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Fault Estimation Filter Design with Guaranteed
Stability Using Markov Parameters

Yiming Wan, Tamás Keviczky, and Michel Verhaegen

Abstract—For additive actuator and sensor faults, we propose
a systematic method to design a state-space fault estimation
filter directly from Markov parameters identified from fault-
free data. We address this problem by parameterizing a system-
inversion-based fault estimation filter with the identified Markov
parameters. Even without building an explicit state-space plant
model, our novel approach still allows the filter gain design
for stabilization and H2 estimation performance. This design
freedom cannot be achieved by other existing data-driven fault
estimation filter designs so far. Simulation results using a con-
tinuous stirred tank reactor illustrate the effectiveness of the
proposed new method.

Index Terms—Data-driven method, fault estimation, system
inversion, Markov parameters.

I. INTRODUCTION

OBSERVER-based fault diagnosis techniques have been
well established in the past two decades [1]. However,

an explicit and accurate system model is often unknown in
practice. In such situations, a conventional approach follows
two steps: first identifying the state-space plant model from
system input/output (I/O) data, and then designing observers
for fault diagnosis [2]. This two-step approach might lead
to large fault estimation errors, because there is no effective
method in literature to suppress the highly nonlinear propa-
gation of the state-space system identification errors into the
fault estimates. In contrast, the data-driven approach to fault
diagnosis has been investigated recently, without explicitly
identifying a state-space plant model [3].

Compared to data-driven fault detection and isolation, data-
driven fault estimation is much more involved, because it is
inherently related to inverting the underlying system whose
model is unavailable. One category of a data-driven fault
estimator is in the form of a finite-impulse-response (FIR)
filter, e.g., the dynamic principle component analysis (DPCA)
based methods in [4], [5] and the Markov parameter (MP)
based method in [6]. Since a batch of input-output (I/O) data
need to be processed at each time instant, the FIR filter is
known to be less efficient for the online computation.

An alternative is data-driven design of fault estimation
observers/filters in the state-space form. It avoids identifying
an explicit state-space plant model, enables efficient online
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recursive computation, and still allows additional design free-
dom to address various performance criteria [3]. Ding et al.
first constructed an observer realized with the identified parity
vector, and then estimated faults as augmented state variables,
see Chapter 10 of [3]. This augmented observer scheme,
however, imposed certain limitations on how fault signals vary
with time, thus introduced bias in fault estimates. In contrast,
without any assumptions on the dynamics of fault signals,
Dong et al. constructed a fault estimation filter (FEF) as a
state-space realization of an FIR filter designed from identified
MPs [7]. However, such an obtained state-space FEF is not
guaranteed to be stable, and no additional design freedom is
available for any performance specifications in the design.

As opposed to the model-based design, it is nontrivial to
design a stable FEF directly from data without identifying
an explicit state-space model. It is well known in model-
based design that the existence of a stable inversion-based
FEF is ensured when the fault subsystem has no unstable
zeros [8], [9]. This property, however, cannot be guaranteed in
current data-driven FEFs. For example, even under the above
condition, 1) the parity vector based fault estimation observer
in Chapter 10 of [3] needs the augmented fault state with
assumed dynamics, which unnecessarily introduces estimation
bias; and 2) the MP-based FEF in [7] might still be unstable.

This note focuses on data-driven design of FEF with sta-
bility guarantee, for additive actuator and sensor faults. After
the problem formulation in Section II, the system-inversion-
based FEF (SI-FEF) is first restructured in Section III, and then
used to establish a link between the MPs of the SI-FEF and the
predictor MPs in Section IV. By exploiting this link, our data-
driven design method is developed in Section V. It computes
the MPs of the SI-FEF using the predictor MPs identified
from data, and then constructs a state-space realization of the
SI-FEF. Even without building an explicit state-space plant
model, our data-driven design still allows designing the filter
gain for stabilization and H2 estimation performance, which
is missing in [7]. Simulation results and concluding remarks
are presented in Sections VI and VII, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

For the state-space model (A,B,C,D), define Markov
parameters as H0 = D and Hi = CAi−1B for i > 0. {Hi}
represents the sequence of Markov parameters. Let Os and Ts
denote the extended observability matrix with s block elements
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and the lower triangular block-Toeplitz matrix with s block
columns and rows, respectively, i.e.,

Os (A,C) =


C
CA

...
CAs−1

 , Ts ({Hi}) =


H0 0 . . . 0

H1 H0

. . .
...

...
...

. . . 0
Hs−1 Hs−2 · · · H0

 ,

(1)

or Ts (A,B,C,D) =


D 0 . . . 0

CB D
. . .

...
...

...
. . . 0

CAs−2B CAs−3B · · · D

 . (2)

Define

yk,l =
[
y> (k − l + 1) · · · y> (k)

]>
(3)

by stacking data vectors {y(i)} in a sliding win-
dow [k − l + 1, k]. diag(X1, X2, · · · , Xn) denotes a block-
diagonal matrix. E represents the mathematical expectation.

B. System model description and its Markov parameter iden-
tification

Consider a linear system model in an innovation form [10]

x(k + 1) = Ax(k) +Bu(k) + Ef(k) +Ke(k) (4a)
y(k) = Cx(k) +Du(k) +Gf(k) + e(k) (4b)

where x(k) ∈ Rn, u(k) ∈ Rnu , y(k) ∈ Rny , e(k) ∈ Rny ,
and f(k) ∈ Rnf represent the states, system inputs, output
measurements, zero-mean white noise innovation signal, and
latent faults, respectively. A,B,C,D,E,G are time-invariant
matrices unavailable to the data-driven design. K is the steady-
state Kalman gain. Under some detectability and controlla-
bility conditions, any standard state-space system description
with process and measurement noises admit the above inno-
vation form [11]. This model (4) can be further converted into
the following Kalman predictor representation [6], [10]:

x(k + 1) = Φx(k) + B̃u(k) + Ẽf(k) +Ky(k), (5a)
y(k) = Cx(k) +Du(k) +Gf(k) + e(k), (5b)

with Φ = A −KC, B̃ = B −KD, and Ẽ = E −KG. No
assumption is made about how the fault signals f(k) evolve
with time.

Define the MPs of the predictor representation (5) as

Hu
0 = D and Hu

i = CΦi−1B̃ for i > 0,

Hy
0 = 0 and Hy

i = CΦi−1K for i > 0,

Hf
0 = G and Hf

i = CΦi−1Ẽ for i > 0.

(6)

For the additive fault in the jth actuator or sensor, we may
construct the predictor MPs {Hf

i } from {Hu
i } and {Hy

i } as
below according to (5) and (6):

jth actuator fault: E = B[j], G = D[j], Hf
i = (Hu

i )[j], (7a)

jth sensor fault: E = 0, G = I [j], Hf
i =

{
I [j] i = 0
−(Hy

i )[j] i > 0
(7b)

where X [j] denotes the jth column of the matrix X .
The relative degree of the fault subsystem (Φ, Ẽ, C,G)

can be determined from its MPs {Hf
i }, i.e., the smallest

nonnegative integer τ such that Hf
τ is nonzero. Note that

τ = 0 for sensor faults and τ > 0 for actuator faults. We
adopt the following assumption so that there exist sufficient
number of measured outputs (ny ≥ nf for Hf

τ ∈ Rny×nf )
and no collinearity among the fault directions to ensure the
uniqueness of fault reconstruction [8], [9]:

Assumption 1. The τ th MP of the fault subsystem
(Φ, Ẽ, C,G) has full column rank, where τ is the relative
degree of the fault subsystem.

The predictor representation (5) can be approximated by
the following VARX (Vector AutoRegressive with eXogenous
input) model with arbitrary accuracy as the VARX order
becomes sufficiently high [10]:

A(q−1)y(k) = B(q−1)u(k) + F(q−1)f(k) + v(k) (8)

where q−1 is the backward shift operator, A(q−1) = I −
p∑
i=0

Hy
i q
−i, B(q−1) =

p∑
i=0

Hu
i q
−i, F(q−1) =

p∑
i=0

Hf
i q
−i, and

v(k) ∈ Rny represents the noise signal. Hu
i , Hy

i , and Hf
i are

all approximately zero for i > p since Φ in (5) is stable.
With the fault-free identification data, we can identify the

VARX coefficients as the estimates of the predictor MPs
{Hu

i } and {Hy
i }, and then construct {Hf

i } for the addi-
tive faults according to (7). The residual signal v(k) =
A(q−1)y(k) − B(q−1)u(k) generated from the identification
data approximates the innovation e(k) of the predictor (5),
and can be used to estimate the innovation covariance as
Σe = cov

(
A(q−1)y(k)− B(q−1)u(k)

)
. No faulty historical

data is used in the identification step.

Remark 1. The VARX order selection involves a trade-off,
i.e., selecting a higher order leads to a smaller bias but a
larger variance of the identified MPs. Thus we should avoid
using a VARX oder higher than necessary while maintaining
a negligible bias.

C. Data-driven design of fault estimation filter

Given the predictor MPs {Hu
i , H

y
i , H

f
i } identified offline

from data as in Section II-B, the basic idea of a system-
inversion-based fault estimator follows two steps:

(i) Residual generation using the online I/O data, i.e., r(k) =
A(q−1)y(k) − B(q−1)u(k). Then the residual dynamics
is r(k) = F(q−1)f(k) + e(k) according to (8).

(ii) τ -delay fault estimation by processing the residual signal
with the τ -delay left inverse of F(q−1), i.e., f̂(k− τ) =
F inv(q−1)r(k), with F inv(q−1)F(q−1) = q−τInf

.
To find a stable left inverse system for various performance

specifications, an explicit state-space plant model is needed
in most system inversion literature, e.g., [9], [12], Chapter
3 of [8], and the references therein. The design freedom in
the above model-based system inversion literature becomes
non-trivial if only an identified input-output plant model is
available.



iii

The aim of this note is to design a state-space SI-FEF from
data without explicit state-space plant modelling. As depicted
in Figure 1, the first step is to identify the predictor MPs
{Hu

i , H
y
i , H

f
i } from fault-free I/O data, while the subsequent

steps construct a state-space SI-FEF from these MPs. As
summarized in Figure 2, our proposed approach constructs the
SI-FEF from a residual generator, an open-loop left inverse
of the residual dynamics, and the feedback from residual
reconstruction errors. This structure allows (i) establishing the
link connecting {Hu

i , H
y
i , H

f
i } and the MPs of the SI-FEF

as in Figure 1, and (ii) designing the feedback gain of the
residual reconstruction errors for stability and performance.

Note that the identification errors of the predictor MPs
affect the fault estimation performance. How to address this
issue for a data-driven state-space FEF can be investigated
only after the stability is ensured. In this note, we focus
on the stability guarantee, and leave the robustness issue for
future research. Therefore, these identification errors are not
expressed in the notations, i.e., {Hu

i }, {H
y
i }, {H

f
i } denote

both the true predictor MPs and their estimates without causing
any confusion.

Fault-free 
I/O data

Predictor
Markov

parameters

Markov parameters of 
residual generator
open-loop left inverse
feedback from residual 
reconstruction errors

Fault estimation Filter
state-space 
realization
filter gain design

Fig. 1. Basic idea of our proposed data-driven design

Residual 
generator

Open-loop
left inverse

Feedback from residual 
reconstruction error

Closed-loop left inverse

Fig. 2. Our proposed fault estimation filter scheme

III. SYSTEM-INVERSION-BASED FAULT ESTIMATION
FILTER USING THE PREDICTOR REPRESENTATION

In this section, we construct an SI-FEF by exploiting the
accurate knowledge of the predictor representation (5). The
purpose is to establish the link between the predictor MPs
and the MPs of the SI-FEF in Section IV as the foundation of
our data-driven design.

Firstly, we decompose the predictor (5) into two subsystems:

x1(k + 1) = Φx1(k) + B̃u(k) +Ky(k) (9a)
y1(k) = Cx1(k) +Du(k), x1(0) = x̂(0), (9b)

and
x2(k + 1) = Φx2(k) + Ẽf(k) (10a)

r(k) = Cx2(k) +Gf(k) + e(k), (10b)

such that x(k) = x1(k) + x2(k) and y(k) = y1(k) + r(k).
Starting from an initial guess of the predictor state x̂(0), the

subsystem (9) predicts the output without accounting for the
fault. As shown in Figure 2, (9) is used to generate a residual
signal r(k) = y(k) − y1(k) from the I/O data. Then, the
subsystem (10) is the residual dynamics decoupled from the
I/O data. This will be used in the following to design a closed-
loop left inverse system as depicted in Figure 2.

Since the fault subsystem (Φ, Ẽ, C,G) has the relative
degree τ (see Assumption 1), the residual signal at the time
k + τ is needed to produce a fault estimate f̂(k), which
introduces an estimation delay when τ > 0. Considering
this estimation delay, we construct the following equation by
successively substituting (9a) and (10a) into (9b) and (10b),
respectively:

r(k + τ) = y(k + τ)− y1(k + τ)

= −CΦτx1(k)−Buτ+1uk+τ,τ+1 +Byτ+1yk+τ,τ+1 (11a)

= CΦτx2(k) +Hf
τ f(k) + e(k + τ) (11b)

where uk+τ,τ+1 and yk+τ,τ+1 are defined in (3), Buτ+1 and
Byτ+1 are respectively defined as

Buτ+1 =
[
Hu
τ Hu

τ−1 · · · Hu
0

]
,

Byτ+1 =
[
−Hy

τ −Hy
τ−1 · · · −Hy

1 I
]
.

(12)

In (11b), we use Hf
i = 0 for i < τ due to the relative degree

τ .
From (11b), f(k) can be estimated as below by using x2(k)

and a left inverse matrix Π of Hf
τ :

f̂(k) = Π [r(k + τ)− CΦτx2(k)] , ΠHf
τ = I. (13)

The left inverse matrix Π is a design parameter, whose
existence is ensured by Assumption 1. Since the state x2(k)
is actually unknown, we construct the following left inverse
of the residual dynamics (10) and (11) in the state-space form
which jointly estimates the state and the fault:

x̂2(k + 1) = Φx̂2(k) + Ẽf̂(k) +Kr r̃(k + τ) (14a)

f̂(k) = Π [r(k + τ)− CΦτ x̂2(k)] (14b)
r̃(k + τ) = r(k + τ)− r̂(k + τ) (14c)

= r(k + τ)− CΦτ x̂2(k)−Hf
τ f̂(k). (14d)

By replacing the state x2 and the fault f with their estimates
x̂2 and f̂ , r̂(k+τ) = CΦτ x̂2(k)+Hf

τ f̂(k) in (14c) and (14d)
follows (11b) to reconstruct the residual signal from the state
and fault estimates. Then r̃(k + τ) = r(k + τ) − r̂(k + τ)
is the residual reconstruction error. Similarly, (14b) constructs
the fault estimate f̂(k) by following (13). (14a) is a copy of
the residual dynamics (10a) with a feedback term Kr r̃(k+ τ)
from the residual reconstruction error r̃(k+τ). By substituting
(14b) into (14a) and (14d), respectively, the left inverse (14)
can be equivalently rewritten as

x̂2(k + 1) = Φ1x̂2(k) +B1r(k + τ) +Kr r̃(k + τ) (15a)

f̂(k) = C1x̂2(k) +D1r(k + τ) (15b)
r̃(k + τ) = −C2x̂2(k) +D2r(k + τ) (15c)

with
Φ1 = Φ− ẼΠCΦτ , B1 = ẼΠ, C1 = −ΠCΦτ , (16)

D1 = Π, C2 = (I −Hf
τ Π)CΦτ , D2 = I −Hf

τ Π. (17)
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With Kr = 0, (Φ1, B1, C1, D1) in the above left inverse
system is referred to as an open-loop left inverse. With the
feedback gain Kr, the residual reconstruction error r̃(k + τ)
is used as a feedback signal to stabilize the above left inverse.
Such a structured form of the closed-loop inverse (15), i.e.,
the combination of the open-loop left inverse and the feedback
from the residual reconstruction errors r̃(k + τ), enables our
data-driven design in Sections IV and V.

By cascading the residual generator (9) and the left inverse
(15), we obtain the SI-FEF as below:

x̂(k + 1) = Φ1x̂(k) +Bfuk+τ,τ+1 +Kfyk+τ,τ+1

+Kr r̃(k + τ)

f̂(k) = C1x̂(k) +Df,1uk+τ,τ+1 +Gf,1yk+τ,τ+1,

r̃(k + τ) = −C2x̂(k)−Df,2uk+τ,τ+1 +Gf,2yk+τ,τ+1.
(18)

Note that x̂(k) = x1(k)+ x̂2(k) is an estimate of the predictor
state x(k), because x̂2(k) is the estimate of x2(k) and the
predictor state is decomposed as x(k) = x1(k) + x2(k). In
the above SI-FEF, Φ1, B1, C1, D1, C2 and D2 are defined in
(16) and (17), respectively, and

B̃τ =
[
B̃ 0nx×τnu

]
, Kτ =

[
K 0nx×τny

]
, (19)

Bf = B̃τ −B1B
u
τ+1, Kf = Kτ +B1B

y
τ+1,

Df,1 = −D1B
u
τ+1, Df,2 = D2B

u
τ+1,

Gf,1 = D1B
y
τ+1, Gf,2 = D2B

y
τ+1.

Next, the error dynamics of the SI-FEF (18) is analyzed for
the state estimation error x̃(k) = x(k) − x̂(k) and the fault
estimation error f̃(k) = f(k)− f̂(k):

x̃(k + 1) = (Φ1 −KrC2) x̃(k)− (B1 +KrD2) e(k + τ)

f̃(k) = C1x̃(k)−D1e(k + τ).
(20)

Therefore, if the pair (Φ1, C2) is observable or detectable,
there exists a stabilizing gain Kr in (20), such that starting
from any arbitrary initial estimate x̂(0), unbiasedness of the
estimates x̂(k) and f̂(k) can be achieved asymptotically, i.e.,
lim
k→∞

E (x̃(k)) = 0 and lim
k→∞

E
(
f̃(k)

)
= 0.

Theorem 1. (Φ1, C2) is observable if the fault subsystem
(Φ, Ẽ, CΦτ , Hf

τ ) has no invariant zeros; (Φ1, C2) is de-
tectable if all invariant zeros of (Φ, Ẽ, CΦτ , Hf

τ ) are stable.

Please refer to the Appendix of [13] for the proof. Theorem
1 shows how the observability or detectability of the pair
(Φ1, C2) is determined by the invariant zeros of the underlying
fault subsystem. Thus it provides a sufficient condition for the
existence of a stabilizing filter gain in (18) so that the fault
estimate f̂(k) is asymptotically unbiased.

Similarly to [14], [15], the SI-FEF (18) produces both the
state estimate x̂(k) and the fault estimate f̂(k). However, in
[14], [15], the condition in Theorem 1 that ensures stabilization
and asymptotic unbiasedness was not provided, and only the
special cases of τ = 0 and τ = 1 were discussed.

IV. MARKOV PARAMETERS OF SYSTEM-INVERSION-BASED
FAULT ESTIMATION FILTER

As illustrated in Figure 1, after the MPs of the SI-FEF (18)
are computed, a stable state-space realization of the SI-FEF
can be constructed. In this section, we establish the link for
computing MPs of the SI-FEF (18) from the predictor MPs
{Hu

i , H
y
i , H

f
i }.

As the first step towards the above goal, we rewrite the
residual generator (9), the left inverse system (15), and the
SI-FEF (18) into extended forms over a time window. With
k0 = k − L+ 1, we define

z̄k,L =
[

z>k0+τ,τ+1 · · · z>k+τ,τ+1

]>
, (21)

by stacking zk+τ,τ+1 =
[
u>k+τ,τ+1 y>k+τ,τ+1

]>
over the

time window [k0, k]. According to (9a), (10a), and (11), the
stacked residual vector rk+τ,L over the time window [k0, k]
can be written in the extended form

rk+τ,L = OL (Φ,−CΦτ ) x1(k0) + T z
L z̄k,L (22a)

= OL (Φ, CΦτ ) x2(k0) + T f
L fk,L + ek+τ,L (22b)

with B̃τ and Kτ defined in (19),

T z
L = TL

(
Φ,
[
B̃τ Kτ

]
,−CΦτ ,

[
−Buτ+1 Byτ+1

])
, (23)

T f
L = TL

(
Φ, Ẽ, CΦτ , Hf

τ

)
. (24)

Since the residual generator (9) has the initial state x1(k0) =
x̂(k0), the closed-loop left inverse (15) then has the initial
state x̂2(k0) = 0 according to x̂(k) = x1(k) + x̂2(k) in (18).
Hence, the closed-loop left inverse (15) can be transformed
into the following extended form over the time window [k0, k]
to produce the stacked fault estimates f̂k,L:

f̂k,L = KLrk+τ,L = (GL +MLJL) rk+τ,L, (25)

with

KL = TL (Φ1 −KrC2, B1 +KrD2, C1, D1) , (26a)
GL = TL (Φ1, B1, C1, D1) , (26b)

JL = I −T f
L GL = TL (Φ1, B1,−C2, D2) , (26c)

ML = TL (Φ1 −KrC2,Kr, C1, 0) . (26d)

We refer the reader to the Appendix of [13] for the proof
of KL = GL +MLJL in (25). Note that KL, GL, JL and
ML are all block-Toeplitz matrices, and can be explained as
below: (i) GL corresponds to the open-loop left inverse, i.e.,
(15) with Kr = 0; (ii) JL produces the residual reconstruction
errors r̃(k+ τ) in (15) with Kr = 0; (iii) ML corresponds to
the feedback dynamics from the residual reconstruction errors
r̃(k + τ) in the closed-loop inverse (15).

By substituting the residual generator (22) into the extended
closed-loop inverse (25), the following extended form of the
SI-FEF (18) is obtained:

f̂k,L = OL (Φ2, C1) x1(k0) + (RL +MLQL) z̄k,L (27a)
= OL (Φ2,−C1) x2(k0) + fk,L +KLek+τ,L (27b)
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where Φ2 is defined as Φ2 = Φ1 −KrC2,

RL = GLT z
L = TL

(
Φ1, [Bf Kf ], C1, [Df,1 Gf,1]

)
, (28a)

QL = JLT z
L = TL

(
Φ1, [Bf Kf ],−C2, [−Df,2 Gf,2]

)
.

(28b)

Similarly to GL and JL in (25),RL andQL correspond to two
subsystems of the SI-FEF (18) with Kr = 0, which produce
f̂(k) and r̃(k + τ) in the open loop, respectively. ML is the
same feedback dynamics as in (26d).

The extended form (27a) can be regarded as a batch
estimator which provides the estimate f̂k,L from the I/O data
z̄k,L and the initial state x1(k0) = x̂(k0). Moreover, it can be
seen from (27b) that f̂k,L is a biased estimate of fk,L due
to the presence of unknown initial state x2(k0). However,
it follows from the definition of OL (Φ2,−C1) in (1) that
E
(
f̂(k)− f(k)

)
= −C1(Φ1−KrC2)L−1x2(k0), where f̂(k)

and f(k) are the last nf entries of f̂k,L and fk,L, respectively.
The above equation shows that f̂(k), extracted from f̂k,L in
(27a), gives asymptotically unbiased fault estimation as L goes
to infinity, if Φ1 −KrC2 is stabilized given the condition in
Theorem 1.

In the above derivations, the block-Toeplitz matrices T z
L ,

T f
L , GL, JL, and QL are expressed with state-space matrices.

For the data-driven design, the next step is to construct their
corresponding MPs defined as

T z
L = TL ({H z

i }) , T f
L = TL

(
{H f

i }
)
,GL = TL ({Gi}) ,

JL = TL ({Ji}) , RL = TL ({Ri}) , QL = TL ({Qi}) ,
(29)

from the predictor MPs {Hu
i , H

y
i , H

f
i }. To achieve this goal,

we first need to take a closer look at T z
L , T f

L and GL which
are needed in computing RL and QL. According to (23) and
(24), the MPs {H z

i } and {H f
i } are expressed as H z

0 =[
−Buτ+1 Byτ+1

]
, H z

i = −CΦτ+i−1
[
B̃τ Kτ

]
, H f

0 = Hf
τ

and H f
i = CΦτ+i−1Ẽ, for 1 ≤ i ≤ L − 1. By using the

definitions in (6), (12) and (19), they can be computed from
the predictor MPs {Hu

i , H
y
i , H

f
i } as

H z
0 =

[
−Hu

τ · · · −Hu
0 −Hy

τ · · · −Hy
1 I

]
,

H z
i = −

[
Hu
τ+i 0ny×τnu Hy

τ+i 0ny×τny

]
,

(30)

H f
0 = Hf

τ , and H f
i = Hf

τ+i, for 1 ≤ i ≤ L− 1. (31)

As pointed out in the explanations below (25) and (26), GL
is a left inverse matrix with block-Toeplitz structure for T f

L .
Such a left inverse matrix is non-unique, but can be computed
from the MPs {H f

i }. With ΠH f
0 = ΠHf

τ = I according to
(13) and (31), one possible solution of GL is given ahead:

G0 = Π, Gi = −
i∑

j=1

Gi−jH
f
j G0, 1 ≤ i ≤ L− 1. (32)

which ensures GLT f
L = I . Then, according to (28), the MPs

of RL can be computed as the convolution of {Gi} in (32)
and {H z

i } in (30):

Ri =

i∑
j=0

Gi−jH
z
j , for 0 ≤ i ≤ L− 1. (33)

Predictor 

Fault estimation filter

(30) Residual generator

Open-loop left inverse

Generator of residual 
reconstruction error

(31)

(32)

(34)

(33)

(35)

(34)

Fig. 3. Link between predictor MPs and MPs of SI-FEF

Similarly, the MPs {Ji, Qi} of JL in (26c) and QL in (28)
can be computed as{

J0 = I −H f
0 G0,

Ji = −
∑i
j=0 H f

i−jGj , for 1 ≤ i ≤ L− 1,
(34)

Qi =

i∑
j=0

Ji−jH
z
j , for 0 ≤ i ≤ L− 1. (35)

Equations (30)-(35) reveal the link from the predictor MPs
to the MPs of the SI-FEF (18), as summarized in Figure 3.

V. FAULT ESTIMATION FILTER DESIGN USING MARKOV
PARAMETERS

By exploiting the link between the predictor MPs and the
SI-FEF MPs, as analyzed in Section IV, the proposed MP
based data-driven design is given as below.
Algorithm 1. Data-driven design of fault estimation filter
(i) Identify the predictor MPs {Hu

i } and {Hy
i } using VARX

modelling with the historical or experimental fault-free I/O
data.

(ii) Compute MPs of SI-FEF (18).
Construct the MPs {Hf

i }, {H z
i }, and {H f

i } according
to (7), (30), and (31), respectively. Select one left inverse
matrix Π of Hf

τ , e.g., Π =
(
(Hf

τ )>Hf
τ

)−1
(Hf

τ )>. Then
compute {Gi}, {Ji}, {Ri}, and {Qi} by following (32)-
(35).

(iii) State-space realization of the SI-FEF (18) from the MPs
{Ri} and {Qi}.

According to (28) and (29), the MPs {Ri} and {Qi} cor-
respond to systems

(
Φ1, [Bf Kf ], C1, [Df,1 Gf,1]

)
and(

Φ1, [Bf Kf ],−C2, [−Df,2 Gf,2]
)
, respectively. Then

it is straightforward to obtain[
D̂f,1 Ĝf,1

]
= R0,

[
−D̂f,2 Ĝf,2

]
= Q0.

Formulate two block-Hankel matrices HR and HQ as

HW =

W1 W2 ··· Wm

W2 W3 ··· Wm+1

...
...

. . .
...

Wl Wl+1 ··· Wl+m−1

 , W represents R or Q,

(36)
then compute their singular value decomposition (SVD),
i.e.,

HW =
[
UW U⊥W

] [ΣW 0
0 Σ⊥W

] [
V >W(
V ⊥W
)>] .
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In this above equation, the nonsingular and diagonal matri-
ces ΣR and ΣQ consist of the n̂ largest singular values of
HR and HQ, respectively, where n̂ is the selected order of
the fault estimation filter (18). The order n̂ can be chosen
by examining the gap among the singular values of HR
and HQ, respectively, as in subspace identification methods
[10], [11]. Let the rank-reduced block-Hankel matrices ĤR
and ĤQ be ĤW = UWΣWV

>
W , W represents R or Q.

For ĤR defined above, the estimated controllability and
observability matrices can be constructed as [10], [11]

ĈR = Σ
1
2

RV
>
R , ÔR = URΣ

1
2

R. (37)

Then the state-space realization of ĤR are computed as
below:

[B̂f K̂f ] = the first nu + ny columns of ĈR,
Ĉ1 = the first nf rows of ÔR,

Φ̂1 = ĈR,2Ĉ>R,1
(
ĈR,1Ĉ>R,1

)−1

,

where ĈR,1 and ĈR,2 are the matrices consisting of the
first and, respectively, the last nu (m− 1) columns of ĈR.
According to (28), the state-space realizations of the block-
Hankel matrices ĤR and ĤQ have the same controllability
matrix, i.e., ĈR obtained in (37). Then the observability ma-
trix in the state-space realization of ĤQ can be computed
below by using ĤQ = ÔQĈR:

ÔQ = ĤQĈ>R
(
ĈRĈ>R

)−1

. (38)

Finally, −Ĉ2 is the first ny rows of ÔQ.
(iv) Design the filter gain Kr by following Algorithm 2

in Section V-A; and construct the SI-FEF (18) with the
identified system matrices in Step (iii).

Remark 2. The VARX model order p in Step (i) is selected
according to Remark 1. In Step (ii), the length L of the SI-
FEF MPs needs to be sufficiently large to ensure satisfactory
fault estimation performance. This is due to the asymptotic
unbiasedness of the batch fault estimation (27) as L goes to
infinity. In Step (iii), we select the size of the block-Hankel
matrix in (36) to be l+m = L, with l and m defined in (36).
By doing so, all MPs {Ri, Qi} (i = 1, 2, · · · , L) obtained in
Step (ii) are used to construct HR and HQ in (36).

A. H2 filter design

The FEF design has two parameters to be determined, i.e.,
Π in (13) and the filter gain Kr. The joint design of both
Π and Kr is extremely difficult, because all system matrices
in the SI-FEF (18) depend on Π. Alternatively, our proposed
data-driven design selects Π in Step (ii) of Algorithm 1 before
designing the filter gain Kr in Step (iv) of Algorithm 1.

Based on the fault estimation error dynamics (20), the H2

fault estimation problem can be formulated as

min
Kr

‖Ĉ1(zI − Φ̂1 +KrĈ2)−1(B̂1 +KrD̂2)Σ
1
2
e ‖22 (39)

to find the filter gain Kr. It is well known that the solution Kr

to the problem (39) does not depend on Ĉ1, and is actually the

steady-state Kalman filter gain, see Section 7.3 of [16]. In this
above problem formulation, Φ̂1, Ĉ1, and Ĉ2 are obtained in
Algorithm 1 as the estimates of Φ1, C1, and C2, respectively,
while estimating B̂1 and D̂2 will be explained later in Step
(i) of Algorithm 2.

With these above estimated matrices, the solution to the
problem (39) is discussed as below. Note that in Step (i) of
Algorithm 2, we have

D̂2 = J0 = I −Hf
τ Π (40)

according to (31), (32), and (34), and we have ΠD̂2 = 0
since ΠHf

τ = I . Then it can be seen that D̂2 is row-rank
deficient, hence the solution to (39) is non-unique. To tackle
this problem, we follow [17] to restrict the filter gain Kr

to be in the form Kr = K̄rα, where α ∈ Rs×ny ensures
rank(D̂2) = rank(αD̂2) = s. Then the H2 optimization
problem (39) becomes

min
K̄r

‖Ĉ1(zI − Φ̂1 + K̄rC̄2)−1(B̂1 + K̄rD̄2)Σ
1
2
e ‖22 (41)

with C̄2 = αĈ2 and D̄2 = αD̂2. With a proper selection of α,
the sufficient and necessary condition given below in Theorem
2 guarantees that the solution to (41), i.e., [16]

K̄r =
(

Φ̂1PC̄
>
2 + B̂1ΣeD̄

>
2

)
Ξ−1
e (42)

stabilizes the SI-FEF (18), where P is the stabilizing solution
to the algebraic Riccati equation (ARE)

P = Φ̂1P Φ̂>1 + B̂1ΣeB̂
>
1 (43a)

−
(

Φ̂1PC̄
>
2 + B̂1ΣeD̄

>
2

)
Ξ−1
e

(
Φ̂1PC̄

>
2 + B̂1ΣeD̄

>
2

)>
,

Ξe = C̄2PC̄
>
2 + D̄2ΣeD̄

>
2 . (43b)

Lemma 1. The selected α in Step (ii) of Algorithm 2 ensures

that (i) the matrix
[
α
Π

]
is nonsingular; and (ii) ΠĈ2 = 0.

Please refer to the Appendix of [13] for the proof. Despite
both Π and Ĉ2 are computed from identified MPs that may be
contaminated with identification errors, Lemma 1 still holds,
which will be used in the proof of Theorem 2 below.

Theorem 2. With Assumption 1 and the selection of α in Step
(ii) of Algorithm 2, the ARE (43) has a unique stabilizing
solution P if and only if

rank
[
Φ̂1 − λI
Ĉ2

]
= n, for |λ| ≥ 1, (44a)

rank
[
Φ̂1 − ejωI B̂1

Ĉ2 D̂2

]
= n+ ny, for ω ∈ [0, 2π]. (44b)

Please refer to the Appendix of [13] for the proof. Theorem
2 shows that the existence of a unique stabilizing solution to
the H2 estimation problem (41) given the system matrices of
(Φ̂1, B̂1, Ĉ2, D̂2). The procedures of computing the filter gain
Kr are summarized in Algorithm 2.
Algorithm 2. Filter gain design
(i) Identify B1 and D2 using the MPs {Ji} identified in the

Step (ii) of Algorithm 1.
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From (26c) and (29), we can see that {Ji} are the
MPs of the system (Φ1, B1,−C2, D2). It is then easy
to obtain D̂2 = J0. Formulate the block-Hankel matrix
HJ with the MPs {Ji} by using the definition (36). With
the selected filter order n̂, we compute the rank-reduced
matrix ĤJ by following procedures similar to Step (iii) of
Algorithm 1. Since the observability matrix of the state-
space realization of ĤJ is the same as that of ĤQ, i.e.,
ÔQ in (38), we can compute the controllability matrix
ĈJ = (Ô>QÔQ)−1Ô>QĤJ by using ĤJ = ÔQĈJ . Finally,
we obtain B̂1 as the first ny columns of ĈJ .

(ii) Let the SVD of Hf
τ be Hf

τ =
[
U1 U2

] [SH
0

]
V >, then

we select α = U>2 so that αD̂2 = α(I −Hf
τ Π) = U>2 is

full row rank according to (40).
(iii) With C̄2 = αĈ2 and D̄2 = αD̂2, compute K̄r in (42) by

solving the ARE (43). Then the filter gain is Kr = K̄rα.

B. Comparisons and discussions

As shown in [4], the complete reconstructibility of the
entire fault sequence fk,L for the DPCA based fault recon-
struction in [5] is determined by the invertibility of Γ>T f

L ,
where OL (Φ, CΦτ ) and T f

L are defined in (22), and Γ is
the orthogonal complement of OL (Φ, CΦτ ). Although not
discussed in [5], the invertibility of Γ>T f

L is equivalent to the
full column rank of

[
OL (Φ, CΦτ ) T f

L

]
, and it requires the

fault subsystem to have no invariant zeros [9]. Therefore, the
complete fault reconstruction by the DPCA based approach is
more restrictive than the asymptotic fault reconstruction by our
proposed approach, since the asymptotic fault reconstruction
can be ensured as long as all the invariant zeros are stable.
Moreover, for the DPCA based estimator, it can be also proven
that the most recent fault estimate f̂(k) within each time
window asymptotically reconstructs the fault as the length
of the time window increases. This is obviously much less
computationally efficient than our proposed recursive FEF.
Proofs of the above analysis are omitted due to the page limit.

The data-driven method of [7] considered only the open-
loop left inverse GL (26b) corresponding to (15) with Kr = 0.
Hence, it has no stability guarantees. In particular, it leads to
an unstable filter when applied to sensor faults of an unsta-
ble open-loop plant, see Section V-B of [7]. This difficulty
cannot be solved by simply applying the same method to the
stabilized closed-loop system. The reason is that the sensor
faults affect not only the output equations but also the closed-
loop dynamics [18], hence (7) is no longer valid for the MPs
{Hf

i } of the closed-loop fault subsystem. To circumvent this
difficulty, Section V-B of [7] used a special controller such
that the sensor faults did not affect the closed-loop dynamics,
which is seldom allowed in practice.

Despite adopting different left inverses, both [7] and our
proposed approach design the state-space FEF by deriving
a state-space approximation to a batch fault estimator. The
higher state order of the designed filter leads to a better ap-
proximation, thus giving better fault estimation performance.
Therefore, the order determination is a trade-off between the
fault estimation performance and the computational load that

increases with the state order. Such a clear tuning guideline,
however, does not exist for determining the order of the
state-space plant model in the conventional two-step design,
because model-plant mismatches are introduced in the very
first step and propagate in a highly nonlinear manner to the
fault estimation errors.

VI. SIMULATION STUDIES

Consider a nonlinear continuous stirred tank reactor ex-
ample in the MATLAB control system toolbox [19]. The
inlet stream has constant feed concentration and temperature.
The two measured outputs include the residual concentration
Cr (kmol/m3) of the outlet stream and the reactor temper-
ature Tr (K), with zero-mean white measurement noises of
standard deviations 10−2 kmol/m3 and 10−1 K, respectively.
The control input is the temperature Tc (K) of the cooling
jacket so that the residual concentration is maintained at a
desired level. A cascade PI controller is implemented with a
sampling interval 0.5 second, see Page 288 in [19] for more
details. The operating point is set to Cr = 5.2850 kmol/m3,
Tr = 341.1084 K and Tc = 296.7939 K by using the constant
reference signal Cref = 5.2850 kmol/m3. The simulated fault
scenarios include: 1) a bias fault in the actuator; 2) an
oscillating fault in the reactor temperature sensor.

The plant model is unknown, and the following four data-
driven fault estimation methods are implemented for compar-
isons:

1) Alg0: the DPCA based fault estimator in [4], [5];
2) Alg1: the SI-FEF (18) using the state-space model of the

predictor (5) identified from data;
3) Alg2: the data-driven FEF method proposed in [7];
4) Alg3: our data-driven FEF method in Section V.

The Alg0 results in a DPCA based FIR estimator, which is a
benchmark for the other three methods. Within each sliding
time window, only the most recent fault estimate is used due
to the analysis in the first paragraph of Section V-B.

In the identification experiment, a zero-mean white noise
uniformly distributed in [−1, 1] kmol/m3 is added in the
reference signal Cref, which ensures persistent excitation. N =
10000 data samples are generated. For Alg0, the DPCA model
is obtained by setting its time-lag and number of principal
components to be 10 and 14, respectively, by following tuning
guidelines in [4]. Alg1, Alg2, and Alg3 all rely on a VARX
model whose order is set to be p = 10. This VARX order is
equal to the time-lag of the DPCA model for a fair comparison.
For Alg2 and Alg3, the length of the time window to construct
the data-driven FEF is L = 100, and the number of block
rows and columns of the block-Hankel matrix HW in (36) is
l = m = 50, according to the guidelines in Remark 2.

First, we examine the state order selection for the FEF
obtained in Alg1, Alg2, and Alg3. The estimated fault signals
when setting the state order to be 2 are shown in Figure 4,
while the root mean square errors of fault estimates by all
algorithms with different state order selections are illustrated
in Figure 5. Using the DPCA based batch estimator, Alg0
achieves the best estimation performance at the cost of much
heavier computational load compared to the other three meth-
ods. For Alg1 in Figure 4, large fault estimation errors appear
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as a result of the highly nonlinear propagation of the state-
space plant modelling errrors, even though the selected order is
the same as the true plant dynamics. Moreover, the estimation
errors of Alg1 drastically change with different state orders,
as in Figure 5. In contrast, the selection of a higher state
order in Alg2 and Alg3 generally leads to smaller estimation
errors in Figure 5, which is consistent with the discussions in
Section V-B. In Figure 5, Alg2 is not plotted for the sensor
fault scenario, because it results in unstable FEF dynamics
when the state order is set within the interval [4, 8], due to
the reason explained in Section V-B. In contrast, Alg3 obtains
stable FEFs for different state orders as expected.

We further compare the distribution of root mean square
errors of fault estimates in 100 Monte Carlo runs, with both
the VARX order p and the time lag of DPCA set to 10,
and the state orders of Alg1, Alg2, and Alg3 set to 4. As
seen in Figure 6, the performance of Alg1 is rather sensitive
to noises. Compared to Alg0, both Alg2 and Alg3 have
minor performance loss while gaining efficiency in their online
computation. Again, due to the unstable FEF dynamics, Alg2
is not plotted in the subfigure of the sensor fault in Figure 6.
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Fig. 4. Fault estimates given by different methods. The state-space order of
Alg1, Alg2, and Alg3 is set to 2.
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VII. CONCLUSIONS

A novel direct data-driven design method has been proposed
for FEFs by parameterizing the SI-based FEF with predictor
MPs. It does not need to identify a state-space plant model,
but still allows the filter gain design for stabilization and
H2 estimation performance. Moreover, the fault estimation
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Fig. 6. Boxplots of root mean square error of fault estimates in 100 Monte
Carlo simulations: both the VARX order p and the time lag of DPCA are set
to 10; the state orders of Alg1, Alg2, and Alg3 are all set to 4.

performance can be improved by increasing the state order of
the designed filter, at the cost of higher online computational
load. Monte Carlo simulation results illustrate the reliability
of our method compared to other data-driven filter designs.
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