section even when it is only
partly visible, eliminating the need for brackets. Additionally, we
integrated existing controls from the miniature version at the bot-
tom of the page, facilitating actions such as generating, playing,
and downloading the output.

One of the major challenges we faced was how to scale the notes
depending on the width and height of the output, considering the
size of the viewport of the browser. Our solution was to maintain a
constant size for the notes (with width relative to duration), and
dynamically adjust the size of the visible canvas according to the
viewport. This approach ensures that notes and their labels remain
legible regardless of the window size, with scrolling enabled as
necessary to accommodate the entire content.

We also made some small quality-of-life improvements. For in-
stance, when hovering over the canvas, the current column of
a chord/melody note is highlighted, aiding users in determining
where their selection would begin. While dragging, the selection
window does not start and end at the exact coordinates of the cursor,
but instead reflects the exact width of the elements being selected.



CSE3000, June 23, 2024, Delft Daniel Lihotský

Figure 5: Screenshot of our implementation. Chords 4,5,6 are already selected and chords 7-10 together with their melody are
currently being selected.

7 DISCUSSION
The general flow of the application with these new features would
consist of the composer setting constraints, generating the output,
locking in parts, and repeating. It would streamline the flow and in
general make it easier to use if our added functionality was on the
main page. This would necessitate a complete overhaul of the UI; to
be able to put the canvas in the middle, while having enough room
to accommodate everything that was already there. Unfortunately,
this would take too much time and effort, and not get us closer to
answering our research question, that is why we opted to put all of
our functionality on a single separate page, without affecting the
rest of the UI.

During our design phase, we came across multiple ideas that
would improve the usability of the application and extend its ca-
pabilities, but we decided against including them, mainly because
our focus was on the visualization and selection methods and these
branched slightly outside of that domain.

• Zooming in and out in the canvas - A very useful feature
with no discernible downsides, that would helpwith visibility
and precision, but not strictly necessary in our case.

• Start the playback from any point - Currently, users can
only initiate playback of the output from the beginning. If
they wish to lock in a specific part of the output located
towards the end but are unsure of the exact notes, they must
start the playback and wait for it to reach that point. It would

help the user with selection, to be able to start the playback
from any point in the track.

• Isolate playback of chords and melody - The user can
select chords and melody independently, so it would be ben-
eficial to play them separately as well, enabling them to hear
and evaluate the parts they wish to keep more clearly.

• Play only locked in parts - After selecting the desired
parts of the output to keep, users should have the option to
play only those parts to confirm if they are satisfied with
their selection.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we explored and compared ways how to visualize and
select parts of a music output generated using Hierarchical Wave
Function Collapse. We analyzed different visualization techniques,
assessed their effectiveness, and evaluated user interaction methods
to determine the most intuitive and efficient approach. Based on
our findings, we proposed a design that incorporates these insights,
aiming to give the user additional utility and improve the overall
process of music generation, compared to the original model our
research is based upon.

We implemented our design in the form of an extension to a
web application, the one that was created to show the concepts of
the original model. Our implementation has shown that our design
effectively visualizes all of the important aspects of the generated
output and allows for easy but precise selection of desired elements



Procedural music generation with Hierarchical Wave Function Collapse:
Visualizing HWFC-generated music and "locking in" parts of the output for later reiteration CSE3000, June 23, 2024, Delft

to lock in for later iterations. It allows the user to iteratively improve
on their generated piece of music, which facilitates creating much
more elaborate and complete pieces than the original model.

Our new functionality currently exists on a standalone page in
the application and the next step is to better incorporate it with all
of the existing functionality on the main page. The user having the
ability to fine-tune constraints and lock in parts of the output from
the same page would streamline the creative process.

Another continuation would be conducting a user study. It would
significantly enhance our research by providing empirical evidence
on the usability and effectiveness of our design. By engaging with
real users, we can identify usability issues, gather insights on user
preferences, and ensure our interface is intuitive and user-friendly.

In conclusion, our work represents a significant advancement in
the visualization and selection of music outputs generated using
Hierarchical Wave Function Collapse. By enhancing the mixed-
initiative approach of the original model, our design empowers
users to interact more intuitively and effectively with the music
generation process. This enhancement is crucial, as it significantly
broadens the amount of control the user has over the generated
piece, and reduces the reliance on the algorithm.

9 RESPONSIBLE RESEARCH
9.1 Reproducibility
Our research method consisted of surveying well-known music
visualization techniques and UI interaction methods, comparing
them, and evaluating their suitability for our goal. We then de-
signed a model based on our findings. This process can be easily
reproduced by anyone who has access to and knowledge about
the model our research was based upon [7]. Unfortunately, this
paper is not yet public, only submitted for publication. The details
about this particular model that we provide in this paper might
not be sufficient to reproduce the research, but once that paper is
published, these concerns will be alleviated. Our implementation
relies heavily on previous work, also done for the purpose of that
paper. The repository of that model’s implementation is public and
can be found on GitHub [6].

9.2 Ethical Concerns
The primary ethical concerns regarding PCG revolve around the
potential replacement of artists and more generally creative work
done by humans. In our case, the model was specifically designed to
aid composers, not replace them. The essence of a mixed-initiative
approach is to integrate human input into generative models, en-
suring that the human creative aspect is preserved and enhanced.

A significant issue with many PCG models, especially those
based on AI, is that they function as black boxes. This means we
often do not know how or why they make specific decisions. In
contrast, our model is transparent and explainable. When a piece
of music is generated, we can trace the algorithm’s steps precisely
to understand how it arrived at that particular output.

Compared to AI-based PCG models, our model does not require
any input data that might be subject to copyright or involve users’
personal data. Even the original WFC algorithm requires an input
sample, which could be copyrighted or contain personal informa-
tion, thereby limiting the use of its output to avoid legal issues or

privacy concerns. Our model takes as input constraints and settings
that are directly provided by the user, ensuring that it avoids these
complications.

REFERENCES
[1] Shaad Alaka and Rafael Bidarra. 2023. Hierarchical Semantic Wave Function

Collapse. In Proceedings of the 18th International Conference on the Foundations of
Digital Games (Lisbon, Portugal) (FDG ’23). Association for Computing Machinery,
New York, NY, USA, Article 68, 10 pages. https://doi.org/10.1145/3582437.3587209

[2] Anonymous. 2023. ProceduraLiszt. https://bit.ly/proceduraliszt_app
[3] Maxim Gumin. 2016. Wave Function Collapse Algorithm. https://github.com/

mxgmn/WaveFunctionCollapse
[4] Thijmen SL Langendam and Rafael Bidarra. 2022. miWFC - Designer Empow-

erment through Mixed-Initiative Wave Function Collapse. In Proceedings of the
17th International Conference on the Foundations of Digital Games (Athens, Greece)
(FDG ’22). Association for Computing Machinery, New York, NY, USA, Article 66,
8 pages. https://doi.org/10.1145/3555858.3563266

[5] Hugo B. Lima, Carlos G. R. dos Santos, and Bianchi S. Meiguins. 2021. A Survey
of Music Visualization Techniques. ACM Comput. Surv. 54, 7 (July 2021), 29.
https://doi.org/10.1145/3461835

[6] Pál Patrik Varga and Rafael Bidarra. 2023. ProceduraLiszt Repository. https:
//github.com/ProceduraLisztDevs/proceduraliszt

[7] Pál Patrik Varga and Rafael Bidarra. 2024. Harmony in Hierarchy: Mixed-Initiative
Music Composition Inspired by WFC. Submitted for publication.

https://doi.org/10.1145/3582437.3587209
https://bit.ly/proceduraliszt_app
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://doi.org/10.1145/3555858.3563266
https://doi.org/10.1145/3461835
https://github.com/ProceduraLisztDevs/proceduraliszt
https://github.com/ProceduraLisztDevs/proceduraliszt

