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A B S T R A C T

The lack of suitable boundary conditions in practical surface wave simulations with maritime structures in
current or at forward speed may cause energy in the computational domain to accumulate due to spurious
wave reflection. The common way to prevent wave reflection is to use passive wave absorbers, such as damping
zones or relaxation zones, which requires larger domains at the cost of computational effort. Our goal is to
derive a local generating absorbing boundary condition (GABC) for long-crested irregular waves on top of
a mean flow, using the flow to model the forward speed of a structure such as a ship. Earlier work has
demonstrated that a local GABC for free surface waves has a performance similar to passive wave absorbers,
but at a reduced computational effort. New in the present work is that we extend, verify and validate the
GABC in the presence of a nonzero mean flow. The GABC is designed to be accurate for a range of wave
components in irregular sea states, with the resulting reflection coefficients for each component lower than a
chosen value, say 5%. Having used potential flow theory for its derivation means that the boundary should
not be placed at the exact location where wave breaking is expected, such as very close to the structure in the
domain, or in the surf zone in coastal modeling. For the application with ships in this article that does not
pose a limitation. The performance is demonstrated for a range of dimensionless wave number between 0 and
6. Such a boundary condition is obtained through a rational approximation of the linear dispersion relation
with a mean flow, in combination with vertical derivatives of the solution variables along the boundary.
Local linearization means that the GABC incorrectly considers bound, nonlinear wave components to be freely
propagating wave components. Bound components, however, tend to have smaller amplitudes and do not
appear to affect performance for the considered cases. Results of simulations with regular and irregular waves,
on top of flows with different magnitudes and directions, are found to agree with the theory. The main source
of differences is the implementation of the second derivate in the GABC near the free surface. Simulations of a
Wigley hull at forward speed in irregular waves are compared to an experiment that was conducted specifically
for validating the ABC. The data of the experiment are available as open data through doi: 10.4121/21320604.
The comparison between simulation and experiment demonstrates that the GABC with a mean flow can be
applied not only for theoretical simulations with propagating waves, but also for more practical applications
with a structure in the domain.
1. Introduction

During the lifetime of ships and other maritime structures, they
can be subject to harsh environmental conditions — wind, waves and
currents. Currents can be wind-driven, be induced by wave breaking or
originate from tides. They impose a mean load on structures. In heavy
storms, time-varying wave loads add to the current loads. Waves and
currents can also exert loads on the mooring system and thus induce
vortex shedding. Modeling of waves at sea is incomplete without
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currents and the combination of a mean flow and waves is an important
aspect of simulating a realistic (nonlinear) loading conditions.

Computational Fluid Dynamics (CFD) – with the rapid development
of high-performance computer hardware – has become more and more
popular for engineers to evaluate the performance of wave structure
interaction. However, numerical wave simulations become unrealistic
if one does not make sure of preventing wave reflection from the
boundaries of the computational domain. Reflected waves decrease
the reliability of the solution field inside the domain by increasing
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the energy level of the system, especially for longer simulations.
Passive wave absorption is a common approach to prevent wave

reflection from domain boundaries. Various passive schemes have been
thoroughly discussed in literature [1]. For example, the method of
damping zones [2–4], also called sponge layers [5,6], includes momen-
tum sources in the governing equation to dissipate the waves. Vertical
velocity damping zones and pressure damping zones are more effec-
tive for shorter wave components than for longer wave components,
because the dissipation is proportional to the vertical velocity. Vertical
velocities in longer waves are small, and thus extra long zones are
required to reduce reflection from a domain wall to a sufficient degree.
Another approach is relaxation zones [7–11], which gradually force the
computed wave field to comply with a theoretical field solution cal-
culated with a far-field solver. Similarly to damping zones, relaxation
zones perform well for short waves, but require longer zones to deal
with long waves at the cost of computational efficiency [12,13].

In addition to passive wave absorption, there is also active wave
absorption (AWA). AWA [14–16] relies on flow measurements, from
which the incident and reflected wave signals can be separated with
digital filters assuming the water is sufficiently shallow. This infor-
mation (so-called feedback) is used to correct the wave generation
boundary condition, in order to absorb the spurious waves while con-
tinuing to generate the target waves. The main advantage of this kind
of AWA is that the domain does not need to be extended with zones,
since AWA acts locally at the boundary itself. It has been developed
from the shallow water assumption to the deep water conditions.

A third class is called absorbing boundary conditions (ABCs). ABCs
can be categorized into two types: global and local ABCs. It has been
discussed that global ABCs [17,18] are computationally undesirable,
due to the requirement of storage of all previous time steps and
processing of all grid points at each time step. ABCs, that are local
in time and in space [19], can be as accurate as global ABCs in
specific cases [20,21], but are more economical and straightforward
to implement. Therefore, our strategy in this article is to derive a local
ABC, continuing the work on those we did before [22,23].

Our ABCs are implemented in a method based on the Navier–Stokes
equations, with a Volume-of-Fluid (VoF) approach for the free sur-
face [24]. Before this study, one could use the method to either perform
mean flow simulations, or to perform wave simulations, but not the
combination. However, in reality waves and a mean flow, for instance
induced by tides, are always present together. Absorbing boundary
conditions (ABCs) for the combination of waves and a mean flow are a
next step towards representing realistic environmental conditions. The
objective of this study, therefore, is to derive a local ABC for long-
crested irregular waves on top of a mean flow. Our main application
is to use the mean flow to model the forward speed of a maritime
structure such as a ship.

The article is structured as follows. After this brief introduction, the
mathematical model is presented, including the governing equations
and boundary conditions other than ABCs. Following that, a detailed
discussion on the ABC accounting for both waves and flow is given.
The stability of the ABC is discussed, after which it is verified against
theoretical reflection coefficients, through a set of simulations of regu-
lar and irregular waves, on top of mean flows with different velocities
and directions. Experiments of a Wigley hull at forward speed in head
waves are performed to validate our ABC with mean flow. The main
conclusions are repeated at the end of the article.

2. Mathematical model

Governing equations. A right-handed Cartesian system is employed and
the axes are indicated by 𝐱 = (𝑥, 𝑦, 𝑧). The Navier–Stokes equations,
derived from the conservation laws of mass and momentum, describe
fluid flow in an arbitrary fixed control volume 𝛺 with boundary 𝛤 .

𝐮 ⋅ 𝐧 𝑑𝛤 = 0 (1)
2

∫𝛤
Fig. 1. Boundary conditions for the computational domain.

∫𝛺
𝜕𝐮
𝜕𝑡

𝑑𝛺 + ∫𝛤
𝐮𝐮 ⋅ 𝐧 𝑑𝛤 + 1

𝜌 ∫𝛤
𝑝𝐧 𝑑𝛤

− 𝜈 ∫𝛤
𝐧 ⋅ ∇𝐮 𝑑𝛤 − ∫𝛺

𝐟 𝑑𝛺 = 0, (2)

in which 𝐮 = (𝑢, 𝑣,𝑤) represents the flow velocity in the axis direction,
and 𝐧 denotes the outward normal vector to boundary 𝛤 . 𝜌 denotes the
density of the fluid, 𝑝 is the pressure and 𝜈 is the kinematic viscosity
found from the ratio of dynamic viscosity 𝜇 over the density, 𝜈 = 𝜇∕𝜌.
Because of incompressibility, it is not required to solve a conservation
law for energy in an additional equation. 𝐟 is a body force acting on the
fluid, such as the force of gravity in the direction of the acceleration of
gravity (0, 0,−𝑔)𝑇 .

In our application, the interface between water and air is of great
interest, otherwise known as the free surface. As the flow is considered
incompressible, the evolution of the free surface, 𝑆(𝐱, 𝑡) = 0, in space
and time satisfies
𝜕𝑆
𝜕𝑡

+ ∇ ⋅ (𝐮𝑆) = 0. (3)

Boundary conditions. Fig. 1 shows the computational domain with
boundary conditions. In the simulations presented in this paper, the
flow is often used to represent the forward speed of a ship so that
boundary layers at domain walls are undesirable. Therefore, a free-slip
condition has been adopted at the outer domain walls, as it allows for
a coarser computational grid near the outer walls. Along the surface of
the (moving) objects a no-slip condition 𝐮 = 𝐮𝑏 has been chosen, where
𝐮𝑏 is the velocity of the object.

At the free surface, the normal and tangential forces are balanced
leading to the boundary condition

𝜇(
𝜕𝑢𝑛
𝜕𝜏

+
𝜕𝑢𝜏
𝜕𝑛

) = 0 (4)

− 𝑝 + 2𝜇
𝜕𝑢𝑛
𝜕𝑛

= −𝑝0 + 𝜎𝜅. (5)

Here, subscripts 𝑛 and 𝜏 denote the normal and tangential direction,
respectively. The curvature of the free surface and surface tension
are represented by 𝜅 and 𝜎, respectively, while 𝑝0 is the atmospheric
pressure.

The boundary conditions for free surface waves applied at the inflow
and outflow boundaries, left and right in Fig. 1 have been developed
earlier and reported in Duz et al. [22] and Wellens and Borsboom
[23]. They allow waves to propagate into and out of the computational
domain simultaneously, and – for this reason – are called Absorbing
Boundary Conditions (GABC). In this article, a (G)ABC is derived that
accounts for the presence of a mean flow.

Potential flow. Our main application is the behavior of maritime struc-
tures in irregular free surface waves. Free surface waves near the
boundary, which is sufficiently far from a structure in the path of wave
propagation, can be assumed irrotational when not breaking and are
well described by potential flow theory. The main limitation of the
use of potential flow is that the boundary should not be placed at
the exact location where waves can be expected to break during the
length of the simulation. Examples of these locations are very close to
a structure in the domain where waves are steeper due to diffracted and
evanescent waves, and in the surf zone in coastal modeling. Potential
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flow theory is used to impose the kinematics of free surface waves at the
inflow boundary of the domain. Assuming irrotationality, a potential
function 𝜙 is introduced, whose spatial derivative yields the velocity in
the direction of the derivative. Superimposing undisturbed waves and
mean flow, the following relation holds for the potential

∇𝜙 = ∇(𝜙𝑤 + 𝐔⊙ 𝐱) = 𝐮𝑤 + 𝐔 = 𝐮, (6)

in which 𝜙𝑤 and 𝐮𝑤 are the potential and velocity attributed to waves
nd 𝐔 is a mean uniform flow velocity in horizontal direction. Use of
he potential leads to a reduced set of equations that in some instances
an be solved analytically. With the potential the continuity equation
ecomes
2𝜙 = 0. (7)

After substitution of definition (6) into momentum Eq. (2) and
ntegrating along a streamline, the momentum Eq. (2) becomes the
nsteady Bernoulli equation
𝜕𝜙
𝜕𝑡

+ 1
2
∣ ∇𝜙 ∣2 +

𝑝
𝜌
− 𝐹 = 𝐶, (8)

in which 𝐹 represents a body force and 𝐶 is an integration constant.

. Outflow boundary condition

ackground. Damping zones or relaxation zones require a length of
pproximately two wave lengths to be effective. For short wave compo-
ents, this comes at an acceptable cost, but for longer wave components
amping zones and relaxation zones take up a significant part of the
omputational domain. While still possible in 2D domains for long-
rested wave simulations, it can become infeasible in 3D because there
ay not be enough computer memory at one’s disposal. For this reason

his article focuses on local absorbing boundary condition that do not
equire increasing the domain size and come at hardly any additional
omputational cost. Alternative names for absorbing boundary condi-
ions (ABCs) are non-reflecting boundary conditions or open boundary
onditions.

Fourier transform of the planar wave equation can be used to derive
local ABC [25]. This procedure has also been summarized in [18].
first-order approximation of the dispersion relation obtained after

ransformation yields a first-order ABC, also known as a Sommerfeld
ondition, and higher-order approximations give higher derivatives in
he ABC with which waves propagating in different directions are
ccurately absorbed [26].

To account for the dispersive property of waves, i.e. waves at
ifferent frequencies propagate at different phase velocities, a higher-
rder ABC is one of the approaches, because it contains a number of
oefficients that together span a range of phase velocities for which
he ABC gives little reflection. Alternatively, a low-order boundary
ondition in combination with an estimate of the instantaneous phase
elocity at the boundary has been proposed by [27]. This estimate can
ead to division-by-zero instabilities and therefore this approach should
ot be adopted.

ABCs have also been investigated from the point of view of char-
cteristic variables [28–30]. This approach diagonalizes the system of
quations at hand to identify characteristic lines along which informa-
ion propagates into the domain or out. The part of the equations after
iagonalization that lets wave information propagate out is used as a
oundary condition.

Other researchers derive ABCs by factoring the wave equation into
omponents which represent the incoming and outgoing waves. The
omponents that prescribe the incoming wave field are then used to
esign the absorbing boundary condition. Factorization has been used
o derive ABCs for the 2-D acoustic equation [31] and for the acoustic
nd elastic wave equations [25]. These results are later extended to the
ne-way wave equation for migration [32]. This strategy has also been
3

dopted in our own work on ABCs and generating absorbing boundary
conditions (GABCs), see Duz et al. [22] and Wellens and Borsboom
[23].

The wave equation is decomposed in a somewhat different way from
factorization in [33]. It leads to local absorbing boundary conditions
obtained directly from the outgoing components of the wave field. It
is not necessary to approximate the outgoing components of the wave
field, as is the case with factorization of the wave equation. As the
derivation of the ABC in this article follows this approach and adapts
it for use with a range of phase velocities (dispersion), it is discussed
next.

Decomposition of the wave equation. The planar wave equation is de-
composed into the individual components representing incoming and
outgoing waves respectively. The outgoing wave component is adopted
to design an absorbing boundary condition [33].

Decomposition into wave components implies linearization, poten-
tially affecting performance in nonlinear wave simulations. The lin-
earization is local in space and limited to the position of the boundary
of the domain. The nonlinear transfer of energy between components
and the formation of bound components requires space and it therefore
only marginally affected by a local linearization near the boundary. The
boundary condition also does not affect the nonlinear processes that
take place inside the computational domain.

We will study waves with a two-dimensional wave number vector
𝐤 = (𝑘𝑥, 𝑘𝑦), whose length is denoted by 𝑘 ≡ |𝐤| =

√

𝑘2𝑥 + 𝑘2𝑦. The wave
number components 𝑘𝑥 and 𝑘𝑦 can be complex valued to distinguish
between propagating and evanescent/spurious waves (see [23] for the
latter). The unit vector in the wave direction 𝐤 is represented by 𝐞𝑘.

With the unit vector 𝐞𝑘, the planar wave equation can be decom-
posed as follows

∇2𝜙 − 1
𝑐2
𝜕2𝜙
𝜕𝑡2

=
(

∇ +
𝐞𝑘
𝑐
𝜕
𝜕𝑡

)(

∇ −
𝐞𝑘
𝑐
𝜕
𝜕𝑡

)

𝜙 = 0. (9)

A plane wave propagating in the direction 𝐞𝑘 with velocity 𝑐 has the
orm 𝜙 = 𝜙(𝐱 ⋅ 𝐞𝑘 − 𝑐𝑡). Applying the first factor in Eq. (9) to the plane
ave 𝜙 = 𝜙(𝐱 ⋅ 𝐞𝑘 − 𝑐𝑡) results in

∇ +
𝐞𝑘
𝑐
𝜕
𝜕𝑡

)

𝜙 = 0. (10)

This means that the factor ∇ + (𝐞𝑘∕𝑐)(𝜕∕𝜕𝑡) can be used to identify
plane waves traveling in the direction 𝐞𝑘. Similarly, the second factor
in Eq. (9) corresponds to those waves propagating in the opposite
direction −𝐞𝑘. If outgoing waves are propagating in the direction 𝐞𝑘, the
operator ∇ + (𝐞𝑘∕𝑐)(𝜕∕𝜕𝑡) can be used to design a boundary condition
which absorbs these waves without reflection.

In the original boundary condition [33], the wave propagation
direction 𝐞𝑘 was used as a main parameter to absorb plane waves
propagating in different directions. In this article, incoming waves are
unidirectional so that 𝐞𝑘 is fixed along the entire domain boundary. Our
work focuses on how to account for the effect of wave dispersion in the
presence of a mean flow.

Dispersion relation for linear waves and uniform mean flow. Consider a
ody of water with a uniform depth and a free surface denoted 𝜂𝑤.

Considering potential flow and a uniform mean flow 𝐔, the linear
inematic and dynamic boundary conditions at the free surface are
𝜕𝜂𝑤
𝜕𝑡

+
(

𝑈𝑥 +
𝜕𝜙𝑤
𝜕𝑥

)

𝜕𝜂𝑤
𝜕𝑥

+
(

𝑈𝑦 +
𝜕𝜙
𝜕𝑦

)

𝜕𝜂𝑤
𝜕𝑦

−
𝜕𝜙𝑤
𝜕𝑧

= 0||
|𝑧=𝜂

,

𝑔𝜂𝑤 +
𝜕𝜙𝑤
𝜕𝑡

+ 1
2
|∇𝜙𝑤 + 𝐔|2 = 𝐶||

|𝑧=𝜂
. (11)

here 𝑈𝑥 and 𝑈𝑦 are the components of the uniform mean flow 𝐔.
he subscript 𝑤 denotes the contribution only from waves. By choosing
onstant 𝐶 = 1

2𝑈
2 and ignoring the second-order terms, we obtain the

ollowing relations
𝜕𝜂𝑤 + 𝐔 ⋅ ∇𝜂 =

𝜕𝜙𝑤 |

| , (12)

𝜕𝑡 𝑤 𝜕𝑧 |𝑧=𝜂
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𝜕𝜙𝑤
𝜕𝑡

+ 𝐔 ⋅ ∇𝜙𝑤 + 𝑔𝜂𝑤 = 0||
|𝑧=𝜂

. (13)

Using the latter, which is a linearized Bernoulli equation, to elim-
inate the surface displacement 𝜂𝑤 from the kinematic condition (12)
gives (after multiplication with 𝑔)
( 𝜕
𝜕𝑡

+ 𝐔 ⋅ ∇
)2
𝜙𝑤 = −𝑔

𝜕𝜙𝑤
𝜕𝑧

|

|

|𝑧=𝜂
. (14)

For small amplitude waves, the relation at the exact position 𝑧 = 𝜂
are approximately satisfied at the mean free surface 𝑧 = 0. Waves of the
form 𝜙𝑤 = 𝜙𝑎𝑒i(𝐤⋅𝐱−𝜔𝑡) cosh(|𝐤|𝑧) with amplitude 𝜙𝑎 satisfy the linearized
boundary conditions and the continuity equation. Using this form, (14)
becomes

𝑔
𝜕𝜙𝑤
𝜕𝑧

|

|

|𝑧=0
= −𝑐2𝑘0∇ ⋅ ∇𝜙𝑤|𝑧=0, 𝑐2𝑘0 ≡ 𝑔 (tanh |𝐤|ℎ)∕|𝐤|. (15)

The notation 𝑐𝑘0 is the propagation speed without flow (hence the
0). Substitution of the relation (14) into Eq. (15) gives
( 𝜕
𝜕𝑡

+ 𝐔 ⋅ ∇
)2
𝜙𝑤 = 𝑐2𝑘0∇ ⋅ ∇𝜙𝑤. (16)

Working out the derivatives together with the expression for 𝜙𝑤
leads to the dispersion relation in the presence of a mean flow

𝜔± − 𝐔 ⋅ 𝐤 = ±𝑐𝑘0|𝐤|. (17)

Using the linear dispersion relation potentially affects the perfor-
mance of the boundary condition in nonlinear wave simulations. That
effect will be strongest for regular wave simulations. For steep, regular
waves there is a difference between the nonlinear phase velocity and
the linear phase velocity. That difference will make the reflection coeffi-
cient of the boundary condition larger. The wave components of higher
order than first order also bound to the base component, whereas the
boundary condition will consider them as free wave components with
their own phase velocity. In nonlinear, irregular wave simulations the
amplitudes of higher-order wave components are much smaller than for
steep regular waves. The difference in phase velocity for the many wave
components in the decomposition is also smaller in irregular waves
than in regular waves. Therefore, in irregular wave simulations the
limitation of using linearized theory locally, only at the position of the
boundary, is not thought to affect the performance of the boundary
condition substantially.

Solution of the dispersion relation for linear waves and uniform mean flow.
For a given frequency 𝜔, the solution of dispersion relation (17) will
depend on the angle between the wave direction and the direction of
the mean flow. The right-hand side of (17), 𝑐𝑘0|𝐤|, will be referred
as 𝜎(𝑘). For the situation that 𝐤 is real and the wave direction and
mean flow direction are the parallel, Fig. 2, reproduced from [34,35],
indicates the solutions of the dispersion relation. The dashed line
parallel to the 𝑘-axis in Fig. 2 represents the solution for the situation
without mean flow. One solution, indicated as point 𝐸, then exists. The
other solutions, indicated as points 𝐴 to 𝐷 with wave numbers 𝑘 for
which 𝜎(𝑘) is equal to 𝜔−𝐔 ⋅ 𝐤. Solutions 𝐴 and 𝐵 are for an opposing
mean flow, solutions 𝐶 and 𝐷 are for a following mean flow.

In maritime applications, solutions 𝐴 and 𝐶 are the ones of most
interest. Compared to the situation without flow, a following mean
flow increases the wave length and an opposing mean flow decreases
the wave length. Solutions 𝐵 and 𝐷, which do not exist if there is
no mean flow, correspond to shorter waves than 𝐴 and 𝐶. Solution 𝐵
corresponds to waves propagating against the flow, but with energy
transport 𝜕𝜎(𝑘)∕𝜕𝑘 in the direction of the flow. Solution 𝐷 corresponds
to waves propagating in the direction of the flow, but with wave energy
in opposite direction to the flow. For a sufficiently large flow velocity
in opposite direction to the wave direction, solutions 𝐴 and 𝐵 do not
exist, meaning that propagating wave modes do not exist under these
circumstances.
4

Fig. 2. Solution of the dispersion relation for linear waves on top of uniform mean
flow. The figure is from the work of [35].

4. Derivation of the ABC with a mean flow

Rewriting boundary condition (10) using the parameters from the
dispersion relation gives
(

|𝐤|𝐞𝑘
𝜕
𝜕𝑡

+ 𝜔∇
)

𝜙𝑤 = 0. (18)

Eq. (18) is a boundary condition with zero reflection for waves
of the form 𝜙𝑤 = 𝜙𝑎𝑒i(𝐤⋅𝐱−𝜔𝑡) cosh(|𝐤|𝑧). Substitution of the dispersion
relation (17) into (18) and division by |𝐤| leads to
(

𝐞𝑘
𝜕
𝜕𝑡

+ (𝑈 + 𝑐𝑘0)∇
)

𝜙𝑤 = 0. (19)

which is a vector relation. Here 𝑈 = 𝐔 ⋅ 𝐤. Dot-multiplying it with a
vector 𝐧 in normal direction to the boundary results in
(

(𝐧 ⋅ 𝐞𝑘)
𝜕
𝜕𝑡

+ (𝑈 + 𝑐𝑘0)
𝜕
𝜕𝑛

)

𝜙𝑤 = 0. (20)

Boundary condition (20) is the basis of the further derivations. It is
of the Sommerfeld type with zero reflection of a single wave component
with frequency 𝜔 propagating in direction 𝐞𝑘 on top of a mean flow 𝑈 .
The reflection is larger for wave components with other frequencies and
directions [23].

Approximation of the dispersion relation. For simulations with irregular
waves, with multiple wave components at the same time, we would
like the boundary condition (20) to have little reflection not for a single
wave component, but for a range of wave components. Following [23],
the first step of two steps in obtaining a boundary condition for a
range of wave components is to approximate the dispersion relation.
The better we approximate the dispersion relation, the less reflection
we obtain. A rational polynomial in 𝑘ℎ is introduced, where k =|𝐤| =
√

𝑘2𝑥 + 𝑘2𝑦, to approximate the dispersion relation [23]:

𝑐𝑘0 =
√

𝑔ℎ
√

tanh(𝑘ℎ)
𝑘ℎ

≈
√

𝑔ℎ
𝑎0 + 𝑎1(𝑘ℎ)2

1 + 𝑏1(𝑘ℎ)2
. (21)

The coefficients 𝑎0, 𝑎1 and 𝑏1 can be chosen such that for dif-
ferent application, different 𝑘ℎ-ranges of the dispersion relation are
approximated well.

The second step in obtaining a boundary condition for a range of
wave components is to replace wave number 𝑘 with an operation on
the solution variables. For waves of the form 𝜙𝑤 = 𝜙𝑎𝑒i(𝐤⋅𝐱−𝜔𝑡) cosh(|𝐤|𝑧),
taking the second derivative of the solution variable in 𝑧-direction
yields 𝑘2 times that same solution variable

𝜕2𝜙𝑤 = 𝑘2𝜙 . (22)

𝜕𝑧2 𝑤
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𝜙
t
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n
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c

ABC with a mean flow. Considering waves of the form 𝜙𝑤 =
𝑎𝑒i(𝐤⋅𝐱−𝜔𝑡) cosh(|𝐤|𝑧). Substitution of the approximate dispersion rela-

ion (21) and relation (22) into boundary condition (20) leads to an
bsorbing boundary condition (ABC) in the presence of a mean flow

𝐧 ⋅ 𝐞𝑘)
(

𝜕𝜙𝑤
𝜕𝑡

+ 𝑏1ℎ2
𝜕(𝜕2𝜙𝑤∕𝜕𝑧2)

𝜕𝑡

)

+
(

𝜕𝜙𝑤
𝜕𝑛

+ 𝑏1ℎ2
𝜕(𝜕2𝜙𝑤∕𝜕𝑧2)

𝜕𝑛

)

𝑈𝑘

+
(

√

𝑔ℎ𝑎0
𝜕𝜙𝑤
𝜕𝑛

+ 𝑎1ℎ2
𝜕(𝜕2𝜙𝑤∕𝜕𝑧2)

𝜕𝑛

)

= (𝐧 ⋅ 𝐞𝑘)
(

𝜕𝜙𝑤
𝜕𝑡

+ 𝑏1ℎ2𝜕2∕𝜕𝑧2
𝜕𝜙𝑤
𝜕𝑡

)

+
(

𝜕𝜙𝑤
𝜕𝑛

+ 𝑏1ℎ2𝜕2∕𝜕𝑧2
𝜕𝜙𝑤
𝜕𝑛

)

𝑈𝑘

+
(

√

𝑔ℎ𝑎0
𝜕𝜙𝑤
𝜕𝑛

+ 𝑎1ℎ2𝜕2∕𝜕𝑧2
𝜕𝜙𝑤
𝜕𝑛

)

=
[

(𝐧 ⋅ 𝐞𝑘)
(

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)

𝜕
𝜕𝑡
+

((

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)

𝑈𝑘 +
√

𝑔ℎ
(

𝑎0 + 𝑎1ℎ2
𝜕2

𝜕𝑧2

))

𝜕
𝜕𝑛

]

𝜙𝑤 = 0. (23)

GABC with a mean flow. At the inflow boundary, incoming waves
eed to be specified while preventing re-reflection of outgoing waves
imultaneously. Following [23], non-zero right-hand side consisting
f the same combination of operators applied to the incoming wave
otential is prescribed leading to a generating and absorbing boundary
ondition (GABC) in the presence of a mean flow
[

(𝐧 ⋅ 𝐞𝑘)
𝜕
𝜕𝑡

+
(

𝑈𝑘 +
√

𝑔ℎ
𝑎0 + 𝑎1ℎ2𝜕2∕𝜕𝑧2

1 + 𝑏1ℎ2𝜕2∕𝜕𝑧2

)

𝜕
𝜕𝑛

]

𝜙𝑤

=
[

(𝐧 ⋅ 𝐞𝑘)
𝜕
𝜕𝑡

+
(

𝑈𝑘 +
√

𝑔ℎ
𝑎0 + 𝑎1ℎ2𝜕2∕𝜕𝑧2

1 + 𝑏1ℎ2𝜕2∕𝜕𝑧2

)

𝜕
𝜕𝑛

]

𝜙𝑖𝑛. (24)

Here 𝜙𝑖𝑛 denotes the incoming wave potential that is of the form 𝜙𝑤
used earlier.

ABC in terms of primitive variables. The ABC in Eq. (23) and GABC
in (24) with a mean flow are utilized as boundary conditions for
outgoing waves in a method, based on [24], that solves for velocities
and pressures. The solution variables are staggered within a cell. The
domain boundary is chosen such that it coincides with the position of
the horizontal velocity 𝑢𝑏. It is essential that the velocity and pressure
in this boundary condition are defined at the same position. Any
other configuration would lead to phase differences between solution
variables at the boundary and additional spurious reflection.

In potential theory, the velocity in 𝑛-direction is defined to be the
derivative of the potential in that direction
𝜕𝜙𝑤
𝜕𝑛

= 𝐮𝑤 ⋅ 𝐧 = (𝐮𝑏 − 𝐔) ⋅ 𝐧. (25)

The subscript 𝑤 describes the velocity only due to waves. The
subscript 𝑏 here indicates the total velocity, defined exactly on the
domain boundary, attributed to both waves and the mean flow. To
obtain the expression for the pressure, the linearized Bernoulli equation
is used
𝜕𝜙𝑤
𝜕𝑡

= −
𝑝𝑏
𝜌

− 𝑔𝑧 − 𝐮𝑤 ⋅ 𝐔. (26)

Again the subscript 𝑏 implies that the pressure is specified at the do-
main boundary and obtained from linear interpolation of the pressures
in the cells on either side of the boundary. Substitution of relations (25)
and (26) into (23) yields

(𝐧 ⋅ 𝐞𝑘)
(

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)(

−𝑔𝑧 −
𝑝𝑏
𝜌

− 𝐮𝑤 ⋅ 𝐔
)

+
[

𝑈𝑘

(

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)

+
√

𝑔ℎ
(

𝑎0 + 𝑎1ℎ2
𝜕2

𝜕𝑧2

)]

(𝐮𝑤 ⋅ 𝐧) = 0. (27)
5

Since the following relation holds

𝑈𝑘𝐮𝑤 ⋅ 𝐧 = (𝐔 ⋅ 𝐞𝑘)(𝐧 ⋅ ∇)𝜙𝑤 = (𝐔 ⋅ 𝐞𝑘)(𝐧 ⋅ 𝐤)𝜙′
𝑤

= (𝐧 ⋅ 𝐞𝑘)(𝐔 ⋅ 𝐤)𝜙′
𝑤 = (𝐧 ⋅ 𝐞𝑘)(𝐔 ⋅ ∇)𝜙𝑤

= (𝐧 ⋅ 𝐞𝑘)(𝐮𝑤 ⋅ 𝐔), (28)

in which 𝜙′
𝑤 is the derivative of 𝜙𝑤 in the direction of 𝐤, the (G)ABC

with a mean flow (27) is written as follows

(𝐧 ⋅ 𝐞𝑘)
(

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)(

−𝑔𝑧 −
𝑝𝑏
𝜌

)

+
√

𝑔ℎ
(

𝑎0 + 𝑎1ℎ2
𝜕2

𝜕𝑧2

)

[(𝐮𝑏 − 𝐔) ⋅ 𝐧] = 0. (29)

This is the form that is implemented in the method used for evalu-
ating the performance of the (G)ABC below.

5. Stability analysis

A Sommerfeld type boundary condition has zero reflection for a
single wave component with frequency 𝜔 and a much larger reflection
for wave components with other frequencies. (G)ABC (29) has a large
range of wave components it can absorb, at the expense of some
reflection, say less than 5%, for all wave components in that range.
The reflection coefficient for the (G)ABC in the presence of a mean
flow is derived in Appendix. In addition to reflected wave components,
it was found in [23] that spurious wave components that grow in
time could exist, leading to instability if the coefficients 𝑎0, 𝑎1 and
𝑏1 in approximation (21) did not satisfy specific criteria. The criteria
were found by studying the reflection coefficient (ratio of reflected
wave amplitude over incoming wave amplitude) at the boundary, for
the different types of wave components that the system of equations
allows for. The system of equations allows for propagating wave modes,
evanescent wave modes and the spurious wave modes. In the situation
without a mean flow, propagating wave modes generate reflected wave
modes with the same frequency and a similar vertical velocity profile.
Evanescent wave modes are not created by the (G)ABC, but if present
due to an object nearby (a modeled maritime structure), then their
reflection coefficient is 1. Spurious wave modes do not exist if the
coefficients satisfy the criteria.

In the situation with a mean flow, the reflected wave components
have a different wave length due to the Doppler effect. Due to the
wave number being different, they also have a different vertical ve-
locity profile. Because of the differences in the vertical velocity profile
between incoming wave modes and reflected wave modes, the (G)ABC
can generate evanescent wave modes. The reflection coefficient of
evanescent wave modes does not change in the present of a mean flow,
and remains equal to 1 for all wave frequencies. And if the reflection
coefficient is small, the amplitudes of the evanescent wave modes will
be small. Spurious wave components are also still not generated if the
coefficients in the approximation satisfy specific criteria. Those criteria
are the same as for the situation without mean flow and repeated here
from [23] to be complete
𝑎0
𝜋2

< 𝑎1 <
4𝑎0
𝜋2

and 𝑎1 < 𝑏1 <
4
𝜋2
. (30)

The stability of the boundary condition when using these coeffi-
cients is demonstrated below by means of a long duration simulation.

6. Numerical implementation

The (G)ABC in Eq. (29) is discretized and incorporated in a numer-
ical method. The method employs a finite volume method (FVM) on
a fixed Cartesian grid with a staggered arrangement of variables for
the discretization of the governing equations. The structural geometry
is described by means of the cut-cell approach. The free surface is

transported by means of a Volume-of-Fluid (VoF) method.
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Using the notation in [23,24], the discrete system of equations
becomes

𝐮𝑛+1ℎ = 0. (31)


𝐮𝑛+1ℎ − 𝐮𝑛ℎ

𝛥𝑡
= −(𝐮𝑛ℎ)𝐮

𝑛
ℎ + 𝜈𝐮𝑛ℎ −

1
𝜌
𝐩𝑛+1ℎ + 𝐟𝑛ℎ . (32)

Here,  is a divergence matrix for the discrete continuity equa-
tion,  a diagonal matrix containing the control volume size, (𝐮𝑛ℎ) a
convective operator,  a diffusion operator and  a gradient operator.
The vector 𝐮ℎ contains the discrete velocities, 𝐩ℎ contains the discrete
pressure and 𝐟ℎ accounts for the discrete gravity. For the purpose of
energy preservation, the pressure should not contribute to the energy
balance. Therefore, the discrete pressure gradient  needs to be related
to the discrete divergence operator as  = −𝑇 .

An auxiliary vector �̃�ℎ, containing the contributions of convection,
diffusion and gravity at the old time level, is introduced

�̃�𝑛ℎ = 𝐮𝑛ℎ − ((𝐮𝑛ℎ)𝐮
𝑛
ℎ − 𝜈𝐮𝑛ℎ − 𝐟𝑛ℎ ). (33)

With the auxiliary velocity �̃�ℎ, the discrete momentum Eq. (32)
becomes

𝐮𝑛+1ℎ = �̃�𝑛ℎ − 𝛥𝑡
−1 1
𝜌
𝑇 𝐩𝑛+1ℎ . (34)

Substitution of the momentum equation into the continuity equation
and rearranging terms result in a discrete Poisson equation for the
pressure

−1𝑇 𝑝𝑛+1ℎ =
𝜌
𝛥𝑡

�̃�𝑛ℎ. (35)

The pressure at the new time level 𝑝𝑛+1ℎ in the above equation can
be solved with a linear solver. A Bi-CGSTAB solver with an incomplete
LU preconditioner has been adopted. The solution 𝑝𝑛+1ℎ in system (35)
is used to calculate the velocities 𝐮𝑛+1ℎ from Eq. (34).

A (G)ABC contains a combination of pressure and velocity and we
want to apply it at the inflow and outflow boundaries of the domain. At
the boundary, the velocity is defined, but the pressure is defined half a
mesh size away because of staggering the variables.

We choose 𝐧 = 𝐞𝑥 in the equation and present the boundary
conditions for this situation. Adding the spatial and temporal level to
the variables 𝑝𝑏 and 𝐮𝑏 in the boundary condition (29) yields

(𝐞𝑥 ⋅ 𝐞𝑘)
(

1 + 𝑏1ℎ2
𝜕2

𝜕𝑧2

)

(

−𝑔𝑧 −
𝑝𝑛+1𝑏,𝑘

𝜌

)

+
√

𝑔ℎ
(

𝑎0 + 𝑎1ℎ2
𝜕2

𝜕𝑧2

)

[(𝐮𝑛+1𝑏,𝑘 − 𝐔) ⋅ 𝐞𝑥] = 0. (36)

The pressure at the boundary 𝑝𝑛+1𝑏,𝑘 is obtained from linear interpo-
lation between the pressures in cells on either side of the boundary

𝑝𝑛+1𝑏,𝑘 = 1
2
(𝑝𝑖,𝑘 + 𝑝𝑖+1,𝑘)𝑛+1, (37)

in which the locations of the pressures near the boundary 𝑝𝑏,𝑘, 𝑝𝑖,𝑘 and
𝑝𝑖+1,𝑘 are shown in Fig. 3.

It is essential that the velocity and the pressure at the boundary are
defined at the same point in time. The pressures and velocities at the
boundary are determined at time 𝑡𝑛+1. We will discuss the discretization
of the (G)ABC in the 𝑥𝑧-plane. Therefore, the 𝑥-component of the term
(𝐮𝑛+1𝑏,𝑘 − 𝐔) ⋅ 𝐧 is written as 𝑢𝑛+1𝑏,𝑘 − 𝑈𝑥.

The horizontal velocity at the new time level 𝑢𝑛+1𝑏,𝑘 can be eliminated
by means of the momentum equation at the boundary

𝑢𝑛+1𝑏,𝑘 = 𝑢𝑛+1𝑖,𝑘 = �̃�𝑖,𝑘 −
1
𝜌

𝛥𝑡
𝛥𝑥𝑖+1,𝑘

(𝑝𝑖+1,𝑘 − 𝑝𝑖,𝑘)𝑛+1. (38)

Note that �̃� contains convective and diffusive terms. Substituting the
expressions (37) through (38) into Eq. (36) yields

(𝐞𝑥 ⋅ 𝐞𝑘)
(

1 + 𝑏1ℎ2
𝜕2

)

(−𝑔𝑧 − 1 (𝑝𝑖,𝑘 + 𝑝𝑖+1,𝑘)𝑛+1)
6

𝜕𝑧2 2
Fig. 3. Pressure at the domain boundary is calculated from the linear interpolation of
the pressure on either side of the boundary.

+
√

𝑔ℎ
(

𝑎0 + 𝑎1ℎ2
𝜕2

𝜕𝑧2

)

⋅
(

�̃�𝑖,𝑘 −
1
𝜌

𝛥𝑡
𝛥𝑥𝑖+1,𝑘

(𝑝𝑖+1,𝑘 − 𝑝𝑖,𝑘)𝑛+1 − 𝑈𝑥

)

= 0. (39)

For the approximation of the second derivation in 𝑧-direction, the
following operator , designed for a stretched grid, is employed

 =
⎡

⎢

⎢

⎣

1
2
3

⎤

⎥

⎥

⎦

= 1
1
2𝛥𝑧𝑖,𝑘𝛥𝑧𝑖,𝑘+1(𝛥𝑧𝑖,𝑘 + 𝛥𝑧𝑖,𝑘+1)

⎡

⎢

⎢

⎣

𝛥𝑧𝑖,𝑘
−𝛥𝑧𝑖,𝑘 − 𝛥𝑧𝑖,𝑘+1

𝛥𝑧𝑖,𝑘+1

⎤

⎥

⎥

⎦

. (40)

Here 𝛥𝑧𝑖,𝑘 = 𝑧𝑖,𝑘 − 𝑧𝑖,𝑘−1 and 𝛥𝑧𝑖,𝑘+1 = 𝑧𝑖,𝑘+1 − 𝑧𝑖,𝑘., with 𝑧𝑖,𝑘−1, 𝑧𝑖,𝑘
and 𝑧𝑖,𝑘+1 being the center locations of the pressure variables 𝑝𝑖,𝑘−1, 𝑝𝑖,𝑘
and 𝑝𝑖,𝑘+1 in Fig. 3. The operator  operates on the vectors 𝐩 and �̃�.

Now the following notations are introduced

𝜑 =
√

𝑔ℎ𝑎0, 𝜒 =
√

𝑔ℎ𝑎1ℎ
2,

𝜓 = (𝐞𝑥 ⋅ 𝐞𝑘)𝑏1ℎ2, 𝜏 =
1
𝜌
𝛥𝑡
𝛥𝑥
,

𝐩𝑖 =
⎡

⎢

⎢

⎣

𝐩𝑖,𝑘−1
𝐩𝑖,𝑘
𝐩𝑖,𝑘+1

⎤

⎥

⎥

⎦

, 𝐮𝑖 =
⎡

⎢

⎢

⎣

�̃�𝑖,𝑘−1
�̃�𝑖,𝑘
�̃�𝑖,𝑘+1

⎤

⎥

⎥

⎦

. (41)

The terms of unknown variables are arranged to be on the left-hand
side, and the terms with known variables on the right-hand side. The
second derivatives in 𝑧-direction of the variables 𝑔𝑧 and 𝑈𝑥, i.e. 𝜕2

𝜕𝑧2
(𝑔𝑧)

and 𝜕2

𝜕𝑧2
𝑈𝑥, are zero. Applying the operator in (40) and the notations in

(41) to Eq. (39), a discrete equation for the (G)ABC is obtained

[𝑧𝑙 𝑐 𝑧𝑟]𝐩𝑖 + [𝑟𝑙 𝑟𝑐 𝑟𝑟]𝐩𝑖+1
=[𝑧𝑙 𝑐 𝑧𝑟]�̃�𝑖 + (𝐧 ⋅ 𝐞𝑘)𝑔𝑧 + 𝜑𝑈𝑥. (42)

with the coefficients

𝑧𝑙 = (−𝜒𝜏 + 1
2
𝜓)1,

𝑐 = −𝜑𝜏 + 1
2
(𝐧 ⋅ 𝐞𝑘) − (𝜒𝜏 − 1

2
𝜓)2,

𝑧𝑟 = (−𝜒𝜏 + 1
2
𝜓)3, 𝑟𝑙 = (𝜒𝜏 + 1

2
𝜓)1,

𝑟𝑐 = 𝜑𝜏 + 1
2
(𝐧 ⋅ 𝐞𝑘) + (𝜒𝜏 + 1

2
𝜓)2,

𝑟𝑟 = (𝜒𝜏 + 1
2
𝜓)3,

𝑧𝑙 = 𝜒1, 𝑐 = 𝜑 − 𝜒2, 𝑧𝑟 = 𝜒3. (43)

Eq. (42) is an equation for the pressure variable 𝑝𝑖+1,𝑘 in a mirror cell
outside the domain, see Fig. 3. The pressure at the new time level 𝑡𝑛+1
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Fig. 4. No second derivatives of the solution variables are implemented at the free
surface.

is located on the left-hand side, while on the right-hand side horizontal
velocities including convective and diffusive terms at the old time level
𝑡𝑛 are placed.

The stencil of the discrete ABC in (42) is similar to that of the pres-
sure Poisson equation and can readily be combined with the equations
for the inside of the domain. However, the matrix on the left-hand side
includes the additional coefficients for the pressures 𝑝𝑖,𝑘−1 and 𝑝𝑖,𝑘+1
in Fig. 3 that are not part of the ‘normal’ five-point (in 2D) pressure
Poisson stencil.

The second derivatives of the pressures and velocities in the vertical
direction from three horizontal layers are required. No solution vari-
ables, however, are calculated above the free surface in one-phase flow
simulations so that only information below the free surface is available,
see Fig. 4.

The second derivatives of the velocities and pressures, which use
only one-sided information, may result in unstable simulations. There-
fore, in Surface cells (according to the labeling system in [23,24]), Som-
merfeld condition (20), with a prescribed coefficient 𝑐𝑘, is implemented
at the cost of accuracy.

Similarly, no solution variables are determined below the bottom of
the computational domain, see Fig. 5. Therefore, constant extrapolation
is applied to the velocity below the bottom, i.e. 𝑢𝑏,𝑘−1 = 𝑢𝑏,𝑘. The
dynamic part of the pressure below the bottom is also obtained from
constant extrapolation, combined with a linear extrapolation of the
hydrostatic part of the pressure, which results in 𝑝𝑏,𝑘−1 = 𝑝𝑏,𝑘 + 𝑔𝑧𝑏,𝑘−1.

7. Verification study

The (G)ABC with a mean flow in Eq. (42) is verified through
comparison between reflection coefficients from simulation and theo-
retical reflection coefficients (Appendix). Regular and irregular waves
in the presence of different flow velocities are taken into account. Both
following mean flow, in the same direction as the waves, and opposing
mean flow, in the opposite direction to the waves, are considered. All
simulations are nonlinear. The simulations with regular waves and a
higher value for 𝑘ℎ are steeper than for lower 𝑘ℎ. In simulations with
steeper waves, the amplitudes of the higher-order wave components
are larger. From the results we may interpret how that affects the
performance of the boundary condition.

Regular wave simulations. The wave has a height of 𝐻𝑤 = 1.0 m and
the water depth ℎ is 10 m for all simulations. Three following mean
flows with magnitudes U= 0.5, 1.0, 2.0 m∕s and two opposing flows
−0.5,−1.0 m∕s are accounted for. 25 values for 𝑘ℎ of the monochromatic
7

Fig. 5. The solution variables below the bottom are determined from the constant
extrapolation of the solution variables above the bottom.

Fig. 6. Approximation of the dispersion relation.

waves vary from 0.2 to 5 evenly. The domain length 𝐿𝑑 is selected to
be one and a half wavelength 𝐿𝑤 and thus 25 different domain sizes are
used. The simulation duration is always 6 times of 𝐿𝑑 ∕𝑐𝑔 , therefore, the
duration is different for each simulation and the wave energy (group
velocity 𝑐𝑔) travels 6 domain lengths in this duration.

The Sommerfeld condition with mean flow is perfect for one certain
wave component and flow velocity. However, an irregular wave in
reality is often composed of a number of components, each individual
component has its own wave frequency, wave number and phase.
Although a tuned Sommerfeld condition works better for regular waves,
the (G)ABC is studied also with regular waves so that we may obtain
a numerical reflection coefficient and compare it to the theoretical
reflections to study its performance. To account for the dispersive
properties of waves, the coefficients in the boundary condition GABC
with flow can be chosen such that the dispersion relation and reflection
coefficients of the waves with the 𝑘ℎ in the range ⟨0, 6) are approx-
imated well for irregular waves. With 𝑎0 = 1.04, 𝑎1 = 0.106, and
𝑏1 = 0.289, the approximate dispersion relation is illustrated in Fig. 6
and the theoretical reflection coefficient can be computed based on
Appendix.

To obtain the numerical reflection coefficient, the outgoing and
reflected waves should be distinguished at their respective wave num-
bers from the wave signals in the domain. The time history of the
surface elevation at all grid points in the computational domain is
adopted to perform Fourier analysis in both space and time. The 2D
Fourier transform results in the wave amplitudes for a range of wave
numbers. The wave numbers decomposed from the Fourier transform
are located in the range −2𝜋[−𝑁 ∕2 ∶ 𝑁 ∕2 − 1]∕(𝑁 𝛥𝑥), in which 𝑁
𝑥 𝑥 𝑥 𝑥
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Fig. 7. Comparison between simulated and theoretical reflection coefficients for regular
waves on following mean flow: 𝑈 = 0.5 m∕s.

Fig. 8. Comparison between simulated and theoretical reflection coefficients for regular
waves on following mean flow: 𝑈 = 1.0 m∕s.

is the number of grid cells in 𝑥-direction and 𝛥𝑥 is the grid size. The
number of time instances is denoted by 𝑁𝑡 and the time step by 𝛥𝑡,
respectively. Positive wave numbers correspond to the incoming wave
components, negative wave numbers corresponds to the reflected wave
components. The reflection coefficient is obtained from the ratio of the
wave amplitudes of the positive wave number and the negative wave
number associated with it through the dispersion relation. Therefore,
no negative wave numbers are present in Figs. 7 through 11.

To measure the accuracy of the GABC with flow, the numerical
reflection coefficients obtained from the above 125 test cases are com-
pared with the theoretical ones, which are derived in the Appendix.
Figs. 7 to 11, which correspond to the following magnitudes 𝑈 =
0.5, 1.0, 2.0 m∕s and the opposing flows 𝑈 = −0.5,−1.0 m∕s respectively,
compare the numerical reflection coefficients obtained from the nu-
merical simulations with the theoretical ones. All simulated reflection
coefficients are lower than 5%, but larger than theoretical reflection
coefficients. They are larger due to the fact that the second derivative of
the solution variables could not be continued above the free surface and
that an approximation needed to be made there. This was found from
the working leading up to Wellens and Borsboom [23], for which the
nonlinear implementation was compared to an implementation with
linearized governing equations. In the implementation with linearized
governing equations, the second derivative of the boundary condition
near the free surface can be continued so that the performance in
this situation could be compared to the situation with a Sommerfeld
condition in the cell at the boundary near the free surface.

In Fig. 8, there are no reflected wave components for the 𝑘ℎ values
larger than 4.2, because they is no solution of the dispersion relation
for those wave numbers. The reflection coefficients for the case 𝑈 =
2.0 m∕s in Fig. 9, have no reflected wave components for 𝑘ℎ values
larger than 1.4, because of the same reason.

The numerical reflection coefficients for regular waves on top of
opposing flows are also compared with the theoretical values. The
result for the flow magnitude 𝑈 = − 0.5 m∕s is shown in Fig. 10. On
the whole, the simulated reflections are larger than their theoretical
counterparts, but for all the 𝑘ℎ are less than 5 %. Given a stronger
opposing mean flow 𝑈 = −1.0 m∕s, the simulated reflections show a
similar tendency and are in good agreement with theory, see Fig. 11.
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Fig. 9. Comparison between simulated and theoretical reflection coefficients for regular
waves on following mean flow: 𝑈 = 2.0 m∕s. The reflections do not ever exist for 𝑘ℎ
values larger than 1.4.

Fig. 10. Comparison between simulated and theoretical reflection coefficients for
regular waves on following mean flow: 𝑈 = −0.5 m∕s.

Fig. 11. Comparison between simulated and theoretical reflection coefficients for
regular waves on following mean flow: 𝑈 = −1.0 m∕s.

The numerical reflection coefficients for the 𝑘ℎ ∈ [2.6, 3.0] are seem-
ingly discontinuous. Because the simulation results themselves did not
show anything out of the ordinary, the apparent discontinuity remains
an ongoing investigation.

Irregular waves simulations. To further test the (G)ABC with mean flow,
which has primarily been designed for simulations of long-crested
irregular waves on top of a mean uniform flow, tests with irregular
waves in combination with following and opposing flows have been
performed in a 2D computational domain.

The performance of the boundary condition is measured by means
of the reflection coefficients. A JONSWAP wave spectrum, see Table 1,
on top of a mean flow, with GABC at both inflow and outflow end of
the domain, is adopted to obtain the numerical reflection coefficients,
which are compared with the theoretical counterparts.

Two simulations have been performed, in which the above JON-
SWAP spectrum is imposed on top of a following mean flow: 1.0 m∕s
and an opposing mean flow: −0.5 m∕s, respectively. The domain has a
length of 400 m. The finest grid size in both 𝑥 and 𝑧-directions is 0.5 m.
The duration of the simulations is specified as 1200 s for the accuracy
of the Fourier transform. For the shortest incident wave period that has
energy, 200 time steps per period are applied. For the smallest incident
wavelength that has energy, 12 cells per wavelength are adopted.
For those wave components the effect of numerical dispersion is not
negligible. It is a compromise for reasons explained below.
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Table 1
JONSWAP spectrum.
Parameter Value

Peak period 6.0 [s]
Significant wave height 2.0 [m]

Table 2
Coefficients of ABC.
Parameter Value

a0 1.04 [-]
a1 0.106 [-]
b1 0.289 [-]

The simulations start with a uniform mean flow, i.e. the flow
magnitude is the same through the domain and no waves are present
at 𝑡 = 0. Waves are imposed at the inflow side of the domain using
linear wave potential theory. The surface elevation and velocities at
the inflow boundary are gradually built up by means of linear ramp
function over an interval of two significant wave periods.

The coefficients of the GABC are the same as for the regular wave
simulations, see Table 2. They are tuned in such a way that the
reflection coefficients over the range of 𝑘ℎ ∈ (0, 6] are less than 2%.
The coefficient in the Sommerfeld condition applied at the surface cells,
which is the phase velocity of the outgoing wave, is tuned according to
the peak component in the spectrum.

Here the procedure to extract the numerical reflection coefficients
is different from what was used for regular waves, because the wave
components going in different directions could not be identified so
straightforwardly.

Note that for irregular waves there are some other widely-used
methods to separate incident and reflected waves. For example, a 2-
point method is proposed [36]. Here a simultaneous recordings of
wave profiles is made at two adjacent locations on a line parallel
to the direction of wave propagation. Since the 2-point method has
limitations, a 3-point approach [37] was proposed, which uses a least
square analysis for decomposing the measured spectra into incident and
reflected spectra with greater accuracy and range.

Here, another method is adopted [23] that is more accurate for
analyzing irregular waves than the methods referred for steeper sea
states, but at the cost of more computational effort. First, a wave simu-
lation is performed in a large domain of length 10, 000 m, which is large
enough that during the entire duration reflected waves cannot reach the
measurement location. The required domain length is determined from
the phase velocity of the fastest propagating wave components and the
duration of the simulation: 𝐿𝑑 =

√

𝑔ℎ𝑡𝑚𝑎𝑥. Here ℎ is the water depth.
In the meantime, another simulation is carried out in a small do-

main. This simulation is same as the previous one in the large domain in
every aspect, except for the domain length and the boundary condition
applied at the outflow end of the domain. Measurements of the surface
elevation in the small domain, taken at exactly the same positions,
are compared to measurements in the large domain. Their difference
can only be attributed to the boundary condition since everything else
is same. The large domain and small domain, with the measurement
location in the middle of the small domain, are illustrated in Fig. 12.
The simulation took 36 hours in the large domain and 25 minutes in
the short domain to finish. The time required for the simulation in the
large domain is the main reason why the compromise mentioned above
was necessary, and why we did not adopt a small grid size.

Subtraction of the wave signal at the measurement location in
the large domain from the wave signal in the small domain where
the boundary condition GABC is applied results in a reflection signal.
Subsequently, the wave signal in the large domain and the reflection
signal are decomposed into their Fourier components, which are used to
calculate the spectra and reflection coefficients. Note that this method
disregards any nonlinearities such as wave–wave interactions. The
9

Fig. 12. Large and small domains used to obtain reflected signals in the middle of the
small domain.

resulting input spectrum, reflected spectrum and reflection coefficients
will be compared with theory, see Fig. 13.

First, the input spectrum obtained from the numerical simulation
is given in Fig. 13(a), which shows reasonable agreement with the
theoretical one. The reflected wave spectrum is shown in Fig. 13(b).
A shift of the wave number of the reflected waves is visible due to
the Doppler effect of the opposing mean flow on the reflected waves.
The 𝑘ℎ-axis is different from that in the other three figures, since the
reflected modes have shorter wavelengths compared to the outgoing
modes in the presence of the following mean flow. The NaN values in-
dicate that reflected components do not exist for these wave frequencies
(no solution of the dispersion relation).

The reflection coefficients in comparison with theory are illustrated
in Fig. 13(c). The simulated reflections for the shorter waves are smaller
than theory. This may be attributed to wave nonlinearity and insuffi-
cient grid resolution for these shorter waves. There is no more reflection
for 𝑘ℎ > 4.24, because the corresponding reflected wave modes have
wave numbers for which a solution of the dispersion relation does not
exist.

The procedure to post-process the results of irregular waves in
an opposing mean flow is the same as what is used for a following
mean flow. The flow velocity was equal to 𝑈 = −0.5 m∕s. Fig. 14
presents the input spectrum, reflected spectrum and reflection coef-
ficients, which are numerically computed, in comparison with the
theoretical reflection coefficient.

As can be observed in Fig. 14(a), the numerical input spectrum
agrees well with the theoretical JONSWAP spectrum. Note that the 𝑘ℎ-
axis for the reflected spectrum (see Fig. 14(b)) is different from that
in the previous figure, because the reflected wave modes have longer
wavelengths than the corresponding outgoing modes in the presence
of the opposing mean flow. For the other reflected wave components
with 𝑘ℎ < 3.8, which correspond with the outgoing modes with 𝑘ℎ < 6,
the reflected energy matches reasonably with theory. The difference is
likely due to the steepness of the waves in the simulations. In Fig. 14(c),
the reflection coefficients for different wave numbers are presented.
For the wave modes with 3 < 𝑘ℎ < 6, the reflection coefficients are
larger than the analytical results. This deviation is likely caused by
the increased steepness in opposing flow, which adds to the nonlinear
effects at the boundary.

A final verification concerns the stability of the boundary condition
with the coefficients that were chosen. For that a simulation with the
same settings as the irregular wave simulations was performed, but for
a duration that is ten times as long. The simulation was set to run until
104 s. Fig. 15 shows the free surface in the middle of the domain during
that time. The free surface does not show exponential growth, which
would be an indication of instability.

8. Validation study

A validation study has been performed to demonstrate that the
(G)ABC with flow can be applied in the real maritime applications. The
simulated heave and pitch motions of a Wigley hull at forward speed in
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Fig. 13. Irregular wave simulation in comparison with theory: 𝑈 = 1.0 m∕s.

both regular and irregular waves are compared with the experimental
results.

The experimental tests of a Wigley hull have been specifically
designed for validation and carried out in the towing tank of Delft
University of Technology, see Fig. 16. The data of the experiment are
shared as open data [38]. The hull is based on the Wigley parameter
for the length 𝐿 = 3 m, the width 𝐵 = 0.3 m and the draft 𝑇 = 0.1875 m.
However, the actual draft of the model in the experiment is 0.2 m, which
10
Fig. 14. Irregular wave simulation in comparison with theory: 𝑈 = −0.5 m∕s.

is different from the 𝑇 in the Wigley parameter set. The ship parameters
used in the experiments and simulations are presented in Table 3.

The motions of the Wigley hull are measured through two vertical
position gauges, located half a meter away from the center of gravity
(CoG) of the model. Then the heave and pitch motions at the CoG of the
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.

Fig. 15. Stability demonstration: long duration simulation showing free surface in the
middle of the computational domain.

Fig. 16. The wigley hull model in the towing tank.

Fig. 17. Vertical position gauges on the ship model.

Fig. 18. Time history of surface elevations for four grid resolutions.

Table 3
Ship parameters used in the experiments and simulations. J22 is the radius of inertia
for pitch.

L (m) B (m) T (m) Mass (Kg) J22 (m)

3.0 0.3 0.2 81.9 0.64

hull can be calculated. Fig. 17 shows the positions of the measurement
instruments which will be utilized to compare the simulated results
with the experimental results. The wave gauge whm, which is fixed to
the carriage and located at a distance of 2.984 m away from the center of
gravity (CoG), measures the surface elevations. The measurements stop
as soon as reflected waves from the beach start to arrive at the model
in the tank. Several sea states such as regular and irregular long-crested
waves, and different forward speeds are imposed on the Wigley hull.
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Table 4
Wave heights, periods, lengths and ship forward speeds in the regular wave experiments

Run ID H [m] T [s] U [m/s]

77 0.057 1.25 1.0
79 0.052 1.645 0.5

Grid study. The aim of the grid study is to obtain sufficient grid
resolution for representing the input, according to the measurements
in the experiments without the Wigley model present. The grid study
simulations are performed in 2D computational domains. The domain
size in 𝑥-direction was chosen to correspond to five wave lengths.
The water depth is specified as 0.73 m in line with the depth in the
experiment.

At 𝑡 = 0 the wave is generated with velocities according to Airy
theory and ramped up linearly over two wave periods to the full ampli-
tude into the computational domain. At every time step after the initial
condition, the flow variables at the boundary are calculated according
to the Airy wave theory, and prescribed at the inflow boundary.

Four simulations are performed to investigate which grid resolution
suffices. The input wave height is 0.0633 m, and the period is 1.25 m.
The first simulation is performed with a mesh size of 𝛥𝑥 = 0.125 m on
a uniform grid. With the same wave, the mesh sizes for the other three
tests are refined to 𝛥𝑥 = 0.0625, 0.0313 and 0.0156 m, respectively.

At both inflow and outflow boundary, the first-order generating
and absorbing boundary condition (GABC) with a mean flow is ap-
plied. A free-slip condition is employed at the remaining sides of
the computational domain, as it allows for a coarser grid near those
boundaries.

The simulated surface elevations measured slightly inside the do-
main are depicted in Fig. 18. With the grid refined by a factor of 2
in three successive tests, the simulated wave amplitudes increase from
0.0282 m to 0.0289 m, 0.0291 m and finally 0.0294 m. As can be seen,
it is 7% smaller than the expected wave amplitude 0.0316 m, which
is acceptable for engineering application. A difference between the
experiment and the simulation remains, because linear wave theory is
adopted to generate waves, while the method is nonlinear. This creates
a mismatch at the inflow boundary that does not go away when the
simulation results converge.

With a refinement factor of 2, the computational cost increases by
a factor of 24. Considering the number of grid cells and the simulation
durations adopted in the later simulations in this work, further refine-
ment level will make the simulations too expensive. In order to obtain
the desired wave height, our strategy is to specify a slightly higher
input wave height in the simulation with the finest grid in our test,
with 𝛥𝑥 = 0.0156 m, that is still affordable in terms of computational
cost.

Wigley model advancing in regular waves. First, two simulations of the
Wigley model in regular waves are chosen to investigate how the
ship motions change when the domain boundary is located closer to
the structure. Two waves are chosen from two tests 77 and 79 in
the experiments, in which different forward speeds of the ship are
considered. The test identification numbers of the experiments with
regular waves are given in Table 4, with the wave heights, periods,
lengths and ship forward speeds associated with these tests.

In simulation 77, the Wigley model is positioned a distance of two
ship lengths away from the inflow boundary. Another two ship lengths
are left on the downstream side of the hull. Consequently, the size of
the domain in 𝑥-direction becomes 𝐿𝑥 = 5𝐿 = 15 m. In 𝑦-direction,
the width of the domain is selected the same as that in the experiment,
which is 𝐿𝑦 = 2.75 m. The water depth is specified as 0.73 m, the same
as in the experimental towing tank.

For simulation 79, the dimension of the computational domain in
the 𝑥-direction is 𝐿 = 3.33𝐿 = 10 m, which is smaller than the domain
𝑥
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Fig. 19. The comparison of numerical and experimental surface elevation for test 77.

Fig. 20. Numerical results of the heave and pitch motion for the test 77.

size 𝐿 = 15 m in the test 77. The width and water depth are taken as
2.75 m and 0.73 m, which are identical to those in the test 77.

The mesh for these two simulations is kept constant at 𝛥𝑥 = 𝛥𝑦 =
𝛥𝑧 = 0.0156 m in all three directions. The GABC with mean flow is
applied at both inflow and outflow boundaries. For test 77, first the
water surface elevation measured at 2.984 m in front of the Wigley
model is presented in Fig. 19. It can be seen that the resulting wave
height from the numerical simulation is 0.057 m, which is identical as
measured in the experiment. With this wave, the results of heave and
pitch motions are obtained, see Figs. 20(a) and 20(b). The simulated
heave amplitude has a value of 0.023 m, which is the same as in the
experiment. The pitch amplitudes measured in both the simulation and
experiment are 2.45◦.

For the test 79, the domain size is 2∕3 of that in the test 77.
The surface elevation measured at 2.984 m in front of the ship model
is shown in Fig. 21. The wave heights for both the simulation and
experiment are 0.052 m. The resulting heave and pitch motions for
the test 79 in the simulation and experiment are shown in Figs. 22(a)
and 22(b), respectively. The average heave amplitude of 0.018 m is
obtained in the simulation, which agrees with that in the experiment.
The simulated and experimental pitch amplitudes are both 1.57◦.

It can be concluded from these results that the boundary condition
GABC with mean flow works as well in the smaller domain of test 79
as in the large domain of test 77, for the Wigley hull at forward speed
in regular waves with the same grid size. The domain boundaries can
be located quite near to the model using this boundary condition.

Wigley model advancing in irregular waves. In test 63, the Wigley model
encounters an irregular wave, with significant wave height 0.006 m
and peak period 1.39 s, causing wave diffraction and ship motions. The
forward speed of the hull in this test is 0.5 m∕s, and thus the Froude
number is 𝐹𝑟 = 0.092.

To obtain the input wave signals for the numerical simulation, the
wave signal from 𝑡 = 42 s to 𝑡 = 102 s, measured by the wave gauge
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Fig. 21. The comparison of numerical and experimental surface elevation for the test
79.

Fig. 22. Numerical results of the heave and pitch motion for the test 79.

Fig. 23. Time history of the wave from𝑡 = 42 s to𝑡 = 102 s in the experiment 63.

located at 2.984 m away from the center of gravity of the Wigley model,
is taken. That part of the signal contains within itself the transition
between sailing in calm water to when the model first encounters the
waves that are generated. The signal is shown in Fig. 23.

By means of a Fourier transform of the wave signal, the individual
wave components with encounter frequencies are obtained. These fre-
quencies need to be transformed to earth-fixed values as input in the
numerical simulation. The extent of the computational domain in the
horizontal direction is 12 m. The width of the domain is 2.75 m which is
the same as in the experiment. The water depth has a value of 0.73 m,
also the same as in the experiment. The boundary condition GABC with
mean flow is applied at the outflow boundary of the domain. The grid
size in all three directions is 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 0.0156 m, which results in
10 million grid points. The time step varies according to the Courant
criterion, but is never larger than 0.025 s.

First the time series of simulated surface elevation at the inflow
boundary is compared with the experimental results. For visualization,
the experimental surface elevation is shifted in time from 𝑡 = 42 s
to 𝑡 = 0, as shown in Fig. 24. In the first 10 seconds, the simulated
elevation oscillates around the mean level, which is an artifact of not
sending in the shortest wave components from the Fourier transform,
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Fig. 24. Surface elevation for test 63.

Fig. 25. Heave motion for test 63.

Fig. 26. Pitch motion for test 63.

because they have the tendency to cause high velocities near the free
surface. From 𝑡 = 10 s until the end of the simulation, the root mean
square error between the simulated and experimental surface elevation
is 0.001 m, which is acceptable.

With the input wave, the resulting heave and pitch motions of the
Wigley model in the simulation are obtained and compared with the
experimental data in Figs. 25 and 26, respectively. There is a mean
offset in both simulated and experimental heave motions, which is
removed in the figure for comparison. There is a phase lag between two
curves in the time interval between 10 and 15 seconds. After that the
phase difference disappears. The simulated heave signal is lower than
the experimental data between 𝑡 = 17 s and 𝑡 = 25 s and higher for the
rest of the time. The root mean square error between the simulation and
experiment is 0.0011 m, also acceptable. Comparing the pitch motion,
a slight phase difference between simulated and experimental results
is also present but smaller than in the heave motion. The root mean
square difference between the pitch signal obtained from the simulation
and the signal from the experiment is 0.09◦.

The simulation of a Wigley model at forward speed in irregular head
waves has good agreement with the experiment. This indicates that the
GABC with a mean flow not only works well for theoretical conditions
with only regular or irregular waves, but also for cases where the
ship generated waves are present. A significant difference between the
theoretical simulations and the simulations of the ship model is the
wave system that is stationary with respect to the ship. The stationary
wave system leads to a change of the mean free surface around the ship.
The comparison between the simulation and the experiment therefore
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also demonstrates that the ship generated stationary waves do not
disturb the GABC’s performance.

9. Conclusions

This paper discusses the background, derivation, implementation
and results of a generating absorbing boundary condition (GABC) for
waves in the presence of a mean uniform flow. The GABC is obtained
from the decomposition of the planar equation including flow. Being
based on potential flow theory, use of the boundary condition is limited
to locations where waves are not expected to break, e.g. very close to
the structure and in the surf zone in coastal modeling. Combining the
boundary condition with an approximation of the dispersion relation
and vertical derivatives of the solution variables near the boundary,
yields a condition with little reflection for a range of wave numbers.
This is advantageous for irregular wave simulations. The range of
dimensionless wave numbers investigated here was between 0 and
6. The fact that linearized potential theory was used locally at the
boundary instead of nonlinear potential theory was argued not to limit
the performance of the boundary condition considerably.

In simulations of regular and irregular waves on top of a mean flow,
the ABC with flow performs as well as in experimental facilities for
waves, with the reflection coefficients as low as 5% for mildly steep
waves over a range of frequencies. Various flow velocities up to 2 m/s
and different directions, both following and opposing, have been taken
into account. The main discrepancies between numerical and theoret-
ical reflections for steeper waves are caused by the implementation
of the Sommerfeld condition near the free surface of the boundary
condition. Other discrepancies, to a limited extent, can be attributed
to the fact that linear theory is used to generate these waves and to
derive the boundary condition, which may cause a small mismatch. The
latter, in particular, shows for cases with opposing flow, in which the
steepness was significant as a result of the shorter wave lengths in these
conditions.

The validation study indicates that GABC not only works well for
theoretical conditions with waves only, but also for cases where ship
generated waves are present. The comparison between the simula-
tions and the experiment demonstrates ship interaction with waves
is captured well by the numerical method with the GABC at the
boundaries.
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Appendix

In this appendix, the theoretical reflection coefficient for the Som-
merfeld condition incorporating uniform mean flow in a 1D domain is
derived.

Consider the Sommerfeld condition applied to a wave potential
function 𝜙𝑤 and constant mean flow 𝑈 :

[𝜕∕𝜕𝑡 + (𝑐𝑏𝑐 + 𝑈 )𝜕∕𝜕𝑥]𝜙𝑤 = 0, (44)

in which 𝑐𝑏𝑐 is a tuning parameter, which is an approximation of the
intrinsic celerity, i.e. without flow. The condition (44) is formulated in
𝑥-direction.

Suppose that an outgoing wave component and its reflected com-
ponent can be identified. Then, the wave potential function 𝜙𝑤 can be
written as a combination of the outgoing wave potential and reflected
wave potential:

𝜙 = 𝜙𝑜𝑢𝑡 + 𝜙𝑟𝑒𝑓𝑙 ,

𝜙𝑜𝑢𝑡 = 𝐴𝑜𝑢𝑡𝑒
i(𝜔𝑡−𝑘𝑜𝑢𝑡𝑥+𝜃𝑜𝑢𝑡), 𝜙𝑟𝑒𝑓𝑙 = 𝐴𝑟𝑒𝑓𝑙𝑒

i(𝜔𝑡−𝑘𝑟𝑒𝑓𝑙𝑥+𝜃𝑟𝑒𝑓𝑙 ) (45)

where 𝐴𝑜𝑢𝑡 and 𝐴𝑟𝑒𝑓𝑙 are the amplitudes of the respective wave modes.
𝑜𝑢𝑡 and 𝑘𝑟𝑒𝑓𝑙 are the wave numbers of the outgoing wave and reflected
ave mode, respectively.

Note that the outgoing wave mode propagates along the positive 𝑥-
direction. The reflected wave mode is produced by the outgoing wave
mode when the Sommerfeld condition is not perfectly tuned to the
wave mode. Accordingly, this reflected wave mode propagates in the
opposite direction of the outgoing wave mode, i.e. along the negative
𝑥-direction. Hence, the wave number 𝑘𝑟𝑒𝑓𝑙 is negative.

Since we have the relation 𝜔𝑡0−𝑘𝑜𝑢𝑡𝑥𝑏𝑐+𝜃𝑜𝑢𝑡 = 𝜔𝑡0−𝑘𝑟𝑒𝑓𝑙𝑥𝑏𝑐+𝜃𝑟𝑒𝑓𝑙 at
a certain time 𝑡 = 𝑡0 at the boundary 𝑥 = 𝑥𝑏𝑐 , the phase for the reflected
mode 𝜃𝑟𝑒𝑓𝑙 can be expressed as:

𝜃𝑟𝑒𝑓𝑙 = 𝜃𝑜𝑢𝑡 + (𝑘𝑟𝑒𝑓𝑙 − 𝑘𝑜𝑢𝑡)𝑥𝑏𝑐 . (46)

The wave numbers 𝑘𝑜𝑢𝑡 and 𝑘𝑟𝑒𝑓𝑙 are obtained from the dispersion
relation as follows:

𝜔 − 𝑘𝑈 = ±
√

𝑔𝑘 tanh(𝑘ℎ) (47)

To obtain the reflection coefficient, the following derivatives are
equired:

𝜙𝑜𝑢𝑡∕𝜕𝑡 = i𝜔𝜙𝑜𝑢𝑡, 𝜕𝜙𝑟𝑒𝑓𝑙∕𝜕𝑡 = i𝜔𝜙𝑟𝑒𝑓𝑙

𝜙𝑜𝑢𝑡∕𝜕𝑥 = −i𝑘𝑜𝑢𝑡𝜙𝑜𝑢𝑡, 𝜕𝜙𝑟𝑒𝑓𝑙∕𝜕𝑥 = −i𝑘𝑟𝑒𝑓𝑙𝜙𝑟𝑒𝑓𝑙 . (48)

Substitution of the relations in (48) into Eq. (44) and evaluation of
he obtained expression yields:

𝜔 − (𝑐𝑏𝑐 + 𝑈 )𝑘𝑜𝑢𝑡]𝐴𝑜𝑢𝑡𝑒i(𝜔𝑡−𝑘𝑜𝑢𝑡𝑥+𝜃𝑜𝑢𝑡)

+ [𝜔 − (𝑐𝑏𝑐 + 𝑈 )𝑘𝑟𝑒𝑓𝑙]𝐴𝑟𝑒𝑓𝑙𝑒
i(𝜔𝑡−𝑘𝑟𝑒𝑓𝑙𝑥+𝜃𝑟𝑒𝑓𝑙 ) = 0. (49)

Then the reflection coefficient at the boundary 𝑥 = 𝑥𝑏𝑐 is determined
s:

=
𝐴𝑟𝑒𝑓𝑙
𝐴𝑜𝑢𝑡

= −
[(𝑐𝑏𝑐 + 𝑈 )𝑘𝑜𝑢𝑡 − 𝜔]𝑒i(𝜔𝑡−𝑘𝑜𝑢𝑡𝑥𝑏𝑐+𝜃𝑜𝑢𝑡)

[(𝑐𝑏𝑐 + 𝑈 )𝑘𝑟𝑒𝑓𝑙 − 𝜔]𝑒
i(𝜔𝑡−𝑘𝑟𝑒𝑓𝑙𝑥𝑏𝑐+𝜃𝑟𝑒𝑓𝑙 )

. (50)

Since the relation (46) at the boundary 𝑥 = 𝑥𝑏𝑐 holds, the reflection
coefficient 𝑅 can be further written as:

𝑅 = −
(𝑐𝑏𝑐 + 𝑈 )𝑘𝑜𝑢𝑡 − 𝜔
(𝑐𝑏𝑐 + 𝑈 )𝑘𝑟𝑒𝑓𝑙 − 𝜔

= −
𝑘𝑜𝑢𝑡∕𝜔 − 1∕(𝑐𝑏𝑐 + 𝑈 )

. (51)
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𝑘𝑟𝑒𝑓𝑙∕𝜔 − 1∕(𝑐𝑏𝑐 + 𝑈 )
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