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Plasma membrane transporters play pivotal roles in the import of nutrients, including sugars, amino
acids, nucleobases, carboxylic acids, and metal ions, that surround fungal cells. The selective removal
of these transporters by endocytosis is one of the most important regulatory mechanisms that ensures
a rapid adaptation of cells to the changing environment (e.g., nutrient fluctuations or different stresses).
At the heart of this mechanism lies a network of proteins that includes the arrestin-related trafficking
adaptors (ARTs) which link the ubiquitin ligase Rsp5 to nutrient transporters and endocytic factors.
Transporter conformational changes, as well as dynamic interactions between its cytosolic termini/loops
and with lipids of the plasma membrane, are also critical during the endocytic process. Here, we review
the current knowledge and recent findings on the molecular mechanisms involved in nutrient transporter
endocytosis, both in the budding yeast Saccharomyces cerevisiae and in some species of the filamentous
fungus Aspergillus. We elaborate on the physiological importance of tightly regulated endocytosis for cel-
lular fitness under dynamic conditions found in nature and highlight how further understanding and
engineering of this process is essential to maximize titer, rate and yield (TRY)-values of engineered cell
factories in industrial biotechnological processes.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Fungi use different sensing and signaling pathways to respond
to environmental changes in nutrient availability, ensuring a sus-
tained supply of energy, cellular growth and survival (reviewed
in [1]). Cells need to adapt to fluctuations in the concentration of
organic macronutrients, such as sugars, amino acids and carboxylic
acids as well as essential mineral micronutrients including the
metal ions copper, iron, zinc, and manganese. These substrates
are mostly polar and charged and therefore their uptake is pre-
dominantly governed by the action of plasma membrane (PM)
transporter systems.

PM proteins are synthesized at the endoplasmic reticulum (ER)
and they are targeted from the Golgi to the PM via the secretory
pathway (Fig. 1). The expression/activity of these proteins at the
PM is tightly regulated at the transcriptional and post-
translational level, the later including endocytic downregulation
and recycling. Rapid and dynamic turnover of nutrient transporters
by endocytosis allows cells to quickly respond and adapt to nutri-
ent fluctuations.

Endocytic processes have been thoroughly characterized in
model fungi such as Saccharomyces cerevisiae or Aspergillus nidulans
[2–5]. Endocytosis is usually preceded by transporter ubiquityla-
tion (the covalent attachment of the 76-amino-acid polypeptide
ubiquitin) which signals the PM transporter for internalization. A
new model of the yeast endosomal system by Day et al. [6] pro-
poses that after internalization primary endocytic vesicles are tar-
geted directly to the trans-Golgi network (TGN) and not to an early
endosome, as in mammalian cells or as in the ‘‘traditional” yeast
model. From the TGN, cargo is sorted to the prevacuolar endosome
(PVE) [6] (Fig. 1A). The model proposes that the yeast TGN includes
the organelles previously termed late Golgi and early endosome,
and that the PVE has the properties of the late endosome and multi
vesicular bodies (MVB). At the PVE, cargo proteins can follow dif-
ferent destinations: i) can be recycled back to the PM directly
1714
(endosome-to-PM recycling pathway), ii) be directed to the
endosome-to-Golgi retrograde trafficking pathway and, then, be
secreted, via the secretory pathway, and recycled back to the PM.
Alternatively, cargo proteins can follow the vacuolar degradative
pathway, traditionally referred as ‘‘MVB degradative pathway” or
‘‘MVB pathway”, which is mediated by the endosomal sorting com-
plex required for transport (ESCRT) machinery (reviewed in [7–10],
Fig. 1A).

In S. cerevisiae and A. nidulans, ubiquitylation is catalyzed by a
major NEDD41 -like HECT2 E3 ubiquitin ligase, called Rsp5 or HulA,
respectively [11–13]. Rsp5/HulA are highly conserved in fungi [14]
and their specificity depends on a family of arrestin-related traffick-
ing adaptors (ARTs), the so-called a-arrestins. These adaptors of
Rsp5 bring the ubiquitin ligase into the vicinity of the selected PM
transporter [15–19] (Fig. 1). ARTs also seem to promote cargo incor-
poration into clathrin-coated vesicles [20]. Each ART contains an N-
terminal arrestin-like domain and multiple C-terminal PPxY motifs
that bind to the WW domains of Rsp5, forming Rsp5-ART complexes
[12,21] that are then able to specifically ubiquitylate the PM trans-
porter [7,15,22] (Fig. 1A). The arrestin binding motifs are frequently
short acidic sequences (degrons) localized at the amino- (N-) and
carboxylic- (C-) termini of the transporter, which interact with the
basic C-terminal regions of ARTs [21,23].

ARTs are phylogenetically conserved, from yeast to humans.
In S. cerevisiae, 14 a-arrestins were identified: Ldb19/Art1,
Ecm21/Art2, Aly2/Art3, Rod1/Art4, Art5; Aly1/Art6, Rog3/Art7,
Csr2/Art8, Rim8/Art9, Art10, Bul1, Bul2, Bul3 and Spo23
[15,16,20,24–26]. Filamentous fungi seem to have 7–12 predicted
arrestin-like proteins [19] and, specifically, in A. nidulans, 10 puta-
tive ARTs were already described: CreD [17] (similar to Rod1/Art4
and Rog3/Art7) [19], PalF (homologue of yeast Rim8/Art9) [17],
HECT - homologous to the E6-AP carboxyl terminus
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Fig. 1. Overview of endocytosis and main trafficking pathways in budding yeast and filamentous fungi. (A) Clathrin-mediated endocytosis and main trafficking pathways of
plasma membrane proteins in budding yeast (adapted from [6–10,57–60]). Environmental changes, stress or specific compounds (endocytic signals) can trigger PM nutrient
transporter endocytosis, a process normally preceded by PM transporter ubiquitylation, mediated by Rsp5-ART complexes, and dependent on clathrin and on the AP2
complex. According to the Day et al. recent model [6], cargo proteins internalized into endocytic vesicles are sorted to the TGN (which is proposed to also serve as an early and
recycling endosome). They are then delivered to the PVE/MVB, where cargo can i) be recycled back to the PM (endosome-to-PM recycling pathway); ii) be directed to the
endosome-to-Golgi retrograde trafficking pathway and be secreted and recycled back to the PM, via the secretory pathway; iii) be targeted for vacuolar degradation by the
vacuolar/MVB degradative pathway. It is still unclear if some endocytic vesicles can be targeted directly from the PM to the PVE/MVB.Newly-synthetized PM transporters at
the ER are thought to be targeted from the Golgi and can then be sorted either to: i) the PM via the secretory pathway, or ii) to the vacuole indirectly, via vacuolar protein
sorting pathway or iii) directly to the vacuole via alkaline phosphatase pathway. The latter pathway is not explored in the context of this review, so it will not be further
detailed. (B)Endocytosis and main trafficking pathways of plasma membrane transporters and polar proteins in Aspergillus nidulans (adapted from [54–56]). In A.
nidulans , there are two distinct endocytic pathways. The pathway required for the internalization of PM transporters involves their ubiquitylation by HulARsp5 -Art
complexes, and depends on clathrin but not on AP2. All internalized transporters studied, so far, are degraded in the vacuole via the MVB degradative pathway. The other
endocytic route, essential for polar growth, is for apical PM proteins that diffuse laterally to the sub-apical/endocytic collar (enriched in actin patches), where they are
internalized by a clathrin-independent, but AP2-dependent process. Internalized vesicles are targeted to sorting endosomes (SE), then to the late Golgi/TGN, via endosome-to-
Golgi retrograde pathway. From this point, AP1/clathrin coated-vesicles transport polar cargo to the so-called Spitzenkörper (SPK), from which polar proteins fuse to the PM.
Additionally, two different secretory pathways were also described [53,55]. While polar proteins follow the conventional Golgi-to-TGN dependent secretory pathway, newly
synthetized transporter proteins traffic from the ER to the PM by an alternative pathway, without passing through the Golgi. ER, endoplasmic reticulum; MVB, multi vesicular
bodies; PVE, pre-vacuolar endosome; PM, plasma membrane; TGN, trans-Golgi network; SE, sorting endosomes; SPK, Spitzenkörper; signals (+) and (-) represent activation
and inhibition, respectively.
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ApyA [19] and Arts (ArtA (similar to Art1), ArtB, ArtC, ArtD, ArtE,
ArtF and ArtG [19]).

ARTs are activated and recruited in response to distinct physio-
logical or stress signals, including nutrient excess, limitation or
depletion, alkali-, heat- or hypo-osmotic shock, as well as by
hydrophilic compounds and other drugs that disturb the PM struc-
ture (mostly by increasing its fluidity) or affect nutrient signaling
pathways [5,27,28]. These adaptor proteins are therefore impor-
tant regulators that connect environmental signals to the endocy-
tosis of PM transporters, promoting cell adaptation and survival to
nutrient variations and stress conditions.

ARTs are functionally redundant: a given a-arrestin can bind
one or more transporters, or a particular transporter can be ubiqui-
tylated by multiple ARTs, under distinct stress or environmental
conditions [16] (see Table 1).

The regulation of ARTs depends on posttranslational modifica-
tions such as phosphorylation and ubiquitylation and involves dis-
tinct signaling pathways (reviewed in [28,29]). While the
phosphorylation of ARTs leads to their inactivation, dephosphory-
lation seems to facilitate a-arrestins mediated endocytosis. The
phosphorylation and dephosphorylation of ARTs C-terminal resi-
dues is catalysed by protein kinases and phosphatases, respec-
tively, whereas their ubiquitylation is mediated by the Rsp5/HulA
ligase. In S. cerevisiae, protein kinases that were found to directly
phosphorylate (inactivate) ARTs are Snf1 (the yeast homologue to
the human AMP-activated protein kinase - AMPK), Npr1 (nitrogen
permease reactivator 1), Pho85, Yck1/Yck2 (yeast casein kinase
1/2) and Ypk1 (a serine-threonine protein kinase). Examples of
protein phosphatases that directly or indirectly control the activity
of ARTs include calcineurin, Glc7 (catalytic subunit of type 1 pro-
tein phosphatase (PP1)) and Sit4 (a serine-threonine phosphatase)
(reviewed in [28]). When phosphorylated, some a-arrestins were
reported to bind Bmh1 and Bmh2 protein isoforms [30–32] of
the 14-3-3 protein family [33,34]. This class of eukaryotic con-
served proteins play important regulatory roles in several physio-
logical processes, including signal transduction, metabolism,
regulation of cell cycle, stress response and protein trafficking (re-
viewed in [35]). Despite ARTs posttranslational regulation, these
adaptor proteins are also subjected to transcriptional control by
nutrient sensing pathways [21,36] (see following sections and
Fig. 1A; 2B; 5B).

In addition to ARTs regulation, the cytosolic N- and C-termini of
the nutrient transporter also play an important role in endocytosis
(reviewed in [37]). These termini contain the majority of Lys resi-
dues and acidic motifs necessary for transporter ubiquitylation
and, in some cases, the interaction between the N- and C-termini
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appears to control the accessibility of these motifs to the ubiquity-
lation machinery (Rsp5 and a-arrestins) [5,23,37–39]. Indeed, the
access of ARTs to specific residues/motifs of PM proteins often
requires conformational changes of the transporters, which are
induced by the binding of the substrate to the transporter
[38–44]. This mechanism, named substrate/activity-dependent
endocytosis, operates in nutrient transporters of different fungi
[18,38,41,45–48]. In contrast, substrate/activity-independent
endocytosis does not rely on transporter structural changes
induced during the substrate import cycle and it is normally
induced by nutrient limitation and/or starvation conditions
[21,49].

In Aspergillus species, similar to S. cerevisiae, endocytosis also
operates for the downregulation of PM nutrient transporters in
response to different environmental or stress signals. However,
endocytosis is also essential for the formation of filaments
(hyphae) via apical extension and maintenance of polar growth
[50–52]. This is reflected in the fact that several mutations affect-
ing endocytosis are lethal in contrast to yeasts [4].

The continuous process of internalization and recycling of api-
cal proteins ensures the maintenance of the polar growth of the
tip [53]. Nevertheless, the endocytic mechanism for polar mem-
brane cargoes close to the tip, which in most cases are required
for PM and cell wall synthesis, is distinct from the endocytic pro-
cess of non-polar proteins such as nutrient transporters, localized
at the basal region (reviewed in [54]). Specifically, the internaliza-
tion of nutrient transporters is AP2 independent, despite being
clathrin-dependent, while the endocytosis of polarly localized (api-
cal) membrane proteins are AP2 dependent but clathrin-
independent [55] (Fig. 1B). In A. nidulans, apical PM proteins and
nutrient PM transporters were also shown to follow different
secretory pathways. Polar cargo traffic to the apical membrane
via the conventional Golgi/TGN-dependent secretory/trafficking
route, in contrast to de novo synthetized nutrient transporters that
traffic to the PM via a recently discovered Golgi-independent route,
apparently directly from the ER [50,51,54,56] (Fig. 1B).

In the different sections of this review, we highlight the main
regulatory circuits required for the dynamic turnover of specific
transporters, induced by distinct signals. We will focus on a set
of important macro- (carbon (C) and nitrogen (N)) and micro- (cop-
per, iron, zinc and manganese) nutrient transporters known to be
regulated by endocytosis in the budding yeast S. cerevisiae. We also
highlight what is known about these processes in two different
species of the filamentous fungus Aspergillus (A. nidulans and A. ory-
zae). Furthermore, we underline the physiological importance of
these processes for adaptation to dynamic cellular environments



Table 1
Summary of the known mechanisms and features involved in the degradation of S. cerevisiae and Aspergilli nutrient transporters.

Transporter Physiological
substrates

Degradation signal Ub-sites Phospho-sites Arrestins or Rsp5
adaptor proteins

Arrestin
binding motifs

Signaling
complexes
(putative)

Transport activity References

AgtA
A. nidulans

Aspartate Glutamate Ammonium ND ND ND ND ND ND [19,172]

AzgA
A. nidulans

Purines:
Adenine,
Guanine,
Hypoxanthine

Substrates or
analogues

ND ND ArtA ND ND ND [19]

Can1
S. cerevisiae

Arginine,
Lysine,
Histidine

Arginine K42, K45 ND Ldb19/ Art1 70–81 aa TORC1/Npr1 Required [3,15,21,23,49,178]
Bul1/2 62–69 aa ND

Cycloheximide ND ND Ldb19/ Art1 Residues in
the N-
terminus

Rapamycin,
Oxidative stress

ND ND

Amino acids and
nitrogen starvation

Ecm21/ Art2 567–575 aa GAAC pathway Not required

Ctr1
S. cerevisiae

Copper Excess copper K340, K345 ND Bul1/2 ND ND Not required [21,208]
Amino acids and
nitrogen starvation

ND ND ND

Dip5
S. cerevisiae

Glutamic acid,
Aspartic acid,
Serine,
Asparagine,
Glutamine,
Glycine,
Alanine

Aspartic acid Glutamic
acid

ND T10, S11, T12, S13, S17,
S18, S19, and S22

Aly1/ Art6 and
Aly2/ Art3

ND ND ND
[156,157,241]

Ftr1-Fet3
S. cerevisiae

Iron Excess Iron Lys residues in
either Ftr1 or Fet3

ND ND ND ND Required [21,49,58,209,210,242]

Amino acid and
nitrogen starvation

ND ND

Fur4
S. cerevisiae

Uracil Uracil
(extracellular and
intracellular)

K38, K41 S43, S55, S56 NS 94–111 aa ND Required
(only in Fur4-
endocitosis induced by
external uracil)

[16,21,41,154,178,190]

H2O2

Heat shock
ND ND ND

Rapamycin,
Heat shock,
Oxidative stress,
Alcoholic stress

ND ND

FurE
A. nidulans

Uracil,
Allantoin,
Uric acid

Uric acid, Allantoin,
Uracil (less efficiently),
Ammonium

K521, K522 ND ND 501–503 aa ND Required [5,38,39,188]

Gap1
S. cerevisiae

Various amino acids Extracellular
ammonium or amino
acids

K9, K16 ND Bul1/2 ND TORC1/Npr1 Required [20,23,30,163,178,243]

Intracellular
ammonium or amino
acids

20–35 aa Not required

Rapamycin,
Heat shock,
Oxidative stress,
Alcoholic stress

Bul1/2,
Aly2/ Art3 and
Aly1/ Art6

Residues in
the C-
terminus

ND

(continued on next page)
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Table 1 (continued)

Transporter Physiological
substrates

Degradation signal Ub-sites Phospho-sites Arrestins or Rsp5
adaptor proteins

Arrestin
binding motifs

Signaling
complexes
(putative)

Transport activity References

Hxt1
S. cerevisiae

Glucose,
Fructose,
Mannose

Low Glucose K12, K39 ND ND ND Ras/cAMP-PKA ND [74,102,107]
Rapamycin ND Ras/cAMP-PKA

TORC1/Npr1
2-deoxyglucose Rod1/ Art4 ND ND

Snf1/AMPK
Hxt2

S. cerevisiae
Glucose,
Fructose,
Mannose,
Pentose

High Glucose ND ND ND ND Snf1/AMPK
PKA

ND [16,36,75]
Low glucose Crs2/ Art8

Hxt3
S. cerevisiae

Glucose,
Fructose,
Mannose

Low Glucose ND ND Crs2/ Art8 ND Ras/cAMP-PKA
Rim15

ND [76,102]

2-deoxyglucose Rod1/ Art4 and
Rog3/ Art7

ND ND
Snf1/AMPK

Hxt4
S. cerevisiae

Glucose,
Fructose,
Mannose,
Pentose

Low glucose ND ND Crs2 (Art8) ND Snf1/AMPK
PKA

ND [36]

Hxt5
S. cerevisiae

Glucose,
Fructose,
Mannose

Low growth rate ND ND ND ND Ubiquitin-
independent

ND [77]

Hxt6
S. cerevisiae

Glucose, Fructose,
Mannose

High Glucose ND ND Rod1/ Art4 ND Snf1/AMPK ND [16,31,36,78,96]
Low glucose Crs2/ Art8 Snf1/AMPK

PKA
Cycloheximide Crs2/ Art8 ND

Hxt7
S. cerevisiae

Glucose, Fructose,
Mannose

High Glucose ND ND ND ND Ras/cAMP-PKA ND [36,76,78-80]
Nitrogen starvation,
Rapamycin

ND TORC1
Ras2
Rim15

Low glucose Crs2/ Art8 Snf1/AMPK
PKA

Jen1
S. cerevisiae

Lactate,
Pyruvate, Acetate,
Propionate

Glucose K63, K338, K599,
K607

ND Rod1/ Art4 612–614 aa TORC1/Npr1 Not required [24,47,123,125,126]

Alkali stress,
Cycloheximide

ND Bul1 ND Required

Rapamycin Not required
Lyp1

S. cerevisiae
Lysine Lysine ND ND Ldb19/ Art1 ND ND ND [14,15,22,114]

Cycloheximide Ecm21/ Art2 Residues in
the N-
terminus

Rapamycin,
Heat shock,
Oxidative stress,
Alcoholic stress

ND ND

Amino acids and
nitrogen starvation

Ecm21/ Art2 588–598 aa
(predicted)

GAAC pathway Not required

Mal61
S. cerevisiae

Maltose,
Turanose

Glucose ND ND ND 48–79 aa Snf1/AMPK
Snf3/Rgt2

ND [84,244,245]

MalP
A. oryzae

Maltose Glucose ND ND CreD ND ND ND [111,239]
Mannose ND
2-deoxyglucose

Mup1
S. cerevisiae

Methionine,
Cysteine

Methionine K27, K28 ND Ldb19/ Art1 41–55 aa ND Required [16,21,46,154,246]
Amino acids and
nitrogen starvation

K567, K572 T552, T560 Ecm21/ Art2 549–555 aa GAAC pathway Not required
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Table 1 (continued)

Transporter Physiological
substrates

Degradation signal Ub-sites Phospho-sites Arrestins or Rsp5
adaptor proteins

Arrestin
binding motifs

Signaling
complexes
(putative)

Transport activity References

PrnB
A. nidulans

Proline Ammonium ND ND ArtA ND ND ND [19,173]

Smf1
S. cerevisiae

Di-valent and tri-valent
metals:
Manganese,
Iron,
Copper,
Cadmium, Cobalt,
Nickel,

Physiological
manganese

ND Residues in the N-
terminus

Bsd2, Tre1 and
Tre2

ND ND Required [60,106,214,230,232]

Cadmium K33, K34 ND Ecm21/ Art2,
Crs2/ Art8

Not required

Excess manganese ND ND
Amino acid and
nitrogen starvation

ND ND

Tat2
S. cerevisiae

Tryptophan,
Tyrosine

Tryptophan ND ND Ldb19/ Art1 and
Bul1

ND ND ND [15,16,21]

Cycloheximide Ecm21/ Art2 and
Crs2/ Art8

Amino acids and
nitrogen starvation

ND ND Ecm21/ Art2 561–570 aa
(predicted)

GAAC pathway Not required

UapA
A. nidulans

Uric acid,
Xanthine

Purines (xanthine, uric
acid)

K572
ND

ArtA 545–547 aa ND Required [18,19]

Primary nitrogen
source (ammonium or
glutamine)

Not required

UapC
A. nidulans
A. oryzae

Purines:
Uric acid,
Xanthine,
Hypoxanthine,
Adenine, Guanine

Ammonium ND ND ND ND ND ND [197-199]

Zrt1
S. cerevisiae

Zinc Excess Zinc K195 ND ND ND ND ND [211-213,242]
Cadmium
Cobalt ND
Amino acids and
nitrogen starvation

ND ND ND

ND – Not Determined; NS – Non Specific; aa - amino acids.
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and illustrate how engineering of these systems has the potential
to improve titer, rate and yield (TRY) in industrial biotechnological
processes.
2. Endocytosis of sugar transporters

Yeasts use a wide variety of sugars such as hexoses as primary C
and energy sources. In S. cerevisiae, transport of these hexoses is
mediated by some members of the Hexose transporter family
(Hxt), composed of 20 PM proteins (Hxt1 to Hxt17, Gal2 galactose
transporter and Snf3 and Rgt2 glucose sensors) [1,61–68]. These
proteins belong to the major facilitator superfamily (MFS) and
are composed by a cytosolic N- and C- termini, which vary in
length, and 12 transmembrane segments (TMSs) organized into
two discretely folded domains connect by an intracellular hydro-
philic loop [69–71]. All members, except the sensors and Hxt12,
are able to transport glucose, fructose and mannose [62,65], but
the transporters Hxt1-4 and Hxt6-7 seem to play a major role,
under most physiological conditions [62,72]. Hxt transporters were
reported to operate by a facilitated diffusion mechanism, in a
highly regulated manner, with different affinities for glucose, fruc-
tose and mannose [73]. In S. cerevisiae cells, glucose is sensed (via
glucose sensors Snf3 and Rgt2) over a wide range of concentrations
and acts as the most important regulator, affecting the expression
of these transporters at both transcriptional and post-
transcriptional levels (reviewed in [71]). Besides glucose, other
environmental signals can also regulate these transporters by
affecting their endocytosis. The sugar transporters known to be
regulated by endocytosis in S. cerevisiae include the hexose trans-
porters Hxt1 [74], Hxt2 [75], Hxt3 [76], Hxt4 [36], Hxt5 [77],
Hxt6 [31,78] and Hxt7 [78-80], the galactose transporter Gal2
[81,82], and the maltose transporters Mal11, Mal21 and Mal61
[83-85] (Table 1).

The genome of Aspergilli contains many genes coding for pro-
teins of the MFS [86]. In some Aspergillus species, the genes encod-
ing proteins involved in sugar transport were already identified.
For instance, A. oryzae and A. niger contain 127 [87] and 86 [88]
putative sugar transporter genes, respectively. However, only a
small number of these transporters has been functionally charac-
terized [86,89–94]. These include the glucose transporters HxtA
[89], HxtB-C [92] and MstE [91], the xylose transporter XtrD and
the cellobiose transporter CltA [86] from A. nidulans; the MstA
sugar proton symporter [90] and the cellodextrin transporter CtA
[94] from A. niger, and, finally, the maltose transporter Malp
(Mal61 S. cerevisiae homologue) from A. oryzae [95]. In contrast
to S. cerevisiae, endocytosis of sugar transporters in Aspergilli
remains poorly studied.
3 2% (w/v) raffinose concentration is equivalent to 0.2% (w/v) glucose [247].
2.1. Endocytosis of sugar transporters triggered by excess of substrate

The high-affinity glucose transporters Hxt6 and Hxt7
[16,31,78,80,96] and the medium-affinity glucose transporter
Hxt2 [75] are rapidly internalized and triggered for vacuolar degra-
dation in response to high external glucose concentrations (5%, w/
v). Control of the glycolytic flux is largely dependent on sugar
transport [97], which has been described to be limited by the PM
space required for incorporation of the transport proteins [98,99].
Consequently, competition for the limited PM space between sugar
transporters with different activities [100] impacts overall trans-
port rates which makes removal of inefficient transporters in
dynamic culture conditions essential to optimize strain perfor-
mance. Therefore, endocytosis of medium and high affinity trans-
porters triggered by substrate excess could be essential to
liberate additional PM space for low-affinity, high-capacity trans-
1720
porters, which are able to catalyze the highest rates of glucose
transport under these conditions.

Specifically, under glucose-limited conditions (e.g., cells grow-
ing in raffinose as sole C source3), Hxt6 is localized at the cell sur-
face, Snf1 (the yeast homologue of human AMP kinase) is active,
promoting Rod1/Art4 phosphorylation and, consequently, its inacti-
vation. Rod1 can also bind to Bmh1/2 14-3-3 proteins, stabilizing the
inactive-phosphorylated form of ART adaptors. Addition of glucose
activates the type 1 protein phosphatase (PP1), composed of Glc7
catalytic subunit and Reg1 regulatory subunit, which promotes
dephosphorylation and inactivation of Snf1. This leads to Rod1 acti-
vation through its dephosphorylation and release from 14 to 3-3
proteins. Once free, Rod1 is continuously ubiquitylated by Rsp5 E3
Ub ligase [16,31], but the deubiquitinating enzymes (DUBs) Ubp2
and Ubp15 promote Rod1 deubiquitylation and, consequently, pre-
vent its hyperubiquitylation and subsequent proteasomal degrada-
tion [101]. The formation of Rod1-Rsp5 complexes culminates in
Hxt6 ubiquitylation and its subsequent degradation in the vacuole
[16,31] (Fig. 2A). A general model shared by most of the ART
adaptors was proposed, in which the DUBs Ubp2 and Ubp15 affect
endocytic trafficking by regulating ARTs stability [101].
2.2. Endocytosis of sugar transporters triggered by substrate depletion
or starvation

The low-affinity, high-capacity transporters Hxt1 and Hxt3 are
expressed when glucose is abundant (2%, w/v). When glucose
becomes depleted, these transporters are targeted for endocytosis,
which requires their ubiquitylation by Rsp5 and the inactivation of
the Ras/cAMP-PKA glucose signaling pathway [74,76] (Table 1).
Hxt1 ubiquitylation caused by substrate depletion requires its N-
terminus, and occurs at Lys12 and Lys39 residues [74]. Glucose
starvation-induced turnover of Hxt3 is dependent on Csr2/Art8
adaptor and requires Rim15, which is a downstream effector
kinase of the Ras/cAMP/PKA pathway [76]. Addition of
2-deoxyglucose (2DG), which mimics glucose starvation, also
triggers Hxt1 and Hxt3 endocytosis [102]. This glucose analogue
induces formation and intracellular accumulation of 2-deoxy-d-
glucose-6-phosphate (2-DG6P), which, in turn, triggers hexokinase
inhibition and, consequently, inhibition of glycolysis [103]. How-
ever, 2DG-mediated endocytosis of Hxt3 requires both Rod1 and
Rog3/Art7 arrestins, whereas Rod1 is the sole arrestin responsible
for Hxt1 2DG-dependent endocytic degradation. The loss of Snf1
also results in the downregulation and vacuolar degradation of
these transporters [102]. Remarkably, Rod1 suffers some degree
of inactivation (phosphorylation) by the action of Snf1 [102]. Con-
sidering that 2DG mimics glucose starvation, the inhibitory action
of this kinase may allow some glucose import into the cell by coun-
teracting the Rod1- and Rog3-induced internalization of Hxt1 and
Hxt3. However, when compared to the activity of cells experienc-
ing glucose starvation, Snf1 activity is modest [102].

The endocytosis of medium- to high-affinity glucose trans-
porters, including Hxt2, Hxt4, Hxt6 and Hxt7, was shown to be
triggered when cells are grown for a prolonged time in medium
containing lactic acid (0.5%, w/v, pH 5.0), as the sole C source, a
condition that, the authors claim, also mimics glucose starvation
[36]. These conditions were previously reported to trigger the
downregulation of S. cerevisiae Jen1 lactate transporter, a mecha-
nism which, in this case, was found to be associated with alkali
stress [47]. However, in contrast to what was observed for Jen1,
prolonged growth in ethanol and even C starvation, also induced
the degradation of the above-mentioned glucose transporters, sug-
gesting a different mechanism of regulation (see Fig. 2B, showing



Fig. 2. Endocytosis of Hxt6 induced by distinct signals. (A) Hxt6 degradation induced by glucose addition to cells grown on glucose limiting conditions is controlled by the
Snf1/AMPK pathway. In glucose-limiting conditions, Hxt6 and Rod1/Art4 are inactive. Glucose addition triggers PP1 phosphatase (Glc7/Reg1) activation, resulting in Snf1
dephosphorylation and the release of Rod1 from 14 to 3-3 proteins. Rod1 is then continuously ubiquitylated by Rsp5 [16,31], but Ubp2 and Ubp15 lead to Rod1
deubiquitylation, preventing its subsequent proteasomal degradation [101]. Rod1-Rsp5 complexes promote the transporter ubiquitylation and its subsequently degradation
in the vacuole [31,106]. (B) Hxt6 internalization in response to prolonged growth in glucose starvation conditions. During prolonged growth in glucose starvation conditions
(e.g., growth in lactic acid, 0.5%, w/v, pH 5.0, for 24 h), Snf1 kinase is active and inhibits Mig1/Mig2 repressors by phosphorylation, preventing them from binding to CRS2
promoter and resulting in CRS2 derepression. The increase in CRS2 transcription elevates Crs2 protein levels and the consequent formation of Rsp5-Crs2 complexes. This
ultimately leads to Hxt6 ubiquitylation and degradation through the MVB pathway. In contrast, upon a pulse of glucose (2%, w/v), PP1 phosphatase (Glc7/Reg1)
dephosphorylates and inactivates Snf1, which can no longer phospho-inhibit Mig1/Mig2, resulting in CRS2 repression. At the posttranslational level, Crs2 protein is
inactivated by phosphorylation, possibly by PKA kinase, leading to its association with 14–3-3 proteins and its deubiquitylation [36]. Ub, ubiquitylation; P, phosphorylation;
PM, plasma membrane. Dashed lines represent predicted regulation and signals (+) and (-) represent activation and inhibition, respectively.
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the regulated endocytosis of Hxt6 as an example). The internaliza-
tion of these transporters is triggered in an ubiquitin- and Rsp5-
dependent manner, but only Hxt6 and Hxt7 degradation requires
the Crs2 arrestin [36]. In the absence of glucose, CRS2 is transcrip-
tionally induced, as Mig1 and Mig2 repressors are inhibited by
AMPK kinase Snf1. Upon protein synthesis, Crs2 becomes activated
by ubiquitylation and acts as an adaptor protein for Rsp5 to medi-
ate cargo ubiquitylation. In contrast, the presence of glucose inhi-
bits the transcription of CRS2 and promotes Crs2 phosphorylation,
its association with Bmh1/Bmh2 (14-3-3) proteins and its deubiq-
1721
uitylation. Importantly, PKA kinase appears to contribute to
Crs2 inactivation, revealing an unexpected crosstalk between
Snf1/AMPK and PKA pathways [36] (Fig. 2B).

Tightly coordinated sugar transporter expression and endocyto-
sis could have evolved in environments where both mono- and dis-
accharides are present to prevent futile cycling of these nutrients
across the PM. For example, disaccharides such as maltose are
transported by proton (H+)-coupled a-glucoside transporters
belonging to the maltose permease subfamily [104]. By coupling
maltose transport to the proton-motive-force, these transporters
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enable maltose accumulation inside the cells, where subsequent
hydrolysis releases two molecules of glucose for further conver-
sion. In the presence of Hxt transporters, these glucose monomers
would be transported out of the cell, down the concentration gra-
dient. Since maltose transporters Agt1, Mph2 and Mph3 can also
catalyze H+-coupled transport of glucose [65] glucose release by
Hxt transporters would be followed by H+-coupled re-uptake via
these a-glucoside transporters and ultimately result in a net
translocation of H+ into the cell [104]. Proton export via the S. cere-
visiae H+-ATPase Pma1 results in a net energetic expense of ATP
and this cycle would ultimately deplete cellular energy [105].
2.3. Endocytosis of sugar transporters triggered by different
physiological inputs

Some sugar transporters are also internalized in response to dif-
ferent types of stress (Table 1). Hxt1 is ubiquitylated, endocytosed
and degraded in response to rapamycin (inhibitor of TORC1) [107].
Also, Hxt7 is internalized in response to rapamycin or N starvation,
in a mechanism involving TORC1 and Ras2 inactivation and the
requirement of Rim15 kinase, a common downstream effector of
both PKA and TOR pathways [76,79]. Cycloheximide (inhibitor of
protein synthesis, activator of TORC1) has also been reported to
trigger the degradation of Hxt6 in a Crs2 dependent manner [16].

The expression of the medium-affinity glucose transporter Hxt5
at the PM is induced when cells experience low growth rates,
including in glucose-grown cells at stationary phase, in cells culti-
vated under poor non-fermentable C sources, and when tempera-
ture or osmolarity increase [64,108,109]. In S. cerevisiae,
expression of this transporter occurs before and during the diauxic
shift, when metabolic changes prepare the switch to ethanol as C
source [108,110]. When cells are exposed to glucose again, Hxt5
is transiently phosphorylated in its serine residues, internalized
and degraded in the vacuole. This coordinated Hxt5 expression
and retention in the PM under glucose-depleted conditions hints
towards a central role of this transporter in keeping glucose-
starved cells prepared for future glucose exposure. Although
internalization and degradation of Hxt5p occur in a ubiquitin-
independent manner via the endocytic pathway [77], additional
studies are required to further investigate the signaling events
involved in growth-rate-dependent Hxt5 turnover.

In Aspergillus species the endocytic regulation of the maltose
transporter MalP from A. oryzae has already been reported. This
PM transporter is downregulated when amylolytic enzyme pro-
duction is repressed, which occurs after addition of glucose, man-
nose or 2-deoxyglucose [111]. The internalization of MalP,
triggered by glucose addition, requires its ubiquitylation by the
HulARsp5 E3 ubiquitin ligase and involves the arrestin-like protein
CreD (homologue of yeast Rod1). However, in this case, the phos-
phorylation state of CreD does not seem to affect transporter
endocytosis [111].
3. Endocytosis of monocarboxylate transporters

Two distinct transport systems for monocarboxylates have been
reported in S. cerevisiae: Ato1/Ady2 [112,113], and Jen1 [114,115],
belonging to distinct evolutionary families of transporter proteins.

Ato1 (acetate transport ortholog 1), recently reclassified [113],
belongs to the acetate uptake transporter (AceTr) family and it is
responsible for the uptake of acetate, propionate, formate and lac-
tate [116]. The endocytic turnover of this transporter has been
poorly investigated.

Jen1 is a monocarboxylate/proton symporter that belongs to the
MFS superfamily, specifically to sialate:H+ symporter (SHS) family
[117,118]. It is able to transport lactate, pyruvate, acetate and pro-
1722
pionate [114], as well as selenite [119] and it has been extensively
studied at a biochemical and molecular levels [24,47,120–126].
The crystal structure of Jen1 has not been solved yet, but based
on predicted topology studies, it contains 12 putative TMSs and a
cytosolic N- and C-termini. A mutational study has also shown that
a conserved motif 379NXX[S/T]HX[S/T]QDXXXT391, located in the
TMS-7, seems to be involved both in transport capacity and in sub-
strate affinity [120].

Jen1 transporter is endocytosed and degraded in the vacuole in
the presence of rich C sources, such as glucose [122]. The low max-
imum specific growth rate of S. cerevisiae on lactic acid [127], indi-
cates that this organism is not well adapted for growth on this C
source alone. Its preference for glucose could be related to a lower
energetic yield from complete oxidative dissimilation of lactic acid
(7 ATP, including 1 ATP from substrate level phosphorylation)
compared to a carbon-equivalent amount of glucose (8 ATP,
including 1 ATP from substrate level phosphorylation) assuming
a P/O ratio of 1 [128] in combination with a poor respiratory capac-
ity [129,130]. Therefore, internalization of Jen1 after addition of
glucose appears to result in an energetic benefit for yeast cells.

Briefly, in the presence of lactate (0.5% (v/v), pH 5.0), as a sole C
source, Jen1 is localized at the cell surface and Rod1/Art4 is phos-
phorylated (inactive) and bound to 14–3-3 proteins by the action
of Snf1 kinase (yeast homologue of AMPK kinase). Upon glucose
addition, the phosphatase complex Glc7/Reg1 dephosphorylates
Snf1 and Rod1. While Snf1 becomes inactive, de-phosphorylation
of Rod1 releases it from the phosphor-dependent binding with
14-3-3 proteins, allowing its ubiquitylation by the E3 ligase Rsp5
[24,122,123]. Finally, the complex Rod1-Rsp5 recognizes a specific
motif/degron within the C-terminus of Jen1 (612-614 aa), trigger-
ing Jen1 internalization and degradation [126]. This substrate-
independent endocytic pathway does not require an active Jen1
transporter [47]. Also, cells lacking Ubp2 and Ubp15 showed an
impairment in glucose-induced Jen1 internalization, suggesting
the involvement of these DUBs in controlling Rod1 activity and,
consequently, in Jen1 traffic [101] (Fig. 3A).

Glucose induced endocytosis of Jen1 also seems to involve the
Yck1 kinase, directly or indirectly [123]. Moreover, the replace-
ment of all cytosolic lysine (K) residues of the transporter by argi-
nine is sufficient to block Jen1 internalization [131]. While K9 (at
Jen1 N-terminus) and K338 (at Jen1 cytosolic loop), were shown
to be important, but not essential, for glucose-elicited Jen1 endo-
cytic turnover [123], the lysine residues K599 and K607, localized
at Jen1 C-terminus, seem critical for this process [126]. Besides
the role of Rod1 for the initial stages of Jen1 internalization, this
ART also seems to operate later at the TGN to promote Jen1 vacuo-
lar sorting and degradation in the presence of glucose or to recycle
Jen1 back to the PM, when glucose is removed [131,132] (see VPS
and recycling pathways in Fig. 1A). Moreover, Bul1 was also
reported to be involved in glucose-elicited endocytosis of Jen1
[125], suggesting that it can also be a target for Snf1 kinase.

The endocytosis of Jen1 can also be triggered by other signals,
such as the addition of rapamycin, cycloheximide or alkali
stress, in a process involving Bul1 arrestin, but independent of
Rod1/Art4 [47]. The authors of this work proposed a model for
alkali-induced internalization of Jen1 (Fig. 3B): prolonged growth
(24 h) in lactic acid (0.5% (v/v), pH 5.0), as sole C source, triggers
alkalinization of the external medium (an increase on extracellular
pH from 5 to 7), which somehow stimulates the TORC1 pathway.
TORC1, in turn, promotes hyper-phosphorylation (inactivation) of
Npr1 kinase and activation of Sit4. This phosphatase dephosphory-
lates Bul1 arrestin, possibly releasing it from a phospho-dependent
binding with 14–3-3 proteins. Dephosphorylated Bul1 is then
ubiquitylated by Rsp5 ubiquitin ligase and, finally, the complex
Bul1-Rsp5 triggers Jen1 ubiquitylation, probably by binding at
the N-terminus, resulting in its internalization and vacuolar degra-



Fig. 3. Schematic representation of Jen1 endocytosis in response to distinct signals. (A) Glucose-induced downregulation of the monocarboxylate Jen1 transporter. In the
presence of lactate, Jen1 is localized at the PM and Rod1/Art4 is inactive. Upon glucose addition, Glc7/Reg1 dephosphorylates Snf1 and Rod1. Rod1 is released from a phospho-
dependent binding with 14–3-3 proteins and can, then, bind Rsp5. This results in Jen1 ubiquitylation, internalization and degradation via the MVB pathway [24,122,123].
Ubp2 and Ubp15 seem to control Rod1 activity by managing the level of its ubiquitylation [101]. (B) Alkali stress induced internalization of Jen1 transporter. In cells induced
in lactate, for 4 h, Jen1 is localized at the PM. The prolonged growth (24 h) in lactate results in the alkalinization of the extracellular medium and leads to Jen1 internalization
and degradation. This mechanism depends on an active Jen1 transporter and relies on TORC1 pathway. The model proposes that activated TORC1 leads to the inactivation of
Npr1 kinase, and the activation of Sit4 phosphatase. This results in Bul1 activation and consequently Jen1 Rsp5-ubiquitylation and subsequent vacuolar degradation [47]. PM,
plasma membrane; Lac, lactate; Ub, ubiquitylation; P, phosphorylation; H+, proton. Dashed lines represent predicted regulation and signals (+) and (�) represent activation
and inhibition, respectively.

Cláudia Barata-Antunes, R. Alves, G. Talaia et al. Computational and Structural Biotechnology Journal 19 (2021) 1713–1737
dation. Interestingly, while alkaline-induced Jen1 internalization
requires a functional and active Jen1 transporter, internalization
induced by glucose is transport-independent (Fig. 3; Table 1)
[47]. These findings suggest that Jen1 efficient turnover triggered
by alkali stress depends on Jen1 conformational changes, associ-
ated with monocarboxylate/H+ symport.

In alkali- and cycloheximide-induced Jen1 endocytosis, the
requirement of TORC1 is supported by several lines of evidence
by Talaia and co-workers [47]. Besides the action of TORC1 effec-
tors (Npr1 and Sit4), the deletion of Tco89, a TORC1 subunit, causes
an endocytic dysregulation of Jen1. The involvement of TORC1 in
1723
alkali stress induced endocytosis of Jen1 is further reinforced by
the observation that the replacement of ammonium with proline,
as sole nitrogen source, in the external growth medium, reduces
Jen1 endocytic turnover. In the case of rapamycin-induced endocy-
tosis, the requirement of TORC1 is supported by tor1/tor2 mutant́s
phenotypes [47].

It is not completely clear how TORC1 complex stimulates Bul1-
mediated endocytosis, in response to physiological signals,
although some insight has been gained, over the past few years,
into this process. Despite observed similarities between Bul1-
dependent endocytosis of Gap1 and Jen1, for the latter, Bul1
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remained partly phosphorylated in the absence of Npr1, in the
tested physiological conditions (addition of cycloheximide and
prolonged growth in lactate) [47]. Whether Npr1 kinase activity
is directly or indirectly required for Jen1 endocytic turnover
remains elusive. The potential involvement of other kinases, like
Snf1, on Bul1 phosphorylation may reveal unexpected synergies
between distinct nutrient signaling cascades. In a similar fashion,
Crs2 seems to rely on two distinct signaling pathways to regulate
Hxt6 endocytosis [67]. It is still enigmatic how Jen1 transporter
activity leads to extracellular alkalinization, after prolonged
growth in lactic acid medium, as sole C source, which, in turn, is
a signal for Jen1 endocytosis. The acidic nature of Jen1 substrates,
monocarboxylates and protons, used as sole C source, suggests that
substrate uptake via Jen1 causes extracellular alkalinization; how-
ever, microbial cells have developed intricate mechanisms to
respond to alkali pH stress, which involves the modulation of sev-
eral signaling pathways and the impairment on the uptake of innu-
merous nutrients (reviewed in [133]). Therefore, more studies are
required to deeply understand the molecular mechanisms behind
Jen1 internalization induced by alkali stress.

In filamentous fungi, little is known about carboxylic acid trans-
porters regulation. In A. nidulans, homologs of S. cerevisiae Ato1
(AcpA and AcpB) and Jen1 (JenA and JenB) transporters were iden-
tified [134]. However, their endocytic regulation has not been
investigated yet.
4. Endocytosis of amino acid transporters

Amino acids (AAs) are a major N and/or C source for fungi. S.
cerevisiae cells harbor many fungal AA transporters (fAATs) that
differ according to substrate specificity, cellular location, regula-
tion and protein fold [135]. fAATs are grouped into two major
superfamilies: MFS and the APC (amino acid-polyamine-
organocation) superfamilies [136]. However, the majority of PM
fAATs belong to the APC superfamily, which is subdivided into
three major families: the YAT (Yeast Amino acid Transporter) fam-
ily, the LAT (L-type Amino acid Transporter) family and the ACT
(Amino Acid/Choline Transporter) family [137–139]. Members of
YAT family contain 12 TMSs and share a common structural LeuT
fold formed by TMs 1-10 [140]. So far, no YAT structure has been
determined and the structure of the transporters belonging to this
family is based on other solved transporter structures sharing the
LeuT conformation, namely the arginine/agmatine AdiC trans-
porter from Escherichia coli [140,141].

In the yeast S. cerevisiae, 22 PM AA transporters, with known
function, were already identified (reviewed in [140]). These perme-
ases, similar to sugar transporters, are also regulated post-
transcriptionally in response to excess of substrate or stress
(Table 1). The initial sorting of the majority of these permeases is
induced by their ubiquitylation catalyzed by Rsp5 Ub ligase with
the requirement of ARTs [140].

Recent studies showed that some nutrient transporters belong-
ing to the APC superfamily (AA and nucleobase transporters) are
clustered in specialized PM domains called membrane compart-
ments containing the arginine permease Can1 (MCCs) [142]. MCCs
are PM furrows, ~50 nm deep and ~200–300 long, associated with
subcortical structures called ‘‘eisosomes”, a reason why MCCs are
also known as eisosome membrane compartments (EMCs) [42].
MCCs also contain the tetraspan TM proteins, Sur7 and Nce102
[143] and the core components of eisosomes are two self-
assembling BAR-domain-containing proteins Pil1 and Lsp1 [144].
While Nce102 is essential for the formation of the furrow-like
invaginations [143], Pil1 is responsible for its stabilization [144–
146] (see Fig. 5A). Surprisingly, the lipidic composition of MCCs
is not completely consensual. The majority of the studies has
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reported that these structures are enriched in ergosterol and sph-
ingolipids based in the indirect evidence that MCC structure is
affected by sphingolipids depletion, which was suggested to be
sensed by specific proteins of MCCs (Nce102 and Slm1) [147–
149] However, recent works, using a novel approach that enables
the direct and in situ detection of the lipids surrounding a given
PM protein, demonstrated that MCCs containing the AA trans-
porters Lyp1 or Can1 have reduced levels of sphingolipids and that
ergosterol is not so abundant as expected [150,151]. Specifically,
the authors of these works demonstrated that MCCs containing
Lyp1 seem to be enriched in anionic lipids (such as phos-
phatidylserine) with saturated and unsaturated acyl chains and a
small, but essential, amount of ergosterol [151]. Other recent study
supports that MCCs are regions devoided of sphingolipids [152].
However, despite these findings, the lipidic composition of MCCs
and of other PM domains is quite complex and is not completely
conclusive yet. Therefore, further studies are required to com-
pletely elucidate this topic.

Depending on the nutrient status of the cell, transporters can
move from MCCs to other regions/domains of the PM [153,154].
MCCs may represent a novel endocytic regulatory mechanism, as
they seem to protect transporters from internalization during
nutrient limitation or starvation conditions, probably by prevent-
ing their access to the ubiquitylation machinery or even the forma-
tion of endocytic vesicles [42,143,147,154]. Despite these findings,
the molecular basis of PM transporter MCC partitioning is still
elusive.

4.1. Endocytosis of amino acid transporters triggered by nitrogen
availability or excess of substrate

In S. cerevisiae, different AA transporters undergo ubiquitin-
dependent endocytosis in response to N availability or excess of
substrate, including: Gap1, the General AA permease [155]; Can1,
the high affinity arginine (Arg) permease [3,15,23]; Lyp1, the lysine
(Lys) transporter; Mup1, the high affinity methionine (Met) perme-
ase [15]; Dip5, the aspartic acid (Asp) and glutamic acid (Glu) per-
mease [156,157] and Tat2, the tryptophan (Trp) and tyrosine (Tyr)
permease [16].

Gap1, Can1 and Mup1, currently, have the best characterized
endocytic mechanism (Figs. 4 and 5).

Gap1 downregulation is controlled by N availability and excess
of substrate. In the presence of a less preferred N source (e.g., pro-
line or urea), Gap1 is localized at the PM. However, upon addition
of a favored N source, that can be easily converted into the main AA
precursors, like ammonium (NH4

+), Gap1 is ubiquitylated on the K9
and K16 residues, located at the cytosolic N-terminus (Table 1).
Then, it is subsequently internalized, directed to the MVB pathway
and degraded into the vacuole [158]. This ubiquitylation depends
on Rsp5 and Bul1 and Bul2 arrestins [159]. Gap1 downregulation
occurs by excess of substrate and it is mediated by two different
pathways. One is independent on Gap1 activity, as ubiquitylation
also occurs in Gap1 activity defective mutants; and the other
requires a functional Gap1 mediating substrate transport (Fig. 4).

In the first pathway, Gap1 is present at the PM when cells grow
with proline as sole N source. Intracellular proline, imported via
Gap1, is converted to glutamate by Put1 (proline oxidase) and
Put2 (pyrroline carboxylate dehydrogenase) enzymes. The pool of
glutamate resulting from proline conversion is less efficient, result-
ing in a lower concentration of intracellular AAs, being unable to
activate TORC1 [160]. At these conditions, Bul1/2 proteins are
phosphorylated (inactive) by the action of Npr1 kinase and associ-
ated with 14-3-3 proteins. If a preferred N source is provided, like
NH4

+, it is imported into the cells via NH4
+ permeases (Mep1-2-3),

converted into glutamate, by the Gdh1 and Gdh3 glutamate dehy-
drogenases, which is ultimately converted into AAs. The increase in



Fig. 4. Schematic representation of Gap1 endocytic pathways. During growth on non-preferred nitrogen sources (such as proline), Gap1 is stable and localized at the plasma
membrane (PM). However, if a preferred N source is added (e.g., NH4

+), Gap1 is rapidly internalized, which can be induced via two distinct pathways: (A) Activity independent-
Gap1 endocytosis (induced by intracellular AAs). In this pathway, NH4

+ is imported via Mep permeases and then converted to glutamate (the major N donor) by glutamate
dehydrogenases (Gdh) enzymes. Glutamate, in turn, promotes an increase in the concentration of intracellular AAs, which activates the TORC1 signaling via the EGO complex.
Once activated, TORC1 inhibits Npr1 kinase, by promoting its hyper-phosphorylation, and activates Sit4 phosphatase. Sit4 dephosphorylates Bul1/2 protein adaptors and,
consequently, causes their dissociation with 14–3-3 proteins. Once free of the inhibitory action of 14-3-3 proteins, Bul1/2 are ubiquitylated by Rsp5 ubiquitin ligase. Lastly,
the complex Bul1/2-Rsp5 triggers ubiquitylation of Gap1, causing its internalization and further degradation in the vacuole [30,171] (B) Activity dependent-Gap1 endocytosis
(induced by extracellular AAs). In this pathway, internalization of Gap1 is dependent on substrate transport. AAs are imported through Gap1, which causes a transition of
Gap1 from an OF to an IF conformation and exposes important residues that are further recognized by the ubiquitylation machinery (Bul1/2 and Rsp5) [45]. Recent studies
suggest that the influx of protons (H+) coupled to AAs import represents a general signal for the activation of TORC1 complex [163]. AAs, amino acids; PM, plasma membrane;
OF, outward-facing; IF, inward-facing; Ub, ubiquitylation; P, phosphorylation; NH4+, ammonium; H+, proton; ATP, adenosine-triphosphate; ADP, adenosine-diphosphate.
Dashed lines represent predicted regulation; signals (+) and (�) represent activation and inhibition, respectively; upward- and downward-facing triangles represent increase
and decrease of the substrate, respectively.
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intracellular AAs will then stimulates TORC1 signaling probably via
EGO complex (reviewed in [160]). Once activated, TORC1 triggers
hyper-phosphorylation and inhibition of the Npr1 kinase. Addi-
tionally, the Sit4 phosphatase induces dephosphorylation of the
Bul1/2 proteins, promoting their release from 14 to 3-3 proteins
and subsequent Gap1 ubiquitylation and internalization
[30,158,161] (see Fig. 4A). Importantly, a cytosolic N-terminal
region (20–35 AA residues) appears to be crucial for downregula-
tion of Gap1 induced by intracellular AAs [162].
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In the second pathway, Gap1 alters its conformation during
substrate transport, transiently shifting from a substrate-free
outward-facing (OF) conformation to an inward-facing (IF) confor-
mation. This alteration induces the remodeling of its cytosolic
regions, allowing its recognition by Bul1/2 adaptors and subse-
quent Rsp5-mediated ubiquitylation and degradation [45]. Nota-
bly, the stimulation of TORC1, which in this case is independent
on intracellular AAs, is not exclusively linked to substrate trans-
port, but also to the H+ influx coupled with AA import. Importantly,



Fig. 5. Schematic representation of Can1 and Mup1 endocytic pathways triggered by distinct signals. (A) Substrate-dependent downregulation of Can1 and Mup1. Under
substrate starvation conditions (absence of arginine for Can1 and absence of methionine for Mup1), both Can1 and Mup1 preferentially localize at MCCs, presumably more
populated in an OF conformation. Inside these domains, Can1 and Mup1 are protected from ubiquitylation machinery [42,43,154]. Low arginine/methionine concentrations
maintain the inactive state of TORC1, stimulating Npr1 kinase, which, in turn, will phosphorylate Lbd19, leading to its inhibition [42,43,154]. If arginine/methionine is added,
these AAs stimulate the TORC1/Npr1 pathway, which, in turn, leads to the formation of Ldb19/Art1-Rsp5 complexes. In parallel, the transport cycles of these AAs induce a
transient shift of the transporters conformation, resulting in the diffusion of the transporter away from MCCs [42,153,154]. The IF conformation of these transporters exposes
the N-terminal binding sites (degron) for Ldb19 adaptor, leading ultimately to Can1 and Mup1 ubiquitylation and subsequent degradation in the vacuole [42,154]. (B)
Starvation-induced downregulation of Can1 and Mup1. Under AAs or N starvation conditions, the GAAC pathway upregulates the ECM21/ART2 gene by the action of Gcn4
transcriptional regulator, which causes an increase in Ecm21 protein levels and allows the subsequent formation of Ecm21-Rsp5 complexes. Ecm21-Rsp5 will then
ubiquitylate Can1 and Mup1 transporters, inducing their endocytosis and degradation via the MVB pathway. Gcn4 also induces transcription of genes involved in de novo
biosynthesis of AAs in order to keep AA homeostasis. Under rich growth conditions, ECM21 transcription is strongly inhibited, which results in a decrease in the formation of
Ecm21-Rsp5 complexes. Moreover, DUBs also appear to play a role in modulating Ecm21 activity, as already described for other transporters. PM, plasma membrane; OF,
outward-facing; IF, inward-facing; MCC, membrane compartment containing the arginine permease Can1; Ub, ubiquitylation; P, phosphorylation; SL, sphingolipid; H+,
proton; DUBs, deubiquitinating enzymes. Dashed lines represent predicted regulation; signals (+) and (�) represent activation and inhibition, respectively; upward- and
downward-facing triangles represent increase and decrease of substrate, respectively.
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TORC1 activation in response to increased cytosolic H+ also
requires the ATP-dependent proton pump Pma1 responsible for
maintaining H+ gradient across the PM to avoid acidification of
the cytoplasm and maintain the proton-motive-force. Replacement
of Pma1 by an equivalent and catalytically active plant H+-ATPase
in S. cerevisiae does not result in the stimulation of TORC1 in
response to increased cytosolic levels of H+. These results suggest
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that Pma1may modulate TORC1 via signaling, however, the molec-
ular mechanisms connecting H+ to TORC1 activation remain elu-
sive [163] (Fig. 4B). In contrast to other members of APC family,
Gap1 is not localized in MCCs [43].

Additionally, O’Donnell and colleagues [20] showed that Gap1
traffic from endosomes to the TGN and/or the PM (see Fig. 1A).
Under high N conditions, Gap1 transits from the TGN to the endo-
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somes or vacuole without the involvement of the PM (see VPS
pathway in Fig. 1). In contrast, when the levels of N decrease, the
Gap1 recycling route from endosomes to the TGN/PM is activated
(see endosome-to-Golgi retrograde and recycling pathways in
Fig. 1A). This pathway requires Aly2/Art3 and Aly1/Art6 protein
adaptors, which act in different directions. While Aly2 is responsi-
ble for Gap1 traffic from endosome-to-TGN (requiring AP-1, Lst4,
and Npr1 proteins), Aly1 regulates Gap1 recycling from endosomes
to the TGN and/or PM [20].

As mentioned above, some transporters of the APC superfamily
were shown to be localized at MCC domains. It is the case of Can1
that preferentially localizes inside MCCs in the absence of its sub-
strate. Can1 downregulation, triggered by excess of arginine, also
relies on the TORC1-Npr1 cascade and is dependent on the trans-
port activity of Can1 (Fig. 5A). Under poor N conditions, TORC1 is
inactive and Npr1 causes the phosphorylation of Ldb19/Art1
arrestin, preventing its association with Can1 and subsequent
ubiquitylation [3,15,45]. In the presence of arginine, TORC1
becomes active, inhibiting Npr1 kinase. Also, Can1 transiently
swaps from an OF to an IF conformation, which triggers its move-
ment out of MCCs, increasing its accessibility to ubiquitylation and
consequent degradation [42,153]. This conformational modifica-
tion exposes Can1 binding sites for Ldb19 (70–81 AA residues),
promoting Rsp5-mediated ubiquitylation, mainly on the K42 and
K45 residues, and its subsequent degradation. The Can1 binding
site for Ldb19 is rich in negative charged residues, also known as
acidic patch [46] (Fig. 5A). Several studies suggest that activation
of Ldb19 requires its dephosphorylation [3,15], however, to date,
no phosphatases were identified that promote Art1 dephosphory-
lation under arginine-repleted conditions. Moreover, in the
absence of Ldb19, Bul1/2 are also able to ubiquitylate and elicit
Can1 internalization. Yet, Bul1/2 bind to different regions of the
N-terminus of Can1 (62–69 AA residues) and do not efficiently tar-
get the internalized Can1 to the vacuole (Table 1) [23].

The molecular mechanism that triggers transporter partitioning
and exit fromMCCs is not known yet. The Nce102 protein was pro-
posed to be necessary for sequestration of Can1 into MCCs [143].
However, Gournas and colleagues demonstrated that removing
NCE102 was not sufficient to abolish Can1 MCC clustering [42].
Considering transporter exit from MCCs, other studies suggest that
changes in Can1 conformation, during the transport cycle, can
abolish the interactions of Can1 with specific lipids or proteins pre-
sent in MCCs, which triggers its removal from these domains
[42,153]. A similar mechanism was also hypothesized for Mup1
[154]. Still, further research is needed to clarify these processes.

Endocytic downregulation of Lyp1, Mup1 and Tat2 transporters
by excess of substrate (lysine, methionine, or tryptophan/tyrosine,
respectively) also depends on the TORC1-Npr1 signaling, requiring
the a-arrestin Ldb19 [15,16,46]. Similar to Can1, recognition of
Mup1 by Ldb19 occurs in a specific region on the cytosolic
N-terminus, the acidic patch (41–55 AA residues), and Mup1 is
ubiquitylated on K27 and K28 residues. Nevertheless, additional
features are needed for the efficient ubiquitin-dependent endocy-
tosis of Mup1, because its N-terminus is required but not sufficient
for its degradation [46]. Importantly, Lyp1, Mup1 and Tat2 are
localized in MCC domains, a common feature shared by some
members of the APC superfamily [43,44,154] and, as already
described for Can1, crucial for their endocytic process, in response
to nutrient status [42-44,154,164].

The aspartic acid/glutamic acid permease Dip5 is also endocy-
tosed by substrate excess. O’Donnell and colleagues [157] demon-
strated that dephosphorylation of Aly1 by the phosphatase
calcineurin is required for Aly1-induced internalization of Dip5
permease and subsequent targeting to the vacuole [157]. It was
also reported that Aly2 arrestin, functions as an adaptor of Rsp5
to mediate Dip5 ubiquitylation and downregulation. In this case,
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phosphorylation of the N-terminal tail of Dip5 (10–22) also con-
tributes to its internalization (Table 1) [156].

Tight regulation of AA uptake via endocytosis in S. cerevisiae is
likely related to AA biosynthesis pathways. In this microorganism,
all N containing compounds are synthesized using either
glutamate or glutamine as N donor [165], both of which can be
synthesized using ammonia directly to supply the amino group
[166–168]. Therefore, when S. cerevisiae is cultivated in any other
N source, this has first to be converted to ammonia and glutamate,
a process that can be limiting for cellular growth [169]. Therefore,
tuning N transport, in a way that preferred N sources are preferen-
tially selected, allows S. cerevisiae to achieve the highest growth
rates in the presence of multiple N sources [170].

The endocytic regulation of AA transporters in Aspergilli, in par-
ticular in A. nidulans [19,172] has also been reported. This organism
contains 19 putative genes enconding transporters of the YAT fam-
ily [173]. However, only 2 of these transporters were functional
caracterized, namely, the AgtA high-affinity dicarboxylic AA trans-
porter, responsible for the uptake of aspartate and glutamate, and
the PrnB proline transporter [172,174–176].

Both AgtA and PrnB are subjected to NH4
+-induced downregula-

tion [172,173]. Specifically, AgtA and PrnB are localized at the PM,
in cells grown in glutamate or proline containing medium, as sole
N source, respectivelly. However, upon NH4

+ addition, these trans-
porters are internalized and targeted for vacuolar degradation
[172,173]. In these conditions, the internalization of PrnB requires
ArtA, in contrast to what is described for AgtA [19].

In A. oryzae, the AoCan1 transporter (homologue of S. cerevisiae
Can1) is localized at the PM, mainly in the basal region, when cells
grow in arginine- starvation conditions. However this transporter
is internalized and targeted to the vacuole for degradation, after
a shift to a medium containing excess of arginine (5 mM) [177].
Contrarily, to S. cerevisiae, the ARTs and signalling complex(es)
involved in arginine-induced downregulation of AoCan1 is/are still
under investigation.

4.2. Endocytosis of amino acid transporters triggered by substrate
depletion or acute starvation

Can1, Mup1, Lyp1 and Tat2 fAATs are also degraded in response
to AAs or NH4+ starvation by a molecular mechanism distinct from
the one involved in endocytic degradation triggered by excess of
substrate [21,49]. Substrate-induced downregulation of these 4
fAATs is faster, exclusive for its own substrate and relies on TORC1
signaling and Ldb19 adaptor [3,15,21,42,46,154]. In contrast, inter-
nalization of fAATs elicited by AA and NH4+ starvation is a slower
process (requiring 3–6 h); it depends on the general amino acid
control (GAAC) pathway and requires specifically the Ecm21/Art2
arrestin. Additionaly, while Ldb19 recognizes an acidic patch local-
ized at the N-terminus of the transporters, Ecm21 interacts with a
C-terminal acidic degron [21] (Table 1; Fig. 5). The GAAC pathway
induces the transcription of ECM21 and of genes involved in de
novo AAs synthesis, preparing the cells for non-selective nutrient
acquisition, if nutrients become accessible again [21,49] (Fig. 5B).

Overall, all the studies related to nutrient transporter (HXTs,
AATs) endocytosis induced by starvation conditions seem to rely
on the interplay of several nutrient signaling pathways
(Snf1/AMPK; Ras/cAMP-PKA; TORC1; GAAC), culminating in the
modulation of ARTs gene expression (Figs. 2A; 5B).

4.3. Endocytosis of amino acid transporters triggered by cell stress

Cycloheximide, rapamycin or PM structure disrupters, also
induce the endocytosis of several AA transporters (Table 1). Lyp1
downregulation by cycloheximide requires Ecm21, in contrast to
the lysine-induced internalization of Lyp1, which is dependent



Fig. 6. Schematic representation of Fur4 regulated endocytosis. Under uracil starvation conditions, Fur4 is localized at the PM, preferentially inside the MCCs [43] and the LID
sequence is in close contact with the intracellular loops of Fur4. Addition of uracil elicits conformational changes sensed by the LID, triggering Fur4 exit from MCCs and
exposing the degron sequence to Art-Rsp5 complexes. This ultimately leads to Fur4 ubiquitylation, internalization and degradation via the MVB pathway [41,43,189,190]. PM,
plasma membrane; Ura, uracil; OF, outward-facing; IF, inward-facing; MCC, membrane compartment containing the arginine permease Can1; Ub, ubiquitylation; P,
phosphorylation; ARTs, arrestin-related trafficking adaptors; LID, loop interaction domain; H+, proton. Dashed lines represent predicted regulation and signals (+) and (�)
represent activation and inhibition, respectively.
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on Ldb19 adaptor [15]. Also, cycloheximide-induced endocytosis of
Can1 requires the recruitment of Ldb19, which recognizes specific
domains of the N-terminus of this permease, inducing its ubiquity-
lation, internalization and degradation [15]. Cycloheximide-
triggered endocytosis of Tat2 depends on Ecm21, and to a less
extent on Crs2 [16]. Importantly, rapamycin, heat shock, oxidative
and alcoholic stresses also trigger ubiquitylation and downregula-
tion of Gap1, in a rRsp5 dependent manner , involving Bul1, Bul2,
Aly1 and Aly2 arrestins. These adaptors act mainly via
C-terminus of Gap1 and remain phosphorylated and possible
connected to 14-3-3 proteins. In contrast to Bul1/2 proteins, the
Aly1/Aly2 arrestins induce ubiquitylation exclusively on the K-16
residue [178]. Can1 and Lyp1 permeases also undergo internaliza-
tion in response to an increase in temperature or pH, a decrease in
osmolarity, or the presence of amphiphilic compounds. Yet, the
arrestins behind these processes have not been identified [178].
Notably, these stress conditions, which lead to an increase in PM
fluidity, have been associated with MCCs disassembly and, conse-
quently, result in increased ubiquitylation and degradation of some
APC permeases (reviewed in [43,44]). Membrane fluidity is partly
governed by the crowding effect of macromolecules, including
transport proteins, and therefore likely influenced by endocytosis
of membrane transporters [179]. Since PM fluidity is a major deter-
minant in yeast stress tolerance [180], endocytosis of AA trans-
porters, which are not directly linked to energy provision, could
have evolved as a strategy to increase phenotypic diversity in a
stressed population to increase the chance of surviving individuals.
5. Endocytosis of nucleobase transporters

In Fungi, pyrimidines and purines nucleobases transporters are
divided in three distinct families, namely the Nucleobase/Cation
Symporter 1 (NCS1) family [181–183], the Nucleobase Ascorbate
Transporter (NAT) family (also named nucleobase cation sym-
porter family 2 (NCS2)) and the AzgA-like family [184].
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Transporters belonging to these families also undergo endocytic
downregulation in response to different environmental signals.
Examples include the pyrimidine Fur-like transporters from S. cere-
visiae and A. nidulans and the purine transporters UapA, UapC and
AzgA from different Aspergillus species.

5.1. Endocytosis of Fur-like transporters

The S. cerevisiae uracil:cation symporter Fur4, belonging to the
NCS1 family, is one of the most extensively-studied transporters
at the level of regulation of cellular expression [185]. The structure
of Fur4 and other Fur-like transporters, is based on the crystal
structure of the Mhp1 bacterial homologue. These transporters
are composed of 12 TMS, the first 10 are involved in transport
catalysis, while the role of the last two remains elusive. The trans-
port associated with the 10 TMSs form two inverted repeats
arranged in a two-fold pseudosymmetrical axis and oppositely ori-
entated with respect to the PM. The N- and C-termini of all Fur
transporters are oriented towards the cytoplasm [41,186–188].
Importantly, the Fur4 N-terminal region contains a degron motif,
ubiquitylation acceptor sites K31 and K41, a PEST-like sequence,
and a Loop Interaction Domain (LID). The LID sequence senses con-
formational changes in the permease, and the degron is involved in
the accessibility to the ubiquitin acceptor lysines, being required
for ubiquitylation and endocytosis of Fur4 (see Fig. 6) [41,189,190].

Moreover, Fur4 was also found to be enriched in MCCs
[147,191,192] and, similarly to other mentioned members of APC
superfamily, association of Fur4 with these domains preferentially
stabilizes this transporter at the PM, in cells growing under low
uracil conditions [43].

Internalization of Fur4 is induced by both intracellular and
extracellular uracil [41,193], as well as by stress conditions that
disrupt PM lipid structure or H+ flux (e.g., heat shock, peroxide,
or alkali stress) [27,43] (Table 1).

Particularly, under uracil starvation conditions, Fur4 is stable at
the PM and preferentially localizes at MCCs [43]. Under these con-
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ditions, the N-terminal LID sequence is in close contact with intra-
cellular loops of Fur4. However, upon addition of uracil, each trans-
port cycle induces conformational changes (transiently shifts from
an OF to an IF conformation), which are sensed by the LID, expos-
ing its degron to ARTs and causing Fur4 internalization and degra-
dation. The interaction with the ubiquitylation machinery occurs
outside MCCs, allowing the access of Art-Rsp5 complexes
[41,43,189,190]. The signaling complexes/pathways behind Fur4
endocytosis remain to be elucidated (Fig. 6). This proposed LID-
degron mechanism, operating by the N-terminus portion, is also
supported by studies in Gap1 [162] and in bacterial LeuT trans-
porter [194]. Despite high uracil selectivity, Fur4 exhibits a degree
of redundancy in terms of a-arrestin recognition [16].

Fur4 endocytosis triggered by AA/NH4+ starvation was also
reported, but this process does not depend on Ecm21 arrestin, in
contrast to what was described for AATs [21]. Further details on
the molecular mechanisms need to be clarified.

In A. nidulans, Fur-like transporters, homologues of S. cerevisiae
Fur4 and other members of the NCS1 family, have been extensively
studied in relation to function, specificity, cellular expression and
evolution [13,38,39,187,188,195].

In particular, FurA (high-affinity allantoin transporter), FurD
(high-affinity uracil transporter) and FurE (low affinity transporter
of uracil, allantoin, uric acid, and related analogs) show endocytic
turnover in response to NH4

+ or excess of their substrates
[13,187,188], a process requiring their cytosolic terminal domains
[38,39]. Indeed, dynamic interaction of cytosolic FurE termini with
each other seems to play a role in its endocytosis, in a mechanism
dependent on transport activity of FurE. The proposed model sug-
gests that, in the absence of substrates, FurE C- and N- cytoplasmic
termini are in close contact. However, upon substrate addition,
FurE transiently switches from an OF to an IF conformation, expos-
ing residues/motifs that are further recognized by the endocytic
machinery [38]. Genetic and mutational analysis demonstrated
that FurE, similarly to Fur4, also contains a LID motif crucial for
specificity but, unlike Fur4, not essential for endocytosis. Instead,
FurE internalization requires, in addition to K521 and K522 as
ubiquitylation sites, a short acidic C-terminal sequence (501–503
AA residues; a possible ART-binding site) and elements present
in the distal part of the N-terminus (1–21 AA residues) [5,39].

5.2. Endocytosis of the high-affinity purine transporters

Purine transporters that are known to be regulated by endocy-
tosis include the high-affinity purines H+ symporters: UapA from A.
nidulans [182,196], UapC from A. nidulans [197] and A. oryzae
[198,199], all belonging to the NAT/NCS2 family, and AzgA from
A. nidulans [19], member of the AzgA-like family.

In contrast to filamentous fungi, S. cerevisiae does not possess
protein members of the NAT/NCS2 [181] or the AzgA families
[181,184].

UapA is a high-affinity, high-capacity uric acid/xanthine H+

symporter, containing 14 TM segments organized into two
domains, a gate domain (TMs 5-7, 12-14) and a core domain
(TMs 1-4, 8-11) [200].

The endocytosis of UapA transporter has been extensively char-
acterized in A. nidulans [182,196]. When UapA is at the cell surface,
it is ubiquitylated by HulARsp5 E3 ubiquitin ligase in response to
excess of substrate (xanthine or uric acid) or presence of preferred
N sources (NH4

+ or glutamine). This requires a highly selective ubiq-
uitin acceptor residue (K572) within the C-terminal region of UapA
[18]. Ubiquitylated UapA is, then, endocytosed and directed to the
MVB for vacuolar degradation. The substrate-elicited endocytosis
of UapA is dependent on UapA transport activity, unlike NH4

+-
elicited endocytosis [18]. A di-acidic motif (545-EVE-547) in UapA
C-terminal region (Table 1) is also critical for ArtA-mediated
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ubiquitylation and endocytosis of UapA induced by both signals:
addition of substrate or ammonium [19]. Also, it was shown that
N-terminal motifs of UapA, as well as the interaction of UapA with
lipids of the PM, are crucial for its oligomerization, traffic and func-
tion [201–203]. As already mentioned, UapA endocytosis, but also
that of several other studied nutrient transporters in A. nidulans,
was proved to be clathrin-dependent but independent of AP2,
which is considered to be the standard partner of clathrin [55]
(see Fig. 1B).

UapC is a high-affinity, moderate-capacity, uric acid-xanthine
transporter, but also imports hypoxanthine, adenine, and guanine
with lower affinity [204]. In both A. nidulans and A. oryzae species,
UapC is localized at the cell surface in cells growing in urea as sole
N source, but if NH4

+ is added to the medium, the transporter is
removed from the PM and targeted to the vacuole, after a few min-
utes [197–199].

AzgA is an adenine-hypoxanthine–guanine H+ symporter that
contains 14 putative TMSs and cytoplasmic N- and C-termini
[184]. AzgA localization at PM is not affected by addition of NH4

+,
however, this transporter undergoes substrate-induced downregu-
lation with the requirement of the ArtA adaptor [19]. Similar to
UapA transporter, the cytosolic termini of AzgA also contain di-
acidic motifs. Still, their role in AzgA endocytosis has not been
addressed yet [19].

The reported studies advanced the knowledge on the endocyto-
sis of purine transporters in Aspergillus species, still more studies
are required to understand the signaling pathways and proteins
involved in this process.
6. Endocytosis of metal micronutrient transporters

Metal ions such as copper (Cu), iron (Fe), zinc (Zn) and man-
ganese (Mn) are essential micronutrients for all living organisms.
They function as co-factors for different enzymes that participate
in crucial biological processes with impact on growth, metabolism
and physiology of yeast. Nevertheless, when present at high levels,
these micronutrients are toxic (reviewed in [205–207]).

In S. cerevisiae, several PM metal transporters are reported to be
regulated by endocytosis, including the high-affinity Cu trans-
porter Ctr1, the high-affinity reductive Fe transport system
Fet3-Ftr1, the high-affinity Zn transporter Zrt1, and the broad-
specificity metal ion transporter Smf1 [58,60,106,208–214]
(Table 1).

To maintain a constant proton-motive force (pmf) with changes
in extracellular pH, in many organisms a charge difference (Dw)
over the PM is established [215]. At pH values above ~ 3, represent-
ing the physiological conditions of S. cerevisiae, this Dw results in
an intracellular environment that is negatively charged compared
to the outside [216–218], providing a driving force for protons
and other cations such as metal micronutrients. Therefore, the
rapid internalization of metal and other cation transporters is an
efficient cellular mechanism involved in metal-ion homeostasis,
and it is likely to play an important role to prevent toxic intracel-
lular accumulation of these compounds in S. cerevisiae. Regarding
Aspergilli, to the best of our knowledge, the endocytic regulation
of metal ion transporters has not been reported in these organisms.
6.1. Endocytosis of copper transporters

Cu import is mediated by the high-affinity Ctr1 transporter.
Studies based on human Ctr1 [219,220] suggest that S. cerevisiae
Ctr1 is composed by three monomers which are organized in a
channel-like architecture. Each monomer is composed by 3 TMSs,
an extracellular N-terminus (rich in multiple methionine motifs),
and a cytosolic C-terminal domain [221–223].
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In the presence of Cu-limiting concentrations (medium lacking
Cu or containing Cu-chelating compounds), Ctr1 is localized at the
PM, however, upon extracellular Cu addition (50 mMCuSO4), Ctr1 is
rapidly endocytosed and delivered to the vacuole for degradation
[208]. Ctr1 internalization appears to be preceded by its Rsp5
mediated ubiquitylation at K340 and K345 residues (present at
the C-terminus), which seems to be mediated by the ARTs Bul1/2
[208]. Endocytosis of Ctr1 does not appear to require an active
transporter, since a mutant version lacking detectable Cu transport
activity was still ubiquitylated, internalized and degraded [208]. A
subsequent work by Wu and collaborators [224] challenged the
view that Ctr1 is endocytosed by excess copper. This report, which
did not include fluorescence microscopy assays, was based on
genetic analysis using mutants in the endocytic pathway and a
rsp5/npimutant. The authors propose, instead, that, in the presence
of excess copper, Ctr1 is rapidly inhibited upon copper binding, by
a structural remodeling mechanism, dependent on the C-terminal
cytosolic tail of Ctr1 [224]. However, Liu and co-workers [208]
used GFP under the control of a CTR1 native promoter [208],
whereas Wu et al. studied Ctr1-GFP expression under a TEF2 pro-
moter [224], which most likely resulted in the overexpression of
the transporter. These and other differences in the experimental
procedures could account for the conflicting reports, which need
further clarification.

6.2. Endocytosis of iron transporters

In S. cerevisiae, the high-affinity iron (Fe) uptake complex, Fet3-
Ftr1, consists of the multicopper oxireductase Fet3 (which oxidizes
ferrous Fe2+ to ferric iron Fe3+) and of the ferric iron permease Ftr1,
responsible for the subsequent uptake of Fe3+. The protein struc-
ture of Ftr1 is predicted to contain 7 TMSs, while the Fet3 only con-
tains 1 TMS. Both proteins contain an extracellular N-terminus and
a cytosolic C-terminus, with both C-termini in close proximity
[225,226]. Studies from Kwok and colleagues support the idea that
Fet3p-Ftr1p function in a channeling mechanism [227].

This heterodimeric complex is constitutively internalized
when yeast cells grow under intermediate concentrations of
Fe (10–100 mM); however, a dynamic population of Fet3-Ftr1 is
kept at the PM via endocytic recycling [210] (see Fig. 1A,
Endosome-to-PM recycling pathway). An endocytic recycling motif
(319–328 AA residues) present at the C-terminus of Ftr1 was iden-
tified and seems to be specifically recognized by a sorting nexin
(Grd19p/Snx3p) that functions as an adaptor to link protein cargo
to the cellular recycling machinery (e.g., retromer complex) [210].
In contrast, addition of high Fe concentrations (1.0 mM) to
Fe-starved cells (growing in a medium containing the Fe chelator
bathophenanthroline disulfonate (BPS)) triggers the internalization
and vacuolar degradation of the entire complex, in a mechanism
dependent on Fet3-Ftr1 ubiquitylation and on an active Fe trans-
port system, [209]. It seems that the fate of this protein complex
(i.e., its recycling or degradation) is dependent on Fe levels. How-
ever, further studies are needed to clarify these processes.

6.3. Endocytosis of zinc transporters

In Zn shock conditions, Zn homeostasis is reported to depend
mostly on the increased expression of the Zrc1 vacuolar Zn
transporter but also on the regulated endocytosis of the PM high-
affinity Zn transporter Zrt1. This transporter contains 8 predicted
TMSs, with both N- and C-termini localized in the extracellular
space and a very large intracellular loop connecting the TMS3 with
TMS4 [228,229]. When Zn-starved cells (growing with Zn chelator
EDTA) are treated with high concentrations of extracellular Zn
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(1 mM-2 mM), Zrt1 is ubiquitylated at K195 (localized in the large
cytoplasmic loop between TMS3 and TMS4), internalized from the
PM and targeted for vacuolar degradation [211–213]. A region
between TM3 and TM4 (205-211 AA residues) seems to be crucial
for Zrt1 ubiquitylation and inactivation. However, the fusion of this
region to other PM transporters, such as Pma1 and Irt1, does not
result in their ubiquitylation and degradation, implying that this
Zrt1 domain must adopt a certain conformation to be functional
[213]. Endocytic inactivation of Zrt1 seems to, not only increase
tolerance to Zn, but also to the non-essential toxic metal cadmium,
a substrate for Zrt1, which also triggers the transporter degrada-
tion. This process protects cells from cadmium accumulation and
toxicity, preventing its uptake by Zrt1 [211,213].
6.4. Endocytosis of a broad-specificity metal ion transporter

Smf1 is a divalent metal ion transporter responsible for the
uptake of manganese, but also Fe, Cu and other metals like cad-
mium, cobalt and nickel. This high-affinity transporter is present
at the PM in manganese starvation conditions [106]. Several sig-
nals have been demonstrated to trigger Smf1 endocytosis and
degradation, which include physiological concentrations of Mn
(described as non-toxic metals concentrations) [214,230], toxic
levels of Mn [60] and cadmium [106]. When cells grown in Mn
starvation conditions are treated with physiologic Mn levels (5–
10 mM), a bulk of Smf1, but not all of the protein, is degraded in
the vacuole in a mechanism dependent on the E3 Ub ligase Rsp5,
the Transferrin-REceptor like proteins Tre1/2 and the membrane
protein Bsd2. The ongoing degradation of Smf1p keeps the trans-
porter at a low level, preventing the transport of potentially toxic
metals while sufficient for essential manganese uptake [231]. This
model of ‘‘basal MVB sorting” proposes that, within the cell, much
of the newly synthetized Smf1 is recognized by a complex formed
by Tre1/2 and Bsd2 adaptors, which have PPxY motifs, triggering
Rsp5-mediated ubiquitylation of Smf1. Ubiquitylated Smf1 enters
the MVB pathway and is delivered to the vacuole where it is
degraded [60,214,232]. Under Mn starvation conditions, the
Tre1/2-Bsd2 complex fails to recognize Smf1 and this transporter
is directed to the cell surface [214].

Toxic levels of Mn (>5 mM) also lead to Smf1 degradation [60],
including both cell surface Smf1 endocytosis and intracellular Smf1
degradation via the VPS pathway (from the Golgi to the MVB, see in
Fig. 1) but independent of Bsd2/Tre proteins. While Smf1 downreg-
ulation triggered by physiological Mn is dependent on metal trans-
port activity, Smf1 downregulation during chronic Mn toxicity is
not dependent on a functional or active transporter [60,214].

Cellular exposure to toxic cadmium ions (0.1 mM cadmium
chloride) also induces Smf1 downregulation. This process is depen-
dent on Smf1 ubiquitylation, which is mediated by the Rsp5 ubiq-
uitin ligase and Crs2 or Ecm21 arrestin proteins. Phosphorylation
of Smf1 at the N-terminus is required for binding of Ecm21,
although this post-translational modification does not seem to be
triggered by Cd stress. After binding, Ecm21 recruits Rsp5 Ub
ligase, which leads to Smf1 ubiquitylation, at K33 and K34 resi-
dues, and its subsequent targeting for vacuolar degradation [106].

Besides the substrate-induced internalization of metal trans-
porters, AA and N starvation conditions have also been shown to
trigger endocytosis of Ctr1 and Ftr1 metal transporters [21,49].
This process also requires Rsp5-mediated ubiquitylation but it is
independent of TORC1 pathway [49]. Further experimental evi-
dences are needed to confirm whether or not starvation-induced
downregulation of Ftr1 and Ctr1 relies on the GAAC pathway, as
observed for some fAATs (Can1, Mup1, Lyp1 and Tat2) [21].



Fig. 7. Summary of the main players, modifications and mechanisms involved in the regulation of nutrient transporters endocytosis.
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7. Biotechnological relevance of nutrient transporter
endocytosis

The concept of the cell factory is central to microbial biotech-
nology. Cell factories have been designed for the production of
both bulk and high value products, food processing, and the pro-
duction of pharmaceuticals. In the past decades, different strate-
gies have been progressively developed to improve the design of
these cell factories (reviewed in [233]). The capacity to experimen-
tally modify the steady-state/activity of nutrient transporters at
the PM could be an important complementary strategy [234], as
these are critical for the concentration of substrates inside the cell,
for the secretion of products by the engineered strains and have
the potential to impact the titer, rate and yield (TRY) of industrial
processes. To achieve high titers (T) without reaching toxic intra-
cellular concentrations, the final production phase in processes
for molecules such as organic acids benefits from the use of
energy-driven transport systems [216]. Secondly, limited space in
plasma membranes [98,99] and competition for this space
between endogenous and overexpressed transporters [100] has
the potential to limit the maximal activity of the engineered trans-
port systems. Therefore, to achieve the highest possible conversion
rates (R) of substrate to product, it is important that transporters
are only expressed and present at the PM when required for pro-
duct synthesis or for an (essential) metabolic function. Energetic
coupling of uptake, conversion and export of substrates and prod-
ucts often impacts the overall product yield [235]. Therefore,
replacement of energy-dependent transport systems by facilitated
diffusion has the potential to substantially increase product yields
(Y) in processes where substrate is abundant and/or the product
non-toxic [236].

As exemplified in this review, endocytosis of transport proteins
plays an important role in survival under the dynamic growing
conditions found in nature. Similarly, in the inherently dynamic
conditions found in industrial fed-batch processes, understanding
and targeted engineering of endocytosis is an essential step
towards the establishment of robust industrial microorganisms.
For example, improved stabilization of specific S. cerevisiae glucose
transporters could prevent ATP expenditure by limiting their turn-
over due to dynamic conditions found in large-scale bioprocesses
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[237]. Other studies suggested that stabilization of glucose trans-
porters at the PM, after glucose depletion, could be an optimization
strategy to facilitate the use of other C sources [234,238].

Furthermore, identification of specific a-arrestins, that mediate
PM nutrient transporters turnover or recycling, as well as the
specific motifs of the transporter where a-arrestins bind, may
allow the design of more stable strains by either maximizing the
uptake of specific nutrients or the extrusion of the unwanted
metabolites or products of interest. For instance, mutation of CreD,
which codes for an arrestin-like protein, inhibited the glucose-
induced endocytosis of MalP, a major maltose permease of A. ory-
zae, ultimately resulting in increased production of amylolytic
enzymes [239].

Aspergillus species are of great biotechnological importance for
the production of high-value industrial and medical products (such
as enzymes, organic acids and secondary metabolites) (reviewed in
[240]). Therefore, expanding our knowledge on the Aspergillus
fungi, namely in the field of nutrient transporters, post-
translational regulation and in the identification of the proteins
involved in this process, may widen the molecular toolbox avail-
able to the metabolic engineer.

Few reports combine robust physiological data with cell biology
analysis. An improved and integrated understanding of these pro-
cesses is relevant from a fundamental point of view (given the role
of transporters as key sources of C, N and energy for microorgan-
isms) but also from an applied perspective, considering their
potential for the biotechnological field.

There is surely much untapped potential for the continued engi-
neering of post-translational regulation of nutrient transporters
and a strong motivation for the characterization of the proteins
involved.
8. Conclusions and future perspectives

Endocytosis has a physiological role in the homeostasis of nutri-
ents, and the mechanisms underpinning the reciprocal regulation
of endocytosis and metabolism are now being unveiled.

The multitude of nutrient transporters known to be regulated
by endocytosis highlights the critical importance of this regulation



Cláudia Barata-Antunes, R. Alves, G. Talaia et al. Computational and Structural Biotechnology Journal 19 (2021) 1713–1737
for the adaptation of cells to their environment and, consequently
for their existence.

Endocytosis is regulated on several levels, including posttrans-
lational modifications, recruitment of adaptor proteins, substrate
transport, conformational changes, dynamic interaction between
cytosolic termini and/or their loops, as well as the proper interac-
tion and organization of the transporters within specific domains
(e.g., MCCs) of the PM lipid bilayer (Fig. 7). The many regulatory
levels also reinforce the notion that this process must be fine-
tuned for cell survival.

The dysregulation of genes involved in the endocytic pathway is
associated with a wide array of growth defects, connected to the
loss of ability to quickly respond and adapt to nutrient fluctuations
or stresses.

Further investigations are necessary to clarify the roles of each
regulatory circuit and how they communicate with each other and
possibly with yet unidentified regulators. The continued study of
the function and regulation of PM eukaryotic nutrient transporters
is invaluable for their broad application as targets in biotechnolog-
ical and medical fields, including their use as potential drug deliv-
ery systems in future therapies.
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