
An Nonlinear Model Predictive Control Approach to
Autonomous UAV Racing Trajectory Generation & Control

S.T. Spronk*, S. Li†,
G.H.C.E de Croon†

Section Control & Simulation, Faculty of Aerospace Engineering,
Technical University Delft, The Netherlands

Februari 2020

Abstract
When observing an Autonomous Unmanned Aerial Vehicle(UAV) race, one would be hard-pressed to call it racing as

the actual velocities attained are extremely low. This article addresses this shortcoming by proposing a method of generating
and executing a racing trajectory for a UAV, through a series of position objectives representative of a racing environment,
with the goal of significantly improving the velocity when compared to the current norm of PID controllers. The method
consists of applying Nonlinear Model Predictive Control with the capability of dynamically updating the position goal
based upon internal state estimation to generate a set of inputs for a UAV. To prove the viability of the proposed method
we test by using numerical simulations, a flight simulator environment(Gazebo) and a series of real-world flight tests on
the Bebop1 UAV. Through 2 iterations of the testing process it is proven that the method is able to significantly(≈1s)
decrease the flight time through both simple and more complex short range manoeuvres(2m−4m). However model errors
and an inability to fully control thrust on the UAV introduce a significant and consistent position error.

1 Introduction
Autonomous UAV racing is a very new discipline in the
field of control systems. These races are attended alsmost
exclusively by academic teams [1] [2], and the first ever
autonomous UAV race was held as recent as 2016. It has a
promising future however as piloted First Person View(FPV)
racing is already a well established and professionally looking,
albeit niche, sport 1. The FPV pilots are able to control their
crafts with velocities of over 150km/h through sufficiently
large arenas with known gate positions. However since all
autonomous UAV races are held in very small arenas the
main limiting factor on speed is the distance between gates.
As these distances generally do not exceed 4 meters velocities
exceeding≈8km/h are considered extremely impressive [3].
The current trend is to generally forgo any optimisation in
terms of trajectory and/or inputs and use basic control meth-
ods such as PID controllers [3] [4] [5] [6]. Since the foremost
issue limiting UAV racing velocities is the accurate and quick
identification of gates [7] [8]. However as progress is made
in this the need for more aggressive manoeuvres will increase.
To facilitate these developments faster control schemes and
racing strategies must be developed. Recently a trend of
applying Model Predictive Control(MPC) to UAV flight can
be observed [9] [10] [11] [12]. Nonlinear Model Predictive
Control(NMPC) implementations are less explored but have
shown the capacity of impressive high-velocity aggressive ma-
noeuvres [13]. This article proposes a method of generating
a close to optimal trajectory and a corresponding set of inputs
for a UAV in a complex racing environment. With the aim
of significantly reducing the flight time between objectives in

comparison with a PID controller. The core of the approach is
the use of NMPC. Selected for its capability to react to on-line
changing objectives. As racing environments consist of a
series of gates with generally known locations the method pro-
vides a basis for a computationally efficient on-line racing con-
troller able to adapt to changes in the environment and generat-
ing a close-to time-optimal set of inputs for the UAV.

Section 2 will describe the method used to detect and
avoid the objects; Section 3 will describe the tests that were
performed; Section 4 will show the results and finally the
conclusions are drawn and recommendations are put forward
in Section 5.

2 Method

This section will explain the method used to turn a set of
positions/attitudes representing a racing trajectory into a set
of attitude inputs for a UAV. The process consists of several
steps. First choices made in the problem framework such
as the selection of reference frames and dynamic model will
be explained. followed by an overview of the functioning
of an NMPC. And finally an explanation of the specific
implementation of said NMPC.

2.1 Framework

The first choice was that of a UAV model. The UAV model
used for testing was a Parrot Bepop 1 with an assumed
weight of 530 grams. All values and results are based on
the capabilities and performance of this UAV. The proposed
approach uses 2 reference frames, namely the body and
inertial frame. All positions and velocities are tracked in the

*Student
†Supervisor
1https://theUAVracingleague.com/

1

https://theUAVracingleague.com/

inertial, also called the earth, frame while all accelerations
are tracked in the body frame. These reference frames are
illustrated in Figure 1

Figure 1: Illustration of inertial frame Fi, body frame Fb
and body frame to UAV orientation

To model the UAV a set of ordinary differential equa-
tions(ODE) have to be defined. The full set, basis provided by
Li, S2 used for the project can be found in Equation 1.

ẋ =cos(ψ)∗cos(θ)∗vx−sin(ψ)∗cos(φ)∗vy (1a)
ẏ =cos(ψ)∗cos(φ)∗vy+sin(ψ)∗cos(θ)∗vx (1b)
ż =cos(θ)∗cos(φ)∗vz (1c)

v̇x = −sin(θ)∗g∗mm −(q∗vz−r∗vy)−(Cd∗vx)∗ (1d)

v̇y = sin(φ)∗cos(θ)∗g∗m
m −(p∗vz−r∗vx)− (1e)

(Cd∗vy)∗

v̇z = cos(φ)∗cos(θ))∗g∗m+T
m −(p∗vy−q∗vx)− (1f)

(Cd∗vz)∗

φ̇ =p+q∗tan(θ)∗sin(φ)+r∗tan(θ)∗cos(φ) (1g)

θ̇ =q∗cos(φ)−r∗sin(φ) (1h)

ψ̇ =q∗(sin(φ)/cos(θ))+r∗(cos(φ)/cos(θ)) (1i)

Ṫ =δT (1j)

These equations are slightly simplified from the full transfor-
mation from body to inertial under the assumptions of small
angles. As will be presented in Subsection 2.4.2 roll and pitch
angles are constrained to not exceed 25 degrees, which makes
this a valid assumption. Furthermore the bracket terms with
an asterisk (∗) in Equations 1d, 1e and 1f denote the drag
terms, assumed to be Cd=0.5, which are not present in all
implementations as will be explained in Section 3

2.2 UAV Racing Considerations

In order for the proposed method to function in a racing
environment there are some considerations to be made. There
is a certain way a UAV behaves, or should behave taking
into account autonomous racing conditions. This problem
is best supported with an illustration and can be found in
Figure 2

Figure 2: Racing optimality problem example

As can be seen in the figures while the objective is the
same the results are very different. While the left trajectory
is mathematically optimal being a straight line between two
points it is not optimal in a racing environment where gates
have to be cleared. One of the greatest challenges of this
research was to first define and the try to capture ’good’ rac-
ing behaviour in a set of cost function weights. The adopted
solution to this problem is presented in Subsubsection 2.4.2.
An example of this problem is that early in development the
UAV initial conditions included that it started on the ground
with no thrust. While this makes sense on first glance what
would happen is that even with a constraint that prohibits an
altitude lower than 1 the constraints on the rate of increase
of thrust would conflict with this and the UAV would in
mathematical terms fall through the floor. Although this
would in all likelihood not have an issue when considering
a real flight test it does illustrate the problem well. It is very
ill-defined what good racing behaviour is and, this might
be stating the obvious, the program does not have a frame
of reference or any built in parameters that relate to UAV
racing. So building on the earlier example if one would
like to move from a (x=0,y=0) to a (x=3,y=3) position it
would be easily proven that simply rolling and pitching would
generate a straight line between those points, the strictly
fastest trajectory to the target. In racing conditions however
one should consider that the UAV would need to be able to
detect a gate or goal and should thus have a sensor pointed
in the direction of flight. This traditionally takes the form of
a camera pointing forward, which will be the main considera-
tion for the research. The pure mathematical optimal solution
is thus very often not optimal in actual racing conditions.
The second problem is that no clear guide on how to tune
a 3D NMPC for autonomous racing UAVs exists as far as
the author could find. This thus necessitated the following
approach. First to define a set of desirable global behaviours,
such as pointing toward the goal and preferring pitching. It
is therefore important to keep in mind that the values used
to define optimal are highly subjective and due consideration
to the real-world environment where this method would be
applied is extremely important. The chosen values and their
motivation are presented in Subsubsection 2.4.2.

2.3 NMPC
The core of the proposed solution is an NMPC. This sub-
section will explain the theory and the implementation
of the used NMPC algorithm and its numeric simulation
environment.

2https://github.com/ls90911/drone_simulation
2

https://github.com/ls90911/drone_simulation

an NMPC is a special case of a normal Optimal Control
Problem(OCP) [14] [15]. In essence an NMPC repeatedly
solves an off-line OCP to create an on-line control solution.
The formal mathematical problem definition of an NMPC
that needs to be solved can be found in equations 2,3,4a and
4b.

min J=

N∑
i=0

||h(x(ti),ui)−yref ||2W

+||h(x(T),uT)−href ||2R

(2)

subject to:
u∈U ∀t∈ [t+T], x∈χ ∀t∈ [t+T] (3)

where:
U :=u∈<m|umin≤u≤umax (4a)
χ :=x∈<n|xmin≤x≤xmax (4b)

where T is the horizon length, x(ti) is a vector containing
the following UAV differential states x,y,z,vx,vy,vz,φ,θ,ψ
sampled at interval length ti, ui consist of the input r. The
choice of penalizing only the yaw rate is to possibly avoid nu-
merical ambiguity in the optimization. The other inputs of the
system, p, q and δTr

are not included in the cost function as
to not restrict the possibility of aggressive manoeuvres. W is
a matrix containing the weights associated with each state and
output. yref is a matrix containing the desired value for each
interval. href is a vector containing the set of goals of yref
corresponding to the final interval. R is also mostly equal to
Wi, unless the system needs a higher terminal value penalty
to enforce stability in which case R becomes a multiple of
Wi. Only one input is present in the cost function because it
would impact the performance of the UAV in terms of time.
The exception is made for the yaw angle as its impact on
travel times is negligible. The possibility of a penalty for yaw
rate was added as an extra security to stop the UAV from
yawing ’unnecessarily’, in context of desired racing behaviour.
This kind of optimization problem is solved numerically by
sequential quadratic programming(SQP) algorithm [16]. In
addition to the NMPC an OCP solver to find the true optimal
time was also constructed for comparison. This OCP solution
was constructed to optimize for time. An OCP is not restricted
by a fixed interval length and to compare a roughly equivalent
amount of intervals amount of 20 was set. This number is
chosen to roughly provide the same number of intervals as
the NMPC, which an interval size of 0.1 seconds. The reason
the OCP was not chosen as a basis for the approach instead of
the NMPC is the fact that it is unable to dynamically change
objective, always having only 1 set of initial states and 1 set
of end states [17].

2.4 ACADO
The implementation of the NMPC was done using the
ACADO toolkit [18] [19] [20] [21] [22]. This software pack-
age is focused primarily on solving both linear and nonlinear
optimal control problems, of which model predictive control

is a special case. In addition to providing syntax to ease the
setting up of such a model it also facilitates the running of a
(N)MPC in a numerical simulation environment. This being
the method of generating a trajectory/UAV input data.

2.4.1 The Adaptive Reference System
In order for it to function for a racing application a custom add-
on for the reference had to be made. When planning a flight
path the original release requires a pre-determined time for ev-
ery change of objective yref , presented in Equation 2. Since
the objective of the NMPC is to find a time-optimal path in
complex environments this was critically important to fix. The
adaptive reference trajectory module was created and success-
fully implemented in the ACADO toolkit. The adaptive sys-
tem checks the internally estimated states to decide whether to
advance the goals. Thus always having only a singe goal for
all intervals. While with a fixed goal switch time this is not
always the case. In Figure 3 a comparison of results of a trajec-
tory simulated with ACADO using the new adaptive and the
old static reference system. The objective was to fly a square
with 3 meter long sides. The objective switch times provided
to the static reference system were set to 2 seconds.

0 0.5 1 1.5 2 2.5 3 3.5 4

y [m]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x
[m

]

adaptive
static
goals

Figure 3: Adaptive reference trajectory vs static reference
trajectory comparison

It can be seen that the simulation using the adaptive refer-
ence trajectory system follows the set trajectory far more accu-
rately than the static version. The error is caused by cost func-
tion terminal cost term. causing the static system to disregard
imminent objectives in favour of later ones as the last state on
the horizon is considered to be semi-infinite constant [14]. In
addition the adaptive reference system also completely elim-
inates the need for pre-determining times of any sort.

The current release does have a couple of limitations and/or
shortcomings which will be briefly discussed. Currently the
goal is considered reached, and the decision made to switch to
the next goal, if the x, y and z position of the UAV is within
an 5% error region of the desired position for 5 consequetive
sampling instances. This means, for example, that a reference
trajectory that only contains attitude changes will not be exe-
cuted properly. And that the current system is ill-suited for use
when flying larger distances. Also any internally estimated po-
sition errors will propagate, but this problem is ubiquitous in

3https://github.com/stspronk/ACADOtoolkit-Adaptive-Reference-Trajectory-V1.0
3

https://github.com/stspronk/ACADOtoolkit-Adaptive-Reference-Trajectory-V1.0

UAV control so therefore not of great immediate concern for
this project. The source code of the adaptive reference trajec-
tory add-on for the ACADO toolkit can be found here3. The
NMPC is coded in C++ , the compiled program is therefore
very computationally efficient. While currently still contain-
ing a numerical simulation of the process it would be possible
to substitute this with the estimated states of the real UAV.
Thus enabling an on-line version running on the UAV.

2.4.2 Horizon Size, Cost Function Weights & Con-
straints

The final values for the racing optimized NMPC Cost Func-
tion Weights & Constraints are presented here. The are the
values for Wi found in Equation 2 and the range of U and
χ found in Equation 4. Also the horizon size and interval de-
noted by the size of ti, and T in Equation 2 is presented here.
The horizon length T is 1 second consisting of 10 intervals of
0.1 seconds. The allowed sampling time for the state estima-
tor is half the horizon interval at 0.05 seconds. The constraints,
as they complement the dynamic model presented Equation 1
to fully describe the UAV capabilities. The constrained values
and their limits are listed in Table 1. The time dependent
values are adjusted in-code to fit the horizon intervals.

Table 1: NMPC constraint values.

lower limit upper limit
z[m] -1.4 -1.6
φ[rad] -0.436 0.436
θ[rad] -0.436 0.436
ψ[rad] -0.436 0.436
p[rad/s] -21 21
q[rad/s] -21 21
r[rad/s] -33.6 33.6
T[N] -19.621 0
δT [N/s] -80 80

While constraining the attitude this tightly seems counter-
intuitive at first when one considers a racing application. It
was a necessity of the limited flight testing space available,
where the velocities higher attitude angles would enable are
simply unfeasible. These constraints should be relaxed if a suf-
ficiently large testing area can be acquired. It additionally was
assumed that the UAV is unable to generate positive thrust. Fi-
nally the cost function values are presented in Table 2.

These values were obtained after extensive testing. The
testing was almost exclusively done by trial and error, as
explained in Subsection 2.2, considering 2 objectives. The
first being appropriate racing behaviour, an expression of this
is the lower cost of θ in comparison to the other attitudes.
This means a doubled likelihood of the UAV pointing towards
the set reference position. The absolute value of the weights
is not very important, it is the relative weights that matter.
The choice of using integers simplifies this process.

Table 2: NMPC cost function weight values.

Term Value
x 20
y 20
z 20
vx 3
vy 3
vz 3
φ 10
θ 5
ψ 10
r 0

Since the context is UAV racing the position must be
of greatest relative importance in the cost function and the
velocity must be lowest. The attitude values are chosen as
such to slightly nudge the behaviour into desired behaviour.
To perform complex racing manoeuvres it was found that
smart choices in reference trajectory was a far more efficient
way of achieving good racing behaviour than re-tuning the
cost function for each manoeuvre. It must be pointed out
however that this is a possibility. The second objective of
choosing the weights is for the solution to be as close to
optimal as possible. This objective reinforces the need for the
position cost to be the comparative highest. It also requires
the velocity to be slightly constrained, comparatively lowest.
This will not significantly slow down the flight and eliminates
any overshoot.

2.4.3 Integrator Options & Limits
The NMPC requires the choice of an integrator in order
for the prediction process. In addition there are tolerances
and limits for when the computed solution accuracy is
deemed acceptable. The integration scheme selected is a
Runge-Kutta-Dormand-Prince integrator with order 4 with
a step size control order of 5. With an absolute and relative
tolerance of 1e−8. The maximum number of optimization
iterations was set to 3. Generally the algorithm only needs 1
to achieve convergence so this is purely for extra redundancy.
The Karush-Kuhn-Tucker(KKT) [23] tolerance, a first order
derivative test of interval match, was set to 1e−10.

3 Testing
The performed research consisted of several parts. The first
consists of proving the possible time gains of the applica-
tion of an NMPC, verifying the approach. Followed by an
overview of the validation set-up. And finally a step-by-step
explanation of the testing process and its implications.

3.1 Verification
Before any real testing can be done a proof of possible
improvement in terms of time needed to be given. This was
achieved by comparing the NMPC with both a PID controller,
provided by Li, S. Controller PID gain values can be found
in the release4, and a time optimized OCP of a set trajectory
for the UAV. For the NMPC there are 2 versions. An older

4https://github.com/ls90911/drone_simulation
4

https://github.com/ls90911/drone_simulation

version used for the first comparison during development
and the final ,optimized for the problem at hand, version. A
side-by-side comparison of the performance of each method
can be found in Figure 4.

0 1 2 3 4 5

Time[s]

0

0.5

1

1.5

2

2.5

3

3.5

x
[m

]

PID
new NMPC
old NMPC
OCP

Figure 4: Trajectory control method performance comparison

The differences in performance are obvious. It is of
note that the OCP solution magnifies any assumptions and
model errors made and it is very sensitive to the change
in the amount of intervals, in this case 20 as explained in
Subsection 2.3. This explains the far larger accelerations of
the OCP. Furthermore the difference between the NMPC
solutions is mostly due to how the velocity is represented
in the cost function. While it may seem logical to leave
velocity unconstrained when optimizing for time in practice
the overshoot will cause it to be slightly slower. Finally, as
expected, the PID controlled solution performs worst in both
terms of time and accuracy.

To more formally test possible time-gains solutions were
computed for the OCP, (most recent)NMPC and PID methods
for 36 different trajectories. These desired trajectories were
spaced out on a 6-by-6, 1 meter grid. The times recorded are
the times where the computed positions have an error smaller
than 1% w.r.t. the goal. A histogram of the results can be
found in Figure 5.

Figure 5: Trajectory times of control methods comparison

Mirroring the results presented in the side-by-side example
the possible time gain of applying the NMPC technique
compared to a PID approach is substantial. It also confirms

that the NMPC does not reach the true optimal trajectory. It
is however deemed close enough to merit the trade-off for
more flexibility.

3.2 Validation
To validate the proposed method 2 stages of further testing
are performed. First a test in the Gazebo5 flight simulator
followed by an real-world flight test in the TUDelft Cyberzoo.
As stated before the platform used is a Bebop1 UAV. Running
on the platform is the open-source autopilot Paparazzi6. The
Cyberzoo environment is equipped with a high fidelity optical
tracking system(OptiTrack) to take accurate measurements
of the performance of the UAV. In Figure 6 an overview
of the testing environment and the OptiTrack systems is
provided.

Figure 6: Cyberzoo testing environment; Gazebo visual-
ization with highlighted OptiTrack measurement system
components

The test trajectories will be the exact same as the ones
tested in simulation. To facilitate the execution of the NMPC
generated commands an adjustment of the stabilization loop
of Paparazzi was made. This adjustment forced the UAV
to follow the attitude commands as dictated. Sadly the
thrust was not directly controllable. An attempt was made to
scale the thrust commands, this however lead to an apparent
positive feedback loop causing the thrust to keep increasing
beyond an intended stable value. Therefore the thrust during
testing was fully controlled by the Paparazzi indi stabilization
and not the NMPC calculated values.

There is however a consideration to be made when using
the OptiTrack system and the Simulation of the Cyberzoo.
The neutral heading(0degrees) is set to point due north. In
simulation this can simply be adjusted by tweaking the
environment model. The Optitrack system however does not
allow for easy modification. This unfortunately means that
setting heading angles is not as straightforward as one would
like. The choice made here is to mostly ignore this when
building the NMPC or setting test trajectories since as long
as the trajectory still fits in the ’rotated’ test environment the
results will be the same. This means that when looking at the
graphs for the flight tests it seems that there is a huge heading
bias present at initialization. This will, as stated, not impact
test integrity or performance in any way.

5http://gazebosim.org/
6https://wiki.paparazziuav.org/wiki/Main_Page

5

http://gazebosim.org/
https://wiki.paparazziuav.org/wiki/Main_Page

3.3 First Flight Test Results
In this subsection the results of the gazebo simulations and
real world flight tests will be explained. This is done by
splitting the results into the first and second flight test. Not
all test trajectories simulated/flown will be shown only a
representative subset. This subset consists of a time history of
the x-position and a x-position error histogram. The choice of
the x-position is made since a displacement in x-direction is
present in every test trajectory and is representative of overall
behaviour. For reference all data and plots of every test can
be found here7.

3.3.1 First Simulation Test
The testing process consisted of several steps. The first was
to establish a set of desired trajectories that would be used as
a reference during the tests. Then these would be used as the
reference trajectories to the NMPC implemented in ACADO
to generate a set of inputs that could be used in both simu-
lation and the real world. First these inputs were provided
to the GAZEBO flight simulator in order to test the stability
of the UAV executing said inputs. In order for the autopilot
to execute these pre-determined inputs changes were made to
the software running on the UAV. These included the reading
of a text file containing the inputs, saving said inputs in RAM
for quick access. And interrupting the stabilization module to
insert the desired attitude commands. The goal for the simu-
lation of the first flight test was to test whether the adjustment
of the stabilization module of Paparazzi worked correctly
and, more importantly, to check whether the aircraft would
follow the set trajectory without becoming unstable. First the
procedure was tested through checking the attitude response
to the NMPC calculated attitude commands illustrated in
figure 18 in Appendix B. The commands are followed well,
only some initial biases are present. in Figure 7 a histogram
of the error of the pitch is presented, which is representative
of the performance as the initial bias is smallest.

Figure 7: θ input error simulation test 1

These results show clearly that the UAV is able to fol-
low the commanded attitude commands with satisfactory
accuracy(σ≈3deg). While the influence of input delay is
noticeable the error is acceptable. While a minor position
error is to be probable it is expected to fall within ≈0.1m.

It is recommended however that in further development the
effects of input lag should be ameliorated. The position plot,
found in Figure 8 however does display some significant
error from the intended path.

0 1 2 3 4 5 6 7

Time[s]

-0.5

0

0.5

1

1.5

2

2.5

x
[m

]

Actual
Intended

Figure 8: Simulation flight test 1 Trajectory 1, x-position
intended-actual comparison

The response is almost exactly half of what was expected.
That being said the simulated results are very stable. This
points to a model mismatch where the acceleration is less in
simulation but the overall behaviour is consistent and stable
enough for the real flight test. While the large undershoot
in term of position was cause for concern it was deemed
preferable to overshoot in terms of stability and safety. This
behaviour can be observed in almost all planned trajectories
except for the trajectories 4 and 9. They both crashed in
simulation and where thus deemed unsuitable for real-life
testing. In figure 9 a histogram of the position error in
x-direction is shown.

Figure 9: Simulation test 1, x-position error histogram

This data clearly shows a trend of undershoot. The peak
around−2m to−1m confirms the consistent nature of this
undershoot. The simulated results where stable enough to go
ahead in testing however, with the expectation of observing
similar behaviour in the real world.

3.3.2 First Real-World Flight Test
With acceptable simulation results for most of the pre-
determined trajectories the first flight test was conducted.
In Figure 10 a histogram of the pitch input error is shown.

7https://github.com/stspronk/Thesis-Test-Data
6

https://github.com/stspronk/Thesis-Test-Data

The corresponding attitude response plot can be found in
Figure 19 in Appendix B.

Figure 10: θ Input error flight test 1

The input error of the actual flight is small enough(σ≈
2deg) to conclude both that the adjustment of the stabi-
lization algorithm is functioning well and that the NMPC
input constraints are representative of the performance of
the UAV. However during testing an unexpected behavioural
trend was observed, an example of this trend is presented in
Figure 11.

0 2 4 6 8 10 12 14 16

Time[s]

-1

0

1

2

3

4

5

x
[m

]

Actual
Intended

Figure 11: Real world flight Test 1 Trajectory 1, x-position
intended-actual comparison

The behaviour is modelled well by the NMPC until the
UAV needs to decelerate and come to a complete stop. This
points to a significant mismatch between the model used
in gazebo and paparazzi and it’s real life counterpart. The
model used by the NMPC looks thus to better match the
gazebo simulation than the real life aircraft. From this first
example it is clear that overshoot is a problem. Of special
note is the velocity in x direction vx which never returns
to 0. While the UAV does follow the commands and the
commands do prompt the UAV in the right direction, the
overall performance is unacceptable in a racing environment.
The same behaviour can be observed when in the other test
trajectories. The histogram of the cumulative position error
in x-direction can be found in Figure 12.

Figure 12: Real world flight test 1, x-position error histogram

A few conclusions can be made based on these results.
The first being, as stated before, that the model used in
simulation(both Gazebo and the NMPC) does not fit reality
accurately enough to enable the crisp execution of these
aggressive manoeuvres. The aspect of the model that seem
most influential to this problem is the inclusion of drag. As
can be seen from the attitude and velocity graphs the breaking
manoeuvre is significantly smaller than the acceleration. It
was decided that the model be adjusted to generate a larger de-
celeration manoeuvre to ameliorate the problem, and that this
would be tested in a second flight test. The second conclusion
is that the rest of the behaviour is modelled well and that the
proposed method of racing is thus tentatively viable.

3.4 Second Flight Test Results

This subsection contains the results of the second round of
tests both simulation and flight tests. As before first the
changes made were tested in simulation and their results
explained first. Followed by the results of the actual second
flight test.

3.4.1 Second Tests Preparations

During the first flight test a couple of problems were iden-
tified. Namely a large post manoeuvre drift. This behaviour
leads to large errors and a condemns the used inputs to be
judged as unfeasible for a racing application. Ameliorat-
ing these issues was deemed to be a fairly simple process.
Therefore it was decided work to be put into improving the
performance of the flight behaviour. To enable this several
changes were implemented. The first being to eliminate
the terms describing drag from the model ODE’s. Secondly
it was decided to remove the noise from the generated
NMPC input as robustness had been proven and it could be
concluded from the first simulation and flight tests that it
did not impact performance. Lastly it was decided that the
test trajectories would be amended slightly for the second
test. The first trajectory’s goal was extended from 2m in
x-direction to 4m, and renamed 11. This was done to be able
to more clearly observe any behaviours present. Furthermore
2 more trajectories were added in order to test influence
of differences in heading on the same position goals. The
updated list can be found in Table 5 in Appendix A.

7

3.4.2 Second Simulation Test

Since the first flight test showed a unacceptable amount of
overshoot changes to the model used by the NMPC were
made. With the changes the objective for the second round
of simulation is to observe a behaviour of ’over-breaking’,
where the simulated UAV reverses over the set trajectory.
This would indicate that the overshoot observed in the real
world would be either eliminated or at least severely lessened.
Some lessoned learned from the first flight test were also
implemented. The foremost being the realization that the sys-
tem while promising does not have the required accuracy to
generate more complex manoeuvre inputs. Therefore most of
the pre-determined test trajectories were deemed to complex
and not included in te second test. To compensate for this
two additional manoeuvres were added. This to still have a
large enough basis of tracks for drawing conclusions.

0 2 4 6 8 10

Time[s]

0

0.5

1

1.5

2

2.5

x
[m

]

Actual
Intended

Figure 13: Simulation Flight Test 2 Trajectory 1, x-position
intended-actual comparison

As can be seen the objective of the second simulation test
is achieved. The x-position can be seen to almost completely
return to its starting position meaning the breaking manoeuvre
is far more aggressive. A clear indication that the overshoot
during actual flight would be reduced or eliminated. This way
of predicting flight behaviour is not a very solid approach
but trying to identify the exact differences between the actual
flight dynamics and the Paparazzi model was deemed beyond
the scope of the project. It is hypothesized that the model is
not very well optimized for simulating aggressive behaviour
dictated by time optimal trajectories.

Some trajectories however performed extremely well in
simulation which was cause for concern. trajectory 3, track
details found in Table 4 in Appendix A, is a prime example
of this. This result was reason for this trajectory not to be
included in the actual flight test due to the high likelihood
of overshoot and collision with the Cyberzoo borders. The
5th trajectory also exhibited ’too good’ behaviour. However
since this manoeuvre is less complex than the third and far
less likely to thus crash it was decided to include it in the
actual flight test.

Figure 14: Simulation test 2, x-position error histogram

All other results showed similar results to trajectory 1,
as proven by Figure 14. Exhibiting an over-breaking trend.
Therefore the changes made for the second simulation test
seem to be successful, having the intended effect.

3.4.3 Second Real-World Flight Test
This section will present and explain the data gathered during
the second flight test. The main aim of the test was to
confirm that the changes made to the model used by the
NMPC to generate the trajectories were effective. As with
the other simulation and flight test results relevant examples
will be provided and discussed here. Figure 15 shows the
representative result of the second test.

2 3 4 5 6 7 8 9

Time[s]

0

0.5

1

1.5

2

2.5

3

3.5

4

x
[m

]

Actual
Intended

Figure 15: Real World Flight Test 2 Trajectory 11, x-position
intended-actual comparison

It can be seen that the drift is still present but much reduced.
Overshoot is replaced by a slight undershoot, but the intended
trajectory is followed far more closely than before. Overall
the performance is far more stable. The results of the other
test trajectories show the same overall behaviour. In Figure 16
the histogram of the x-position is illustrated, showing a large
general improvement when compared to Figures 9, 12 and 14.
This is proof that the elimination of the drag term has had
a positive effect on performance. The undershoot present
does imply that the inclusion of drag cannot be eliminated
wholesale, but that it’s effect is limited. It is recommended
that for further development a more accurate drag coefficient
is identified and implemented.The error can be attributed
to the model mismatch again as the inputs are followed
extremely accurately.

8

Figure 16: Real world flight test 2, x-position error histogram

In addition to this the inability to control the thrust to the
same level as in the NMPC creates another source of error.
From the test data it can be clearly observed that altitude
decreases in every simulation and flight test while this not
being the case for the NMPC intended trajectory. Therefore
it is expected that if the thrust could be controlled directly the
performance would also increase. These are very promising
results as it is believed that the performance can be greatly in-
creased by improving the model accuracy. It is evidence that
the approach is valid and that it can be used to improve the
achievable velocities, even in complex manoeuvres.

3.5 PID Controller Flight Test
This section will present the trajectory flown using the Pa-
parazzi autopilot built-in flight planner. Which uses a PID
controller. The default gain values for the bebop1 provided
by the Paparazzi autopilot are presented in Table 3

Table 3: Paparazzi autopilot guidance PID gains

Gain Vertical Horizontal
P 283 79
I 82 100
D 20 30

The result of the test is presented in Figure 17

6 8 10 12 14

Time[s]

-0.5

0

0.5

1

1.5

2

2.5

x
[m

]

PID
goal

Figure 17: PID Test, x-position result-goal comparison

The difference when comparing to the results of the
NMPC flight tests is stark. The NMPC provided trajectory
does exhibit overshoot and drift due to it being an open-loop
manoeuvre. Unexpectedly the PID also exhibits a large
overshoot of the goal in addition to a far larger deviation

from the intended path in y-direction. Overall the velocities
are also significantly lower. The PID reaches a maximum
velocity in x-direction of 1.2m/s, while the NMPC reaches
a maximum velocity in x-direction of 2.6m/s. Considering
this difference will decrease if the overshoot of the NMPC
is reduced due to model improvements it is still an extreme
difference, and it is expected to stay as such.

4 Results
The final result is a system consisting of various parts which
will be addressed separately. First an implementation of an
NMPC that is able to implicitly optimize for time through a
complex and dynamically changing set of position objectives
enabled by the adaptive reference trajectory system. Secondly
The final implementation of the proposed racing trajectory
generation and control method is able to perform a varied set
of racing objectives in significantly less time than the more
classical PID control method. However there are persistent,
yet consistent, model errors causing improper deceleration
and thus position errors. The proposed method has shown to
be able to decrease flight times by≈1s in very short range
manoeuvres (2m−4m). The difference in velocity confirms
this as the PID reaches a maximum velocity of 1.2m/swhile
the NMPC reaches 2.6m/s.

5 Conclusion & Recommendations
From the results it can be concluded that the proposed ap-
proach is capable of improving the overall performance in
terms of time of an autonomous racing UAV . While the
real-world results definitely show the desired behaviour, the
error is still too high to be deemed racing-viable. This error
can be attributed to model errors, in the form of an unknown
drag coefficient and the lack of direct thrust control on the
real-world UAV. Furthermore it has been shown that the
Gazebo simulation using the Paparazzi model for the chosen
UAV does not reflect reality in any acceptable capacity. This
combination of flight simulator and dynamic model should
therefore not be used to predict the behaviour of the kind of
aggressive manoeuvres tested.

It is recommended to perform a thorough systems iden-
tification on the actual UAV that will be used to race. The
acquisition of accurate UAV weight and drag coefficient val-
ues is a priority in this endeavour. Also in further development
of this method the thrust difference should be addressed either
by reflecting the Paparazzi thrust behaviour in the NMPC
or by taking more direct control in the thrust control of Pa-
parazzi to better execute the NMPC commands. The effects
of input lag should also be reduced. The system is capable
of being adapted in an on-line capacity through adapting the
ACADO NMPC implementation to be able to interpret the
Paparazzi provided state estimation. Code profiling should
be performed to asses computational viability. Additionally
the system can be used as a basis for a neural network ap-
proximation of the proposed NMPC racing method.

9

References
[1] Iros 2018 autonomous drone racing competition. http://rise.skku.edu/iros2018racing/index.php/

rules-regulations/. accessed: 28-11-2018.
[2] Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot/82-teams.

accessed: 18-07-2019.
[3] Shuo Li, Erik van der Horst, Philipp Duernay, Christophe De Wagter, and Guido CHE de Croon. Visual model-predictive localization

for computationally efficient autonomous racing of a 72-gram drone. arXiv preprint arXiv:1905.10110, 2019.
[4] Sunggoo Jung, Sungwook Cho, Dasol Lee, Hanseob Lee, and David Hyunchul Shim. A direct visual servoing-based framework

for the 2016 IROS Autonomous Drone Racing Challenge. Journal of Field Robotics, (February 2017):146–166, 2017.
[5] Sunggoo Jung, Hanseob Lee, Sunyou Hwang, and David Hyunchul Shim. Real Time Embedded System Framework for Autonomous

Drone Racing using Deep Learning Techniques. 2018 AIAA Information Systems-AIAA Infotech @ Aerospace, (January), 2018.
[6] Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. Perception, Guidance, and Navigation for Indoor

Autonomous Drone Racing Using Deep Learning. IEEE Robotics and Automation Letters, 3(3):2539–2544, 2018.
[7] Pete Florence, John Carter, and Russ Tedrake. Integrated Perception and Control at High Speed: Evaluating Collision Avoidance

Maneuvers Without Maps. Wafr, 2016.
[8] Hector D. Escobar-Alvarez, Neil Johnson, Tom Hebble, Karl Klingebiel, Steven A.P. Quintero, Jacob Regenstein, and N. Andrew

Browning. R-ADVANCE: Rapid Adaptive Prediction for Vision-based Autonomous Navigation, Control, and Evasion. Journal
of Field Robotics, 35(1):91–100, 2018.

[9] Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian, Roland Siegwart, and Jonas Buchli. Fast
nonlinear Model Predictive Control for unified trajectory optimization and tracking. Proceedings - IEEE International Conference
on Robotics and Automation, 2016-June(ICRA):1398–1404, 2016.

[10] P Bouffard, A Aswani, and C Tomlin. Learning-based model predictive control on a quadrotor: Onboard implementation and
experimental results. IEEE International Conference on Robotics and Automation (ICRA), 2012, pages 279–284, 2012.

[11] Chi-Kin Lai, Mudassir Lone, Peter Thomas, James Whidborne, and Alastair Cooke. On-board trajectory generation for collision
avoidance in unmanned aerial vehicles. 2011 Aerospace Conference, pages 1–14, 2011.

[12] Elia Kaufmann, Mathias Gehrig, Philipp Foehn, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide Scaramuzza. Beauty
and the beast: Optimal methods meet learning for drone racing. In 2019 International Conference on Robotics and Automation
(ICRA), pages 690–696. IEEE, 2019.

[13] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer quadratic program trajectory generation for heterogeneous
quadrotor teams. Proceedings - IEEE International Conference on Robotics and Automation, pages 477–483, 2012.

[14] Rolf Findeisen and Frank Allgöwer. An introduction to nonlinear model predictive control. In 21st Benelux meeting on systems
and control, volume 11, pages 119–141. Technische Universiteit Eindhoven Veldhoven Eindhoven, The Netherlands, 2002.

[15] D.E. Seborg, T.F. Edgar, D.A. Mellichamp, and F.J. Doyle III. Process Dynamics and Control. 3rd edition, 2015.
[16] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A parametric active-set algorithm for quadratic

programming. Mathematical Programming Computation, 6(4):327–363, 2014.
[17] B. Houska, H.J. Ferreau, M. Vukov, and R. Quirynen. ACADO Toolkit User’s Manual. http://www.acadotoolkit.org, 2009–2013.
[18] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open Source Framework for Automatic Control and Dynamic

Optimization. Optimal Control Applications and Methods, 32(3):298–312, 2011.
[19] B. Houska, H.J. Ferreau, and M. Diehl. An Auto-Generated Real-Time Iteration Algorithm for Nonlinear MPC in the Microsecond

Range. Automatica, 47(10):2279–2285, 2011.
[20] M. Vukov, W. Van Loock, B. Houska, H.J. Ferreau, J. Swevers, and M. Diehl. Experimental Validation of Nonlinear MPC on

an Overhead Crane using Automatic Code Generation. In The 2012 American Control Conference, Montreal, Canada., 2012.
[21] M. Vukov, A. Domahidi, H. J. Ferreau, M. Morari, and M. Diehl. Auto-generated Algorithms for Nonlinear Model Predicitive

Control on Long and on Short Horizons. In Proceedings of the 52nd Conference on Decision and Control (CDC), 2013.
[22] H.J. Ferreau, T. Kraus, M. Vukov, W. Saeys, and M. Diehl. High-speed moving horizon estimation based on automatic code

generation. In Proceedings of the 51th IEEE Conference on Decision and Control (CDC 2012), 2012.
[23] Hsien-Chung Wu. The karush–kuhn–tucker optimality conditions in an optimization problem with interval-valued objective function.

European Journal of Operational Research, 176(1):46–59, 2007.

10

http://rise.skku.edu/iros2018racing/index.php/rules-regulations/
http://rise.skku.edu/iros2018racing/index.php/rules-regulations/
https://www.herox.com/alphapilot/82-teams

A Test Trajectories

Table 4: Test 1 Trajectories

Track # x-position[m] y-position[m] Heading[degrees] Special Conditions
1 2 0 0 -
2 4 0 -90 -

4 4 -90
3 2 0 0 -

2 2 0
0 2 0
0 0 0

4 3 0 90 -
3 3 180
0 3 270
0 0 0

5 3 2 180 -
6 4 4 45 -
7 4 0 180 -

4 3 180
0 3 180

8 4 0 0 -
4 0 90

9 4 0 0 Roll and Pitch constraints of 45deg
10 4 0 0 No noise

4 0 90

Table 5: Test 2 Trajectories

Track # x-position[m] y-position[m] Heading[degrees] Special Conditions
2 4 0 -90 -

4 4 -90
3 2 0 0 -

2 2 0
0 2 0
0 0 0

5 3 2 180 -
11 4 0 0 -
12 3 2 0
13 3 0 0 -

3 0 90

11

B Attitude Response-Command Comparisons

0 1 2 3 4 5 6 7

Time [s]

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

ra
d

[-
]

Commanded
Actual

0 1 2 3 4 5 6 7
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Commanded
Actual

0 1 2 3 4 5 6 7
-0.04

-0.02

0

0.02

0.04

0.06

0.08

Commanded
Actual

Figure 18: Simulation test 1 track 1, attitude command-response comparison

0 2 4 6 8 10

Time [s]

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

ra
d

[-
]

Commanded
Actual

0 2 4 6 8 10
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Commanded
Actual

0 2 4 6 8 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Commanded
Actual

Figure 19: Real world flight test 1 track 1, attitude command-response comparison

12

	Introduction
	Method
	Framework
	UAV Racing Considerations
	NMPC
	ACADO
	The Adaptive Reference System
	Horizon Size, Cost Function Weights & Constraints
	Integrator Options & Limits

	Testing
	Verification
	Validation
	First Flight Test Results
	First Simulation Test
	First Real-World Flight Test

	Second Flight Test Results
	Second Tests Preparations
	Second Simulation Test
	Second Real-World Flight Test

	PID Controller Flight Test

	Results
	Conclusion & Recommendations
	Bibliography
	Appendices
	Appendix Test Trajectories
	Appendix Attitude Response-Command Comparisons

