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Beach nourishment has complex implications for the future of sandy shores  1 

 2 
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Abstract 6 

Beach nourishment—the addition of sand to increase the width or sand volume of the beach—is 7 

a widespread coastal management technique to counteract coastal erosion. Globally, rising sea 8 

levels, storms, and diminishing sand supplies threaten beaches, and the recreational, ecosystem, 9 

groundwater, and flood protection services they provide. Consequently, beach nourishment 10 

practices have evolved from focusing on maximizing the time sand stays on the beach, to also 11 

encompassing human safety and water recreation, groundwater dynamics, and ecosystem 12 

impacts. In this Perspective, we present a multi-disciplinary overview of beach nourishment, 13 

discussing physical aspects of beach nourishment alongside ecological and socioeconomic 14 

impacts. The future of beach nourishment practices will vary depending on local vulnerability, 15 

sand availability, financial resources, government regulations and efficiencies, and societal 16 

perceptions of environmental risk, recreational uses, ecological conservation and social justice. 17 

We recommend co-located multi-disciplinary research studies on the combined impacts of 18 

nourishments, and explorations of various designs to guide these globally diverse nourishment 19 

practices.  20 

 21 

Table of contents summary  22 

Beach nourishment is a well-established engineering practice to slow erosion, maintain or 23 

expand sandy beaches, but sea level rise, diminishing sand resources, and recreational, 24 

groundwater and ecological concerns require new assessments and designs of this coastal 25 

management technique. This Perspective describes the multi-disciplinary aims and impacts of 26 

sandy beach nourishment. 27 

mailto:m.a.deschipper@tudelft.nl


[H1] Introduction  28 

An estimated 15% of the world's sandy beaches have been retreating a meter or more per year 29 

on average in the last decades1. More than 10% of the global population lives within 10 m of 30 

present sea level2 and is expected to grow to over a billion people by 20502, accelerating coastal 31 

development, and demands for stable shorelines and oceanfront recreational space. Moreover, 32 

sea level rise is predicted to further reduce beach width at many developed regions3,4. Together 33 

these trends create socio-economic demands for mitigation measures aimed at protecting 34 

existing coastal infrastructure, habitat and recreation5.  35 

 36 

A beach sand nourishment, also referred to as a sand replenishment or beach fill, is a coastal 37 

engineering and management project that mechanically increases the size of the above-water 38 

beach using off-site sand6. Sandy beach nourishment is widely used in coastal communities to 39 

promote tourism and protect infrastructure from flooding and erosion6 (Fig. 1) . Additionally, 40 

these nourishments may be used to increase habitat for beach (foraging) species7–9, repair storm 41 

damage10, and dispose of dredged sediments, such as those from navigation channels. Projects 42 

can be implemented with the intent to grow or hold a shoreline in place, or as part of a 43 

managed retreat plan11 that aims to slow erosion to allow for landward redevelopment11. Sand 44 

can be placed directly at the site of the identified local need (Fig. 1a), or updrift as part of a 45 

larger regional approach that utilizes natural transport pathways to address sand needs along 46 

the coast12,13. 47 

 48 

Nourishment can be preferred over hard structural engineering, such as jetties, seawalls, groynes 49 

and breakwaters, as it is less disruptive of natural sediment pathways14. Seawalls, for example, 50 

typically reduce sand supplies from cliff-bluff-failures and can drown the beach when 51 

constructed on shorelines experiencing decadal landward migration15,16. Jetties, groynes and 52 

breakwaters alter current–driven sand transport within the coastal cell, leaving adjacent beaches 53 

starved of sand17. Sometimes hard structures are combined with nourishments (Fig. 1b,c) with 54 

the intention to slow sand transport away from the original placement region and/or 55 

surrounding area10,18–20.  56 



 57 

Sandy beach nourishment became popular in the early 1900’s21 when opportunistic sources of 58 

sand (such as from harbor development dredging) were readily available. In places where 59 

development has slowed, smaller non-opportunistic placements (~100 m3 per meter of 60 

alongshore beach22,23) are most commonly used as a temporary solution for localized erosion 61 

problems. More recently, owing to the recognition of the interconnectedness of regional littoral 62 

cells and their sediment budgets24, repetitive nourishments along the coast are coordinated in 63 

regional sediment management plans25 using either newly acquired sand or reusing dredged 64 

sediments (such from maintenance of nearby harbors). Some novel individual placements have 65 

been scaled to substantially modify the regional sediment budget over many years, such as in 66 

mega-nourishments (> 500 m3/m alongshore26–28).  67 

 68 

Recent advances in the fields of coastal engineering, ecology, and governance, in combination 69 

with changed societal demands, have called for more integrated nourishment approaches. 70 

Mono-disciplinary approaches focused on the above-water beach recreation or overtopping 71 

flood prevention alone have become hard to justify. Nourishment designs now often consider 72 

in-water recreation, groundwater dynamics (such as groundwater flood prevention and the 73 

protection or expansion of fresh groundwater supplies), and ecosystem services (such as 74 

fisheries and water filtration)29. As an example, several recent (pilot) nourishment designs 75 

explicitly include surfing along a sharp lateral edge, sheltered bathing in a lagoon (Fig. 1d) and 76 

the creation of multiple types of ecological habitats (Fig. 1e) while also providing the above-77 

water recreation and flood prevention of more traditional designs. Furthermore, new 78 

approaches take advantage of natural dynamics and are designed to stimulate natural 79 

elements30, harnessing the forces of nature to reach project goals rather than working against 80 

natural dynamics (synonymously referred to as Building with Nature31, Engineering with Nature32 81 

and Living Shorelines33 amongst others). For example, large artificial coastline perturbations can 82 

intensify alongshore transport gradients that redistribute sand across a wider region (Fig. 1e). 83 

Nourishment projects including artificial dunes with planted grasses and fencing are intended to 84 



stimulate wind-blown dune growth that can provide ecological habitat as well as flood and 85 

groundwater protection (Fig. 1d).  86 

 87 

In this Perspective, we provide an overview of the interconnected multi-disciplinary aspects of 88 

beach nourishments in terms of sand redistribution; groundwater considerations; ecological, 89 

economic and recreational impacts; and sand mining. The future of beach nourishment practices 90 

will vary globally, depending on local vulnerability, sand availability, financial resources, 91 

government regulations and efficiencies, and societal perceptions of environmental risk, 92 

recreational uses, ecological conservation and social justice. We recommend research directions 93 

and design approaches that will guide these diverse nourishment practices. 94 

 95 

 [H1] Beach sand nourishment 96 

Nourishments can be constructed using various sediment types originating from inland or 97 

marine sources (such as sand14, shingle34, cobbles35, and/or cohesive clays18,36), and can be 98 

placed on the above-water beach (beach nourishment) or submerged nearshore beach profile 99 

(shoreface nourishment)6,14. The sediment (fill material) is extracted from a borrow site, either, 100 

for the sole purpose of nourishment or as a result of nearby projects, such as excavation for 101 

development, harbor channel deepening or removal of excess sand near a coastal structure13. 102 

The extracted sediment is transported to the coast (typically by barge, pipeline or trucks) and 103 

then pumped, sprayed or dumped onto the placement site. Afterwards, bulldozers or other 104 

machinery sculpt the sand into the shape planned by the engineers.  105 

 106 

Here, we focus on nourishments that add sand (non-cohesive sediments in the size range 107 

0.062 – 2 mm) to open, ocean-exposed beaches where the majority of the sand volume is placed 108 

above the mean water line. The sand can be positioned on the upper beach including dunes 109 

and/or near the waterline, and can (partly) extend onto the underwater beach (Fig. 1). After 110 

placement, the sand is sometimes tilled to attain desired beach surface properties. Over time, 111 

waves, currents and wind move the added sand away from the original placement site, so 112 



repetitive nourishments, typically placed every few years, are often planned to maintain sand 113 

volumes on the beach over longer periods of time. Occasionally, hard engineering structures are 114 

constructed to enclose nourishment sand on the lateral or offshore side10,19,20 (Fig. 1b), or are 115 

erected nearby in the littoral cell to partially trap nourishment sand in adjacent regions (Fig. 1c). 116 

Sandy beach nourishments are widely practiced globally13,14,18,21,37–42 and observed lifetimes 117 

range from individual storms (days) to decades14,43–45. In this section, we discuss the 118 

redistribution of sand, followed by the monitoring and modeling of sand dynamics. 119 

 120 

[H2] Sand redistribution 121 

The added sand steepens and widens the beach, thereby altering currents, waves, wind and 122 

sediment transport in and around the placement area6. During the following months to years, 123 

nourishment sand moves from the placement area in both cross-shore (onshore or offshore) 124 

and longshore directions (upcoast and downcoast) such that the beach narrows and becomes 125 

less steep, while the shape of the local coastline smooths6,46 (Fig. 2a,b). Erosion of sand from the 126 

initial placement area is fastest in the months after construction, especially during the first few 127 

storms43,45,47. Notably, when large volumes of sand are placed on the above-water beach only, 128 

the unnaturally steep profile results in large offshore transports and a rapid decrease of the 129 

beach width46,48. 130 

 131 

As nourishment sand is redistributed it becomes part of the larger sediment sharing system, and 132 

generally, the nourished site experiences erosion after placement, with sediment being 133 

transported to adjacent beaches49. Wave-driven offshore transport of nourishment sand can 134 

form abnormally large sandbars relative to natural sandbars at the site44, potentially smothering 135 

offshore reef ecosystems54 or acting as a soft breakwater. This sand can later return onshore 136 

during calmer wave conditions, increasing beach width again44. Wind-driven onshore transport 137 

of nourishment sand can accrete dunes50 but can also be a nuisance if it blankets properties and 138 

infrastructure near the beach51. Likewise, nourishment sand that moves alongshore to adjacent 139 

beaches can be beneficial (by widening the recreational and protective beach12,52, for example) 140 

or harmful (by infilling of nearby harbour entrance channels or estuaries53).  141 



 142 

Similarly designed nourishments placed in the same geographic region and exposed to similar 143 

forcing, but composed of different grain sizes, have been observed to have drastically different 144 

retention times of the sand on the above-water beach54. Nourishment using coarser-grained sand 145 

is expected to create and maintain a steeper and wider beach, and may be selected to increase 146 

the longevity of the nourishment pad6. Conversely, sand that is much finer than the native sand 147 

can be used in a design to stimulate dune growth through wind-blown transport55 but will also 148 

in-part be quickly and often permanently washed offshore by waves46. Even when using sands 149 

similar to native sand, the modified hydrodynamics resulting from placement56 can exacerbate 150 

preferential transport of the finer fraction of nourishment sand during calm wave periods, altering 151 

grain size distribution patterns in a region much larger than the placement area57.  152 

 153 

As the placement region erodes, additional morphological features such as spits, scarps, and 154 

crowns can form (Fig. 2c-e). Scarps, near-vertical abrupt height variations on the beach profile, 155 

can be created by storm waves that erode, but do not overtop, the nourishment crest58 (Fig. 156 

2d,e). Similar to dunes, beach scarps are removed during storms when water levels overtop the 157 

crest59. Scarp heights can reach ~2m creating a hazard for beachgoers and impeding turtle 158 

nesting60.  At flat-topped nourishments constructed with sand that is coarser than the native 159 

sand, scarps can evolve into crowns as waves deposit sand on the seaward side of the platform 160 

(Fig. 2f). The local elevation maximum of the crowns can cause water to pool in the backbeach53. 161 

In the longshore direction, spit-like features can form along the seaward ends of a nourishment 162 

pad (Fig. 2a,c) due to large sand transport gradients induced by coastline angles at the up and 163 

down-coast edges43. Tapered edges are often designed to minimize spit development when 164 

sand retention in the original placement area is desired, although spit development has been 165 

observed on nourishments with tapered edges53. In contrast, spit development was intentionally 166 

stimulated as part of the ‘Sand Engine’ mega-nourishment design to create a sheltered lagoon 167 

and habitat for juvenile flatfish and invertebrates26 (Fig. 1e).  168 

 169 



Hard structures are sometimes used in conjunction with nourishment works to reduce beach 170 

volume losses from the placement area10,18–20. For instance, approximately half of the sandy 171 

beach nourishments on the Chinese coast that were placed between 1994-2014 were combined 172 

with groynes (shore-perpendicular structures that extend from the beach into a portion of the 173 

surfzone) and/or breakwaters18. The construction of permeable or notched groynes and groyne 174 

fields (Fig. 1b,c) are methods that attempt to attenuate downdrift erosion problems while 175 

increasing sand retention updrift. Shore-parallel structures placed offshore (breakwaters), are 176 

used to reduce the amount of wave energy in their lee, and to modify nearshore currents such 177 

that sand accumulates at the shoreline onshore of the structure. However, contrary to their 178 

design intent, many submerged breakwater projects have caused shoreline erosion61.  179 

Similarly, natural or man-made submerged detached sills in deeper water can be used to create 180 

a perched beach (Fig. 1c) so that less sand volume is required to achieve a desired constructed 181 

beach width compared to a design without a sill 46,62. The perched beach concept has been 182 

practiced worldwide63, but results on the longevity of the nourishments are mixed and there is 183 

limited understanding why these projects are not always successful62. Additional research on the 184 

effectiveness of managing coastal sand resources using nourishment combined with hard 185 

structures is needed, and should also be assessed in terms of the groundwater, ecological, and 186 

recreational impacts. 187 

 188 

The ‘success’ of beach nourishment projects, viewed in terms of how the sand is redistributed by 189 

waves and wind, can be difficult to assess accurately as there is no single set of widely agreed 190 

criteria and the success depends on the objective28. Consequently, using retention time of sand in 191 

the original placement region as the prime criterion to assess ‘success’, can lead to the conclusion 192 

that the nourishment has failed, especially if the objective was to locally increase beach width for 193 

recreation49,65 or provide a temporary buffer to storm impacts on landward infrastructure66. 194 

However, movement of sand by waves, currents, and wind is an expected process, so many coastal 195 

experts advocate for success criteria based on a wider regional sediment budget when the 196 

objective is to mitigate long-term coastal erosion in a coastal cell26.  197 

  198 



 [H2] Monitoring sand redistribution at beach nourishments 199 

Monitoring the sand redistribution of beach nourishments is conducted to evaluate project 200 

performance and impacts, and to increase general understanding of coastal dynamics. Optimal 201 

monitoring programs tailored to beach nourishment behavior measure both the underwater and 202 

the above-water beach, preferably obtained simultaneously to close the sediment balance67. On 203 

open coast beaches, adjacent coastal sections should also be included to trace dispersed 204 

sediments and must be large enough to encompass a reference area that remains unaffected by 205 

the nourishment, such that the sand level response can be assessed in the context of natural 206 

variability in the forcing. We recommend that monitoring should extend for at least 500 m on 207 

either side of the nourishment, with longer stretches recommended for large nourishments and 208 

beaches with highly energetic, oblique incident waves, and include sediment properties 209 

(grainsize and distribution) and local hydrodynamic data (waves, currents and water levels). 210 

Furthermore,  it is important to survey the area immediately after the works, which provides a 211 

clear estimate of the deposited sand volume in-situ rather than estimates from recorded 212 

discharges in the dredging process30. After this first survey, short time intervals between 213 

consecutive surveys (for instance, weeks apart and after each storm) can be necessary to capture 214 

the rapid initial response. High cross-shore (1 m or smaller) and alongshore (100 m or smaller) 215 

resolution is needed to capture the presence of scarps and spits53,59,68.  216 

 217 

Techniques to monitor nourishment sand redistribution are evolving69—all-terrain-vehicles 218 

equipped with survey-grade Global Navigation Satellite Systems, real-time kinematic 219 

corrections, and inertial measurement units largely replaced traditional rod and level surveys at 220 

the turn of the last century70. These technologies drastically increased spatial resolution and 221 

span while maintaining <10 cm horizontal and vertical accuracy52,53. Above-water mapping 222 

technologies often are combined with sonar on boats and personal watercraft for measurements 223 

of the underwater beach. As bubbles and suspended sediment can sometimes obscure the 224 

sonar signal in the shallow water surf-zone, dollies pushed to wading depths or large 225 

amphibious vehicles are used to help ensure continuous measurements across the 226 

profile52,53,68,71. 227 



 228 

In the past decade, remote sensing imaging systems have further expanded data collection 229 

capabilities. These can be mounted on fixed (towers, rooftops)72 or mobile platforms (drones, 230 

airplanes, satellites)69. Monocular (single viewing angle) imagery using optical cameras1,72–74 or 231 

cloud penetrating radar75 are used to detect the horizontal location of the land-water 232 

intersection of the nourishment and adjacent beaches. These systems can provide long time 233 

series at remote locations with small operational costs, although, owing to uncertainties 234 

(especially such as those in estimating water levels76), this method works best when shoreline 235 

migration is large (many 10’s of meters for satellite systems74). Newer remote imaging 236 

technologies that measure the 3-D beach surface provide more accuracy than monocular 237 

imagery, which relies on the detection of the land-water intersection. For example, 238 

photogrammetric methods (such as structure from motion) reconstruct a 3-D surface from 239 

multiple photographs with different viewing angles77–79. Laser scanning67 (lidar) is generally the 240 

most expensive and accurate remote sensing technique80,81, and can provide full wave-form 241 

information useful for resolving different surface layers (such as vegetation on a dune82). These 242 

3-D datasets, including true color information of the surface, open new opportunities to identify 243 

beach characteristics (such as distinguishing between native and nourishment sand83 and cobble 244 

coverage84).  245 

 246 

Observing bathymetry (underwater topography) through remote sensing remains challenging, 247 

but there has been some success in clear waters where the seafloor is visible in optical camera 248 

imagery85, or using laser altimetry with sufficient power to record reflections of the seafloor 249 

despite the water-air interface and the scattering of the (green) laser pulse in the waterbody80,86. 250 

These approaches enable high resolution mapping over large spatial ranges. Alternative technology, 251 

deriving bathymetry from remotely sensed surf-zone wave speed and shape, is also being 252 

developed87,88.  253 

 254 

We envision that as the spaceborne photogrammetry and laser altimetry records grow, they will 255 

be especially transformative for our field. Satellites are providing time-continuous global 256 



coverage of sand levels with accuracy on the order of cm’s77,79,80, which will help map sand 257 

redistribution, expand our understanding of geomorphological processes and enhance our 258 

ability to develop or calibrate numerical models.  259 

 260 

 261 

[H1] Modeling beach nourishments 262 

Models of sand redistribution help coastal managers evaluate the impacts of different 263 

nourishment design strategies. However, understanding and forecasting nourishment evolution 264 

is challenging — models must account for changes in sand levels over several years, which are 265 

often a delicate balance between storm and recovery processes89. Furthermore, these models 266 

must encompass broad temporal (from seconds, such as during overtopping event during a 267 

storm, to decades, as with dune development or sea level rise) and spatial scales (from individual 268 

grains to littoral cells). Computational constraints require these processes to be aggregated 269 

through extensive parameterization90. Sometimes models that use different resolutions can be 270 

coupled to resolve multiple scales91, for example by running high detail models for small spatial 271 

and/or short timescales, in conjunction with aggregated low resolution models for large spatial 272 

and/or long timescales. Other approaches attempt to accelerate model simulations by 273 

“compressing” the number of timesteps92, by using only the moments with the most impactful 274 

forcing conditions47, or implementing simplified but efficient look-up tables that categorize the 275 

beach response to generalized forcing conditions93. 276 

 277 

Sand redistribution models range from simple to complex. In their simplest form, coastline 278 

models estimate the shoreline position by schematizing the along-coast sand redistribution as a 279 

diffusion (shoreline smoothing) process where the shoreline orientation relative to the incident 280 

wave conditions governs the alongshore transports over time94. When calibrated, these 281 

computationally fast models can provide information on beach change of the largest of scales 282 

(years, kms)95. Hybrid models can improve upon coastline model physics by accounting for the 283 

effect of realistic complex bathymetry (such as nearshore canyons or rocky platforms) on wave 284 

propagation. To represent multiple specific details of the nourishment beyond the shape of the 285 



coastline (like variations in planform shape), and to provide information needed for ecological 286 

and recreational assessments (including sediment sorting, shells, and spit formation) more 287 

complex models are needed based on the upscaling of processes (process-based modelling)e.g. 288 
96,97.   289 

Process-based models can be subdivided into profile models and planform models. Profile 290 

process-based models solve the cross-shore sediment balance at multiple vertical levels, but at 291 

only one alongshore location98. Current state-of-the-art cross-shore process-based models 292 

perform best for predominantly offshore directed morphological development on time scales of 293 

days, such as the large erosion of nourished profiles during a storm99. When applied to natural 294 

profiles and moderate waves, model skill is significantly reduced up to the point that a simulated 295 

development, when compared to observed changes, can be worse than a no-change 296 

prediction100.  297 
 298 
Planform process-based models have a domain that extends both alongshore and cross-shore, 299 

but have limited resolution in the water column92,101. Recent planform model computations are 300 

apt at reproducing the multi-year evolution (both erosion and accretive sand volumes) of a 301 

mega beach nourishment47,92 (Fig. 2g-n). However, these models have yet to be rigorously 302 

tested in the peer-reviewed literature on beach nourishments of a more typical size. The latest 303 

process-based numerical models have the ability to differentiate between sediment of different 304 

grain sizes at a project site. For example, these models can be used to examine nourishments 305 

with different grain sizes than the surrounding (native) sand and may be able to reproduce the 306 

coarsening of the sand as fines are transported out of the area102. Sufficient high-quality 307 

sediment composition data is needed to further develop and test these grain size specific 308 

transports.  309 

 310 

Uncertainties in model forecasts arise both from the forcing (such as wave, wind, water level 311 

conditions) and model limitations. For instance, at the well monitored Sand Engine mega-312 

nourishment, model parameter uncertainty was found to be comparable to the uncertainty in 313 

future wave forcing conditions (wind, waves, currents) for a 2.5 year calibrated coastline position 314 

model that forecasted an additional 2.5 years103. For 50- to 100-year predictions of shoreline 315 



location on erodible coastlines, the model framework for how the beach responds to sea level 316 

rise dictates the uncertainty in the modeling outcome more than any other factor. In other 317 

words, model choice outweighs the climate change scenario, sea level rise, sand supply, vertical 318 

ground motions and wave-driven shoreline response98 in determining the output. 319 

Computational power has increased such that if model skill was improved, probabilistic 320 

approaches with a large number of (ensemble) forcing conditions could help coastal planners 321 

navigate nourishment decisions in the face of uncertain sea level rise, and changing wave and 322 

weather conditions104. In the meantime, models are only reliable when they have been site-323 

specifically calibrated and validated, and when the forecasted conditions are similar to those 324 

that were used in calibration and validation47. As sufficient calibration data is often lacking, 325 

nourishment designs are still done in a pragmatic manner, relying on both numerical model 326 

output and expert judgment. 327 

 328 

A promising development in morphodynamic modelling of nourishments is the inclusion of 329 

additional spatial domains and disciplines, such as groundwater104 and vegetation105 models. For 330 

example, connecting wave transport models with wind transport models has been important in 331 

long term predictions, as it accounts for transport of sediment towards the dunes and aeolian 332 

infilling of nourishment waterbodies91 (Fig. 2n). However, given the difficulty in modeling 333 

sediment transport, numerical models of nourishment response will likely continue to be highly 334 

parameterized with incomplete physics for some time. Therefore, research comparing the 335 

performance of more complex models to simple models is needed to assess when the 336 

added complexity and computational demands are warranted106, and observations will continue 337 

to be essential for model testing.  338 

 339 

 340 

[H1] Groundwater impacts  341 

Changes to aquifers below beaches and dunes are increasingly considered as part of coastal 342 

zone management practices as these impact flooding and fresh water quantities. For example, 343 

storms can cause groundwater salinization107–111—especially concerning for low-lying islands 344 



with limited freshwater supplies such as the barrier islands along subsiding coasts112 and Pacific 345 

atolls113-114—and contribute to coastal flooding115. For example, a sea level rise model 346 

assessment for urban Honolulu, Hawaii (USA) at the end of the century, found that including 347 

groundwater processes doubles the size of the flood-prone area compared to when considering 348 

marine inundation alone116,117.  349 

 350 

The behavior and dynamics of groundwater near the land-ocean interface are highly complex 351 

and variable, and thus responses to nourishment are challenging to predict. Beach nourishments 352 

increase coastal elevation of the beach and are therefore likely to reduce the probability of land 353 

surface inundation, infiltration of seawater, and salinization. In addition, beach nourishments 354 

increase the terrestrial extent of the coast, leading to increased trapping of precipitation and 355 

enhanced groundwater recharge, resulting in increased freshwater resources118,119 (Fig. 3a). 356 

However, expansion of the freshwater resources owing to beach nourishments can be limited or 357 

modulated by erosion of the added sands during storms119. Moreover, the elevated nourishment 358 

pads can retain ocean water in the added sediment, especially during storms with large surge 359 

and wave-driven setup, even in the absence of inundation120, and the increased groundwater 360 

levels and inland-propagating groundwater bulge121,122, potentially contributing to inland 361 

flooding53,123 (Fig. 3b). Moreover, seaward seepage (Fig. 3c) of the groundwater onto the beach 362 

can reduce the wind-driven onshore transport that is needed to build dunes124, while also 363 

reducing the effective weight of sediments submerged by waves, enabling sands to be swept 364 

offshore more easily125.  365 

 366 

Groundwater flow in beaches is sensitive to both cross-shore profile shape as well as porosity 367 

and grainsize126, and these three aspects can be (temporarily) altered after nourishment53,63,127. It 368 

is presently unknown if these aspects significantly impact freshwater resources and 369 

groundwater-induced flooding on recently nourished beaches, and additional study is needed 370 

to understand groundwater flow in nourished beaches and its coupling with flooding, sediment 371 

transport, and vegetation.  372 

 373 



[H1] Ecological Impacts  374 

Habitat attributes are the main determinant of biodiversity and ecological structure in beach 375 

ecosystems128–133. Sediment properties (including texture, size, moisture, and organic matter), 376 

topography (slope elevation, width, and relief), hydrodynamic forces (wave exposure, currents, 377 

and tides) and biological interactions (productivity, carbon subsidies, and predation) shape the 378 

structure of beach ecosystems. These ecosystem harbour diverse assemblages of burrowing 379 

invertebrates and larger animals that nest and feed in the surf zone, the intertidal shore, and the 380 

coastal dunes (such as birds, sea turtles, rays, and sharks)134–139 (Fig. 4a). Beach species are 381 

adapted to high-energy environments with rapidly changing conditions140, yet this does not 382 

imply they are resilient to habitat changes and physical forces caused by nourishments141–145. 383 

Indeed, many coastal ecosystems are deteriorating146–148 owing to human activities in the coastal 384 

zone, such as infrastructure, beach armouring, off road vehicle traffic, and beach grooming, and 385 

nourishment can compound ecological stressors (Fig. 4b). 386 

 387 

Detrimental impacts of nourishment149–151 largely concern the loss of ecological features during 388 

nourishment construction. Most of these reductions are in the number of species and 389 

individuals, often for invertebrates buried in the sand, but also for birds and fishes. The 390 

mechanisms are varied (Fig. 4c-f), but processes commonly identified during construction 391 

include burial and suffocation under a sand layer that exceeds the capacity to burrow 392 

upwards152,153 and mechanical crushing by heavy machinery, functionally similar to the crushing 393 

effects by off-road vehicles driven over beach invertebrates buried in the sand154–157.  394 

Increased water turbidity from nourishment operations that bring fine material into suspension 395 

and the suspended silt can clog the delicate feeding structures of filter-feeding invertebrates 396 

(such as clams)143; more turbid surf-zone waters can also limit prey detection and thereby impair 397 

feeding by fish142 (Fig. 4e). These impacts can extend beyond the immediate spatial footprint to 398 

affect adjacent systems (including reefs and seagrass meadows) several kilometers away through 399 

turbidity plumes158.  400 

 401 



After the nourishment has been implemented, the altered cross-shore profile shape can create 402 

unfavorable conditions for foraging, spawning or nesting159,160. Moreover, a mismatch of 403 

sediment properties between the added material and the original sands161–163 can impact habitat 404 

conditions. For example, excess shell hash can impede probing for clams by shorebirds143,162,164–405 
166 (Fig. 4d), and a change in sediment texture can make the beach unsuitable for larval 406 

settlement and adult survival (Fig. 4f).  407 

 408 

Hard structures used in combination with nourishments can additionally impact ecosystems. For 409 

example groynes can trap higher volumes of wrack (such as algae and seagrasses) on the updrift 410 

side, while reducing accumulations downdrift167. Wave-sheltering provided by breakwaters can 411 

shift communities from consumer- to producer-dominated systems168. Furthermore, hard 412 

structures can create barriers to the transport of mobile animals living on the ocean floor and to 413 

the dispersal of propagules167. 414 

 415 

From an ecological perspective, the best nourishment would be the nourishment that does 416 

minimal harm to the pre-nourishment habitat, restores ecological values lost due to previous 417 

human activities and, depending on the local views on ecology, creates new habitats169. 418 

Information gaps remain that limit our ability to design more environmentally benign strategies, 419 

or create habitat opportunities with engineering works. Primarily, the trajectories of recovery 420 

and the thresholds of habitat change that species and assemblages can biologically 421 

accommodate are unknown. Put another way, what is the biological ‘dose-response curve’ of 422 

beach engineering works? Ecological impacts are often measured by comparing (unimpacted) 423 

control regions with impact areas. Understanding the large scale, long-term (natural) variation in 424 

species (species richness, biomass, and abundance) and habitat (such as water quality and 425 

turbidity) is vital for contextualizing nourishment impacts. Reported recovery times vary widely, 426 

from weeks152 to several years144,165. There is little consensus on impact and recovery, mainly 427 

because almost all ecological studies are much too short (generally months), limiting our ability 428 

to make robust inferences about impacts and recovery164.  429 

 430 



Changes to the design and timing of beach nourishment can create opportunities to develop 431 

practices with a smaller ecological impact. For example, concentrated nourishments with large 432 

volumes are intended to slowly feed the adjacent coasts with sand, as an alternative to multiple 433 

repeated nourishments along the coast26. This method may minimize ecological harm because 434 

of its localized placement footprint, which reduces the alongshore stretch that experiences the 435 

initial burial event. These large placements also extend the time period between successive 436 

nourishments, which allows time for populations to partly recover, as surviving or recolonizing 437 

organisms reproduce169. However, larger nourishment volumes typically bury organisms under a 438 

larger depth of sand, which potentially making initial ecological impacts in the placement area 439 

more severe. Alternatively, continuous and much smaller scale placements in thin layers or 440 

mosaics are proposed to potentially reduce mortality of fauna from deep burial and to enhance 441 

chances for recolonization147,153,160,170. A comparative study of the ecological impacts of these 442 

different strategies is needed to advance this debate and connect nourishment intervals, 443 

placement volumes and shapes, with recovery timescales. The study should not only be 444 

compared to the existing ecosystem at the coastal stretch (Fig. 4b) but equally to the original 445 

natural shoreline system (Fig. 4a) and alternative man-made interventions (such as armouring 446 

and seawalls).  447 

 448 

Many dune restoration projects have prioritized ecological restoration171, however nourishment 449 

projects lower on the beach that prioritize ecological functioning over other objectives are 450 

generally more rare than other types of nourishment, and there is a dearth of studies on the 451 

projects that do have this priority. In the future, attempts to create beach habitats that mimic 452 

previously existing (site-specific) wave-exposed shores (neither excessively extended seawards 453 

nor unnaturally elevated, and with biologically suitable slope, relief and sediment composition) 454 

should examine the full capability of using nourishment for ecological restoration.  455 

 456 

[H1] Broader impacts 457 



To fully assess the impact of nourishments, it is essential to also understand how nourishment 458 

sands are extracted, how the sand placed on the beach impacts recreation, and how the 459 

investment interacts with the larger socio-economic setting of the coastal zone.  460 

 461 

[H2] Sand mining  462 
The process of extracting and transporting sand for beach nourishment is an integral part of 463 

nourishment projects, and partially determines their broader environmental impact. Because 464 

sediment properties can have important consequences for, the longevity of the nourished 465 

beach46,53, the survival of beach fauna142–144, groundwater flows126, and the satisfaction of 466 

tourists172, sand needs to be carefully chosen, and mined sand that resembles the native is 467 

typically preferred173. However, there is a predicted global shortage of sand due to high demand 468 

for concrete, land reclamation, and coastal nourishments174,175, and owing to a shortage of 469 

inland sand sources, marine and coastal sands are increasingly mined for concrete156. Extraction 470 

from riverbeds and the nearshore system for building aggregates removes sand that would 471 

naturally build beaches, increasing nourishment demands while also reducing the availability of 472 

sand for nourishment. Meanwhile, the need for nourishment sands might increase by an order 473 

of magnitude based on sea level rise projections—for example, by 2100, nourishment volumes 474 

to maintain the Dutch coast could be up to 20 times larger than current volumes176. Sand 475 

availability ultimately shapes the feasibility of a sandy strategy, where mega nourishment 476 

designs of over 20 million m3 (Fig 1d,e) might only be feasible at locations with ample sand 477 

supplies, such as the North Sea’s shallow sandy shelf offshore of the Dutch coast.  478 

 479 

The pressure on sand as a resource is reflected in nourishment costs, which are primarily 480 

governed by the distance between the borrow (extraction) location and the nourishment 481 

(placement) location, as well as the nourishment execution method and sand volume177–179. In 482 

some projects where borrow areas are close, such as the shallow nearshore seabed and/or 483 

nearby inlets or harbors that are dredged frequently, the cost of sand can be lower than 5 US$ 484 

per m3 (Textbox 1). At locations with limited sand resources of a suitable size (such as Florida, 485 

USA or Singapore), long travel distances may raise the price of sand to 200 US$ per m3, making 486 

sand trading a part of international disputes175,180. Global nourishment costs might reach 487 



hundreds of billions in US$ per year before the end of the century181. Government regulations 488 

and contract type (such as Construct only or Design & Construct) can also drastically influence 489 

sand pricing182. For example, the reported Dutch nourishment sand prices are often based on 490 

construction costs only, without having to acquire permits or purchase the sand. In contrast, 491 

engineering and environmental assessments required to obtain a permit for sand extraction in 492 

California can cost hundreds of thousands to millions of US$, such that total nourishment costs 493 

can be raised by ~40%183.  494 

 495 

New areas for sand mining could become economically viable over the next decades as sand 496 

prices continue to escalate and melting icecaps open up new potential mining sites, but the 497 

ecological harms associated with mining distant sands need careful evaluation and mitigation 498 

before extraction takes place184. For example, mining of marine sands affects marine mammals 499 

via noise and light pollution173 and invertebrate assemblages of the seafloor could take years to 500 

recover185. ‘Landscaping’ the mining pits to create irregularities in the mined seabed have been 501 

proposed to facilitate fauna recolonization, and a pilot study revealed a positive impact of pit 502 

landscaping on demersal fish186, but the idea requires further testing in the field to lower the 503 

combined ecological harm caused by seabed mining.  504 

 505 

In addition to being directly ecologically damaging through sand extraction, constructing a sand 506 

nourishment has a substantial CO2 footprint related to sand mining and transportation. For a 507 

project using nearby marine sources, the emissions per m3 of disposed sediments are 2 to 5 kg 508 

of CO2 
177,187. The CO2 footprint increases with transport distance from the mining site to the 509 

beach178, emphasizing the need to identify nearby sand sources that can be safely extracted. 510 

Moreover, the type of dredging vessel and the disposal method (such as pipeline transport 511 

through pumping, spraying or dumping through bottom doors without pumping) affect fuel 512 

consumption and are important controls on total emission quantity178,187. Calculations and 513 

comparisons of carbon footprint are therefore site specific and difficult to compare to other 514 

coastal protection alternatives.  515 

 516 



Given the costs and the emissions associated with sand mining at remote locations, more local 517 

sources may need to be considered in the future, even if these are sub-optimal from an 518 

ecological or recreational standpoint180. Using sediments from nearby (shipping) channels or 519 

estuaries, reduces the disturbance of untouched seafloors, restores natural sediment pathways 520 

and might, where possible, prove to be the most viable option to sand mining from a 521 

sustainability point. New developments in efficient nourishment placement strategies and vessel 522 

(fuel) technology188 must also be explored further to reduce the overall environmental footprint 523 

of beach nourishment. 524 

 525 

[H2] Recreational impacts 526 

Nourished beaches are often designed to enhance human recreational space, both above and 527 

below the water, especially in tourist areas. Broader beaches can accommodate more visitors 528 

and land-based activities and are therefore often preferred to narrow beaches189. However, 529 

visitor appreciation studies in the US and Australia show that beaches perceived to be 530 

excessively wide are unattractive to visitors190 as they make the ocean less accessible for water-531 

based activities, such as surfing, swimming, and scuba189. Altered beach slopes and the 532 

development of scarps on the nourishment can create hazards191, and impede lifeguard’s views 533 

and vehicle access192. Nourishments also affect in-water recreation. Sharp bends in the planform 534 

shape can generate strong flows that impact bather safety192 and affects sand bar patterns193, 535 

sometimes resulting in stronger rip current flows194. In the US, increased numbers of drownings 536 

and accidents (up to 300%) have been reported after several beach nourishments. Yet without 537 

statistics on concurrent variations or altered beach usage194, additional research is needed to 538 

provide generic evidence on the link between nourishment, rip currents and altered swimmer 539 

safety194. The changes in sandbar morphology and wave breaking patterns can also alter the 540 

quality of surf breaks12,195,196. Although implementing nourishments with irregular outlines and 541 

steep end-sections can mitigate some of these negative effects on surfing197,198, these surfing-542 

specific design features with strong coastline curvatures are typically short lived (weeks-months) 543 

and can negatively impact swimmer safety192.  544 

 545 



[H2] Social and Economic impacts 546 

Increasing beach width via nourishment is often considered to be beneficial for above-water 547 

recreation, tourism, and coastal property values from an economic standpoint199. Economic 548 

evaluations typically contain three main elements: changes in coastal property value,  changes in 549 

tourism revenue and the cost of coastal management works, and quantitative input of these 550 

elements is very site specific. The optimal beach width can be translated to an estimated optimal 551 

nourishment frequency and size to maximize revenues200. In these analyses, larger values of 552 

beach width revenues, property value or background erosion rate result in increasing 553 

nourishment frequency201. When lateral spreading of the nourished sand is taken into account, 554 

though, achieving an optimal strategy becomes more complex as nourishment losses from one 555 

town might benefit another200,202 and local versus regional approaches to decision making can 556 

affect the economic balance. Coupled coastline-economic models for nourishments currently 557 

under development202 should be expanded to account for groundwater and ecological impacts, 558 

and the scarcity of sand resources.  559 

Although some coasts have high estimated returns, such as for the Florida coast (USA), where 560 

each US$ invested in nourishments is estimated to have a 700 US$ return203, nourishing an 561 

existing touristic beach is not without risks for amenity values. There are many factors that 562 

determine beach visitor appreciation, such as vehicle parking, facilities, and water clarity189,190,204, 563 

and restricted beach access and machinery can impact the visual aesthetics of the beach during 564 

the months of construction, causing temporary reduction in tourist revenues205. Moreover, 565 

nourishing with sand dissimilar from the native mineralogical composition can result in changes 566 

in beach sand color, which impacts visitor appreciation, with light colored nourished sediment 567 

being preferred by visitors in some cases, such as seen in Cuba and Italy172,206. Comparisons of 568 

natural and nourished beaches in Spain showed that nourished beaches have distinct different 569 

colors (quantified using the CIEL*a*b* methodology) which can persist for years after sand is 570 

added207.  571 

Given limited sand resources, difficult decisions will arise about which beach will be saved by 572 

frequent nourishments180. With property values being higher behind wider beaches (or else 573 



being equal)199, investments to restore and widen beaches can presumably be higher in more 574 

affluent beach communities181. Therefore, upholding principles of social justice in democratic 575 

systems calls for equitable regulated approaches to decision-making in beach restoration208,209. 576 

These approaches should use valuation methods that are inclusive of non-local beach users, 577 

who in many cases cannot afford to live near the coast. If beach nourishments are installed using 578 

(in part) public funds, inclusion can be implemented in the design, for example by requiring 579 

public access every half mile after the construction of a beach nourishment210. 580 

Furthermore, it is possible that some beaches might be able to migrate landward with sea level 581 

rise, but would drown when backed by hard structures. Interesting questions are thus posed 582 

about whether to prioritize making way for the migrating beach (often a public asset), or 583 

protecting existing (often private) coastal infrastructure in place. Nourishment could be useful 584 

for either purpose211, although more research is needed to assess effectiveness and feasibility. 585 

Communities might choose to restore different local beaches for different purposes, and 586 

designs could be optimized accordingly, for instance a nourishment for surfing at one location, 587 

with another for sunbathing elsewhere.  588 

 589 

[H1] Integrating perspectives  590 

The previous sections outline the progress that has been made in nourishment impact science 591 

and highlights the connectivity between the various impacts—linkages between beach width 592 

variations and economics; altered grain size and fauna recovery; sand mining location and visitor 593 

appreciation through sand type and color (Fig. 5a). Some of the requirements are in direct 594 

contradiction and demand a tradeoff, for instance: the desire for thin layer nourishments for 595 

rapid ecological recolonization is difficult to combine with economical sand mining and 596 

placement which favours large quantities; coarser sand to increase sand retention times on the 597 

beach versus sand similar to native for healthy ecological habitat; or smooth outline designs for 598 

better swimmer safety versus an irregular outline to enhance surfing (Fig. 5). Integrated designs 599 

and approaches will therefore need to look beyond sediment spreading and dredging costs 600 

alone. Quantitative impact analyses and thresholds for some of the aspects are currently still 601 

lacking, requiring an iterative procedure in the design process (Fig. 5b). Modeling studies, 602 



combined with site specific calibration and validation, can offer useful guidance throughout the 603 

decision making process. 604 

 605 

Assessments of beach nourishment performance need to be as diverse and nuanced as 606 

nourishment goals and impacts; which is no small challenge. The traditional monodisciplinary 607 

assessment of beach nourishment performance, used across the globe e.g. 28,63,64,212,213, typically 608 

focuses on geometrical aspects alone (like beach width or beach volume). Visitor appreciation 609 

surveys and economic evaluations (in Cost-Benefit analysis 214, Travel Cost Method or 610 

Contingent Valuation Method215, for example) are also used widely despite often 611 

oversimplification of nourishment impacts, especially ecological impacts. Multidisciplinary 612 

evaluations require extensive monitoring plans that measure not only sand levels, currents and 613 

granulometry, but that also include ecological surveys, such as species abundance and water 614 

turbidity values, groundwater, social and recreational aspects (including surveys of beach 615 

appreciation and lifeguard statistics) and economic data (such as property values and visitor 616 

spending)30. 617 

 618 

Instituting procedures to ensure avoidance or mitigation of ecological harm require social norms 619 

that embrace the ecosystem nature of sandy beaches and explicitly value the environmental 620 

services they deliver, thereby balancing conservation needs with other societal demands from a 621 

beach system29,146,159. An ecosystem services framework29,146,216 promises to capture many of the 622 

impacts mentioned, yet an objective approach is still difficult, as ecological perceptions are 623 

varied. For example, creating nourishments with a more complex shape can lead to a wider 624 

variety of species and new ecological communities compared to the pre-nourished or adjacent 625 

coasts169, which can be viewed as a positive or negative impact depending on (cultural) views on 626 

ecology and restoration217. In some communities, ecosystem functions may be a priority that 627 

dictates nourishment design33,218. New designs (thin layers, mosaics, concentrated or continuous 628 

drip-feeding nourishments, to name a few) could foster healthier ecological habitats than 629 

traditional rectangular beach fills but are yet to be rigorously tested and compared.  630 

 631 



[H1] Future directions  632 

Many of the world’s sandy beaches are subjected to ‘coastal squeeze’, trapped between rising 633 

seas and increasing development on land4,148. As sand supplies dwindle, sea levels rise, and 634 

storm characteristics transform, the effectiveness of current engineered coastal adaptation 635 

strategies, including beach nourishment, in protecting vulnerable coastal communities is 636 

uncertain219–222. Regardless, beach nourishment is likely to remain a popular engineering 637 

solution in the foreseeable future to support coastal tourism economies, lower risks of coastal 638 

hazards223, create habitat zones9 and reuse sediment dredged from inland waterbodies13. Local 639 

erosion trends and risks to infrastructure, projections of local sea-level rise, availability of sand, 640 

and societal values vary across the globe (Box 1), and future nourishment strategies must reflect 641 

these differences. For some locations small scale nourishments with lifespans of a month might 642 

be preferred (for example, as at Dongsha beach, China66), whereas large scale nourishments are 643 

designed to last decades at other locations (as with the Sand Engine, Netherlands52).  644 

 645 

Impacts arising from beach nourishment thematically reflect and intersect multiple fields of 646 

science, emphasizing the need for collaborative, multi-disciplinary research. A clear example is 647 

the effect of nourishment on surface and subsurface processes due to altered beach sediment 648 

size and composition. Granulometry and mineralogy determine multiple aspects of beach 649 

ecosystems (morphology, seawater filtration, sediment retention, groundwater flows, organic 650 

matter content, habitat suitability for invertebrates, feeding opportunities for fish and birds, 651 

recreational value and perception, amongst others), but the interactions and feedback links that 652 

create additive and synergistic drivers of broader environmental and socio-economic impacts 653 

are rarely identified or measured.  654 

 655 

We identify three broad needs in coastal nourishment science: a better quantitative 656 

understanding of sediment transport processes, particularly the fluxes of sediment in the cross-657 

shore direction between dunes and deep water; threshold levels for ecological impacts, in other 658 

words, the magnitude of habitat change above which we regularly observe significant ecological 659 

harm attributable to engineering works; and the groundwater response to changing beach 660 



profiles, including expansion of freshwater resources and impacts on inland flooding, sediment 661 

transport (by exfiltration, for example), and growth of vegetation (which can stabilize dunes and 662 

other features124). Moreover, natural, engineered and sea level rise scenarios must be 663 

intercompared to inform management decisions, where observations are critical to assess 664 

models. Paleoclimate records and observations of beaches experiencing unusually large relative 665 

sea level rise could provide insight as to how projected sea level rise is to affect different 666 

beaches in the future, and should be further integrated with modelled projections of coastal 667 

response  668 

 669 

Whilst the various impacts of addressing beach retreat and erosion with nourishment are 670 

outlined, we caution against unmonitored adoption of nourishment strategies, mainly because a 671 

solid foundation in properly managing impacts with design is lacking. Continued research will be 672 

crucial to inform the decisions ahead and to use our sand resources effectively and sensibly. 673 

New observation techniques will need to be developed to map impacts over a larger area. These 674 

studies must result in numerical prediction tools that can interpolate scarce observation points 675 

and forecast nourishment impacts under different circumstances. New pilot projects to 676 

experiment and quantitatively assess alternative nourishment approaches are furthermore 677 

recommended to test and develop operational capabilities in a fresh framework that reflects the 678 

environmental diversity and social aspirations of our coastal ‘beachscapes’. 679 
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 1266 

Figure legends 1267 

Fig 1. Beach nourishment projects. Nourishment sand bodies and additional hard structures indicated in black 1268 
dashed and red lines respectively. a| Beach nourishment placement in progress, San Diego (USA). b| Beach 1269 
nourishment with groyne field, Coney Island (New York, USA). c| Perched beach nourishment with groyne field and 1270 
submerged sill, Pellestrina (Italy). d| Beach and dune nourishment with lagoon, Hondsbossche (Netherlands). e| ‘Sand 1271 
Engine Mega Nourishment’ intended to feed adjacent beaches with constructed lake and lagoon for additional types 1272 
of recreational and ecological habitats, Kijkduin (Netherlands). [PR: CHECK AND ADD IMAGE PERMISSIONS]  1273 
 1274 
Fig 2. Evolution of sandy beach nourishments. Morphological evolution of a sandy beach nourishment in planform 1275 
(bird’s eye view) and profile (side-view). a| As the nourishment pad retreats, sand is redistributed laterally, with possible 1276 
spit development along the edges. b| In the original placement region, erosion of the pad coincides with a general 1277 
decrease of the profile slope. c| At adjacent coastal sections, nourishment sand delivered by spit features creates an 1278 
elevated bump on the profile. d| Erosion of the nourishment near the water line can result in the creation of scarps. e| 1279 
Scarps can be removed when high waves overwash the scarp crest. f| Crowns can form when overtopping waves bring 1280 
sediment on top of the nourishment pad. Advances in morphodynamic model predictions illustrated for the ‘Sand 1281 
Engine’ nourishment, with the columns representing the initial (2011), one year (2012) and 5-year bed levels (2016).  g| 1282 
Observed bed levels in 2011. h| Observed bed levels in 2012. i| Observed bed levels in 2016. j| Model input. k| The 1283 
uncalibrated 1 year ocean-forced (waves & currents) model prediction. l| 18 month calibrated, ocean-forced, extended 1284 
5 year prediction92. m| 1 year calibrated, ocean-forced model output47. n| 18 month calibrated extended 5 year 1285 
prediction including ocean-forcing and wind-blown sand transport on the above-water beach91. Thick black lines in g-1286 
n note the mean sea level. 1287 
 1288 
Figure 3. Groundwater processes related to nourishments. Fresh rainwater is trapped in the ground (surface aquifer) 1289 
above saline water that infiltrates from the ocean. a| Beach nourishments expand the region that traps water, including 1290 



precipitation, potentially expanding freshwater resources. b| During large ocean surge and wave events, the beach and 1291 
dune absorbs seawater, creating a groundwater bulge that increases in magnitude with storm period. c| Following a 1292 
storm, the groundwater under the dune exfiltrates onto the beach, potentially enhancing erosion or reducing onshore 1293 
blowing sand that could rebuild the dune. In addition, the groundwater bulge moves inland, potentially causing flooding 1294 
in low-lying areas. 1295 
 1296 
Figure 4. Potential ecological changes during and following beach nourishment. a| Ocean beaches without 1297 
significant human stressors are ecosystems rich in species and individuals. b| Human activities at developed (eroding) 1298 
seashores often result in a reduction in beach fauna. c| Beach nourishment can cause a range of changes to beach 1299 
habitats and their fauna. These impacts can arise through direct mechanical impact. d| Excess coarse material, such as 1300 
shell hash, can make it difficult for predators to detect prey and to extract prey from the seafloor. e| High concentrations 1301 
of silts and clays in suspension can suffocate infauna, by clogging their gills. f| Because invertebrates living in the sand 1302 
have very specific requirements, changes to granulometry are often inimical to beach fauna, including lower recruitment 1303 
by larvae from the ocean. Note, the panels are conceptual sketches only, with organisms and human activities not to 1304 
scale.  1305 
 1306 
Figure 5. Integration of impacts into nourishment design. a| Main design parameters impacting coastal zone 1307 
functions. b| Flowchart for designing and evaluating beach nourishments. Nourishment strategy examples (not 1308 
comprehensive) show the diversity in designs and their relation to design choices. Actual designs could combine several 1309 
elements to reflect the nourishment project goals. 1310 
 1311 

[b1] Regional nourishment strategies 1312 

 [bH1] United States, San Diego County, Southern California 1313 

The Southern California coastal zone contains large cliffed sections, intersected with river and 1314 

estuarine valleys. Wide beaches in this region are primarily the result of large opportunistic 1315 

nourishments between the 1940s and 1980s22. More recently smaller nourishments (order of 1316 

magnitude 200,000 m3)45,53 are typically placed to protect coastal infrastructure and bolster 1317 

tourism, impacting beach-spawning fish160, shore birds147 and invertebrates150. Sands are 1318 

obtained from a mix of harbor dredge material160 and offshore pits150 with costs of 12-25 US$ 1319 

per m3 (Ref224). These projects are financed by state and federal funds, with smaller contributions 1320 

from the local cities. 1321 



 [bH1] Australia, SE-Queensland 1322 

The southernmost part of the Queensland coastline contains large, low-lying sandy islands 1323 

backed by lagoons and inlet systems225. These beach systems host amongst others 1324 

invertebrates, fish and larger scavengers153,226. Tourist beaches on this coastline have been 1325 

nourished since the 1970s227. Surfing conditions are engineered by an artificial reef in the 1326 

nearshore zone228. Local and state government have invested in a continual program that adds 1327 

sand from a nearby estuarine inlet to popular tourist beaches. The majority of the sand is 1328 

dredged from nearby estuaries and inlets and a small percentage of the sands (15%) are 1329 

obtained from offshore sources227. Costs are ~ 5 US$ per m3 (Ref214). Sand supply is also 1330 

enhanced by an estuarine bypass system, a continuous beach nourishment system that 1331 

redistributes sand from the updrift beach through a pipeline to several outlets on beaches 1332 

down-current of the estuarine inlet12.  1333 

[bH1] South Korea, East Coast 1334 

The South Korean east coast is a rocky coastline with embayed sandy beaches229 subjected to 1335 

multiple severe storm and typhoon events per year230, and some parts suffer from structural 1336 

erosion. Urban areas along the east coast of South Korea typically consist of coastal 1337 

infrastructure fronted by a narrow beach, increasing the demand for coastal protection and 1338 

space for recreation using frequent beach nourishments42,230,231. Even in these developed 1339 

regions, the beach ecosystem hosts a range of species, including various burrowing and tube-1340 

dwelling amphipods232. Sand is mined from nearby rivers and estuaries or from offshore areas at 1341 

distance of the beach42. Costs are 35-45 US$ per m3.  1342 

[bH1] The Netherlands. 1343 

The majority of the Netherlands is situated below mean sea level and is densely populated. A 1344 

narrow beach and dune ridge are the primary defense against flooding233. High potential for 1345 

inundation damages have led to frequent nourishment interventions that are backed by federal 1346 

funding and with long-term nationwide planning. Annually, 10-15 million m3 of sand is used in 1347 

nourishment projects along the sandy shoreline26. Nourished sand is placed on the beach but 1348 



also in shallow waters (4-6 m water depth) with the intent that it will either act as a breakwater 1349 

sandbar or feed sand onshore. These nourishments are found to affect macroinvertebrates, 1350 

bivalves and migrating birds (amongst others)234,235. These sands are mined 5 km offshore in 1351 

shallow waters (~20 m water depth) from a wide continental shelf. Costs are ~ 5 US$ per m3 1352 

(Ref236).  Federal planning allows for experimenting with new nourishment designs, such as 1353 

concentrated mega nourishments.  1354 
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