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Preface

As the mathematician Steven Strogatz puts it, “Calculus has a penchant for peddling useful
fiction”. My discovery of this truth came through my research work on this thesis project.
The desire to work in computational sciences, that too with an emphasis on modelling and
simulation, grew within me during my undergraduate studies in India. The reason was not
very profound, it was simply the ability to study a varied number of sciences without any
expensive equipment, just a laptop and a programming compiler. This humble origin of my
motivation is what prevents me from appropriating the noble intents of great physicists and
mathematicians to my work when writing this report. However, my interest in simulations
grew many-fold after I attended Prof. Gerritsma’s course on Discretization Schemes during my
graduate programme at TU Delft.

The coursework assignment opened my mind to the many exciting possibilities in this field.
To imagine that such a realization can dawn upon an examination of something as abstract
and dry as a mesh discretization scheme is an indication to how misled my understanding
of this field was. What was even more surprising was the understanding of how flawed and
simplistic the pedagogy of tensor and vector calculus taught to every freshman undergraduate,
really is. The stark difference between what is taught and what ought to be, is enough to turn
any engineer into a rebel (of sorts). It was appropriate, I suppose, that my introduction to
the theory of differential geometry came through William Burke’s Samizdat (a Russian word
for any banned dissident literature) on Applied Differential Geometry. Though a cumbersome
book for sure, the revelations, when they strike you, are truly amazing.

Coming back to the useful fictions—by the early beginning of my research, it was clear
to me that the craft of devising computational schemes were hopelessely flawed without any
representation of the structure of the differential equations they aimed to model. And, to
borrow from a British phrase, the tradition of modeling true geometric-structure of governing
equations was a custom more honored in the breach when it came to many computational
methods. As far the scope of my work was concerned, the serial offenders were the finite
element methods, closely followed by their less sophisticated cousins, the volume and difference
schemes.

My work through this thesis project is part of a broader, concerted research effort to address
this gap in the synthesis mechanism of numerical schemes. Following from the early doctoral
work of Jasper Kreeft, the Mimetic Spectral Element Methods (MSEM) have undergone several
iterations, increasing its scope and applications. The latest addition to this iteration came
through the work of Joël Fisser by acheiving pointwise-exact mass and momentum conservation
on orthogonal grids using a hybrid MSEM. My task was to implement an extension of this
method to curvilinear meshes with no loss of the pointwise exact conservation. Though this
was a fairly well-defined aim for my research, I also had the opportunity to learn from my
colleagues in the research group, specially Wessel Niek Weijers and Sebastiaan van Schie. The
possible areas of future extension of my research work has certainly informed my approach to
engineering solutions for implementation problems.

Apart from addressing gaps in the applied mathematical methods, working with Prof. Ger-
ritsma as my supervisor, meant that I always had something new to learn from him. His
curious and energetic approach to his own research did have a spillover effect on me as it al-
lowed me to dabble in the realm of pure mathematics. This came about through a progression
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of meetings where he was kind enough to educate me on the intricacies of functional analyses
and the rigors of proving the theoretical soundness of our numerical approach. I would amiss
if I were not to acknowledge Jeremy Budd, a doctoral student at the Applied Mathematics
department, for his lucid and eye-opening explanation of the abstractions of metric and linear
topological spaces.

I highly doubt if my education would have taken the turn for such rarefied domains of
mathematical enquiry if it were not for this thesis opportunity. For that I am grateful to
Prof. Gerritsma, that he accepted me as a student for his supervision and aided me through
this process. Throughout the period of my association with him, I have had the blessed
opportunity to know him as a kind, caring and generous human being as well as a supportive
and nurturing academician.

Continuing with the list of people I am thankful to, I must extend my gratitude towards my
fellow graduate students, especially —Amey Vasulkar, Bishwadeep Das, Sukanya Walaskar and
Chinmay Pathak for their constant support and help throughout this project both personal
and professional. There were also other kindred spirits that kept me company for the last
couple of years in this foreign land: Devendra Kulkarni, Rajesh Rajwade, Shreyas Nikte,
Kunal Kanawade, Palash Patole, Sharad Rajampeta, Sneha Gokhale, and Sharayu Kore.

I am thankful to my creator for my family. My brother and his wife, have been a source
of constant support and encouragement throughout this endeavor. My parents, on the other
hand, have indebted me unending gratitude through their lifetime of dogged efforts to nurture
me and their iron-will to see me succeed in life. No amount of acknowledgement to them would
suffice in the stead of what I have had the good fortune of receiving from them. Finally, I
would like to dedicate this work to my grandmother Smt. K. Parvati, who I lost during the
course of my graduation studies and one who had for long remained my mentor in matters of
personal philosophy.

Finally, in a lighter vein, should the diatribe on the applied mathematical sciences of
numerical methods above appear harsh, I apologize. It is just that I have had a good company
of visionaries such as Cantor, Cartán, Grassman, Whitney, Tonti and many more for the past
few months and I have been influenced by them greatly. I quote from Emerson’s Society and
Solitude :

there are books . . . which take rank in our life with parents and lovers and passionate
experiences, so medicinal, so stringent, so revolutionary, so authoritative, — books
which are the work and the proof of faculties so comprehensive, so nearly equal to
the world which they paint, that though one shuts them with meaner ones, he feels
his exclusion from them to accuse his way of living.

Yashasvi Giridhar
Delft, January 2020



Abstract

The present research aims at establishing a numerical technique that allows for simple dis-
cretization of curved domains. The method of implementation features use of covariant exte-
rior derivatives that are used alongside structure preserving mixed mimetic spectral methods,
that is primal and algebraic dual polynomials. A single element implementation is used to
demonstrate the applicability of the method over two diffeomorphisms, a horizontal shear
with non-linear skew and a modified polar coordinate transformation, for 0-forms and 1-forms.
Finally, an extension of this framework towards continuum mechanics is discussed with a dis-
cussion over a co-vector valued stress and elasticity formulation.
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1
Introduction

1.1. Background
The present document aims to capture the research efforts put towards obtaining a covariant
discretization of the connection coefficients over curvilinear geometries using a class of mimetic
methods. There is a quite a lot to unpack in this sentence. The present chapter aims to do
just that —provide an overview, and perhaps a context as well, towards the non-traditional
approach of computational mathematics —mimetic methods.

This begins by as we trace over a period of the past fifty years, the emergence of a partic-
ularly persuasive philosophy of thought in the community of mathematicians and engineers as
they attempt to model and simulate complex natural phenomena using modern and sophisti-
cated numerical techniques. This school of philosophy, as we shall explore further, primarily
aims to inform the craft of computational sciences with an intuitiveness already present in its
progenitors —theoretical mathematics and physics. Interestingly, even as an offspring of these
highly intuitive sciences, this sense of ‘intuition’ has been missing when it comes to the study
and synthesis of numerical methods.

Our discussion is quite limited as we attempt a survey of a particular family of numerical
methods that came into existence during the later half of the last century —Finite Element
Methods (FEM). For instance, the first coherent expression of FEM as a tool was to aid
the design of dams and bridges [19, 37], and it remained as a primarily tool for structural
engineering and computational mechanics. On the other hand, the highly non-linear systems
of fluid mechanics developed a similar branch of Computational Fluid Dynamics (CFD) with
aims of tackling linearized problems through simple mathematical tools such as potential flows
and conformal transformations [60] for instance.

Today however, FEM is not only restricted to structural and mechanical engineering ap-
plications and finds its uses in aerospace, marine, oil & gas industries. Simultaneously, aided
by the leapfrog advances in computational capacities of the modern computing systems, these
highly sophisticated methods are becoming more affordable tools for CFD prediction and
analysis. This is because, the computational costs incurred due the mathematical complexities
involved have reduced significantly while the results are far more accurate than those offered by
their simpler numerical counterparts. However, despite these progresses, the lack of geometric
intuition has been a consistent feature of most FEM schemes being used. Thus, it becomes
pertinent to discuss the importance of this geometric nature of numerical schemes and what
does a method gain by addressing issues related to the lack of this feature.

Having established this background of the class of Finite Element Methods, we now begin
an illustration of the nature of the methods that can be grouped as broadly as two sub-classes
in the FEM family tree —the geometry-aware and the metric-dependent methods. The need
for this distinction will, it is hoped, become clear as we begin our examination into the nature
of the construction of these methods and identify the underlying geometric intuition (or lack
of it) modeling discrete physical quantities when devising a numerical scheme.

1
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Figure 1.1: An example of linear transformation of vectors, in this case—reflection. The coordinate plane x-y
has a vector located from the origin O to the point P (in black color) whereas its reflection about a mirror

plane yields a vector O’P(as shown in green)

1.1.1. Geometric Intuition in Computational Methods
We begin with the assertion that physical entities such as pressure, velocity, linear and angular
momentum etc have geometric associations in space-time. The implications of this quite simple
statement are far-reaching, in that, they call into question the ‘mainstream’ understanding of
how these entities behave in a system. This is best reflected in the mathematical models of
physical systems, where such geometric associations are merely secondary constructs. On the
other hand, the dry and uncaring metric and algebraic relationships take priority over the
geometric structure of consititutive and governing equations that help model the behavior of
a system.

On a whole, computational science has featured methods that adopt a ‘brute-force ap-
proach’ as described by Gerritsma [34, p. 48] where the objective is morphed into a mini-
mization of the residual or of the truncation error instead of the idea of approximating the
original governing equations. As a response to this rather consistent irreverence towards the
geometrical association of variables and entities within any given differential equation, quite
a bit of work has been done in exploring the structure of these entities with a more rigorous
understanding of the equations involved.

For instance, in his works, Burke [18] sought to replace the dominant mathematical formu-
lations of tensor and vector calculus with the principles of differential geometry in an attempt
to establish the foundational principles of a geometry-aware mathematical tradition.

Should the reader wish to understand the fundamental difference that Burke argued for,
we consider the following example. General modeling approaches consider the quantities such
as the force, velocity, and displacement as vector quantities, however principles of differential
geometry and topology would disagree. A curious property of vectors is that they are invariant
under linear transformations, this would include operations such as reflection about an axis,
displacement or scaling with respect to a coordinate system. True vectors such as that of
the position vector exhibit this property, in that if the coordinate system where the position
vector lies is transformed linearly, the position vector would still serve the same purpose and
point the correct position. On the other hand, the so-called vector quantities such as force,
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velocity or displacement would not remain invariant under such a transformation and convey
a different meaning altogether —they show inversion of intended action and thus convey a
different physical meaning (see figure 1.1).

The author would like to stress here that these are not trivial obsessions about mathemat-
ical details. As we shall discover further, such subtle yet significant observations lead to the
identification and conclusively, inclusion of the more appropriate and mathematically correct
entities in the CFD model and discretization which shows remarkable changes downstream.
Infact, several unresolved fluid flow behaviors that appear in CFD simulations may be at-
tributed to this absence of geometric information encoded into the solver settings [1, 58, 65].
For instance, Desbrun et al [63, p. 443] attribute the findings in the works of Thomas et al [58]
to ‘a loss of Lagrangian structures’ and identify them as a major impediment of the current
generation of numerical methods.

1.1.2. A Differential Geometry Perspective

Having briefly underscored the importance of the ‘geometric-content’ of a numerical scheme,
we proceed towards understanding the eccentricities of our mimetic approach. It is true, that
many of the traditional methods mischaracterize a set of physical quantities as vectors, whereas
on deeper inspection, they belie their assumed nature. It is for these sets of quantities we
introduce a sibling notation, namely—the co-vector.

Details of this entity will be discussed in sufficient details in the following chapters, but
for the moment, it would be enough to emphasize the utility of its existence. Unlike a vector,
a covector (or alternatively, a one-form) does infact change under linear transformation such
as reflection. Armed with this realization, a revision of the basis of geometric characterization
of quantities would lead to the classification of velocities, mometum, and force among others
as co-vectors. This revalutation leads to other reflections, of which an important one is of
recognizing geometric stress from the classical solid mechanics as a covector-valued differential
two-form [47].

This characterization of geometric stress fundamentally revises the numerical representation
of the classical solid mechanical theories of stress. A key revision here is the reformulation of
balance laws, among other fundamental laws, using a new operator—the covariant derivative.
This is necessitated due to the principle of energy balance for a solid deformation process where
a change of system state is expressed through a transformation of the space coordinate system.
The covariant derivative then helps formulate the change of this coordinate basis through a
curvilinear transformation to a deformed solid state.

An excellent example of this application is the work of Kanso et.al. [47] where the second
order stress tensors, namely the Cauchy stress tensor (s) and the two-point Piola-Kirchhoff
stress tensor (P), are rewritten as covector valued two-forms. Thus, when a deformation
mapping (φ) is applied to a Eucledian three-space R3, a covariant derivative can be used to
compose the metric component of the differentiation operator d so that transformed stress
fields can be obtained under deformation φ [47, p. 849].

What is the benefit of implementing this rigour? To begin with, this approach yields a
more natural formulation—of stress tensors, in this paper —even generally. Furthermore, as
we shall see later, this improves our modelling approach since many of the characteristics
falsely assumed to be metric-dependent and implemented as constitutive relationships can be
instituted as topological features, thus removing a component of modelling and truncation
error. This means, increase in accuracy and potentially fewer iterations to converge, given a
complete reformulation of the mathematical expression.
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1.1.3. A Case in Point!
The tradition of devising geometry-aware numerical schemes, though relatively new, has a
sizable number of adherents and as expected there exists a respectable body of work to illustrate
the benefits of this approach. Select cases have been highlighted here to showcase potential
use and application of this system of inquiry to revise traditional mathematical formulations.
The reader will be introduced to a short survey of these methods and associated narratives
would be presented in the following chapters. However, at the moment, in order to establish
relevance to the scope of this work, we identify our association with an existing line of inquiry
into the class of Mimetic Spectral Element Methods (MSEM) (see chapter 3 ) introduced by
Kreeft and Gerritsma [34, 49] at the TU Delft, Netherlands.

Recent works by TU Delft on the applications of MSEM [35, 45, 46, 48] illustrate the evolu-
tion of this method towards implementing pointwise exact mass and momentum conservation
over orthogonal meshes [29]. The next step, then would naturally be towards introducing com-
patibility of this method to curvilinear meshes so that curvature can be effectively discretized
while preserving mass and momentum conservation seen over orthogonal meshes. This is also
important since, establishing these conservation properties over curved geometries as well, al-
lows inquiry into elasticity and its modeling through the implementation of MSEM. The recent
work by Fisser [29] also proposed a novel formulation of linear elasticity using mixed mimetic
methods for applications of pointwise conservation of mass, linear mometum and angular mo-
mentum. This implementation however, remained restricted to orthogonal meshes with the use
of Lagrange multipliers to enforce conservation in case of curved geometries. This limitation,
can be overcome through an application of these mixed methods over curvatures using connec-
tion coefficients. The difficulty however, lies in discretizing these coefficients over complicated
transformations within the mimetic methods framework. This gap forms the core interest of
this thesis work.

1.2. Aim and Scope
The main purpose of this project is to propose and implement a mixed mimetic simulation
solver with extended capabilties of discretization on curvilinear meshes in addition to the
present orthogonal mesh features. In order to do this, we explore a different approach towards
discretizing differential operators, namely the exterior derivative. The manner of approach to-
wards this goal, however, is not direct. It depends in fact on developing a method of discretiz-
ing the computational mesh and its discrete differential operator analogues over its curvilinear
domains using covariant derivatives that preserve invariance under general coordinate transfor-
mations. This is achieved through the Christoffel coefficients of the covariant derivative [32],
which determines how quantities change with the curvature of a manifold. As the mimetic
computational capabilities exist for orthogonal grids (where these coefficients are zero), the
challenge then becomes to identify and discretize these coefficients (and thus the effect of
curvature on the computational space) and implement an extensible mimetic framework.

The research question, thus, becomes:

“How to implement a mixed mimetc spectral method which extends to the curvilinear meshes
using the covariant exterior derivative?"

Keeping with this question in mind, we formulate the following aims and objectives:
1. Identify covariant derivatives as a tool that allowes commutativity of the exterior deriva-

tive with the transformations

2. Establish a mixed mimetic implementation with a covariant exterior derivative that com-
mutes with transfomation of frames
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3. Develop a programming framework in Python and Matlab with basis function implemen-
tations , grid generation, reduction and reconstruction schemes

4. Develop and implement test cases where different problem cases can be solved and com-
pare results with previous implementations such as manufactured field solutions that
change under modification of the space curvature.

5. Document code structure, centralize a repository, and prepare review reports

1.3. Overview of this Report
This report is structured to give the reader a brief overview into the relevant subject matter
before proceeding to the core technical subject at hand. Towards this end, the listing of the
subsequent chapters is as follows: chapter 2 introduces basic terminology and mathematical
structures that support the understanding of mathematical physics and its relevance to the
mimetic methods as implemented in this thesis work. The reader is introduced to concepts of
differential geometry, algebraic topology and the Hodge operator as a tool within the MSEM
implementation theory. Chapter 3 provides a literature survey of the class of mimetic methods
known to be similar to the MSEM at least in principle. Emphasis is given on the discussions
of mixed mimetic methods as a framework to model phenomena. Later on, basic construction
principles of basis functions, algebraic dual functions and its applications are explained. Chap-
ter 4 deals with the application of a covariant exterior derivative within the mixed mimetic
method framework with example applications to scalar fields (0-forms) and covector (1-form)
fields. Finally a brief discussion into the extensibility of the covariant derivative for stress ten-
sors is placed. This is then followed by chapter 5 with summarizes the work done and reflects
on possible recommendations for the future.





2
Understanding the Geometry of Physics

Following the previous chapter, where an introduction towards the notion of geometric content
of a mathematical structure was made, we now delve a bit deeper into the nature of this
geometry and how it molds our physical models. As such, this chapter serves as a brief overview
into the development of mathematical physics as we envision it today. These developments
span over nearly three centuries (ca. 1700 AD) of research in mathematical sciences ranging
from the allied areas of discrete and algebraic topology to the remote and abstract domains
of set theory and theorems of symmetries. Clearly, these broad areas of development are too
wide-ranging to explain within the scope of this work. Thus, a narrative of developments
pertaining to the current application is constructed and presented.

Towards the end of this chapter, the reader will be familiarized in the concepts of topological
spaces, vector fields, tangent and cotangent spaces, Hodge operators and dual spaces. With this
it is intended that a foundational vocabulary is built that can help navigate the mathematical
descriptions of curvature on topological manifolds and implementation of MSEM over these
spaces.

2.1. Basics, Terminology and Notations
Having established the importance of the geometric content in CFD modeling and discretiza-
tions (in the previous chapter), we now attempt at drawing contours around the extent and
nature of the mathematical relationships that enable the expression of this geometry with
rigour. This undertaking, as will be seen further, leads to an intersection of various pure
mathematical fields, namely that of — algebraic topologies, metric and topological spaces
(functional analysis) and differential geometry.

What is interesting is that these intersections are not happenstance, but are in fact the
natural consequence of the fundamental logic governing each of these silos of mathematics. The
ideas expressed within the realm of algebraic topologies find a neat parallel in the domains
of functional analyses as well as in differential geometry. This convergence signifies, at least
qualitatively, the universal nature of geometry as a consideration for the synthesis of numerical
schemes, particularly FEM based CFD methods.

Although the exact nature of these convergences will be revealed in the succesive chapters, a
qualitative assessment of their roles and impact is made here. As has been noted previously, the
basic idea dictating our considerations here, is that entities that describe a physical system have
geometric associations. For example, consider the scalar quantity, temperature T and material
density ρ at a point in a field. Despite both being scalars, their geometric association differ—a
pointwise association for the former and a volume association for the latter. Similarly, for
vector quanities, it is easy to identify examples where the geometric associations are different.
For instance, the velocity vector is defined along curves or line segments whereas mass flux is
defined across a surface element (two different geometric classes).

To express these subtle associations, a framework provided by differential geometry is used.
We fashion differential forms as a tool to express these associations in generalized dimensions.

7
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Additionally, creating this abstract framework also helps identify structures that appear to
have some geometric association when mired in simple vector calculus formulations, but in
fact turn out to be independent of geometries. This is in reference to the set of operators
familiar to the vector calculus framework: grad (−→∇), div (∇.) and curl(−→∇×). Realizing the
applications of differential geometry presents a generalized differential operator which when
applied to elements of varying geometric associations, appears to take on new operator forms.
This realization allows us to write a generalized Stokes’ theorem.

Furthermore, since these operators do not depend on the geometry of the domain, but can
be generalized to higher dimension spaces, we refer to them as being metric-independent. To
help explain this concept, the idea of a metric is now considered. It is understood to be a
mathematical structure imposed on a space that allows the measure of the distance between
two points within that space. The consideration of this concept allows for a segue into the
nature of space when viewed though the lens of differential geometry, algebraic topology and
functional analysis. We begin with defining the basic algebraic structure known as a toplogical
space using the concepts of open sets [32, p. 12].

Definition 2.1. A topological space is a set M with a distinguished collection of open sets,
that satisfy the following conditions:

1. Both M and the null set φ are open

2. If U and V are open sets, then the intersection U
⋂
V is open as well

3. The union of any number of open sets is open

The idea of a topological space is fundamental to all future endeavors considered in this
document. This mathematical structure allows for the introduction of concepts such as con-
tinuity, covergence and thus, completeness of a space [[6]]. These ideas shall be successively
introduced as it pertains to the current scope of enquiry. The immediate application of this
definition is that it allows us to identify manifold and metric spaces.

We begin by submitting the idea of a manifold, which can be understood to be a gen-
eralized space in n-dimensions. The traditional space where mathematicians and engineers
make their considerations takes place within a locality of this manifold. Put more formally, an
n-dimensional manifold Mn is a topological space that is locally Rn [32, p. 13]1. The structure
of a manifold space is liberating for a student of Eucledian geometry as it admits into itself
possibilities of generalized coordinate systems and the behavior of differential forms over these
generalized spaces.

It may be noted here, that a manifold space2 is simply a specialization of a topological space
with extra constraints applied over it. Just for purposes of completeness we also mention that
in our studies, a manifold is assumed to be smooth which implies ‘paracompact’ and ‘Hausdorff’
conditions are satisfied [6]. A manifold can be covered with a number of open sets of topological
spaces and mappings known as ‘charts’ can be defined on them which transform the local set
space into a real numbered space (see 2.1).

Consider a function f : C→ R which lives on the topological space C. Coupling the two
maps ϕ–1 ◦ f (the mapping ϕ is continuously invertible), is termed as a transition function
as it transforms the kernel domain and image domain into Rm → R. When these transition
1We avoid the more technical, rigorous and complicated definition of a manifold that includes ideas of com-
pactness and Hausdorff spaces, among others. The intention of supplying these definitions here is simply to
make intuitive sense into the nature of the survey conducted and not to provide a comprehensive view into the
subject matter

2Although not mentioned explicitly, we deal with differential manifold space in our research work. This implies
an extra constraint of differentiability of the local coordinate patches over the general manifold space [32, p. 20]
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Figure 2.1: The continuously invertible chart ϕ : C→ Rm takes in values from the open topological space C
(known as a cover) on the manifold space M and maps them to a real number space Rm. Thus, this chart

operation allows us to work in a locally Rm space on a manifold. Similarly, a function f : C→ R maps the set
C onto a real space R [6].

functions are continuous as well, the manifold is known as a topological manifold 3. It should
be noted that the description of manifolds and topological spaces thus far have been general
enough to capture an understanding of these concepts both within functional analysis as well
as in differential geometry perspectives. Deeper inspection of these concepts involve different
points-of-view of examination of these structures, however they parallel each other conceptually
(in absence of a metric structure).

Vector fields on a manifold: tangents, flows and Lie bracket
There are two kinds of entities that live on a manifold, namely —vector fields and differential
forms. We turn our focus to the former. The essential idea here is to generalize the concept
of a vector field as defined on a real numbered space (say, R3) which is probably familiar
to the reader. The purpose of introducing these vector fields to manifolds, however, is less
phenomenological than is normally the case. This is to say, that these vector fields do not
necessarily hold any real physical significance and are mostly thought of as a tool to differentiate
functions defined on a manifold [6].

Definition 2.2. A vector field v on a manifold M is defined as a function from the space of
infinitely differentiable functions C∞ to another C∞, such that for all f, g ∈C∞(M) and α∈ R:

1. v(f + g) = v(f) + v(g)

2. v(αf) = αv(f)

3. v(fg) = v(f)g + fv(g),

Conceptualizing a vector field over a smooth manifold allows several possibilities of ana-
lyzing functions defined over the manifold. This is done through generalizing the concept of
directional derivatives. Any physicist or engineer has familiarity with these ideas working in
the common Eucledian space where the basis of the reference system are all orthogonal and
3Differential manifolds are topological manifolds equipped with a ‘differential structure’
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Figure 2.2: Tangent vectors defined over a spherical manifold (left) and two ‘free’ vectors in Eucledian R2

space (right)

every tangent vector belongs to the same space. For instance, consider the Eucledian space
R3, where a function f and a vector field v are defined. Then the directional derivative of the
function over this space is given by vf. If deconstructed into component terms, this expression
can be expressed as:

v(f) = vp∂pf, (2.1)

In a Eucledian space, the basis vectors ∂pf are also a member of the space R3, similar to
the vector components vp. This however, is not true for manifolds all the time. To understand
this deviation from the common understanding, a brief introduction of tangent vectors4 is now
provided.

Definition 2.3. A tangent vector (vp) over a manifold M at a point p defines a vector field
such that the directional derivative of the function f ∈ C∞(M) is given as vp : C∞ → R.
Furthermore, the following properties hold true:

1. vp(f + g) = vp(f) + vp(g)

2. vp(αf) = αvp(f)

3. vp(fg) = vp(f)g(p) + f(p)vp(g),

The properties to be satisfied by the tangent vectors follow directly from the Defintion 2.2.
The space spanned by the tangent vectors at a point p is in fact a vector space TpM. A related
concept of a tangent bundle is that it is a disjoint union of the tangent spaces at all points over
the manifold M and is denoted as TM [57].

We now return to the original assertion that led to this digression. Consider the Figure
2.2 (left), where the tangent vectors are shown at two different points x and y. To compare
these two tangent vectors is not possible since they belong to different vector spaces. This is
counter-intuitive since the common understanding of vector equality is built on a Eucledian
space such as the R2 shown in Figure 2.2 (right) where the two free vectors at point x and y
can be compared since their basis vectors belong to the same vector space5.

Having introduced the concepts of tangent fields (which are vector fields over a manifold in
their own right), it becomes easier to introduce another class of concepts —flows and the Lie
bracket. To motivate the need for these ideas in an already overcrowded idea space, we note
4For reasons of simplicity, the exposition of tangent vectors is kept simple and no distinction is made between the
class of geometric tangent vectors and the broader and more abstract notion of tangent vectors. Consequently,
the bridging concept of a pushforward is avoided as well. For more information the reader is encouraged to
refer to [57]

5To enable this comparison of two tangent vectors originating at two different points, the concept of parallel
transport is needed. This theory will be utilized subsequently.



2.1. Basics, Terminology and Notations 11

that the vector fields defined over a manifold enable the differentiation of a function defined
over that manifold. Introducing Lie brackets as a tool to generate the vector field themselves
and consequently provides a framework for the computing the derivative of a vector field with
respect to another field.

Definition 2.4. A flow {φt} is defined as a set of all maps or integrable curves defined for a
vector field v(M) at a point p∈M.

The concept of flow formalizes the notion of vector fields that one encounters in physical
examinations such as a velocity field over a manifold. Consider the vector field v(M) over the
manifold M. At some point p∈M we trace the particle motion through a curve γ(t) such that
γ(0) = p. For this curve to be considered for set membership into a flow over this vector field,
we require this curve to be integrable over the manifold domain. That is, the integral curve
γ(t) should be defined for all time t. Finally, in order to compute this curve, we assume that
γ
′(t) = v

γ(t).
Given these flows over a manifold, the Lie bracket is an operator that measures the failure

of these flows to commute over different vector fields. This is possible since the Lie Bracket
acts as a commutator of vector fields and as such is used to get new vector fields from old ones.

Definition 2.5. Given v,w ∈Vect(M), the Lie Bracket is defined as:

[v,w](f) = v
(
w(f)

)
– w

(
v(f)

)
,

for all f ∈C∞(M). In short, this is written as,

[v,w] = vw – wv

In the definition above, it can be seen that for a pair of vector fields that represent mixed
directional derivatives, their failure to commute is given by the Lie Bracket. For the ordinary
mixed partial derivative we know beforehand, this commutation does not fail [6]. These geo-
metrical interpretation are made palatable to a student of traditional Eucledian spaces with
the help of the Lie derivatives. As mentioned previously, the idea of a vector field over a
manifold is explained as an instrument to differentiate a function over the manifold. A Lie
derivative enables the differentiation of a vector field with respect to another field.

The need for a distinct operator such as the Lie derivative is illustrated in the Figure 2.3.
When evaluated over two different points over a flow γ(t), the tangent vectors over the vector
fields at these two points belong to two tangent different spaces. In order to find the directional
derivatives over this flow, the spaces must be reconciled. This is done through the ‘pullback’
operator d(γ–t) marked in blue. In this manner, the tangent vector for point γ(t) is obtained
within the tangent vector space at γ(0) as d(γ–t)γ0Wγt .
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Figure 2.3: (Left) Tangent vectors Wγ(t) over a flow γ(t) evaluated at two different points 0 and p; (Right)
The pullback defined over the manifold points allows re-mapping of the tangent space Wγ(t) over the vector

field V [57]

The Dual: covectors, contravariance and the differential of a function
Before the discussion here proceeds to the entities known as the differential forms, a brief detour
towards the concepts of the dual is required. Furthermore, the pullback operator (mentioned
above) is also discussed. As the reader has thus far been introduced to the vector spaces, the
dual can be defined as the space of linear functionals that operate on the members of this
vector space such that the image lies in the space of real numbers.

Definition 2.6. The dual space (V∗) of the vector space V is defined as:

V∗ = {f | such that, f : V→ R or f(v)∈ R, where v ∈V}

The dual space of a vector space, is again a vector space in itself. Thus the algebra
applicable to the primal vector space also applies here. Furthermore, the elements of this
space of linear functionals to the space of vectors are referred to as covectors. Recall as an
example of a covector, consider the entity known in physics as the ‘force vector’ (it has been
relegated to the class of vectors due to a fundamental misreading of the very concepts being
discussed here). The work done on a system W is given as:

W=F −→d

where, this work done is derived within the space of real-numbers (i.e. W ∈ R) using the
displacement vector (−→d ) and the force functional (F) acting over this vector. As it has been
observed already that for curves over a manifold, the tangent vectors provide a coordinate
independent representation of their derivatives; similarly, a tangent covector serves to represent
the derivatives of real-valued functions over a manifold [57].

Recall from equation 2.1 that a directional derivative of a function can be expressed using
the basis of a vector field over that manifold. In a similar fashion, the elements of the covector
space can be constructed using a set of basis known as the dual basis. For any finite dimensional
vector space V, the primal basis {Ej}∈V holds the following relationship with the dual basis
{εi}∈V∗,

εi(Ej) = δij,

where δij is the symbol for the Kronecker delta matrix. A natural consequence of this re-
lationship is also that dim V∗ = dim V. The careful reader might observe the distinction
made between the notations of the dual and primal basis vectors —the former uses superscript
indices whereas the latter uses subscripts. The reason for these differences are not merely
for convenience. Instead, they also denote a natural property observed within the elements
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of these spaces. This difference is in terms of how these elements in space relate with the
manifold over which our consideration takes place. Specifically, these properties (of covariance
and contravariance) describe how the elements in the primal and dual spaces transform with
a transformation of their coordinate systems6.

Differential forms and exterior algebra
Recall that there are two types of entities that live over a manifold, the vector fields were
described above. The other entity is known as a differential form. For the purposes of math-
ematical physics, it is perhaps sufficient to describe these differential forms in the fashion
Flanders put it: “the things that occur under the integral sign" [30]. In order to provide some
rigour to this definition, we consider a vector field v over a manifold M. A realization of the
usefulness of differential forms occurs when we try to generalize the gradient of a function f
over this space.

For the Eucledian space Rn, the directional derivative along the vector gives the gradient
of the function in that direction, as the dot product of ∇f with v:

∇f.v = vf

On a manifold however, the structures that provide the mechanism to take such dot prod-
ucts are not available. This is accomplished through another concept known as the metric,
which will be introduced later. For now, it is sufficient to know, that differential forms (for
this example, 1-form) allows us to make this generalization without explicitly choosing an
arbitrary metric structure. For instance, a 1-form ω is defined as a linear map betweent the
spaces Vect(M) and C∞(M):

ω : v � ∇f.v

with the following properties,

ω(v + w) = ω(v) + ω(w),
ω(gv) = gω(v)

where, v and w are any two vector fields over the manifold M and g is any smooth function on
Rn. Furthermore, consider any manifold space and let Ω1(M) represent the space of all 1-forms
on M. Then for any smooth function f on M there is a 1-form df defined as:

df(v) = vf.

This 1-form is called the differential of f or the exterior derivative of f. This is the generalization
of the function gradient that we set out to obtain. Of course, for the time being this provides
the working definition of what a differential form might look like or what it might be used for.
However, it is a good exercise to delve deeper into these concepts. The reader is now taken to
a slight detour to another concept known as cotangent vector.

Definition 2.7. Given a manifold M and a point p∈M, a cotangent vector ω at p is defined
as the linear map that takes in elements from the tangent space over M, TpM and maps them
onto the real numbered space, R. The set of these elements is denoted by, T∗pM.

ωp(vp) = ω(v)(p)

where the ‘function’ ω(v) is evaluated at the point p.
6Amazingly, this behavior is also explained through algebraic topologies using the concepts of orientations, as
will be discussed shortly hereafter.



14 2. Understanding the Geometry of Physics

The notations used in the definition above should serve as a hint for the fact that the
cotangent vectors are just the dual space to that of the tangent vectors. The need for this
definition will become clearer as our exploration draws closer to that of p-forms. To motivate
the need for these entities (similar to that of 1-forms), consider the product of vector entities7.
In vector mathematics, the product of two vectors is taken to represent the surface area of
a parallelogram that lies in the same plane as that of the two vectors. Thus a product op-
eration creates an association between the line elements (vectors) and a surface element (the
parallelogram). Similarly, consider the ‘right-hand rule’ applied in the computation of the
cross product between two vectors. However, if one were to compute a cross product for four-
dimensional vectors, there exists no such guiding principle (with geometric intuition included).
Differential forms allow this generalization to take place. This means not working with the
vectors themselves, but working with the p-forms instead. Consequently, the directional en-
tities (with a tangible geometric interpretation) are no longer tangent vectors but cotangent
vectors instead8.

This undertaking then requires some assembly, which comes in the form of what is known
as exterior algebra. The rules and structure of this algebra degenerate to the known vector
mathematics we know in the Eucledian three dimensions. For instance, exterior algebra defines
an operation known as the exterior product or wedge product (denoted by ∧). This operator is
the generalization of the cross product (×) operator familiar in 3-D vector mathematics.

for any two vectors, we have: −→v ×−→w = –−→w ×−→v
⇒ this can be generalized as: v∧w = –w∧v

Also, here v,w ∈V. Similar to how the product of a cross product of two vectors is also a
vector (and thus lies in the same vector space), the wedge product admits the output of the
product into its own space. Thus, for any vector space V, the subspace ∧pV is defined to be
the subspace of ∧V consisting of the linear combinations of the “p-fold" products of vectors in
V, that is, v1∧v2 · · ·∧vp. The elements of this subspace are said to have a degree of p.

The extension of this structure induced due to this operation over a manifold mapping
between the smooth functions C∞(M) and the space of 1-forms Ω1(M) 9. Thus, differential
forms Ω(M) are then defined as the ‘algebra’ generated over C∞(M)by by Ω1(M) as shown:

ω ∧ μ = –μ ∧ ω ∀ ω,μ∈ Ω1(M).

Combining p such products, one obtains what is called a p-form. Another important
concept related to the world of exterior algebra is that of the exterior derivative (d). This
operator takes in a p-form and produces a (p+1)-form:

d : Ωp(M) → Ω
p+1(M).

The importance of this operator along with all the previous concepts of exterior algebra
is reflected in the derivation of the generalized Stokes theorem. This is done through the
realization that the differential operators are all different versions of the same operator:

7These examples are drawn from the excellent book by Baez and Munian [6].
8Another reason to qualitatively validate the utility of working with cotangent vectors is that this approach
leads to the generalized Stokes theorem, where the differential operators: grad, div and curl are revealed to be
different versions of the same differential operator.

9As opposed to the earlier construction that involved a mapping from a real-numbered space to that of a vector
space.
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Gradient: d : Ω0(R3) → Ω
1(R3)

Curl: d : Ω1(R3) → Ω
2(R3)

Divergence: d : Ω2(R3) → Ω
3(R3)

Furthermore, there is also a parallel to the Poincaré relationship in the form of: d(dω) = 0
10.

The metric structure and Hodge operator
When futher constraints of a metric are imposed on this space, we obtain what is known as a
metric space. This metric allows induction of a topology on a set. In the more familiar terms
of vector mathematics, a metric allows for the computation of the inner product between two
vectors. Thus, the metric enables us to “compute" values in the real numbered space for some
of the topological operations that take place in the world of differential geometry.

An interesting observation to be made here is how the use of metric and the implementation
of that concept in the form of the Hodge operator (?) is implicit in the classical vector calculus
where the mathematics takes place in the Eucledian R3. Recall the notation of ∧pV as the
subspace of the “p-fold" products of vectors in V. Baez [6] notes that the wedge product of
two vectors in V lies in the space ∧2V. in the 3-dimensional case however, the dimensions of
the spaces ∧2V and V are equal. This allows for the common error (although this works!) of
considering the cross product of two vectors to be vector. However, in any other space where
the dimension is not three, this is not true.

In other dimensions, as mentioned previously, this transformation from one subspace to
another is done through the Hodge operator (?). For the three dimensions, where the basis
are dx, dy, dz the following mapping holds:

? : dx ∧ dy → dz
? : dy ∧ dz → dx
? : dz ∧ dx → dz

To generalize, the star operator, referred to as the Hodge operator (?) is a unique map-
ping on the oriented n-dimensional semi-Reimannian (that is, with a metric structure) manifold
M, such that:

? : Ωp(M) → Ω
n–p(M)

where for any two p forms ω and μ on M,

ω ∧ ?μ = 〈ω,μ〉 vol ω,μ∈ Ωp(M)

where the term ‘vol’ represents a volume form (see [6, p. 82]). The application of the star
operator on μ creates the dual of the p form in the n – p space. The angle brackets represent
the inner product defined over the manifold M as a result of imposing a metric on it.

Having explained these concepts of differential geometry and the extended concepts of
space, the nature of space through this perspective it becomes clear to understand that the
convergences with the manner and practice of traditional vector calculus is arbitrary in many
respects. In fact, adopting this generalized approach has its uses in many forms other than
rigour and logical consistency. We will build on these very ideas going forward, in order to
develop a geometry-aware numerical scheme in order to mimetically discretize a curved mesh.
10Applies to coboundary operator in algebraic topology
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2.2. Reimagining Mathematical Physics: Mimetic Approach to CFD
The developments in Computational Fluid Dynamics (CFD) as an approach to explore and
investigate have been ongoing for little over half a century now, with new stimulus in the
twin forms of increased computational power as well as improved numerical algorithms. While
these developments in themselves are of great interest, each of them occur over a different
time scale: computational hardware capabilties that limited computational power has made
significant strides in a shorter time span of the last thirty years, whereas the mathematical logic
governing numerical algorithms has steadily built an inventory of methods to tackle different
mathematical systems. Our investigations here deal within the scope of the latter.

Interestingly, over this long period of development behind the rise of CFD as a respectable
avenue for scientific inquiry, the concepts governing mathematical analysis and construction of
numerical schemes have largely remained monolithic. With a large emphasis on discretization
techniques, time-stepping methods and solver algorithms for matrix systems, the core logic
behind these disciplines has seldom engaged in adventurism. This core logic refers to the sys-
tem of vector calculus and integration theory that serves as the basis for most discretization
techniques and formulation of the differential equations to be solved. As discussed previously,
a large number of methods that descend from this school of formulation feature very similar
recipies of what Gerritsma refers to as brute force approaches. Essentially, this involves ex-
cluding the geometric content embdedded into the mathematical expressions we work with and
instead indiscriminately discretizing entities over an abstract domain with an aim to minimize
the truncation error or the residual.

On the other hand, the related disciplines of Computer Aided Geometric Design (CAGD)
and Computer Graphics (CG) have managed to diversify into several families of approaches
with very many philosophies dictating the modeling and the subsequent computational pref-
erences. Perhaps, the author would suggest that, the lack of any predetermined mathematical
models for representation real world object geometries served as a reason for a broad based
system of inquiry into mathematics. Our inspiration here is one that finds common cause
especially with the CAGD and CG community among others, namely —differential geometry
and topology.

The pantheon of methods that have sprung into existence with links to differential geometry
are several and varied such as Discrete Exterior Calculus (DEC) method, Discrete Differential
Geometry (DDG), Finite Element Exterior Calculus (FEEC) method, structure/physics/symmetry-
preserving discretization methods, mimetic discretization methods, compatible discretization
methods, to name a few. These concepts of differential geometry, algebraic topologies and their
applications to physical problems as we know them today found utterance in the later half of
the twentieth century. It is these concepts which build the foundations of the work presented in
this report. However as noted above, these were preceeded by the slow churn of mathematics
throughout the previous two centuries. Our current examination of the underlying history is
rooted in this context.

2.2.1. Pressing the ‘Reset’ Button: Applied Differential Geometry
Equipped with a rudimentary understanding of differential geometric principles, we now at-
tempt here to outline the ingress of these concepts into the realms of integration theory and
subsequently, CFD applications. It is not the intention of our exploration here to be a com-
prehensive deep dive into the concepts since that would be out of the scope of this report.
Although the developments in topology and geometry was picking pace up until the nine-
teenth century with the emergence of calculus in the works of Leibniz and the Reimann’s work
on algebraic geometry, the dominant narrative over geometry and topology was driven by Eu-
cledian principles and the modern concepts of linear algebra, topological spaces and differential
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geometry were absent.
In his Collected Works, published between 1894-1911, Hermann Grassman put forward the

ideas of linear algebra and vector spaces. This was preceeded by his publication, Die Lineale
Ausdehnungslehre (in 1844), wherein he proposed the ‘theory of extension’ (Ausdehnungslehre).
Effectively, he argued for the extension of spatial dimension where the number of such dimen-
sions are not restricted to three (as was dictated by the conventional wisdom). Though,
revolutionary for his time, his work mostly argued for philosophical mathematical innovations
but failed to motivate and provide sufficient rigour for his theories to be taken seriously [28].
In his works, he introduced geometry and algebra as intertwined entities as opposed to the
previous interpretation of algebra was a simple paradigm that conveyed magnitudes. This was
ofcourse, inline with Leibniz’s efforts (before him) to establish a universal algebra (geometria
situs and analysis situs) as the intellectual predecessor to what we refer to as ‘topology’ .

A big momentum to the inclusion of geometry into algebra and the related developments
in functional analysis alongside algebraic topology was provided by Henri Poincaré, whose
work titled ‘Analysis Situs’[66] laid way for the formalization of several topological as they
exist today. This was a big shift from the Eucledian conception of geometry which limited
understanding of the true nature of algebra and the nature of space. Finally, it was Hermann
Weyl in 1920 (himself building on the work of the Italian mathematician, Giuseppe Peano [64])
who formalized the axiomatic definitions of the fundamentals such as vector spaces, topological
groups, Lie groups and other geometric foundations of manifolds. This was also the time when
the new ideas of metric spaces and compactness had entered the mathematical imagination
through the dissertation work of Maurice Fréchet [33]11.

The history of these developments, though interesting in their own right, are presented here
simply to motivate the understanding of the novelty of these domains and their subsequent
applications to mathematical and computational physics. Furthermore, having been previously
acquainted with the basic concepts of differential geometry and algebraic topology, the reader is
now introduced to advanced and much more related concepts in the following sections. First the
reader is introduced to the concepts of geometric associations in mathematical physics, followed
by an overview of the analysis tools used to utilize these geometric similarities —algebraic
topology and differential geometry.

2.2.2. Similarities in Physical Theories
The Italian mathematician, Enzo Tonti first proposed a mathematical concept that sought
to identify the similarities in the equations governing seemingly different fields of physical
systems such as classical mechanics and electromagnetics [69, 70]. Here, he identified a different
classification scheme for physical variables used to model physical systems.

Recall that in the previously we encountered examples of physical variables having different
geometrical associations, such as with point, lines, surfaces and volumes. However, there are
other approaches to construct these associations, such as the ones proposed by Tonti. He
classified field variables into three categories —source variables, configuration variables and
energy variables. This variable classification helps us identify the role each of them plays
in any phenomenological or topological equation (conservation laws, constitutive equations,
interaction equations etc.). For instance, the configuration variables can be thought of as
entities that help identify the ‘configuration’ of any system. In classical mechanics, this variable
can be identified as the position vector. Its complement in cases of field functions can be
identified as a potential term such as temperature, electric or gravitational potential.

As a consequence, the family of variables that stem from these configuration variables

11This was also the period where other major discoveries were being led by several noted mathematicians such
as Darboux and Cartan. Due to limited scope of this report, these are not mentioned.
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Figure 2.4: Basic classification of physical variables of a theory [69]

through operations such as sum or difference, total or partial derivatives —without any in-
tervention from independent quantities such as physical constants, material properties, phe-
nomenological constraints etc are referred to as configuration-type variables. In classical con-
tinuum mechanics, examples include displacement, velocity, strain, deformation gradient etc.

Source variables, on the other hand, are the basic entities that capture the force concept.
They represent the source of change of the configuration of the system under consideration.
Examples for these variables include force (in classical mechanics), mass (gravitation), electric
charge (electrostatics or electrodynamics) etc. Furthermore, extending the concept of derived
variables, source-type variables can be defined, for instance body force, body couple, momen-
tum, stream functions etc. Energy variables can simply be defined as those that are derived as
a product of source and configuration variables. Examples include work, power, kinetic energy,
heat energy etc. These ideas are represented in the Figure 2.4 with the manner of interaction
between the different classes of variables and their corresponding phenomenological equations.

Cell complexes, space and time elements
In this section, the associations of the physical quantities with the basic geometric and chrono-
metric elements are considered, given a region Ω in the space Rn. Accordingly, based on their
geometric associations —some variables may be associated with surfaces (n=2) whereas others
may associate with points (n=0) —and their chronometric counterparts —time instance (n=0)
or time interval (n=1) —the classification discussed previously is developed further.

As an overview of possible quantity association with these elements the following examples
may be considered. Flux variables, such as magnetic flux, electric flux, vortex flux, are associ-
ated with a surface geometry, by definition. On the other hand, variables that are expressed as
a line intergral such as velocity circulation, electromotive forces etc. make reference to a line
element. Interestingly, material based quantities i.e. energy, mass, entropy etc. associate with
volumes. Certain source variables such as electric potential, velocity potential and temperature
are quantified on points.

In order to study this further, a n-dimensional cell concept is introduced. Each three-
dimensional cell (3-cell) is composed of vertices, edges and faces that, in themselves comprise
0-cells, 1-cells and 2-cells respectively:

0-cell: point, time-instant, event: P

1-cell: line segment, time interval: L

2-cell: surface segment, line segment × time interval: S

3-cell: volume, surface segment × time interval: V
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Figure 2.5: Cell complex for (a) R1, (b) R2 and (c) R3 [69]

Figure 2.6: Classification of basic geometrical elements of a cell complex K and its dual ΛK in R3 [69]

4-cell: hypervolume, volume × time interval: H

Consider a volume V (3-cell) in the R3 space. For every point P (0-cell) in V, there are 3
coordinate lines (1-cells) and 3 coordinate surfaces (2-cells) that pass through it. Thus, it can
be seen that any p-cell family groups within itself several (p– 1)-cells continuing upto 0-cells.
Such a set of all the cells of various orders is called a cell complex, K in algebraic topology.

Once the concept of cell complex is introduced, a complementary concept of dual cell com-
plex (ΛK) also follows. In the present case, a dual cell complex becomes relevant as pressure-
velocity collocation is attempted to solve the incompressible Navier-Stokes equation. Further-
more, it should be noted that for every p-cell of K there corresponds a (n–p) cell of ΛK and vice
versa. Complexes (and duals) for one to three dimensional spaces are shown in the Figure 2.5.
It can be seen that duals of complexes occupy the same Rn space but with the center of gravity
of the primal volume elements (V) as their point elements (ΛP). In this manner a primal-dual
association can be shown in the following manner (see Figure 2.6):

Orientation of p-cells and incidence matrices
The concept of orientation of a p-cell can be defined using permutations of the ordered set of
vertices defining a geometry. To clarify this further, consider the simplest geometrical polygons
(or polyhedrons) in Rn spaces. For two-dimensional spaces, the simplest polygon, or simplex,
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(a) Induced inner orientation of p-cells (b) Inner orientation of the p-cells in R3

Figure 2.7: Inner orientation of p-cells [69]

would be a triangle. Similarly for a three-dimensional space the simplex object would be a
tetrahedron. In this manner, if a simplex object in Rn is considered, it can be represented by
the following notation:

< P0,P1,P2, . . .Pn >

The given arrangement along with anyone of the categories can be collectively called the inner
orientation of the cell whereas the remaining category arrangements can be called the opposite
orientation. Through this treatment, it becomes clear that this concept relates to a order
through which the ‘perimeter’ of an object is traversed. This is shown in the Figure 2.7.

Furthermore, since any p-cell complex groups within itself a number of (p – 1) cells —all
of whom are connected topologically to one another —simply choosing an inner orientation
category for a simplex structure at the 1-cell level naturally induces inner orientations to all
the following elements. This cascading of inner orientation is then referred to as the induced
inner orientation. This is depicted in the Figure 2.7a.

This suggests a natural manner or algorithm for the assignment of inner orientation to a
p-cell in n-dimensional spaces. This is as follows:

1. divide the p-cell into p-simplexes,

2. orient one simplex and propagate the orientation to adjacent simplexes,

3. orient all p-cells of the same family (lying on the same coordinate manifold)

Once this system of inner orientation has been defined, it can be extended to the dual (ΛK)
counterparts of these primal cell complexes (K). Continuing in this manner, it is to be noted
that every p-cell of the primary cell complex in K is crossed by a (n – p) cell of ΛK. Thus this
inner orientation of the dual complex is associated to the geometrical elements in the primal
cells as well. For this reason, the dual orientation is named as the outer orientation of the
p-cell. Naturally, this orientation gets induced as well as is shown in the Figure 2.8.

As mentioned previously, the propagation or induction of orientation from lower order
cell complexes within a family to its higher order complexes follows topological laws (such as
the Möbius Law of Edges); these induced orientations depend on the basic convention used.
However, in the case that different orientation conventions are employed at every p-cell within
a family, the propagation will not follow. In order to resolve this issue, a ‘bookmarking’ idea
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(a) Induced outer orientation of p-cells (b) Outer orientation of p-cells in R3

Figure 2.8: Outer orientation of p-cells [69]

is implemented in the form of incidence numbers (e):

e(p–1,p)rs =


+ 1, induced orientation = assigned orientation

0, not a face of higher order cell
– 1, induced orientation 6= assigned orientation

where r is the index of the p-cell and s is the index of any (p–1) cell grouped within the family.
In case, the sth (p – 1)-cell is not a face of the rth p-cell, then the incidence number assigned
to the pair (r, s) is null. On the other hand, if the pair are related to one another then their
orientation compatibility is compared. In case these orientations are same, then a value of +1
is assigned whereas opposite orientations leads to a value of –1 to the (r, s) pair.

These incidence numbers can then be collated within an incidence matrix (Ep,(p–1)) for all
combinations of (r, s). Thus, in case of R3, three different incidence matrices are possible: E3,2,
E2,1 and E1,0. A possible interpretation of these matrices is that of a connectivity matrix that
reflect the output of combintorial pairing of cells within the complex.

2.3. Tools for Investigation: Operators and Cohomologies
2.3.1. Algebraic Topology
In this section, the associations of physical quantities with space and time elements as discussed
previously are considered while making use of the concepts of oriented cell complexes introduced
already. This is relevant since using these oriented complexes will allow for the development of
mathematical associations to the physical quantities as they appear in the equations describing
a physical phenomena. In this regard, the framework employed to utilize the topological
concepts involved with cell complexes and associated variables is a mapping known as a chain.

A p-chain is one such mapping between between the oriented p-cell complex and the ele-
ments of a set S containing quantities of interest. Specifically, it helps define the operations
that are characteristic of physical quantities (such as operations for scalars, vectors, tensors
etc.) as a function of their associated cell complexes. In order to understand how this is
accomplished, the following example can be considered.

In the case of fluid dynamics, specifically for the formulation of Navier Stokes equation, a
parallelopiped fluid element is considered over which forces are balanced. In such a case, contact
forces are considered acting over a face of the fluid element, or in a topological terminology,
these forces are transmitted through a oriented 2-cell. It is important to note here that the
outer orientation of this 2-cell is implicitly used while determining the nature of the force being
applied i.e. compression or tensile. Accordingly, the contact forces which operate on a point
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become associated to the center of gravity of the face —dual complex point elements —and
its derived quantity —normal stress —gets associated with the surface element on the primal
2-cell.

The resulting deformations in the fluid element as a consequence of these forces are modeled
through the displacement of the vertices of the fluid element, or in other words, the 0-cell of the
primal complex. It should be noted here that there is deeper pattern to be identified here, i.e.
the source variables (here, force) associates itself primarily with the dual complex ΛK whereas
the configuration variables (here, displacement) make these associations with the primal cell
complex K. This is also true across many other physical systems and is generally taken as ‘rule
of thumb’.

Mathematically, this association of force is represented through a 2-chain, wherefore each
oriented 2-cell complex is described by assigning to it a vector as a measure of the distribution
of the force. Then these vectors are referred to as the ‘coefficients’ (∈ S = R3) of the 2-chain
constructed. Of the many 2-cells over which the force vector may act, consider the sth 2-cell
and the force vector itself as −→fs , then the 2-chain is represented as:

f(2) = (−→f1 ,
−→f2 , . . .

−→fα)

where, α is the number of 2-cells of the cell complex. Note that these chains are not only limited
to geometrical (or space) elements alone and can be applied to quantities that are associated
with time elements (0-cell or 1-cell).

In order to appropriately analyze the structural and phenomenological equations, another
homology concept of coboundary is now introduced. It is a process that takes in a p-chain
and produces a (p+1)-chain. Essentially, this new chain is constructed by propagating the
connectivity relation of an arbitrary p-cell and all of the (p+1) cells of K that are incident
upon it. These incident cells are cofaces on the p-cell.

As with every chain a mapping to an element S is required. Consider a mathematical
entity β associated with every p-cell. Constructing the (p+1) chain requires ‘transferring’ this
value to each of the p-cell’s cofaces with the same or opposite sign depending on the associated
incidence numbers. Thus, in this manner there are (p+1) multiples of β each belonging to
one of the cofaces. In order to compute the value associated with the (p+1) cell all of the
multiples of β are summed up. In this way, (p+1) chain maps onto another element of S.
This (p+1)-chain is known as the coboundary of the given p-chain. Mathematically this entire
coboundary process can be represented in the form of a linear coboundary operator (δ):

b(p+1) = δβ(p)

where, bp+1 = (b1,b2, . . .bαp+1) and βp = (β1,β2, . . .βαp). This concept is demonstrated in the
Figure 2.9. Furthermore, the complete classification scheme of a primal and dual cell complex
is shown in the Figure 2.10. In this figure αk denotes the number of p-cells of K whereas γj
denotes the number of p-cells of ΛK. Here the p-chains at every cell level are represented by
{a(0),b(1), c(2),d(3)} for the primal cells in K and whereas {e(0), f(1),g(2),h(3)} for the dual
cells in ΛK. Also, E(p+1,p) and ΛE(p+1,p) are the incidence matrices on the primal and dual
cells respectively. Finally, it should be noted that the same coboundary operator δ is used
throughout the chains on both cell spaces in order to construct higher-order chains.

An example of the use of coboundary processes in physical systems can be seen in the
gradient operator. Consider a scalar quantity φ at every point P, then the corresponding
gradient depends on the difference between their values at different points (Pi and Pj):

σs = (+1)φj+(–1)φi
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(a) Transferring β values to incident co-faces

(b) Summing assigned β multiples over every co-face

Figure 2.9: Construction of a coboundary from a p-chain [69]

Figure 2.10: Chains on primal and dual cell complexes for n = 3
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since this difference is associated with the line element, the corresponding incidence expression
can be written as:

σs = Σhe
(1,0)
sh φh

or, simply,
σ
(1) = δφ(0)

thus, in this case, the gradient is simply the coboundary construction of a 0-chain. This re-
alization can be extended towards most structural and phenomenological equations (such as
constitutive, circuital, balance, conservation equations)—that the (p+1)-chain is the cobound-
ary of the p-chain.

2.3.2. Differential Geometry
In this section, we briefly revisit the some concepts of differential geometry that were covered
previously, however with a focus on vector calculus. We begin with differential forms. Flanders
[30, p. 1] describes them as “the things which occur integral signs". These forms are by
definition independent of any metric, since that concept requires an algebraic structure imposed
upon the ambient space, which is not present on manifolds by default (hence the generalization).
Working with these items allows association with entities that have a geometrical relationship.
An example of a differential form, here a 1-form, is as follows:

λ
(1) =A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz, (2.2)

here, the superscript (1) indicates that the expression is that of a 1-form. The identifying
feature here is two-fold: first, the coefficients A(x,y,z),B(x,y,z),C(x,y,z) are known as the
vector proxies of this 1-form, it is these entities that largely feature in traditional vector cal-
culus. What is ignored, on the other hand, is the second feature, which are the basis vectors
for the space of vectors where this 1-form lives, dx,dy,dz. It is through these basis vectors,
that the geometrical association of this 1-form can be made to the family of one-dimensional
objects. Thus, the integration of this 1-form occurs over one-dimensional, smooth curves C ,∫

C
λ
(1) =

∫
C
A(x,y,z)dx+B(x,y,z)dy+C(x,y,z)dz (2.3)

Similarly, this idea can be extended to higher dimensions. For instance, consider a 2-form:

γ
(2) =A(x,y,z)dxdy+B(x,y,z)dydz+C(x,y,z)dzdx, (2.4)

This entity again consists of a combination of vector proxies—A(x,y,z),B(x,y,z),C(x,y,z),
as well as the basis vectors. The 2-form is associated to surfaces or two-dimesnional mani-
folds similar to 1-form association with one-dimensional objects. This association can also be
expressed in the form of a duality pairing:

〈λ(1),C 〉 :=
∫

C
λ
(1), (2.5)

〈η(2),S 〉 :=
∫

S
η
(2), (2.6)

Notice, however, the different basis which is similar to the product of the 1-form basis
vectors. In fact, this product is known as a wedge product: dx∧dy≡ dxdy. This product takes
in a k-form and a n-form defined over a space Ω and gives back a (n+k)-form:

∧ :∧k(Ω)×∧l(Ω)→∧k+l(Ω) (2.7)
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This multi-linear product operator is associative. Furthermore, as an anti-symmetric product,
the following relationship holds:

dx∧dy = –dy∧dx (2.8)

thus, we get the equations:
dx∧dx = dy∧dy = dz∧dz≡ 0 (2.9)

Another operation, known as exterior derivatives, is now discussed. This operation, when
applied to k-forms transforms k-forms into (k+1)-forms. Furthermore, consecutive application
of this operator transforms a k-form into 0(k+2) which is a zero (k+2)-form.

Equipped with these tools, an expression of the generalized Stokes theorem is possible. The
purpose of this expression is to provide the generalization of the differential operators —grad,
curl and div in the form of the exterior derivative operator. Given a k-form ηk from the space
∧k holds the following relationship over a (k+1)-dimensional manifold M :∫

M
dη(k) =

∫
∂M
η
(k) (2.10)

here, the manifold boundary is represented by ∂M . This translates to the duality pairing in
the following form:

〈dη(k),M 〉= 〈η(k),∂M 〉 (2.11)

The different values for k=0,1,2 in this case, will translate this generalized Stokes theorem
into the gradient integral theorem, the classical Stokes theorem and the divergence theorem
respectively [34, p. 55]. It should be noted here that, all of the entities discussed thus far,
occur in a space with no metric structure imposed, thus their discrete implementation can be
made exactly.

2.4. What next?
Thus far we have identified the basic concepts of topological spaces, vector fields as a means to
differentiate quantities, flows and visualized these functional concepts with the flesh and bones
of algebraic topology. Doing so also allowed a visually accessible discussion of chains and
orientation and how the dual of a space can be identified physically in R3. Note here that the
discussion thus far has remained to real-valued chain complexes and their use in differential
geometry. For our purposes however, it is more relevant to understand (co-)vector-valued
chain complexes and thus build them into the mimetic framework. The reason for this change
is the idea that traditional continuum mechanical approaches identify all kinematic and kinetic
quantities using vector and tensor fields. Although this research and its predecessors, have also
explored co-vector valued fields (reasons discussed in Chapter 4), the shift from real-valued
chains becomes important.

We let this discussion rest here for the moment. The conversation over MSEM and its
applications over preserving strong mass-momentum conservation over curved meshes will be
explored in the following chapters. Doing this will require an examination of curvature prop-
erties and how they delineate over a manifold with the help of gauge theory. This exercise will
be undertaken in chapter 4. At this junction, we are quite ready to explore the development
of MSEM as a mimetic method (in the next chapter).





3
Background to Mimetic Spectral Element

Methods

3.1. Introduction
Although in literature it has been difficult to classify clear distinctions between the classes of
finite element methods with certain modifications and those of mixed finite element methods.
However, for clear exposition of the basic ideas, Durán’s conception of mixed FEM is quite
relevant [15]: “Finite Element Methods in which two spaces are used to approximate two
different variables receive the general denomination of mixed methods".

The motivation for implementing a mixed formulation is usually the need for computing a
second field variable that is either related through derivatives to the primary unknown quantity
or due to some physical interest. For instance, for elasticity problems, stress and displacement
would be the two field quantities that need to be estimated simultaneously on two different
spaces. Another case would be where the two variables are not directly coupled to one another
such as the case of incompressible flows where the pressure and velocity variables, instead
pressure is used as a Lagrange multiplier to enforce the conservation of mass.

Historically speaking, the development of these methods and their subsequent analysis
methods are credited to the works of Brezzi [16, 17], Babuška[5], Crouzeix and Raviart [20],
Falk and Osborn [26], and Fortin [31]. An example1 would perhaps be the best way to illustrate
the application of this formulation. We consider the following system:

–∇· (a∇p) = f in Ω
p = 0 on ∂Ω

where Ω⊂ Rn is the domain of computation and a = a(x1,x2, . . . ,xn) is a bounded function
coefficient2. The mixed approach of creating two spaces for solution to be obtained is done
through ‘decoupling’ the second order system into first-order equation systems:

u = –a∇p,

This leads to the following equations:

u + a∇p = 0 in Ω,
div u = f in Ω,

p = 0 on ∂Ω.

This first order system can now be implemented within a weak formulation using the Hilbert
spaces of the div operator:

H(div,Ω) = {v ∈ L2(Ω)n : div v ∈ L2(Ω)}
1This example is sourced from [15, p. 8].
2Generally speaking, a is a tensor, however a restriction to function confines us to a diagonal tensor with the
same scalar quantity on the diagonal.

27
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where, the test functions v are supplied from this test space H(div,Ω). Considering, μ(x) = 1/a(x)3,
we can write the weak mixed formulation as:∫

Ω

μu . vdx –
∫
Ω

p div vdx = 0 ∀v∈H(div,Ω),∫
Ω

q div udx =
∫
Ω

f q dx ∀q ∈ L2(Ω).

This formulation admits into itself the Dirichlet boundary condition (implicity) whereas the
Neumann conditions would have to be imposed over the space as essential conditions. Further-
more, this weak formulation involves divergence of the solution and the test space and avoids
arbitrary first derivatives on both. This allows for more flexibility or greater search space when
looking for a solution in H(div,Ω) instead of the smaller H1(Ω)n.

The example above seeks to illustrate the formulation and mechanism used for simpler
yet challenging differential equation systems. For more sophisticated problems, such as the
elasticity equations, the weak formulation also features the use of Lagrangian multipliers to
enforce coupling between the boundary conditions, field properties (such as divergence of the
vector or tensor fields etc.) and the primary as well as the secondary equation systems.

3.1.1. Mimetic Applications of Mixed FEM
As can be seen above the mixed finite element method applications have general applications
for different physical and mathematical considerations in differential equation systems. But
for the current brief, we are interested in exploring applications of this formulation within a
mimetic context. As such we now look upon some of the work that serves as a precursor for
the in-house research work covered in the following section. Through this line of thought, it is
hoped that headway can be made towards discussing the differential forms-based framework
where plenty of different mimetic formulations are found.

To understand the need for a differential-forms based framework (apart from the need
for more efficient geometry-aware schemes), the reader is suggested a reading of Arnold et.al.
[2], where the performance indicators of a finite element formulation is delineated into three
categories viz. the approximation error, the consistency error and the stability constant. The
respective functions of these three quantities are as follows —the approximation errror measures
the error between the true solution of the system and our best approximation using finite
element solution spaces; the consistency error on the other hand is the measure of the how
much ‘continuity’ is preserved when selecting the finite element solution (from the finite element
solution space) with that of the true solution space. The stability constant is an indicator of
the well-posedness of the finite dimensional problem obtained from our discretization of the
governing equations.

While the first two of the quantities are deemed manageable while synthesizing the numer-
ical schemes, the stability constant is not very easy to control as it is quite sensitive to the
method chosen. Tackling or more accurately keeping track of how this stability depends on the
finite dimensional model requires knowledge of deeper mathematical principles of geometry,
topology and algebra. Thus, the following discussion can be seen as an exercise to establish
better controls over the numerical stability of schemes. The mimetic finite difference methods
(as majorly discussed in the three phases previously) are alongside several other classes of
‘mimetic’ methods that seek to implement geometrical properties.

Examples of such methods are the covolume methods [62], Finite Element Exterior Calculus
(FEEC) [2] and Discrete Exterior Calculus (DEC) [21]. Despite some similarities or rather
convergences when applied to simpler cases, the differences between these methods emerge
3alternatively, for the matrix a, μ= a–1
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when problems of complicated nature appear. For instance, the mimetic finite differences and
DEC operate over simplicial meshes as opposed to the differential forms which lie at the core
of FEEC. Furthermore while it is possible to establish a map between differential forms over
a simplex to simplicial cochains (which induces an isomorphism on the cohomology) [2], it is
rather difficult to devise a reverse map that takes in cochains and gives out differential forms.

This missing piece was provided by Whitney [72] with an inverse de Rahm map that
associated any k-cochain with a piecewise linear differential k-form. Using this theory, Bossavit
[11] led the work in the field of electromagnetics. He combined Whitney forms with his work
on low-order finite element spaces for applications in electromagnetic systems [12–14] and in
his series of ‘Japanese papers’. In a manner of extension to the work of Bossavit (who identified
applications for lower-order Whitney forms), Hiptmair [36] explored higher order forms based
differential forms of higher polynomial degrees.

There was however another scope of research in these works, that is, since these formu-
lations were limited to real-valued differential forms, they did not consider structures with
vector-valued or covector-valued differential forms. On the other hand, DEC aimed to build
applications of exterior calculus over simplicial complexes with the foundational theory which
included differential forms and discrete vector fields. While some work had been carried out
in incorporating vector-fields into a cochain based approach with the help of exterior calculus
[61, 67], it ultimately did not involve dual cochains and thus, failed to encode critical physical-
geometric information into its framework. DEC, on the other hand, implemented a dual mesh
approach that accomodated physical quantities related to the dual quantities such as the flux
across boundaries [21]. Applications of DEC framework have been quite successful and appear
in discussions on the applications of mimetics in solid and fluid mechanics [47, 73].

3.2. Development History at TU Delft
With the background of mimetic implementation in its various forms having been covered,
the work being carried out at TU Delft and its history can be detailed. A good starting
point for this survey would be the article by Gerritsma [34], where he highlights the mimetic
formulation for quadrilaterals using new basis functions referred to as edge functions4. The
mimetic framework he employs makes use of differential forms as opposed to a primary/derived
operator framework (DVTC). Following from the discussions on differential geometry from
the previous chapter, applications are drawn for the exact modeling of the governing partial
differential equations and its discrete counterparts that would require additional concepts of
algebraic topology and chain complexes.

3.2.1. The DeRahm Cohomology Revisited
Similar to how the generalized Stokes theorem provides a single expression for the integral
operations transforming quantities defined on n-dimensions to (n+1)-dimensional objects in a
continuous manner, the discrete geometric approach is to identify sequences that map elements
of one set to another. Consider for instance, the following mapping from Gerritsma [34, p. 50]:

HS
div−→HV (3.1)

where HS is the space of quantities defined on surfaces (n=2) and HV is the space of variables
defined over volumes (n=3). The divergence operator in this case, acts as the mapping function
between these two sets. Similary, other transformations can be identified as well, in a sequence

4Gerritsma refers to these edge functions as “the extension of the classical Whitney forms to quadrilaterals" [34,
p. 49]
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of mappings, infact giving us:

HP
grad−→ HL

curl−→HS
div−→HV (3.2)

Equation 3.4, when observed, displays properties of exactness as noted by Gerritsma [34, p. 51],
“in the sense that the range of one of these operators is contained in the null space of the next
operator"

R(grad)⊂N (curl) and R(curl)⊂N (div) (3.3)
This exactness leads to the identification of this sequence as a De Rahm complex of the form:

R−→HP
grad−→ HL

curl−→HS
div−→HV −→ 0 (3.4)

This sequence is appropriate for use in cases upto 3-dimensions (R3) as indicated by the 0 at
the end of this chain. In terms of numerical implementation we refer to [34, p. 51]—“in finite
element methods, the spaces HP,HL,HS,and HV are generally associated with the function
spaces H1(Ω),H(curl;Ω),H(div;Ω),and L2(Ω), respectively".

Furthermore, following from general concepts of linear algebra, the dual of a space such as
HP,HL,HS,and HV (defined over a field of real numbers, R) consists of linear functionals ϕ such
that the image of these spaces is in the set of real numbers. That is, for HL, the dual space is
φL : HL→ R. This space containing ϕ∈ φL is itself a vector space similar to HL. Furthermore,
it should be noted here that the dual space of a vector space is also a vector space in itself,
that is, the space spanned by the dual of HP,HL,HS,andHV is in itself a vector space.

Thus, owing to the analogies with differential concepts presented thus far, the sequences
can replace the representations for {HP,HL,HS,and HV} with {Λ0(Ω),Λ1(Ω),Λ2(Ω),and Λ3(Ω)}.
And since, the current discussion is restricted upto three-dimensional objects (R3), the dual
space for these k-dimensional spaces will have dimensions upto (n-k) —the dual space will
change from {φP,φL,φS,and φV} with {Λ3(Ω),Λ2(Ω), Λ1(Ω),and Λ0(Ω)}.

Thus, identifying the functional spaces with their respective differential forms, the following
De Rahm chain is obtained:

R−→ Λ0(Ω) d−→ Λ1(Ω) d−→ Λ2(Ω) d−→ Λ3(Ω) d−→ 0 (3.5)

3.2.2. Reconstruction and Reduction
From a continuous formulation of the differential equation system to a discrete version fit
for computational implementation (reduction) and vice versa reconstruction of the discrete
solution space, this pipeline is implemented through the reduction and reconstruction operator,
respectively.

The Reduction Operator
For a n-dimensional manifold Ω, considered covered by a cell complex, we assume the p-chains
as p-dimensional submanifolds of Ω. For any differential form a(p) over a sub-manifold Λp(Ω),
the reduction operator is defined using a duality relationship as,〈

Ra(p),C(p)
〉
:=

∫
C(p)

a(p),

where the object Ra(p) is a p-cochain acting on a p-chain, C(p). The reduction operator R

thus, when applied to the differential p-form maps onto a p-cochain. Expanding the p-chain
C(p) into the p-cells of the cell complex,

Cp =
np∑
i=1

m(p),ic(p),i,
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and since the duality relationship is linear in nature and the p-cells are considered disjoint [34,
p. 59], we obtain,

〈Ra(p),
np∑
i=1

m(p),ic(p),i〉 =
np∑
i=1

m(p),i〈Ra(p), c(p),i〉.

The reduction operator is thus evalutated over the entire range of p-cells through integration.
Furthermore, the reduction operation commutes with the exterior derivative operator (or

the coboundary operator on the discrete level) as shown in the equation 3.6,

Λ
k(Ω) Λ

k+1(Ω)

C(k) C(k+1)

d

R R

δ

(3.6)

The Reconstruction Operator
The reconstruction operator, denoted by I is used to obtain the contuinuous formulations
from the discrete solution space values. Thus, this operator maps p-cochains onto differential
p-forms. The reduction operator when applied to the reconstructed p-forms should again give
the original p-cochains. In this manner, these operations are inverse5 to one another [42]:

R ◦I = I

The example applications of this operator, similar to the reduction operator are illustrated
well by Gerritsma [34, p. 60-61].

3.3. Mimetic Spectral Element Framework
3.3.1. Notation
Throughout this treatment and in the following chapter, we seek to introduce a consistent
notation scheme to refer to relevant parameters, characterizing both their nature and function.
For instance, a vector is marked in boldface typeface, for instance v for a vector-valued field
function, f for a scalar-valued field function and σ to denote a tensor field. The grid construction
depends on two key parameters, the polynomial order p and the polynomial mesh density,
measured in the number of nodes, N. The polynomial mesh density, needs to be at least N =
p+1 in order to successfully reconstruct the function spaces reduced by the polynomial nodes.

The mesh grid density is also characterized by the element size used to discretize the
domain shape in the problem statement. This element size is noted as h, where its measure is
determined by the number of discretized elements in the grid, denoted as k. The k-forms, as
they correlate with the number of element discretizations used, are denoted using a superscript
k as in φ(k). The dual spaces corresponding to these forms are denoted with a prime symbol
occupying the superscript notation, as in Ω′. The fields (vectors, scalars and tensors) are all
denoted with a superscript h, referring to the mesh size of reconstruction.

3.3.2. Grid Construction
Basis functions are used for interpolation of the field variables within a grid constructed over
the computational domain. Current implementations of the mimetic method features spectral
mimetic basis functions as the primal functions and whose algebraic dual can be computed
[35]. The calculation of this algebraic dual requires the primal grid points and the definition
of the inner product as defined on the finite dimensional space. The treatment surveyed here
5I is a right inverse of R, but only an approximate left inverse
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only considers the latest applications since previous applications also made use of nodal spec-
tral elements in combination with Galerkin (GSEM) or a least-squares formulation (LSSEM)
[48, p. 285]. The choice of using mimetic spectral element interpolation was made in or-
der to achieve a pointwise divergence-free solution for all mesh sizes (all while satisfying the
Ladyshenskaya–Babuška–Brezzi (LBB) stability conditions). This was not possible with the
previous choice of methods since GSEM resulted in only a weakly-divergence free solution thus
the divergence converged to zero only for refined meshes. Whereas, the LSSEM resulted in
poor mass conservation properties.

The grid construction follows the Gauss-Lobatto-Legendre (GLL) formulation [35], where
the root locations of the following polynomial (φGLL) determine the grid locations:

φGLL = (1– ξ2)dLp(ξ)dξ

where, Lp is a Legendre polynomial of degree p. This polynomial in itself can be admitted as
a solution to the following differential equation:

d
dξ
(
(1– ξ2)dLp(ξ)dξ

)
+p(p+1)Lp(ξ) = 0

3.3.3. Primal Basis Functions
Once these grid locations are defined, the primal basis functions may be defined. Fisser [29]
provides an overview of this construction, himself sourcing the derivations from [35]. Given
the nodal and edge degrees of freedom, N 0

i and N 1
i respectively, the differential 0-form (λ(0))

and 1-form (λ(1)) are given as:

λ
(0)(ξ) =

p+1∑
i=1

N
(0)
i (λ(0))hi(ξ)

λ
(1)(ξ) =

p∑
i=1

N
(1)
i (λ(1))ei(ξ)

where hi and ei are the nodal and edge basis functions respectively. Further, considering the
computational domain restricted in the closed space [-1,1], such that, –1 = ξ1 ≤ ξ2 · · · ≤
ξp+1 = 1, the nodal and edge degrees of freedom can be expressed as the following linear
functionals [45],

N 0
i (λ(0)) ≡ λ(0)(ξi)

N 1
i (λ(1)) ≡

∫
ξi+1

ξi
λ
(1)(ξ)

The zero-form expansion includes the nodal expansion basis functions, hi. These functions
need to satisfy the following properties:

hj(ξi) = δij =
{
1, if j = i
0, if j 6= i

, ∀ i, j∈ [1,p+1],

These properties are satisfied by the Lagrange polynomials constructed from p+1 data points.
These nodal functions can then be defined as,

hi(ξ) ≡
p+1∏

k=1,k 6=i

ξ– ξk
ξi – ξk

,
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Figure 3.1: Primal basis functions for p=5

Furthermore, the edge functions satisfy the following properties,∫
ξi+1

ξi
ej = δij =

{
1, if j = i
0, if j 6= i

, ∀ i, j∈ [1,p].

The primal basis functions are shown in the Figure 3.1. The edge basis functions are related
to the nodal basis functions over a GLL grid by,

ej(ξ) = –
j∑

k=1
dhk(ξ) ≡ –

j∑
k+1

dhk(x)
dx dx = εj(x)dx.

3.3.4. Dual Basis Functions
Once these primal grid basis functions are determined, the algebraic dual basis are determined
using mass matrices. The one dimensional mass matrix M(0)

1D is given as,

M
(0)
1D =

∫
Ω

(ψ0(ξ))Tψ0(ξ)dΩ,

where the term ψ0(ξ) is the matrix representation of the primal nodal basis functions,

ψ
0(ξ) = [h1(ξ),h1(ξ), . . .hp+1(ξ)].
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Consider the product of two 0-forms —λ(0)(ξ) and π(0)(ξ), then the L2-inner product is given
as,

(λ(0),π(0))L2(Ω) ≡
∫
Ω

λ
(0)
π
(0)dΩ =

∫
Ω

(N 0(φ))T(φ0(ξ))Tφ0(ξ)N 0(π)

where, the nodal degrees of freedom are represented in the matrix form as,

(N 0(φ))T =
[
N 0

1 (φ),N 0
2 (φ), . . .N 0

p+1(φ)
]
,

the L2-inner product then becomes,

(λ(0),π(0))L2(Ω) =
∫
Ω

(N 0(φ))TM(0)
1DN 0(π),

the dual basis function can then be defined as N ′1(π),

(N 0(φ))TN ′1(π) ≡ (N 0(φ))TM(0)
1DN 0(π)︸ ︷︷ ︸,

and, similar to the functions on the primal basis functions, the dual basis functions h′j(ξ) obey
the Kronecker-delta property such that N ′1(h′j) = δij. The dual nodal polynomials are then
found to be:

ψ
′1(ξ) = ψ0(ξ)

(
M

(0)
1D
)–1.

where, ψ′1(ξ) = [e′1(ξ),e′2(ξ), . . .e′p+1(ξ)]. Similar expressions can be derived for the dual
nodal polynomials corresponding to the one dimensional mass matrix M(1)

1D [29, 35]. The dual
algebraic polynomials are shown in the Figure 3.2.
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Figure 3.2: Dual basis functions for p=5
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3.3.5. Reduction and Reconstruction
We consider here, a purely mathematical exercise, that is the reduction and reconstruction
of a scalar function over an unit square reference element Ω. We begin by illustrating the
reduction operation followed by a reconstruction of the scalar field to the reference element
numerically. For now, we consider a one-dimensional case, such that the element is given as
ξ = [–1,1]. Given the function f(ξ), we reduce the function into coefficients or integration
points through the discretization of the reference domain using N+1 Gauss-Lobatto Nodes,
such that –1 = ξ0 < ξ1 < · · ·< ξN = 1. These nodal points are then assigned an equal number
of Lagrange basis polynomials (h) of the order N as discussed in the previous sections. Thus
we may write the reconstruction as a result of the reduced point sets as:

fh(ξ) =
N∑
i=0

f ihi(ξ), where, f i = f(ξi)dξ (3.7)

alternatively, the reduction can also be done using the primal edge basis functions. To
achieve this, we assign to each of N edges created as a result of the discretization, N edge basis
polynomials (e) of the order (N-1) such that, we may write:

fh(ξ) =
N∑
i=1

f iei(ξ), where, f i =
∫
ξi–1

ξi
f(ξ)dξ (3.8)

Now we move towards the more interesting case of two-dimensional reduction and recon-
struction operations. Assuming another scalar function g(ξ,η) over the 2-D reference domain
Ω, we write:

gkl =
∫
Ω

g(ξ,η)hk(ξ)h′l(η)dΩ (3.9)

Note here that mixed basis functions (a combination of the primal and dual Lagrange
polynomials) have been used to compute the integration points for this function g. Once we
obtain these integration points, we may reconstruct the numerical field distribution as shown:

gh(ξ,η) =
N∑
i=1

N∑
j=0

gijh′i(ξ)hj(η) (3.10)

Since, we use the Lagrange polynomials over both the primal as well as dual function
spaces, it becomes easier to compute the derivatives of these functions computed numerically.
This is because upon differentiation, both dual as well as primal Lagrange polynomials yield
their respective edge functions. Thus this mixture of Lagrangian polynomial based reduction
and reconstruction is used in this research. Thus we say,

∂gh

∂ξ
=

N+1∑
i=1

N∑
j=0

[gi,j – gi–1,j]e′i(ξ)hj(η)

∂gh

∂η
=

N∑
i=1

N∑
j=1

[gi,j – gi,j–1]h′i(ξ)ej(η) (3.11)

note here that the boundary values for the integration points are supplied using additional
information along the boundary ∂Ω. We write that,
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g0,j =
∫

∂Ω

N∑
j=0

g(ξ= –1,η)h′j(η)

gN+1,j =
∫

∂Ω

N∑
j=0

g(ξ= 1,η)h′j(η)

Reduction and reconstruction for vector fields can be computed using a similar procedure,
such that, for a vector function u= [u(ξ,η),v(ξ,η)]T we discretize the fields as follows∫

Ω

u(ξ,η)hk(ξ)h′l(η) = ukl∫
Ω

v(ξ,η)h′k(ξ)hl(η) = vkl (3.12)

these integration points can then be used for the reconstruction of their respective compo-
nent fields as:

u(ξ,η) =
N∑
i=1

N∑
j=0

uijh′i(ξ)hj(η)

v(ξ,η) =
N∑
i=0

N∑
j=1

vijhi(ξ)h′j(η) (3.13)

such that the derivatives are computed as shown:

∂u
∂ξ

=
N+1∑
i=1

N∑
j=0

[uij – ui–1,j]e′i(ξ)hj(η)

∂u
∂η

=
N∑
i=1

N∑
j=1

[uij – ui,j–1]h′i(ξ)ej(η)

∂v
∂ξ

=
N∑
i=1

N∑
j=1

[vij – vi–1,j]ei(ξ)h′j(η)

∂v
∂η

=
N+1∑
i=1

N∑
j=0

[vij – vi,j–1]hi(ξ)e′j(η) (3.14)

note again, that the boundary values are computed using similar approach as shown above,
giving:

u0,j =
∫

∂Ω

N∑
j=0

g(ξ= –1)h′j(η)

uN+1,j =
∫

∂Ω

N∑
j=0

g(ξ= 1)h′j(η)

vi,0 =
∫

∂Ω

N∑
i=0

v(η= –1)h′i(ξ)

vN+1,i =
∫

∂Ω

N∑
i=0

v(η= 1)h′i(ξ)

3.3.6. Error Computations
In this section, we discuss the numerical computation of the error in the reconstructed solutions
when compared to the exact or analytical representations of the solutions. To do this, we in-
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troduce the measures of errors considered in this research and used to measure the convergence
properties of a finite element approximation 6.

Norms
The L2 error norm is used in order to measure the error terms for different scalar as well as
vector quantities. In order to do this, the space of square integrable functions over the domain
Ω, L2(Ω) is used, which is defined as [15]:

L2(Ω) =
{
f|
∫
Ω

|f|2dΩ= ||f||2L2(Ω) <∞
}

when applied to scalar, say p, this error (between the exact value pex and the computed
value ph) is computed as:

||εp||2L2(Ω) =
∫
Ω

(pex(ξ,η) – ph(ξ,η))2dΩ (3.15)

which can be numerically computed as:

||εp||2L2(Ω) ≈
∑
r

∑
s
(pex(ξr,ηs) – ph(ξr,ηs))2wrws (3.16)

where wr and ws are the weights associated with a quadrature over a refined GLL mesh
used to computed the integral of the squared-error difference.

Convergence
Following the error computations, understanding the convergence behavior of the approxima-
tion becomes important to conclude whether a superior accuracy of the approximation becomes
possible upon refinement of numerical parameters. This is done through a relationship wherein,
the error obtained above is related to the number of nodes used for refinement, h= 1/K, where
K is the number of elements used,

ε ∝ hαp

where α is a positive, non-zero constant that indicates the optimality of the convergence with
respect to a completely exponential convergence, p is polynomial order used in numerical
computation. It is expected that for a linear increase in the polynomial order, there should be
an exponential decrease in error. In this thesis only a single element implementation is shown,
that is with K=1.

6In order to keep consistency, the description of errors and norms follows from [29]



4
How to Handle Curvature?

This chapter deals with the primary and core subject matter that this thesis aims to present,
that is —discretization of curved geometries in numerical schemes. This is done by adapting the
differential geometry treatment of the curvature in the fields over spacetime manifolds. This has
downstream consequences over how the ideas of infinestimals and derivatives over a generalized
fields are computed. The sub-discipline of differential geometry that deals exclusively with this
subject is that of Gauge theory. An excellent reference for this subject is the book by Baez
and Muniain [6].

We begin with a brief overview of what does ‘curvature’ mean in the broader sense of the
term when rooted in the context of differential geometry and how it can be analyzed over a
spacetime manifold. A note is then presented on how mathematical physics of solid mechanics
informs our choice of tools that are used in the analyses of function fields over these manifolds.
Finally, a computational setup is presented where the methods of analysing the curvature
effects are computed and the novelties that are introduced are explained.

4.1. Curvature over Manifolds
Gauge theory can be understood to be the generalization of the concepts of Lagarangian
invariance (known as Gauge invariance) under transformations as was observed to be the
case with Maxwell’s equations. As part of this generalization, key concepts of bundles and
connections are needed. These ‘structures’ when imposed on a general field over the spacetime
manifold, allows for the evaluation of the field values at different points of the manifold.
To clarify the need for this structure, perhaps it is better to understand how our classical
understanding of vector fields over an Eucledian space creates an illusion of a fixed vector
space.

Consider a manifold M, where a simple field f can be imagined to exist:

f : M → V

However, we immediately run into problems owing to the inadequate nature of this expres-
sion when applied globally to M. That is, this relationship, where points on M are mapped
to a fixed vector space V, only holds for localized spaces (charts) on M. This is because, as
opposed to the vector field that exists on M, this mapping acts on the tangent spaces of this
vector field over a space. This implies that the values of the vector fields at different points
on the manifold cannot be compared directly, since their vector spaces (where they ‘live’) are
different (see Figure 4.1).

The consequences of this limitation imposes upon us another limitation when it comes to
differentiating these vector fields (since that essentially requires differences over vector field
values at different points). Structures proposed under the Gauge theory seek to remedy this
situation. Essentially the different vector spaces over the manifold are sought to be consolidated
under the notion of vector ‘bundles’ at each point in M. The vector fields, then become what
are referred to as the ‘sections’ of these bundles. Consider the Figure 4.2 where this concept

39
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Figure 4.1: Tangent vectors defined over a spherical manifold.

Figure 4.2: A bundle π : E → M(S1).

is illustrated. Here, the manifold space M is shown as a one-dimensional sphere S1 or simply
as a circle. This manifold is referred to as the base space, in the context of this bundle. The
projection map π maps this base space to the total space E where the fibres over each point
p∈M are defined. For our purposes, it is sufficient to consider this total space to be the space
of the tangent bundle over M. The total space then can be expressed simply as the totality of
all the tangent bundle fibres over all the points in space:

TM =
⋃
p∈M

TpM.

The projection, then can be written as: π : TM → M. Here, π maps each tangent vector
v ∈TpM to the point p∈M. There are however, additional restrictions that can be placed on
this basic idea such as that of being ‘locally trivial’ and that pertaining to ‘morphisms’. For
the purposes of the present discussion, we assume all of the required qualifications to apply
such that we approach the concept of a real vector bundle. Once this has been established, the
concept of a section can be defined with an improved rigour. A section of a bundle π : E → M
is a function s : M → E such that for any p∈M,

s(p)∈Ep.

thus, a section is an instrument that maps each point in the base space to a vector in the fibre
over that point.

With these concepts introduced, it is perhaps appropriate to bring forth the idea of connec-
tions. Functionally, it is a mechanism that enables the differentiation of vector bundle sections.
It is important to realize the need for this structure, since the differentiation operation requires
addition (subtraction) between vector fibres over different points in the base space. A connec-
tion D on M then describes a mapping where each vector field v on M is assigned a function
(or an operator) Dv within the spaces of sections of E, denoted as Γ(E) [6]. With this, we are
prepared for a segue into the concepts of covariant differentiation and parallel transport.
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4.1.1. Covariant Derivatives
Continuing with the previous definition of a connection, we identify the function Dv with the
following properties:

Dv(αs) = αDvs
Dv(s+t) = Dvs + Dvt

Dv(fs) = v(f)s + fDvs
Dv+w(s) = Dvs + Dws
Dfv(s) = fDvs

for all v,w ∈Vect(M), s, t∈ Γ(E), f ∈C∞(M) and all scalars α [6]. The reader should note
here that the properties of this function are similar to that of a vector field and that the third
property is just another version of the Leibniz law. This implies that the role of this function
Dv is similar to that of differentiation. Thus, given any section s and a vector field v, the term
Dvs is called the covariant derivative of the section s in the direction v.

Principally, the covariant derivative is simply a reformulation of the notion of the intrinsic
derivative1 over a manifold. For a given tangent vector field v to the manifold M, the tangent
vector X to M lies at p. Then the covariant derivative ∇Xv at p is then expressed in terms of
the local coordinates as:

(∇Xv)α =
(∂vα

∂uβ + Γαβγvγ
)
Xβ (4.1)

In this equation, the terms Γ denote what are known as Christoffel symbols. Considering
a coordinate frame 2, e = (e1, . . . ,en) in a region U. Then the vector field X = ejXj in
equation leads to the following:

∇X(ekvk) = Xjeiωijkv
k + Xj

j(vk)ek, (4.2)

where the coefficients ωijk are defined by,

∇ej(ek) = eiωijk. (4.3)

It becomes pertinent to the discussion in this report, to consider the change of frames
and the consequent effect on the covariant derivative and the associated Christoffel symbols.
Consider the transformation matrix P which is a non-singular n×n matrix function, which
takes the coordinate space e to e′ = eP. The vector v then holds the following relationship:

v = ev = e′v′ = = ePv′,
∴ v′ = P–1v. (4.4)

Furthermore, in order to evaluate the covariant derivative in a coordinate independent
formulation, we need to define the transformational relationships between the change of frames.
The dual σ of the coordinate basis also follows the transformation rules:

eσ = I = e′σ′ = ePσ′

1The intrinsic derivative over a manifold is the projection of dX/dt into the tangent space (∇X/dt) to M at
any given point, where X is a vector field defined over a curve C parameterized by t and is tangent to M.

2A coordinate frame is simply a special case of what is known as the frame of vector fields. A frame of vector
fields consists of n linearly independent smooth vector fields e = (e1, e2, . . . , en) in the region U. For a frame to
qualify as a coordinate system, the vector fields ei = ∂/∂xi are orthogonal to one another [ei, ej] = [∂i,∂j] = 0
[32, p. 243].
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Furthermore, the differential operator ∇ transforms as shown:

∇e = eω
and, ∇e′ = e′ω′

The derivative over the transformed basis of the coordinate frames is then given as,

∇e′ = ∇eP = (∇e)P + edP = eωP + edP

the Christoffel symbols in the transformed frame are given as,

ω
′ = P–1

ωP + P–1dP, (4.5)

Considering the case for the basis coordinate frame (non-transformed grid) to orthogonal, we
have that ω = 0. The new connection coefficients are then given as:

ω
′ = P–1dP. (4.6)

A Note on Parallel Transport
There is an important concept that is related to the discussion of connections over a curved
manifold, known as parallel transport. The reader should recall that comparison of vectors lying
in the fibres of a vector bundle over two different points p and q is not canonically possible. The
construction of the connection structure allows for the differentiation of a section, however,
there is an additional benefit to it. Consider a path γ between two points p and q and a
connection over it. Parallel transport provides a canonical mechanism to ‘drag’ a vector over
γ such that the vector over the fibre bundle p ends up at in the fibre bundle over q (see the
Figure 4.3). If for a given path, the covariant derivative is obtained as zero, then the vector is
said to have been “parallelly transported" along the path.

(a) Parallel translating a tangent vector along a
path

(b) Parallel translating a tangent vector along
another path

Figure 4.3: Illustration of parallel transport of a tangent vector over a spherical manifold (TS2) [6, p. 232].

4.1.2. Lie Derivatives
In the above subsection, we identified a mechanism to generalize the notion of intrinsic deriva-
tive of a manifold space. This is loosely related to the idea of a directional derivative. However,
a much more significant generalization of the directional derivative is given in the form of the
Lie derivative. This subsection gives a brief overview of this idea, just for the sake of com-
pleteness of the subject matter being discussed at hand.

Similar to how the construct of connections were utilized to provide a framework for evalu-
ating the curvature of a manifold through covariant differentiation, there are certain structures
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that are required for the introduction of Lie derivatives over a manifold space. In previous
chapters the reader was introduced to these structures, namely flow and the Lie bracket.

Effectively, the Lie bracket allows us to measure how much the commutativity of mixed
directional derivatives over a manifold space ‘fails’ by. This is done by the operation known
as the commutator, wherein for any two given vector fields a third vector field is generated.
Given, v,w ∈Vect(M), the commutator or the Lie bracket [v,w] is defined as:

[v,w](f) = v(w(f)) – w(v(f)), (4.7)

for all f ∈C∞(M). Thus,
[v,w](f) = vw – wv.

For ordinary mixed partial derivatives, the vector fields commute and thus the Lie bracket
is zero. However, for vector fields such as the one shown in Figure 4.4 below, the fields do not
commute.

Figure 4.4: A case of non-commutativity of v and w, [v,w] 6= 0 [6].

Finally, the Lie derivative, built off of this idea, enables us to differentiate vector fields
with respect to one another (similar to how the vector fields allow differentiation of functions
defined on a manifold space). The need for a distinct operator such as the Lie derivative was
illustrated in the Figure 2.3. When evaluated over two different points over a flow γ(t), the
tangent vectors over the vector fields at these two points belong to two different spaces. In
order to find the directional derivatives over this flow, the spaces must be reconciled. This is
done through the ‘pullback’ operator d(γ–t) marked in blue. In this manner, the tangent vector
for point γ(t) is obtained within the tangent vector space at γ(0) as d(γ–t)γ0Wγt . The Lie
derivative, LVW thus computes the directional derivative of the vector field W with respect
to V.

(LVW)p = d
dt

∣∣∣∣∣
t=0

d(θ–t)θt(p)(Wθt(p)) = lim
t→0

d(θ–t)θt(p)(Wθt(p) – Wp)
t (4.8)

4.2. Which derivative to choose?
Having considered two derivatives on curved spaces, it becomes pertinent to identify the oper-
ator to be used for our purposes. The primary aim of the research presented here is to develop
extensibility for the existing strongly conserved mass and momentum methods developed by
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Fisser [29] over curved geometries, the due consideration of the choice of operator is made in
this context.

While Lie derivatives allow the analysis of curved geometries by evaluating the derivatives
of vector fields with respect to one another, they do not allow for parallel transport which is a
necessity considering the Lagrangian formulation of many flow phenomena problems wherein
conservation of properties in an element requires a comparison across a geodesic that is akin
to parallel transport considerations. In their paper, Kanso et.al. [47] provided a mathematical
formulation of the stress field in the classical theory of continuum mechanics where covector-
valued differential two-forms were used. Furthermore, the balance laws along with the other
fundamental laws were rewritten using covariant derivatives within the framework of energy
balance. Our approach here, is somewhat informed by their approach along with Frankel’s [32]
treatment of solid mechanics where mechanical stress is treated as a vector-valued two-form.

This means, that in the (co-)vector framework of continuum mechanics, the standard
stresses when replaced with the (n-1)-forms (in n-dimensional ambient space) represent a
covariant derivation of balance laws and constitutive relations without taking the classical na-
ture of stress as a two-tensor into account. This, the authors Kanso et.al believe reflects a
more natural formulation of continuum mechanics. It is this consideration that pushes this
research in the direction of covariant discretization of curvature so that this representation of
mechanical stress may be utilized with the existing research of [29].

4.3. Commutativity of the Exterior Derivative
We now establish the commutative nature of the covariant exterior derivative, as this would
be useful in situations of transformations which lead a change of frames.

We refer to Frankel [32, p. 253], in order to describe the operator ∇ applied to a vector
field v, such that ∇ is basis-free. For a given frame, with the basis e, we write,

v = ev

such that, due a change of frame to e′, we obtain,

v = ev = e′v′

then we write,

∇v = e(dv+ωv)
⇒∇v = e′P–1(dv+ωv), (from eqn. 4.4) (4.9)

we know that from equation 4.4,

v = Pv′

⇒ dv = (dP)v′+P(dv′)

using this in equation 4.9, we see that,

∇v = e′P–1[(dP)v′+P(dv′)+ωPv′
]

⇒∇v = e′P–1[(dP)v′+P(dv′)+(Pω′ – dP)v′
]
, (from eqn 4.5)

⇒∇v = e′P–1[P(dv′+ω′v′)]
⇒∇v = e′(dv′+ω′v′) = ∇v′ (4.10)
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Thus, we obtain the following commutativity between the change of coordinate systems 3:

v(x1,x2, . . .xi) ∇v(x1,x2, . . .xi)

v(ξ1,ξ2, . . .ξi) ∇v(ξ1,ξ2, . . .ξi)

∇

P P

∇

Having established the commutativity of the exterior derivative with transformations, we
now look at specific examples and evaluate these terms analytically as well as computationally.

4.4. Deriving Function Space with Curvatures
4.4.1. Mapping from physical domains
In this section, we focus on deriving transformed function spaces that allow for conversion
between our general reference element (K) function spaces and those of the physical domain
Ωk. Thus, we denote through K := [–1,1]2 the domain we contructed in the previous chapter
and the arbitrary element, here referred to as the physical domain, as Ωk ⊂ R2 in two dimensions
4.

This transformation is obtained through the two element domains is obtained through a
diffeomorphism in the fashion of a transfinite mapping φk, such that

φk : (ξ,η)∈K 7→ (x,y)∈ Ωk and J :=

∂φxk
∂ξ

∂φxk
∂η

∂φyk
∂ξ

∂φyk
∂η

 (4.11)

where, J is the Jacobian tensor of the mapping φk. Furthermore, the transformation rules
for scalar and vector-valued function spaces are defined in the following sub-sections.

Transforming a scalar-valued function space
Assume a pointwise scalar-valued function f ∈ C(K) on K, we define the physical domain
version of this function f ∈C(Ωk) on Ωk as,

f := (φ∗k)
–1[f] = f ◦φ–1k

where, φ∗k is the pullback operator defined for this mapping. This leads to the following
relation,

f := (φ∗k)[f] = f ◦φk
Finally, in the interest of completeness, we also write the rules of inner product of function

spaces f,g ∈C(Ωk) as,

(f,g)Ωk :=
∫
Ωk

fgdΩ =
∫
φk(K)

fgdΩ =
∫
K
f g det(J)dK

Transforming a vector-valued function space
Similar to the section above and in keeping with [45], we define the transformation rules for a
vector field u ∈D(K), such that this space maps onto the transformed vector field u ∈D(Ωk),
and is given by

u := (φ∗k)
–1[u] = 1

det(J◦φ–1)(J◦φ
–1)(u◦φ–1k )

3Commutativity between different coordinate systems came up during a discussion with Marc Gerritsma, TU
Delft.

4The notation used here and the treatment provided is similar to the work of Jain et.al. [45].
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again, the pullback operator allows for the compuation of the inverse of this transformation
as:

u := φ∗k[u] = det(J)J–1(u◦φk)

The inner product for the two vector fields, u,v∈D(Ωk) on Ωk is given as

(u,v)Ωk :=
∫
Ωk
uTvdΩ =

∫
K
(φ∗k[u])

T JTJ φ∗k[v]
1

det(J)dK =
∫
K
uT JTJ v 1

det(J)dK

4.4.2. Example transformation: non-linear bulk shear parallel to the horizontal axis
Following the blueprint of the transfinite mapping and its computations for vector and scalar
valued functions, we consider an example of a mapping between the reference element K :=
[–1,1]2 and the non-linear bulk shear domain Ωk ⊂ R2 (see Figure 4.5). The shear skewness is
non-linear in η and linear in ξ, and is given by:

x = ξ+0.05(3+η)2;
y = η+2;

–0.8≤x≤ 1.8
1≤y≤ 3

(4.12)

The Jacobian for this transformation is then given as:

J◦Φk =
[1 0.1(3+η)
0 1

]
(4.13)

The Jacobian for the inverse of the transformation is then computed as:

J◦Φ–1k :=
[1 –0.1(1+y)
0 1

]
(4.14)

Furthermore, the determinant5 is:

det(J◦Φ–1k ) := det
(1 –0.1(1+y)
0 1

)
= 1 (4.15)

5Note that the equation 4.15 indicates that the volume of the domain is preserved and no dilation occurs during
the deformation transformation since the determinant is found to be unity.
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(a) Discrete mesh in reference domain K (b) Discrete mesh in physical domain Ωk

Figure 4.5: Discrete mesh systems in different domains with positive directions for flow assigned

Computing the Covariant Derivative
For the transformation in the equation 4.12, the following connections one-forms are obtained:


∂
∂x = ∂

∂ξ
∂ξ
∂x +

∂
∂η

∂η
∂x = 1 ∂

∂ξ +0 ∂
∂η

∂
∂y = ∂

∂ξ
∂ξ
∂y +

∂
∂η

∂η
∂y = –0.1(1+y) ∂

∂ξ +1 ∂
∂η

(4.16)

therefore we write that the matrix P as,( ∂

∂x ,
∂

∂y
)
=
( ∂

∂ξ
, ∂

∂η

)(1 –0.1(1+y)
0 1

)
︸ ︷︷ ︸

P

(4.17)

This then leads to the following terms,

P–1 =
(1 0.1(1+y)
0 1

)

dP=
(0 0.1 dy
0 0

)

ω
′ =P–1dP=

(0 0.1 dy
0 0

)
Transforming a scalar function
Consider the scalar-valued function f defined over the points of the physical domain, Ωk defined
below,

f(x,y) = 2πcos(πx)sin(πy), where, x,y ∈ Ωk (4.18)

∂f
∂x = –2π2sin(πx)sin(πy)

∂f
∂y = 2π2cos(πx)cos(πy) (4.19)
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Figure 4.6: Reconstructed function fh(x,y) computed as a result of a pullback (φ∗
k)

–1[f] = f ◦φ–1k interpolated
with primal and algebraic dual nodal functions (left) and exact function f(x,y) (right). The results are plotted

over the shear deformed domain Ωk. Polynomial order, p = 15.

Pullback into the reference element K, we obtain the transformed scalar function as,

f(ξ,η) = 2πcos
[
π(ξ+0.05(3+η)2)

]
sin
[
π(η+2)

]
, where, ξ,η∈K (4.20)

We begin to consider the derivatives of these functions on both domains, the reference or
physical:

∂f
∂ξ

= ∂f
∂x

∂x
∂ξ

+ ∂f
∂y

∂y
∂ξ

∂f
∂η

= ∂f
∂x

∂x
∂η

+ ∂f
∂y

∂y
∂η

(4.21)

computing the derivatives with respect to reference coordinates gives us,

∂f
∂ξ

= –2π2sin
[
π
(
ξ+0.05(3+η)2

)]
sin
[
π(η+2)

]
∂f
∂η

= 2π2cos
[
π
(
ξ+0.05(3+η)2

)]
cos
[
π(η+2)

]
–0.02π2(3+η)sin

[
π
(
ξ+0.05(3+η)2

)]
sin
[
π(η+2)

] (4.22)

Equations 4.20 and 4.18 are plotted over the respective domains (ξ,η) ⊂ K in Figure 4.7
and (x,y) ⊂ Ωk in Figure 4.6. The nature of the deformation in the shape of the domain is
clearly visible. The curvature, thus introduced into the orthogonal nature of the Cartesian
grid of K can be seen if one considers the mapping φ–1k : (x,y) ∈ Ωk 7→ (ξ,η) ∈K acting over
K.

We now turn out attention towards the computation of derivatives, as noted in the equations
4.19, 4.21 and 4.22. The challenge lies in computing the derivatives over the physical domain
(grid) without performing discretization over this domain. Unlike the previous Figure 4.6 where
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Figure 4.7: Reconstructed function fh(ξ,η) interpolated with primal and algebraic dual nodal functions (left)
and exact function f(ξ,η) (right). This reconstruction over the reference element is created through a mix of

primal and dual nodal polynomials. Polynomial order, p = 15.

the scalar function was computed by simple exchange of coordinates themselves (application of
the mapping function in the implementation), the computation of the derivatives relies upon
the commutative property of the exterior derivative with the transformation as discussed in
the section 4.3.

Let us now, consider how this commutative exterior derivative, when applied to the matrix
of derivatives (over the reference element) leads to the computation of the derivatives over the
physical domain. As seen in equation 4.19, we know that,

∂f
∂ξ

= ∂f
∂x

∂x
∂ξ

+ ∂f
∂y

∂y
∂ξ

∂f
∂η

= ∂f
∂x

∂x
∂η

+ ∂f
∂y

∂y
∂η

alternatively, we can write,

∂f
∂x = ∂f

∂ξ

∂ξ

∂x + ∂f
∂η

∂η

∂x
∂f
∂y = ∂f

∂ξ

∂ξ

∂y + ∂f
∂η

∂η

∂y

simplifying further, this gives,

 ∂f
∂x
∂f
∂y

 =

∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y


︸ ︷︷ ︸

P

 ∂f
∂ξ

∂f
∂η





50 4. How to Handle Curvature?

Thus, we are able to construct the field space of derivatives without actually performing the
exterior derivation over the physical domain, as it commutes with the transformation matrix.
Reader can verify that upon implementation of this matrix multiplication to the equation 4.19
does indeed produce 4.22. Using this principle, we can now plot the derivatives for the scalar
function f over x and y.

Given the matrix P as in the equation 4.17, we can see that there is no difference in the
derivative ∂f

∂x and ∂f
∂ξ (since, ∂ξ

∂x = 1 and ∂η
∂x = 0). This is seen in the Figure 4.8, where the

partial derivative for the field function does not vary at all. For the derivative ∂f
∂y however,

this is not the case (Figure 4.9). Upon application of the transformation correct (represented
through the Jacobian), the exact derivative is reconstructed from the deformed derivative,
reconstructed over a reference element.
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Figure 4.8: Exact function ∂f
∂x (x,y) (left), reconstructed function ∂fh

∂ξ (ξ,η) without transformation φk (center),

and reconstructed function ∂fh

∂x (x,y) transformed using ∂fh

∂ξ (ξ,η) and φk (right). This reconstruction over the
reference element is created through a mix of primal and dual nodal polynomials. Polynomial order, p = 15.
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Figure 4.9: Exact function ∂f
∂y (x,y) (left), reconstructed function ∂fh

∂η (ξ,η) without transformation φk (center),

and reconstructed function ∂fh

∂y (x,y) transformed using ∂fh

∂η (ξ,η),
∂fh

∂ξ (ξ,η) and φk (right). This reconstruction
over the reference element is created through a mix of primal and dual nodal polynomials. Polynomial order,

p = 15.

Error and convergence
We now compute the p-convergence behavior of this reconstruction for the scalar-valued field
function f. The semi-log plot of the error with respect to the polynomial order of interpolation
is shown in figures 4.10. It can be seen that an exponential convergence is obtained, for a single
element interpolation case. Note that this convergence behavior would increase if the number
of elements were to be increased (convergence would then be achieved at a smaller polynomial
order). Finally, to illustrate the error distribution for a sample case of interpolation error we
can consider the figures shown in 4.11.
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Figure 4.10: Spectral or p-refinement result for the scalar function reconstruction for the function f(ξ,η).
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(a) Error on reference mesh K := [–1,1]2, polynomial order p = 20 for f
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(b) Error on reference mesh K := [–1,1]2, polynomial order p = 20 for ∂f
∂ξ
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(c) Error on reference mesh K := [–1,1]2, polynomial order p = 20 for ∂f
∂η

Figure 4.11: Error distribution over reference element for polynomial order, p = 20
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Transforming a co-vector field
In this example, we consider a co-vector field u over the physical domain Ωk as defined below,

u(x,y) = ux dx+uy dy,

that is, u(x,y) =
{ux
uy

}
=
{ 2πcos(πx)sin(πy)
–0.2(1+y)πcos(πx)sin(πy)

}
, where, x,y ∈ Ωk (4.23)

For this co-vector field, it can be seen that,

∂ux
∂x = –2π2sin(πx)sin(πy)

∂ux
∂y = 2π2cos(πx)cos(πy)

and

∂uy
∂x = 0.2(1+y)π2sin(πx)sin(πy)

∂uy
∂y = –0.2πcos(πx)

[
sin(πy)+(1+y)πcos(πy)

] (4.24)

Following the treatment for the scalar valued field function, we see that upon performing
the pullback into the reference domain K, we obtain the following vector field,

u(ξ,η) = uξ dξ+uη dη

and since, we know from equation 4.12, we obtain the 1-forms dξ and dη as,

dx = dξ+0.1(3+η)dη
dy = dη

upon transformation of the scalar components along with the 1-forms, we observe the
elimination of one of the components of the vector field over the reference element K,

u(ξ,η) =
{uξ
uη

}
=
{
2π cos

[
π(ξ+0.05(3+η)2)

]
sin
[
π(η+2)

]
0

}
, where, ξ,η∈K (4.25)

computing the derivatives with respect to reference coordinates gives us,

∂ uξ
∂ξ

= –2π2sin
[
π
(
ξ+0.05(3+η)2

)]
sin
[
π(η+2)

]
∂ uξ
∂η

= 2π2cos
[
π
(
ξ+0.05(3+η)2

)]
cos
[
π(η+2)

]
– 0.2π2(3+η)sin

[
π
(
ξ+0.05(3+η)2

)]
sin
[
π(η+2)

] (4.26)

∂ uη
∂ξ

= 0
∂ uη
∂η

= 0 (4.27)

The careful reader might observe that the reconstruction of the derivative field over the
physical domain using the reference co-vector fields and its derivatives, were it to be done,
would require the use of only two sets of partial derivatives (equation 4.26) instead of the
standard four (as the other two are eliminated as shown in equation 4.27).

This outcome is illustrated through the following equations: we write the covariant deriva-
tive in the physical domain as,

∇u =

∂ux
∂x dx+ ∂ux

∂y dy
∂uy
∂x dx+ ∂uy

∂y dy

 (4.28)
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whereas, in the reference domain K, we have:

∇u =

∂uξ
∂ξ dξ+

∂uξ
∂η dη

∂uη
∂ξ dξ+

∂uη
∂η dη

+ω′
(uξ
uη

)
(4.29)

which gives,

∇u =

∂uξ
∂ξ dξ+

∂uξ
∂η dη

∂uη
∂ξ dξ+

∂uη
∂η dη

+
[ 0 0
0.1dη 0

](uξ
uη

)
, from equation 4.17

∴ ∇u =

 ∂uξ
∂ξ dξ+

∂uξ
∂η dη

∂uη
∂ξ dξ+

(
∂uη
∂η +0.1uξ

)
dη

 (4.30)

in order to reproduce ∇u in equation 4.28 using ∇u from equation 4.30, we write,

∇u = P u, where, P is learnt from 4.17 (4.31)

the reader may verify the accuracy of this statement. This enables the construction of the
partial derivatives over the physical domain Ωk from the reference domain K, such that,

∂ux
∂x =

∂ uξ
∂ξ

∂ux
∂y =

∂ uξ
∂η

– 0.1(3+η)
∂ uξ
∂ξ

∂uy
∂x = –0.1(3+η)

∂ uξ
∂ξ

∂uy
∂y = –0.1uξ – 0.1(3+η)

[∂ uξ
∂η

– 0.1(3+η)
∂ uξ
∂ξ

] (4.32)

The field distribution computed over the physical shear deformed domain Ωk is shown in the
Figure 4.12 following the distribution u(x,y) as in equation 4.23. The velocity strength over
the physical domain is shown in the Figure 4.13a, and the transformation of the component
ux to the distribution uξ in the Figure 4.13b. Figures 4.14 and 4.15 show the reconstruction
of the components ux and uy from the reference components uξ and uη. The derivatives over
the physical domain are shown in the figures 4.16, 4.17, 4.18 and 4.19.
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Figure 4.12: Vector field u(x,y) displayed over the physical domain Ωk with a quiver plot, polynomial order of
15
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(a) Filled contour plots showing the field strengths for the total co-vector field (left), the x-component
(centre) and the y-component (right)
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(b) Transformation of the scalar-valued x-component of the co-vector field ux to the reference domain
K, component uξ

Figure 4.13: Analytical distribution of co-vector field u(x,y) over both reference domain K as well as physical
domain Ωk
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Figure 4.14: Exact function ux(x,y) (left) and reconstructed function uhx(x,y) computed as a result of a
pullback (φ∗

k)
–1[uhξ ,uhη ]T = uhξ ◦φ–1k interpolated with primal and algebraic dual nodal functions (right). The
results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.15: Exact function uy(x,y) (left) and reconstructed function uhy(x,y) computed as a result of a
pullback (φ∗

k)
–1[uhξ ,uhη ]T = –0.1(3+η)uhξ ◦φ–1k interpolated with primal and algebraic dual nodal functions

(right). The results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.16: Exact function ∂ux
∂x (x,y) (left) and reconstructed function ∂uh

x
∂x (x,y) computed as a result of a

pullback (φ∗
k)

–1[∂uh
ξ

∂ξ ,
∂uh
η

∂η

]T = ∂uh
ξ

∂ξ ◦φ
–1
k interpolated with primal and algebraic dual nodal functions (right).

The results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.17: Exact function ∂ux
∂y (x,y) (left) and reconstructed function ∂uh

x
∂y (x,y) computed as a result of a

pullback (φ∗
k)

–1[∂uh
ξ

∂ξ ,
∂uh
η

∂η

]T = [∂ uξ
∂η – 0.1(3+η)∂ uξ

∂ξ ]◦φ–1k interpolated with primal and algebraic dual nodal
functions (right). The results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.18: Exact function ∂uy
∂x (x,y) (left) and reconstructed function ∂uh

y
∂x (x,y) computed as a result of a

pullback (φ∗
k)

–1[∂uh
ξ

∂ξ ,
∂uh
η

∂η

]T = [–0.1(3+η)∂uh
ξ

∂ξ ]◦φ
–1
k interpolated with primal and algebraic dual nodal

functions (right). The results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.19: Exact function ∂uy
∂y (x,y) (left) and reconstructed function ∂uh

y
∂y (x,y) computed as a result of a

pullback (φ∗
k)

–1[∂uh
ξ

∂ξ ,
∂uh
η

∂η

]T interpolated with primal and algebraic dual nodal functions (right). The results
are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Error and convergence
We now compute the p-convergence behavior of this reconstruction for the covector-valued field
function u. The semi-log plot of the error with respect to the polynomial order of interpolation
is shown in Figure 4.20. The p-convergence of the vector fields over the physical domain shows
the exponential convergence with the increasing polynomial order.
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Figure 4.20: Spectral or p-refinement result for the covector field reconstruction u(x,y).

4.4.3. Example transformation: polar transformation (without origin)
We now consider another example case of a polar transformation without an origin point. For
this example, we shall focus on purely covector field transformation to illustrate some physical
applications, specifically for potential flows. The physical domain is a sector in the polar coordi-
nate system such that the element under consideration does not contain the zero point, we will
discuss the consequences of this choice soon. This transformed domain Ωk ⊂ R2 is morphed from
the reference elementK := [–1,1]2 (see Figure 4.21 and for the discretization see Figure 4.22) us-
ing the following relationships:

Figure 4.21: A transfinite mapping from
Cartesian coordinate system to a modified

Polar coordinate system as defined in
equation 4.33.

r(ξ,η) = 1
2
[
r2(1+ξ) + r1(1– ξ)

]
θ(ξ,η) = δ+ϕcos

[
π

4(2+
η

2)
]

(4.33)

We now proceed with the same treatment as we
observed previously for the shear domain, by calcul-
tating the connection coefficients for this mapping
along with the requisite entities to establish the com-
mutativity of the exterior derivative.

The Jacobian for this transformation is then given
as:

J◦Φk =
[ r2–r1

2 0

0 – π8ϕ sin[π4 (2+
ξ

2 )]

]
(4.34)

The Jacobian for the inverse of the transformation
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is then computed as:

J◦Φ–1k :=

– 8
πϕ

1
sin[ π4 (2+

ξ

2 )]
0

0 2
r2–r1

 (4.35)

Furthermore, the determinant is:

det(J◦Φ–1k ) := det

– 8
πϕ

1
sin[ π4 (2+

ξ

2 )]
0

0 2
r2–r1


⇒ det(J◦Φ–1k ) := – 16

πϕ(r2 – r1)
1

sin[π4(2+
ξ

2)]
(4.36)

Note that unlike in the previous example of the shear transformation, the determinant does
not yield a constant value, let alone unity. This implies that there is non-isotropic dilation of
the domain volume under the mapping considered. We now take a look over the connection
coefficients for this transformation.

Computing the Covariant Derivative
For the transformation in the equation 4.33, the following connections one-forms are obtained:

(a) Discrete mesh in Cartesian coordinate system
(b) Discrete mesh in modified Polar coordinate

system

Figure 4.22: Discrete mesh systems in different coordinate systems with positive directions for flow assigned


∂

∂r =
∂

∂ξ

∂ξ

∂r +
∂

∂η

∂η

∂r =
2

(r2 – r1)
∂

∂ξ
+0

∂

∂η
∂

∂θ
=

∂

∂ξ

∂ξ

∂θ
+

∂

∂η

∂η

∂θ
= 0.

∂

∂ξ
– –

8
πϕ

1
sin[π4(2+

ξ

2 )]
∂

∂η

(4.37)

therefore we write that the matrix P as,

( ∂

∂r ,
∂

∂θ

)
=
( ∂

∂ξ
, ∂

∂η

)


2
(r2 – r1)

0

0 –
8
πϕ

1
sin[π4 (2+

ξ

2 )]


︸ ︷︷ ︸

P

(4.38)
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This then leads to the following terms,

dP=

0 0

0
cos[π4 (2+

ξ

2 )]
ϕ sin2[π4(2+

ξ

2)]
dη



P–1 =

–
πϕ

8 sin[π4 (2+
ξ

2 )] 0

0
(r2 – r1)

2



ω
′ =P–1dP=

0 0

0 – (r2–r1)cos[
π

4 (2+
ξ

2 )]
2sin2[ π4 (2+

ξ

2 )]
dη


These terms are now used to evaluate transformation of function spaces such that the

mapping of finite element spaces is mapped as shown in Figure 4.22, where the nodal and edge
flow of velocities is shown.

Potential flow: line source of constant strength
Thus far we have identified the properties of the transformation seen above. Accordingly the
ingredients for composing Cartan’s structure equations have also been identified. We now
consider an example case of covector field transformation that has conceivable application in
physical flow approximations. For now, this example takes the form of a potential flow derived
off of a line source of strength Q.

We consider the following velocity potential term, in the standard Cartesian coordinates
(x,y) as,

Φ(x,y) = Q
2π log

(√
x2+y2

)
(4.39)

such that, upon transformation into the polar coordinates using the relationships,

x = r cosθ
y = r sinθ (4.40)

we obtain,
Φ(r,θ) = Q

2π log(r) (4.41)

the velocity field thus obtained is given as:

ur = ∂Φ

∂r (r,θ) = Q
2πr

uθ = ∂Φ

∂θ
(r,θ) = 0 (4.42)

we also know that the partial derivatives for these velocities are given as6:

∂ur
∂r = – Q

2πr2
∂ur
∂θ

= 0
and

∂uθ
∂r = 0

∂uθ
∂θ

= 0
(4.43)

6the boldface typeface denotes a vector, whereas the regular typeface denotes the scalar magnitude of the vector
as in, u(r,θ) = urdr+uθdθ= ur +uθ
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we know that,

(uξ
uη

)
= P

(ur
uθ

)
=

 2
(r2–r1)ur
– 8
πφ sinαuθ

 , where, α=
[
π

4
(
2+ η2

)]

upon transformation of the scalar components along with the 1-forms, we observe the
following scalar components of the velocity field over the reference element K,

{uξ
uη

}
=


2Q

π(r2 – r1)[(r2+r1)+(r2 – r1)ξ]
0

 , where, ξ,η∈K (4.44)

Furthermore, computing the derivatives with respect to reference coordinates gives us,

∂ uξ
∂ξ

= –
2Q

π[(r2+r1)+(r2 – r1)ξ]2
∂ uξ
∂η

= 0

∂ uη
∂ξ

= 0

∂ uη
∂η

= 0
(4.45)

Now the exercise becomes the construction of the physical domain vector fields using the re-
sults computed on the reference domain (where computationally, exterior differentiation opera-
tions are being performed). Accordingly, the reader may verify that, indeed the commutativity
of the transformation with the derivative holds true as seen below:

in reference coordinates, the covariant derivative is written as:

∇u =

∂uξ
∂ξ dξ+

∂uξ
∂η dη

∂uη
∂ξ dξ+

∂uη
∂η dη

=
(duξ
duη

)
(4.46)

whereas in the modified polar coordinates, we write:

∇u =

 ∂ur
∂r dr+

∂ur
∂θ dθ

∂uθ
∂r dr+

∂uθ
∂θ dθ

+ω′
(ur
uθ

)
=
(dur
duθ

)
+ω′

(ur
uθ

)
(4.47)

thus the commutative derivative is written as:

P∇u = P
(dur
duθ

)
+Pω′

(ur
uθ

)
=
(duξ
duη

)

that is,

P∇u = P
(dur
duθ

)
+dP

(ur
uθ

)
=
(duξ
duη

)



64 4. How to Handle Curvature?

substituting the values gives us,
2

(r2 – r1)
0

0 –
8
πϕ

1
sinα


(dur
duθ

)
+

0 0

0
cosα

ϕ sin2αdη

(ur
uθ

)
=
(duξ
duθ

)

⇒


2

(r2 – r1)
dur

–
8

πϕ sinαduθ

+

 0
uθ coα
ϕ sin2αdξ

 =
(duξ
duη

)

∴


d
( 2
(r2 – r1)

ur
)

d
(
–

8
πϕ

uθ
sinα

)
 =

(duξ
duη

)
(4.48)

and since we can express the matrix on the left hand side in terms of sum of partial
derivatives as shown in equation 4.47,we can compare individual partial derivative fields. Thus,
we obtain the following relationships,

∂ur
∂r =

∂ uξ
∂ξ

∂ur
∂θ

= 0
and

∂uθ
∂r = 0

∂uθ
∂θ

= 0
(4.49)

We now look at the reconstructed solutions of the velocity components on the reference
element K, a unit strength line source is taken and the reference element maps a section of the
radial sector portion with a maxium radius of 5 units and a minimum radius of 2 units, that is
r2 = 5 and r1 = 2; the angular parameters are taken as δ= π

12 and φ= π3 . The reconstruction of
the ξ-component, uh

ξ
and its derivative with ∂uξ

∂ξ in figures 4.23 and 4.24. The reconstruction is
shown for the polynomial order p = 9. Figures 4.25 and 4.26 show the velocity field distribution
over the physical domain Ωk. The covector field is later visualized through a quiver plot of the
polar velocity 1-form, showing the radial outward flow from the source (placed over the origin
of the original polar coordinates) in Figure 4.27.
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Figure 4.23: Exact function uξ (right) and reconstructed function uhξ , using mixed basis functions,
interpolated with primal and algebraic dual nodal functions (left). The results are plotted over the reference

domain K. Polynomial order, p = 9.
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Figure 4.24: Exact function ∂uξ
∂ξ (right) and reconstructed function ∂uh

ξ

∂ξ using mixed basis functions,
interpolated with primal and algebraic dual nodal functions (left). The results are plotted over the reference

domain K. Polynomial order, p = 9.
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Figure 4.25: Exact function uξ(r,θ) (left) and reconstructed function uhξ (r,θ) computed as a result of a
pullback (φ∗

k)
–1[uhξ ,uhη ]T = (r2–r1)

2 uhξ ◦φ–1k interpolated with primal and algebraic dual nodal functions
(right). The results are plotted over the modified polar domain Ωk. Polynomial order, p = 9.
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Figure 4.26: Exact function ∂ur
∂r (r,θ) (left) and reconstructed function ∂uh

r
∂r (r,θ) computed as a result of a

pullback (φ∗
k)

–1[∂uh
ξ

∂ξ ,
∂uh
η

∂η ]
T = ∂uh

ξ

∂ξ ◦φ
–1
k interpolated with primal and algebraic dual nodal functions (right).

The results are plotted over the modified polar domain Ωk. Polynomial order, p = 9.
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Figure 4.27: Velocity field over the modified polar domain Ωk showing radially outward flow emanating from a
unit strength line source, computed from the reconstructed solution (after transformation) for a polynomial

order = 9.
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Potential flow: line vortex of constant strength
We consider another example case, that of a line vortex of constant strength Γ, such that the
following velocity potential term, in the standard polar coordinates (r,θ) holds,

Φ(r,θ) = Γ

2πθ (4.50)

the velocity field thus obtained is given as:

ur = ∂Φ

∂r (r,θ) = 0

uθ = ∂Φ

∂θ
(r,θ) = Γ

2πr (4.51)

we also know that the partial derivatives for these velocities are given as:

∂ur
∂r = 0

∂ur
∂θ

= 0
and

∂uθ
∂r = – Γ2πr2

∂uθ
∂θ

= 0
(4.52)

similar to the previous case, we obtain,

{uξ
uη

}
=


0

–
8 Γ

π2φ sinα[(r2+r1)+(r2 – r1)ξ]

 , where, ξ,η∈K (4.53)

Furthermore, computing the derivatives with respect to reference coordinates gives us,

∂ uξ
∂ξ

= 0

∂ uξ
∂η

= 0
and

∂ uη
∂ξ

=
8 Γ(r2 – r1)

π2φ sinα[(r2+r1)+(r2 – r1)ξ]2

∂ uη
∂η

=
Γ cosα

πφ sin2α [(r2+r1)+(r2 – r1)ξ]

(4.54)

Following similar treatment as seen in the previous section, we write:

∂ur
∂r = 0

∂ur
∂θ

= 0
and

∂uθ
∂r = – πφ sinα4(r2 – r1)

∂ uη
∂ξ

∂uθ
∂θ

=
∂ uη
∂η

–
uθ cosα
φ sin2α = 0

(4.55)

Similar to the previous case, we now take a look at the reconstructed solutions over the
reference element K, with the similar set of parameters, except instead of a unit strength
source, we take a unit strength vortex such that a constant circulation of unity holds over the
domain flow. The reconstruction of the analytical solutions uη, ∂uη

∂ξ and ∂uη
∂η is shown in figures

4.28, 4.29 and 4.30 respectively. Accordingly, its transformation towards the modified polar
domain Ωk is shown in the figures 4.31 (u(r,θ) = uθ), 4.32 (∂uθ

∂r ) and 4.33 (∂uθ
∂rθ ). The quiver

plot showing the vector field is also illustrated in the Figure 4.34.
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Figure 4.28: Exact function uη (right) and reconstructed function uhη using mixed basis functions, interpolated
with primal and algebraic dual nodal functions (left). The results are plotted over the reference domain K.

Polynomial order, p = 9.
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Figure 4.29: Exact function ∂uη
∂ξ (right) and reconstructed function ∂uh

η

∂ξ using mixed basis functions,
interpolated with primal and algebraic dual nodal functions (left). The results are plotted over the reference

domain K. Polynomial order, p = 9.
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Figure 4.30: Exact function ∂uη
∂η (right) and reconstructed function ∂uh

η

∂η using mixed basis functions,
interpolated with primal and algebraic dual nodal functions (left). The results are plotted over the reference

domain K. Polynomial order, p = 9.
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Figure 4.31: Exact function u(r,θ) (left) and reconstructed function uh(r,θ) computed as a result of a pullback
(φ∗

k)
–1[uhξ ,uhη ]T = 2

(r2–r1)u
h
η ◦φ–1k interpolated with primal and algebraic dual nodal functions (right). The

results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.32: Exact function ∂uθ
∂r (left) and reconstructed function ∂uh

θ

∂r computed as a result of a pullback
(φ∗

k)
–1[uhξ ,uhη ]T = 2

(r2–r1)u
h
η ◦φ–1k interpolated with primal and algebraic dual nodal functions (right). The

results are plotted over the shear deformed domain Ωk. Polynomial order, p = 9.
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Figure 4.33: Reconstructed function ∂uh
θ

∂θ = ∂uh
η

∂η – uθ
c osαφsinα computed as a result of a pullback

(φ∗
k)

–1[uhξ ,uhη ]T = 2
(r2–r1)u

h
η ◦φ–1k interpolated with primal and algebraic dual nodal functions. The results are

plotted over the shear deformed domain Ωk. Note that as polynomial order increases and accuracy of
approximation increases this distribution should vanish. Plotted with a low polynomial order, p = 5.
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Figure 4.34: Velocity field over the modified polar domain Ωk showing rotational flow emanating from a unit
strength line vortex, computed from the reconstructed solution (after transformation) for a polynomial order

= 9.
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Error and Convergence
For both the cases of potential flow problems, the spectral convergence results display exponen-
tial convergence as expected in figures 4.35 for the potential flow with line source and in 4.36
for potential flow with line vortex. Furthermore, the interpolation errors for the two problems
and their reconstructed fields are shown in figures 4.37 for the potential flow with line source
and in 4.38.

4 6 8 10 12 14 16 18 20
10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

Figure 4.35: Spectral or p-refinement result for the covector field reconstruction u(x,y).
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Figure 4.36: Spectral or p-refinement result for the covector field reconstruction u(x,y).

As a result of these examples, the use of covariant derivatives as a means to obtain commuta-
tive exterior derivative properties across curvilinear frames is established both mathematically
and numerically for 0-forms and 1-forms. It is expected that this principle scales towards
higher dimensions, that is for (n-1) forms in an ambient space of n-dimensions.
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Figure 4.37: Error distribution over physical element for polynomial order, p = 20
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Figure 4.38: Error distribution over physical element for polynomial order, p = 20
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4.5. Application towards stress tensors
Thus far, we have seen the application of the covariant exterior derivatives over the field of
0-forms (scalars) and 1-forms (co-vectors). Applications to continuum mechanics however,
requires a broader integration of this covariant derivative approach to include stress tensors.
Consider for example, the stress tensor τ defined in the reference Cartesian coordinates as:

τ(ξ,η) = dξ⊗ (τξξdη– τηξdξ)+dη⊗ (τξηdη– τηηdξ)

It can be shown that the commutativity of the exterior covariant derivative approach shown
previously can be extended to the divergence of this stress tensor, in any other transformation
(calculation for the divergence of the stress tensor in shown in Appendix A). Similar derivations
for other differential operators require considerations of symmetry and enforcing of conservation
properties. For instance, Fisser [29] proposed a new linear elasticity formulation using mixed
mimetic methods, wherein the stresses make use of the mixed mimetic formulation and occupy
the same polynomial spaces (for the same order of dual and primal polynomials, for example the
primal nodal and the algebraic dual of an nodal polynomial) and thus, can be set equal to one
another. This allows for strong conservation of symmetry (required for angular momentum)
alongside mass and linear momentum conservation [29, p. 69].

Note however, that another key consideration with Fisser’ work (this research belonging to
the same class of methods) makes use of co-vector valued stress tensor instead of a traditional
notion of vector-valued stress tensors. Which is why the commutative nature of the covariant
exterior derivative becomes more relevant as it has been shown to be applicable to 0-forms and
1-forms (for 2-D) and is mathematically expected to scale upto n-dimensional spaces and their
respective (n-1) forms as well.



5
Conclusions and Future Scope

5.1. Summary of Work Done
The current research presents a mimetic spectral implementation that enables covariant dis-
cretization of covector-valued fields over curvilinear geometry. The underlying principle en-
abling this exercise was the formulation of the discrete field using mixed mimetic spectral basis
functions, that is using primal and algebraic dual functions in the reduction-reconstruction
cycle as shown in chapter 3. Further an application of boundary value substitution using the
metric-independent mimetic approach is seen through the use of topological operators such as
the incidence and inclusion matrices.

Furthermore, the use of connection coefficients for Levi-Civita connections, that is the
Christoffel symbols, are bypassed through the use of covariant exterior derivatives, where
the principal of invariance under the general coordinate transformation is used. Using this
covariant derivative, we are able to discretize scalar, co-vector and potentially, tensor fields
over curved geometries by defining a diffeomorphism to an orthogonal reference frame where
the mixed spectral implementation is used. The application of the exterior derivative proves
commutative with respect to the transformation.

Case studies of this curvature-compatible mixed mimetic method are presented using two
analytical examples of scalar and co-vector fields, and later with potential flow applications
for constant line source and line vortex flows. The transformation for analytical scalar and
co-vector fields was realized over a physical domain that modeled a horizontally sheared do-
main with non-linear skew, the second transformation case (for potential flows) made use of a
modified polar coordinate transformation.

Finally, a qualitative overview is provided that outlines extension of this method towards a
new mixed mimetic formulation of elasticity, building on the concept of a covariant elasticity,
that admits into itself strong conservation of mass, linear momentum and angular momentum.
This discussion however, remains qualitative and is not addressed fully in the current scope.

5.2. Conclusions
This work aimed at implementing a curvature compatible discretization scheme using mixed
mimetic methods using covariant exterior derivatives. The traditional change of frame requires
the use of connections to redefine the new differential forms and over the transformed manifold,
however, through the use of covariant derivatives, we are able bypass the computation of these
connection coefficients and are able to compute the transformed differential forms (in this case
0-forms and 1-forms) over curved domains.

5.3. Future Scope of Research
The current scope of work is very limited since an implementation of the mixed mimetic
methods should be extended first to a multi-element setting wherefore, it becomes possible to
observe better approximation and convergence behavior. This multi-element implementation
would then serve as a template to implementing a novel linear elasticity formulation that allows
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for strong conservation of mass, linear and angular momentum. Thus, a broader application
of mimetic methods towards continuum mechanics becomes possible. The use of Lagrangian
approach of studying flow invariance becomes possible with time-dependent problems when
this approach is used within the mixed mimetic space-time integration algorithm.
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A
Covariant Divergence of Stress Tensor

Consider the mapping described in the equation 4.12, between the reference Cartesian frame
(ξ,η) and the physical deformed domain (x,y). We may write, the stress tensor as:

τ(ξ,η) = dξ⊗ (τξξdη– τηξdξ)+dη⊗ (τξηdη– τηηdξ)

upon transformation of co-vectors to the physical domain (x,y), we get:

τ(x,y) = –dx⊗τη,ξdx
+dy⊗ [0.1(1+y)τηξ – τηη]dx
+dx⊗ [τξξ+0.1(1+y)τη,ξ]dy
+dy⊗ [τξη+0.1(1+y)τηη+τξξ+0.1(1+y)τηξ]dy

which allows us to write:

τ(x,y) = dx⊗ (τxxdy– τyxdx)+dy⊗ (τxydy– τyydx)

where, we write:

τxx = 0.1(1+y)τη,ξ – τξξ
τyx = τηξ
τxy = [τξη+0.1(1+y)τηη – 0.1(1+y)τξξ+0.01(1+y)2τηξ]
τyy = 0.1(1+y)τηξ – τηη

The divergence of this stress tensor in both the frames is now computed. In the reference
domain, we write:

∇·τ(ξ,η) = dξ⊗
(∂τξξ

∂ξ
+

∂τηξ
∂η

)
dξdη+dη⊗

(∂τξη
∂ξ

+
∂τηη
∂η

)
dξdη

upon transformation of the second leg into the physical domain, we obtain,

∇·τφk ◦ (ξ,η) = dξ⊗
(∂τξξ

∂x +0.1(1+y)
∂τξξ
∂y +

∂τηξ
∂y

)
dxdy

+dη⊗
{∂τξη

∂x +[1+0.1(1+y)]
[∂τηη

∂x +
∂τξξ
∂x +0.1(1+y)

∂τη,ξ
∂x

]}
dxdy

the first leg, when transformed, now gives:

∇·τ [φk ◦ (ξ,η)] = dx⊗
(
–

∂τξξ
∂x +0.1(1+y)

∂τηξ
∂x +

∂τηξ
∂y

)
dxdy

+dy⊗
(
–

∂τηη
∂y +0.1(1+y)

∂τη,ξ
∂y – 0.1τηξ

)
dxdy

+dy⊗
(
–

∂τηη
∂y +0.1(1+y)

∂τη,ξ
∂y – 0.1τηξ

)
dxdy
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∇·τ [φk ◦ (ξ,η)] = dx⊗
( ∂

∂x [0.1(1+y)τη,ξ – τξξ]+
∂τηξ
∂y

)
dxdy

+dy⊗
( ∂

∂x [τξη+0.1(1+y)τηη – 0.1(1+y)τξξ+0.01(1+y)2τηξ]
)
dxdy

+dy⊗
( ∂

∂y[0.1(1+y)τηξ – τηη] – 0.1τηξ
)
dxdy

where, we may now write:

∇·τ [φk ◦ (ξ,η)] = dx⊗
(∂τxx

∂x + ∂τyx
∂y

)
dxdy+dy⊗

(∂τxy
∂x + ∂τyy

∂y – 0.1τηξ
)
dxdy

Note that this description differs from that of the divergence in the physical domain, which is
given as:

∇·τ (x,y) = dx⊗
(∂τxx

∂x + ∂τyx
∂y

)
dxdy+dy⊗

(∂τxy
∂x + ∂τyy

∂y
)
dxdy

This difference occurs due to the non-commutative nature of the regular exterior derivative,
that does not take into account the connection coefficients. The exterior covariant derivative
on the other hand is given as:

∇·τ (x,y) = dx⊗ [dτx – ωix∧τi]dxdy+dy⊗ [dτy – ωiy∧τi]dxdy

where, τx and τy are the (n-1) forms described as (τxxdy – τyxdx) and (τxydy – τyydx) re-
spectively. Recall from Equation 4.17, the connection coefficients are defined as:

ω
′ =P–1dP=

(0 0.1 dy
0 0

)
using these results, we may write:

ω
i
x∧τi = ωxx∧ (τxxdy– τyxdx)+ωyx(τxydy– τyydx) = 0
ω
i
y∧τi = ωxy∧ (τxxdy– τyxdx)+ωyy(τxydy– τyydx) = 0.1dy∧ (τxydy– τyydx) = –0.1τyydy∧dx

Thus, we see that the covariant exterior derivative equals the transformed value of the diver-
gence of the reference stress tensor, ∇·τ [φk ◦ (ξ,η)].
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