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Effects of the assumption on ties in unseen parts of a ranking
LUKAS ROELS, Delft University of Technology, The Netherlands

Abstract
Rankings are more present in our daily lives than most people realize.

Whether you are browsing Netflix and getting movies or shows based on

your previous likes or dislikes, or you want to compare search engine re-

sults. To use rankings in the field of Computer Science a rank similarity

is needed. Rank-Biased Overlap is one of those. It is top-weighted, can be

used on uneven rankings, and when only a part of the ranking is known. A

well-known problem in rank similarity measures is ties. There have been

some ways of dealing with ties proposed since RBO was introduced. These

ways have been shown to be promising but they only relate to the seen part.

The unseen part of rankings is still a new concept with little research done

about it. This paper aims to change that a bit. First, a full explanation is given

of the three variations of dealing with ties. Then using these variants we

show how the assumption that no ties exist in the unseen part affects these

variants. Also, the current extrapolation method is researched as there is also

a big influence of the above-mentioned assumption. We then use simulated

data to give a clear data visualization to show how the theory relates to

practice. We have tried to be clear and concise with our explanations and

data visualizations so future researchers can use this paper to improve and

progress RBO in the world of rank similarity measures.
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1 INTRODUCTION
Rankings and similarity between rankings are everywhere in mod-

ern computer science. For example, the similarity between two

people who rank their top 30 football teams which can be used

in recommender systems, or similarity between search engines, or

even fraud detection. Many algorithms have been proposed over

the past decennia to find this similarity. Among these similarity

measures some well-known formulae can be found like 𝜌 by Spear-

man [5] or 𝜏 by Kendall [2]. Both are already over 80 years old but

still in 2024 no perfect solution has been found to compute the rank

similarity measure between rankings.

The origin of this paper starts with Rank-Biased Overlap, a rank

similarity measure proposed by Webber et al.[3]. What was found

was a new way of handling uneven, different lengths, and indefinite

rankings. Rank-biased overlap sees rankings as infinite. When com-

puting the similarity it stops at a certain depth. Everything before

this depth is referred to as seen items and everything after this depth

is referred to as unseen. Extrapolation is used to compensate for the

loss of information in the unseen part. The way this extrapolation is

done is explained in detail in section 3.5 as more background about

Rank-Biased Overlap is needed.

A major property of rankings is ties. Ties, in this context, are

defined as two or more unique items that share the same rank inside

a ranking. Webber et al. [3], who proposed the original Rank-biased

overlap, also gave a way of handling ties. A recent paper by Corsi

and Urbano [1] proposed new ways of handling ties in Rank-Biased

Overlap. In this the following assumption is made: "We assume

no tied items in the unseen part" [1, Corsi and Urbano p.6]. This

assumption means that when calculating the Rank-Biased Overlap,

we assume no ties in the unseen part of a ranking.

This paper is focused on the following research question: "What
will happen if we relax the assumption that ties do not oc-
cur in unseen parts?". We will give insight into how much this

assumption impacts the similarity between two rankings by sim-

ulating seen and unseen rankings. Another focus is providing an

overview of the impact of this assumption on the different ways

both Webber et al. [3] and Urbano and Corsi [1] handle ties.

We will start in chapter 2 where more detail is given about the

background of our research and the problem behind our research.

Then in chapter 3, a theoretical reasoning is given about the impact

of the assumption. After this in chapter 4, we back our theory by

showing data and explaining how these results correlate to chapter

3. In chapter 5, a reflection on the ethical aspects of our research is

made. Lastly, in chapter 6 we talk about what we concluded factoring

in all aspects of the paper and how we believe this research could

be used to improve RBO.
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2 BACKGROUND
In this chapter, Rank-Biased Overlap is explained, in section 2.1,

as well as our formal problem description, which can be found in

section 2.2, which shows why this research is necessary.

2.1 Background
Rank-Biased Overlap, referred to now as RBO, is a rank similarity

measure proposed by Webber et al. [3] more than 10 years ago. It

has the potential for a wide range of applications. One example is

shown in this paper by Sarica et al. [4]. It was the first measure that

took indefinite rankings into account while being able to make it

more or less top-weighted. As can be seen in equation 1, RBO uses

the sum of agreements up to infinity. The agreement is defined as

the proportion of overlap of two rankings at a certain depth.

𝑅𝐵𝑂𝑆,𝐿,𝑝 =
1 − 𝑝

𝑝

∞∑︁
𝑑=1

𝐴𝑆,𝐿,𝑑 · 𝑝𝑑 (1)

RBO uses a variable p which is called persistence. P gives a specific

weight to a rank. It determines how top-weighted the calculation

is. A larger p means less top-weighted and a lower p more top-

weighted.

As mentioned in the introduction, Webber et al. [3] proposed a

way of handling ties in rankings. They gave the top rank of a tied

group to each element of that group like how sports rankings are

seen. This way of handling ties is referred to as w-variant.

A newway of handling ties was proposed by Corsi and Urbano [1].

They propose two variants (referred to as a-variant and b-variant)

where the a-variant computes the average contribution of an item in

a tied group for every permutation of this group. The b-variant "ac-

counts for the amount of information actually available to measure

overlap" as explained in [1, Corsi and Urbano p.4]. Although both

these variants have shown through data to be a promising solution

it is not yet a perfect solution.

2.2 Problem Description
A key part of RBO is 𝑅𝐵𝑂𝑚𝑖𝑛 , 𝑅𝐵𝑂𝑚𝑎𝑥 and 𝑅𝐵𝑂𝑒𝑥𝑡 . 𝑅𝐵𝑂𝑚𝑖𝑛 is the

lower bound of RBO. It works by assuming every item in each list in

the unseen part does not match an item in the other list. 𝑅𝐵𝑂𝑚𝑎𝑥 ,

the upper bound of RBO, is the opposite. It assumes every item in the

unseen part will be matched to an item in the other ranking. 𝑅𝐵𝑂𝑒𝑥𝑡

uses extrapolation to estimate the real RBO. Asmentioned in chapter

1, it will be explained in detail in section 3.5. When using 𝑅𝐵𝑂𝑚𝑖𝑛 ,

𝑅𝐵𝑂𝑚𝑎𝑥 and 𝑅𝐵𝑂𝑒𝑥𝑡 an assumption is made. The assumption that

sits at the core of this paper. It assumes no ties occur in the unseen

part of the ranking.

This is a logical assumption as by definition we do not know what

is in the unseen part. However, this means that it is not yet a perfect

solution for computing the similarity measure and its bounds. The

problem behind the need for research shown in this paper is exactly

that. RBO needs to be able to compute the similarity between rank-

ings without assuming anything about the rankings. This paper

will try and show what the effects are of one of the assumptions in

RBO
1
. When talking about assumptions throughout this paper, un-

less otherwise specified, we are referring to the assumption defined

in our research question.

x b (c d) e f g h i j k l m n (o p)

z y x w (v u t) s e (g i a)

Table 1. Example of two rankings where the parentheses represent tied
groups and the longer ranking will be referred to by L and the shorter by S

x b (c d) e f g h i j k l m n o p = L

z y x w (v u t) s e g i a = S

Table 2. Rankings shown in table 1 where ties are removed after depth 10
for S ranking and depth 11 for L ranking

x b (c d) e f g h i j k = L

z y x w (v u t) s e g = S

Table 3. Rankings shown in table 1 but truncated to depth 10 for S ranking
and depth 11 for L rankings

3 TIES IN UNSEEN PART
To understandwhat the effects are of the assumption, wewill discuss

the difference in RBO between a full ranking (example shown in

table 1) and the same ranking with no ties after truncation depth

(example shown in table 2). Then a discussion about the effect of

the assumption on the extrapolation is given, using rankings shown

in table 1 and 3. This chapter focuses more on discussing each

part of RBO, its variants, the extrapolation, and what influence the

assumption has on them. Firstly, in section 3.1, 3.2, and 3.3 the

impact of the assumption on the different variants is given. This is

done by assuming perfect extrapolation so only the effect of tie and

no tie is given. Then in section 3.4 the influence of the length of a

tied group is given. Lastly, in section 3.5, we reason how the current

method of extrapolation is affected by the assumption.

3.1 W-variant
The w-variant as explained in chapter 2 is the original proposed

way of dealing with ties in a ranking. The assumption affects this

variant greatly as now only the first item in a tie group will have

the rank that normally all items in the tie group have under the

w-variant. The second item will have the rank below and so forth.

This can be shown using table 1 and table 2. In table 1, the items

o and p belonging to the tied group at depths 15 and 16 will both

have rank 15 when computing RBO under the w-variant. In table 2

however, the items o and p will have rank 15 and 16 respectively

when computing RBO. Because of this item p will have less weight

on the overall RBO.

Now using equation 2 and 3, made by Webber et al. [3, Webber

et al. p. 21], we will calculate agreement, taking only items g, i,

1
The assumption of no ties in unseen parts
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and a into account, for depths 10, 11, and 12. Firstly for table 1,

we get 4/22, 4/23, and 4/24 for depth 10, 11, and 12 respectively.

For table 2, we get 2/20, 4/22, and 4/24 respectively. We are only

taking the above-mentioned items into account as all items at lower

ranks will not be influenced by the assumption at depths 10, 11, and

12. As you can see for depth 10 we get a higher agreement when

calculating RBO under the assumption but for depth 11 we get a

higher agreement when we would not make the assumption. At

depth 12 both agreements are the same.

This is interesting to see as the assumption affects agreement

when a tied group is not fully seen but when the whole group is

seen or active, agreement at that depth becomes the same.

𝑋𝑆,𝐿,𝑑 = |𝑆
:𝑑 ∩ 𝐿

:𝑑 | (2)

𝐴𝑤
𝑆,𝐿,𝑑

=
2 ∗ 𝑋𝑆,𝐿,𝑑

|𝑆
:𝑑 | + |𝐿

:𝑑 |
(3)

3.2 A-variant
The variant where the assumption is expected to have the least

influence is the a-variant. This variant computes the average agree-

ment of all possible combinations of the order of items within a tied

group. In general, only when a tied item is crossing an impact of

the assumption can be found. Crossing is defined as follows: "An

item within a crossing group will be able to contribute to overlap in

as many permutations as it is placed at or above d" as explained in

[1, Urbano and Corsi p.4].

When computing RBO and traversing the list calculating agree-

ment at each depth the impact can be seen. For example at depth 10

in table 1, following the reasoning by Urbano and Corsi [1, Urbano

and Corsi p.4 section 3.2], items g and i in the tied group will have

a contribution of 1/3. Items g and i will have a contribution of 2/3

and 1 at depths 11 and 12 respectively. Item a will have the same

contribution for each depth respectively but will not contribute to

the agreement function as it is not matched in ranking L. When

we are computing contribution at each depth in table 2, we can see

that at depth 10 item g has a contribution of 1. At depths 11 and 12,

items i and a will have a contribution of 1 at their respective depths.

Item a however will not contribute to the agreement function as it

is not matched in ranking L.

If we only take into account these three items when calculating

agreement, using equation 4 [1, Urbano and Corsi p.4 section 3.2],

we will see an agreement at depths 10, 11, and 12 of 2/30, 4/33 and

2/12 respectively for table 1. For table 2 we see that agreement at

depth 10, 11, and 12 will be 1/10, 2/11, and 2/12 respectively. At

depth 12, we can see that the agreement is the same for both tables.

This is because at depth 12 every item in the tied group is now active

and can contribute fully to the agreement.

𝐴𝑎
𝑆,𝐿,𝑑

=
1

𝑑

∑︁
𝑒𝜖Ω

𝑐𝑒,𝑆 |𝑑 ∗ 𝑐𝑒,𝐿 |𝑑 (4)

3.3 B-variant
The b-variant has the same contribution formula as the a-variant as

can be seen in equation 5. The difference lies in the denominator. The

a-variant uses the depth d as its denominator. The b-variant com-

pensates for the information actually available. When a tied group

is not active but crossing then this will show in the denominator.

Using the same example shown in section 3.2, we already have

the contribution of items g, i, and a for both table 1 and 2. Again we

will only take those three items into account when calculating the

agreement, using equation 5, for depths 10, 11, and 12. For table 1,

we get

2

3√︃
9+ 1

3

√
10

for depth 10,

4

3√︃
9+ 4

3

√
11

for depth 11 and
2√

12

√
12

for

depth 12. Which translates to 0.069, 0.125 and 0.1667 respectively.

We already calculated agreement for table 2 in section 3.2 resulting

in 1/10, 2/11, and 2/12 for depth 10, 11, and 12 respectively. These

agreements are the same for the a-variant and b-variant as no item

is crossing at depths 10, 11, and 12

We can see some similarities with the a-variant. At depth 12,

agreements between variants a and b are the same as well as between

table 1 and 2. For depths 10 and 11, we notice that the agreement of

the a-variant is slightly smaller than that of the b-variant. This is a

property of the agreement of the a-variant as mentioned by Urbano

and Corsi [1, Urbano and Corsi p. 5].

𝐴𝑏
𝑆,𝐿,𝑑

=

∑
𝑒𝜖Ω 𝑐𝑒,𝑆 |𝑑 ∗ 𝑐𝑒,𝐿 |𝑑√︃∑

𝑒𝜖Ω 𝑐2
𝑒,𝑆 |𝑑 ∗

√︃∑
𝑒𝜖Ω 𝑐2

𝑒,𝐿 |𝑑

(5)

3.4 Length of tied group
The one variable that influences all variants is the length of a tied

group. In the above sections, we mention that as soon as a tied

group is active the agreement between table 1 and 2 is the same. The

impact the length has is that the longer the length of a tied group

the longer it takes for the tied group to become active resulting in

more deviations per depth. In our example, using only depths 10,

11, and 12, we see that there is only a difference in agreement at

depths 10 and 11. If the items in the following 10 depths would also

belong to the tied group then a difference will be found from depth

10 through 21 and then reaching depth 22 agreement would become

the same.

3.5 Extrapolation
The extrapolation of RBO is an estimate of what the RBO would

be if we saw the full ranking. The way extrapolation is done is

by "assuming that the degree of agreement seen up to depth k is

continued indefinitely" as mentioned in [3,Webber et al. p.19]. Under

this way of calculating the extrapolation, the assumption will only

have an impact when the last seen item in a ranking belongs to a

tied group located at the start of the unseen part. This behavior can

be seen in table 1 and 3. The property of this item changes from

belonging to a tied group to an item with a unique rank.

To show the differences explained below we will once again only

use item g, i, and a. In the case of the w-variant at the truncation

depth 10 of ranking S in table 3, we will have an agreement of

1/10. From then on agreement is assumed to be constant. For table 1

however, we see that agreement is actually 2/12, at depth 10, as item i

contributes to the overlap and item i and a to the denominator of the

agreement function shown in equation 3. The difference in overlap

and agreement is mainly caused by the loss of information but due

, Vol. 1, No. 1, Article . Publication date: June 2024.
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to the assumption, the extrapolation is not altered to compensate

for the above shown difference. Now 1/10 is used as a constant

agreement but in reality, 2/12 should be used as that is the real

agreement at depth 10.

The same can be shown for variants a and b. As we have calcu-

lated in section 3.2 and 3.3 when only taking items g, i, and a into

account. For both variants the actual agreement at depth 10 and

the agreement under the assumption, which results in the same

agreement at depth 10 for table 3, is different. Then the same as with

the w-variant happens. The wrong agreement is used as a constant.

4 METHODOLOGY - RESULTS
In this chapter, the focus lies more on showing data backing our rea-

soning and how we simulated the rankings to show these results. In

section 4.1, we show how the variable p of RBO and the assumption

affect RBO. We do this by first explaining how we simulated our

data and then showing and discussing our results. Then in section

4.2, the influence of the assumption on the current extrapolation is

shown. Once again first by explaining how we simulated and then

showing our data.

4.1 P experimentation’s
4.1.1 Simulation. To show how the difference in RBO changes

based on p we are simulating rankings, using the code by Urbano

and Corsi
2
, as follows.

We start with specifying the max length a simulated ranking can

have: 20. We then sample a number, for each ranking, from 0.75 of

the maximum length to the maximum length. In our case from 15 to

20. For the number of unique items in our domain, we take 1000 if

nothing is specified. The reason we are taking such a high domain

is to replicate infinity. We need to reproduce infinity to fully show

the weight of extrapolation. We then generate two rankings with

both random lengths between the above-mentioned 15 and 20.

All pairs of rankings are generated with random tau which is the

percentage of conjointness. After this, we sample a truncated length.

This is done between 0.25 of the maximum length and 0.5 of the

maximum length to ensure we have enough data to be considered

as unseen.

In the next step, we check if there are ties in the unseen part, and

if not we simulate with a new length and a new truncated length

until we have ties in the unseen part. This way it is ensured that for

each pair of rankings, we can show a difference in RBO.

In the end, we compute the truncated part of the ranking and

most importantly we reshape our original ranking so no ties exist

after the truncated depth. We end up with six rankings which are

three pairs of two rankings:

(1) Full ranking (example shown in table 1)

(2) Full ranking with no ties after truncation depth (example

shown in table 2)

(3) Truncated ranking (example shown in table 3)

Often in plots, you will find RBO reality, RBO under assumption,

and RBO truncated. These refer to the RBO of the rankings number

1, 2, and 3 from above respectively.

2
https://github.com/julian-urbano/sigir2024-rbo

The choice for having the length of the truncated ranking at most

half of the length of the full ranking is because we want to simulate

an unseen part. So by the above choice, we make certain that there

is at least the same amount of unseen items as seen items.

4.1.2 Results. In this subsection, we will discuss the influence of p

on the difference in RBO between full rankings and full rankings

under the assumption. This will also show how only the assumption

affects the RBOwithout noise from the extrapolation. The parameter

p is an important one as it is responsible for top-weightedness. P has

a domain between 0 and 1. A larger p means less top-weightedness

and a lower p means more. We will show results for the three

different variants: w, b, and a. The scatter plot is computed based

on 50000 pairs of rankings and the plot that shows the RBO based

on p is generated with 10000 pairs of rankings and uses an interval

of 0.002 for p.

Using figure 1 we can see that for variants w and b, there are a

lot of outliers. For variant b we see that although there are outliers

it is less dense than variant w. As for the a-variant, the cloud is

much more dense, and fewer outliers can be found. The agreement

function of the a-variant, shown in section 3.2, is the only agreement

function that uses the actual depth. The w-variant uses, if applicable,

the depth of the bottom rank of the tied group in the denominator.

The b-variant uses the contributions in the denominator resulting

in similar results to the a-variant for small tied groups but larger

deviations for large tied groups. Because of this, the a-variant is

less prone to outliers as only the contribution function is affected.

Also, the a-variant tends to give a higher RBO under assumption.

We can see somewhat the opposite from the b-variant where the

cloud tends more to RBO reality. This means that on average the

a-variant gets a higher RBO under the assumption than what the

actual RBO is.

An interesting thing can be seen when comparing figure 1 and 2.

We see that when we use a higher p, meaning less top-weightedness,

the cloud is much more dense and outliers are limited. This, we

believe, happens as sometimes RBO under assumption will give

a higher RBO than it should be and sometimes it gives a lower,

depending on where the tied group is placed, the length, and if the

items inside the tied group contribute to agreement. So when you

give more equal weight to each rank the differences would cancel

each other out.

The difference in p-value we mentioned earlier can be seen in

figure 3, 4, and 5. For each variant, we see that they follow the

same trend. They get to a maximum at around p = 0.8 and then

the difference in RBO drops to 0. We see that as mentioned above

the a-variance performs better regardless of what p value is chosen.

Between the w-variant and b-variant, we see that the b-variant

starts slightly higher than the w-variant but goes to almost the same

maximum at p around 0.8.

In table 4, we see the combination of figures 1 through 5. Here

we can clearly see that the a-variant, on average, performs better at

compensating for the assumption. The main thing to show with this

table is the maximum differences. Although the average difference

is also important it is really small compared to the maximum.Where

the average is three numbers after the decimal point, the maximum

, Vol. 1, No. 1, Article . Publication date: June 2024.
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is one number after the decimal point. Keep in mind, on a domain

for RBO between 0 and 1 this is a big difference.

(a) w-variant (b) a-variant (c) b-variant

Fig. 1. RBO with p = 0.8 of full ranking and full ranking with no ties after
truncation depth

(a) w-variant (b) a-variant (c) b-variant

Fig. 2. RBO with p = 0.95 of full ranking and full ranking with no ties after
truncation depth

W-variant B-variant A-variant

p Avg. Max. Avg. Max. Avg. Max.

0.5 0.007 0.520 0.008 0.564 0.004 0.611

0.8 0.009 0.370 0.009 0.350 0.006 0.302

0.9 0.007 0.267 0.008 0.248 0.005 0.205

0.95 0.005 0.162 0.005 0.156 0.003 0.142

Table 4. Shows the average difference in RBO between full ranking and
ranking with no ties after a certain depth. It also shows the maximum
difference measured for each variant.

Fig. 3. difference in RBO using w-variant of full ranking and full ranking
with no ties truncation depth based on P

Fig. 4. difference in RBO using a-variant of full ranking and full ranking
with no ties truncation depth based on P

Fig. 5. difference in RBO using b-variant of full ranking and full ranking
with no ties truncation depth based on P

, Vol. 1, No. 1, Article . Publication date: June 2024.
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4.2 Extrapolation experiments
4.2.1 simulation. Our general way of simulating rankings is ex-

plained above. For the specific purpose of showing how the number

of unseen items, and therefore more items that could get untied,

influence the assumption, the simulation is reshaped. We will use

larger rankings now both with length 50 and ties enforced in the

last 10% of each ranking.

Then for each percentage ranging from 10 to 75, we enforce our

truncated depth is sampled such that when having a pair of rankings

the percentage of unseen items is equal to the percentage we want

to calculate our RBO with and then show in a plot.

In the end, we have 65 files where each full ranking is the same

and the only difference lies in how many items are unseen.

4.2.2 results. In section 3.5, we mentioned that the current method

of extrapolating is only affected by the assumption under some

circumstances. In figure 6 the blue line (difference in RBO between

table 1 and 3) represents how the current extrapolation performs.

The red line (difference in RBO between table 1 and 2) represents

how with a perfect extrapolation, it would perfectly estimate if an

item at a certain rank would match an item in the other ranking,

only the assumption affects RBO. The black line (difference in RBO

between table 2 and 3) represents how the loss of information, not

knowing which items are in the unseen part, affects the RBO, not

factoring in ties but only individual items.

We see that as suspected the blue line shows the biggest difference

and the red line the lowest. This shows that with RBO, extrapolation

is still its biggest restriction. This does not mean however that we

should not regard the assumption made as not important. As can be

seen by comparing the blue and black lines. The difference between

these shows how the assumption affects the extrapolation as for

the blue line ties may be present around the truncation depth and

with the black line, we know with certainty, because of the way the

rankings are generated, that no ties exist at the truncation depth.

This neatly shows what we talked about in section 3.5.

5 RESPONSIBLE RESEARCH
The subject of this paper is a rank similarity measure. The paper

is not proposing a new technique or a new way of calculating the

similarity. It is researching how an assumption made by others is

influencing similarity. The data used in this paper is simulated so no

privacy of any individuals is violated. All data is fully reproducible

as an extensive explanation of how we came about the data is given.

This paper is based on a very specific part of RBO namely ties.

What is explained and shown throughout this paper might not

correspond to when RBO is used in a different context. When using

results from this paper one should fully understand the specific part

of RBO that was used.

(a) w-variant

(b) a-variant

(c) b-variant

Fig. 6. Shows the difference in RBO based on the percentage of unseen
items. The red line represents the average difference between full ranking
and full ranking with no ties after truncation depth. The black line represents
the average difference between truncated ranking and full ranking with
no ties after truncation depth. The blue line shows the average difference
between full ranking and truncated ranking
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6 CONCLUSION AND FUTURE WORK
Throughout this paper, a lot of aspects of RBO were discussed.

How the different variants perform. How well the extrapolation

performs with ties. Most importantly how the assumption affects

these variants and the extrapolation.When RBOwas first introduced

by Webber et al. [3] not much attention was given to ties as RBO in

itself was an innovative way of measuring similarity. It was Urbano

and Corsi [1] who researched ties to find two variants to handle

them in a new way.

We believe as shown through this paper that the three variants do

perform well in compensating for the assumption. Performing well

does not mean perfect however as shown in chapter 4. We do think

that with the information presented in this study, a solution could

be found. Whether to reshape the variants so they compensate for

the difference or to reshape the current extrapolation to factor in

possible ties at the truncation depth.

In our opinion, the main focus in future work should lie on ex-

trapolation. Not only to give a better estimation of the agreement

after the truncation depth but to make up for possible ties at that

depth, as talked about in section 3.5. This is also shown in section

4.2, where not only the loss of information creates a big difference.

Lukas Roels
lroels@tudelft.nl
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