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Abstract 

The present study aims to infer individuals’ social networks from their spatio‑temporal 
behavior acquired via wearable sensors. Previously proposed static network metrics 
(e.g., centrality measures) cannot capture the complex temporal patterns in dynamic 
settings (e.g., children’s play in a schoolyard). Moreover, existing temporal metrics 
overlook the spatial context of interactions. This study aims first to introduce a novel 
metric on social networks in which both temporal and spatial aspects of the network 
are considered to unravel the spatio‑temporal dynamics of human behavior. This 
metric can be used to understand how individuals utilize space to access their net‑
work, and how individuals are accessible by their network. We evaluate the proposed 
method on real data to show how the proposed metric impacts performance of a clus‑
tering task. Second, this metric is used to interpret interactions in a real‑world dataset 
collected from children playing in a playground. Moreover, by considering spatial 
features, this metric provides unique knowledge of the spatio‑temporal accessibility 
of individuals in a community, and more clearly captures pairwise accessibility com‑
pared with existing temporal metrics. Thus, it can facilitate domain scientists interested 
in understanding social behavior in the spatio‑temporal context. Furthermore, We 
make our collected dataset publicly available for further research.

Keywords: Spatio‑temporal graph, Wearables, Social network

Introduction
Increasing public awareness about the potential impact of social networks on individ-
uals and society has led to an interest in understanding how these networks function, 
and how individuals are positioned in their social contexts. In an effort to investigate 
the structure of these networks, a considerable body of research literature has developed 
around the theme of social network analysis (SNA) (Lusher et  al. 2010; Li et  al. 2022; 
Valeri and Baggio 2020; Redondo et al. 2020). The availability of wearable technologies 
that allow for the collection of fine-grained data from daily activities, advances in data 
analysis techniques and computational tools, and the need to understand the dynam-
ics of social networks in various fields such as sociology, sports science, and healthcare, 
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have all contributed to increased interest in SNA. SNA involves a collection of tools that 
adopt graph theory to perform extensive computational techniques that ultimately iden-
tify connection patterns among members of a community (Barnes and Harary 1983). For 
instance, a static representation graph accumulates relationships between individuals in 
an episode, calculates static metrics such as centrality measures (e.g., closeness central-
ity (Bavelas 1950)), and estimates the role of any given node (or individual) in the static 
representation of that network.

However, a static representation graph eliminates all temporal details, such as the fre-
quency of events and time difference between subsequent events, when this temporal 
information might include important information about the nature of the interactions 
at stake (Kostakos 2009). It also does not take into account any spatial relationships fea-
tured within those interactions.

Regarding omitted temporal detail, Fig.  1 demonstrates the limitations of existing 
approaches. Throughout this paper, we will refer back to this running example - inspired 
by an in  vivo social scenario - to illustrate our proposed method. The example data 
here reflect the play of four children (A, B, C, and D) during recess in a playground that 

Fig. 1 Visual comparison on how a data source of interactions between four children in a playground is 
represented via b static graph, c temporal graph, and d Spatio‑temporal graph. While Child‑A and Child‑B 
have different temporal patterns (e.g., frequency of interactions and difference in time between interactions) 
and spatial features (e.g., location of interactions) in the a data source, their position in the b static graph is 
the same. The c temporal graph could better preserve temporal details, but the spatial information is ignored. 
And finally, the d spatio‑temporal representation could preserve the temporal and spatial information of 
interactions
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features four distinct play areas: a sandpit, a bench, a combination of green areas, and 
a walking path, plus the entrance to the playground. In this scenario, Child-A played 
in the sandpit during the whole break, whilst Child-B first played in the sandpit, then 
engaged in a conversation with a peer on a bench, and later walked to the entrance of the 
playground. According to the data source in Fig. 1a, Child-A interacted with peers only 
at the beginning of recess time (i.e., T1, T2, T3) in the sandpit, where most of the peers 
appear to have been located during the same period, whereas Child-B interacted with 
peers across the entire recess time (i.e., T1, T4, T6) in different locations (i.e., sandpit, 
bench, and the entrance). These facts reflect distinctions that are relevant to social net-
work structure. Yet although Child-A and Child-B had different behavioral patterns dur-
ing recess, their positions in the static graph representation, as shown in Fig. 1b, appear 
the same: the graph shows an equal number of edges (partners) with equal weights 
(number of interactions), which yields the same representation as in their static metrics, 
such as centrality measures. This example illustrates how these static metrics are not 
sensitive to temporal changes, and fail to capture complex dynamics that could be con-
tained within such data.

To tackle this problem, Kostakos (2009) proposed a “temporal” graph representation, 
in which the relationship between nodes and the position of each node was investigated 
in the temporal context of an entire network, rather than in an aggregated format. Based 
on this representation, Kostakos (2009) introduced new metrics, including average geo-
desic proximity and average temporal proximity, which consider edge availability over 
time and take into account possible wait times for each node before meeting the next 
node. Specifically, these are measures of how quickly an individual is accessible by their 
network, and how quickly the network is accessible by the individual. Figure  1c does 
show this temporal representation: in contrast to a static analysis, Child-A and Child-
B are positioned differently in this representation. Here, the temporal metrics preserve 
information about the order and the frequency of events over time.

Yet, even in this temporal representation of a network, one aspect that is still entirely 
overlooked is that of the physical environment. In the context of the example illustrated 
in Fig. 1, investigating the temporal accessibility of a child in the playground does not 
inform us about how the child utilized the environment: did the child walk around and 
interact with peers (e.g., Child-B in Fig. 1d), or simply remain in a crowded spot while 
making contact with peers (e.g., Child-A playing in the sandpit in Fig. 1d)? To under-
stand the impact of the physical environment on an individual’s interactions with their 
network, it is crucial to consider spatial features in analyzing the social network. The 
temporal metric estimates availability only by considering temporal differences between 
nodes. The spatial aspect of this availability, i.e., the location of contacts in the physical 
environment, is still ignored in a temporal graph representation.

The literature has already documented the importance of considering spatial con-
text when examining social networks. Several studies have examined the effect of 
environments on human behavior, for example, the impact of physical and social 
environments of neighborhoods on child and family well-being (Franzini et al. 2009), 
the impact of office design on employee’s office usage and social interactions (Mon-
tanari et al. 2017), and the impact of schoolyard design on children’s movement and 
their social behavior (Nasri et al. 2022). In fact, including the spatial element of social 
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networks enables us to understand better how the physical environment impacts indi-
viduals’ behavior (Chaix 2020) and how users utilize the environment to interact with 
their network.

While the impact of the physical environment on social networks has been con-
firmed in various studies, limited attention has been given to the integration of 
these dimensions into a unified framework. Consequently, there is a critical need for 
research that addresses this gap by introducing spatio-temporal metrics capable of 
quantifying the complex interplay between social and physical environments.

In order to examine the interdependency between spatial and social contexts of 
interactions and continue to build a better understanding of the impact of the physi-
cal environment on social networks, the present study pursues two main aims. First, 
we introduce a new metric for measuring the spatial and temporal dynamics of social 
networks, known as average spatio-temporal proximity. By considering the spatial 
differences between temporal networks, our proposed metric examines how spa-
tially sparse these networks are and how spatio-temporally a user is connected to 
its network. Specifically, this metric calculates the shortest path based on the spatial 
distance of temporal events, and estimates how far, on average, nodes (or individu-
als) in a network need to move to reach a specific node, and how far, on average, a 
node needs to move to reach the rest of the network. Such a metric would enable a 
more comprehensive understanding of the factors influencing social accessibility (i.e., 
examining how the physical and social context reciprocates around individuals).

Second, we evaluate the proposed metric in the context of a case study whose 
goal was to investigate social interactions among a group of 32 children playing in a 
schoolyard during recess. By measuring the spatio-temporal proximity of individuals 
over time, we aim to better understand the social behavior of these children and their 
interactions within the context of their spatial environment.

Overall, this paper makes the following contributions:

• We introduce a new metric to quantify the proximity of nodes in a graph that con-
siders both temporal and spatial characteristics of contacts in order to measure 
how individuals in a network utilize space to make contacts.

• We present and make publicly available a new dataset collected from children’s 
interactions and movements in a schoolyard during recess. This dataset uniquely 
registered face-to-face contacts and children’s locations over time, measured via 
wearable proximity sensors and GPS loggers, respectively. This dataset is available 
in a public repository for future use in spatio-temporal research.

• We evaluate the performance of our proposed metric to show how it impacts the 
performance of a clustering task in identifying clusters in a network, compared to 
temporal measures alone.

• We further demonstrate how this metric can be used to illuminate the underlying 
interactions in our Schoolyard Dataset.

The rest of this paper is organized as follows: In Related work, we discuss the litera-
ture relevant to our study. The Problem Definition introduces the computational prob-
lem at stake in our proposed methodology. Methodology presents the details of our 
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method. The experimental settings and results are presented in Experiments. Finally, 
Conclusions summarizes the study and discusses future research directions.

Related work
To provide relevant context, here we reference further literature on two main approaches 
to the fusion of spatial information with time-series data: location-based social network 
(LBSN) analysis, where spatial information is intertwined with social networks, and 
spatio-temporal pattern mining, where relevant research is scanned to identify spatio-
temporal features, as a broad concept.

Location‑based social network (LBSN) analysis

Most studies in LBSN analysis arose from the urban computing field and social media 
networks analysis mainly due to the availability of large-scale databases such as Four-
square, Twitter, Instagram, and Google Places (Liu et al. 2019; Steiger et al. 2015; Advaith 
et al. 2020; Rahmani et al. 2022). In this body of research, the interdependency between 
spatial and social contacts lies in the co-presence of two persons in the same physical 
locations, or the sharing of a similar location history, common behavior, or activities. In 
these cases, interdependency is implied from users’ location data without assessing face-
to-face interactions from individuals’ perspectives (Zheng 2011). The aim of this line 
of research is often to design physical location (or activity) recommendation systems 
(Zheng et al. 2010; Ding et al. 2018; Rahmani et al. 2020), travel planning (Yoon et al. 
2010; Vassakis et al. 2019), and marketing (Tussyadiah 2012) from accumulated spatial 
behavior, mainly by considering similarity among users. In contrast, spatial information 
in the present study is used as a descriptive machine learning model for the purpose 
of improving performance of a downstream task, and for discovering more about the 
nature of interactions, rather than for predicting social contacts or common interests.

Spatio‑temporal pattern mining

Recently, interest has been growing in areas related to the adoption of deep neural net-
work models to generate spatio-temporal features in varied applications. These include 
crowd flow prediction (Wang et  al. 2018), social event detection (Afyouni et  al. 2022; 
Nasri et  al. 2023), and financially aware social network analysis (Ruan et  al. 2019). 
Although the performance of deep models for extracting spatio-temporal features has 
appeared promising, these models require a huge amount of representative data to learn 
about generalizable spatio-temporal embeddings. Therefore, these methods are hardly 
applicable for small datasets in which the duration of data assessments and the number 
of users is limited. In addition, collecting large-scale data from certain populations (e.g., 
patients in a hospital or children in a playground) is often impossible because of privacy 
protection concerns. Therefore, analyzing spatial patterns over time via classical pattern 
mining techniques has been the focus of many studies in domains such as animal revisi-
tation analysis (Bracis et al. 2018), disease spread patterns (Yie et al. 2021), and the tour-
ism industry (Liu et al. 2022; Baratchi et al. 2013). This line of research often involves 
extracting time domain features (e.g., residence time, the time between visits) and apply-
ing a downstream task to the extracted features, such as clustering and prediction.
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Analyzing temporal events via graphs, as in a “temporal graph”, was first introduced by 
Kostakos (2009). Using this representation, temporal metrics were defined to assess geo-
desic and temporal proximity. These metrics estimated how quickly a node was acces-
sible by the network, and how quickly a network was accessible by a node. Accessibility 
in temporal proximity was defined as the time difference between temporal events in 
a weighted shortest-path algorithm. Geodesic proximity was calculated using the num-
ber of hops between temporal events in an unweighted shortest-path algorithm. Neither 
metric took into account the spatial context of temporal events, e.g., the geo-distance 
between nodes.

The present study is intended to further build upon the work of Kostakos (2009). 
Specifically, temporal metrics proposed by Kostakos (2009) are further developed to 
incorporate the spatial aspect of social contacts and to examine the spatio-temporal 
accessibility of individuals within a network.

Problem definition
Assume a spatio-temporal proximity dataset as a set of tuples in the form of 〈vi, vj , st〉 
where {vi, vj ∈ V} are two entities in the set of entities V that are detected in proximity 
to each other, where st = (x, y, t) represents the coordinate where the contact between 
these vi and vj is registered at time t, and t ∈ {1, . . . ,T } represents the timestamp of the 
contact. Such a dataset can be collected, for example, when the two entities are equipped 
with a proximity sensor (to detect contacts) and a GPS sensor to acquire the average 
coordinate representing the point of contact between the entities.

First, we are interested in creating a spatio-temporal graph representation g = �Vst ,E� , 
where {vi,st ∈ Vst } are sets of nodes each represented over timestamps t, at a location 
denoted by s, and E is a set of instant and spatio-temporal edges. Instant edges are 
unweighted and undirected links between spatio-temporal nodes vi,st and vj,st indicating 
contact between two distinct nodes vi and vj , i  = j at location s in time t. Spatio-temporal 
edges are weighted, and directed links between consecutive pairs vi,st and vi,st+1 of node 
vi which is weighted based on the spatio-temporal proximity assuming that the direction 
of edges represents the temporal order.

Second, we are interested in finding clusters Ci = VCi where VCi ⊆ V , such that all 
nodes VCi within each cluster Ci are spatio-temporally similar to each other and dissimi-
lar to the nodes in other clusters.

Methodology
In this section, we present essential mathematical preliminaries as the foundation for 
understanding our proposed methodology, and the problem at stake. Then, we explain 
our proposed spatio-temporal graph and its proximity metrics.

Background and preliminaries

Graphs are mathematical structures used to model pairwise relations between objects. In 
this structure, objects are represented as nodes that are connected by edges (West 2001). In 
order to preserve temporal information via graph representations, Kostakos (2009) intro-
duced the idea of temporal graphs. In this representation, contrary to static representations, 
the temporal relationship between nodes, and the position of each node in the temporal 
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context of the entire network, is preserved. According to Kostakos (2009), a temporal graph 
is constructed in three steps: 

1. One temporal node per original node per point in time is created. Thus, node vi in 
the original graph is represented as vi,t in the temporal graph where t ∈ [1, . . . ,T ] are 
all the data points in which node vi is communicated; e.g., Child-B in Fig. 1 is repre-
sented by the set of instances vB,t = [vB1, vB4, vB6].

2. Consecutive pairs vi,tx , vi,tx+1 with directed edges of weight tx+1 − tx for each set 
of instances vi are linked, representing the temporal distance between the pair. For 
example, in Fig. 1, the weight between nodes vB1 and vB4 is 3 time points.

3. The unweighted, undirected edges are used to link instantaneous communications 
between nodes. E.g., an interaction between Child-A and Child-B in Fig. 1 at time t1 
is instantiated as an undirected link between Child-A and Child-B.

Therefore, each node vi in Fig. 1b is converted to a directed chain of nodes vi,t that represent 
all temporal instances of nodes over time. Following this protocol, the temporal graph is 
generated as shown in Fig. 1c.

Furthermore, Kostakos (2009) defined average geodesic proximity G(vi, vj) on a temporal 
graph as the measure of “on average, how many hops is node vi away from node vj ”. This 
metric is formulated as follows:

where g(vi, vj , t) is the shortest path, starting from node vi at time t to the most acces-
sible version of node vj over time. t ∈ [1, . . . ,T ] is the set of time points that node 
vi is active (or communicating). n is the number of finite g(vi, vj , t) values, e.g., 
g(A,D, t = 1) = 2 (i.e., vA1, vA2, vD2) in our example in Fig.  1. In this metric, the low-
est number of hops defines the most accessible instance. Consequently, the Gin(vi) and 
Gout(vi) are calculated for node vi as formulated in Eq. 2:

where Gin(vi) and Gout(vi) are measures of “on average, in how many hops is vi reached 
by the rest of the network” and “on average, in how many hops does vi reach the rest 
of the network”, respectively. n is the number of finite G(vj , vi) and G(vi, vj) values, and 
vj ∈ V = {v1, v2, ..., vM}, vj �= vi is sets of nodes in a network with M nodes.

Similarly, average temporal proximity P(vi, vj) is the measure of, “on average, the time it 
takes to go from vi to vj ” and is formulated as follows:

(1)G(vi, vj) =
1

n

T

t=1

g(vi, vj , t),

(2)

Gin(vi) =
1

n

M∑

j=1,j �=i

G(vj , vi),

Gout(vi) =
1

n

M∑

j=1,j �=i

G(vi, vj)

(3)P(vi, vj) =
1

n

T∑

t=1

p(vi, vj ,wt , t),
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where p(vi, vj ,wt , t) is the weighted shortest path, starting from node vi at time t to the 
most accessible version of node vj over time. t ∈ [1, . . . ,T ] is the set of time points that 
node vi is active (or communicated). n is the number of finite p(vi, vj ,wt , t) values e.g., 
p(A,D,wt , t1) = 1 (i.e., vA1, vA2, vD2) in Fig. 1. The weight wt equals the time difference 
between nodes at a given path. Consequently, the Pin(vi) and Pout(vi) are calculated as 
formulated in Eq. (4):

The Pin and Pout are measures of “how quickly, on average, vi is reached by the rest of the 
network” and “how quickly, on average, vi reaches the rest of the network”. n is the num-
ber of finite P(vj , vi) and P(vi, vj) values, and vj ∈ V = {v1, v2, . . . , vM}, vj �= vi is sets of 
nodes in a network with M nodes. This metric estimates nodes’ accessibility by obtaining 
its availability over time.

To better understand these two temporal metrics, we calculated them in the playground 
example presented in the Introduction (see Fig. 1). Tables 1 and 2 show the result of average 
geodesic proximity and average temporal proximity, respectively. The results demonstrate 
that, despite the static measures, Child-A and Child-B have different in and out measures 
(both geodesic and temporal). Child-A has the lowest Gin and Pin as all peers find the child 
shortly at the start of the break, and the highest Gout due to its absence in communication 
during the second half of the break. This might be because the child is more involved in sol-
itary games rather than being with peers during recess. The lowest values belong to Child-B 

(4)

Pin(vi) =
1

n

M∑

j=1,j �=i

P(vj , vi),

Pout(vi) =
1

n

M∑

j=1,j �=i

P(vi, vj)

Table 1 The result of average geodesic proximity on playground example

G Gout

A B C D

A 0 2.33 1.33 2.67 2.111

B 1 0 1 2 1.333

C 1 1.33 0 3.33 1.889

D 1 1.5 3 0 1.833

Gin 1 1.722 1.778 2.667

Table 2 The result of average temporal proximity on playground example

P Pout

A B C D

A 0 0.33 1.67 0.39 0.295

B 0.14 0 0.16 0.14 0.148

C 0.15 0.18 0 0.32 0.219

D 0.32 0.14 0.52 0 0.325

Pin 0.202 0.218 0.281 0.284
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in both Gout and Pout because Child-B accessed peers across the break and interacted with 
all peers.

Spatio‑temporal proximity

Both of the metrics that are explained in the previous section overlook spatial dependency 
among nodes, and consequently, ignore the spatial behavior of individuals (e.g., whether a 
child is interacting in different areas over the course of recess, or the child stays in a single 
spot and interacts with peers who come over to that same spot). Obtaining such detailed 
spatio-temporal behavior is not possible via the existing measures (e.g., average geodesic 
proximity and average temporal proximity). To address this gap, we introduce spatio-
temporal graphs and define average spatio-temporal proximity as S(vi, vj) , which takes 
into account spatial dependencies among nodes. By considering the spatial distances, e.g., 
Euclidean distance, the spatio-temporal proximity examines how spatially close the user 
is to their network. To create a spatio-temporal graph, we followed the same steps as in 
the temporal graph protocol, except in step (2), where the consecutive pairs vi,stx , vi,stx+1

 
are linked with the directed edges of weight d(vi,stx , vi,stx+1

) , which is the spatial distance 
between instances vi,stx and vi,stx+1

 (instead of temporal differences). 
Accordingly, average spatio-temporal proximity is calculated based on this spatio-tempo-

ral graph, and allows the weights to be the spatial distances among the edges. This metric 
investigates “on average, how long (spatio-temporally) it takes for the network to reach vi 
( Sin)”, and “on average, how long (spatio-temporally) it takes for vi to reach the rest of the 
network ( Sout)”. The average spatio-temporal proximity is formulated as follows:

where s(vi, vj ,ws, t) is the weighted shortest path, starting from node vi at time t to the 
most accessible version of node vj over time. t ∈ [1, . . . ,T ] is the set of time points that 
node vi is active (or communicated). n is the number of finite s(vi, vj ,ws, t) values. The 
weight ws is equivalent to the spatial distance between nodes vi and vj at a given path, 
assuming that the location coordinates of all the contacts are available.

Furthermore, the spatio-temporal proximity is calculated per pair of nodes in a commu-
nity, and the in-degree ( Sin ) and out-degree ( Sin ) variants are calculated by taking the aver-
age over the in-reached and out-reached variables, respectively.

The Sin(vi) and Sout(vi) are measures of “how long, on average, vi is accessible by the rest 
of the network” and “how long, on average, it takes for vi to access the rest of the network”. 
n is the number of finite S(vj , vi) and S(vi, vj) values, and vj ∈ V = {v1, v2, . . . , vM}, vj �= vi 
is sets of nodes in a network with M nodes. Similarly, the result of this analysis for the 
playground example is shown in Table 3. To calculate this table, it is assumed that the 

(5)S(vi, vj) =
1

n

T∑

t=1

s(vi, vj ,ws, t),

(6)

Sin(vi) =
1

n

M∑

j=1,j �=i

S(vj , vi),

Sout(vi) =
1

n

M∑

j=1,j �=i

S(vi, vj)
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sandpit, bench, and entrance area are located at (3, 1), (2, 2), and (1, 1) Cartesian coordi-
nates, respectively, and that the interactions happened around these areas.

As described in Table 3, Child-A has the lowest Sin : during time points when the child 
was available (i.e., T1, T2, and T3), all other peers were in the same spot (sandpit) and 
could access the child with a short distance to travel. Meanwhile, Child-D got the high-
est Sin because the child was only available at T2 and T6, and if anyone wanted to reach 
Child-D after T2, they had to pass a long spatio-temporal route (i.e., temporally from 
T2 to T6, and spatially to the entrance) in order to find the child at the Entrance on 
T6. Regarding the Sout , Child-A has the highest score because some peers were not pre-
sented at T2 and T3 in the sandpit. Therefore, the child had to wait and reach them 
in different locations. In contrast, Child-B could more easily access peers (lowest Sout ) 
because the child was present across recess time in different locations. Thus, our pro-
posed metric quantifies accessibility by unifying the spatial and temporal dimension of 
interactions, and provides unique knowledge on how individuals and their networks uti-
lize the spatial environment to make contacts over time.

Experiments
We investigated the performance of the proposed metric in identifying social groups, 
based on the most accessible peers. Specifically, we were interested in knowing whether 
adding spatial context to the existing temporal metrics (i.e., geodesic and temporal prox-
imity) could help better identify groups in a network.

We evaluated the proposed methodology by utilizing a clustering performance task. 
Here, we first explain our experimental design and introduce the datasets adopted in our 
experiments. Then, the evaluation metrics are presented. Next, we show the result of 
our analysis in two sections: The first part evaluates the performance of a clustering task 
using the proposed metric, compared with the existing temporal metrics as the baseline. 
The second part analyses children’s behavior in the schoolyard dataset.

Experiment settings

Experiments were designed using the Python programming language. The code has been 
made available in a public repository.1

The NetworkX module was used to execute social network analysis, and Dijkstra 
shortest-path algorithm (Dijksta 1959) was used for the calculation of proximity 

Table 3 The result of average spatio‑temporal proximity on playground example

S Sout

A B C D

A 0 0.85 0.1 0.83 0.594

B 0.141 0 0.1 0.48 0.241

C 0.1 0.43 0 1.2 0.579

D 0.1 0.7 0.2 0 0.333

Sin 0.114 0.66 0.133 0.84

1 https:// github. com/ maaee dee/ spati otemp oral- netwo rk. git.

https://github.com/maaeedee/spatiotemporal-network.git


Page 11 of 24Nasri et al. Applied Network Science            (2023) 8:50  

metrics (i.e., geodesic, temporal, and spatio-temporal proximity) on the spatio-tem-
poral graph. The SciPy and Scikit Learn packages were used to perform clustering 
tasks and evaluate their performance, respectively. Hierarchical clustering (Müllner 
2011) was used to cluster the proximity matrices, which was a natural choice for clus-
tering data in the form of an adjacency matrix, especially when the dataset size is 
small. In addition, hierarchical clustering serves best in exploratory analysis where 
there is no specific outcome variable defined. For this purpose, first, the Pearson cor-
relation coefficients of the pairwise matrices were calculated separately across in-
degree and out-degree components to acquire how in-degree proximity (i.e., accessing 
the child by the network), and out-degree proximity (i.e., accessing the network by 
the child), were correlated among children. Consequently, we obtained a symmetric 
correlation coefficient matrix (CCM) per in-degree and out-degree metrics, thereby 
determining the strength and direction of the pairwise relationships among children. 
Next, the upper triangular area of the in-degree CCM was merged with the lower tri-
angular area of the out-degree CCM, to create a non-symmetric CCM that described 
both in-degree and out-degree correlations among children. Such a non-symmetric 
CCM was used in the hierarchical clustering algorithm to identify groups based on 
mostly correlational relationships. Furthermore, the obtained matrix was used in cre-
ating heatmaps to visualize the relationships between children in a more organized 
way, which aids in data exploration and analysis.

In designing the hierarchical clustering algorithm, three different linkage meth-
ods, including complete, average, and average group, was investigated to understand 
how different strategies in creating the linkage matrix impact the performance of the 
clustering algorithm. In short, the ‘complete’ linkage method defines the distance 
between two groups as the distance between the most distant pair of points, while the 
‘average’ defines this distance as the average pairwise distance between data points in 
two groups, and ‘average group’ defines it as the average pairwise distance between 
all data points when two groups are merged. Moreover, the correlation distance was 
used to ensure that the clustering algorithm considered the strength and direction 
of the correlations between variables. The ‘maxclust’ was selected as the criterion, 
which finds a minimum threshold to ensure the cophenetic distance between any two 
original points in the same flat cluster is no greater than the threshold, and no greater 
than t flat clusters are formed. Since the number of clusters was unknown, the opti-
mum value of t was chosen based on the result of clustering performance, using the 
Silhouette coefficient score (Rousseeuw 1987) on the range of t ∈ [2,N ] , in which N 
is the total number of data points. This range was chosen based on the assumption 
that there were at least two clusters in a playgroup, and that, in the worst-case sce-
nario, there was no child in the same cluster with peers. Since ‘complete’ linkage, on 
average, performed slightly better than the other two linkage methods (as shown in 
Table 5), this linkage matrix was used to obtain the optimum number of clusters. Fig-
ure  2 shows results for both playgroups. Based on these figures, the ‘maxclust’ was 
selected as 4 for all proximity measures in PG-1 and [G = 3,P = 9, S = 7] for PG-2 
based on the maximum Silhouette coefficient score. 
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Schoolyard dataset

We collected spatio-temporal data via wearable sensors from 32 children, aged between 
4 and 12 years old, in two playgroups, PG-1 and PG-2, during recess in the schoolyard 
of a primary special education school in the Netherlands. These data are now publicly 
available, so other researchers may replicate our results.2

Playgroups PG-1 and PG-2 were children from junior and senior grades, respectively, 
who were assigned to designated playgrounds. As shown in Fig. 3, PG-1 used areas I, 
II, and III, which included a soccer field, bench, climbing structure, and sandpit. PG-2 
spent recess time in areas IV and V, where a bench, table tennis, climbing frame, and 
soccer field were located. Before starting each break, children were asked to wear a 
belt with a mounted proximity tag and a GPS logger. The proximity tags detected face-
to-face contacts, and the GPS loggers recorded the geographic locations of the users. 
Specifications for the datasets are described in Table 4. In addition to sensor data, video 
recordings and field observation were conducted simultaneously to gain insight into 
psychological aspects of children’s interactions and social behavior. Parental informed 
consent was obtained before conducting the data collection. Approval for the study was 
obtained from the Leiden University Ethical Committee.

In order to evaluate the effectiveness of our proposed method and verify the results, 
we need ground-truth data (i.e., unbiased and true values serving as a reference for eval-
uating the method). The ground-truth informs us about the true pairwise relationship 
among children, e.g., the true values on how often a child was in meaningful interaction 

Fig. 2 The maximum Silhouette coefficient score is used to find the optimum ‘maxclust’ value t for the 
hierarchical clustering algorithm on the range of t ∈ [2,N] , in which N is the total number of data points for 
a PG‑1 ( N = 11 ) and b PG‑2 ( N = 21 ). Accordingly, the ‘maxclust’ is selected as 4 for all three measures in PG‑1 
and as G = 3, P = 9, S = 7 for PG‑2 based on the maximum Silhouette coefficient score

Table 4 Specification of Schoolyard datasets for playgroups PG‑1 and PG‑2

Datasets #Groups #Sessions × Duration per session #Participants Age (M ± SD)

PG‑1 2 2 × 30 min, 1 × 15 min 11 5.7 ± 0.96

PG‑2 3 2 × 15 min 21 10.43 ± 0.77

2 https:// doi. org/ 10. 34894/ ZCPXDW.

https://doi.org/10.34894/ZCPXDW
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with peers, where precisely in the schoolyard, and for how long. This data could be pre-
sented, for example, in the form of pairwise group membership over time by defining 
‘group’ as peers who are most accessible by their group mates. Due to privacy concerns 
regarding any child population, existing videos associated with the data collection were 
recorded only from focal areas, following the approved ethics application. This made it 
practically impossible to create ground-truth for the collected sensor data and to sys-
tematically verify the results. Moreover, evaluating the concept of pairwise proximity or 
accessibility over time might not be easily understood and coded by monitoring video 
recordings or direct observations, especially with regard to children’s age group who 
often tend to change their peer group and attend different types of play over the course 
of recess time. Yet, the collected video recordings and the field observation reports 
allowed us to discover certain behaviors (e.g., identifying the most visited areas, popular 
activities (or games) among children of a certain group, etc.), to draw a general picture 
of schoolyards activities, and to verify the obtained results to some extent. Therefore, the 
experiments in this section are at an exploratory level considering different age groups 
and playground designs.

Data preparation and pre‑processing

Proximity data: Wearable proximity tags were used to detect face-to-face contact 
between children during recess. If any pairs of proximity tags (i.e., children) were at a 
distance of up to 1.5 ms in the degree of about 60− 70◦ , then they registered each oth-
er’s unique code via Bluetooth. They wirelessly sent this detection to two base stations 
installed in two different locations in the schoolyard. The installation locations were 
estimated beforehand to obtain the highest coverage over the schoolyard by consider-
ing the fact that each base station covers an area of up to 25m2 . Hence, some children 
might have a low detection rate for various reasons, e.g., playing far away from the base 
stations or tag malfunctioning.To compensate for this error, the detection rate is calcu-
lated per child by dividing the duration of detection by beagle over the total duration of 

Fig. 3 Schoolyard floor plan: Junior grades spend their recess time in areas I, II, and III, while senior grades are 
in areas V and IV. The schoolyard environment has different play structures, as described in the legend, which 
children may use during recess
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the break. Only children with a detection rate higher than 50% are included for further 
analysis. As a result, three children from PG-2 who had a low detection rate are excluded 
from further analysis. The data reported in Table 4 is after this exclusion. The obtained 
contact data is then fused with GPS data to obtain the location of interactions.

GPS locations: The GPS logger(i-gotU GT-120 USB) recorded location coordinates in 
Longitude and Latitude per second. The GPS locations were converted afterward to Car-
tesian space and merged with proximity contacts to obtain the location of interactions. 
As suggested in the literature (Clevenger et al. 2022; Schneider et al. 2019; Heravi et al. 
2018), we adopted Euclidean distance to examine the spatial distances between temporal 
nodes ( ws in Eq. 5). In our study, it was assumed that children in face-to-face contact 
are almost in the same location, to use the data more efficiently. Therefore, the avail-
able GPS data of one of the pairs in interaction was used for the other, in case the GPS 
data were missed. In addition, a 10-second window was used to search for the location 
of individuals in an interaction, and the median values were used to report the location 
coordinates at the given time. This merged data was used in our analysis to create the 
spatio-temporal graph.

Evaluation metrics

This section describes the evaluation metrics used to examine the performance of a 
clustering task. Since no ground-truth data were available for the schoolyard dataset, 
we decided to use the following evaluation metrics, which do not require ground-truth 
but still provide a quantitative assessment of the quality of the clusters found in these 
datasets when different proximity metrics were used. We expect to observe clusters with 
higher quality when more informative proximity metrics were used. 

1. Silhouette score (Rousseeuw 1987) indicates how well clusters are separated from 
each other. This metric is defined as follows: 

 where a is the mean distance between sample i and all other points in the same 
cluster, and b is the mean distance between sample i and all other points in the next 
nearest cluster. N is the total number of points.

2. Calinski–Harabasz score (Caliński and Harabasz 1974) is the ratio between the 
within-cluster dispersion and the between-cluster dispersion, and is defined as fol-
lows: 

 where nE and k are the data and cluster sizes, respectively. tr(Bk) is the trace of the 
between-group dispersion matrix, and tr(Wk) is the trace of the within-cluster dis-
persion matrix defined as follows: 

SC =
1

N

N∑

i=1

(bi − ai)

max(ai, bi)

s =
tr(Bk)

tr(Wk)
×

nE − k

k − 1
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 where Cq , is the set of points in cluster q, with cluster center equal to cq . cE is the 
centroid of cluster E and nq is number of points in cluster q.

3. Davies–Bouldin score (Davies and Bouldin 1979) is defined as the ratio between the 
cluster scatter and the cluster’s separation. A lower value of this metric will indicate a 
better clustering and it can be calculated as follows: 

 where si is the diameter of cluster i and dij is the distance between cluster centroids i 
and j. DB is the Davis–Bouldin index.

Results and discussion

In this section, we report the results of our experiments in two main areas: evaluation 
of the performance of the proposed metric by obtaining the quality of clusters in a hier-
archical clustering task (Clustering Performance Evaluation), and the in-depth analysis 
of our Schoolyard Datasets, to see how children interacted with peers and utilized the 
physical environment.

Clustering performance evaluation

Table 5 shows the results of the clustering performance task using Silhouette, Calinski–
Harabasz, and Davies-Bouldin scores in clustering CCM of pairwise relation. In pair-
wise relations of PG-1, the geodesic proximity and temporal proximity obtained slightly 
higher Silhouette and Calinski–Harabasz scores, and lower Davies–Bouldin scores than 
spatio-temporal proximity in the three linkage matrices. The superiority of geodesic 
and temporal proximity might be due to the fact that most children in PG-1 played with 
bikes across the playground, according to the field observations during the data collec-
tion. This activity uniformly increased face-to-face contact with all other children across 
the playground, thereby making them uniformly accessible. Therefore, pairwise spatial 
proximity might not be influential in describing pairwise proximity for PG-1. Mean-
while, in the senior group, PG-2, our proposed spatio-temporal measure and temporal 
measure  identified clusters with higher quality than geodesic proximity  by obtaining 
higher Silhouette and Calinski-Harabasz scores. Whilst the result was not consistent for 
Davies-Bouldin scores. This competitive result in temporal and spatio-temporal metrics 
indicat that, in addition to focusing on the temporal context, including the spatio-tem-
poral contexts of interactions contributed on describing children’s social behavior and 
their position in the social network in PG-2. The availability of a larger playground area, 
the tendency to play in group settings in certain areas in senior groups, and more inter-
est in stationary activities such as sitting and chatting with peers might be the reasons 
why the spatial context provided a positive impact on the performance of the clustering 
algorithm of this playgroup, compared with PG-1.

Wk =

k∑

q=1

∑

x∈Cq

(x − cq)(x − cq)
T , Bk =

k∑

q=1

nq(cq − cE)(cq − cE)
T

DB =
1

k

k∑

i=1

max
i �=j

Rij , Rij =
si + sj

dij
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As Table 5 shows, the performance of linkage methods was inconsistent across differ-
ent metrics and evaluation scores. Yet, the ‘complete’ linkage obtained the highest score 
in more assessments compared with the ‘average’ and ‘group average’ methods. How-
ever, it is important to note that the performance of different linkage methods can vary 
depending on the specific dataset and the nature of the underlying data. Therefore, to 
optimize clustering performance, the linkage method could be defined as a hyperparam-
eter and optimized specifically per dataset. In the present study, we adopted the result 
of the ‘complete’ linkage matrix to conduct the analysis on the schoolyard dataset in the 
next sections of the analysis.

Overall, our results highlight the value of including the spatial context in examining 
individuals’ social behavior, and in assessing their position in the network.

In‑depth analysis of schoolyard data

In this analysis, accessibility is defined in three dimensions: (1) geodesic proxim-
ity—G(vi, vj) , (2) temporal proximity—P(vi, vj) , and (3) spatio-temporal proxim-
ity—S(vi, vj) . Each dimension provides unique knowledge on how individuals and their 
networks were accessible in the geodesic space, over time, and in the spatio-temporal 
context. Therefore, “accessibility” will heretofore refer to all three of these dimensions, 
throughout the rest of this paper.

Fig. 4 The heatmap of Schoolyard dataset for two playgroups: comparing the correlation coefficients matrix 
of geodesic proximity, temporal proximity, and spatio‑temporal proximity among children in playgroup PG‑1 
and PG‑2 (x.code = group id (A, B, or C). Child identifier code). The playgroup consists of several groups (A, B, 
and C) divided by green lines
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As previously discussed, the CCM was used to create heatmaps, as depicted in 
Fig. 4 for both playgroups. The x and y axis show children from different groups in 
this figure. Specifically, there are two groups (A and B) in PG-1 and three groups (A, 
B and C) in PG-2 that have similar break schedules, separated by green lines. The first 
digit of each child’s identifier indicates their group. The results are shown as a heat-
map based on the correlation coefficients matrix in all three measures (i.e., average 
geodesic proximity, average temporal proximity, and average spatio-temporal proxim-
ity). The grids are colored based on obtained correlation coefficients, such that blue 
shows negative correlations, red shows positive correlations, and white shows no cor-
relation among pairs of children, following the color bar.

We further quantified and visualized the results of these heatmaps using the box 
plots to better understand the relations in each playgroup. Figure  5 shows the box 
plot of inter-group and cross-group correlation of the results per proximity measure 
in both playgroups.

In Fig. 5a, we observed that in PG-1-A, the highest correlation was found in pair-
wise temporal proximity, compared with the other two proximity measures. Mean-
while, in group PG-1-B, spatio-temporal proximity scored the highest correlation, 
indicating that spatial context could better describe the accessibility among children 
of this group. In addition, the average correlation is higher in PG-1-A compared with 
PG-1-B among all proximity measures. This could be because of the smaller group 
size in PG-1-A. Overall, there is a positive correlation between the proximity meas-
ures of children from the same group and a negative correlation among children from 
different groups, except in the temporal proximity of PG-1-B, where the average 
cross-group correlation is higher than the inter-group correlation in the boxplot. This 
is also illustrated in Fig.  4a, where several negative correlations (cells in blue) were 
observed among children in PG-1-B. Nonetheless, no pronounced patterns between 
in-degree and out-degree proximity were found in this playgroup.

Figure  5b shows that in PG-2, the positive and negative correlations are more uni-
formly distributed across inter-groups and cross-groups pairs. Yet, in all three groups 
(A, B, and C) and across all proximity measures, the average inter-group correlation is 
higher than the cross-group measures. This means that, in general, children are more 
accessible by peers from the same group, and it is easier to access peers from the same 
group in all three dimensions of geodesic, temporal, and spatio-temporal proximity. Yet, 

Fig. 5 The correlation of pairwise proximity for two playgroups: comparing the CCM of geodesic proximity 
(in green), temporal proximity (in red), and spatio‑temporal proximity (in blue) among children in playgroup 
PG‑1 and PG‑2. On average, children in both groups have a higher correlation with peers from the same 
group and a lower correlation with peers from different groups. This difference is more significant in PG‑1‑A 
and less significant in senior playgroup, i.e., PG‑2
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some children appear as outliers, not following the general pattern in the heatmap visu-
alizations (e.g., A4 and B11 in PG-1, A3 and C14 in PG-2, as illustrated in Fig. 4).

Furthermore, the triangular patterns are more pronounced in PG-2 than PG-1. This 
shows a considerable difference between proximity towards a child from the peer 
group and proximity towards peers by a child. Specifically, in all three measures, chil-
dren in PG-2-A and PG-2-B have a positive correlation in their in-degree components 
(i.e., more red cells in their upper triangular heatmap). In comparison, in PG-2-C, 
the positive correlation is observed in out-degree measures (more red cells in their 
lower triangular heatmap). This means that the peer networks in groups A and B had 
quicker access to a child, compared with the child accessing the network. On the con-
trary, in group C, individuals had quicker access to peer groups.

Furthermore, to better understand the impact of physical space in shaping identified 
clusters, we extracted the GPS location of children per cluster across one of the school 
breaks, and visualized the kernel density estimation (KDE) of the GPS locations. KDE 
represents the distribution of GPS locations using a continuous probability density curve 
in two dimensions. The result of this analysis is depicted in Figs. 6 and 7 for PG-1 and 
PG-2, respectively.

As shown in Fig. 6, we identified four clusters via hierarchical clustering of pairwise 
spatio-temporal proximity. Each cluster shows how the most accessible peers within 
each cluster utilized the playground. As a result, in Cluster 1, children were most acces-
sible in the communal area where most play structures were quickly reachable (e.g., 
climbing frame, funnel ball, sandpit, and bench). Children in Cluster 2 and Cluster 4 

Fig. 6 The GPS location of children in PG‑1 is mapped to the school floor plan. The KDE plot in blue shows 
the spatial density of the GPS locations in the identified clusters, following the color bar
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Fig. 7 The GPS location of children in PG‑2 is mapped to the school floor plan. The KDE plot in blue shows 
the spatial density of the GPS locations in the identified clusters, following the color bar
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often played in sandpits and quickly accessed their peers playing in the same location. 
According to field observations, children in PG-1 often attended to wheeled movements. 
This is observed in Cluster 1 and Cluster 3, in which children widely used the playground 
via wheeled mobility toys (e.g., bikes, steppers, etc.). This finding shows how the avail-
able play structures impacted children’s use of space and could determine group activi-
ties in a network.

The impact of available play structures was even more evident in PG-2. In Fig. 7, hier-
archical clustering of pairwise spatio-temporal proximity identified seven clusters. In 
Cluster 2, with the most members, children often had face-to-face contact with peers 
around the play structures. This could, for instance, be due to using several play struc-
tures during the break (e.g., climbing frame, bench, and bar fixes) or being involved in 
an active game that required movements. Thus, the highly supplied area by the play 
structures attracted more children, and more conscious or unconscious contacts hap-
pened in this cluster. Cluster 1 and Cluster 3 belong to children who stayed around and 
in the climbing frame to climb, chat, or to simply observe other peers. The use of space 
as influenced by a specific play structure was also observed in Cluster 5 and Cluster 6, 
where the football field and the attached structures (i.e., table tennis, rolling game, and 
bar fix) were located. A higher number of clusters in this playgroup, compared with 
PG-1, occurred due to a higher number of participants in PG-2; more extensive physi-
cal space provided to this playgroup during recess; and differences in their age group, as 
senior grades tend to have more group-oriented activities, such as talking on a bench or 
table tennis, compared with junior grades.

Conclusions
The present study features a novel spatio-temporal proximity metric, which retains spa-
tial information about the underlying temporal dynamics. The main strength of this 
metric, compared to the previously proposed temporal proximity metrics, lies in the 
ability to account for the role of the physical environment when analyzing an individual’s 
temporal behavior. We applied the proposed metric to a case study, in an effort to under-
stand children’s social behavior in a schoolyard environment.

We evaluated the quality of the proposed metric by performing a downstream cluster-
ing task. Our results show that the proposed spatio-temporal metric uniquely quantified 
an individual’s relationships over time, concerning the spatial context of their activity. 
This led to better clustering performance when compared to geodesic proximity metrics 
that were applied to senior groups in our study. In junior groups, the spatial context did 
not positively impact clustering performance.

We also introduced two new datasets collected from children playing in schoolyards 
during recess, using wearable proximity tags and GPS loggers. We made these data-
sets available for other researchers to study social dynamics. In this case study, we first 
examined pairwise accessibility based on the calculated proximity values among chil-
dren in a playgroup. Our results showed that, in general, children were more accessible 
to peers from the same group. Similarly, children more easily accessed peers from the 
same group. Second, we analyzed the impact of the physical environment and its char-
acteristics on forming the most accessible clusters. Our findings show that in both of 
the playgroups we studied, the most accessible clusters utilized common areas in the 
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playground, which were often located around one or several play structures that the 
schoolyard featured.

In summary, we found that application of a novel spatio-temporal proximity metric 
to data collected via wearable proximity sensors offered valuable insight into the spatio-
temporal accessibility of children in schoolyards. The proposed method could be used 
to develop and evaluate targeted interventions aimed at creating a more accessible and 
inclusive environment, for example, by designing new play structures or interactive 
games aimed at increasing pairwise accessibility among all children. Moreover, the pro-
posed method is applicable beyond schoolyards and can be used in diverse scenarios, 
including analyzing employee behavior in an office setting, tracking athletes’ movements 
on sports fields, and monitoring the well-being of elderly individuals in a nursing home. 
The present study used the proposed metric in the context of a case study at an explora-
tory level. Yet, making broad generalizations about children’s behavior requires a larger 
sample of data. Collecting a larger sample was not possible due to the COVID-19 crisis, 
which resulted in school closure and implementing strict protocols during school re-
openings, but it currently remains one of the major focuses of the research team.

One of the limitations of this research is the absence of ground-truth data due to pri-
vacy concerns and the complexity of defining “truth” for the examined variables. Specifi-
cally, in order to provide ground-truth for children’s spatio-temporal proximity, we need 
to know the details of their group behavior in time and space, e.g., the true values of 
children’s pairwise meaningful interactions, the frequency of contacts and their accurate 
location in the schoolyard. Thus, it is important to consider some levels of uncertainty 
and the potential for alternative interpretations, e.g., uncertainties in sensors operations 
might conclude a different picture of schoolyard activities or use of some specific areas 
might be due to the impact of external events such as weather conditions, etc. Another 
limitation in the proposed method is the time complexity of shortest-path algorithms, 
which is O(V logV + E) for Dijkstra shortest-path algorithm, where  E and V denote 
the number of edges and the number of nodes, respectively. Thus, it is computation-
ally expensive to estimate the proximity metrics when the data is gathered from larger 
samples (higher number of users) and over a longer period of time (higher number of 
temporal edges). Employing shortest-path estimation algorithms and parallel computing 
is recommended to enhance the scalability of the proposed method for larger graphs in 
future research. Additional research is needed in order to understand factors contribut-
ing to an inclusive environment, to investigate how the proposed metrics describe such 
an environment, and to prioritize interventions using the proposed metrics in a recom-
mender system. Moreover, future research might explore the Kinetic data structures, a 
data structure to track an attribute of a moving geometric system, to capture the spatio-
temporal changes of moving users.
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