
Delft Center for Systems and Control

Comparison of Optimal Control
Techniques for Learning-based
RRT

Deepak Paramkusam

M
as

te
ro

fS
cie

nc
e

Th
es

is

Comparison of Optimal Control
Techniques for Learning-based RRT

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

Deepak Paramkusam

February 16, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Comparison of Optimal Control Techniques for Learning-based RRT

by
Deepak Paramkusam

in partial fulfillment of the requirements for the degree of
Master of Science Mechanical Engineering

Dated: February 16, 2018

Supervisor(s):
Prof.Dr.Ir. Martijn Wisse

Ir. Mukunda Bharatheesha

Reader(s):
Dr. Sergio Grammatico

Ir. Wouter J. Wolfslag

Abstract

Kinodynamic motion planning for a robot involves generating a trajectory from a given robot
state to goal state while satisfying kinematic and dynamic constraints. Rapidly-exploring
Random Trees (RRT) is a sampling-based algorithm that has been widely adopted for this
[1]. However, RRT is not fast enough to enable its use in industrial applications. Recently,
supervised learning has been used to pre-learn time consuming steps of RRT which resulted in
improvement in planning times [2]. The supervised learning models require cost and control
input of the system as training data which are generated using optimal control.

The training data can be obtained either by indirect optimal control or direct optimal control
techniques. In this thesis, both the techniques are each used to generate cost and control
inputs for a two-link manipulator using random initial-final state pairs. Then each dataset
is used to train a model and the datasets are compared based on certain training metrics.
K-nearest neighbours regression and multi-layer perceptron neural network are the supervised
learning models used in this thesis. It is observed that both the datasets result in similar
convergence of the models, but indirect optimal control approach allows upto 24-fold faster
data generation and upto 3-fold reduction in dimensionality of training data compared to the
direct optimal approach.

Real-world robots have torque limits based on actuator configuration. The torque limits
are modelled as control constraints in both the optimal control techniques and the effect of
this restriction on data generation and supervised learning is studied in this thesis. Direct
optimal control is found to be better for data generation in this case due to the ease of
applying control bounds as inequality constraints on the function approximations. Indirect
optimal control is very tedious as active constraints should be known a priori to determine
the switching points. An alternate method is explored instead where samples are generated
similar to the unconstrained case but samples violating the constraints are removed. Poor
control input learning is observed in both approaches and the models struggled to extrapolate.
It is hypothesised that this is due to inability of the constrained data to fully capture the
system dynamics. However, good cost prediction is achieved using neural networks.

Master of Science Thesis Deepak Paramkusam

ii

Deepak Paramkusam Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Planning spaces . 1
1-2 Kinodynamic motion planning . 2
1-3 Sampling-based kinodynamic planning . 3
1-4 Learning-based RRT . 4

1-4-1 Optimal control . 5
1-5 Thesis contributions . 5
1-6 Thesis layout . 6

2 Rapidly-exploring random trees 7
2-1 RRT algorithm . 7
2-2 Variations of RRT . 11
2-3 Learning-based RRT . 12
2-4 Summary . 13

3 Supervised learning for RRT 15
3-1 Supervised learning . 15

3-1-1 Types of supervised learning algorithms 16
3-2 K-nearest neighbours . 17
3-3 Artificial neural networks . 19

3-3-1 Feed-forward neural networks . 20
3-4 Summary . 21

Master of Science Thesis Deepak Paramkusam

iv Table of Contents

4 Data generation using optimal control 23
4-1 Kinodynamic planning as optimal control problem 23
4-2 Indirect optimal control . 24

4-2-1 Pontryagin principle . 24
4-2-2 Pontryagin principle with constraints . 25
4-2-3 Disadvantages of indirect optimal control 26

4-3 Direct optimal control . 26
4-3-1 Discretization . 26
4-3-2 Single-shooting . 27
4-3-3 Multiple-shooting . 28
4-3-4 Direct collocation . 29
4-3-5 Constrained direct optimal control . 29

4-4 Data generation for learning-based RRT . 30
4-5 Summary . 30

5 Experimental setup 31
5-1 Test system . 31
5-2 Generation of equations of motion . 32
5-3 Generation of training data . 35

5-3-1 Implementation of direct optimal control 36
5-3-2 Implementation of indirect optimal control 37

5-4 Implementation of supervised learning . 38
5-4-1 Data pre-processing . 39
5-4-2 Implementation of KNN and feed-forwards neural network 39

5-5 Implementation of learning-based RRT . 40
5-6 Summary . 40

6 Results and analysis 41
6-1 Comparison metrics . 41
6-2 Comparison of direct and indirect optimal control 42

6-2-1 Learning unconstrained data with KNN 48
6-2-2 Learning unconstrained data with feed-forward neural network 51

6-3 Effect of input constraints . 54
6-3-1 Learning input constrained data with KNN 58
6-3-2 Learning input constrained data with feed-forward neural network 61

6-4 Performance in learning-based RRT . 64
6-5 Summary . 64

7 Conclusions 65

A urdf2eom 69

B Thesis source code 71

Bibliography 73

Deepak Paramkusam Master of Science Thesis

List of Figures

1-1 Example of RRT and solution obtained from it [1] 4

2-1 Illustration of χfree. The rectangle is the state space χ, the circle the reachable
space (χ− χjl) and χobs the obstacles. 8

2-2 Illustration of Voronoi diagram in 2-dimensions [16]. Each dot is a seed. Isolated
seeds have larger Voronoi regions. 8

2-3 Failure of Euclidean metric [26]. p2 is easier to reach than p1 9
2-4 Tree expansion in RRT [1] . 10
2-5 Tree expansion in bi-directional RRT . 11
2-6 RRT*:xnew is connected to all nodes within the circle 12
2-7 RRT*:Suboptimal connections are removed . 12
2-8 Illustration of learning-based RRT [2] . 13

3-1 Illustration of KNN grouping with K = 5. Blue dot is the query input, red dots
are training samples . 17

3-2 Illustration of cross-validation error using multiple values of k. The k corresponding
to the minima is chosen. 18

3-3 Human neuron [3] . 19
3-4 Perceptron . 19
3-5 Illustration of feed-forward neural network [4]. Each circle is a perceptron. 20

4-1 Illustration of single shooting method [5]. Dotted line represents the N -part dis-
cretized input u parametrised by ak . Normal line represent the state x generated
using system equations. 27

4-2 Illustration of multiple-shooting method [5]. Dotted line represents the discretised
input u and the normal line the state x. si shows point of each shooting. Note
the discontinuities at each interval. 28

5-1 Test system - 2-link manipulator [6]. θ1, θ2 are angular positions of the two joints. 32

Master of Science Thesis Deepak Paramkusam

vi List of Figures

5-2 Illustration of articulated bodies [7]. Bj are the links and Aj represent the articu-
lated bodies. 34

5-3 Illustration of trajectory change due to u∗ switching to U+ under input constraint 38

6-1 Gaps in phase plot of xi : q2i vs qd2i . 43
6-2 Gaps in phase plot of xi : q2i vs qd2i . 44
6-3 4-D phase plots with direct approach (multiple shooting) without input constraints.

Discolouration can be seen in a) which represents incompleteness in xi. 45
6-4 4-D phase plots with indirect approach (Pontryagin principle) without input con-

straints. Uniform distribution of samples is observed. 46
6-5 Sample xi vs xf phase plot for direct data without input constraints. Other plots

have similar coverage. 47
6-6 xi vs xf phase plot for indirect data without input constraints. Only plots with

irregularities are shown. Other plots have uniform coverage. 47
6-7 KNN prediction profiles of indirect optimal control dataset (without constraints) 49
6-8 KNN prediction profiles of direct optimal control dataset (without constraints) . 50
6-9 Neural network prediction profiles of indirect optimal control dataset (without con-

straints) . 52
6-10 Neural network prediction profiles of direct optimal control dataset (without con-

straints) . 53
6-11 qd2i vs q2i plot. Non-uniformity can be clearly seen here. 54
6-12 4-D phase plots with direct approach (multiple shooting) with input constraints.

The sparseness in the middle in a) can be clearly seen. 55
6-13 4-D phase plots with indirect approach (Pontryagin principle) with input con-

straints. U-shaped gaps can be observed at the bottom of each plot. 56
6-14 xi vs xf phase plot for direct data with input constraints. Uniform coverage is

observed on all the plots. 57
6-15 xi vs xf phase plot for indirect data with input constraints. 57
6-16 Prediction profiles of indirect optimal control dataset (with input constraints) . . 59
6-17 Prediction profiles of direct optimal control dataset (with input constraints) . . . 60
6-18 Neural network prediction profiles of indirect optimal control dataset (with con-

straints) . 62
6-19 Neural network prediction profiles of direct optimal control dataset (with constraints) 63

Deepak Paramkusam Master of Science Thesis

List of Tables

6-1 Data generation time without input constraints 43
6-2 Cleaning of direct data (unconstrained) . 44
6-3 Cleaning of indirect data (unconstrained) . 44
6-4 Optimal k for KNN . 48
6-5 Average cross-validation error for KNN . 48
6-6 Cross validation error for indirect dataset with neural network 51
6-7 Cross validation error for direct dataset with neural network 51
6-8 Data generation time with input constraints . 54
6-9 Cleaning of direct data . 58
6-10 Cleaning of indirect data . 58
6-11 Optimal k for KNN . 58
6-12 Average cross-validation error for KNN (input constrained) 58
6-13 Cross validation error for constrained indirect dataset with neural network 61
6-14 Cross validation error for constrained direct dataset with neural network 61
6-15 Run times with different algorithms . 64

Master of Science Thesis Deepak Paramkusam

viii List of Tables

Deepak Paramkusam Master of Science Thesis

Acknowledgements

I would like to thank my supervisors Dr.Ir. Martijn Wisse and Ir. Mukunda Bharatheesha for
their assistance during the writing of this thesis. This thesis could never have been completed
without their support. Their advice was instrumental in developing my interest in motion
planning and I learnt a lot under their guidance.

I would also like to thank my friends for their help and encouragement over the course of
the thesis. I am especially grateful to my family, whose unwavering support helped me stay
strong during the tough times.

Delft, University of Technology Deepak Paramkusam
February 16, 2018

Master of Science Thesis Deepak Paramkusam

x Acknowledgements

Deepak Paramkusam Master of Science Thesis

“I have not failed. I’ve just found 10,000 ways that won’t work.”
— Thomas A. Edison

Chapter 1

Introduction

Motion planning is one of the core components of robotics. Determining a path is a major
challenge for robots due to its computational complexity. Motion planning problem is infor-
mally defined as generating a ‘plan’ for a given robot, so as to reach the goal state from the
current state. The plan governs where a robot should move and how it should move from the
current state. It can be defined using waypoints in a known environment or as a sequence
of inputs to robot actuators [1]. Robots also require velocity and acceleration information
while executing the motion. These are usually obtained from the robot dynamic equations.
Generating a motion plan accurately and quickly is one of the open problems in robotics [8].

This chapter will give a brief overview of motion planning, specifically kinodynamic motion
planning. Standard algorithms used for kinodynamic planning and techniques to improve
their performance are also introduced. Then the contributions of this thesis are laid out
based on the overview.

1-1 Planning spaces

A motion plan can be generated in various spaces based on how the robot is represented
in the environment. A space is defined as a set of parameters that is used to represent a
robot configuration or state [9]. A sequence of these parameters is also used to represent the
trajectory Γ of the robot. Different spaces used for motion planning are:

1. Cartesian space
Cartesian Euclidean space is one of the standard spaces used for planning. The x, y and
z coordinates represent the position of the robot end effector (or centre of mass in case
of mobile robots) and the orientation is represented in terms of direction cosines (1-1).
The trajectory to be traversed by the end effector is described using these coordinates.

p = (px, py, pz) (1-1)
θ = (α, β, γ)

Master of Science Thesis Deepak Paramkusam

2 Introduction

2. Configuration space
Configuration space (also known as joint space) uses generalized coordinates to represent
the robot configuration. Number of generalized coordinates is equal to the number of
degrees of freedom of the robot with each coordinate corresponding to the joint value
(1-2). Configuration space is generally more convenient than Cartesian space as the
robot dynamic equations are also formulated in configuration space. Coordinates can
be transformed from configuration space to Cartesian space using the robot forward
kinematic equations.

q = (q1, q2, q3....qn) (1-2)

3. State space
State space represents the complete dynamical state of the robot, not just the robot
configuration. Dynamical systems are fully defined by their position and velocity [10].
So the robot state consists of position-velocity pairs (either Cartesian or configuration)
of each degree of freedom (1-3).

x = (q, q̇) (1-3)

1-2 Kinodynamic motion planning

Kinodynamic motion planning aims to generate a robot trajectory Γ subject to simultaneous
kinematic and dynamic constraints [1]. The term kinodynamic comes from the the combi-
nation kinematic + dynamic. Kinematic constraints include configuration limitations such
as the joint limits and obstacles. Dynamic constraints include dynamic laws and bounds on
velocity and acceleration. Planning is performed in the state space. Kinodynamic planning
is formally defined below as in [1].

Let χ be the state-space of the robot. Let the state-space consist of the configuration q of the
robot and its derivative q̇. Consider an initial state xi ∈ χ and final state xf ∈ χ. Then the
kinodynamic planning problem involves finding a continuous time-optimal trajectory Γ such
that

Γ : [0, T]→ χ | Γ(0)=xi and Γ(T)=xf
(1-4)

In terms of the control input,

u : [0, T]→ U (1-5)

Mathematically, kinodynamic planning is a standard two-point boundary value problem sub-
ject to constraints. Traditional control strategies were initially used to solve this problem.
O’Dunlaing [11] provided the exact solution to the kinodynamic problem in one-dimension
using bang-bang control and quadratic pursuer functions. It is observed that the algorithm
is of polynomial-time complexity. Time complexity of an algorithm gives an estimate of the
time taken to run the algorithm as a function of the input. Canny et.al [12] adapted the
technique demonstrated by O’Dunlaing to get the exact solution to the kinodynamic problem
in a plane and showed that this solution can be generated in exponential time. For the kin-
odynamic problem in 3-dimensions, no exact solution is known. Canny and Reif [13] proved

Deepak Paramkusam Master of Science Thesis

1-3 Sampling-based kinodynamic planning 3

that the problem is non-deterministic polynomial-time hard (NP-hard) in 3-dimensions i.e
has a time-complexity of at least polynomial order or higher.

To overcome this high time complexity, approximate solutions started being explored. Early
approaches include using potential field techniques [14],[15] and dynamic programming [16],[17].
Donald and Xavier [18] and Papadimitriou [19] discretised the state space into a grid and then
use graph-search techniques (like breadth-first search) to get an approximate solution. These
algorithms have polynomial-time complexity for two-dimensional and three-dimensional sys-
tems.

1-3 Sampling-based kinodynamic planning

Sampling-based algorithms were introduced in late 1990s to obtain an approximate solution
to the problem. Sampling-based approaches represent the state space as a graph and attempt
to find a path from initial state to final state using different randomized sampling techniques.
Sampling-based planners work on the principle of probabilistic completeness, which means
that if a solution exists, the random planner will eventually find it [20]. But it is to be noted
that optimality of the solution is not guaranteed. Sampling-based algorithms are judged based
on their convergence rate and average speed of convergence (as traditional time-complexity
analysis does not make sense for random algorithms that may not even converge). Neverthe-
less, it was observed that sampling-based algorithms are on an average at least an order of
magnitude faster than the polynomial-time analytic algorithms [21]. Two major sampling-
based algorithms for kinodynamic planning are Probablistic Roadmap and Rapidly-exploring
Random Trees.

Probabilistic roadmap Probabilistic roadmap (PRM) was proposed by Amato and Wu [22]
and Kavaraki et.al [23] in 1996. Probabilistic roadmap algorithm consists of two steps -
roadmap construction and query. In the construction step, certain number of random states
across the state space are sampled and a graph is generated connecting these states (if possi-
ble). This is a computationally expensive pre-processing step but needs to be performed only
once. In the query step, initial and final states are input and Dijkstra’s algorithm is used to
obtain the trajectory between them from the graph. Probabilistic roadmap is useful in case
of multiple queries.

Rapidly-exploring random trees Rapidly-exploring random trees (RRT) is a single-query
algorithm presented by Lavalle and Kuffner [1] in 2000. Given an initial state in a graph, RRT
attempts to incrementally construct a tree towards the goal state . Each intermediate state
is randomly sampled and connected to the tree if the connection satisfies the kinodynamic
constraints. The tree can be directed towards the final state by sampling states closer to the
final state. Once the tree reaches the final state, a path from initial to final state is formed
along the tree (Fig. 1-1).

Thus, RRT mainly differs from PRM in the following ways :

1. RRT performs the computationally expensive constraint checking only for each sampled
state while PRM performs it over the entire state space (during the construction step).

Master of Science Thesis Deepak Paramkusam

4 Introduction

Figure 1-1: Example of RRT and solution obtained from it [1]

2. PRM needs to re-run the construction step if there is any change in the environment
while RRT only needs to modify its constraint checking [23].

Even though RRT helped reduce the planning time, even lower planning times are desired for
industrial applications. Noteworthy improvements to RRT include efficient state sampling
[24], [25], bi-directional RRT [1], [26] and ‘pruning’ of the tree at regular intervals [27]. But
it is observed that RRT is inhibited at its core by two time-consuming steps:

• Nearest-neighbour step : Finding nearest state to sampled state in the current tree

• Steering step : Finding input to move towards the sampled node while satisfying dy-
namic constraints

Improving these two steps can significantly improve the planning time of RRT. RRT and its
improvement is the focus of this thesis and its working will be discussed in detail in Chapter
2.

1-4 Learning-based RRT

In recent times, supervised learning has been proposed to improve the planning time of RRT.
Supervised learning is a machine learning technique. It involves analysing large amounts of
data (known as training data) to try and infer a function or a model represented by that data.
Inferred models help generalise over unknown inputs. These ‘learned’ models are then stored
as a simple mapping, which can be used to predict the output and are faster than the actual
computation [28].

Two of the widely used supervised learning algorithms are k-nearest neighbour regression
and multilayer neural networks [29]. K-nearest neighbour algorithm is a simple regression

Deepak Paramkusam Master of Science Thesis

1-5 Thesis contributions 5

technique that predicts the output of an input based on its nearest neighbours in the train-
ing data. Weights can be assigned to the neighbours to control the bias of the prediction.
Multilayer neural network uses artificial neurons (called perceptrons) to try and imitate the
human brain. These networks can be trained for supervised learning using a technique called
back-propagation. It has been proven that a neural network can approximate any continuous
function [30]. Detailed explanation of these techniques is provided in Chapter 3.

Supervised learning approach to learn the nearest-neighbour step of RRT was presented by
Bharatheesha et.al [31] and Palmieri and Arras [32]. The function governing the cost of
traversal between two states (referred to as cost function) is learned in their work. Locally
weighted projection regression (LWPR) and basis function models were used for the learning.
Planning time is reduced by two-orders of magnitude with these methods. In Wolfslag et.al
[2], the use of supervised learning for the steering step is demonstrated alongside learning the
cost function for an inverted pendulum. The parametrised control input was learned using
k-nearest neighbour algorithm for the steering step. This resulted in ten-fold reduction of
planning time.

1-4-1 Optimal control

In [2] and [31], training data for learning is obtained through optimal control techniques. Op-
timal control uses optimization techniques to find a suitable control strategy subject to defined
constraints [33]. An optimality criterion defines the goal of the problem. The kinodynamic
planning problem can be formulated as an optimal control problem, with the optimality cri-
terion being minimization of time or energy or weighted combination of both. Kinodynamic
constraints are quantified using inequalities. The criterion is mathematically represented as
a cost function and an optimization algorithm is used to find a solution which minimizes the
cost function.

Two standard optimal control approaches are direct and indirect optimal control. Indirect
optimal control is an older and more analytic approach that is based on calculus of variations
[34]. The calculus of variations give the optimality conditions which are minimized to give
the required solution. But this approach tends to grow unstable for systems that run for
long periods of time . Direct optimal control is a numerical approach that grew in popularity
with the advent of computers. Direct optimal control discretizes the system equations and
transforms the optimal control problem into a non-linear programming problem (NLP), which
is easy to solve [35]. More information on optimal control theory is given in Chapter 4.

Despite the disadvantages of indirect optimal control, this approach is used in [2] to generate
the data for supervised learning. The authors show that indirect optimal control allows easy
data generation with fewer parameters.

1-5 Thesis contributions

In this thesis, an effort is made to further investigate the use of supervised learning in RRT
and use of optimal control for training data generation. Therefore, the contributions of this
thesis are :

Master of Science Thesis Deepak Paramkusam

6 Introduction

1. Comparison of direct and indirect optimal control for data generation
The use of indirect optimal control for training data generation is detailed in litera-
ture, but comparison with direct optimal control has not been performed so far. The
comparison is carried out in this thesis and the differences between the approaches are
quantified.

2. Use of multilayer neural network for learning
Simple regression techniques like k-nearest neighbour have been used so far for learning
-based RRT. Neural networks, which are faster and more accurate, are used in this
thesis.

3. Study the effect of input constraints on learning
Learning-based RRT is demonstrated in [2] and [31] for a simple system without input
constraints. Optimal control becomes much harder with the addition of input con-
straints and the data to be learnt is also bounded. The effect of this is studied in this
thesis.

1-6 Thesis layout

The thesis is structured as follows:

Chapter 2 details the working of RRT and learning-based RRT.

Chapter 3 includes information about k-nearest neighbour algorithm and multilayer neural
networks and motivation for choosing these techniques.

Chapter 4 explains the basics of optimal control theory, direct and indirect optimal control
and how they are used to generate data for supervised learning.

Chapter 5 details the experimental setup used in this thesis and the approach used.

Chapter 6 evaluates the results obtained from the experiments and discusses the results.

Chapter 7 presents the conclusions and provides recommendations for future work.

Deepak Paramkusam Master of Science Thesis

Chapter 2

Rapidly-exploring random trees

Rapidly exploring random trees (RRT) is an iterative sampling-based algorithm which can
efficiently search high-dimensional spaces. It is a part of a family of single-query algorithms
called rapidly exploring dense trees (RDTs). RRT was originally designed for configuration
space planning by Lavalle. It was later extended to kinodynamic planning by Lavalle and
Kuffner [1] to generate open-loop solutions to the problem. The algorithm is probabilistically
complete and will converge to a solution as number of iterations increase. But the solution
is not optimal. This chapter discusses the RRT algorithm in detail and the bottlenecks in
the algorithm are highlighted. Then the recently proposed learning-based RRT is presented.
Learning-based RRT is a variation of RRT that uses supervised learning to make RRT faster
[2]. The working of learning-based RRT and how it overcomes the bottlenecks of RRT is
explained.

2-1 RRT algorithm

In RRT, the state space is discretely represented as a graph i.e each node in the graph
corresponds to a state of the system. RRT algorithm then generates a tree connecting these
nodes. The tree starts at the node corresponding to the initial state xinit and the tree
expansion ends when the node corresponding to the final state xgoal is added to the tree. The
path along the tree from xinit to xgoal is the required solution. RRT mainly consists of the
following steps [1],[36]:

• Sampling step

• Nearest-neighbour step

• Steering step

• Termination check

Each of these steps is elaborated below.

Master of Science Thesis Deepak Paramkusam

8 Rapidly-exploring random trees

Sampling step A node x is sampled randomly from the search space χfree in this step. The
search space χfree is a subset of the state space χ. Infeasible regions of the state space χinf
are not sampled [1]. χinf includes regions with obstacles χobs and regions not reachable due
to joint limits χjl. In case of dynamic obstacles, χobs is updated every iteration. Example of
χfree is given in Fig. 2-1.

χfree = χ \ χinf (2-1)
χinf = χobs ∪ χjl

Figure 2-1: Illustration of χfree. The rect-
angle is the state space χ, the circle the
reachable space (χ− χjl) and χobs the ob-
stacles.

Figure 2-2: Illustration of Voronoi diagram
in 2-dimensions [16]. Each dot is a seed.
Isolated seeds have larger Voronoi regions.

xgoal is also sampled on a regular basis. This pushes the tree towards xgoal and is known as
goal bias.

It is to be noted random sampling helps RRT explore faster than most of its peers such as
PRM. This is due to Voronoi bias. Voronoi diagram of a set of nodes (called seeds) is a region
of the graph around each seed. Every node in each region is closer to that region’s seed than
any other seed (Fig. 2-2). If each node of RRT is taken as a seed, the furthest vertices have
the largest Voronoi regions (because there are no seeds in unexplored regions). When a new
node is randomly sampled, it is more likely that it is sampled from larger Voronoi regions,
thus pushing the tree into unexplored regions [37].

Nearest-neighbour step This step involves finding the nearest node xnear to the sampled
node x in the current tree. The closeness of two nodes is determined using a distance func-
tion. Choice of the distance function has repercussions on the behaviour of the RRT. Ideal
distance function is the optimal go-to cost between the states, but this computation is often

Deepak Paramkusam Master of Science Thesis

2-1 RRT algorithm 9

prohibitively time consuming. Heuristics are usually chosen instead. Euclidean distance (2-2)
between the two states was originally chosen in [1] as the distance function.

Deucl =
√∑

(qirand − qi)2 (2-2)

Glassman and Tedrake [38] and Spierenburg [39] show that the Euclidean metric (using either
position or velocity) has no correlation to the motion in state space and has a negative effect
on planning. This can be demonstrated using Fig. 2-3.

Figure 2-3: Failure of Euclidean metric [26]. p2 is easier to reach than p1

Let the euclidean distance from the car to the two points be equal (2-3). Therefore the
euclidean distance metric gives same cost for both the points.

|p1 − pcar| = |pcar − p2| (2-3)

But the cost to go from pcar to p2 should be less than cost to p1 as the car needs to reverse
its velocity in the later case. Thus euclidean metric is incorrect in this case.
Many alternative heuristics take advantage of the system properties such as symmetry and
dynamics. State energy, linearised traversal cost [40] and dynamics-based affine quadratic
regulator (AQR) [38] are proven to be better heuristics.

Steering step Once xnear is found in the previous step, a viable input u to move towards
x is applied for time period ∆t. ∆t can be a fixed value or random. u is chosen based on
a steering function. Using this u and ∆t, the system is then propagated (by integrating the
system dynamic equations) from xnear to a new node xnew. Constraints like collision checking
are also checked over the course of this simulation. If a valid xnew is found, it is added to the
tree. This is demonstrated in Fig. 2-4.
RRT, in general, does not require a steering function. u can be chosen randomly from a
set of viable control inputs and a solution can be found due to the algorithm’s probabilistic
completeness [1]. But a proper steering function can speed up the expansion process. Ideally,
the steering function should return a control input which causes the system to eventually
go from xnear to x. This is not feasible in practice as it is the kinodynamic problem itself.
Alternate approaches include attempting multiple inputs and choosing the best [41], PID-
based estimator [39] and polynomial interpolation between states [42]. But it should be
noted that if a steering function is used, it increases the computation time of this step.
As previously mentioned, kinodynamic constraints are checked during the propagation step
(also known as local planning). Numerical integration technique such as Runge-Kutta ap-
proach is generally used. Each point obtained during the propagation from xnear to xnew

Master of Science Thesis Deepak Paramkusam

10 Rapidly-exploring random trees

Figure 2-4: Tree expansion in RRT [1]

should be in χfree to satisfy the kinematic constraints. Dynamic laws are automatically sat-
isfied as they are used in the integration. The input u should satisfy the actuator limits if
any. So any steering function used should be bounded accordingly.

Termination check If xnew node is xgoal (or within the tolerance limit of xgoal), the path
from xinitial to xgoal along the tree is a solution to the kinodynamic problem and the algorithm
stops. If the iteration limit is reached, the algorithm has failed and no solution is found. Else
the the algorithm goes back to the sampling step and iterates over the entire process.

The pseudo code of these steps to generate trajectory τ are given in Algorithm 1 as in [1].
SAMPLE and NEAREST functions perform steps 1 and 2. NEW_STATE function
returns true if the connection to xnew is possible using u. TERMINATE function ends the
algorithm.

Algorithm 1 RRT
1: procedure RRT(xinit)
2: τ.init(xinit)
3: for i = 1....N do
4: xrand ← SAMPLE
5: xnear ← NEAREST (x, τ)
6: if NEW_STATE(x, x_near, xnew, u) then
7: τ.add_vertex(xnew)
8: τ.add_edge(xnear, xnew, u)
9: if xnew = xgoal then

10: TERMINATE
11: end if
12: end if
13: end for
14: end procedure

Deepak Paramkusam Master of Science Thesis

2-2 Variations of RRT 11

Nearest neighbour step and steering step are the main impediments to RRT’s planning time.
Even though a single distance metric computation is negligible, the distance to every node in
the tree needs to be checked every iteration. When the tree gets very large, this can add up
and delay planning [39]. If a steering function is used, the steering step also causes delays.
Ideal steering input is obtained using optimal control which is computationally expensive as
it is an iterative process. These bottlenecks resulted in attempts to modify and improve RRT.
The major variations of RRT are discussed in the next sections.

2-2 Variations of RRT

Two notable variations of RRT - bi-directional RRT and RRT* - are briefly discussed in this
section. These variations improve RRT by taking modifying the tree structure. The former
aims to improve planning time while the later aims to generate optimal solutions.

Bi-directional RRT Bi-directional RRT is same as vanilla RRT except that two trees are
expanded - one from xinit and one from xgoal. Each tree is expanded alternately in each
iteration from each xnew towards the closest node on the other tree xtarget (Fig. 2-5). The
algorithm is terminated when a node common to both the trees is found. Bi-directional RRT
was shown to improve planning times relative to regular RRT [43]. But bi-directional RRT
sometimes has discontinuities at the common node which is not desirable.

Figure 2-5: Tree expansion in bi-directional RRT

RRT* RRT* modifies RRT to assure asymptotic optimality. Regular RRT does not give
optimal solutions as it returns the first solution it finds. RRT* obtains optimal solutions by
“rewiring" the tree every iteration. This ensures that only the optimal connections are present
in the tree. Every time xnew is found, instead of connecting it to xnear, xnew is connected to
all nodes within a a certain range [44]. Costs (distance function value) are then propagated
from the base to all the nodes and high-cost redundant connections are removed (Fig. 2-7 and
Fig. 2-6). Other steps are same as regular RRT. It is to be noted that RRT* is slightly slower
than regular RRT due to the additional rewiring step. However, on average, the planning
time is similar to that of regular RRT [16].

Master of Science Thesis Deepak Paramkusam

12 Rapidly-exploring random trees

Figure 2-6: RRT*:xnew is connected to all
nodes within the circle

Figure 2-7: RRT*:Suboptimal connections
are removed

2-3 Learning-based RRT

Learning-based RRT is a recently proposed supervised learning approach to improve the
planning time of RRT. Unlike the innovations in the previous section, this approach aims to
modify the core steps slowing RRT - distance function and steering function - with minimal
loss of accuracy unlike heuristics.

In section 2-1, it was mentioned that the ideal distance metric is the optimal traversal cost be-
tween each state and the ideal steering function is the optimal input to move from xnear to x.
The traversal cost and the optimal input can be generated using optimal control techniques,
but it is very time consuming (NP-hard, as mentioned in Chapter 1). Learning-based RRT
solves this problem by moving the optimal control part offline. Data generated by optimal
control techniques is input to a supervised learning algorithm which learn these functions [2].
The learned models can directly replace the distance and steering functions in RRT, with no
other changes to the algorithm. The learned models approximate the steering function and
the distance function much faster than the optimal control approach, thus speeding up RRT’s
planning time.

Both the distance function and the steering function take in two states x0, x1 as the input. The
distance function should return a scalar cost value j and the steering function a parametrized
input vector u for each degree of freedom. Optimal control techniques therefore are used to
generate datasets (x0, x1, j) and (x0, x1, u). The learning algorithm then generates models fj
and fu which can predict j and u by learning the datasets. fj and fu can then replace the
NEAREST and NEW_STATE functions in Algorithm 1. This process is depicted in Fig.
2-8.

In the literature, k-nearest neighbour regression has been used so far to learn the steering
function. LWPR and linear basis functions have been used for distance function alongside
k-nearest neighbour regression [26].Both the optimal control approaches - direct and indirect
optimal control- have been used for the data generation. Authors of [2] further recommend
the use of indirect optimal control citing its lower data generation time and fewer parameters.

Deepak Paramkusam Master of Science Thesis

2-4 Summary 13

Figure 2-8: Illustration of learning-based RRT [2]

Being a very recent approach, properties of learning-based RRT is not known in detail. This
thesis attempts to fill this gap by further investigating the learning and data generation parts
of learning-based RRT.

2-4 Summary

This chapter details the rapidly-exploring random tree (RRT) algorithm, a common kin-
odynamic planning algorithm and its main steps. Two major variations of RRT are also
introduced briefly. It is seen how the nearest neighbour search and steering function are the
bottlenecks in the RRT algorithm. Learning-based RRT, a new variant of RRT, attempts
to overcome these bottlenecks using a supervised learning approach. The learning requires
large amounts of data which is obtained using optimal control techniques. The next chapter
introduces some supervised learning algorithms used in learning-based RRT.

Master of Science Thesis Deepak Paramkusam

14 Rapidly-exploring random trees

Deepak Paramkusam Master of Science Thesis

Chapter 3

Supervised learning for RRT

The previous chapter introduced the use of supervised learning to improve RRT planning
time. This learning-based RRT has shown significant planning time reduction over the reg-
ular RRT. This chapter provides an introduction to supervised learning and how it works.
Common supervised learning techniques are briefly discussed and the two supervised learn-
ing algorithms used in this thesis, k-nearest neighbour and artificial neural networks, are
explained in detail.

3-1 Supervised learning

Supervised learning is a machine learning technique that approximates a function using train-
ing data. The learned function can then be used to predict outputs for previously unseen
inputs. Learned function is mathematically represented as in 3-1.

g : X → Y ∀ An = ([x1, y1]....[xn, yn]) ∈ (X,Y)n (3-1)

where set X represents the input space, Y represents the output space, g is the learned
function and An is the n - sample training set. Each sample in the training set consists of
an input-output pair (xi, yi) and assumed to be generated with an unknown but fixed joint
probability distribution function P (x, y) [45]. The relation between X and Y encoded by
P (x, y) is approximated by g. g is searched in a space with all possible functions known as
hypothesis space. The learning problem is known as a classification problem if the output is
discrete and a regression problem if the output is continuous.

Supervised learning is an iterative process where g is tuned continuously. Therefore it becomes
important to evaluate the how well g fits the actual output. Loss L is defined to measure
this error in supervised learning. It measures the difference between the predicted output
ŷ = g(x) and actual output y [46]. The choice of the loss function varies depending on the
type of supervised learning problem. Common loss functions are squared loss, absolute loss

Master of Science Thesis Deepak Paramkusam

16 Supervised learning for RRT

and log-cosh loss (3-2).

Lsq.loss = [g(x)− y]2

Labs.loss = |g(x)− y| (3-2)
Llog−cosh = log(cosh(g(x)− y))

Expectation of loss over an entire data set is termed as risk β (3-3).

β(g) = E[L(g(x), y)] (3-3)

=
∫
L(g(x), y) dP (x, y)

Therefore, supervised learning basically involves finding a function g that minimizes β [47].
This is termed as risk minimization. Risk minimization consists of two parts - finding an
appropriate g to minimize β (known as empirical risk minimization) and avoiding over-fitting
(known as structural risk minimization).

An important point to note is that a learning algorithm is evaluated on a test data set
(known as validation set). This is because the algorithm can have no error with training set
yet perform poorly on samples not in the training set. Another common method to evaluate
performance is k-fold cross validation. This involves splitting the training set in k equal parts
(folds) and then one fold is used as validation set while other k - 1 folds are used for training.
This is repeated k time for each fold. The average performance of the k-folds is taken to give
a single performance estimate [47]. The advantage of k-fold cross validation is that each fold
is used for training and validation, avoiding any inherent bias.

3-1-1 Types of supervised learning algorithms

Supervised learning algorithms are broadly classified into parametric and instance-based algo-
rithms depending on how they work. In parametric learning algorithms, a general form of the
function g is assumed and its coefficients are modified iteratively such that β is minimized.
Parametric algorithms have constant space complexity (space complexity is a measure of how
much digital memory an algorithm requires to function) irrespective of the size of the training
set due to the fixed number of tunable parameters [48]. This also makes parametric algo-
rithms faster than non parametric algorithms. Training data is not required once the training
is completed. But this approach is constrained by the selected form of g. Poor learning can
occur if the assumption is incorrect. Examples of parametric learning algorithms are logistic
regression, neural networks and naive Bayes [48].

Instance-based algorithms or non-parametric algorithms correlate each query with instances
seen in the training set. They have don’t parameters and make no assumptions about g (in
fact, they don’t explicitly formulate a g), which allows a more general learning. These algo-
rithms don’t have usually have a training phase, but instead use the training data whenever
required to make predictions [49]. Because of this, these algorithms are also called lazy learn-
ing algorithms. However, requirement of training data at all times causes these algorithms
have higher space complexity and the processing time compared to parametric algorithms.
Examples of non-parametric algorithms are k-nearest neighbours, decision trees and support
vector machines (SVMs).

Deepak Paramkusam Master of Science Thesis

3-2 K-nearest neighbours 17

Two supervised learning algorithms for learning-based RRT are discussed next in detail : k-
nearest neighbours and artificial neural networks. Since the distance metric and the control
input are continuous functions in learning-based RRT, regression is focussed upon in both
these techniques.

3-2 K-nearest neighbours

K-nearest neighbours (KNN) is a simple non-parametric learning algorithm. The algorithm
expects similar inputs to have similar outputs [50]. KNN algorithms consists of two steps-

• Whenever an input is given to the KNN algorithm, it first finds the k nearest samples
to the input in the training set (Fig. 3-1). The nearest neighbours are found using a
distance metric.

• The predicted output is the combination of the outputs of the nearest samples found
in the previous step in case of regression. Commonly used combination is mean of the
samples. In case of classification, the predicted output is the class of majority of the
neighbours.

Figure 3-1: Illustration of KNN grouping with K = 5. Blue dot is the query input, red dots are
training samples

KNN algorithm is influenced by the following factors -

1. Distance meteric
Distance metric refers to the function used to find the nearest neighbours in the training
set. Common metrics to find the distance between two samples p and q are Euclidean
distance, Minkowski distance and Mahalanobis distance (3-4). All of them have similar

Master of Science Thesis Deepak Paramkusam

18 Supervised learning for RRT

performance, but Minkowski distance is faster to compute for high dimensional datasets
[51].

Deucl =
√∑

(pi − qi)2

Dmink =
∑
|pi − qi| (3-4)

Dmaha =
√∑ (pi − qi)2

s2
i

where si is the standard deviation of pi and qi.

2. Number of neighbours K
Choice of k makes a big difference in accuracy of the algorithm. If k is too low, over-
fitting occurs and the algorithm becomes sensitive to noise. If it is high, the computation
becomes expensive and under-fitting might occur. Standard method to select a proper k
is cross validation using multiple values of k. Cross-validation error is least for optimal
value of k (Fig. 3-2).

Figure 3-2: Illustration of cross-validation error using multiple values of k. The k corresponding
to the minima is chosen.

3. Combination function for prediction
When used for regression, the second step of KNN involves combining the outputs of the
nearest neighbours to give the predicted output. The average of the outputs is generally
taken (3-5).

ypred =
∑
yi
k

(3-5)

Other possible functions for combination include distance-weighted mean and local lin-
ear regression [52]. Computation time is affected by the function chosen.

Deepak Paramkusam Master of Science Thesis

3-3 Artificial neural networks 19

KNN inherits the advantages and disadvantages of non-parametric learning algorithms. It is
a very simple algorithm. It is not constrained by any function form and there is no learning
stage. But it needs the training data for each prediction. KNN also gets computationally
expensive as the training data size gets large, due to the large number of distances to calculate.
KNN also suffers from “curse of dimensionality”. Number of samples in a given volume of
space decreases exponentially with number of dimensions i.e samples become sparse in space.
That means as the the dimensions of the training set increases, number of nearest neighbours
decreases[52]. This is problematic for KNN as its learning depends on the neighbours.

KNN is used in this thesis for learning-based RRT. It has been chosen to serve as a baseline
and to allow comparison with previous research [2] which also uses KNN.

3-3 Artificial neural networks

Artificial neural network (ANN) is a popular parametric learning algorithm. ANN works by
imitating the working of the human brain. The human brain consists of millions of intercon-
nected neurons, a specialized cell that processes data using electric and chemical signals (Fig.
3-3). ANN uses an artificial neuron known as perceptron (Fig. 3-4). Multiple perceptrons are
interconnected to form a network which is used for learning.

Figure 3-3: Human neuron [3] Figure 3-4: Perceptron

A perceptron has finite n number of inputs xi each with its corresponding weight wi [53].
Weighted sum of the inputs is then taken as in 3-6. Biases bi are also added if an offset is
required (3-4).

p =
n∑
i=i

xiwi + bi (3-6)

The sum p is then passed through a threshold function f . This threshold function determines
the contribution of the perceptron i.e. if the perceptron activates or not. The output y is
then represented as in 3-7

y = f(p) = f(
n∑
i=i

xiwi + bi) (3-7)

Master of Science Thesis Deepak Paramkusam

20 Supervised learning for RRT

Commonly used threshold functions are sigmoid, hyperbolic tangent and rectified linear unit
(ReLu) (3-8).

fsigmoid(x) = 1
1 + e−x

ftanh(x) = ex − e−x

ex + e−x (3-8)

frelu(x) = max(0, x)

Classification problems use a softmax threshold function in the output layer [54]. Softmax
function outputs probabilities of belonging to various classes. Class with maximum probability
is chosen as the output.

Perceptrons are then arranged in a network. Based on the structure of the network, the neural
networks are of various types such as feed-forward neural network, recurrent neural network,
deep neural network, radial basis function networks etc.

3-3-1 Feed-forward neural networks

Feed-forward neural network is the most popular network architecture [54]. Feed-forward
network consists of perceptrons arranged in layers. The layers are of three types - input layer,
hidden layer and output layer. Number of perceptrons in the input layer and the output
layer are fixed and are equal to the dimensionality of the input and the output respectively.
The hidden layers are in between the input and the output layers. The number of hidden
layers and the number of perceptrons in each vary depending on the learning problem. In
feed-forward network, each perceptron in a layer is connected to every perceptron in the next
layer. Feed-forward network is illustrated in Fig. 3-5.

Figure 3-5: Illustration of feed-forward neural network [4]. Each circle is a perceptron.

Feed-forward networks are trained by tuning the weights (wi) of each perceptron in a network
using stochastic gradient descent algorithm [53]. This is done using a technique called back-
propagation [53]. In backpropagation, for each training sample, random weights are initially
assigned to each perceptron and the corresponding output across the network is calculated

Deepak Paramkusam Master of Science Thesis

3-4 Summary 21

using 3-7 for every perceptron. The error E between this generated output and the actual
output is then calculated using a loss function.

The gradient of the error δE
δwi

with respect to each weight wi is then calculated by propagating
the error backwards. The weights are then updated by subtracting a fraction α (known as
the learning rate) of the cumulative gradient from the current weights (3-9). This is done
iteratively till the loss is within acceptable limits. Once the network converges, the final
weights are stored and the network is “trained”. New outputs can be predicted very quickly
by using the perceptron equation.

wi = wi − α
n∑
i=i

δE

δwi
(3-9)

Variants of stochastic gradient descent like adaptive moment estimation (ADAM) and Ada-
grad [55] have been proposed in recent times. These algorithms allow varying learning rate
α to help the network converge faster.

Being a parametric learning algorithm, feed-forward neural networks are heavily influenced
by the structure of the network. In case of regression, universal approximation theorem for
neural networks proves that any continuous function can be approximated using a single
hidden layer [4]. Number of perceptrons in the hidden layer is also a critical parameter. High
number of perceptrons cause over-fitting while low number may not model the data correctly.
Proper number of hidden layers and number of perceptrons in each layer is generally chosen
after multiple trials with different topologies.

Feed-forwards neural network is used for learning-based RRT to take advantage of its fast
prediction compared to KNN. Effect of different topologies and their effect is also studied.
The implementation is discussed in Chapter 5.

3-4 Summary

Supervised learning is introduced in this chapter and its general properties. Working of two
learning algorithms - k-nearest neighbours and feed-forward neural networks - are discussed
and motivations for choosing them for learning-based RRT are provided. These algorithms
will be used for approximating the distance metric and the control input. The generation of
data required for training these algorithms will be explored in the next chapter.

Master of Science Thesis Deepak Paramkusam

22 Supervised learning for RRT

Deepak Paramkusam Master of Science Thesis

Chapter 4

Data generation using optimal control

Learning-based RRT uses supervised learning methods discussed in the previous chapter
to model the distance function and steering function of RRT. Data required to train these
models is generated using optimal control principles. Optimal control is a method of finding
a suitable control policy for a given system so that a given performance criterion is achieved.
The criterion is generally defined in terms of minimizing or maximizing a certain system
parameter. It should be noted that optimal control is computationally expensive and time-
consuming, which restricts its direct use in RRT [33].

In this chapter, the motion planning problem is formulated as an optimal control problem
and various approaches to generate the distance function and the steering function values
using optimal control are discussed.

4-1 Kinodynamic planning as optimal control problem

Consider a general dynamical system defined as a function f as in 4-1

ẋ = f(x, u, t) (4-1)

where x is the state of the system, u the control input to the system and t is the time.

Optimal control problem aims to find the optimal control input u∗ which will take the system
from initial state xi to final state xf while optimizing the performance index (also known as
cost functional) J . J is generally of the form as in 4-2 [34]. Note that this is an open-loop
control system.

J = S(x(tf), tf) +
∫ tf

t0
V (x, u, t)dt (4-2)

S is called the Meyer term and minimizes the terminal cost of the system (4-3). F is a positive
semi-definite matrix.

S = xT (tf)Fx(tf) (4-3)

Master of Science Thesis Deepak Paramkusam

24 Data generation using optimal control

V is called the Lagrange term. It minimizes the energy of the system and the tracking error
(4-4). Q and R are time varying matrices. They are positive-semi definite and positive definite
respectively.

V = xT (t)Qx(t) + uT (t)Ru(t) (4-4)

Constraints on the state or the control input are defined in terms of inequalities. For instance,
if an actuator is limited to ± 400 Nm, it represented as in 4-5.

−400 ≤ u ≤ 400 (4-5)

Recall that sampling-based kinodynamic planning problem involves finding a trajectory be-
tween two states of a robot subject to given constraints. When optimal control is applied to
this problem, the robot’s equations of motion form the dynamical system equations (Eq.4-1).
Suppose an appropriate cost functional is chosen, such as minimization of system energy.
Then the given initial and final states of the robot become the boundary conditions and the
solution to this problem is the required input to traverse between the two states. It can be
immediately seen how optimal control helps with the distance function and steering function
generation. The cost functional represents the distance metric between the given initial and
final states. The solution to the optimal control problem, the optimal control u∗, is the
required steering function value.

Two standard approaches to solving the optimal control problem are referred to as direct
and indirect optimal control. Indirect optimal control uses the control Hamiltonian to get
the first-order optimality conditions. The problem is first optimized analytically and then
the solution is discretized. Direct optimal control approximates the state and control using
function approximators and reformulates the problem as a non-linear programming problem.
Here, the problem is first discretized, then solved. Both these approaches are discussed in the
following sections.

4-2 Indirect optimal control

Indirect optimal control uses a method commonly known as Pontryagin principle. The prin-
ciple states that the control Hamiltonian of the given system must be minimum at optimal
control [34]. The principle makes use of calculus of variations and Lagrange multipliers to
transform the problem into a two-point boundary value problem.

4-2-1 Pontryagin principle

Consider the dynamical system 4-1 with a general cost functional 4-2. Let the boundary
conditions be 4-6

x(t0) = x0 and x(tf) = xf (4-6)

Then the steps to find the optimal control for the system using Pontryagin principle is as
follows [29]:

Deepak Paramkusam Master of Science Thesis

4-2 Indirect optimal control 25

1. Formulate the control Hamiltonian (also known as the Pontryagin H function)

H = V (x, u, t) + λT ẋ (4-7)
= V + λT f

Here λ represents the Lagrange multipliers (also known as co-state) of the system.

2. Minimize H with respect to u to get u∗

(
δH

δu

)
∗

= 0 (4-8)

u∗ = φ(x∗, λ∗, t)

3. Substitute u∗ in 4-7 to obtain optimal Hamiltonian H∗

H∗ = H(x∗, u∗, λ∗, t) (4-9)

4. Generate differential equations for x∗ and λ∗ fromH∗ and solve them using the boundary
conditions 4-6

ẋ∗ =
(
δH

δλ

)
∗

(4-10)

λ̇∗ = −
(
δH

δx

)
∗

(4-11)

5. Substitute solutions obtained in step 4 into u∗ to get the optimal control

4-2-2 Pontryagin principle with constraints

The Pontryagin principle becomes much more complex in presence of state and control con-
straints. Consider the case of control constraints such as 4-12:

U− ≤ u ≤ U+ (4-12)

where U− and U+ represent lower and upper bounds on control input. With this control
constraint, equation 4-8 is no longer valid because it might not satisfy the constraint. The
optimal u∗ should then satisfy 4-13:

H(x∗, u∗, λ∗, t) ≤ H(X∗, u, λ∗, t) ∀ u ∈ [U−, U+] (4-13)

This equation is known as Pontryagin’s minimum principle and is a necessary condition
(but not sufficient) for optimality [34]. To satisfy equation 4-13, the control u needs to
examined at each area the constraint is violated, resulting in a piece-wise function of u. The
function complexity increases exponentially with state dimensionality due to the large number
of possible conflicting regions. This is one of the drawbacks of indirect optimal control.

Master of Science Thesis Deepak Paramkusam

26 Data generation using optimal control

Consider next the case of state constraints as in 4-14, :

x− ≤ x ≤ x+ (4-14)

where x− and x+ are bounds on the state. State constraints are transformed into equality
constraints using penalty functions or slack variables [34]. Then the constrained problem is
transformed into unconstrained problem and solved using the standard Pontryagin method.

Constraint : g(x, t) ≥ 0
Penalty func. : g(x, t)h(g) = 0

Slack var. : g(x, t) + 1
2α

2(t) = 0

where h(g) is a penalty function and α is a slack variable

4-2-3 Disadvantages of indirect optimal control

Pontryagin principle provides an elegant method to solve the optimal control problem, but it
suffers from the following disadvantages:

• The approach requires solving the differential equations which are strongly non-linear
and unstable [34].

• Constraints result in state-dependent switches (as mentioned under control constraints)

• Requires explicit expression for u∗.

4-3 Direct optimal control

Direct optimal control is a numerical optimal control approach that was developed over the
last 40 years to overcome the issues with indirect optimal control and take advantage of
processing power of computers. In direct optimal control, the control and the states are
discretized to form a non-linear programming problem (NLP). NLP is easier to solve than two-
point boundary value problems using efficient iterative algorithms like sequential-quadratic
programming (SQP)[56]. Direct optimal control is more stable than indirect optimal over
long time steps.

4-3-1 Discretization

Control input and states are discretized to represent them as lower order splines or polynomi-
als. Standard procedure is to split the time interval into k subintervals and fit a polynomial in
each interval. Continuity and derivatives at each interval are forced using equality constraints.
Lagrange polynomial L (4-15) is commonly used for the fitting [57].

L(x) =
k∑
j=0

yjlj(x) for k datapoints (xi, yi) (4-15)

lj(x) =
k∏

m=0

x− xm
xj − xm

, m 6= j

Deepak Paramkusam Master of Science Thesis

4-3 Direct optimal control 27

Coefficients of the polynomials ak are tuned during the optimization process. Given the initial
conditions and the polynomial coefficients, the control and state can be uniquely determined.
Solving the equations is not necessary at every step [54],[55].
The control input is often discretized as a piece-wise constant for simplicity, but polynomial
function are also commonly used [5]. Let the control input be discretized as in 4-16.

u(t) = uk(ak, t) (4-16)

where ak is polynomial coefficients at kth subinterval and t is the time. But based on how
the states are discretized, direct optimal control is of three main variants:

1. Single-shooting (direct sequential approach)

2. Multiple-shooting

3. Direct collocation (direct simultaneous approach)

The next subsections will briefly discuss each of the approaches.

4-3-2 Single-shooting

In the single-shooting approach, only the control input is discretized (4-16). Then the differ-
ential equations are integrated using the control input to obtain the final state x̂f (Fig. 4-1)
[55],[56]. Continuity is enforced at subintervals using equality constraints. Adaptive ODE
solver is commonly used for this process [58].
The error ε between the simulated final state x̂f and actual final state xf is calculated and
ε is minimized iteratively using SQP. Cost function can evaluated after each iteration using
the state and the control input.

Figure 4-1: Illustration of single shooting method [5]. Dotted line represents the N -part dis-
cretized input u parametrised by ak . Normal line represent the state x generated using system
equations.

The process is as follows:

Master of Science Thesis Deepak Paramkusam

28 Data generation using optimal control

1. Given initial state x0 and final state xf , guess control coefficients ak

2. Integrate the differential equations till T = tf and estimate the error ε at boundaries

ε = x̂f − xf

3. Adjust ak using SQP to minimze ε. Repeat until ε ≈ 0

The single shooting approach is advantageous because it has lower dimensionality compared
to the other two approaches. But the intermediate ODE solution (step 2) for x can depend
non-linearly with ak, which can cause the initial-value problem to become unstable [58]. Small
change in initial guess can produce large differences at boundaries.

4-3-3 Multiple-shooting

Multiple-shooting method also discretises only the control input. However, the states are
propagated within every subinterval and not over the entire time period. Also, continuity
between intervals is not enforced (Fig. 4-2). The error εk at each interval is minimized
iteratively using SQP instead of only at the boundary point.

Figure 4-2: Illustration of multiple-shooting method [5]. Dotted line represents the discretised
input u and the normal line the state x. si shows point of each shooting. Note the discontinuities
at each interval.

The method works as follows-

1. Given initial state x0 and final state xf , guess initial states at each interval sk and
control ak at each interval

Deepak Paramkusam Master of Science Thesis

4-3 Direct optimal control 29

2. Integrate the differential equations over each interval to get xk and estimate error at
each interval εk

εk = xk − sk

3. Adjust ak using SQP to minimize each εk until each εk ≈ 0

Unlike single-shooting, since the integration occurs at each interval, non-linearities are not
propagated and it can handle unstable systems well [5]. Its structure allows it to be par-
allelized easily. But multiple-shooting has much higher dimensionality compared to single-
shooting.

4-3-4 Direct collocation

Direct collocation is a bit different from the previous two approaches. It does not involve
integration of the differential equations but instead tries to match the derivative of the ap-
proximating function with the state derivative at every interval.
In direct collocation method, control input, the state as well as the cost functional are dis-
cretized [55,57]. The control input is discretized as in other approaches and the state is
approximated in each interval using polynomials. The midpoint of each interval is termed
as collocation point [59]. Next, state polynomials and their derivatives are equated to the
state and state derivative in their respective intervals. This gives the coefficients of the state
polynomials over each interval as a function of interval length h, state at each interval xk and
control uk [59]. The state and state derivative at each collocation point can be calculated
using this. The error at each collocation point is calculated using 4-17, which is also known
as defect constraint [59]:

εc = ẋc − f(xc, uc) (4-17)
The cost functional is discretized as Jk using numerical integration approaches such as the
trapezoidal method [60]. Then ak (coefficients of uk) and bk (coefficients of xk) are iteratively
tuned using SQP to minimize Jk with εc = 0 as an equality constraint at each interval.
Collocation method is very large dimensionality approach due to additional constraints from
state and cost discretization. But it handles unstable systems very well and solves for all
collocation points simultaneously unlike single and multiple shooting.

4-3-5 Constrained direct optimal control

Input constraints are easier to handle in direct optimal control compared to indirect opti-
mal control. Input constraints become additional constraints to the non-linear programming
problem. If polynomial approximations are used, k inequality constraints are added to the
problem. They can be handled using penalty functions or barrier functions [58]. If the input
is discretized as a piece-wise constant function, the constraint simply becomes

U− ≤ ak ≤ U+

State constraints can be similarly handled in direct collocation method by simply enforcing
the constraints at collocation points. In single and multiple shooting this is not possible as the
state is not discretized but instead simulated using control input. In this case, the constraints
need to be reformulated as integral constraints or discretized as interior point constraints [59].

Master of Science Thesis Deepak Paramkusam

30 Data generation using optimal control

4-4 Data generation for learning-based RRT

The previous two sections illustrate various methods for solving the optimal control problem.
As discussed in section 4-1, solving the kinodynamic problem using optimal control gives us
the required distance metric and steering function for learning-based RRT.

Problems with indirect optimal (section 4-2) and the robustness of direct optimal control
make direct optimal approach an obvious choice for data generation . But indirect optimal
control has two features that make its use viable [2]. Firstly, indirect optimal control uses
fewer parameters compared to direct optimal control. This is important in learning as di-
mensionality of parameters can affect learning (Chapter 3). Lower parameter dimensionality
also means faster and efficient training. Another feature of indirect optimal control is that
data can be generated just by sampling initial state xi, initial co-state λi and final time tf .
No optimization is required. This is because every combination of xi, λi and tf returns a
viable final state xf , thus effectively sampling over the entire search space [2]. Quantifying
the influence of these features and how they affect learning-based RRT is one of this thesis’
contributions. Both indirect optimal control and direct optimal control methods are used to
generate data for a test case and influences of each are studied.

It is also seen in section 4-2-2 and 4-3-5 that optimal control gets more complex with the
addition of input and state constraints. Input constraints are very common in most systems
due to actuator limits. The influence of input constraints on data generation and learning
are also investigated using the test case in this thesis. State constraints are not considered.
These implementations and experiments are discussed in next chapter.

4-5 Summary

This chapter details the use of optimal control theory for generating data for learning-based
RRT. Kinodynamic planning problem is formulated as an optimal control control and solution
to the optimal control returns the steering and distance metric. Two approaches to solving the
optimal control problem - direct and indirect - are introduced and each approach is explained
briefly. In the next chapter, implementation of these approaches for learning-based RRT will
be discussed.

Deepak Paramkusam Master of Science Thesis

Chapter 5

Experimental setup

The previous chapters detailed the theory behind learning-based RRT and how it is used to
make state space RRT faster. Data generation for learning using optimal control theory is also
explained. This chapter describes the implementation of these concepts on a simple dynamical
system. This test system is then used to investigate the properties of learning-based RRT
and achieve the contributions of this thesis mentioned in chapter 1, namely

• Comparison of direct and indirect optimal for training set generation

• Study the effect of input constraints on learning

The experimental approach followed is as below-

1. Generation of equations of motion of test system

2. Unconstrained and constrained training data generation using optimal control. ACADO
optimal control software [61] is used for direct optimal control whereas indirect optimal
control is coded in MATLAB

3. Implementing K-nearest neighbours and feed-forward neural networks for supervised
learning using Sci-kit python library.

5-1 Test system

Earlier work on learning- based RRT ([2], [26]) used an inverted pendulum system for demon-
stration of the algorithm. In this thesis, a slightly more complex dynamical system, an
open-chain 2-link manipulator with both the links in the same plane (Fig. 5-1) is chosen as
the test system.

A 2-link manipulator is a non-linear system. It consists of 2 uniform rectangular links of
masses m1 and m2 and lengths l1 and l2. They are connected to each other by a revolute

Master of Science Thesis Deepak Paramkusam

32 Experimental setup

Figure 5-1: Test system - 2-link manipulator [6]. θ1, θ2 are angular positions of the two joints.

joint at point A. The other end of the first link is connected to ground by another revolute
joint B. Other end of the second link is free. Both the joints are assumed to rotate about an
axis perpendicular to axes x−y and are attached to actuators which control the joint torques
T1 and T2. Thus the system has 2 degrees of freedom. The manipulator is assumed to be in
gravity-free environment.

In this thesis, the links are assumed to have negligible thickness with centers of mass at the
centre of each link. Other properties are assumed as in 5-1.

m1 = m2 = 1 kg
l1 = l2 = 1 m (5-1)
r1 = r2 = 0.5 m

where ri is the distance to center of mass of each link from one end.

5-2 Generation of equations of motion

Motion of a system is described in terms of its position, velocity and acceleration with respect
to a chosen reference frame. Inertial properties of a system are its mass, moment of inertia,
surface area, coefficients of friction etc. Equations of motion are Newton’s laws applied a
dynamic system. Equations of motion of a system are second order ordinary differential
equations that relate the system’s motion to the forces acting on it in terms of its inertial
proprieties [6].

Equations of motion are known as forward dynamics equations if they describe the system
motion using the forces acting on it. The opposite i.e solving for forces using the motion,
is termed as inverse dynamics equations [62]. Forward dynamics equations are required for
learning-based RRT as they form the system equations in the optimal control formulation
(4-1). They are also used to simulate the system in the steering step of RRT.

Forward dynamics equations of motion for open-chain multi-link manipulators as in the test
case can be found using three different methods. All the methods generate equivalent equa-
tions but in different forms.

Deepak Paramkusam Master of Science Thesis

5-2 Generation of equations of motion 33

Newton-Euler method In Newton-Euler method, equations for translational acceleration
(Newton equations) and equations for rotational acceleration (Euler equations) are formulated
for each link in the system (5-2). Constraint equations between each link are also formulated.
Constraints equations are equations that relate the common points between two connected
bodies [62]. All these combined equations are linear with respect to generalized coordinates
qi and therefore can be solved using standard algorithms like Cramer’s rule to obtain the
equations of motion.

Fi = mi

1 0 0
0 1 0
0 0 1

 ai (5-2)

Ti = Iiθ̈ + θ̇i × Iiθ̇i

where Fi is the force acting on the centre of mass of ith link, Ti is torque about its centre of
mass, mi is its mass, Ii is the inertia matrix, ai is the acceleration of its centre of mass, θ̈ is
its angular acceleration and θ̇ is its angular velocity.

Despite the simplicity of Newton-Euler method, formulating the equations becomes tedious
in complex systems as number of equations become very high. For n links, 6n Newton-Euler
equations are obtained with 3 constraint equations per joint. This method has a polynomial
time complexity and is thus computationally expensive. Therefore it is mainly used for simple
systems with upto 10 links [62].

Lagrangian method Lagrangian method uses Lagrangian of a system and generalized coor-
dinates to generate the equations of motion. The Lagrangian L of a system is the difference
between its kinetic and potential energy. Equations of motion are then derived from L using
5-3 [6].

d

dt

(
δL

δqi

)
− L

qi
= Fi (5-3)

where L is the Lagrangian, qi are the generalized coordinates and Fi is the force on ith
generalized coordinate. Number of equations obtained using Lagrangian method is equal to
number of degrees of freedom. Lagrangian method is an elegant way to generate equations
of motion but requires an explicit expression of the Lagrangian which might not always be
feasible. Formulating the Lagrangian is also tedious for complex systems.

Featherstone’s articulated body algorithm Featherstone’s articulated body algorithm is an
efficient numerical algorithm to solve forward dynamics equations for open-chain multi-body
systems. The algorithm is structurally recursive and has a linear time-complexity [7]. The
algorithm uses spatial coordinates, which are coupled translational and rotational components
of a body (5-4).

Spatial velocity v̂ =
[
θ̇
v

]
Spatial acceleration â =

[
θ̈
a

]
(5-4)

Spatial force f̂ =
[
F
T

]
Spatial inertia Î =

[
0 M
I 0

]

Master of Science Thesis Deepak Paramkusam

34 Experimental setup

Articulated body algorithm divides an n-link manipulator into n subchains called articulated
bodies. Each subchain consists of j to n links in isolation from the base link where 1 ≤ j ≤ n
(Fig. 5-2). Link j is called the handle of the jth subchain [7].

Figure 5-2: Illustration of articulated bodies [7]. Bj are the links and Aj represent the articulated
bodies.

The algorithm considers each articulated body one after another and relates spatial acceler-
ation of each handle to the spatial force applied at the joint [63]. The relation is given by
equation 5-5.

f̂j = ÎAj âj + ẐAj (5-5)

where f̂j is the spatial force on jth link, ÎAj is its articulated inertia, âj is spatial acceleration
and ẐAj is the articulated static force of jth link. Articulated inertia ÎAj is the inertia of the
jth articulated body and articulated static force ẐAj is the force needed at the inboard joint
of the jth articulated body to keep it from accelerating [63].

ÎAj depends only on spatial inertia Îj of the jth link and articulated inertia ÎAj+1 of (j + 1)th
subchain. Also, ẐAj is depends only upon ẐAj+1(articulated static force of (j+ 1)th link), ÎAj+1
and f̂j+1 (force acting upon (j+1)th link). Therefore ÎAj and ẐAj can be recursively computed
for all articulated bodies starting from the nth articulated body [7].

Articulated body algorithm thus comprises of 3 steps-

• First step: Spatial velocities v̂j , isolated static forces Ẑj and isolated spatial inertia Îj
of all links are calculated

• Second step: Articulated inertia ÎAj and articulated static force ẐAj on each link is
calculated recursively starting from the nth articulated body using Eq.5-5.

• Third step: Spatial acceleration of each link and joint accelerations are computed using
f̂j .

Deepak Paramkusam Master of Science Thesis

5-3 Generation of training data 35

Despite the complexity of articulated body algorithm compared to the other two methods, it
is very fast and suitable for use in dynamics software [7].

In learning-based RRT, an explicit expression of equations of motion in terms of generalized
coordinates is required as it is used in indirect optimal control and RRT. Therefore Lagrangian
method is generally used for the generation. However, as previously mentioned, formulating
the Lagrangian becomes cumbersome for complex systems. Articulated body algorithm was
designed for complex systems [7], but it is a numerical method. To solve this problem,
articulated body algorithm was adapted to generate explicit symbolic equations of motion
over the course of this thesis 1 [64]. The adaptation was written in MATLAB using its
symbolic toolbox.

Using this implementation of articulated body algorithm, equations of motion for the test
case are obtained (with the values in 5-1 substituted) as in 5-6. This was verified using the
Lagrangian method. It can be observed that the equations are highly non-linear.

θ̈1 =

−(48T1 − 48T2 + 24θ̇1θ̇1sin(θ2) + 24θ̇2θ̇2sin(θ2) + 18θ̇1θ̇1sin(2θ2)− 72T2cos(θ2)
+ 48θ̇1θ̇2sin(θ2))

36cos(θ2)cos(qθ2)− 64
(5-6)

θ̈2 =

48T1 − 240T2 + 120θ̇1θ̇1sin(q2) + 24θ̇2θ̇2sin(θ2) + 36θ̇1θ̇1sin(2θ2)
+ 18θ̇2θ̇2sin(2θ2) + 72T1cos(θ2)− 144T2cos(θ2) + 48θ̇1θ̇2sin(θ2) + 36θ̇1θ̇2sin(2θ2)

18cos(2θ2)− 46

where T1, T2 are the control inputs, θ1, θ2 are angular positions of the two joints, θ̇1, θ̇2 are
joint angular velocities and θ̈1, θ̈2 are the joint angular accelerations.

5-3 Generation of training data

The above generated equations of motion can now be used to generate training data for
learning-based RRT using optimal control principles as discussed in previous chapter. The
optimal control problem is now formulated for kinodynamic planning of the test case (Section
5-1) as described in Chapter 4. It is observed from the equations of motion that the system
has two control inputs T1, T2 and its state x is defined by 2 generalized coordinates and their
derivatives (5-7).

u = [T1, T2] (5-7)
x = [θ1, θ̇1, θ2, θ̇2]

Initial and goal states xi and xf are chosen randomly from pre-determined range of angular
position and angular velocity for every sample. The ranges are taken as in 5-8.

θ1, θ2 ∈ [0, 2π] radians (5-8)
θ̇1, θ̇2 ∈ [−30, 30] rad/s

1Code available at https://github.com/DeepakParamkusam/urdf2eom. See Appendix A

Master of Science Thesis Deepak Paramkusam

https://github.com/DeepakParamkusam/urdf2eom

36 Experimental setup

The system equation for optimal control can then be derived from 5-7 and 5-6 as in 5-9.

ẋ =

θ̇1
θ̈1
θ̇2
θ̈2

 (5-9)

This forms the constraint equations. Next, a cost functional J needs to be chosen for the
optimal control problem. Minimization of system energy is a commonly chosen performance
index for dynamic systems and the same is chosen in this thesis[26]. This is formulated using
the Lagrange term as

J =
∫ tf

t0
uT (t)Ru(t)dt

where R is positive definite matrix chosen to be 1. Then J becomes (5-10).

J =
∫ tf

t0
T 2

1 + T 2
2 dt (5-10)

In the constrained case, the actuators attached to the joints are assumed to have torque limits
equal to ±400 Nm.

−400 ≤ T1 ≤ 400 (5-11)
−400 ≤ T2 ≤ 400

This completes the formulation of kinodynamic planning as optimal control problem for the
test case. Next the implementation of indirect and direct optimal control methods to the test
problem with and without input constraints are discussed.

5-3-1 Implementation of direct optimal control

Of the methods detailed in Section. 4-3, multiple shooting is used for direct optimal control
in this thesis. Multiple shooting is chosen over single shooting because non-linearities are not
propagated in multiple shooting and thus errors are localized. Although direct collocation is
more robust, it tends to be less accurate than multiple shooting due to its lower order.

Multiple shooting is implemented in this thesis using Automatic Control and Dynamic Opti-
mization (ACADO) toolkit software. ACADO toolkit is an optimal control and optimization
software written in C++ at KU Leuven [61]. It contains frameworks for wide range of direct
optimal control algorithms such as single and multiple shooting, model predictive control
and multi-objective optimization. ACADO was chosen over other common optimal control
packages like IPOPT, PROPOT and MUCSOD [64],[65] due to the following reasons-

• ACADO is user-friendly and supports formulation of the optimal control problem using
symbolic expressions [61]. This allows direct substitution of Eq. 5-6 into the source
code without any pre-processing.

Deepak Paramkusam Master of Science Thesis

5-3 Generation of training data 37

• ACADO is self contained. It has NLP solver, Runge-Kutta integrator, function approx-
imators and major optimal control algorithms already implemented in the framework.
No external tools are necessary.

• ACADO is open-source. It is free for use by academics and can be modified as desired.

Optimal control problem formulated previously is coded in ACADO (see Appendix B). The
input is discretized as a piece-wise constant function over 20 intervals over 0.5s time period
and fourth order Runge-Kutta integrator is used for simulation with 10000 integrator steps.
Other parameters for multiple shooting are chosen are given in 5-12. xi and xf are randomly
sampled from the chosen range (5-8). Cost of each solution and control input are returned by
ACADO as solutions to optimal control problem. In constrained case, the input constraints
are added to ACADO using simple inequalities. No other changes to the code are required.
100 thousand samples are generated for the unconstrained case and the constrained case.

tf = 0.5s (5-12)
Tolerance = 10−4

No. of samples = 100000 (5-13)

5-3-2 Implementation of indirect optimal control

Indirect optimal control approach follows the Pontryagin’s principle described in Section. 4-2
and is programmed in MATLAB and Python. However, Runge-Kutta integration is coded in
Python (Appendix B).
The expressions for ẋ∗ and the corresponding co-states λ̇∗

x are generated in MATLAB in the
same way as Eq. 4-6.

ẋ∗ = d

dt
[θ∗

1, θ
∗
2, θ̇

∗
1, θ̇

∗
2] (5-14)

λ̇∗
x = d

dt
[λ∗
θ1 , λ

∗
θ2 , λ

∗
θ̇1
, λ∗

θ̇2
]

u∗ = φ(x∗, λ∗, t)

Here, the advantage of indirect optimal control for data generation demonstrated in [2] comes
into play. Instead of solving the above boundary value problem, authors of [2] assert that
every combination of intial state xi, initial co-state λi and final time tf results in an optimal
trajectory to corresponding xf by integrating Eq. 5-14. Therefore, if tf is fixed (it is chosen
to be 0.5s), only xi and λi are required to generate training data. This approach also shows
that u∗ need not be generated for learning. Instead, the co-states themselves can be learnt as
they are the ones being used to generate xf [2]. Learning co-states also reduces the number
of parameters to be learnt to 4 (number of co-states). Low size of training data, as seen in
Chapter 3, helps supervised learning. Cost (distance metric) can also written in terms of the
co-state and generated at the same time. This makes data generation much faster compared
to the direct optimal approach as the boundary value problem need not be solved. A dataset
of 100 thousand samples are generated using this approach too.
Input constrained indirect optimal control is infeasible for learning-based RRT because of two
reasons-

Master of Science Thesis Deepak Paramkusam

38 Experimental setup

• u∗ switches to the input bounds at certain points in the trajectory due to the constraints
as mentioned in Chapter 3. It is hard to find all the switching points for a non-linear
system [29].

• When u∗ switches, the co-states change as well at the switching point (Fig. 5-3). That
mean two sets of λ∗ exist for certain trajectories. When applied to learning-based RRT,
both the sets of co-states need to be learnt along with the switching points and states
at switching points. Also, trajectories where this happens should also be predicted.

Figure 5-3: Illustration of trajectory change due to u∗ switching to U+ under input constraint

An alternate approach for constrained indirect optimal control is attempted in this thesis. u∗

is formulated as in Eq. 4-8 assuming there are no input constraints. Once a random xi and
and its co-state λi are chosen, u∗ is calculated during every step of the integration alongside
xf . If u∗ is observed to exceed the input constraints at any point, that sample is discarded.
Only samples which always satisfy the input constraints are stored. Thus constrained data is
geenrated using indirect optimal control.

5-4 Implementation of supervised learning

Cost generated during the optimal control process is the distance metric and is a scalar
continuous quantity. Therefore, 100000 sample datasets for cost and control input generated in
the previous section are used for training learning algorithms. Separate models are generated
for each. The inputs to the learning algorithms are the initial and final states xi and xf .
Steering input is an array and has different sizes in direct and indirect optimal control. Direct
optimal control returns a 20 element array for each steering input (as input is discretized into
20 time intervals) while indirect optimal control returns a 4 element array (equal to number of
co-states). Each element of the array is continuous as well. Since all outputs are continuous,
the learning becomes a regression problem.
K-nearest neighbours (KNN) and feed-forward neural networks described in Chapter 3 are the
two algorithms are used for learning-based RRT in this thesis. They are implemented using

Deepak Paramkusam Master of Science Thesis

5-4 Implementation of supervised learning 39

scikit-learn, a popular Python machine learning library [66]. Scikit-learn includes efficient
implementations of many supervised learning algorithms. Scikit-learn is user-friendly and
distributed under BSD license. The code for the implementations are provided in Appendix
B.

5-4-1 Data pre-processing

Learning algorithms are sensitive to biases inherent in the data and to large data variations
[43]. Therefore, before training the networks, the data needs to be pre-processed. First, the
100000 samples are divided into 2 datasets in the ratio 9:1. The bigger 90000 sample data
set is used for training (using k-fold cross validation) while the smaller 100000 sample set is
used for testing the learning.

Common pre-processing techniques are standardization and scaling. Standardization nor-
malises the data and removes biases. Standardization is performed using 5-15 where σ and µ
are the data set’s mean and standard deviation respectively.

xi,std = xi − σ
µ

(5-15)

Scaling transforms the data to a different range (usually to [0,1]). Scaling is performed using
5-16. min(x) and max(x) are the minimum and maximum values of the data set. It is
recommended to scale data for neural networks for faster convergence [44].

xi,scaled = xi −min(x)
max(x)−min(x) (5-16)

Dataset cleaning is another pre-processing step. When multiple samples with similar inputs
have very different outputs, learning algorithms tend to take the mean of the outputs during
prediction. But taking the mean can result in incorrect predictions and is undesirable [2].
This is more prevalent in non-parametric algorithms like KNN than in parametric algorithms.
Therefore, only one of the similar samples is kept and the others are discarded. This is known
as dataset cleaning. Similar samples are identified using euclidean metric in this thesis and
only the sample with least cost is kept.

5-4-2 Implementation of KNN and feed-forwards neural network

Scikit-learn provides a very efficient implementation of KNN and the same is used in this
thesis. Euclidean distance is used for finding the nearest neighbours with uniform weights for
all neighbours. Number of nearest neighbours taken under consideration (the value of k) is
chosen by computing errors for a range of values of k. k-range is chosen from the range 2 to
30.

Feed-forward neural network is also implemented using scikit-learn. Since the test case’ state
has 4 elements, 4 input perceptrons are used. Similarly, 40 output perceptrons are used
for the output layer for direct optimal control data and 4 output perceptrons for indirect
optimal control data. Single hidden layer is used and number of perceptrons in it are varied.

Master of Science Thesis Deepak Paramkusam

40 Experimental setup

Rectified linear unit (ReLu) threshold function (Eq. 3-8) is used for all perceptrons with
square error as the loss function. ADAM solver is used for back-propagation due to its better
performance compared to stochastic gradient descent (Sec. 3-3-1). Other parameters chosen
for feed-forward network are below-

Batch size = 200 (5-17)
Epochs = 100

Tolerance = 10−4

Learning rate α = 10−3

Batch size is the number of samples that are used per iteration for training the network.
Epochs are the number of times entire data set is used for training. For a 90000 sample
training set, there are 90000

200 = 450 iterations per epoch. Training stops if the tolerance is
reached or the epoch limit is reached.

5-5 Implementation of learning-based RRT

Learning-based RRT detailed in Chapter 2 was implemented completely in Python by authors
of [2]. The same code is reused in this thesis with modifications as required for the chosen test
system and the feed-forward neural network (Appendix B). The major parameters chosen of
learning-based RRT are as follows-

Max. nodes = 10000
Goal tolerance = 0.5

Max. state error = 0.5
Goal bias = 20%

5-6 Summary

This chapter details various ways to generate data and learn it for learning-based RRT. First
equations of motion are generated using articulated body algorithm and they are used to
generate training data using multiple shooting and Pontryagin’s principle for unconstrained
and constrained cases. The use of this data to train feed-forward neural network and KNN
is also detailed. Comparison of the data generation and its effect on learning is analysed in
the next chapter.

Deepak Paramkusam Master of Science Thesis

Chapter 6

Results and analysis

The previous chapter detailed the experiments performed in this thesis to investigate the
influence of indirect and direct optimal control on the learning-based RRT. The results of
those experiments are analysed in this chapter. Different metrics used for comparison of the
optimal control approaches are first introduced and then the results are analysed based on
the metrics. Constrained learning-based RRT is also compared using the same metrics.

6-1 Comparison metrics

The optimal control data and its corresponding learning is compared using data generation
time, quality metrics and learning metrics. These metrics are evaluated for both indirect
and direct optimal control training data using KNN and feed-forward neural network as the
learning algorithms.

Data generation time Data generation time in this thesis refers to the time taken to generate
the training data using indirect and direct optimal control approaches. Generation time is
an important metric as it is the most time-consuming off-line step in learning-based RRT
and entirely depends on the optimal control approaches. Sample generation time is average
of the data generation time and gives a quantifiable estimate of the runtime of each optimal
control approach per sample. Lower sample generation time is desired as it allows faster
implementation of learning-based RRT.

Quality metrics Quality of data is a measure of how well the given data correctly represents
the system it is trying to model [67]. Poor quality data can result in improper learning.
Quality metrics used in this thesis are data completeness and data uniqueness. These metrics
are explained in detail below -

1. Data completeness
Data completeness is a a measure of how well the data covers the state space. Data

Master of Science Thesis Deepak Paramkusam

42 Results and analysis

isolated to a certain part of the state space may not fully capture the system dynamics
and can result in inaccurate or biased predictions [67]. Data completeness is evaluated
by plotting the phase plot of the input. Phase plot of a dynamic system represents each
state as a point. Gaps in these phase plots will indicate incompleteness of data as they
represent states not present in the training set.

2. Data uniqueness
Data uniqueness is measure of distinctiveness of each sample in the training data. As
mentioned in the previous chapter, similar or close inputs with different outputs in the
training data can confuse the learning algorithm. Data cleaning is used to remove the
similar inputs and also used as a measure of uniqueness of data in this thesis [67]. Lower
the number of similar data, better the uniqueness of the data. Euclidean distance is
used to find similar samples and sample with least cost is kept among them. It should
be noted that data cleaning should not affect the completeness of the data and euclidean
distance should be chosen accordingly.

Learning metrics Learning metrics are commonly used for measuring the performance of
learning algorithms [68]. But they are used in this thesis to compare the different training
datasets with the learning algorithm kept constant. This helps evaluate which dataset is
more easily learned. Learning metrics consist of average cross validation error and prediction
profile.

1. Average cross validation error
k-fold cross validation was introduced in chapter 3 to evaluate a learning algorithm. The
same method is used to evaluate mean squared error of training in each fold. Lower
values signify better learning. Average error over all the k folds gives the average cross
validation error. Number of folds is chosen to be 10 in this thesis.

2. Prediction profile
Prediction profile is another measure of the learning algorithm’s performance. Accuracy
of the predictions made from the trained models can be observed in the prediction
profiles. Predictions are made using the test dataset previously kept aside. These test
predictions are plotted against the actual values for both cost and control input. The
x = y line represents predictions which are same as actual values. Therefore, closer the
points are to the x = y line, better the learning.

6-2 Comparison of direct and indirect optimal control

First, the comparison is performed for the unconstrained input case. As discussed in the
previous chapter, two datasets are generated for the test case - one using the multiple shooting
method and one using Pontryagin’s principle. 100000 sample dataset was generated using
indirect approach and 500000 sample dataset using the direct approach. This is because
control input generated using direct optimal approach has larger parameter size (20 per control
input) compared to indirect approach (4 co-states). More the number of parameters to learn,
larger the required dataset. These datasets are then used to train k-nearest neighbours (KNN)
and feed-forward neural network. The trained models are then used in learning-based RRT.
Comparison of these datasets is now performed based on the previously detailed metrics.

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 43

Data generation time The time taken to generate each data set is found to be as in Table.
6-1. It is observed that Pontryagin approach is more than 100 times faster than multiple
shooting approach. This is mainly because multiple shooting (and all direct optimal control
approaches) is an iterative method. The iterative process increases the data generation time.
Modified Pontryagin approach used in this thesis (Section 5-3-2) also reduces generation time
as it uses co-states to generate final state and cost in a single integration step.

Table 6-1: Data generation time without input constraints

Optimal control approach Generation time for
100k samples (hours) Average sample generation time (s)

Pontryagin (Indirect) 0.62 (1 thread) 0.022
Multiple shooting (Direct) 66.4 (8 threads) 2.39

Data completeness For the test case, it is not possible to directly visualize the phase plot
since the input dimension is 8. Therefore, the phase space is split into multiple lower dimension
plots. xi and xf in the input are mapped using 4-dimensional scatter plot with the 4th
dimension represented using a color gradient. For xi vs xf , all the combinations of their
elements are plotted using 2-dimensional scatter plots.
In the direct optimal control approach, both initial state xi and final state xf are randomly
and uniformly sampled from a predefined state space (5-8).

θ1, θ2 ∈ [0, 2π] radians
θ̇1, θ̇2 ∈ [−30, 30] rad/s

However, 4-dimensional phase plot of xi was observed to have some discolouration implying
gaps in the phase plot while xf had uniform coverage (Fig.6-3). The gaps in xi can be seen
more clearly in Fig.6-1 and Fig.6-2. xi vs xf was observed to have uniform coverage. One
of xi vs xf plots is given in Fig.6-5. Gaps in xi could be caused due to non-convergence of
samples from those regions. Only successful optimizations which lead from chosen xi to xf
are included in training set.

Figure 6-1: Gaps in phase plot of xi : q2i vs qd2i

Master of Science Thesis Deepak Paramkusam

44 Results and analysis

Figure 6-2: Gaps in phase plot of xi : q2i vs qd2i

In indirect optimal control approach, xi randomly sampled as in the direct approach and its
phase plot is therefore observed to be uniformly distributed (Fig.6-4a). xf is generated using
xi and co-state λ. Its phase plot is observed to also cover the entire state space and even
slightly exceed it (Fig.6-4b). However, their xi vs xf phase plots shows insufficient coverage
(Fig.6-6) due to correlation between xi and xf .

From the 4-dimensional phase plots of direct and indirect datasets, it is observed that both
datasets are complete. Direct dataset has gaps in xi while indirect dataset has gaps in xi vs
xf . This incompleteness can affect the learning using these datasets.

Data uniqueness Data cleaning (Sec. 5-4-1) was performed on each data set using Euclidean
distances 3 and 4. Cleaning with Euclidean distance more than 4 was observed to result in
loss of data. The number of similar samples in each case is shown in Table.6-9 and Table.6-10.
Percentage of similar samples is observed to be higher in indirect approach compared to the
direct approach.

Table 6-2: Cleaning of direct data (unconstrained)

Chosen Euclidean dist. % of similar samples
3 9
4 28

Table 6-3: Cleaning of indirect data (unconstrained)

Chosen Euclidean dist. % of similar samples
3 16
4 31

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 45

a) xi (Direct approach)

b) xf (Direct approach)

Figure 6-3: 4-D phase plots with direct approach (multiple shooting) without input constraints.
Discolouration can be seen in a) which represents incompleteness in xi.

Master of Science Thesis Deepak Paramkusam

46 Results and analysis

a) xi (Indirect approach)

b) xf (Indirect approach)

Figure 6-4: 4-D phase plots with indirect approach (Pontryagin principle) without input con-
straints. Uniform distribution of samples is observed.

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 47

1 2 3 4 5 6

q
1i

1

2

3

4

5

6

q
1
f

Figure 6-5: Sample xi vs xf phase plot for direct data without input constraints. Other plots
have similar coverage.

Figure 6-6: xi vs xf phase plot for indirect data without input constraints. Only plots with
irregularities are shown. Other plots have uniform coverage.

Master of Science Thesis Deepak Paramkusam

48 Results and analysis

6-2-1 Learning unconstrained data with KNN

After cleaning, the datasets are pre-processed to facilitate learning. The datasets are first
standardized. Initial tests showed that the large cost range in direct dataset was affecting
learning. Therefore the cost is bound to 60000 in direct dataset to mitigate this. Then the two
datasets are used to train two models using k-nearest neighbour algorithm. One model is for
predicting the steering input and another for predicting the distance metric. Ideal number of
neighbours (value of k) for the KNN algorithms was determined using cross-validation error
for different values of k (as specified in Section.3-2). k = 13 and 2 was found to be best
to model distance metric for direct dataset and indirect dataset respectively. For steering
control, k = 7 was found to be better for indirect dataset while k = 18 performed better for
direct dataset (Table.6-4). This difference could be due to the higher dimensionality of data
generated using direct optimal control approach.

Table 6-4: Optimal k for KNN

Optimal control approach Optimal k
Cost Control

Pontryagin (Indirect) 2 7
Multiple shooting (Direct) 13 18

Average cross-validation error Average cross-validation error over 10 folds is given in Table.
6-5. The error is scaled to allow comparison between the two datasets. It is observed that
the error values are high, especially for control input. This suggests that the KNN algorithm
was not able to learn very well from either dataset. However, if the errors are compared to
each other, it is seen that the dataset obtained using indirect optimal control shows lower
validation error compared to the direct optimal control one.

Table 6-5: Average cross-validation error for KNN

Average MSE (scaled)
Optimal control approach Cost Control input
Multiple-shooting (Direct) 0.891 0.986

Pontryagin (Indirect) 0.194 0.8213

Prediction profile Cost and control input predictions using the indirect dataset are given
in Fig.6-7 and the same for direct dataset in Fig.6-8. As expected from the high cross-
validation error, the control input predictions are poor and inaccurate for both indirect and
direct datasets with wide spread about the x = y line. This implies that KNN is not able to
correctly model the control input. Cost predictions are a little better with lower error. Cost
predictions from the indirect dataset are much better than the predictions from direct dataset
with low spread across the x = y line. Cost predictions from indirect dataset are observed to
have lower error. Lower range of cost in the indirect dataset could be the influencing factor.

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 49

0 500 1000 1500 2000
Actual cost

0

500

1000

1500

2000

Pr
ed

ict
ed

 c
os

t

a) Distance metric prediction profile

−1 0 1 2 3 4 5
Actual control

−1

0

1

2

3

4

5

Pr
ed

ict
ed

 c
on

tro
l

b) Co-state prediction profile (Steering input)

Figure 6-7: KNN prediction profiles of indirect optimal control dataset (without constraints)

Master of Science Thesis Deepak Paramkusam

50 Results and analysis

0 5000 10000 15000 20000 25000 30000 35000 40000
Actual cost

0

5000

10000

15000

20000

25000

30000

35000

40000

Pr
ed

ict
ed

 c
os

t

a) Distance metric prediction profile

−750 −500 −250 0 250 500 750
Actual control

−750

−500

−250

0

250

500

750

Pr
ed

ict
ed

 c
on

tro
l

b) Steering input prediction profile

Figure 6-8: KNN prediction profiles of direct optimal control dataset (without constraints)

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 51

6-2-2 Learning unconstrained data with feed-forward neural network

The datasets are next used to train feed-forward neural networks. Again two models are
trained for each dataset; one for cost and other for control input. Number of hidden layers
and number of neurons in each layer are the tunable parameters here. There is no method
to find the correct number of hidden layers or number of neurons in each layer [50]. The
optimum values are therefore found using trial and error.

Average cross-validation error It is observed that 2 hidden layers give good convergence.
Cross-validation error for indirect dataset with different network structures is given in Table.6-
6 and the same for direct dataset is given in Table.6-7. Number of elements in array (a,b)
represents number of hidden layers and each element gives number of neurons in that layer.

Table 6-6: Cross validation error for indirect dataset with neural network

Cost Control input
Neurons/layer MSE (scaled) Neurons/layer MSE (scaled)

(75,20) 0.05893 (100,20) 0.7554
(75,50) 0.02836 (100,50) 0.7432
(75,75) 0.0353 (100,100) 0.7207

Table 6-7: Cross validation error for direct dataset with neural network

Cost Control input
Neurons/layer MSE (scaled) Neurons/layer MSE (scaled)

(100,20) 0.3743 (100,20) 0.3813
(100,60) 0.3845 (100,50) 0.3754
(100,70) 0.399 (100,80) 0.3761

The control input errors are high with both the datasets. Therefore poor predictions are
expected similar to KNN. But surprisingly, direct dataset shows lower error for control input
compared to indirect dataset. Also, it is noticed that mean squared error of the cost is very low
with the indirect dataset. This implies very good learning of cost. Cost in the direct dataset
has higher range and variance compared to the indirect dataset alongside lower number of
samples. This could explain the difficulty of learning the cost using direct dataset.

Prediction profile The prediction profiles using feed-forward neural networks for the two
unconstrained datasets are shown in Fig.6-9 and Fig.6-10. The cost model displays very
good prediction in the indirect case as expected from the low mean square error. The input
predictions are not good with wide spread about the x = y line. Thus neural network also
failed to correctly learn the control input for the chosen test case. With the direct dataset,
the high number of control parameters could be making the learning difficult.

Master of Science Thesis Deepak Paramkusam

52 Results and analysis

0 500 1000 1500 2000 2500
Actual cost

0

500

1000

1500

2000

2500

Pr
ed

ict
ed

 c
os

t

a) Cost prediction profile

−2 −1 0 1
Actual control

−3

−2

−1

0

1

2

Pr
ed

ict
ed

 c
on

tro
l

b) Control input prediction profile

Figure 6-9: Neural network prediction profiles of indirect optimal control dataset (without con-
straints)

Deepak Paramkusam Master of Science Thesis

6-2 Comparison of direct and indirect optimal control 53

0 5000 10000 15000 20000 25000 30000 35000 40000
Actual cost

0

10000

20000

30000

40000

Pr
ed

ict
ed

 c
os

t

a) Cost prediction profile

−3000 −2000 −1000 0 1000 2000
Actual control

−3000

−2000

−1000

0

1000

2000

Pr
ed

ict
ed

 c
on

tro
l

b) Control input prediction profile

Figure 6-10: Neural network prediction profiles of direct optimal control dataset (without con-
straints)

Master of Science Thesis Deepak Paramkusam

54 Results and analysis

6-3 Effect of input constraints

The effect of input constraints on the datasets and learning is investigated in this section.
Datasets are generated the same way as before except input constraints are applied now (5-
11). 10000 sample direct dataset is used as the 100000 sample dataset was discovered to be
faulty. The metrics are again evaluated to see the effect of the input constraints.

−400 ≤ T1 ≤ 400
−400 ≤ T2 ≤ 400

Data generation time Application of input constraints was not observed to induce any
significant change in data generation time compared to unconstrained case (Table. 6-8).
Indirect method still vastly out-paces direct approach. This is because input constraints
checking in both the approaches is a simple boolean operation which does not cause any
additional overhead.

Table 6-8: Data generation time with input constraints

Optimal control approach Generation time for
100k samples (hours) Average sample generation time (s)

Pontryagin (Indirect) 0.64 (1 thread) 0.023
Multiple shooting (Direct) 66.7 (8 threads) 2.41

Data completeness Phase plot of xi and xf using direct optimal control approach with
input constraints in shown in Fig.6-12. Non-uniform colouration of the phase plot can be
noticed in Fig.6-12a. This mean that there is a gap in that region. This can be more clearly
seen in Fig.6-11. No gaps are observed in xi vs xf plots (sample graph in Fig.6-14)

1 2 3 4 5 6

q
2i

-25

-20

-15

-10

-5

0

5

10

15

20

25

q
d

2
i

Figure 6-11: qd2i vs q2i plot. Non-uniformity can be clearly seen here.

In the case of indirect optimal control approach with constraints, very obvious gaps can be
seen at bottom of the phase plots of xi and xf (Fig.6-13). Other gaps can also be seen in xi
vs xf phase plot alongside gaps due to correlation (Fig.6-15g, h).

Deepak Paramkusam Master of Science Thesis

6-3 Effect of input constraints 55

Reduction in state space coverage in the constrained case is hypothesized to be due to the
input constraints. The reachability of some regions of the state space is reduced as they
violate the constraints. This makes the data incomplete.

-30

-20

06

-10q
d

1

0

24

10

q1q2

42
60

-25

-20

-15

-10

-5

0

5

10

15

20

25

q
d
2

a) xi (Direct approach)

-30

-20

06

-10q
d

1

0

24

10

q1q2

42
60

-25

-20

-15

-10

-5

0

5

10

15

20

25

q
d
2

b) xf (Direct approach)

Figure 6-12: 4-D phase plots with direct approach (multiple shooting) with input constraints.
The sparseness in the middle in a) can be clearly seen.

Master of Science Thesis Deepak Paramkusam

56 Results and analysis

a) xi (Indirect approach)

b) xf (Indirect approach)

Figure 6-13: 4-D phase plots with indirect approach (Pontryagin principle) with input constraints.
U-shaped gaps can be observed at the bottom of each plot.

Deepak Paramkusam Master of Science Thesis

6-3 Effect of input constraints 57

1 2 3 4 5 6

q
1i

1

2

3

4

5

6

q
1

f

Figure 6-14: xi vs xf phase plot for direct data with input constraints. Uniform coverage is
observed on all the plots.

Figure 6-15: xi vs xf phase plot for indirect data with input constraints.

Master of Science Thesis Deepak Paramkusam

58 Results and analysis

Data uniqueness Data cleaning was performed on each data set again using euclidean dis-
tances 3 and 4. The number of similar samples in each case is shown in Table.6-9 and Ta-
ble.6-10. Higher percentage of similar samples are noticed in the indirect constrained dataset
as before. Also, it is observed that these constrained datasets have higher percentage of sim-
ilar samples than the unconstrained datasets. Input constraints could be a possible reason
for this. Input constraints force data generation from a restricted state space which causes
samples to be closer to each other (compared to an unconstrained case).

Table 6-9: Cleaning of direct data

Chosen Euclidean dist. % of similar samples
3 10
4 27

Table 6-10: Cleaning of indirect data

Chosen Euclidean dist. % of similar samples
3 20
4 39

6-3-1 Learning input constrained data with KNN

Same as before, the datasets are standardized, and direct dataset is bounded at 40000 before
being used to train two models using KNN. Values of k for the input constrained datasets
were found as in Table.6-11.

Table 6-11: Optimal k for KNN

Optimal control approach Optimal k
Cost Control

Pontryagin (Indirect) 3 6
Multiple shooting (Direct) 4 22

Average cross-validation error Cross-validation errors with KNN for the constrained datasets
are given in Table.6-12. The overall error values is found to have reduced compared to the
unconstrained data. But the error for control input learning is still high. Even the cost error
is not as good as that observed in neural network previously.

Table 6-12: Average cross-validation error for KNN (input constrained)

Average MSE (scaled)
Optimal control approach Cost Control input
Multiple-shooting (Direct) 0.299 0.804

Pontryagin (Indirect) 0.365 0.749

Deepak Paramkusam Master of Science Thesis

6-3 Effect of input constraints 59

Prediction profile KNN prediction profiles with constrained indirect and direct datasets
are given in Fig.6-16 and Fig.6-17. Control input predictions are inaccurate even with these
datasets. Cost predictions are better with the indirect dataset with low spread, but they are
very poor with direct dataset.

0 200 400 600 800 1000
Actual cost

0

200

400

600

800

1000

Pr
ed

ict
ed

 c
os

t

a) Distance metric prediction profile

−1 0 1 2 3 4 5
Actual control

−1

0

1

2

3

4

5

Pr
ed

ict
ed

 c
on

tro
l

b) Co-state prediction profile (Steering input)

Figure 6-16: Prediction profiles of indirect optimal control dataset (with input constraints)

Master of Science Thesis Deepak Paramkusam

60 Results and analysis

0 5000 10000 15000 20000 25000 30000 35000 40000
Actual cost

0

5000

10000

15000

20000

25000

30000

35000

40000

Pr
ed

ict
ed

 c
os

t

a) Distance metric prediction profile

−400 −300 −200 −100 0 100 200 300 400
Actual control

−400

−300

−200

−100

0

100

200

300

400

Pr
ed

ict
ed

 c
on

tro
l

b) Steering input prediction profile

Figure 6-17: Prediction profiles of direct optimal control dataset (with input constraints)

Deepak Paramkusam Master of Science Thesis

6-3 Effect of input constraints 61

An important point to note is that the predicted control inputs with the constrained direct
dataset do not violate the input constraints i.e all the predictions are between ±400Nm.
This is because KNN takes the average of the neighbours and since none of them exceed the
constraints, the predictions also do not exceed the constraints. This is not so straight forward
however in the indirect dataset as the control input is not directly predicted but generated
from the co-states and the initial state. Therefore some co-state predictions can result in
control input that violate the input constraints depending on the initial state.

6-3-2 Learning input constrained data with feed-forward neural network

The constrained datasets are next used to train feed-forward neural network of different
structures.

Average cross-validation error Mean squared errors for different network structure with the
constrained datasets are given in Table.6-13 and Table.6-14. 2-hidden layers were observed
to be better for constrained indirect dataset too. Similar to unconstrained case, high control
input error was obtained with both datasets and low cost error was obtained with indirect
dataset.

Table 6-13: Cross validation error for constrained indirect dataset with neural network

Cost Control input
Neurons/layer MSE (scaled) Neurons/layer MSE (scaled)

(60,20) 0.0621 (80,10) 0.7548
(60,30) 0.0134 (80,40) 0.7433
(60,50) 0.022 (80,50) 0.7146

Table 6-14: Cross validation error for constrained direct dataset with neural network

Cost Control input
Neurons/layer MSE (scaled) Neurons/layer MSE (scaled)

(100,60) 0.5341 (100,40) 0.3791
(100,100) 0.5020 (100,50) 0.3711
(100,80) 0.5106 (100,100) 0.3142

Prediction profile The prediction profiles for neural network with input constrained datasets
are in Fig.6-19 and Fig.6-19. Cost predictions very close to x = y line are obtained using
indirect dataset. Cost predictions using direct dataset also show low spread. Control predic-
tions with direct dataset, though still poor, is observed to be better than predictions from
previous methods.
Unlike the KNN algorithm, the predictions from direct dataset are observed to violate the
input constraints i.e give prediction outside ±400Nm. This is because feed-forward neural
network is a parametric learning algorithm which learns a function using the constrained
dataset. But the learned function itself is not constrained and thus can give predictions
which violate the input constraints.

Master of Science Thesis Deepak Paramkusam

62 Results and analysis

0 200 400 600 800 1000 1200
Actual cost

0

200

400

600

800

1000

1200

Pr
ed

ict
ed

 c
os

t

a) Cost prediction profile

−1 0 1 2 3 4 5
Actual control

−2

0

2

4

6

Pr
ed

ict
ed

 c
on

tro
l

b) Control input prediction profile

Figure 6-18: Neural network prediction profiles of indirect optimal control dataset (with con-
straints)

Deepak Paramkusam Master of Science Thesis

6-3 Effect of input constraints 63

0 5000 10000 15000 20000 25000 30000 35000
Actual cost

0

5000

10000

15000

20000

25000

30000

35000

Pr
ed

ict
ed

 c
os

t

a) Cost prediction profile

−400 −300 −200 −100 0 100 200 300 400
Actual control

−400

−200

0

200

400

Pr
ed

ict
ed

 c
on

tro
l

b) Control input prediction profile

Figure 6-19: Neural network prediction profiles of direct optimal control dataset (with con-
straints)

Master of Science Thesis Deepak Paramkusam

64 Results and analysis

6-4 Performance in learning-based RRT

The models trained in the previous sections are next used in learning-based RRT. Both
unconstrained and input constrained KNN and neural network models were incorporated
into the learning-based RRT code and attempts were made to generate a motion plan for
an initial-final state pair (6-1) 100 times. The convergence rate can be inferred by this. As
mentioned in the previous chapter, the node limit was fixed at 10000 nodes.

xi = [0, 0, 0, 0] (6-1)
xf = [0, 2π, 0, 0]

However, convergence of learning-based RRT was not observed in any of the 100 attempts with
both KNN and multi-layer neural network. Different initial-final state pairs were tested to no
avail. Lack of convergence is attributed to poor cost and control input predictions. Inaccurate
control input prediction transforms learning-based RRT to regular RRT (with random control
inputs). But inaccurate cost predictions is problematic as learning-based RRT can no longer
correctly find the nearest node on the tree. This prevents expansion towards the final state.

Run time, which is the time taken to converge or to run out of nodes, of KNN-based RRT and
neural network-based RRT was compared during the above attempts. Run time is affected
only by the learning algorithm used and not by the optimal control approaches. Primary
observation was that the run time, though lower than regular RRT, is much higher than
that expected from learning-based RRT due to poor model predictions. Feed-forward neu-
ral network-based RRT however has faster run time compared to KKN-based RRT. This is
because KNN finds the nearest neighbours every-time the cost or the control input model is
called. This is computationally expensive (Chapter 3) and calling feed-forward neural network
is much faster.

Table 6-15: Run times with different algorithms

Avg. run time per 1000 nodes
KNN-based RRT 265.8 seconds
ff-NN-based RRT 170.1 seconds

6-5 Summary

The results of the experiments detailed in previous chapter are analysed in this chapter.
Indirect optimal approach is observed to be much faster than direct optimal control. Data
completeness was explored and datasets obtained using indirect optimal control approach
were found to be less data complete. Poor learning of control input was demonstrated by
both KNN and neural networks with both indirect and direct datasets. But cost function was
accurately learned by feed-forward neural network using indirect datasets. With regards to
input constrained datasets, no significant difference was observed in the learning. However,
only KNN trained with direct datasets was able to predict control input without violating the
input constraints. Learning-based RRT implemented here failed due to inaccurate predictions
by the learned models.

Deepak Paramkusam Master of Science Thesis

Chapter 7

Conclusions

This thesis started out with introducing learning-based RRT and how it is faster than regular
RRT. The thesis aimed to determine the best optimal control approach to generate training
data for learning-based RRT. The effect of input constraints on the data generation and
learning was another point of interest. The previous two chapters described the various
experiments conducted using a test case to achieve these goals. The inferences and conclusions
based on the results obtained from these experiments are discussed next.

Comparison of optimal control approaches The comparison of the optimal control ap-
proaches is made using the training datasets generated using multiple-shooting method and
Pontryagin’s principle. The first difference between the two approaches was observed in the
data generation time. Multiple-shooting (direct optimal approach) proved to be almost 100
times slower than Pontryagin’s principle (indirect optimal approach) due to its iterative na-
ture. Looking at the datasets themselves, it was noticed that both datasets were incomplete.
Incompleteness in direct approach is because of the failure to converge in some regions during
the optimization process. Indirect dataset is generated by randomly sampling initial state
and co-state and getting the final state from integration of equations of motion. Since the
integration time is fixed at 0.5 seconds, the final states obtained are close to the initial states.
When used for training KNN and feed-forward neural network algorithms for control input,
both the datasets were observed to perform badly with high mean squared error and inaccu-
rate predictions. Cost learning was slightly better with indirect dataset. Due to inaccurate
predictions, learning-based RRT failed as well. Possible reasons for poor learning are:

• Insufficient training data could be one reason for poor learning. 100000 sample dataset
was generated with indirect approach and 500000 sample dataset with direct approach
for learning in this thesis. It is possible that larger datasets are required for proper
learning of cost and control input. However, it should be noted that direct optimal
control is very time consuming (≈ 2.4s per sample) and larger datasets take days to
generate.

Master of Science Thesis Deepak Paramkusam

66 Conclusions

• Poor control learning with direct dataset is suspected to be due to the high number of
parameters to be learned for control input (40 parameters). Large variation of costs in
direct dataset could be the reason for poor learning of cost. Cost was bounded to help
with learning but it did not prove to be sufficient.

Effect of input constraints The direct and indirect optimal control approaches are used
to generate training datasets again, this time with input constraints. No significant change
in data generation time was observed with application of input constraints. This is because
input constraints checking poses no additional overhead. However, input constraints were
observed to cause a decrease in data completeness and uniqueness in both direct and indirect
datasets. This is because input constraints force sampling from certain regions of state space
which causes the samples to be sparse in some regions. Therefore, as expected, learning of
control input using KNN and feed-forward neural networks with these datasets was very poor
similar to the unconstrained datasets. But the cost model trained using feed-neural network
and indirect dataset was observed to have low error and accurate prediction. When dealing
with an input constrained system, it is desired that the predicted control input also satisfy
the constraints. KNN trained using direct dataset was observed to satisfy this criteria. This
is because KNN takes the average of the nearest neighbours and since all neighbours satisfy
the input constraints, the prediction also satisfies the input constraint. However, this does
not happen with indirect dataset or feed-forward neural network. Indirect dataset predict co-
states and not control, therefore control cannot be constrained directly. Also neural network
generates a parametric function using the training data which is not constrained.

The major conclusions determined from this thesis are:

1. Neither optimal control approach proved to be better for this test case (2-link manip-
ulator) as both approaches resulted in inaccurate trained models. However, indirect
optimal control approach was observed to be faster and direct optimal control approach
more data complete of the two.

2. Input constraints reduce the feasible state space and reduce the completeness of the
dataset. This can affect learning.

3. If constrained control predictions are required, a non-parametric learning algorithm
should be used to directly predict the control inputs. That means direct optimal control
approach is better in this case.

Future work The following are a few viable research directions to improve and extend the
contributions of this thesis:

• The optimal control approaches used a fixed time interval of 0.5 seconds to generate the
samples. Samples with variable time steps can tried to increase the completeness of the
datasets and obtain better learning.

• Use of classification instead of regression for training can be investigated to constrain
the control input within the bounds even with parametric learning algorithms.

Deepak Paramkusam Master of Science Thesis

67

• Only the effect of input constraints was investigated in this thesis. Application of state
constraints would be the next logical step to investigate.

• It is suspected that high dimensionality of control input in direct datasets was the
cause of poor learning with that dataset. Dimensionality reduction using techniques
such principal component analysis (PCA) could help overcome this issue.

Master of Science Thesis Deepak Paramkusam

68 Conclusions

Deepak Paramkusam Master of Science Thesis

Appendix A

urdf2eom

urdf2eom is a software developed over the course of this thesis to generate symbolic equations
of motion using Roy Featherstone’s rigid body algorithms for serial link manipulators.

The robot is described using Unified Robot Description Format (URDF), which is a standard
XML convention for describing robot models. urdf2eom parses the URDF file and generates
equations of motion in terms of configuration coordinates (q, q̇, q̈) and torque τ . The code
generates forward dynamic equations using Articulated body algorithm and inverse dynamic
equations using Iterative Newton-Euler algorithm [12]. However, the code currently only
supports fixed-base serial link manipulators with revolute and continuous joints. The code
and instructions on how to use it can be found at :

https://github.com/DeepakParamkusam/urdf2eom

Master of Science Thesis Deepak Paramkusam

https://github.com/DeepakParamkusam/urdf2eom

70 urdf2eom

Deepak Paramkusam Master of Science Thesis

Appendix B

Thesis source code

The implementations of the experiments performed in this thesis can be found in the thesis
repository below:

https://github.com/DeepakParamkusam/learning-based-RRT

The implementations were written in MATLAB, C++ and Python and have the following
dependencies :

• MATLAB Symbolic toolbox

• Automatic Control and Dynamic Optimization (ACADO) Toolkit [7]

• numpy Python library

• scikit-learn Python library [66]

The code is divided into different folders in the repository as follows:

2link_direct : This folder contains the implementation of direct optimal control for 2-link
manipulator. The code is written in C++ and uses the ACADO Toolkit. ACADO toolkit
returns solutions in multiple files. They can be consolidated using the scripts in this folder.

2link_indirect : Implementation of indirect optimal for 2-link manipulator can be found in
this folder. The indirect optimal control equations are generated in MATLAB(gen_eom.m)
while the data generation is performed in Python.

training_data : Data generated in this thesis is stored here. This folder also contains the
Python code used for cleaning the data.

Master of Science Thesis Deepak Paramkusam

https://github.com/DeepakParamkusam/learning-based-RRT

72 Thesis source code

2link_NN : The folder contains the code for training the KNN and ANN with the data.
scikit-learn library is used for the training. Trained model are stored in trained_models
folder

2link_rrt : This folder contains the implementations of learning-based rrt.

Deepak Paramkusam Master of Science Thesis

Bibliography

[1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” The Interna-
tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[2] W. Wolfslag, M. Bharatheesha, T. Moerland, and M. Wisse, “Rrt-colearn: to-
wards kinodynamic planning without numerical trajectory optimization,” arXiv preprint
arXiv:1710.10122, 2017.

[3] “Neuron.” https://en.wikipedia.org/Neuron. Accessed: 6-10-2017.

[4] “Artificial neural network.” https://en.wikipedia.org/Artificialneuralnetwork.
Accessed: 6-10-2017.

[5] M. Diehl, “Numerical optimal control.” http://www.syscop.de/files/2014ss/
noc-summer-school/OptimalControl.pdf, 2014.

[6] R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry, A mathematical introduction to robotic
manipulation. CRC press, 1994.

[7] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

[8] H. M. Choset, Principles of robot motion: theory, algorithms, and implementation. MIT
press, 2005.

[9] G. Lopez, “Slides for control methods for robotics course,” 2016.

[10] D. Jeltsema, “Slides for modelling and non-linear system theory,” 2016.

[11] C. Ó’Dúnlaing, “Motion planning with inertial constraints,” Algorithmica, vol. 2, no. 1,
pp. 431–475, 1987.

[12] J. Canny, A. Rege, and J. Reif, “An exact algorithm for kinodynamic planning in the
plane,” Discrete & Computational Geometry, vol. 6, no. 3, pp. 461–484, 1991.

Master of Science Thesis Deepak Paramkusam

https://en.wikipedia.org/Neuron
https://en.wikipedia.org/Artificial neural network
http://www.syscop.de/files/2014ss/noc-summer-school/OptimalControl.pdf
http://www.syscop.de/files/2014ss/noc-summer-school/OptimalControl.pdf

74 Bibliography

[13] J. Canny and J. Reif, “New lower bound techniques for robot motion planning problems,”
in Foundations of Computer Science, 1987., 28th Annual Symposium on, pp. 49–60,
IEEE, 1987.

[14] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field techniques
for robot path planning,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22,
no. 2, pp. 224–241, 1992.

[15] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE
Transactions on robotics and automation, vol. 16, no. 5, pp. 615–620, 2000.

[16] G. Sahar and J. M. Hollerbach, “Planning of minimum-time trajectories for robot arms,”
The International journal of robotics research, vol. 5, no. 3, pp. 90–100, 1986.

[17] K. Shin and N. McKay, “A dynamic programming approach to trajectory planning of
robotic manipulators,” IEEE Transactions on Automatic Control, vol. 31, no. 6, pp. 491–
500, 1986.

[18] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal
of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066, 1993.

[19] C. H. Papadimitriou, “An algorithm for shortest-path motion in three dimensions,” In-
formation Processing Letters, vol. 20, no. 5, pp. 259–263, 1985.

[20] E. Frazzoli, “Slides for principles of autonomy and decision mak-
ing.” https://ocw.mit.edu/courses/aeronautics-and-astronautics/
16-410-principles-of-autonomy-and-decision-making-fall-2010/
lecture-notes/MIT16_410F10_lec15.pdf, 2010.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

[22] N. M. Amato and Y. Wu, “A randomized roadmap method for path and manipulation
planning,” in Robotics and Automation, 1996. Proceedings., 1996 IEEE International
Conference on, vol. 1, pp. 113–120, IEEE, 1996.

[23] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” IEEE transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[24] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuristic,” in
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference
on, pp. 2997–3004, IEEE, 2014.

[25] A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-domain rrts: Efficient
exploration by controlling the sampling domain,” in Robotics and Automation, 2005.
ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp. 3856–3861,
IEEE, 2005.

[26] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring random trees,” 2013.

Deepak Paramkusam Master of Science Thesis

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-410-principles-of-autonomy-and-decision-making-fall-2010/lecture-notes/MIT16_410F10_lec15.pdf

75

[27] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in Robotics and Automa-
tion, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp. 1243–
1248, IEEE, 2006.

[28] R. Babuska, “Lecture notes for knowledge based control systems,” 2010.

[29] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT
press, 2012.

[30] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics
of Control, Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–314, 1989.

[31] M. Bharatheesha, W. Caarls, W. J. Wolfslag, and M. Wisse, “Distance metric approxi-
mation for state-space rrts using supervised learning,” in Intelligent Robots and Systems
(IROS 2014), 2014 IEEE/RSJ International Conference on, pp. 252–257, IEEE, 2014.

[32] L. Palmieri and K. O. Arras, “Distance metric learning for rrt-based motion planning with
constant-time inference,” in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pp. 637–643, IEEE, 2015.

[33] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2012.

[34] D. S. Naidu, Optimal control systems. CRC press, 2002.

[35] P. DraÌğg, K. Styczeń, M. Kwiatkowska, and A. Szczurek, “A review on the direct
and indirect methods for solving optimal control problems with differential-algebraic
constraints,” in Recent Advances in Computational Optimization, pp. 91–105, Springer,
2016.

[36] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[37] S. R. Lindemann and S. M. LaValle, “Steps toward derandomizing rrts,” in Robot Motion
and Control, pp. 287–300, Springer, 2006.

[38] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic for rapidly exploring
state space,” in Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pp. 5021–5028, IEEE, 2010.

[39] W. Spierenburg, “Motion planning in the state space,” Master’s thesis, TU Delft, 2016.

[40] W. Li and E. Todorov, “Iterative linear quadratic regulator design for nonlinear biological
movement systems.,” in ICINCO (1), pp. 222–229, 2004.

[41] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion plan-
ning using the rrt,” in Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, pp. 1478–1483, IEEE, 2011.

[42] Q.-C. Pham, “A general, fast, and robust implementation of the time-optimal path pa-
rameterization algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540,
2014.

[43] M. Jordan and A. Perez, “Optimal bidirectional rapidly-exploring random trees,” 2013.

Master of Science Thesis Deepak Paramkusam

76 Bibliography

[44] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with provable bounds
on sub-optimality,” in Advances in Neural Information Processing Systems, pp. 767–774,
2004.

[45] E. Alpaydin, Introduction to machine learning. MIT press, 2014.

[46] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[47] N. M. Nasrabadi, “Pattern recognition and machine learning,” Journal of electronic
imaging, vol. 16, no. 4, p. 049901, 2007.

[48] N. R. Draper and H. Smith, Applied regression analysis. John Wiley & Sons, 2014.

[49] P. Cunningham, M. Cord, and S. J. Delany, Supervised Learning, pp. 21–49. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008.

[50] A. Moore, “Instance-based learning.” http://www.ccs.neu.edu/home/rjw/csg220/
lectures/instance-based-1.pdf, 2005.

[51] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, “On the surprising behavior of distance
metrics in high dimensional spaces,” in ICDT, vol. 1, pp. 420–434, Springer, 2001.

[52] J. Bejar, “K-nearest neighbours.” http://www.lsi.upc.edu/~bejar/apren/docum/
trans/03d-algind-knn-eng.pdf, 2012.

[53] C. M. Bishop, Neural networks for pattern recognition. Oxford university press, 1995.

[54] K. L. Priddy and P. E. Keller, Artificial neural networks: an introduction, vol. 68. SPIE
press, 2005.

[55] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[56] A. V. Rao, “A survey of numerical methods for optimal control,” Advances in the Astro-
nautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[57] B. Chachuat, “Direct solution methods.” http://la.epfl.ch/files/content/sites/
la/files/shared/import/migration/IC_32/Slides19-21.pdf, 2009.

[58] A. Barclay, P. E. Gill, and J. B. Rosen, “Sqp methods and their application to numerical
optimal control,” Report NA, pp. 97–3, 1997.

[59] P. DraÌğg, K. Styczeń, M. Kwiatkowska, and A. Szczurek, “A review on the direct
and indirect methods for solving optimal control problems with differential-algebraic
constraints,” in Recent Advances in Computational Optimization, pp. 91–105, Springer,
2016.

[60] V. Yadav, “Direct collocation for optimal control.” https://mec560sbu.github.io/
2016/09/30/direct_collocation/. Accessed: 6-10-2017.

[61] B. Houska, H. Ferreau, and M. Diehl, “ACADO Toolkit – An Open Source Framework
for Automatic Control and Dynamic Optimization,” Optimal Control Applications and
Methods, vol. 32, no. 3, pp. 298–312, 2011.

Deepak Paramkusam Master of Science Thesis

http://www.ccs.neu.edu/home/rjw/csg220/lectures/instance-based-1.pdf
http://www.ccs.neu.edu/home/rjw/csg220/lectures/instance-based-1.pdf
http://www.lsi.upc.edu/~bejar/apren/docum/trans/03d-algind-knn-eng.pdf
http://www.lsi.upc.edu/~bejar/apren/docum/trans/03d-algind-knn-eng.pdf
http://la.epfl.ch/files/content/sites/la/files/shared/import/migration/IC_32/Slides19-21.pdf
http://la.epfl.ch/files/content/sites/la/files/shared/import/migration/IC_32/Slides19-21.pdf
https://mec560sbu.github.io/2016/09/30/direct_collocation/
https://mec560sbu.github.io/2016/09/30/direct_collocation/

77

[62] J. J. Craig, Introduction to robotics: mechanics and control, vol. 3. Pearson Prentice
Hall Upper Saddle River, 2005.

[63] B. V. Mirtich, Impulse based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California at Berkeley, 1996.

[64] D. Paramkusam, “urdf2eom.” https://github.com/DeepakParamkusam/urdf2eom,
2017.

[65] B. Houska, H. Ferreau, M. Vukov, and R. Quirynen, “ACADO Toolkit User’s Manual.”
http://www.acadotoolkit.org, 2009–2013.

[66] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[67] L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,” Commun. ACM,
vol. 45, pp. 211–218, Apr. 2002.

[68] P. Domingos, “A few useful things to know about machine learning,” Communications
of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

Master of Science Thesis Deepak Paramkusam

https://github.com/DeepakParamkusam/urdf2eom

78 Bibliography

Deepak Paramkusam Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Planning spaces
	Kinodynamic motion planning
	Sampling-based kinodynamic planning
	Learning-based RRT
	Optimal control

	Thesis contributions
	Thesis layout

	Rapidly-exploring random trees
	RRT algorithm
	Variations of RRT
	Learning-based RRT
	Summary

	Supervised learning for RRT
	Supervised learning
	Types of supervised learning algorithms

	K-nearest neighbours
	Artificial neural networks
	Feed-forward neural networks

	Summary

	Data generation using optimal control
	Kinodynamic planning as optimal control problem
	Indirect optimal control
	Pontryagin principle
	Pontryagin principle with constraints
	Disadvantages of indirect optimal control

	Direct optimal control
	Discretization
	Single-shooting
	Multiple-shooting
	Direct collocation
	Constrained direct optimal control

	Data generation for learning-based RRT
	Summary

	Experimental setup
	Test system
	Generation of equations of motion
	Generation of training data
	Implementation of direct optimal control
	Implementation of indirect optimal control

	Implementation of supervised learning
	Data pre-processing
	Implementation of KNN and feed-forwards neural network

	Implementation of learning-based RRT
	Summary

	Results and analysis
	Comparison metrics
	Comparison of direct and indirect optimal control
	Learning unconstrained data with KNN
	Learning unconstrained data with feed-forward neural network

	Effect of input constraints
	Learning input constrained data with KNN
	Learning input constrained data with feed-forward neural network

	Performance in learning-based RRT
	Summary

	Conclusions

	Appendices
	urdf2eom
	Thesis source code

	Back Matter
	Bibliography

