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Abstract
Writing tests enhances quality, yet developers often
deprioritize writing tests. Existing tools for auto-
matic test generation face challenges in test under-
standability. This is primarily due to the fact that
these tools fail to consider the context, leading to
the generation of identifiers, test names, and iden-
tifier data that are not contextually appropriate for
the code they are testing. Current metrics for judg-
ing the understandability of unit tests are limited
as they do not take into account contextual factors
such as the quality of comments. Developing a met-
ric to evaluate test readability is essential for select-
ing the most comprehensible tests. This research
builds on UTGen, incorporating LLMs to enhance
the readability of automatically generated unit tests.
We developed a readability score and used LLMs to
evaluate and rank tests, comparing these rankings
with human evaluations. This research concludes
that LLMs can successfully evaluate the readabil-
ity of test cases. The GPT-4 Turbo Simple Prompt
model exhibited the best performance, with a corre-
lation of 0.7632 with human evaluations. Through
comparing different LLMs and techniques for as-
signing readability scores, we identified approaches
that closely matched human evaluations, demon-
strating that LLMs can successfully rate the read-
ability of test cases.

1 Introduction
According to CISQ the cost of poor software quality in the
United States in 2022 has been determined to be at least 2.41
trillion dollars [2]. This shows the magnitude of the problem
of poor software quality and the importance of having good
software quality. Writing tests has shown to improve software
quality [3]. Even with this knowledge developers perceive
writing tests as mundane and prioritize other tasks [10].

Tools have been developed to automatically generate tests,
demonstrating satisfactory coverage [9]. However, these tools
still face significant challenges, particularly regarding the un-
derstandability and readability of the generated tests. For ex-
ample, they generate identifiers, test names and identifier data
that do not make sense based on the context of the code they
are testing, making it difficult for developers to comprehend
the purpose of the tests and verify their functionality. Studies
such as the one by Grano et al. [7] highlight these issues. Ad-
ditionally, writing tests is a dynamic process. Once written,
these tests will be used by other developers to understand the
code and assist in debugging. Therefore, they must be clear
and easy to understand.

For instance, consider a test case in Listing 1 where the
identifier names, data, and test naming is random and lack
meaningful context. While the test might be functionally and
structurally correct, its readability suffers, making it more dif-
ficult for developers to understand and maintain.

Having an automated readability ranking is crucial because
it ensures that the selected generated tests are not only func-
tionally correct but also easy to understand and maintain. The

@Test
@Timeout(value = 4000, unit = TimeUnit.MILLISECONDS)
public void tstXY12A45() throws Throwable {

JSWeaponData abc123 = new JSWeaponData();
SimpleWeapon def456 = new SimpleWeapon(-2704, "3]B;R`L#}d:!", 696, 696);
boolean ghi789 = abc123.isGoldenGun(def456);
assertFalse(ghi789);

}

Listing 1: Motivating Example

automated ranking also saves time by eliminating the need
for extensive manual review, allowing developers to focus on
other tasks. To achieve automated ranking, we first need a ro-
bust and accurate method for scoring the readability of tests.

1.1 Background and Related work
Readability metrics used by studies such as [5] and [4] tend to
yield high ratings since they primarily evaluate structural as-
pects like the presence of assertions, line length, and the num-
ber of identifiers. These metrics do not account for contextual
elements such as meaningful test naming and identifier nam-
ing, which are crucial for understanding the test’s purpose
and functionality. This means that current readability met-
rics would give Listing 1 a high readability score, regardless
of the context. However, giving Listing 1 a high readability
score is not correct since it clearly lacks in readability. LLMs
can address these limitations by analyzing and understand-
ing the context of the code. LLMs can evaluate code aspects,
such as the quality of test names and identifiers. In addition,
it can capture other contextual elements of readability. This
capability enables LLMs to effectively score test cases, en-
suring that the tests are not only structurally sound but also
contextually comprehensible.

A. Deljouyi also recognized these issues and developed
UTGen 1, a tool that integrates search-based software test-
ing with LLMs to improve the understandability of automat-
ically generated test cases. The purpose of this paper is to
build on UTGen by addressing the challenge of enhancing
the readability of automatically generated tests. We hypoth-
esize that by developing a readability score for unit tests and
using LLMs to evaluate and rank these tests, we will achieve
scores that align closely with human evaluations conducted
by ourselves and other researchers.

1.2 Research Questions
This research is steered by the following research question
and sub-questions:
RQ: How can LLMs be utilized to assign readability scores
and rank automatically generated unit tests based on their
readability?

SQ1: How can existing readability metrics from software en-
gineering and natural language processing be adapted to de-
velop an LLM-based algorithm for evaluating and scoring the
readability of unit test code?

In current research on the readability of software tests,
features such as test and identifier names, comments, test
summaries, length, and assertions have been recognized as

1paper has not yet been published



important to understanding [5], [11] and [4]. These features
and general aspects are used in combination with a LLM to
generate readability scores.

SQ2: How accurately can LLMs assess the readability of unit
tests compared to human evaluations?

Human evaluation is essential to establish a reliable
benchmark for readability. Since readability is inherently
subjective and context-dependent, human judgment provides
the nuanced understanding necessary to evaluate test cases
accurately. Comparing LLM assessments with human
evaluations ensures that the LLMs’ scores are aligned with
human perception, validating the effectiveness of the LLM-
based approach. Since humans will eventually be the ones
using the tool, their understandability is crucial to ensure
that we can eventually select the most readable tests for them.

1.3 Contributions
The main contributions of this research lie in the development
and validation of an approach for ranking and evaluating the
readability of automatically generated unit tests using LLMs.
By adapting existing readability metrics from both software
engineering and natural language processing domains, we
construct an LLM-based algorithm capable of evaluating and
scoring the readability of unit test code. By leveraging the
contextual understanding capabilities of LLMs, we enhance
these metrics to account for meaningful test naming and
identifier naming, making the evaluations even more robust.
Through an evaluation comparing LLM assessments with
human evaluations, we aim to ascertain the accuracy of
LLMs in assessing test readability.

2 Implementation
The aim of this approach is to determine if LLMs can be used
to evaluate and rank unit tests effectively. We will be using
Java as the primary programming language for this imple-
mentation. The implementation process involves several key
steps. Initially, test suites are generated, and a script is used
to extract all the unit tests from them. These extracted tests
are then fed into an script, which sends requests to the LLM
using a predefined prompt. The LLM responds with readabil-
ity scores for each test, which are processed by an analysis
script. These processed scores are then used to conduct fur-
ther analyses, allowing us to evaluate the effectiveness of the
LLM in ranking the unit tests based on readability.

2.1 Feature Selection
Readability is inherently a subjective matter, often influenced
by individual preferences and experiences. This subjectiv-
ity poses a challenge when translating readability criteria into
prompts for LLMs. Recognizing this complexity, we re-
viewed existing research to identify the factors that most con-
sistently impact readability, both positively and negatively.

Our investigation revealed several key factors that con-
tribute to readability. Initially, we focused on more spe-
cific elements such as identifiers, test names, and comments.

These factors were chosen based on their direct influence on
particular aspects of code readability according to [5], [11]
and [4]:

• Identifiers: The conciseness and descriptiveness of vari-
able and function names play a crucial role in how easily
a piece of code can be understood.

• Test Names: Well-chosen test names provide immediate
context and intent, aiding in the comprehension of the
test’s purpose.

• Comments: Clear and informative comments help ex-
plain the purpose and functionality of code sections,
making the code more understandable.

These elements served as our initial metrics, providing a
focused approach to evaluating specific parts of the code.

However, we recognized the need to expand our scope
to include more general factors that contribute to an over-
all sense of readability. Consequently, we incorporated ad-
ditional metrics that reflect broader, more holistic aspects of
code quality:

• Conciseness: The brevity of code without sacrificing
clarity. Concise code is typically easier to read and
maintain.

• Completeness: This metric assesses whether the code
fully addresses the requirements it is intended to meet,
ensuring that tests are thorough and comprehensive.

• Naturalness: Refers to the code’s resemblance to hu-
man language, making it more intuitive and easier to fol-
low. Natural code flow enhances readability by reducing
cognitive load [1].

By categorizing these metrics into a specific and a general
part, we developed a dual-faceted approach to readability as-
sessment. The specific metrics allow for a granular evaluation
of particular aspects of the code, while the general metrics
provide a broader overview of the code’s overall readability.
This methodology enables us to leverage LLMs more effec-
tively, translating the nuanced concept of readability into ac-
tionable prompts and evaluations.

2.2 Prompt Generation

For the prompting structure, we took inspiration from A.
Deljouyi 2, adapting and refining their approach to suit our
specific needs. Initially, we used a baseline prompt to rank
a test without specific guidelines, establishing a control mea-
sure for readability scoring. This baseline can be seen in List-
ing 2.

2paper has not yet been published



[INST] As a Java developer, your task is to evaluate the readability of the

provided Java code.↪→
Please follow these steps:

1. Carefully read the Java code provided between the [CODE] tags.
2. Assess the readability of the code on a scale from 1 to 5, where 1 means

very difficult to understand and 5 means very easy to understand.↪→
3. Indicate your readability score by placing it between the [SCORE] and

[/SCORE] tags.↪→
Your goal is to provide an evaluation solely focused on the readability of

the code.[/INST]↪→
Respond only with: The score of the code is: [SCORE]X[/SCORE]

[CODE]{method_body}[/CODE]

Listing 2: Baseline Prompt

Improving the baseline implementation, we refined our ap-
proach by focusing on two key aspects of a test: specific fea-
tures and general features. The specific features include iden-
tifiers, test names, and comments, while the general features
encompass conciseness, completeness, and naturalness. This
dual focus allowed us to separately assess both specific and
general readability factors, thus enhancing the overall quality
of the readability scores.

To guide the evaluation process, we provided the LLM with
detailed instructions on what the scores (from 1 to 5) repre-
sent for each factor and asked it to score these factors accord-
ingly. See Listings 3 and 4 for illustrative examples. The
new structure includes an introduction which resembles the
first lines of Listing 2 and the feature descriptions with cor-
responding scores from 1 to 5. Clear instructions on what
to respond were used, making it easier to extract the scores.
We use the [SCORE]x[SCORE] brackets for this purpose, as
demonstrated in Listing 2.

Additionally, we utilized a few-shot learning technique ac-
cording to the techniques described by N. Nashid [8] to fur-
ther refine the prompt, providing the LLM with examples of
both well-written and poorly written test cases to improve its
understanding of readability criteria. This was done for both
the specific aspects and the general aspects. An example of a
bad example and a good example can be seen in Listing 5 and
Listing 6.

b. Test Name: Assess the descriptiveness and clarity of test method name.

1: Test name is vague or does not reflect the purpose of the test (e.g.,
test1).↪→

2: Test name is somewhat unclear or generic.
3: Test name is fairly descriptive but could be more specific.
4: Test name is clear and mostly descriptive.
5: Test name is highly descriptive and clearly reflects the purpose of

the tests.↪→

Listing 3: Specific Example

c. Naturalness: Evaluate the ease with which the code reads, similar to

natural language, making it easy to understand.↪→
1: Code is difficult to read and understand, with poor structure and

readability.↪→
2: Code is somewhat difficult to read, with unclear or convoluted

expressions.↪→
3: Code is reasonably readable but could be more natural and fluid.
4: Code is mostly readable and easy to follow.
5: Code reads naturally and is very easy to understand, resembling

natural language.↪→

Listing 4: General Example

#### Bad Example ####

[CODE]

public void t2() {{
// Testing registration

u usr = new u("jd", "pw", "jd@ex.com");
boolean regRes = as.reg(usr);
assertTrue(regRes);

u retUsr = us.fu("jd");

assertNotNull(retUsr);

assertEquals("jd", retUsr.gU());

}}

[/CODE]

- Conciseness: 2. The code is somewhat concise but has unclear
abbreviations making it less readable.↪→

- Completeness: 3. The code is fairly complete but could cover more aspects
or edge cases.↪→

- Naturalness: 2. The code is somewhat difficult to read, with unclear or
convoluted expressions.↪→

[SCORE]2.33[/SCORE]

Listing 5: Few Shot - Unreadable Example

#### Good Example ####

[CODE]

public void testUserLogin() {{
// Test logging in with valid credentials

User user = new User("john_doe", "password123");
boolean loginResult = authService.login(user);
assertTrue(loginResult);

// Test logging in with invalid credentials

User invalidUser = new User("invalid_user", "wrong_password");
boolean invalidLoginResult = authService.login(invalidUser);
assertFalse(invalidLoginResult);

}}

[/CODE]

- Identifier: 5. Identifiers like 'user', 'loginResult', 'authService', and
'invalidUser' are concise, highly descriptive, and enhance readability.↪→

- Test Name: 5. The test name 'testUserLogin' is highly descriptive and
clearly reflects the purpose of the test.↪→

- Comments: 5. Comments are comprehensive, clear, and enhance understanding
of the code.↪→

[SCORE]5.00[/SCORE]

Listing 6: Few Shot - Readable Example

2.3 Execution
In this section, we detail the process of utilizing the created
prompts with multiple LLMs for our readability assessment.
We employ various LLMs for this implementation, including
CodeLlama 7B parameter version, ChatGPT 3.5, and Chat-
GPT 4. The execution process involves several key steps to
ensure accurate and efficient readability evaluation.

The process works as follows:

1. Retrieving Test Cases: Initially, a script retrieves all the
test cases that require evaluation. This script scans the
generated test suites and extracts individual test cases,
preparing them for readability assessment.

2. Sending Prompts to Models: Another script is respon-
sible for sending the appropriate prompts to the selected
LLM model. The script utilizes the predefined prompts
based on our identified readability factors, ensuring each
test case is evaluated according to our criteria.

3. Extracting Readability Scores: After the LLM pro-
cesses the prompts, a script extracts the readability
scores from the model’s response. These scores reflect



the LLM’s evaluation of the test cases based on the pro-
vided readability metrics.

The scripts are designed with flexibility in mind, allow-
ing us to easily choose both the LLM model and the specific
prompt used for evaluation. This modular approach enables
us to switch between different LLMs and prompts, facilitating
testing and comparison of readability assessments across var-
ious models. By automating these steps, we ensure a consis-
tent and scalable method for evaluating the readability of unit
tests. This systematic execution process leverages the power
of LLMs to provide detailed readability scores, enhancing our
ability to assess and improve the quality of automatically gen-
erated test cases.

3 Experimental Setup
The experimental setup for this study is designed to provide a
replicable methodology, detailing the specific conditions un-
der which the experiments were conducted. The goal of this
evaluation is to understand how humans score the readabil-
ity of code, specifically examining the scores they give to the
specific and general aspects of the code. By doing this, we
aim to compare these human evaluations with the LLM scores
to gauge their alignment and accuracy.

3.1 User Evaluations
The datasets used in this experiment consisted of various code
snippets sourced from established human-written repositories
and generated tests from EvoSuite and UTGen. Experiments
were conducted in an online environment. The experimental
procedure began with questions about the background of the
participants, namely the years of Java testing experiences and
highest/current level of education. Participants were sourced
from students at TU Delft, all studying Computer Science
and Engineering at the bachelor’s or master’s level. The par-
ticipant distribution was as follows: 8 bachelor’s students, 3
master’s students, 4 participants with 0-1 years of Java testing
experience, 1 participant with 1-3 years of experience, and 6
participants with 3-5 years of experience. None of the partici-
pants had more than 5 years of Java testing experience. After
the background questions, participants were presented with
the tests including the methods under test and asked to rank
the readability of each snippet on a continuous scale from 1
to 5. See Listing 7 for an example.

The code snippets used in the study included 10 tests:
1. Three tests from EvoSuite, each with varying difficulties

(easy, medium, and hard) in terms of readability.
2. Three tests from UTGen, each with varying difficulties

(easy, medium, and hard) in terms of readability.

@Test
public void testPLZAddressCombination() {

// Given

Customer customer = new Customer("204", "John Do", "221B Bakerstreet");
when(addressService.getPLZForCustomer(customer)).thenReturn(47891);
// When

String address = customerService.getPLZAddressCombination(customer);

// Then

assertThat(address, is("47891_221B Bakerstreet"));

}

Listing 7: Survey Test Example

3. Two tests sourced from CustomerServiceTest.java
(Test 1 and Test 2).

4. Two tests sourced from StringUtilsTestUnit5.java (Test 3
and Test 4).

This resulted in a total of 10 code snippets. Participants
evaluated each snippet one by one, also having access to the
methods under test. For each snippet, the first question asked
participants to give a readability score on a continuous scale,
which served as a baseline scoring. After this initial assess-
ment, participants were asked to rank specific aspects of the
snippet: identifier quality, test naming quality, and comment
quality, on a scale from 1 to 5. They then evaluated general
aspects: conciseness, completeness, and naturalness, also on
a scale from 1 to 5. After all the snippets, participants were
asked to rank the importance of these aspects from most im-
portant to least important.

The duration of the experiment was 15-20 minutes per par-
ticipant. Participants joined an online call where the proce-
dure was explained, emphasizing that they should rank based
on their first impression intuitively, resembling a real-world
scenario where generated tests are reviewed quickly. Data
collection was facilitated using the Qualtrics platform.

3.2 Data Collection and Analysis
Data collection involved human evaluations, with the primary
metrics for evaluation including readability scores and factor-
specific ratings. Tools for data collection included the online
survey platform Qualtrics for human evaluations. The exper-
imental data was analyzed using statistical methods, includ-
ing Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and correlation to compare readability scores from
human evaluations and LLM responses. Correlation analysis
was conducted to explore the relationships between human
scores and LLM scores.

3.3 Replicability
To ensure the replicability of our experiments, detailed in-
structions are provided, including access to scripts for test
extraction and LLM processing, and guidelines for conduct-
ing human evaluations.

The steps to replicate the experiment are as follows:

1. Create Survey with 10 Tests: Prepare a survey con-
taining the 10 code snippets, which include three tests
from EvoSuite, three tests from UTGen (each with easy,
medium, and hard readability), and four tests from pub-
lic repositories.

2. Include 3 Types of Questions + Final Question: De-
sign the survey to include questions about specific fea-
tures, general features, and a final question ranking the
importance of these aspects.

3. Source Participants from CS Students: Recruit partic-
ipants who are students studying Computer Science and
Engineering at the bachelor’s or master’s level.

4. Ensure 15-20 Minutes Duration: Make sure the survey
takes approximately 15-20 minutes to complete.

https://github.com/ThomasJaspers/java-junit-sample/blob/master/src/test/java/com/codecentric/sample/store/service/CustomerServiceTest.java
https://github.com/howtoprogram/junit5-examples/blob/master/junit5-assertions-examples/src/test/java/com/howtoprogram/junit5/StringUtilsTestUnit5.java


5. Explain Ranking Intuitively: Conduct an online call
to explain to participants that they should rank the read-
ability based on their first impression, mimicking a real-
world scenario where tests are reviewed quickly.

4 Results
The results of this study are organized to provide a clear
and detailed presentation of our findings. The results are
structured according to the sub-questions and hypotheses
outlined at the beginning of our study. Data are presented
using tables, figures, and graphs.

SQ1: LLM-based algorithm for scoring readability

In Section 2, we discussed the prompt generation and fea-
ture choices. Having implemented these, we needed a way to
see if the readability metrics work. The evaluation works in
two ways: first, by comparing our scores to a different study,
and second, by comparing them to our own user evaluation.
The latter will be discussed under subquestion 2.

For the first comparison, we refer to the study conducted
by A. Deljouyi. In their study, they compared the readability
scores for EvoSuite and UTGen and found from user evalua-
tions that UTGen was more readable. To verify the soundness
of our method, we used the same test set with the GPT-3.5
simple prompt and analyzed the results.

Figure 1 shows a boxchart of the UTGen and EvoSuite
readability scores. The results indicate that UTGen test cases
were rated significantly higher in readability compared to
EvoSuite by both the LLMs and human evaluators. This sup-
ports the effectiveness of our LLM-based readability scoring
method, aligning with Deljouyi’s findings and validating our
approach.
SQ2: LLM evaluations vs human evaluations

The user evaluation results, presented in Table 1, provide
an overview of how different test types and names performed
in terms of readability. The evaluations are divided into two
main score types: specific and general. For each test, an av-
erage score (Avg) was calculated based on user evaluations,
reflecting the perceived readability of the generated tests.

Figure 1: Comparison of Readability Scores: EvoSuite vs. UTGen

This average score includes the rankings for the specific
aspects (identifier quality, test naming quality, and comment
quality) and general aspects (conciseness, completeness, and
naturalness), with the scores for each aspect first added and
then divided by 3. Additionally, an overall average score
(Overall) was provided for each test type, derived from the
first question of every snippet, which served as the overall
readability baseline.

To further substantiate the effectiveness of our readability
model, we compared the scores given by the LLMs with the
user evaluations. Figures 2 and 3 show box plots of the spe-
cific and general scores, respectively, for the different mod-
els. The consistency between the LLM evaluations and hu-
man evaluations provides confidence in the reliability of the
LLM-based readability scoring.

Table 1: User Evaluation Results

TestType TestName ScoreType Avg Overall
EvoSuite Easy specific 2.97 4.02
EvoSuite Easy general 3.97 4.02
EvoSuite Medium specific 2.72 2.85
EvoSuite Medium general 3.33 2.85
EvoSuite Hard specific 3.00 3.45
EvoSuite Hard general 3.52 3.45
UTGEN Easy specific 4.61 4.83
UTGEN Easy general 4.73 4.83
UTGEN Medium specific 4.37 4.42
UTGEN Medium general 4.24 4.42
UTGEN Hard specific 4.27 4.45
UTGEN Hard general 4.36 4.45
OtherTests Test1 specific 2.39 2.08
OtherTests Test1 general 2.85 2.08
OtherTests Test2 specific 3.70 3.95
OtherTests Test2 general 4.06 3.95
OtherTests Test3 specific 3.73 3.98
OtherTests Test3 general 3.82 3.98
OtherTests Test4 specific 3.37 3.57
OtherTests Test4 general 3.32 3.57

Figure 2: Box-chart Specific Aspects Models



Figure 3: Box-chart General Aspects Models

Table 2 presents the Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Correlation between the
LLM evaluations and user evaluations for specific scores. The
GPT-4 Turbo Simple Prompt model exhibited the best perfor-
mance with an MAE of 0.3754, an RMSE of 0.4607, and a
correlation of 0.7632, indicating a strong agreement with hu-
man evaluations.

Model MAE RMSE Corr
GPT-3.5 Simple Prompt 0.5063 0.6351 0.7122
GPT-4 Turbo Simple Prompt 0.3754 0.4607 0.7632
GPT-3.5 Few-Shot 0.6386 0.7457 0.3629
GPT-4 Few-Shot 0.4678 0.5841 0.6566
Codellama Simple Prompt 0.5508 0.6764 0.3336

Table 2: MAE, RMSE, and Correlation for Specific Scores

Table 3 presents the same metrics for general scores. The
GPT-3.5 Simple Prompt model performed best with an MAE
of 0.2886, an RMSE of 0.3583, and a correlation of 0.8021.

Model MAE RMSE Corr
GPT-3.5 Simple Prompt 0.2886 0.3583 0.8021
GPT-4 Turbo Simple Prompt 0.4207 0.5503 0.2668
GPT-3.5 Few-Shot 0.4659 0.5750 0.5755
GPT-4 Few-Shot 0.4294 0.5655 0.3028
Codellama Simple Prompt 0.4712 0.5575 0.2858

Table 3: MAE, RMSE, and Correlation for General Scores

Finally, Table 4 compares the baseline models. The Codel-
lama Baseline, despite being a weaker model overall, per-
formed the best among the baseline models with an MAE of
0.4420, an RMSE of 0.5705, and a correlation of 0.6089.

Model MAE RMSE Corr
GPT-3 Baseline 0.5870 0.6935 0.3442
GPT-4 Baseline 0.7310 0.8577 0.5099
Codellama Baseline 0.4420 0.5705 0.6089

Table 4: MAE, RMSE, and Correlation for Scores Comparison with
User Evaluation for Baseline Models

The high correlation values between LLM evaluations and
human evaluations, particularly for the simpler prompt mod-
els, underscore the reliability of our LLM-based readability
scoring. The results demonstrate that LLMs can effectively
replicate human judgments in assessing the readability of test
cases, providing a robust method for automating this aspect
of software testing.

5 Discussion
The discussion section interprets our results, offering insights
into the implications of our findings, and suggesting areas
for further research. This section is critical for articulating
the value of our research. Reflecting on the main findings,
our results address the research questions and hypotheses
stated in the introduction, providing valuable insights into the
readability of code snippets generated by different methods
and LLMs. We observed that LLMs can effectively and
correctly evaluate tests, which is consistent with our initial
hypothesis.

SQ1: LLM based algorithm for scoring readability

For the first comparison, we refer to the study conducted
by A. Deljouyi. In their study, they compared the readability
scores for EvoSuite and UTGen and found from user evalua-
tions that UTGen was more readable. To verify the soundness
of our method, we used the same test set with the GPT-3.5
simple prompt and analyzed the results. Our readability met-
ric also indicated that UTGen is indeed more readable, thus
confirming the findings of the Deljouyi study and validating
our approach. As shown in Figure 1, the improved UTGen
version scores higher on readability for the same tests com-
pared to EvoSuite. This consistency reinforces the robustness
of our LLM-based readability scoring.
SQ2: LLM evaluations vs human evaluations

To further substantiate the effectiveness of our readability
model, we analyzed the Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Correlation between
the LLM evaluations and user evaluations for specific and
general scores. These metrics were chosen for their ability
to quantify the accuracy (MAE), the magnitude of error
(RMSE), and the strength of relationship (Correlation)
between LLM-generated scores and human evaluations.

The box plots in Figures 2 and 3 reveal that user evalua-
tions have more variance than most of the LLM models. This
indicates the inherent subjectivity of readability as perceived
by different users. Despite this variance, the LLM models
show consistent performance.

In terms of specific features of the test cases, the simple
prompts generally exhibited the most correlation with human
evaluations, with GPT-4 Turbo Simple Prompt performing
the best. This is evidenced by the lowest MAE (0.3754),
RMSE (0.4607), and highest correlation (0.7632) for specific
scores, indicating a strong agreement between the model’s
readability assessments and human judgments.

For general aspects, the GPT-3.5 Simple Prompt had
the lowest MAE (0.2886) and RMSE (0.3583), and the
highest correlation (0.8021). This suggests that, for general
readability features, the simpler prompts might be more
effective in mirroring human evaluations.

Interestingly, the Codellama Baseline performed the best



among baseline models despite being considered a weaker
model overall. It achieved an MAE of 0.4420, an RMSE of
0.5705, and a correlation of 0.6089, which indicates that it
has a considerable ability to align with human readability
assessments.

The consistency between LLM evaluations and human
evaluations provides confidence in the reliability of our
LLM-based readability scoring. The high correlation values
indicate a strong agreement between the LLMs and human
evaluators, suggesting that the LLMs can be reliably used to
assess readability. Any observed differences in specific cases
can be attributed to factors such as the training data used
for the LLMs or the evaluation criteria employed by human
users. This leads us to the research question:

RQ: How can LLMs be utilized to assign readability scores
and rank automatically generated unit tests based on their
readability?

Our findings demonstrate that LLMs can be effectively uti-
lized to assign readability scores and rank automatically gen-
erated unit tests by incorporating both structural and contex-
tual elements into the scoring algorithm. By adapting read-
ability metrics to include specific features such as identifier
quality, test naming quality, and comment quality, as well
as general features like conciseness, completeness, and nat-
uralness, LLMs can provide a comprehensive evaluation of
test readability. The high correlation between LLM scores
and human evaluations indicates that LLMs are capable of
accurately reflecting human judgment, thus enabling the au-
tomated ranking of unit tests based on readability. This auto-
mated ranking not only ensures that the tests are functionally
correct and easy to understand but also significantly reduces
the need for extensive manual review, allowing developers to
focus on other critical tasks.

Implications
The findings from this research demonstrate that readability
metrics, when combined with LLMs, can closely approxi-
mate human evaluations of test readability. By leveraging
LLMs for readability assessment, we can prioritize the selec-
tion of tests that are not only functional but also easily com-
prehensible.

Our research highlights the effectiveness of LLMs in
conjunction with readability metrics. Notably, the simple
prompts used with the GPT models showed the most promise,
indicating their potential for correctly scoring the readability
of automatically generated tests.

6 Conclusion
This study demonstrated that LLMs, particularly when using
simple prompts with OpenAI’s GPT models, can effectively
evaluate and rank the readability of automatically generated
unit tests. The strong alignment between LLM scores and hu-
man judgments highlights the potential of LLMs in this do-
main. These findings show promise for future research to fur-
ther refine and expand the applications of LLMs in improving
test readability.

Key Findings
1. Validation of Readability Metrics:

• Our readability metrics, developed using LLMs, were
validated by comparing their assessments with a previ-
ous study by A. Deljouyi. The consistency in results
confirms the reliability of our metrics.

• Specifically, the comparison showed that the improved
UTGen test suites were more readable than those gener-
ated by EvoSuite, as indicated by both LLM evaluations
and human judgments.

2. Performance of LLM Models:
• Among the models tested, GPT-4 Turbo Simple Prompt

exhibited the best performance for specific readability
features with the lowest Mean Absolute Error (MAE) of
0.3754, Root Mean Squared Error (RMSE) of 0.4607,
and highest correlation of 0.7632.

• For general readability features, GPT-3.5 Simple Prompt
achieved the lowest MAE of 0.2886, RMSE of 0.3583,
and highest correlation of 0.8021, suggesting that sim-
pler prompts may be more effective in these contexts.

• Interestingly, the Codellama Baseline, despite being
considered a way weaker model overall, performed best
among the baseline models with an MAE of 0.4420,
RMSE of 0.5705, and a correlation of 0.6089. This high-
lights the potential of even less advanced models to pro-
vide valuable readability assessments.

3. Subjectivity of Readability:
• Analysis of the box plots indicated that user evaluations

exhibited more variance compared to the LLM models,
underscoring the subjectivity inherent in readability as-
sessments.

• Despite this variance, LLM models showed consistent
performance, validating their use for this purpose.

Future Work
Several areas could be further investigated:

• Expansion to Other Types of Tests: Future studies
could apply our readability evaluation approach to other
types of tests and programming languages to validate its
effectiveness across different contexts.

• Broader Dataset and LLM Configurations: To en-
hance the generalizability of our findings, future re-
search should consider a broader range of datasets and
LLM configurations.

• Integration into Automated Test Generation Sys-
tems: Future work should explore how readability rank-
ings evaluated by LLMs can be effectively integrated
into automated test generation systems to enhance the
readability of unit tests.

• Adjusting Metric Weights: Another avenue for future
research is to explore the use of different weights for the
readability metrics. By assigning different levels of im-
portance to each metric, researchers can tailor the read-
ability assessments better.



In conclusion, this study highlights a promising direction
for leveraging LLMs to score the readability of automatically
generated test cases.

7 Responsible Research
Throughout this research, we have adhered to the standards of
ethical conduct and ensured the reproducibility of our meth-
ods in line with the Code of Conduct for Research Integrity.
This includes a commitment to not manipulating, fabricating,
or selectively trimming data. All steps in our research process
have been documented to sustain scientific integrity.

To enhance transparency and reproducibility, we have
maintained a spreasheet of all experiments conducted. This
details every aspect of the experimental setup, procedures fol-
lowed, and data collected. All datasets used in our study are
stored securely and, where possible, made accessible to the
broader research community. By making our data accessible,
we aim to facilitate the verification and extension of our work
by other researchers.

Moreover, we have embraced the FAIR (Findable, Accessi-
ble, Interoperable, and Reusable) framework [6] in managing
our research data. By adhering to these principles, we ensure
that our data is not only accessible but also well-documented
and structured in a way that other researchers can easily find,
use, and build upon.

Overall, our commitment to ethical research practices and
the reproducibility of our methods underscores the robustness
and reliability of our findings. We believe that by adhering to
these principles, we contribute to the advancement of knowl-
edge in a responsible and transparent manner.
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