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Abstract

While deep neural networks show great potential
for being part of safety-critical applications such
as autonomous driving, covering their sensitivity to
illumination shifts by adding training data is of-
ten non-trivial. The undesired illumination shift
between train and test data can be addressed by
domain adaptation methods. Recent work [9] has
demonstrated performance improvements with a
novel zero-shot domain adaptation setting by in-
troducing a physics-based visual inductive prior -
a trainable Color Invariant Convolution (CIConv)
layer - aiming to transform its input to a more do-
main invariant representation.
We compare the performance of image classifica-
tion for day-night domain adaptation in the zero-
shot and the unsupervised setting, and explore the
effectiveness of using CIConv in both settings. We
show that unsupervised domain adaptation reduces
the day-night distribution shift similarly to CIConv
in the zero-shot setting. We demonstrate improved
performance when CIConv and unsupervised day-
night domain adaptation are combined.

1 Introduction
Image classification is one of the tasks in which deep neu-
ral networks excel. The process of correctly assigning a
label to an image can be useful in a lot of applications.
For a neural network to be used in safety-critical computer
vision applications such as autonomous driving, it is es-
sential to predict labels reliably while dealing with vary-
ing recording conditions. Illumination shifts, caused by for
example the time of day or weather, are recording condi-
tions deep image recognition methods are sensitive to [1; 2;
15]. Adding extra data for training a model to sufficiently im-
prove its robustness to illumination shifts is often non-trivial
as it may be expensive, time-consuming, or even impossible
to obtain samples for all possible scenarios in advance.

Instead of adding more data, a visual inductive bias can be
used. A great example of such a bias is the Convolutional
Neural Network (CNN), using the convolution operator for
translation invariance. This saves a massive amount of train-

ing data as the network no longer requires samples in different
locations.

An illumination shift between train and test data can be ad-
dressed by domain adaptation methods [13; 14]. Recent work
[9] introduced a novel zero-shot domain adaptation method
for addressing day-night domain shifts by exploiting learn-
able photometric invariant features as a physics-based vi-
sual inductive prior; Color Invariant Convolution (CIConv).
CIConv is a learnable color invariant CNN layer that aims
to transform the input to a domain invariant representation.
Several color invariants were evaluated and performance im-
provements on the image classification task were demon-
strated in the day-night domain adaptation setting by [9].

The zero-shot setting contrasts the more typical approach
of unsupervised domain adaptation, where unlabeled samples
from the test set are exploited during training to promote the
emergence of ”deep” features that are invariant with respect
to the shift between the domains [4]. The use of the zero-shot
setting is motivated by [9] by its removal of any reliance on
the availability of test data.

In this paper we assume that test data is readily available,
which enables the use of unsupervised domain adaptation
methods. We use a well-researched method for using
unsupervised domain adaptation with a unified architecture
using standard backpropagation training [5]. We show that
this method and CIConv similarly aim to reduce a day-night
distribution shift and we show that both methods can be
implemented in a single architecture. We therefore compare
the performance of image classification for day-night domain
adaptation in the zero-shot and the unsupervised setting, and
explore the effectiveness of using CIConv and unsupervised
domain adaptation together. We formulate the following
research question:

What is the effectiveness of CIConv in an unsupervised
setting for day-night domain adaptation?
With two subquestions being:

• How does the zero-shot setting with CIConv compare to
the unsupervised setting (without CIConv)?

• What is the effect of using CIConv in an unsupervised
setting?

We have the following contributions: (i) We evaluate and
compare the zero-shot and the unsupervised setting for day-
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night domain adaptation; (ii) We evaluate the effectiveness
of using CIConv in both settings; and (iii) show and discuss
improved performance over both CIConv and unsupervised
domain adaptation by introducing their combined setting.
All datasets and code will be made available on our project
page.1

2 Related work
Unsupervised Domain Adaptation The task of training
a model on a source domain in such a way that it performs
acceptably on a target domain that is different but related is
known as domain adaptation [4]. This is used as an alternative
to the process of gathering and annotating sufficient training
samples to cover the target domain, which can be non-trivial
or even impossible. This paper addresses the domain shift
of a training dataset with images only taken in the daytime
and a testing dataset containing images in the nighttime. As
we assume unlabeled nighttime samples are available during
training, we focus on unsupervised domain adaptation (UDA)
methods.

Interest in UDA has surged in recent years, resulting in the
emergence of many new algorithms. Large-scale experimen-
tation has been done by [12] on many UDA algorithms known
as in 2021. Because of the assumption of UDA that there
are no labeled samples from the target domain, there is no
straightforward way of properly comparing UDA algorithms,
but [12] shows the difference in the accuracies to be smaller
than previously thought or in some cases even insignificant.

Since we are not particularly interested in the performance
of the UDA method itself but rather in whether a UDA
method can be combined with color invariants to improve
performance, we will pick a well-known method that will
be simple to implement in combination with CIConv. [4]
describes an approach that involves augmenting any feed-
forward model with some standard layers and a simple new
gradient reversal layer, resulting in a domain-adversarial neu-
ral network (DANN). The DANN performs feature learning,
domain adaptation, and classifier learning in a unified archi-
tecture with a single learning algorithm (backpropagation),
we therefore consider this approach to be suitable for this
research.

Color invariants To improve invariance to illumina-
tion changes in computer vision, research has been done on
physics-based reflection models. Early work includes invari-
ants derived from the Kubelka-Munk reflection model [9,10],
from which invariant edge detectors have been derived by [6].
Color invariants have been widely used in classical computer
vision applications, but research about their use in deep learn-
ing settings is limited.

Therefore, [9] has introduced a learnable color invariant
CNN layer (CIConv), evaluated several color invariants in a
day-night domain adaptation setting, and demonstrated im-
proved performance on tasks related to autonomous driving.
In this paper we will use CIConv with the color invariant [9]
reported as performing the best in an unsupervised domain
adaptation setting.

1https://gitlab.tudelft.nl/attilalengyel/brp-ciconv

3 Method
3.1 CIConv
A learnable Color Invariant Convolution (CIConv) layer as
introduced by [9] can be used as the input layer to any CNN to
transform the input to a domain invariant representation. As
shown by [9], CIConv reduces the distribution shift between
the source and target domain, improving the performance on
the target domain.

CIConv implements color invariant edge detectors from
[6], derived from the image formation model based on the
Kubelka-Munk theory [8] for material reflections. The
Kubelka-Munk theory for material reflections describes the
spectrum of light E reflected from an object in the viewing
direction as

E(λ, x) = e(λ, x)((1− ρf (x))
2R∞(λ, x) + ρf (x)) (1)

where x denotes the spatial location on the image plane, λ
the wavelength of the light, e(λ, x) the spectrum of the light
source, R∞ the material reflectivity and ρf the Fresnel re-
flectance coefficient. The partial derivatives of Eq. 1 with
respect to x and λ, are denoted by Ex and Eλ.

By making certain assumptions to simplify parts of Eq. 1,
various invariant representations can be derived that can be
implemented in the CIConv layer. Five invariant representa-
tions, each invariant to a different combination of types of il-
lumination changes, were evaluated and compared in the con-
text of day-night domain adaptation by [9]. We will use the
color invariant reported by [9] as performing the best, defined
as
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where λ is the spectral derivative, x is the spatial derivative of
Eq. 1. Spatial derivatives for the y direction follow directly
from the ones given for the x direction.

The Gaussian color model [6] is used to estimate E, Eλ,
Eλλ, as

[
E(x, y)
Eλ(x, y)
Eλλ(x, y)

]
=

[
0.06 0.63 0.27
0.3 0.04 −0.35
0.34 −0.6 0.17

][
R(x, y)
G(x, y)
B(x, y)

]
(3)

where x, y determine the pixel location in the image. The spa-
tial derivatives Ex and Ey are then calculated by convolving
E with a Gaussian derivative kernel g with standard deviation
σ, i.e.

Ex(x, y, σ) =
∑
t∈Z

E(t, y)
∂g(x− t, σ)

∂x
(4)

and similarly for Ey , Eλx, Eλλx, Eλy , Eλλy . CIConv is de-
fined as
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Figure 1: The architecture to perform the unsupervised domain adaptation by backpropagation method we use to perform our experiments,
as proposed by [4]. It is composed of a standard feed-forward architecture, consisting of a feature extractor (green) and a label predictor
(blue), augmented by a gradient reversal layer (GRL) that connects a domain classifier (red) to the feature extractor (green).

CIConv(x, y) =
log (CI2(x, y, σ = 2s) + ϵ)− µS

σS
(5)

with CI being a color invariant, in our case the color invariant
W defined as Eq. 2, µS and σS the sample mean and standard
deviation over log (CI2 + ϵ), and ϵ a small term added for
numerical stability.

The σ parameter in Eq. 4 determines the scale at which an
image is convolved; a small σ will result in a detailed edge
map but is more sensitive to noise, a large σ is more robust to
noise but is more likely to miss important edges. Experiments
by [9] have shown that making the scale parameter S in Eq.
5 learnable results in σ converging to a task-specific optimal
value.
The resulting Color Invariant Convolution (CIConv) is a layer
that outputs a single channel representation onto which sub-
sequent convolutional layers can be stacked.

3.2 Unsupervised Domain Adaptation by
Backpropagation

We use an approach to unsupervised domain adaptation of
deep feed-forward architectures proposed by [4]. This ap-
proach achieves adaptation by aligning the distributions of
features across the two domains through standard backpropa-
gation training.

It works by having a model predicting for each input x its
corresponding label y and its domain label d ∈ {0, 1}. d is
a binary variable indicating whether an input is from the la-
beled day training set (d = 0) or from the unlabeled night test
set (d = 1). We define three mappings: a feature extractor
Gf with parameters θf , a label predictor Gy with parameters
θy and a domain classifier Gd with parameters θd. Gf and
Gy together form a standard feed-forward architecture; we
aim to minimize the label prediction loss on the day training
set and therefore their parameters θf and θy are optimized

during training. This leads to discriminativeness of the fea-
tures which leads to good performance on the samples of the
day domain. At the same time, we want to make the fea-
tures domain-invariant to also ensure good performance on
the samples of the night domain. This is done by simultane-
ously seeking:

1. Parameters θf that maximize the loss of the domain clas-
sifier Gd; maximum loss meaning that the two feature
distributions are indistinguishable and therefore predict-
ing the domain label d ∈ {0, 1} is as accurate as ran-
domly guessing, provided that the parameters θd have
been optimally trained.

2. Parameters θd that minimize the loss of the domain clas-
sifier Gd; minimized loss meaning that Gd is trained to
discriminate between the two feature distributions in an
optimal way.

Altogether this leads to the desired promoted emergence of
features that are both discriminative for the image classifica-
tion task and invariant with respect to the day-night domain
shift.

Any feed-forward architecture that is trainable by back-
propagation can be augmented with a domain classifier and
a special gradient reversal layer to implement this idea, as
proposed by [4]. This gradient reversal layer connects the
feature extractor to the domain classifier and reverses the gra-
dient during backpropagation training by multiplying it by a
negative scalar. The resulting architecture is called a Domain-
Adversarial Neural Network (DANN).

Since this method leaves the input unchanged during for-
ward propagation and CIConv implemented in the zero-shot
setting conforms the type of architecture this method can be
used on, we can conclude CIConv can be implemented in
combination with this method of unsupervised domain adap-
tation.



Figure 2: Samples from day (source domain) test set (top) and the night (target domain) test set (bottom) of the CODaN dataset [9] we used
in our experiments.

4 Experiments

We perform experiments in both the zero-shot setting and the
unsupervised domain adaptation setting. For the zero-shot
setting, we run the same classification experiments as per-
formed by [9] but with slightly adjusted settings for consis-
tency across all of our experiments. These zero-shot experi-
ments are done to gather baseline results and to further verify
the performance improvements for classification by CIConv
reported by [9].

4.1 Zero-shot setting

We use the Common Objects Day and Night (CODaN)
dataset, as presented by [9]. It consists of natural images
from 10 common object classes recorded in both day and
night time. It contains a daytime training set of 1,000 samples
per class, a daytime validation set of 50 samples per class,
and separate day and night test sets of 250 samples per class.
We disregard 175 samples per class of the night test set that
will later be used for experiments in the unsupervised domain
adaptation setting to allow for fair comparisons of the test
scores. CODaN is composed of parts of the ImageNet [3],
COCO [10], and ExDark [11] datasets. Day and night test set
samples are shown in Fig 2.

A baseline ResNet-18 and its color invariant version with
the CIConv layer with invariant W will be used for training.
We use the implementation of the classification experiments
by [9]. The training is done for 175 epochs with a batch size
of 64, using SGD with momentum 0.9, weight decay 1e-4,
and an initial learning rate of 0.05 with stepwise reduction
by factor 0.1, step size 50. Data augmentation is performed
in the form of random horizontal flips and random rotations.
We also apply random brightness, contrast, hue, and satura-
tion augmentations. For the sake of memory usage, we reduce
the resolution of the entire dataset by half, from 224x224 to
112x112. This will affect the results as opposed to using the
original resolution but will still allow for fair comparisons to
be made. Table 1 shows the classification accuracies of the
two models averaged over three runs. To show how the resiz-
ing affects the performance, the classification accuracies of
both models on the CODaN dataset with its original resolu-
tions are also shown.

Method Day Night

Without CIConv (resized) 68.9± 0.3 38.3± 0.4

With CIConv (resized) 69.8± 0.7 49.4± 0.3

Without CIConv (no resizing) 80.7± 0.9 49.3± 1.1

With CIConv (no resizing) 81.8± 0.3 61.6± 0.6

Table 1: CODaN classication accuracies of a ResNet-18 architecture
averaged over three runs.

4.2 Unsupervised Domain Adaptation

We again use the CODaN dataset. For the unlabeled target
distribution needed to perform unsupervised domain adapta-
tion during training, we use the 175 samples of each class of
the night test set that we disregarded in 4.1.

A Domain-Adversarial Neural Network (DANN) consist-
ing of the baseline ResNet-18 architecture used in 4.1, ex-
tended with a domain classifier connected to the feature ex-
tractor via a gradient reversal layer will be used for training.
Since any feed-forward architecture that is trainable by back-
propagation can be extended to perform unsupervised domain
adaptation by backpropagation [4], the CIConv layer with in-
variant W can be implemented into the DANN in the same
way as the color invariant version of the ResNet-18 in 4.1.

We use the DANN implementation of the unsupervised do-
main adaptation by backpropagation method [4] by [7] with
adjustments to work with the CODaN dataset and to allow for
the implementation of CIConv.

Since the models use significantly more memory for train-
ing compared to the models from experiment 4.1, our envi-
ronment does not allow training on CODaN in full resolution,
hence the resizing by half in both experiment 4.1 and this ex-
periment. Furthermore, the same settings are used as in 4.1.
The same data augmentation is also performed on the night
test set that is used for training. Table 2 shows the classifica-
tion accuracies of the two models, averaged over three runs.



Method Day Night

Without CIConv (resized) 68.4± 1.2 49.2± 1.5

With CIConv (resized) 69.7± 0.5 58.2± 0.4

Table 2: CODaN classication accuracies of a DANN ResNet-18 ar-
chitecture averaged over three runs.

Figure 3: Accuracy of the domain classifier during the training of a
ResNet-18 DANN on the CODaN dataset with CIConv implemented
(orange) and without CIConv implemented (blue).

5 Discussion
We performed experiments to compare the performance of
image classification for day-night domain adaptation in the
zero-shot and the unsupervised setting, and explore the effec-
tiveness of using CIConv and unsupervised domain adapta-
tion together. The effectiveness of CIConv in the zero-shot
setting was already demonstrated by [9] and this was con-
firmed by our experiments (see Table 1). We showed that
the unsupervised domain adaptation (UDA) method we used,
chosen based on representativeness of the UDA research field
and consistency across our experiments, performed similar to
CIConv in the zero-shot setting (see Table 1 and 2). Interest-
ing to see was that our experiments of CIConv implemented
in the unsupervised domain adaptation setting performed sig-
nificantly better over the other experiments (see Table 2).

The foundation of CIConv is based on certain assumptions
of lighting conditions that most natural scenes do not meet;
e.g. reflections being purely matte, all materials being non-
transparent and the scene having a single, spatially uniform
light source. This is done for simplification of Eq. 1 to de-
rive several color invariant edge detectors that can be imple-
mented in CIConv. These color invariant edge detectors, each
having different invariance properties, were evaluated in the
zero-shot setting for day-night domain adaptation by [9], the
best-performing was chosen to be used in our experiments.
Fig. 3 shows that the domain classifier is still able to detect
a small domain shift when CIConv is used, at the beginning

of training with an accuracy of around 60% which gradually
drops towards 55%. This shows how CIConv is not able to
transform the input to a fully domain invariant representa-
tion, since that would lead to the domain classifier performing
equally well as a random binary number generator (see 3.2).
It is unclear to what extent the gradual improvement is caused
by CIConv learning the optimal scale parameter or UDA be-
ing able reduce the remaining domain discrepancy. However,
the significantly better results over CIConv in the zero-shot
setting imply that UDA plays a significant role in minimiz-
ing the discrepancy between feature distributions for the day
and night domain. Further experimentation, for example run-
ning the experiments with different invariants or parameters
for CIConv, could be done to further evaluate the role of UDA
when CIConv is used.

Fig. 3 shows a surprisingly fast drop of the accuracy of the
domain classifier in the experiments for the unsupervised set-
ting without CIConv, from high accuracies for the first 5-10
epochs to ranging between 50-55% for the rest of the train-
ing. This would mean that UDA is able to quickly minimize
the discrepancy between feature distributions for the day and
night domain and proceeds training in a standard way by min-
imizing the label prediction loss (see 3.2). However, the re-
sults still show a significantly lower performance on the night
domain. This leads us to question the representativeness of
the test samples we used during training for the night do-
main as a whole. Due to time constrains we used a relatively
small dataset, resulting in a small amount of samples from
the target domain that could be used for training the models
in the unsupervised domain adaptation setting from 4.2. This
could mean that the samples from the night domain for train-
ing were lacking representativeness for the samples from the
night domain for testing; that a significant shift was present
between train and test data from the target domain. This leads
us to be rather inconclusive about the effectiveness of CIConv
in the unsupervised domain adaptation setting; it could be be
that UDA will benefit from using a larger dataset to an ex-
tent that it will outperform the combination of UDA and CI-
Conv. Further experimentation with larger datasets is needed
to draw more conclusive remarks.

Due to memory limitations of our experimentation envi-
ronment we could not run the UDA experiments on CODaN
without resizing the images. We ran experiments in the zero-
shot setting for both the resized and original CODaN dataset
to show that the resizing leads to significantly lower results
(see Table 1). However, CIConv showing a similar ratio be-
tween the performances on the day and night domain in both
experiments leads us to assume that resizing has a negligible
influence on the effectiveness of CIConv. Further experimen-
tation without resizing is needed to prove this assumption.

Unsupervised domain adaptation in combination with CI-
Conv is a promising method for day-night domain adapta-
tion. Although we remain inconclusive about to what extent
CIConv is effective in the unsupervised setting, we showed
promising performance improvements with our experiments.
We therefore hope that this paper inspires future research on
combining physics priors with unsupervised domain adapta-
tion methods.



6 Responsible Research
The research field of deep learning is prone to ethical prob-
lems and hence requires proper discussion, as will be done in
this section. This paper discusses methods for improving the
potential of neural networks to be used in safety-critical appli-
cations, such as autonomous driving. It is important to note
that the discussed methods are not ready to be directly im-
plemented and used in any safety-critical application without
proper tweaking and testing. This paper only demonstrates
(improvements in) performance and does not give any guar-
antee of safety when being used in the real world. Many
works from other authors are used to conduct this research,
for which proper credit is important. The data used in this
research consists of a single dataset, the Common Objects
Day and Night (CODaN) dataset introduced by [9] which is
publicly available and composed of other public and well-
referenced datasets. All of the code used to run experiments
from other repositories has been properly credited and refer-
enced.

6.1 Reproducibility
The dataset used in this research, CODaN, is publicly avail-
able for anyone to use and its repository contains instructions
for implementation. All of the code used to run experiments
is available on our repository1. To reproduce the experiments
with the same or similar results we refer to 4.1 and 4.2, in
which relevant parameters, data augmentation settings, etc.
are discussed. Since the majority of the code is based on
other repositories, we refer to these repositories if anything
does not work as intended.
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