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Abstract

The analysis of microseismic measurements acquired during borehole acquisition surveys is
essential for a thorough understanding of the source mechanisms in hydraulic fracturing op-
erations. Due to the injection of high-pressure fluids, induced fractures can produce seismic
events of low magnitude that can be recorded and subsequently analyzed to infer the stress
field at the location of the event.

The seismic moment tensor has been widely used to describe general seismic sources as it
can provide information about the type of motion and the distribution of forces. Estimating
such quantities from the recorded data can significantly improve the real-time microseismic
monitoring operations and help to make assumptions about the structure of the reservoir.
However, several challenges have to be faced when working with microseismic borehole mea-
surements. They are characterized by a low signal-to-noise ratio and a limited angle coverage,
which may ultimately affect the predictions about the location and the fracturing behavior
inside the reservoir.

In this thesis the inversion of microseismic measurements for retrieving the moment tensor has
been tackled by using a deep feedforward neural network. The seismograms used to train the
network were generated through the discrete-wavenumber method. The neural network was
used to predict the six independent moment-tensor components and the fault angles from
seismic sources at different positions than those used during the training. The predictive
capabilities of the network were tested for realistic borehole acquisition geometries and wave
propagation models. The moment-tensor components were retrieved with good accuracy when
using noisy seismograms and, non-double-couple source mechanisms.

As the generation of synthetic data can be expensive in terms of memory consumption, the
training and prediction have been also implemented in the frequency domain using only a
limited portion of the Fourier transform of the seismograms. The inversion results indicated
that using narrow bands can still yield satisfactory results when predicting the moment-tensor
components.
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Chapter 1

Introduction

1-1 Microseismic monitoring of unconventional reservoirs

Throughout the last decades, the exploration of unconventional reservoirs has increased due
to the development of new techniques for extracting hydrocarbons from bedrock formations.
Hydraulic fracturing has become a well-known technique for extracting shale-gas oil by inject-
ing high-pressure fluids in the subsurface to induce and propagate fractures in the surrounding
rock formations (van der Baan et al., 2013). Consequently, due to the high pressure at which
the fluids are being injected, microseismic events (small-scale earthquakes of low magnitude),
are triggered in the adjacent areas of the reservoir. The monitoring of such events is essential
in real-time production as it can help to describe the structure of the target reservoir and
estimate the approximate location where the microseismic events are generated (Warpinski,
2009).

As the induced events generate seismic waves that propagate through the surrounding
medium, it is possible to detect such signals using surface or downhole geophone arrays (Zhou
et al., 2016). An array of geophones sense the seismic energy radiated by the source, and
such information can be subsequently used to infer the orientation, extent and propagation
rate of the produced fractures (Warpinski, 2009). This technique is commonly referred to
as microseismic monitoring and it has become an essential tool to understand the physical
processes that govern induced seismicity (Eyre and van der Baan, 2017). This approach can
also be extended to other energy-related applications such as geothermal energy extraction
(Häring et al., 2008), mining engineering (Sun et al., 2012), underground excavations (Collins,
2000), or CO2 injection processes (Oye et al., 2013).

Since the events can be considered small-scale earthquakes, seismology techniques can be used
to characterize the deforming mechanism caused during the fracturing of the rock (Vera Ro-
driguez et al., 2011). Mathematically, the seismic activity due to tectonic events or land-mass
movements can be described through the seismic moment tensor (Stein and Wysession, 2005).
Similarly, the seismicity induced by fluid injection in hydraulic fracturing can be described
using the same mathematical approach.
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1-2 Seismic moment tensor inversion

The correct estimation of the seismic moment tensor is crucial to understand the stress dis-
tributions and deforming mechanism (magnitude and direction) induced during hydraulic
fracturing. This understanding leads ultimately to the effective tracking of the reservoir
performance. A well-known approach for carrying out such estimation is the inversion of full-
waveform data recorded from the observations at seismic receivers (Eyre and van der Baan,
2015). This has become a powerful tool also in the estimation of the physical properties of
the subsurface. Hence, a great interest in finding fast and efficient algorithms to perform
full-waveform inversion has surged in the exploration of (un)conventional reservoirs. The
main objective is to improve the fracture treatment given a certain stress regime, fracture
orientations, zones of weaknesses and pre-existing faults (Nolen-Hoeksema and Ruff, 2001).

The inversion of the seismic moment tensor was initially developed to solve the location and
focal mechanisms of big-scale earthquake problems (Sipkin, 1986). Several methods have been
developed to estimate such quantities from recorded data (Sambridge and Gallagher, 1993;
Perol et al., 2018). Some of the most common approaches for estimating the moment tensor
are described in the following sections.

1-2-1 Deterministic inversion

A physical system can be mathematically represented as a relation between direct observations
carrying information about the problem of interest, unknown process or material properties,
and a physical law linking the observations and unknown properties. The physical law is
often represented by a mathematical function. Predicting the observations directly from the
properties of the system is known as the forward problem (Tarantola, 2005). For instance,
the Earth’s gravity field can be estimated given the mass distribution of the Earth and
the universal gravitational constant. In practice, however, it is desired to estimate the mass
distribution from the gravity measurements, which means, the inverse of the forward problem
needs to be solved. Finding a direct mathematical relation between the observations and the
unknown physical properties is not straightforward due to the general non-linearity of real
problems (Zdanov, 2015).

Estimating physical parameters in geophysics-related problems is not the exception if the
complexity of the Earth’s interior is considered. For example, calculating the seismic velocity
from measured travel times of a wave travelling through the Earth would require solving
the eikonal equation. This is obtained from the high-frequency approximation of the wave
equation, where the waves are approximated as rays with propagation paths according to
the Fermat’s principle (Cervený, 2001). Thus, the velocity estimation is a non-linear inverse
problem that can be solved using the recorded travel times at seismic stations (available data)
and, the distances between two known locations (Hansen et al., 2014).

A non-linear inverse problem can be solved in a deterministic manner through the linearization
of the equation linking the model parameters and the data observations. This process involves
calculating the Jacobian matrix that quantifies the variation between the model parameters
with respect to the observations. Then, this matrix is inverted using an initial guess of the
model parameters in order to quantify the variation of the observations, and consequently,
the values of the parameters.
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Similarly, the seismic moment tensor can be estimated from seismic observations and the
Green’s functions derivatives representing the physical link between the two quantities (Song
and Toksöz, 2011). Nonetheless, inverting the Green’s functions to directly calculate the
moment tensor is computationally expensive, and it may lead to unstable results if the problem
is not properly constrained. A more detailed description of the formulation of the forward
problem is given in Chapter 2.

1-2-2 Stochastic inversion

Inverse problems can also be solved following a probabilistic approach. The measurements and
model parameters can be represented as random variables with a corresponding probability
distribution. The latter is often assumed to be Gaussian. In stochastic approaches the
inversion is carried out for multiple possible models parameters from which the one giving
the best-fitting solution is chosen (Mustać and Tkalčić, 2016). By computing synthetic data,
the set of parameters that yields the minimum difference between the real observations and the
computed data can be chosen. This is done by means of the likelihood function which describes
the probability of an observation under some assumptions about the model parameters.

Using independent a priori information from the model parameters, and the information from
the likelihood function, it is possible to estimate the posterior probability density distribu-
tion of the model parameters for given observed data (Tarantola, 2005). This is achieved by
means of the Bayes’ theorem. Estimating the set of parameters that maximizes the poste-
rior distribution is an optimization problem that can be solved using methods such as the
Metropolis-Hastings algorithm or Simulated Annealing. Applications of seismic moment ten-
sor inversion using stochastic approaches are described by Mustać and Tkalčić (2016) and
Das et al. (2021).

1-2-3 Inversion through Artificial Neural Networks

Artificial Neural Networks (ANNs) are biologically-inspired computer programs designed to
detect patterns and relationships in data (Dayhoff and DeLeo, 2001). The name Neural comes
from the fact that the structure of an ANN resembles the way a biological brain collects and
processes information through the nerve system in response to an external stimulus. A more
detailed description on how an ANN can learn to reproduce the output of non-linear functions
is given in Section 2-2-1.

Recent research activities are carried out using ANNs to solve geophysical problems such
as normal moveout velocity estimation (Biswas et al., 2018, 2019), full-waveform inversion
applications (Sun et al., 2020), focal-mechanisms estimation (Kuang et al., 2021), and seismic
moment-tensor inversion (Ovcharenko et al., 2018). Binder (2018) used synthetic seismic
wave amplitudes from microseismic events for training a feedforward neural network with
one hidden layer in order to estimate the moment magnitude and the geometry of the event.
Ovcharenko et al. (2018) used a deep neural network with three hidden layers to predict the
full moment tensor using the amplitudes of three-component microseismic data from a single
well. This approach was further extended by Carrizo Mascarell (2020) using full-waveform
data from three-component seismograms to estimate the seismic moment tensor and the
deforming mechanism of microseismic events.
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1-3 Thesis objective and outlook

Retrieving the seismic moment tensor from borehole acquisitions is a challenging process. In
general, the following factors need to be considered when working with borehole microseismic
data:

1. The energy produced during hydraulic fracturing is in general weak compared to the
background noise. This yields to low signal-to-noise ratio signals, affecting the perfor-
mance of microseismic monitoring (Huang et al., 2017).

2. Due to the limited aperture of borehole seismic arrays for acquiring microseismic data
(Vera Rodriguez et al., 2011), solving the problem in a deterministic way is not always
adequate. Therefore, the correct choice of the inversion algorithm is essential to mini-
mize the uncertainties between the real and the estimated values of the moment-tensor
components.

3. Using measurements from a single well to estimate the moment tensor requires some
constraints as microseismic monitoring usually needs multiple boreholes to have a better
azimuthal coverage (Vavryčuk, 2007; Zhou et al., 2016).

The previous issues can be mitigated by carrying out the inversion with an ANN as suggested
by many authors (Binder, 2018; Ovcharenko et al., 2018; Carrizo Mascarell, 2020). The ANN
can be trained with seismograms that have been contaminated with noise, and it can yield
accurate results when predicting the moment-tensor components. Additionally, by using an
extensive amount of data to train the network, the issue of having a poor angle coverage
can be overcome as the network can learn to recognize many combinations of angles from
seismograms recorded from a single well. Furthermore, an additional advantage of using
ANNs to invert the seismic moment tensor is their computational efficiency compared to
deterministic or stochastic approaches.

In previous studies synthetic data generated using homogeneous velocity models (Ovcharenko
et al., 2018) and source mechanisms associated with double-couple (DC) events (slip on a
fault), have been used to estimate the seismic moment tensor through ANNs (Carrizo Mas-
carell, 2020). In this thesis, I aim to extend the previous studies to more complex scenarios,
so that these techniques can be applied to field data. In particular, I have considered the
following:

1. A heterogeneous velocity and density model.

2. Realistic borehole acquisition geometries used in microseismic monitoring.

3. Multiple microseismic events of variable but known position and magnitude.

4. Realistic values of signal-to-noise ratios for borehole microseismic measurements.

5. Focal mechanisms associated with shear-tensile fracturing and not pure strike-slip
events.
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Chapter 2 provides the mathematical definition of the seismic moment tensor, a description
of the forward (how to compute full-waveform seismograms from the moment tensor) and
the inverse (how to estimate the moment tensor from full-waveforms) problems, and of the
ANN architecture used to predict the moment tensor from the microseismic measurements.
The theory developed in Chapter 2 is used to carry out the experiments described in Chapter
3, especially for the steps needed for the generation of synthetic seismograms, training of
the ANN and prediction of the moment-tensor components. In particular, the analysis of
the application of the method to realistic scenarios (optimal distance of the seismic sources,
effect of noise, complex source mechanisms, inversion in the frequency domain) is reported
in Chapter 3. Finally, in Chapter 4 conclusions about the obtained results and some future
developments are discussed.
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Chapter 2

Theoretical background

One of the biggest challenges in seismology is the characterization of general seismic sources.
They can be described as a series of equivalent forces producing displacements at a fixed
location in space, which can be quantified from observed seismograms at the Earth’s surface.
The seismic moment tensor is a well-known mathematical object for describing seismic sources,
as second-order tensors containing the information of the forces acting at the location where
the event was produced. By inverting the recorded seismograms, the seismic moment tensor
can be retrieved knowing the Earth’s impulse response described by the elastodynamic Green’s
functions.

In this chapter, I give an overview of the mathematical derivation used to model synthetic
waveforms using a known velocity and density model. I start with the description of the
seismic moment tensor, its main components and its decomposition to characterize general
faulting mechanisms. Afterwards, I explain how to numerically compute the Green’s functions
using the discrete-wavenumber method (DWM) (Bouchon and Aki, 1977) and the reflectivity
method (Kennett and Kerry, 1979) for calculating the Earth’s impulse response of layered
media due to a general seismic source. Lastly, I describe the architecture of the ANN that is
used to estimate the moment-tensor components and the preprocessing steps that are needed
before inverting the data.

2-1 Forward problem

2-1-1 The seismic moment tensor

The seismic moment tensor can be thought of as the mathematical approximation of seismic
sources. It can be represented as a second-order rank tensor describing the direction and
magnitude of the forces acting on a determined location. Its magnitude can vary according to
the strength of the event, the fault plane solution and the physical properties of the medium
close to the fault’s location. To start with its mathematical description, I assume that a
seismic source is centered in a Cartesian coordinate system where the event is produced.
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In Figure 2-1 an example of a seismic event producing fault displacement with respect to a
Cartesian coordinate system is shown. The x-axis in Figure 2-1 points towards North, the
y-axis towards East, and the z-axis vertically down the surface.

Figure 2-1. Planar fault defined by the strike φ and dip δ of the fault surface, and the direction
λ of the slip vector (modified from Shearer (2009)).

The geometry of the fault is mainly determined by the strike, dip and rake angles represented
by φ, δ, and λ in Figure 2-1, respectively. The vectors ν and n are the slip and normal
vectors to the fault. The observed seismic displacement un at an arbitrary position x and
time t due to an event occurred at position ξ and time τ can be described using the so-
called representation theorem (Aki and Richards, 2002), which relates the body forces and
the elastodynamic Green’s functions as follows:

un(x, t) =

∫ ∞
−∞

∫∫∫
V
Gnk(x, t; ξ, τ)fk(ξ, τ) dV (ξ) dτ, (2-1)

where Gnk are the Green’s functions components containing the propagation effects, fk are
the body forces acting on a source volume V , and the indices n, k identify the direction of
the seismic displacement and body forces, respectively. As the forces fk defined in equation
(2-1) are not acting over the volume but on the two blocks at opposite sides of the fault plane
Σ, these forces cause the foot and hanging wall to mutually move. They can be described by
the moment density tensor m as follows:

mkl = niνjcijkl, (2-2)

where cijkl is the stiffness tensor containing the elastic properties of the medium surrounding
the fault, and i, j identify the directions of the normal and slip vectors, respectively. In
addition to producing shear displacement, some microseismic events can also produce tensile
fracturing. To better describe the geometry of such an event, the model shown in Figure 2-2
is considered, where the slip vector does not generally lie on the fault plane. The deviation



2-1 Forward problem 9

Figure 2-2. Tensile earthquake model (modified from Vavryčuk (2001)).

from the fault plane can be described by the slope angle α and the components of n and ν
are defined as follows:

n1 = − sin δ sinφ,

n2 = sin δ cosφ,

n3 = − cos δ,

ν1 = (cosλ cosφ+ cos δ sinλ sinφ) cosα− sin δ sinφ sinα,

ν2 = (cosλ sinφ− cos δ sinλ cosλ) cosα+ sin δ cosφ sinα,

ν3 = − sinλ sin δ cosα− cos δ sinα.

(2-3)

The magnitude of the angles determine the geometry of the deforming mechanism. Subse-
quently, assuming that the area over which the dipole forces are acting is of finite extent, and
that the seismic signals have a long wavelength compared to the dimensions of the source
(Aki and Richards, 2002; Jost and Herrmann, 1989), the point-source approximation can be
used to simplify equation (2-1) as:

un(x, t) =

∫ ∞
−∞

∫∫
Σ
mkl(ξ, τ)Gnk,l(x, t, ξ, τ) dΣ dτ, (2-4)

where the forces are now represented by the moment density tensor, and l in the Green’s
functions term Gnk,l describes the first spatial derivative with respect to the source coordinate
in the lth direction. Moreover, the total force contribution of mkl due to each infinitesimal
surface dΣ can be defined using the seismic moment tensor M:

Mkl =

∫∫
Σ
mkl dΣ. (2-5)

Equation (2-5) can be substituted in equation (2-4) to obtain an expression for the displace-
ment in terms of the moment tensor. Due to the point-source approximation, the dependence
of the moment tensor on ξ disappears (Vavryčuk, 2015), thus equation (2-4) can be written as
the temporal convolution between the Green’s functions derivatives and the seismic moment
tensor:

un(x, t) =

∫ ∞
−∞

Mkl(τ)Gnk,l(x, t− τ) dτ = Mkl(t) ∗Gnk,l(x, t). (2-6)

In equation (2-6) it is shown the relation between the recorded seismic signal, the Earth’s
impulse response, given by the Green’s functions derivatives, and the source strength rep-
resented by the seismic moment tensor. The latter provides all the information about the
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source strength and orientation of the fault plane. As the source mechanisms can vary de-
pending on the fault type (e.g., thrust, normal, strike-slip), the magnitude of the event, and
the properties of the medium, it is useful to decompose the moment tensor into different parts
to better analyze the forces acting over the area of investigation.

Moment tensor decomposition

As a second-rank tensor, the seismic moment tensor can be mathematically described by a
3 × 3 matrix containing 9 generalized force couples (Eyre and van der Baan, 2015). The
number of independent components can be further reduced due to the conservation of the
angular momentum and by assuming that the medium is isotropic. The components of the
seismic moment tensor can be expressed as follows:

M =

Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

 , (2-7)

where the subindices in equation (2-7) represent the direction of the force couple, and Mxy =
Myx, Mxz = Mzx, Myz = Mzy, yielding a total of six independent values. The moment
tensor can also be expressed into different components through an eigenvalue decomposition to
characterize the deforming mechanism occurring at the fault’s location. Using the eigenvalues
mi and eigenvectors a = [aix, aiy, aiz]

T of M, the moment tensor can be written as follows:

M =
[
a1 a2 a3

] m1 0 0
0 m2 0
0 0 m3

aT1
aT2
aT3


=

a1x a2x a3x

a1y a2y a3y

a1z a2z a3z

m1 0 0
0 m2 0
0 0 m3

a1x a1y a1z

a2x a2y a2z

a3x a3y a3z

 .
(2-8)

The eigenvalue decomposition in equation (2-8) can be thought of as the definition of a
new coordinate system comprised by the eigenvectors of the seismic moment tensor, where
the source is now described as a linear combination of orthogonal dipole forces (Jost and
Herrmann, 1989). Using the obtained eigenvalues (m1 ≥ m2 ≥ m3), the moment tensor can be
expressed into three types of sources: isotropic (ISO), double-couple (DC), and compensated-
linear vector dipole (CLVD):

M = MISO + MDC + MCLV D = EISOMISO + EDCMDC + ECLV DMCLV D, (2-9)

where EISO, EDC , and ECLV D are the elementary tensors of the ISO, DC, and CLVD parts
of the moment tensor:

EISO =

1 0 0
0 1 0
0 0 1

 , EDC =

1 0 0
0 0 0
0 0 −1

 ,

E+
CLV D =

1

2

2 0 0
0 −1 0
0 0 −1

 , E−CLV D =
1

2

1 0 0
0 1 0
0 0 2

 ,

(2-10)
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and MISO, MDC , and MCLV D are the respective moment magnitudes:

MISO =
1

3
(m1 +m2 +m3),

MCLV D =
2

3
(m1 +m3 − 2m2),

MDC =
1

2
(m1 −m3 − |m1 +m3 − 2m2|).

(2-11)

The isotropic part is important to quantify volume changes around the source (explosions or
implosions) and it can be directly calculated from the trace of M. The CLVD part is mainly
associated with tensile and shear-tensile faulting, where the sign of the eigenvalues determines
whether the deforming mechanism is compressive or extensive (Vavryčuk, 2015). Lastly, the
double-couple part describes forces that produce shear faulting on a fault plane, which, in
practice, is the dominant mechanism in microseismic sources (Li et al., 2021).

The moment-tensor component that does not produce shear displacement is often referred
to as the non-double-couple (non-DC) or deviatoric part of the moment tensor, and it is
the result of the sum of the ISO and CLVD parts. Moment tensors with high non-DC
components may result from complex shear faulting, opening (or closing) of tensile cracks or
due to anisotropy in the medium (Li et al., 2021). In this thesis the medium is assumed to
be isotropic, which facilitates the calculation of the moment-tensor components by reducing
the number of unknown elastic parameters. Hence, for a point source, the seismic moment
tensor can be expressed as:

Mkl = λlniνiδkl + µ(nkνj + njνk), (2-12)

where δkl is the Kronecker delta, λl and µ are the Lamé parameters (Vavryčuk, 2001). Un-
der these assumptions, the number of unknown elastic parameters of cijkl is considerably
reduced from 81 for a general anisotropic medium to 2. Furthermore, a general expression
for the seismic moment tensor can be defined in terms of the source tensor D, which includes
contributions from shear and tensile fracturing:

Mij = λlTr(D)δij + 2µDij , (2-13)

with

D =
ūA

2
(nν + νn)

=
ūA

2

 2n1ν1 n1ν2 + n2ν1 n1ν3 + n3ν1

n1ν2 + n2ν1 2n2ν2 n2ν3 + n3ν2

n1ν3 + n3ν1 n2ν3 + n3ν2 2n3ν3

 .
(2-14)

Tr(D) is the trace of the source tensor, ū is the mean displacement on the fault plane in
meters, and A is the fault area. If the slope angle in equation (2-3) is equal to 0◦, then the
trace of the source tensor is equal to zero and consequently the remaining force contributions
of the moment tensor are due to shear faulting. This means that the double-couple part is
the only non-zero part of the moment tensor.
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Dahm and Krüger (2014) describe a different approach for characterizing source mechanisms
having shear and tensile motion along the fault plane, where the six independent moment-
tensor components can be written as follows:

Mxx = −DsAµ(sin 2φ sin δ cosλ+ sin2 φ sin 2δ sinλ) +DnA(λl + 2µ sin2 φ sin2 δ),

Mxy = DsAµ(cos 2φ sin δ cosλ+ 0.5 sin 2φ sin 2δ sinλ)−DnAµ sin 2φ sin2 δ,

Mxz = −DsAµ(cosφ cos δ cosλ+ sinφ cos 2δ sinλ) +DnAµ sinφ sin 2δ,

Myy = DsAµ(sin 2φ sin δ cosλ− cos2 φ sin 2δ sinλ) +DnA(λl + 2µ cos2 φ sin2 δ),

Myz = −DsA(sinφ cos δ cosλ− cosφ cos 2δ sinλ)−DnAµ cosφ sin 2δ,

Mzz = DsAµ sin 2δ sinλ+DnA(λl + 2µ cos2 δ),

(2-15)

where Ds and Dn denote the magnitude of the shear displacement and normal displacement
to the fault plane, respectively. In equation (2-15), the moment-tensor components have
contributions from both types of motions. Seismic sources producing shear and tensile motions
are often referred to as general dislocation sources (Li et al., 2021). Figures 2-3a and 2-3b
show a better description of a shear and tensile crack over the fault plane Σ.

(a) (b)

Figure 2-3. General dislocation source: (a), motion parallel to the fault plane; (b), motion
perpendicular to the fault plane (modified from Dahm and Krüger (2014)).

In Figure 2-3a, the slip vector lies on the fault plane and forms an angle of 90◦ with the
normal vector. For a pure tensile crack (Figure 2-3b), the normal and slip vectors are parallel
to each other and no shear motion is produced. If the slip vector deviates from the fault
plane such that the angle formed with the normal vector is neither 0◦ nor 90◦, the resulting
displacement has contributions from both types of motions.

Furthermore, equation (2-15) can also be derived from equation (2-13). When α in Figure
2-2 is 0◦, the resulting movement is pure shear as the first term on the right-hand side of
equation (2-13) cancels out. Similarly, if α is equal to 90◦, the movement is purely extensive
(or compressive), and the second term on the right-hand side of equation (2-13) has only non-
negative values on the diagonal of D due to the ISO part of the moment tensor. Likewise,
when the magnitude of Dn is 0 m, the expressions for the moment-tensor components in
equation (2-15) are equivalent to equation (2-13) if the angle between the slip and normal
vectors is 0◦.

The magnitude of the shear displacement can be estimated theoretically knowing the mag-
nitude of the event, the approximated area of the fracture and its rupture length. As the
previous quantities depend on the many factors involved in the fracking operation e.g., the
physical properties of the surrounding rocks, estimating the exact area of the induced fracture
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is not straightforward as it can have an irregular shape. In this thesis, the area of the fracture
is assumed to be approximately circular with a radius equal to half of the value of the rupture
length. Shapiro (2015) gives an approximate relation from which the rupture length R can
be calculated given a known moment magnitude Mw:

Mw ≈ 2 log10(R)− 1. (2-16)

The moment magnitude is a dimensionless parameter used to quantify the strength of a seismic
event. By calculating the value of the rupture length using equation (2-16), an approximate
area of the fracture can be obtained. Further, to estimate the shear displacement from the
previous quantities, a relation between the moment magnitude and the produced motion
needs to be defined. Thus, it is more convenient to express Mw in terms of the scalar seismic
moment M0:

Mw =
2

3
( log10(M0 − 9.1)), (2-17)

where the units of M0 are given in Newtons per meter (Aki and Richards, 2002; Kanamori,
1977). By inverting equation (2-17) to calculate M0, the shear displacement can be solved
using the following relation:

M0 = µDsA. (2-18)

The value of Ds is commonly given in meters for big-medium scale earthquakes with moment
magnitudes Mw ranging from 4 to 6, and a few millimeters for small events with negative
moment magnitudes (McGarr, 2003).

2-1-2 Modified Discrete Wavenumber method

Having defined the seismic moment tensor for representing general seismic sources, the next
step corresponds to the calculation of the elastodynamic Green’s functions that are used to
generate synthetic waveforms using a known source mechanism, velocity and density model.
The Green’s functions are calculated through the discrete-wavenumber method (DWM) de-
scribed in Bouchon and Aki (1977).

The seismic wavefield can be represented by an elastic isotropic point source in a cylindrical
coordinate system (r, z) where r is the radius, and z the depth coordinate. The potential of
such source can be expressed as an integral over the radial wavenumber (in the horizontal
plane) domain as follows:

φ(r, z;ω) =
iQs(ω)

4π

∫ ∞
0

kr
kz,p

J0(krr)e
−ikz,p|z| dkr, (2-19)

where Qs(ω) represents the volume change of the source, ω is the angular frequency, kr is
the radial wavenumber, J0 denotes the zeroth-order Bessel function, and kz,p is the P-wave
vertical wavenumber defined by:

kz,p =

√
ω2

c2
p

− k2
r , Im(kz,p) < 0, (2-20)
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where cp is the compressional wave velocity. The aim of the DWM method is to express an
elastic point source as the sum of N plane waves distributed horizontally at equal intervals ∆r
to facilitate the integration over the radial wavenumber (see Figure 2-4). The discretization
of the expression for the radiated wavefield can then be expressed as follows:

Figure 2-4. Interpretation of the DWM. An elastic point source is expressed as a finite array of
sources horizontally distributed at intervals ∆r, d is the horizontal distance from the
observation point to the source, h is the vertical distance from the surface to the
source position, and λ

′
is the wavelength of the radiated wavefield (modified from

Bouchon (2003)).

φ(r, z;ω) =
iQs(ω)

2

N∑
n=0

knr
knz,p

J0(knrr)e
−iknz,p|z|, (2-21)

with

knr =
2π

∆r
n, knz,p =

√
ω2

c2
p

− k2
nr. (2-22)

The summation over all the wavenumbers in equation (2-21) yields the approximation of the
total wavefield in equation (2-19). This series is truncated by calculating the contribution
of each wavenumber for every frequency ω with respect to the current sum. The calculation
can be stopped if adding more wavenumbers to the series does not yield an improvement
in the estimated potential. The discretization of the DWM can also be used to express the
wavefield radiation of a source of components F = (Fx, Fy, Fz). In a cylindrical coordinate
system (r, θ, z) centered at the source position, the compressional and rotational potentials
Φ,Ψ, and χ for the P, SV, and SH waves, respectively, are defined as follows:

Φ(r, θ, z;ω) =
1

2∆rρω2

[
sgn(z)Fz

N∑
n=0

knrJ0(knrr)e
−iknz,p|z|

− i(Fx cos θ + Fy sin θ)
N∑
n=0

k2
nr

knz,p
J1(knrr)e

−iknz,p|z|

]
,

(2-23)
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Ψ(r, θ, z;ω) =
1

2∆rρω2

[
− iFz

N∑
n=0

knr
knz,s

J0(knrr)e
−iknz,s|z|

+ sgn(z)(Fx cos θ + Fy sin θ)
N∑
n=0

J1(knrr)e
−iknz,s|z|

]
,

(2-24)

χ(r, θ, z;ω) = i
Fy cos θ − Fx sin θ

2∆rρc2
s

N∑
n=0

1

knz,s
J1(knrr)e

−iknz,s|z|, (2-25)

with

knz,s =

√
ω2

c2
s

− k2
nr, Im(knz,s) < 0, (2-26)

and

sgn(z) =

{
1, for z > 0

−1, for z < 0
, (2-27)

where J1 is the Bessel function of first order, ρ is the density of the medium, and cs is the
shear-wave velocity. Making use of the Helmholtz theorem as in Cotton and Coutant (1997),
the Green’s functions can be computed by differentiating the respective wavefield potentials:

G(r, θ, z) = ∇Φ +∇× (ezΨ) +∇×∇× (ezχ), (2-28)

where ez is the unit vector in the z direction.

Depending on the chosen Earth’s velocity and density model, these potentials are propagated
through the medium using the reflection and transmission coefficients at each interface, yield-
ing upward and downward potentials radiated from the source layer (Kennett and Kerry,
1979). Then, the recorded wavefields at the receivers stations are used for calculating the
Green’s functions derivatives. This procedure is detailed in Appendix A.

2-1-3 Forward modeling algorithm

According to Aki and Richards (2002), the elastic radiation from a seismic source can be
obtained by the superposition of elementary point sources. Thus, it is necessary to modify
the DWM described in Section 2-1-2 to account for the effects of a more complex source. The
approach used by Cotton and Coutant (1997) considers a source mechanism composed by six
elementary moment tensors M i: one isotropic and five double-couples, each one multiplied
by a trigonometric coefficient an:
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M1 =

0 1 0
1 0 0
0 0 0

 , M2 =

0 0 1
0 0 0
1 0 0

 ,

M3 =

0 0 0
0 0 −1
0 −1 0

 , M4 =

−1 0 0
0 0 0
0 0 1

 ,

M5 =

0 0 0
0 −1 0
0 0 1

 , M6 =

1 0 0
0 1 0
0 0 1

 .

(2-29)

The full moment tensor can be obtained as a linear combination of the elementary tensors as:

M =

6∑
n=1

anM
n =

−a4 + a6 a1 a2

a1 −a5 + a6 −a3

a2 −a3 a4 + a5 + a6

 , (2-30)

and

a1 = Mxy,

a2 = Mxz,

a3 = −Myz,

a4 =
−2Mxx +Myy +Mzz

3
,

a5 =
Mxx − 2Myy +Mzz

3
,

a6 =
Mxx +Myy +Mzz

3
.

(2-31)

The coefficients an are determined by the moment-tensor components estimated after record-
ing the different source potentials at the receiver stations (Cotton and Coutant, 1997). As-
suming that the elementary tensors have the same time dependence, and using the relation
defined in equation (2-6), six elementary seismograms Eni can be calculated by convolving
M i with the Green’s functions derivatives:

Eni (x, t) =
∑
k,l

Gikl(x, t) ∗Mn
kl(t), (2-32)

where the superscript n represents the associated elementary tensor. The seismograms of
equation (2-6) can therefore be expressed as:

ui(x, t) =

6∑
n=1

Eni (x, t)an. (2-33)

The previous equation is valid when the source wavelet has an infinite band (Dirac’s distri-
bution). If a general source wavelet S(t) is taken into account, then the previous expression
becomes:
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u
′
i(x, t) =

(
6∑

n=1

Eni (x, t)an

)
∗ S(t). (2-34)

Similarly, the seismograms can be computed in the frequency domain to further simplify the
calculations as:

û
′
i(x, ω) =

(
6∑

n=1

Êni (x, ω)an

)
Ŝ(ω), (2-35)

where û
′
i(x, ω), Êni (x, ω), and Ŝ(ω) are the Fourier transformations of the seismic displace-

ment, the elementary seismograms, and the source wavelet, respectively.

2-2 Inverse problem

In Section 2-1-3 it was described how to calculate synthetic waveforms knowing the Green’s
functions derivatives and the moment-tensor components. In this section, I analyze the prob-
lem of retrieving the seismic moment tensor directly from the recorded seismograms. The
seismic moment tensor defined in equation (2-6) can be expressed in the frequency domain
as follows:

û(x, ω) = M̂kl(ω)Ĝnk,l(x, ω), (2-36)

where û(x, ω), M̂kl(ω), and Ĝnk,l(x, ω) are the Fourier transformations of the seismograms,
the moment tensor, and the spatial derivatives of the Green’s functions, respectively. The
terms in M̂kl(ω) can be rearranged to express the six independent moment-tensor components
as a vector. Hence, equation (2-36) may be rewritten as a linear system of equations as follows:

u = Gm, (2-37)

where G has dimensions of K × 6, for K seismic sensors,

G =


G11 G12 · · · G16

G21 G22 · · · G26

· · · · · · · · · · · ·
GK1 GK2 · · · GK6

 . (2-38)

The moment-tensor components m are written in vector form,

m =
[
Mxx Myy Mzz Mxy Mxz Myz

]T
, (2-39)

and the vector u contains the measurements of the three-component sensors,

u =
[
u1
x u1

y u1
z u2

x u2
y u2

z · · · uKx uKy uKz
]T
. (2-40)

The final seismic displacements are then expressed in the time domain via inverse Fourier
transformation of each component. These calculations are performed for each source mecha-
nism to be modeled, which may result computationally expensive depending on the dimensions
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of the chosen velocity and density model, and the number of wavenumbers used to calculate
the summations described in equations (2-23), (2-24), and (2-25) to compute the respective
wave potentials. Equation (2-37) can be directly inverted for the moment-tensor components
by calculating the pseudo-inverse of G as follows:

m = G+u = (GTG)−1GT u. (2-41)

Calculating G+ is however complicated and computationally expensive. Therefore, the inver-
sion of the moment-tensor components can be carried out using ANNs so that the computa-
tional effort is moved before the training phase when the seismograms are pre-calculated for
a given location before being fed to the network. However, implementing a suitable network
architecture is not a straightforward process since it requires a thorough analysis for choosing
the best parameters that lead to the highest prediction accuracy. Recent developments of ma-
chine learning frameworks such as TensorFlow and Keras, allow an efficient implementation
of supervised learning techniques.

2-2-1 ANN achitecture design

Artificial Neural Networks made their first appearance in McCulloch and Pitts (1943), where
the authors described a computational model of the neural activity in animal brains, and how
they might carry out complex calculations. Their proposal consisted of modelling biological
neurons as artificial units performing binary operations, where the number of active inputs
at the neuron determines the activation of the output. They demonstrated that the model
of an artificial neuron could be extended to build a simple network that performs logical
computations, e.g., logical gates such as OR, AND or NOR.

This idea was further developed when Rosenblatt (1958) introduced the concept of the Percep-
tron to model an artificial neuron. A neuron’s output y can be described as the weighted sum
of the data observations x = (x1, x2, · · · , xn) and a set of parameters w = (w1, w2, · · · , wn)
often referred to as weights. The weighted sum is then passed through an activation function
f(·) that determines the value of the activation threshold of the neuron (see Figure 2-5).

Figure 2-5. Model of an artificial neuron.

A basic feedforward architecture is constructed using an ensemble of artificial neurons orga-
nized in layers. Each unit (neuron) in every layer is connected to every unit in the next layer,
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except for the output layer. An example of an ANN is shown in Figure 2-6. The data are
fed to the input layer and subsequently propagated through the hidden layers of the network
up to the output layer. The optimal result is obtained by iteratively updating the weights
so that the difference between the input and the calculated output is reduced. This process
is referred to as training since the neural network is learning to recognize an output given
a specific input. In other words, it is possible to predict an output from an input not used
during the training. The number of times that a dataset needs to pass through the network to
achieve acceptable results is called an epoch. A neural network needs a number of epochs to
train the data which depends on the application and on the input data. A detailed description
of the training process is given in Section 2-2-2.

In this thesis a deep feedforward architecture (Figure 2-6) is proposed to carry out the mo-
ment tensor inversion using three-component seismograms as input. The set of parameters
that needs to be defined for implementing the architecture of an ANN are referred to as hyper-
parameters because they need to be set manually, and are not estimated during the training.
The main hyperparameters that define the network’s architecture are listed as follows:

• Number of hidden layers.

• Number of neurons per layer.

• Activation functions.

Figure 2-6. Example of a deep feedforward neural network with three hidden layers (modified
from Tano et al. (2020)).

The depth of an ANN is determined by the number of its hidden layers. Hence, deep neural
networks are architectures having more than one hidden layer. After passing the data through
the input layer, every unit in the hidden layers performs a non-linear operation using the
inputs from the previous layer. This non-linear mapping is determined by the activation
function, allowing the neural network to learn complex functions.

ANNs have become very popular in many scientific and commercial applications such as object
recognition, image classification or natural language processing. Some of these applications
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require more complex architectures e.g., convolutional or recurrent neural networks. The ANN
architecture proposed in this thesis is based on the previous works carried out by Ovcharenko
et al. (2018) and Carrizo Mascarell (2020) on moment tensor inversion. Their work has been
extended in order to be applied to more realistic scenarios and ultimately to field data. The
number of hidden layers, units, and activation functions per layer of the proposed ANN are
summarized in Table 2-1.

Table 2-1. Artificial Neural Network architecture.

Layer Number of units Activation function # Parameters

Input layer 3×Nr ×Ns - 3×Nr ×Ns

1st hidden layer 164 tanh(·) 3×Nr ×Ns × 164

2nd hidden layer 92 tanh(·) 164× 92

3rd hidden layer 64 tanh(·) 92× 64

Output layer 6 - 64× 6

In the first column the type of layer is described. In the second, the number of units per
layer, where Nr represents the number of receiver stations, Ns the number of time samples
per seismogram and the number 3 accounts for the three components of the seismic sensor.
The activation function of the hidden layers is the hyperbolic tangent tanh(·). The output
layer where the six independent moment-tensor components are obtained does not contain
any activation function. The dimensions of the matrices containing the network’s parameters
at each layer depend on the number of neurons of the current and previous layers (see Table
2-1), except for the input layer where it only depends on the size of the training data.

2-2-2 ANN training and validation

Data normalization

A crucial step before starting the training phase is data normalization. To facilitate the
training process, the input data that is fed to the network needs to have the same range of
values to simplify the learning process. The normalization approach used in this thesis is
data standarization, where for every element xi of the input x, the following transformation
is applied:

xs =
xi − x̄√
Σi(xi−x̄)2

N

, (2-42)

where xs is the transformed element of xi, N is the size of the input, x̄ is the mean of the
input x, and at the denominator the standard deviation of the input is computed.

Data training and validation sets

It is essential that the trained network can generalize well on data that were not previously
used during the training phase. Thus, the dataset needs to be split into three different subsets:
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training set, validation (or hold-out) set, and test set. The training set is used to fit the model
and estimate the values of y from the inputs x. The validation set is used to keep track of
the error between the estimated and true values at every epoch with the purpose of avoiding
overfitting in the model. This occurs when the gap between the validation and the training
error is too large (Bishop, 2006). In this situation, the network is not able to accurately
predict data that were not used during the training.

Optimization

This section aims to describe the training process of a neural network to compute the optimal
weights w that reduce the error between the input and the predicted output. To calculate
such weights, a proper optimization algorithm needs to be chosen.

Let’s consider an input vector x that is fed to a hidden neuron in the network. At the input
of the neuron, an element-wise non-linear transformation is calculated through the activation
function as follows:

h(i)(x;w(i), b(i)) = f(w(i)Tx+ b(i)), (2-43)

where h(i) is the result of the non-linear transformation at the ith layer for every neuron, and
w(i) and b(i) are the network’s weights and bias parameters to be optimized. For practical
considerations, a new vector θ(i) = [b(i)w(i)]T is defined to simplify the matrix operations
performed in equation (2-43). After feeding the data at the input layer, the network prop-
agates it up to the hidden layers to produce the estimated values ŷ for the moment-tensor
components. At the output layer, the value of a scalar loss function J(θ) is calculated to
measure the error between the true and estimated values. This function can be written as
the mean-squared-error between these quantities as follows:

J(θ) =
1

N

N∑
n=1

||ŷn(xn;θ)− yn||2, (2-44)

where yn are the target values, and N the number of inputs. To calculate the optimal set
of parameters θ, the loss function defined in equation (2-44) needs to be minimized. This
function can be minimized with a gradient-descent algorithm, where the computed gradient
measures the changes of the loss function in the direction of maximum change. The parameters
θ can be updated using the following scheme:

θ(i+1) = θ(i) − η∇J(θ(i)), (2-45)

where θ(i+1) are the updated parameters at the current epoch, θ(i) are the parameters of
the previous epoch, η is the learning rate, and ∇J(θ) is the gradient of the loss function.
Estimating the gradient to update the parameters of the ANN would require calculating
partial derivatives of the loss function with respect to θ at every layer. Such operations can
be carried out through the backpropagation algorithm, where all the derivatives are computed
using the chain rule starting with the loss function at the output layer. Subsequently, using
the resulting derivatives, backpropagation is performed until the parameters are updated.

Furthermore, the use of activations functions such as the logistic sigmoid and hyperbolic tan-
gent facilitates the calculation of the gradient throughout the network because their deriva-
tives can be expressed in terms of the function itself. For instance, the first derivative of the
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hyperbolic tangent function with respect to a parameter z is equal to:

d

dz
tanh(z) = 1− tanh2(z), (2-46)

where there is no need of applying any approximation for the derivative. After calculating
the gradient of the loss function, the model parameters in equation (2-45) need to be updated
using the values of θ from the previous epoch and an appropriate learning rate. Setting the
right value for η is however a big challenge in optimization theory because it can significantly
affect the learning process as it determines the size of the step taken in the negative direction
of the gradient. Many of the optimization algorithms used in modern machine learning
applications are based on the gradient-descent method, therefore, new variations have been
developed in last years that can mitigate this issue (Goodfellow et al., 2016).

Based on the work carried out by Carrizo Mascarell (2020), the RMSprop optimization al-
gorithm is chosen for minimizing the loss function. The big advantage compared to the
gradient-descent method is that the learning rate is iteratively adapted to correct for the
direction of the gradient toward the global minimum. The gradient at the current epoch is
scaled with the square root of the sum of the squared values of the gradient from the previous
epoch. Consequently, the learning rate decays faster for parameters with large partial deriva-
tives of the loss function, and it decays slower for parameters with small partial derivatives
(Goodfellow et al., 2016).

However, if the gradient vector is normalized using the sum of the squared values of the
gradient from the beginning of the training, the algorithm may end up converging earlier
without having reached the global minimum. This is because of the rapid decrease of the
learning rate. For example, the AdaGrad algorithm (Duchi et al., 2011) suffers from this
issue, which makes it not suitable for many deep learning applications. RMSprop corrects
for this problem by introducing an exponentially decaying average to the sum of the squared
values of the gradient at the first iteration. In other words, the algorithm accumulates the
values from the most recent iterations yielding a big improvement in the training process
(Goodfellow et al., 2016). RMSprop main equations are:

1. s(i) = βs(i−1) + (1− β)∇J(θ(i))∇J(θ(i))T , (2-47a)

2. θ(i+1) = θ(i) − η√
s(i) + ε

∇J(θ(i)), (2-47b)

where s denotes the cumulative sum of the squared values of the gradient at ith epoch, β
controls the length scale of the moving average of the gradient-descent values, and ε is a
regularization term to avoid division by zero in equation (2-47b). In step 1, the sum of the
squares of the gradient is calculated, and the resulting value is used to update the network’s
parameters using a different learning rate for every epoch. β and ε are also hyperparameters
that need to be set manually when defining the optimizer of the network. In practice, they
do not need to be tuned as default values usually work well.

Training the ANN with RMSprop using the entire dataset becomes computationally expensive
and not efficient when the size of the input is large. Therefore, it is convenient to train the
network using a small subset of the total number of available samples (Goodfellow et al., 2016).
The size of such subset is chosen to range from ten to a few hundred samples and is then
used to evaluate the loss function and update the network parameters θ. The optimization
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methods that use a portion of the dataset to estimate the gradient are referred to as mini-batch
methods because a small ”batch” or ”mini-batch” of the data is used to train the network.
In this thesis, a combination of RMSprop with mini-batches is used for training the network
as it results to be an efficient strategy that yields an acceptable outcome.

2-2-3 ANN prediction

After ensuring that the trained network does not overfit the data having an acceptable vali-
dation error, the network can be tested on data not used during the training and validation.
To measure how well non-analyzed data can be predicted using the trained network, the
coefficient R2 is used:

R2(y, ŷ) = 1−
∑N

n=1(yn − ŷn)2∑N
n=1(yn − ȳ)2

, ȳ =
1

N

N∑
n=1

yn, (2-48)

where ŷn and yn are the estimated and target values, respectively (James et al., 2013). The
coefficient R2 indicates in this particular case how well the trained network fits data that was
not previously used during the training. Its values range from 0 to 1, where the latter would
imply that the predicted values match exactly the trained ones. In the following chapters, R2

is referred to as the prediction accuracy of the results.

Throughout this thesis several tests are performed for predicting the moment-tensor com-
ponents on different scenarios using the same set of hyperparameters. The optimization
algorithm and set of parameters chosen for solving such problems are summarized in Table
2-2.

Table 2-2. Neural Network settings.

Optimizer: RMSprop

Learning rate (η) = 0.001

β = 0.9

ε = 1× 10−7

Batch size 256

# Epochs 100

Early stopping criterion Tolerance = 0.001

Loss function Mean-squared-error (MSE)

The tolerance for the early stopping criterion represents the minimum change in the validation
error that can be quantified as an improvement in the learning process. The monitored
quantity is the absolute value of the difference between the validation error of the loss function
between the current and the previous epoch. The network stops the training if there is not a
significant change in the validation loss after a determined number of epochs.
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Chapter 3

Application to realistic scenarios

Estimating the seismic moment tensor from data observations can be solved in several man-
ners. In a deterministic approach, the solution is given by the direct inversion of equation
(2-37) which would require calculating the inverse matrix of G, and then multiplying it by the
vector of observations d to retrieve the moment-tensor components m as in equation (2-41).

Ovcharenko et al. (2018) and Carrizo Mascarell (2020) successfully estimated the moment-
tensor components using deep feedforward neural networks. The former used first-arrivals’
peak value amplitudes of the seismograms as inputs for the ANN, whereas the latter used
full-waveforms generated by a single microseismic event in an elastic homogeneous medium.
I aim to extend the analysis of the moment-tensor inversion using heterogeneous velocity and
density models, non-fixed source positions, and non-double-couple mechanisms. The purpose
is to predict the moment-tensor components and the respective angles of the fault plane for
realistic borehole acquisition geometries.

3-1 Training strategy for realistic scenarios

A real borehole microseismic acquisition geometry is shown in Figure 3-1. It consists of a
buried horizontal well having 20 three-component receivers with a spacing of 25 m between
them covering a distance of 500 m. The microseismic events are assumed to be positioned
300-400 m aside of the receiver array in the West-East direction. The blue triangles represent
the receiver stations spread in the North-South direction. The red points are the microseismic
events used for training the neural network, whereas the green points are the events whose
moment tensor needs to be estimated using the trained network. In other words, the seismic
information generated by the events marked in red in the geometry, is used to predict the
moment-tensor components for events not previously seen by the network (marked in green
in the figure).

The SEAM Arid model (Oristaglio, 2015) has been chosen to simulate elastic wave propagation
in a realistic scenario. The model is characterized by heterogeneous properties (velocities and
densities) and features typical of desertic environments, such as layered sequences of sands
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Figure 3-1. Proposed geometry setup resembling a realistic borehole seismic acquisition.

and shales and karsts. The latter are cavities in the subsurface formed by the dissolution of
carbonate rocks.

In particular, a 1D profile has been extracted from the 3D model and used to generate
synthetic seismograms through a 1.5D modeling code. The software has been developed in
Python following the discrete-wavenumber method described in Chapter 2. The P-wave,
S-wave velocities (cp and cs) and density (ρ) profiles are shown in Figure 3-2.

The total depth of the chosen profile is 3.75 km with 600 layers of different velocity and
density values sampled every 6.25 m. Furthermore, the characteristics of the microseismic
events also need to be specified. For the analysis carried out in this chapter, only events of
magnitudes Mw = −2 are considered. This is a reasonably standard value encountered in
microseismic monitoring. The fault angles (strike φ, dip δ, and rake λ) are also essential to
define the seismic moment tensor. They range as follows:

Strike range : 0◦ ≤ φ ≤ 360◦.

Dip range : 0◦ ≤ δ ≤ 90◦.

Rake range : −180◦ ≤ λ ≤ 180◦.

(3-1)

Two examples of synthetic three-component seismograms using the SEAM Arid model for
two different sets of angles (φ, δ, λ) are depicted in figures 3-3a and 3-3b.

In both figures 3-3a and 3-3b the P-wave, S-wave arrivals and some multiple reflections can
be seen from the obtained seismograms. Depending on the orientation of the fault plane, the
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Figure 3-2. 1D profile - SEAM Arid model.
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Figure 3-3. Synthetic traces using the SEAM Arid model for two different sets of angles: (a),
φ = 56◦, δ = 15◦, λ = −150◦ ; (b), φ = 12◦, δ = 78◦, λ = 102◦.

magnitude of such arrivals can change, and some components can have stronger amplitudes
compared to the others. For example, the amplitudes of the P-wave arrivals seem to be
stronger for the receiver stations # 10 to # 20 in Figure 3-3b compared to the P-wave arrivals
in Figure 3-3a for the same set of receivers. Having events of the same magnitude with specific
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fault orientations can yield seismograms with different amplitudes and consequently different
moment tensors.

The seismograms shown in figures 3-3a, and 3-3b have a length of 1.024 s, corresponding
to a total of 256 time samples Ns using a sampling rate of 4 ms. In the following sections,
seismograms with 768 time samples (3.072 s) are considered as input to the ANN.

3-1-1 Training and prediction using one microseismic event

In this section, I explain the procedure for training an ANN to predict the moment-tensor
components from synthetic microseismic data. First, let’s consider the same acquisition ge-
ometry of Figure 3-1 and two microseismic events.
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Figure 3-4. 3D (a), and 2D (b) view of the acquisition geometry used for training one micro-
seismic event.

The red point in Figure 3-4 represents the event corresponding to the seismograms that
are used for the learning process. Subsequently, the trained network is used to predict the
moment-tensor components from data generated by same event and also from data generated
by a different one, represented in this case by the green point in Figure 3-4.

Earlier in this section it was described that synthetic seismograms can have different ampli-
tudes depending on the orientation of the fault plane. As different fault orientations yield
different moment tensors, it is desired to have a training dataset composed by seismograms
containing the information from all the possible angle combinations (strike φ, dip δ, and rake
λ) that can describe the geometry of a microseismic event. In the next example, a borehole
microseismic dataset is generated using angles sampled every 5◦, giving a total of 101,251
fault configurations for the red point.

Since for every combination of φ, δ, and λ, 20 three-component seismograms are obtained, (see
figures 3-3a and 3-3b), the different fault orientations lead to a total of 6,075,060 seismograms.
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For every set of angles the true moment tensor is calculated and stored for the training phase.

The generated seismograms are then preprocessed and used as inputs for the neural network.
For this experiment, the data are split as follows:

• Training set: 40%.

• Validation set: 10%.

• Test set: 50%.

The training set is used to update the parameters of the network that minimizes the difference
between the predicted and true values, and the validation set helps to keep track of the
network’s performance on non-analyzed data to avoid overfitting. Once the network is trained,
the moment-tensor components are predicted on the test set. The results of the inversions
can be depicted as scatter plots showing the difference between the predicted and true values,
or by using the so-called ”beach ball” diagrams (Shearer, 2009). Finally, the fault angles are
also predicted from the resulting moment tensors. These results are shown in figures 3-5, 3-6,
and 3-7.

Figure 3-5 shows the trained network fits well data generated by the same event achieving a
prediction accuracy of 0.99. The bands displayed in Figure 3-6 for the three fault angles are
due to the existence of two plane solutions: the actual fracture plane and an auxiliary plane
that is obtained by swapping the normal and slip vectors. By adding additional constraints,
e.g., previous geological knowledge, this ambiguity can be solved. The predicted angles that
are shown in the plot correspond to the solutions giving the lowest error compared to true
values. Lastly, the beach ball diagrams in Figure 3-7 show the true and predicted moment
tensors of five random seismic events. The shaded red areas in the beach balls represent com-
pressional motion at the location of the event, and the white areas account for the dilatational
motion (Stein and Wysession, 2005).

As previously mentioned, the inversion results shown in figures 3-5, 3-6, and 3-7 were carried
out using data generated by the same event. However, it is desired to predict the moment-
tensor components using data from an event at a different position. The trained network from
the previous example is now used to estimate the moment-tensor components of the event
marked in green as shown in Figure 3-4. The results of the inversion are depicted in figures
3-8, 3-9 and 3-10.

As it can be seen in the inversion results, the neural network is not able to predict the moment-
tensor components nor the fault angles using the learned information for an event located at
a different position. Thus, the ANN must be trained using data generated by several seismic
events at different locations in the space to better generalize the predictive capabilities of the
network. It is however necessary to find the optimal distance of the seismic sources in the
geometry of Figure 3-1.

3-2 Analysis of the optimal distance of the seismic sources

To find the optimal distance between the seismic sources used to train the ANN, four micro-
seismic events are uniformly distributed in a Cartesian space at the edges of a square. Their
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Figure 3-5. Predicted vs. true magnitudes of the different moment-tensor components; data
generated by the same seismic event.

Figure 3-6. Predicted vs. true fault angles. Left: strike. Middle: dip. Right: rake; data
generated by the same seismic event.
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Figure 3-7. Beach ball plots for five random events: true (left) vs. predicted (right); data
generated by the same seismic event.

Figure 3-8. Predicted vs. true magnitudes of the different moment-tensor components; data
generated by a different seismic event not used during the training.



32 Application to realistic scenarios

Figure 3-9. Predicted vs. true fault angles. Left: strike. Middle: dip. Right: rake; data
generated by a different seismic event not used during the training.

Figure 3-10. Beach ball plots for five random events: true (left) vs. predicted (right); data
generated by a seismic event not used during the training.

distance from the receiver stations is about 300 m (see Figure 3-11a). The goal of this anal-
ysis is to predict the moment-tensor components and the fault angles of an event positioned
inside such a distribution of sources. The neural network is trained using the seismograms
generated by the four sources at the corners of the square, and then it is used for predicting
the moment tensors of events positioned inside the array (green points in Figure 3-11b).

The problem now is to determine the optimal dimension of the square giving an acceptable
prediction accuracy. Therefore, the training is carried out using four squares of different
dimensions:

• Case A: 25m× 25m square array.

• Case B: 30m× 30m square array.

• Case C: 35m× 35m square array.

• Case D: 40m× 40m square array.

For each of these cases, the seismograms generated by the four sources at the corners of the
square arrays are used to train the neural network. In Section 3-1-1, the network was trained
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Figure 3-11. 3D (a), and 2D (b) representations of the acquisition geometry and of the locations
of the microseismic events.

using a dataset that contained seismograms from the 101,251 angles combinations. In this
section, the generated waveforms for every source in the square have information generated
by different sets of angles so that the network can recognize many fault orientations.

Furthermore, the resulting dataset needs to be split for the training into:

• Training set: 90%.

• Validation set: 10%.

The reason for these values is that the trained network is used to predict the moment-tensor
components from data generated by an event at a different position. Hence, a test set is no
longer necessary during the training phase as the information from the same events is not
used for predicting the moment-tensor components.

After training the network, the moment-tensor components as well as the fault angles are
predicted for an unknown event positioned at the center of the square. In figures 3-12, 3-13,
and 3-14 the prediction results are displayed for the source distance of 25 m using a total of
6,000 random events.

As it can be observed, the neural network is capable of predicting the moment-tensor com-
ponents of a different microseismic event not seen during the training phase. The prediction
accuracy for each one of the components slightly decreases compared to the case where data
from the same dataset was used to perform the prediction.

The same analysis is carried out for the three remaining cases. Figure 3-15 summarizes the
results of the average prediction accuracy of the six moment-tensor components while increas-
ing the dimension of the square array for cases A, B, C, and D. The prediction is performed
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Figure 3-12. Predicted vs. true magnitudes of the different moment-tensor components; case A
(distance = 25 m).
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Figure 3-13. Predicted vs. true fault angles. Left: strike. Middle: dip. Right: rake; case A
(distance = 25 m).
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Figure 3-14. Beach ball plots for five random events: true (left) vs. predicted (right); case A
(distance = 25 m).

using the same event at the same location but varying the distance of the surrounding sources
with respect to the event in the center of the square.

The blue points marked in Figure 3-15 represent the average accuracies for the four studied
cases. From these results, it can be seen that by increasing the distance from the known
events with respect to the unknown one, the prediction accuracy drastically decreases. The
neural network can yield accurate results for cases A and B (25 m and 30 m) with accuracies
higher than 0.9. However, such value drops below 0.6 for cases C and D (35 m and 40 m).

From the data trend in Figure 3-15, I assume that the relation between the prediction accuracy
and the dimensions of the square is linear. Thus, using the obtained prediction accuracies for
the four dimensions of the square, a linear regression analysis can be performed to derive a
relation between these two quantities:

âi = q + ∆di, (3-2)

where âi are the estimated prediction accuracy values, di are the associated square dimensions,
q and ∆ are the line parameters to be calculated through regression, using a least-squares
method, in this case. The results are represented by the red curve in Figure 3-15. From the
calculated parameters ∆ and q, an approximation of the prediction accuracy for the moment-
tensor components of an unknown event can be obtained when using a uniform distribution
of sources separated by a determined distance. In the analyzed example, satisfying results
can be achieved for sources 25 m and 30 m apart from each other.

3-3 Analysis of the effect of the noise

In the analysis carried out in Section 3-2, the seismograms had infinite signal-to-noise ratio
(SNR), meaning that they were not contaminated with possible noise sources. In real bore-
hole seismic acquisitions, the recorded data is characterized by low SNR values due to the
weak energy produced during the fracturing operations. In this section, the moment-tensor
components are predicted using the uniform source distributions of 25 m and 30 m with the
difference that white Gaussian noise is added to the seismograms.
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Figure 3-15. Prediction accuracy vs. dimension of the square array.

The SNR of a signal can be quantified as follows:

SNR = 10 log10

(
E[s2]

E[n2]

)
, (3-3)

where the units of the SNR are given in decibels (dB), E[s2] is the expected value of a signal
s, and E[n2] is the expected value of the noise n. The latter is the unknown quantity, and
E[s2] can be calculated as follows:

E[s2] =
1

Ns

Ns∑
n=1

|s[n]|2 (3-4)

where Ns is the number of time samples of the signal. As the noise is considered to be
normally distributed with zero mean, its expected value can be approximated to be equal to
its variance, thus yielding the following relation between the SNR and the expected values of
the signal and the noise:

SNR = 10 log10

(
E[s2]

σ2
n

)
, (3-5)

where σn is the standard deviation of the Gaussian noise. Furthermore, equation (3-3) can
be rewritten to calculate σn from the expected value of the signal and knowing the value of
the SNR:

σn =

√
E[s2]

(10(SNR/10))
(3-6)

Given different SNR values, noisy seismograms are generated and used to train the ANN. This
analysis is carried out for sources uniformly distributed at 25 m and 30 m (cases A and B)
as those distances were the ones giving the best results from the distance analysis in Section
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3-2. The inversion results for case A and an SNR of 0 dB (signal being of equal power as the
noise) are shown in figures 3-16, 3-17, and 3-18.
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Figure 3-16. Predicted vs true magnitudes of the different moment-tensor components; case A
(distance = 25 m) and 0 dB signal-to-noise ratio.

The predicted moment-tensor components in Figure 3-16 present accuracies close to 1 being
0.98 the lowest for the Mxy component. The strike and rake angles can still be predicted
with accuracy values higher than 0.75. However, the accuracy is lower than 0.7 for the dip.
These results show that the neural network is capable of giving acceptable results to predict
the moment-tensor components when using seismograms that are contaminated with noise.

The same analysis is performed for different SNR values to analyze the behavior of the network
when noisy traces are utilized. Gaussian noise is added to the traces for SNR values ranging
from -20 dB to 20 dB at steps of 5 dB. The results of the average prediction for the six moment-
tensor components compared to the different SNR values for the sources’ distribution of 25 m
and 30 m (case A and B) are shown in Figure 3-19. The blue curves show that the prediction
accuracy decreases faster for negative values of the SNR, yielding more and more inaccurate
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Figure 3-17. Predicted vs. true fault angles. Left: strike. Middle: dip. Right: rake; case A
(distance = 25 m) and 0 dB signal-to-noise ratio.

Figure 3-18. Beach ball plots for five random events: true (left) vs. predicted (right); case A
(distance = 25 m) and 0 dB signal-to-noise ratio.
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Figure 3-19. Regression results: accuracy vs. SNR: (a), case A (distance = 25m); (b), case B
(distance = 30 m).



3-4 Analysis of complex source mechanisms 39

results of the estimated moment-tensor components. Moreover, the results for case B are not
as good as for case A. The prediction accuracy for an SNR of 10 dB drops below 0.9 and for
negative values of the SNR, to 0.8, whereas for case A it is above 0.9 for the considered range
of the SNR.

Similar to the analysis on the relation between dimension of the square array and the average
prediction accuracy in Section 3-2, an empirical relation between the SNR values and the
accuracy can also be derived. As it can be seen from the blue curves in Figure 3-19a, the
relation between the SNR and the prediction accuracy is non-linear. A function that can
approximate the behavior of the data is the logistic function whose values range from 0 to
1. For example, for large values of the SNR, the prediction accuracy does not go beyond 1.
Likewise, if the value of the SNR further decreases, it is expected to have inaccurate prediction
results on the different moment-tensor components.

The logistic function can be defined as follows:

σn(x) =
L

1 + exp(−k(x− x0))
, (3-7)

where the L, k, and x0 are the parameters that need to be estimated. A non-linear least
squares regression is performed to fit the logistic function to the observed data. From this
analysis, the prediction accuracy for a specific source distribution can be estimated given any
SNR value ranging from -20 to 20 dB. The results of the regression are illustrated by the red
curve in Figure 3-19.

From the obtained results it can be appreciated that the observations fit well to the regression
curve, meaning that an estimate of the prediction accuracy on the moment-tensor components
can be obtained for the source distribution given in case A as shown in Figure 3-19a. Although
the regression results for case B are accurate, for negative values of SNR the moment-tensor
components cannot be accurately predicted. Therefore, the distance of the sources of 25 m
is used for the subsequent analyses as it is the one giving the best prediction accuracy when
noisy seismograms are used.

3-4 Analysis of complex source mechanisms

The distance and noise analysis in sections 3-2 and 3-3 were carried out considering pure
double-couple (DC) events associated with shear faulting, which means that the microseismic
event does not produce normal motion with respect to the fault plane. For a pure DC event,
the first term on the right-hand side of equation (2-13) vanishes as the angle between the slip
and normal vectors is 0◦, yielding a moment tensor that has no contribution from the CLVD
and ISO parts i.e., no volume changes are produced. In this section, the moment-tensor
components given by equation (2-15) are used to obtain source mechanisms having shear and
tensile motions due to a general dislocation source. To achieve that, the value of Dn must
set to be non-zero. As an example, let’s consider the characteristics of a microseismic event
as detailed in Table 3-1.

By decomposing the moment tensor into its DC, ISO, and CLVD parts using equation (2-15)
through eigenvalue analysis, the ISO and CLVD percentages are non-zero. These results are
summarized in Table 3-2.
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Table 3-1. Parameters of a shear-tensile microseismic event.

Parameter Value

Moment magnitude (Mw) -2

Rupture length (R) 1 m

Shear displacement (Ds) 0.131 mm

Normal displacement (Dn) 0.0131 mm

Lamé parameters
λ = 14.24 GPa

µ = 7.509 GPa

Fault angles

φ = 12◦

δ = 78◦

λ = 102◦

Table 3-2. Moment-tensor parts of a shear-tensile event.

Component Percentage %

Double-couple (DC) 69.903

Isotropic (ISO) 19.79

Compensated-linear vector-dipole (CLVD) 10.29

These results show that non-zero values for the normal displacements can yield moment ten-
sors with non-DC components. It may look however that the value for the normal displace-
ment in this example is not very significant, but a small change in it can have considerable
changes in the moment-tensor components. In Table 3-1, the parameters of a microseismic
event have been defined for a normal displacement of 0.0135 mm. If for example a microseis-
mic event with normal displacement equal to 0.0263 mm is considered, the percentages of the
different parts of the moment tensor can have significant variations. The results for such an
event are shown in Table 3-3.

Table 3-3. Moment-tensor parts of a second shear-tensile event.

Component Percentage %

Double-couple (DC) 51.26

Isotropic (ISO) 32.05

Compensated-linear vector-dipole (CLVD) 16.67

From the results in Table 3-3, it can be seen that incrementing the normal displacement
from 0.0131 mm to 0.0263 mm, the percentage of the DC component of the moment tensor
decreases approximately 20% compared to results shown in Table 3-1. Consequently, the
percentages of the ISO and CLVD parts also increase.

Having defined seismic sources that can have non-DC contributions, the following test consists
of determining the moment-tensor components of unknown events characterized by shear and
tensile fracturing following the parameters of Table 3-4.
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Table 3-4. Event parameters.

Parameter Values

Moment magnitude (Mw) -2

Rupture length (R) 1 m

Shear displacement (Ds) 0.131 mm

Normal displacement (Dn) 0.01-0.0131 mm

This analysis is carried out using the optimal distance of sources found in Section 3-2 to train
four events distributed in a square, and noise-contaminated seismograms with an SNR of 0
dB. The trained network is subsequently used to predict the moment-tensor components and
fault angles of an event positioned at the center of the square. The results of the inversion
are shown in figures 3-20, 3-21, and 3-22.

From the obtained results it can be visualized that the magnitude of some moment-tensor
components has increased compared to the results in sections 3-2 and 3-3. These changes can
be better appreciated in the Mxx, Myy and Mzz components as they are the ones associated
with the ISO part of the moment tensor as described in equation (2-29). Further, from this test
it has been proven that the neural network is capable of giving accurate results for moment
tensors having non-DC components as the cloud of points shown for all the components
slightly deviate from the true values given by the red line. Moreover, the beach balls diagrams
depicted in Figure 3-22 also show accurate results when predicting the moment-tensor for five
random events as small deviations are produced from the true beach balls.

Nevertheless, having non-DC components in the moment tensor considerably affects the pre-
diction of the fault angles due to the deviation of the slip vector from the fault plane. Thus,
for calculating the respective fault angles, it is necessary to take into account the effect of
the angle α in the equations defining the normal and slip vectors (see equation (2-3)). This
angle can be directly estimated from the eigenvalues of the predicted moment tensor using
the following relation (Vavryčuk, 2011):

sinα =
m1 +m3 − 2m2

m1 +m3
, (3-8)

where m1,m2 and m3 are the eigenvalues of the predicted moment tensor. The strike and dip
can be directly estimated from the components of the normal vector. These angles and the
estimated value of α are used to compute the rake from the equations defining the slip vector.
The results presented in Figure 3-21 show a decrease in the prediction accuracy compared to
the angles obtained in Section 3-3.

3-5 Storage optimization: inversion in the frequency domain

The space occupied on disk by the generated synthetic datasets is a crucial aspect to consider.
A dataset containing waveforms from 101,251 different fault orientations has an approximate
size of 37 GB. As the modelled seismograms in the previous sections used the same number
of angle combinations, the resulting datasets were considerably extensive. Thus, finding
alternatives to optimize the space required on the disk to store the information is essential.
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Figure 3-20. Predicted vs. true magnitudes of the different moment-tensor components; non-DC
test.
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Figure 3-21. Predicted vs. true fault angles. Left: strike. Middle: dip. Left: rake; non-DC test.
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Figure 3-22. Beach ball plots for five random events: true (left) vs. predicted (right); non-DC
test.

In this section, the inversion of the seismic moment tensor is performed in the frequency
domain using the Fourier transform of the observations. Figure 3-23 shows an example of
the vertical component of a seismogram generated by a random microseismic event and its
amplitude spectrum.
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Figure 3-23. Vertical component seismogram (left), and its amplitude spectrum in dB (right).

The full bandwidth of the signal ranges from 0 Hz to 125 Hz. It can be appreciated in the plot
of the amplitude spectrum that a considerable part of the signal lies within a narrower band.
Thus, part of the frequency components of the seismograms can be filtered and subsequently
fed to the neural network to perform the inversion of the moment tensor. The information
that is used as input to the network is the real and imaginary parts of the Fourier coefficients
of the seismograms limited in frequency.

In this thesis, two inversions in the frequency domain are performed using two different
bandwidths: 5 Hz - 80 Hz and 15 Hz - 70 Hz. These two bandwidths are better visualized in
Figure 3-24. The red and green lines in both plots show the low and high-cut values of the
two chosen bandwidths. The inversion is then performed with the real and imaginary parts
of the Fourier coefficients of the seismograms using the selected frequencies for each case.
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Figure 3-24. Bandwidth 5 Hz - 80 Hz (left); bandwidth 15 Hz - 70 Hz (right).

In Section 3-4, the neural network was trained using four sources uniformly distributed with a
separation distance of 25 m between sources. In this section, the same distribution of sources is
used with seismograms contaminated with Gaussian noise with an SNR of 0 dB, and moment
tensors with non-DC components using the same parameters described in Table 3-4. The
Fourier transform is calculated for all the seismograms and the bandwidths shown in Figure
3-24 have been used for the training. Similarly, the Fourier coefficients of the seismograms
from the same bandwidths and generated for an unknown event inside the square have been
used to predict its moment-tensor components. The results of the inversion for the two chosen
bandwidths are depicted in figures 3-25, 3-26, 3-27, 3-28, 3-29, and 3-30.

From the results it can be observed that all the moment-tensor components have a prediction
accuracy higher than 0.9. For some components in Figure 3-28, the accuracy slightly decreases
as less Fourier coefficients are used during the inversions. For instance, by comparing the
results for the component Mzz with the ones obtained in Section 3-4, the prediction accuracy
drops from 0.973 to 0.938. This means that the moment-tensor components can be still
predicted with acceptable results using the trained network.

The main purpose of carrying out the inversion in the frequency domain is to reduce the size
of the generated dataset. Using the full bandwidth of the signal during the inversion, yields
a dataset of 37 GB. When using Fourier coefficients in a narrow bandwidth, the size of the
dataset can be reduced to 22 GB if a bandwidth of 5 Hz - 80 Hz is used and to 16.5 GB for
a bandwidth of 15 Hz - 70 Hz. The latter represents a reduction of more than half of the
original size and can still yield accurate results.

3-6 Inversion results on a realistic scenario

The results obtained in the sections 3-2, 3-3, and 3-4 showed that the seismic moment ten-
sor with non-DC components can be predicted using noisy seismograms extracted from a
microseismic event not used during the training phase. The obtained information from the
previous analysis is used to train a set of 121 seismic sources having non-DC components and
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Figure 3-25. Predicted vs. true magnitudes of the different moment-tensor components; band-
width: 5 Hz - 80 Hz.
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Figure 3-26. Predicted vs. true fault angles. Left: strike. Middle: dip. Left: rake; bandwidth:
5 Hz - 80 Hz.
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Figure 3-27. Beach ball plots for five random events: true (left) vs. predicted (right); bandwidth:
5 Hz - 80 Hz.
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Figure 3-28. Predicted vs. true magnitudes of the different moment-tensor components; band-
width: 5 Hz - 70 Hz.
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Figure 3-29. Predicted vs. true fault angles. Left: strike. Middle: dip. Left: rake; bandwidth:
15 Hz - 70 Hz.

Figure 3-30. Beach ball plots for five random events: true (left) vs. predicted (right); bandwidth:
15 Hz - 70 Hz.

uniformly distributed using a distance of 25 m between the sources. Further, Gaussian noise
is also added to the seismograms so that an SNR of 0 dB is obtained.

The sources are assumed to be positioned 250-500 m aside of the receiver array with three
additional unknown events collocated inside the area covered by the sources (Figure 3-31).
The neural network is trained using seismograms from the 121 sources for the subsequent
prediction of the moment-tensor components of the three unknown events.

When the neural network was trained using the uniform distribution described in Section 3-2,
the angles were sampled in a such way that every source in the dataset contained information
from different combinations of angles. In this section a similar approach is followed to sample
the angles so that every source shown in Figure 3-31 has a different combination of the
strike, dip and rake. Finally, the range of normal displacement values used to obtain non-DC
contributions for the different moment tensors is the same as in sections 3-4 and 3-5.

To further improve the training of the neural network and prevent overfitting, two dropout
layers are added to the network architecture defined in Section 2-2-1. Dropout is a well-known
regularization method used to reduced overfitting during the training. The concept behind
the dropout method is straightforward: for every epoch during the learning process, every
neuron has a probability of being temporarily ignored or ”dropped” (Hinton et al., 2012).
This means that the seismograms are not forward/backpropagated through that neuron, but
it can be active during the next epoch. The probability (P ) of dropping out a neuron at each
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Figure 3-31. Geometry setup using a distribution of 121 microseismic events, and 3 unknown
events.

epoch is a hyperparameter that needs to be set before training the network. The updated
architecture is summarized in Table 3-5. In the previous sections the dropout layers were not
used during the training due to the lower complexity of the problem.

Table 3-5. Artificial Neural Network architecture with dropout.

Layer # Units Activation function # Parameters Description

Input layer 3×Nr ×Ns - 3×Nr ×Ns Nr = 20 , Ns = 768

1st hidden layer 164 tanh(·) 3×Nr ×Ns × 164 -

Dropout layer - - 0 P = 15 %

2nd hidden layer 92 tanh(·) 164× 92 -

Dropout layer - - 0 P= 15 %

3rd hidden layer 64 tanh(·) 92× 64 -

Output layer 6 - 64× 6 -

The results for the predicted moment-tensor components and corresponding beach ball di-
agrams for the three unknown events are shown in figures 3-32, 3-33, 3-34, 3-35, 3-36, and
3-37.

The predicted moment-tensor components show a slight decrease in the prediction accuracy
compared to the tests carried out in the previous sections. The prediction accuracy shown
in figures 3-32, 3-34, and 3-36 for the components Mxz and Myz are higher than 0.95, and
for the remaining components is closer or higher than 0.8. Further, the beach ball diagrams
illustrated in figures 3-33, 3-35, and 3-37 also show a slight deviation from the true moment
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Figure 3-32. Predicted vs. true magnitudes of the different moment-tensor components; event
1.

Figure 3-33. Beach ball plots for five random events: true (left) vs. predicted (right); event 1.
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Figure 3-34. Predicted vs. true magnitudes of the different moment-tensor components; event
2.

Figure 3-35. Beach ball plots for five random events: true (left) vs. predicted (right); event 2.
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Figure 3-36. Predicted vs. true magnitudes of the different moment-tensor components; event
3.

Figure 3-37. Beach ball plots for five random events: true (left) vs. predicted (right); event 3.
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tensor. The decrease in the prediction accuracy may be associated with the high amount of
information that the network needs to learn from the seismograms generated by the different
seismic events.

The presence of noise in the seismograms is also a determinant factor to consider. Seismic
signals with low SNR are prevalent in borehole acquisitions for fracking operations. Thus,
before utilizing the recorded seismograms for further processing and imaging steps, it is crucial
to apply denoising methods to boost the SNR of the signal (Iqbal et al., 2018). As an SNR
of 0 dB was used to carry out the previous test, it is expected to have deviations from the
predicted moment-tensor components as different noise realizations are added to each receiver
station’s seismograms. The neural network is however capable of yielding satisfactory results
even when seismic traces are contaminated by noise.

Moreover, the non-DC components in the moment tensors also have an influence on the
results. This can be noticed by the decrease of the prediction accuracy values in the Mxx,
Myy, and Mzz components of the three events associated with the ISO part of the moment
tensor. As previously discussed in Section 3-4, small deviations of the normal displacement
can have a significant change in the magnitude of the moment tensor components.

3-7 Computational considerations

The inversion results presented in this chapter were carried out using the following software
and hardware specifications:

• Operating system: CentOS 7-9.

• Architecture: x86 64.

• CPU op-mode: 32-bit, 64-bit.

• CPU(S): 40.

• Processor model: Intel (R) Xeon (R) CPU E5-2690 v2 - 3.00 GHz.

• Thread(s) per core: 2.

• Core(s) per socket: 10.

• Socket(s): 2.

• Memory (RAM): 256 GB.

Generating a microseismic borehole dataset using the DWM can be computationally expen-
sive. In the work carried out by Carrizo Mascarell (2020), the synthetic seismograms used for
training the neural network were generated using a homogeneous velocity and density model.
However, in this thesis, a 1D profile of 600 layers from the SEAM Arid model is used. Using
such a complex model increases considerably the computational time of the forward modelling
calculations.
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Using the SEAM Arid model to calculate the Green’s functions derivatives rises the compu-
tational cost of about 20 times when compared with the calculations using a homogeneous
velocity and density models. For complex scenarios the code shows a significant increase in the
dimension of different matrices accounting for the number of utilized sources, the number of
receiver stations, the number of frequency points, and the total displacements calculated per
receiver station. Such high dimensional matrices bring memory storage issues and an increase
of computational times to perform the forward modelling calculations through vector-matrix
or matrix-matrix operations.

The modelled Green’s functions are subsequently convolved with known source moment ten-
sors to yield the synthetic waveforms. Throughout the sections of this chapter, the neural
network was trained considering a range of 101,251 combinations of angles to model different
fault orientations. Using such a range of angles implies that the same number of convolutions
needs to be performed to compute the seismograms. The computational time to generate
three-component seismograms for 101,251 different combinations of (φ, δ, λ) is about 74 min
on the machine previously described.

The ANN learning time can vary depending on the training dataset. In Section 3-1 the ANN
was trained with the smallest dataset, including only the seismograms generated by a single
microseismic event. In sections 3-2, 3-3, 3-4, and 3-5 the size of the training datasets increased
of factor of 2 and the corresponding computational times also raised. The final test of Section
3-6, a complex example of training with seismograms generated by 121 microseismic events,
showed the largest learning time.

Finally, the prediction times are similar for all the analyzed examples.

A summary of the computational times for training the neural network and predicting the
moment-tensor components for the shown examples are summarized in Table 3-6. The average
training time is about 12 min and the average prediction time is of about 18 s.

Table 3-6. Simulation times - inversion results.

Test Training time Prediction time

Analysis using a single source 6.803 min 25.03 s

Distance analysis 11.75 min 17.35 s

Noise analysis 10.612 min 17.21 s

Non-double-couple analysis 11.33 min 18.56 s

Frequency domain analysis 7.84 min 11.26 s

Analysis on a complete realistic scenario 23.48 min 20.45 s
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Chapter 4

Conclusions and Discussion

The seismic moment tensor is a useful mathematical approximation for describing general
seismic sources. It has become a helpful tool for monitoring microseismic events produced
in energy-related environments such as hydraulic fracturing, geothermal energy extraction,
CO2 injection, deep-well waste isolation, among other applications. Surface and borehole
seismic surveys are standard in microseismic monitoring, being the latter the preferred one
for obtaining higher resolution results. The information obtained from borehole acquisition
can be used to extract relevant properties of the target. Recorded data from borehole receivers
can be inverted to estimate the seismic moment tensor, which gives a better understanding
of the distribution of forces and rupture mechanisms at the location of the seismic event.

The estimation of the seismic moment tensor can be carried out in several manners. In
this thesis, I focused on the inversion of full-waveform data using a deep feedforward neural
network. The datasets used to train the neural network were generated employing the discrete-
wavenumber method, where Green’s functions are modelled in an elastic medium using a
pre-defined velocity and density model. In this thesis, the SEAM Arid model was used to
simulate microseismic signals produced from known moment tensors of low magnitudes, such
as those encountered in hydraulic fracturing.

As downhole receiver arrays usually suffer from having inadequate angle coverage, resolving
the six independent moment-tensor components using data recorded from a single well may
not be possible due to the ill-posedness of the problem. However, this issue can be overcome by
producing synthetic data containing information from many fault orientations. Subsequently,
the data are fed to the neural network to estimate the seismic moment tensor.

To properly train the neural network, a sufficient amount of data needs to be used. Different
moment tensors produce seismograms with different amplitudes due to the variation in the
fault angles. Therefore, a dataset containing different sets of angles is essential. To achieve
this I generated datasets from several moment tensors using angles sampled every 5◦, yielding
101,251 possible combinations.

I have shown that the neural network can recognize the moment tensor from microseismic
events located at different positions than the ones used for the training. In particular, I
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proposed an array of four sources equally distributed at the edges of a square with variable
distance from source to source. I then trained the network using the sources from the square
array to predict the moment-tensor components and fault angles of an event positioned inside
the square. This analysis was used to derive the larger source spatial sampling producing
reasonable results, which was 25 m in this particular case. Moreover, I have shown that
seismic traces with a signal-to-noise ratio of 0 dB can also be utilized to train the network
and yield accurate results for the six components of the moment tensor and the respective
fault angles. I derived an empirical rule to link the prediction accuracy with the data signal-
to-noise ratio.

A big challenge in microseismic monitoring and earthquake seismology is the study of moment
tensors with non-double-couple components. These are associated with tensile and compres-
sive motions along the rupture plane where the event was produced. Artificial non-double-
couple components can be obtained during moment-tensor inversion due to simplifications
in the source model or poor station coverage. In this thesis, a moment-tensor model that
accounts for tensile motion in a microseismic event was used to model seismograms due to
sources with non-double-couple components. I used such seismograms to train the neural
network and I successfully predicted the moment-tensor components due to sources with
non-double-couple mechanisms located at different positions than those used for the training.

I proposed to carry out the inversion using the real and imaginary parts of the Fourier
coefficients of the seismograms in a narrow band to optimize the space required on disk to store
the datasets. I modelled seismic sources distributed every 25 m, a 0 dB signal-to-noise ratio,
and non-double-couple mechanisms. I showed the inversion results in the frequency domain
for two different bandwidths: 5 Hz - 80 Hz and 15 Hz - 70 Hz. The predicted moment-tensor
components were obtained for microseismic events at different locations, showing prediction
accuracies higher than 0.9 for both bandwidths.

An analysis of the computational times required in the different stages of the moment tensor
prediction with ANN has also been carried out.

During hydraulic fracturing operations, multiple microseismic events can be triggered due to
the pressure of the injected fluids. To emulate a similar scenario, I generated microseismic
data from 121 different sources, each one having different fault angles, noise realization, and
tensile motion to generate non-double-couple mechanisms. I used the resulting dataset to train
the neural network and predict the moment-tensor components for three different events. I
showed that the prediction accuracy for some of the components (Mxx,Mzz) dropped to 0.8,
which may be due to the complexity of the seismic information used to train the neural
network. Such complexity may come from variations on the location of the sources, different
noise realizations on each receiver station, and the presence of non-double-couple components.

4-1 Additional original contributions

Besides the extension of the moment tensor inversion workflow for applications on realistic
scenarios and the related analysis, I have also studied and implemented the following:

1. I have extended the forward modelling code that generated synthetic seismograms to
account for source moment tensors with non-double-couple mechanisms, and slip vectors
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that deviate from the fault plane. This deviation is quantified using the angle α as
described in equation (2-3).

2. I have included in the code the formulas to calculate the scalar seismic moment, approx-
imate rupture length of the fracture and its area given a specific moment magnitude
described in equations (2-16), (2-17), and (2-18).

3. I have extended the forward modelling code to perform more calculations in parallel.
Previous versions of the code utilized parallelization to calculate synthetic seismograms
for different sets of angles (strike, dip, and rake). I have extended this approach so that
different moment magnitudes and normal displacements can also be tested in parallel.

4. I have carried out an extensive investigation of the available hyperparameters of the im-
plemented ANN. The parameters that I tested were the following: batch sizes, learning
rates for the RMSprop optimizer, number of hidden neurons, number of hidden layers,
dropout rates.

5. I have implemented additional functions to pre-process the synthetic seismograms before
feeding them to the neural network. These functions include: adding Gaussian white
noise to the seismograms to obtain a specific SNR value, data normalization, a more
straightforward approach to split the data for training, validation and testing.

6. Implementation of the inversion workflow in the frequency domain to limit the band-
width of the analyzed signals.

7. I have changed the data file format of the synthetic seismograms to HDF5. This format
significantly improved the time needed to store and load the data for the respective
inversions.

4-2 Future developments

The propagation medium considered in this thesis was isotropic and non-dispersive. How-
ever, microseismic monitoring activities are conducted over more complex media where some
lithologies may exhibit anisotropic behavior. Thus, an extension to the present work could be
related to the use of different anisotropic models, e.g., vertically transverse isotropic (VTI)
media, which would require an upgrade of the current forward modelling code.

Deep feedforward neural networks have proven to be effective and robust to predict the seismic
moment tensor using three-component seismograms even in the presence of Gaussian noise.
Other alternatives to carry out the inversion could involve different network architectures
such as convolutional neural networks. These might be used to estimate the seismic moment
tensor and other variables of interest, such as the moment magnitude or the location of the
event.

As the moment tensor inversion has been carried out using constant moment magnitudes for
simulated microseismic events, a potential extension is to test the inversion using events with
a broader range of moment magnitudes as the values encountered in microseismic monitoring
can vary significantly. For predicting moment tensors of different magnitudes, an extensive
amount of data may be needed for the neural network to learn different ranges of magnitudes.
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Another possible future development of this work is to test the trained neural network on
field data. This would require a thorough analysis of the seismograms in terms of phase
and amplitudes, signal-to-noise ratio and frequency content, when compared to synthetic
data. Estimating the seismic moment tensor from field data can significantly impact real-
time microseismic monitoring in the development of unconventional reservoirs. It can help to
understand better the stress distributions and rupture mechanisms occurring during fracking
operations.
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Appendix A

Calculation of the Green’s functions
derivatives using the modified DWM

A-1 P-SV, and SH reflection/transmission coefficients

The seismic displacements due to the P, SV and SH potentials described in Chapter 2 are
calculated following the steps described in Cotton and Coutant (1997). The following sections
contain a summary of the theory presented in Carrizo Mascarell (2020).

Let’s consider the case where P-SV waves strike a horizontal interface between two homoge-
neous layers from above and below. Each possible incident P-SV wave (from above or below),
can generate outgoing P-SV waves, yielding a total of 16 reflection/transmission coefficients
as shown in figures A-1a, A-1b, A-1c, and A-1d. These coefficients are described as follows:

• P̀ Ṕ : P −→ P reflection coefficient
(above).

• P̀ Ś: P −→ SV reflection/conversion
coefficient (above).

• P̀ P̀ : P −→ P transmission coefficient
(above).

• P̀ S̀: P −→ SV transmission/conver-
sion coefficient (above).

• S̀Ṕ : SV −→ P reflection/conversion
coefficient (above).

• S̀Ś: SV −→ SV reflection coefficient
(above).

• S̀P̀ : SV −→ P transmission/conver-
sion coefficient (above).

• S̀S̀: SV −→ SV transmission coeffi-
cient (above).

• Ṕ Ṕ : P −→ P transmission coefficient
(below).

• Ṕ Ś: P −→ SV transmission/conver-
sion coefficient (below).

• Ṕ P̀ : P −→ P reflection coefficient (be-
low).

• Ṕ S̀: P −→ SV reflection/conversion
coefficient (below).
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(a) (b)

(c) (d)

Figure A-1. Notation for the sixteen possible reflection and transmission coefficients of incident
P-SV waves problems. The arrows in the figures denote the particle motion direction:
(a), incident P-wave from above; (b), incident SV-wave from above; (c), incident
P-wave from below; (d), incident SV-wave from below (modified from Aki and
Richards (2002)).

• ŚṔ : SV −→ P transmission/conver-
sion coefficient (below).

• ŚŚ: SV −→ SV transmission coeffi-
cient (below).

• ŚP̀ : SV −→ P reflection/conversion
coefficient (below).

• ŚS̀: SV −→ SV reflection coefficient
(below).

In figures A-1a, A-1b, A-1c, and A-2b cn,p, cn,s, ρn are the P-wave velocity, S-wave velocity
and the density value at the nth layer, respectively. Additionally, the magnitude of the
different coefficients is given by the following equations:

P̀ Ṕ =

[(
b
cos(in)

cn,p
− ccos(in+1)

cn+1,p

)
F −

(
a+ d

cos(in)

cn,p

cos(jn+1)

cn+1,s

)
Hp2

]
/D. (A-1)

P̀ Ś = −2
cos(in)

cn,p

(
ab+ cd

cos(in+1)

cn,p

cosjN+1

cn+1,s

)
pcn,p/(cn,sD). (A-2)

P̀ P̀ = 2ρn
cos(in)

cn,p
Fcn,p/(cn+1,pD). (A-3)

P̀ S̀ = 2ρn
cos(in)

cn,p
Hpcn,p/(cn+1,sD). (A-4)
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S̀Ṕ = −2
cos(jn)

cn,s
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)
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p = k/ω is the ray parameter given the horizontal wavenumber k and the angular frequency
ω and,

a = ρn+1(1− 2c2
n+1,sp

2)− ρn(1− 2c2
n,sp
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D = EF +GHp2, (A-19)
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and the cosine terms can be written as follows:

cos(in)

cn,p
=

√
1

c2
n,p

− p2. (A-20)

cos(in+1)

cn+1,p
=

√
1

c2
n+1,p

− p2. (A-21)

cos(jn)

cn,s
=

√
1

c2
n+1,s

− p2. (A-22)

cos(jn+1)

cn+1,s
=

√
1

c2
n+1,s

− p2. (A-23)

The terms in and jn are the angles orthogonal to the plane fronts at the nth layer for the
P-waves and SV-waves, respectively (Aki and Richards, 2002). Similarly, a plane SH-wave
that strikes the same interface between two homogeneous layers generates outgoing SH-waves
(see figures A-2a and A-2b).

(a) (b)

Figure A-2. Notation for the possible reflection and transmission coefficients of incident SH-
waves. The arrows denote the particle motion direction: (a) incident SH-wave from
above; (b), incident SH-wave from below (modified from Aki and Richards (2002)).

The reflection and transmission coefficients due to an incident SH-wave are given by the
following relations:

S̀Śsh =
ρncn,s cos(jn)− ρn+1cn+1,s cos(jn+1)

∆
. (A-24)

ŚŚsh =
2ρn+1cn+1,s cos(jn+1)

∆
. (A-25)

S̀S̀sh =
2ρncn,s cos(jn)

∆
. (A-26)

ŚS̀sh = −S̀Śsh. (A-27)
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∆ = ρncn,s cos(jn) + ρn+1cn+1,s cos(jn+1). (A-28)

The reflection and transmission coefficients described for the P, SV, and SH waves can be
summarized in matrix form for all possible conversion modes. This matrix is often referred
to as the scattering matrix and for P-SV waves it can be written as follows:


P̀ Ṕ S̀Ṕ Ṕ Ṕ ŚṔ

P̀ Ś S̀Ś Ṕ Ś ŚŚ

P̀ P̀ S̀P̀ Ṕ P̀ ŚP̀

P̀ S̀ S̀S̀ Ṕ S̀ ŚS̀

 =

(
Ru Tu

Td Rd

)
, (A-29)

where

Ru =

(
P̀ Ṕ S̀Ṕ

P̀ Ś S̀Ś

)
, (A-30)

Tu =

(
Ṕ Ṕ ŚṔ

Ṕ Ś ŚŚ

)
, (A-31)

Td =

(
P̀ P̀ S̀P̀

P̀ S̀ S̀S̀

)
, (A-32)

Rd =

(
Ṕ P̀ ŚP̀

Ṕ S̀ ŚS̀

)
. (A-33)

A similar matrix as the one defined for the P-SV waves can be defined to summarize the
conversion modes for SH-waves as follows:

(
S̀Śsh ŚŚsh
S̀S̀sh ŚS̀sh

)
=

(
Rush Tush
Tdsh Rdsh

)
. (A-34)

The difference in equation (A-34) compared to equation (A-29) is that the obtained reflections
and transmissions are scalars compared to the case of P-SV waves.

A-2 Calculation of the reflectivity and transmissivity matrices

Using the reflection and transmission matrices (for P-SV waves), it is possible to propagate a
wavefield v from a depth level zn to a level zn+1 through a linear transformation A(zn+1, zn)
using equations (A-30), (A-31), (A-32) and (A-33):

v(zn+1) = A(zn+1, zn)v(zn). (A-35)

The linear transformation A can be expressed as follows:
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A(zn+1, zn) = L−1
u (zn, zn+1)Ll(zn+1, zn), (A-36)

where

Lu(zn, zn+1) =

(
Tu 0
−Ru I

)
, Ll(zn+1, zn) =

(
I −Rd

0 Td

)
. (A-37)

I is the identity matrix and 0 is a matrix filled with zeros. In Kennett and Kerry (1979) the
wavefield potential v can also be propagated through a medium of n layers with different ve-
locities and densities. For a stack of three layers (z1 < z < z3), the reflection and transmission
matrices can be calculated as follows:

Rd(z3, z1) = Rd(z2, z1) + Tu(z1, z2)Rd(z3, z2)[I−Ru(z1, z2)Rd(z3, z2)]−1Td(z2, z1).

Td(z3, z1) = Td(z3, z2)[I−Ru(z1, z2)Rd(z3, z2)]−1Td(z2, z1).

Ru(z1, z3) = Ru(z2, z3) + Td(z3, z2)Ru(z1, z2)[I−Rd(z3, z2)Ru(z1, z2)]−1Tu(z2, z3).

Tu(z1, z3) = Tu(z1, z2)[I−Rd(z3, z2)Ru(z1, z2)]−1Tu(z2, z3).

(A-38)

A similar scheme can be applied using the reflection and transmission coefficients for SH-
waves.

A-3 Source potentials

The potentials Φ, Ψ, and χ can radiate upwards or downwards from the source layer. Thus, a
total of six source potentials are obtained. The derived expressions for the potentials radiated
by the six independent moment-tensor sources are summarized in Table A-1.

Table A-1. Source potentials.

Wave mode Source potential Direction

P S1(z) = e−ikz,p|z−z0| Upward

P S2(z) = sign(z − z0)e−ikz,p|z−z0| Downward

SV S3(z) = e−ikz,s|z−z0| Upward

SV S4(z) = sign(z − z0)e−ikz,s|z−z0| Downward

SH S5(z) = e−ikz,s|z−z0| Upward

SH S6(z) = sign(z − z0)e−ikk,s|z−z0| Downward

z0 represents the source depth, kz,p and kz,s are the P-wave and S-wave vertical wavenumbers:

kz,p =

√
ω2

c2
p

− k2
r , kz,s =

√
ω2

c2
s

− k2
r , with Im(kz,p), Im(kz,s) < 0, (A-39)
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kr = 2π/∆r is the radial wavenumber, ∆r is the spatial period as defined in Bouchon (1981)
and r is the distance from the source to the receiver layer. The six elementary sources shown
in Table A-1 due to unidirectional forces are used to decompose the potentials Φ, Ψ, and χ
for the six independent moment-tensor components as in Cotton and Coutant (1997):

MXY :


Φ = CfF sin(2θ) cs2K1 S1

Ψ = CfF sin(2θ)K1 S4

χ = −CfF cos(2θ) cs3K1 S5

MXZ :


Φ = CfF 2 cos(θ)(−k2

r) J1 S2

Ψ = CfF cos(θ) cs9 J1S3

χ = CfF sin(θ)(−k2
β) J1 S6

MY Z :


Φ = CfF 2 sin(θ)(−k2

r) J1 S2

Ψ = CfF sin(θ) cs9 J1 S3

χ = CfF cos(θ) k2
β J1 S3

MXX :


Φ = CfF cs2 (cos2(θ)K1 +K2))S1

Ψ = CfF (cos2(θ)K1 +K2)S4

χ = CfF cos(θ) sin(θ) cs3K1 S5

MY Y :


Φ = CfF cs2(sin2(θ)K1 +K2)S1

Ψ = CfF (sin2(θ)K1 +K2)S4

χ = −Cf cos(θ) sin(θ) cs3K1 S5

MZZ :


Φ = CfF (−ikz,pkr) J0 S1

Ψ = −CfF J0 S4

χ = 0

(A-40)

where

K0 = krJ0(krr),

K1 = krJ0(krr)− 2J1(krr),

K2 = J1(krr)/r,

K3 = −2

r
K1 − k2

rJ1(krr),

K4 =
K1

r
,

K5 = krJ0(krr)− J1(krr)/r,

(A-41)

and

Cf =
1

2ρω2∆r
,

kα =
ω

cp
, kβ =

ω

cs
,

cs2 =
k2
r

ikz,p
, cs3 =

k2
β

ikz,s
, cs9 =

k2
β − 2k2

r

ikz,s
.

(A-42)

A-4 Propagation of the six elementary sources

The six elementary sources can radiate upwards and downwards potentials from the source
layer through the medium. Thus, for every potential Φ, Ψ or χ the following upgoing and
downgoing components can be obtained:
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S1 −→ SΦup
1 , SΦ down

1 , SΨup
1 , SΨ down

1 ,

S2 −→ SΦup
2 , SΦ down

2 , SΨup
2 , SΨ down

2 ,

S3 −→ SΦup
3 , SΦ down

3 , SΨup
3 , SΨ down

3 ,

S4 −→ SΦup
4 , SΦ down

4 , SΨup
4 , SΨ down

4 ,

S5 −→ Sχup5 , Sχdown5 ,

S6 −→ Sχup6 , Sχdown6 ,

(A-43)

where the symbol −→ represents the conversion of the incident potential wavefield at the
source layer. The different potentials propagate upwards or downwards for the six elementary
sources using the reflection and transmission matrices described in Section A-1:

Sφupn = P φupn eikz,p(z−zi), Sφ downn = P φ downn e−ikz,p(z−zi),

Sψ upn = Pψ upn eikz,s(z−zi), Sψ downn = Pψ downn e−ikz,s(z−zi),

Sχupn = Pχupn eikz,s(z−zi), Sχdownn = Pχdownn e−ikz,s(z−zi).

(A-44)

Pmn are the reflection or transmission coefficients where m can be Φ, Ψ or χ. For P-SV waves
the reflections and transmissions are 2× 2 matrices, whereas for SH-waves are scalars.

A-5 Calculation of the seismic displacements

The spatial derivatives of Φ, Ψ, and χ in cylindrical coordinates are calculated to obtain the
seismic displacements for every elementary source:

ur =
∂Φ

∂r
+
∂2Ψ

∂r∂z
+

1

r

∂χ

∂θ
, (A-45)

uθ =
1

r

∂Φ

∂θ
+

1

r

∂2Ψ

∂θ∂z
− ∂χ

∂r
, (A-46)

uz =
∂Φ

∂z
− ∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
− 1

r2

∂2Ψ

∂θ2
. (A-47)

After calculating the partial derivatives, a total of 18 seismic displacements are obtained:



A-5 Calculation of the seismic displacements 71

MXY :


ur = Cf sin(2θ) (K3[cs2(Sφ1 + εikz,pS

ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )] + 2cs3K4 S

χ
5 )

uθ = Cf cos(2θ) (2K4[cs2(Sφ1 + εkz,pS
ψ
4 ) + (Sφ4 + εikz,pS

φ
4 )] + cs3K3S

χ
5 )

uz = Cf sin(2θ)K1[cs2(εikz,sS
φ
1 + k2

rS
ψ
1 ) + (εikz,sS

φ
4 + k2

rS
ψ
4 )]

MXZ :


ur = Cf cos(θ) (K5[−2k2

r(S
φ
2 + εikz,pS

ψ
2 ) + cs9(Sφ3 + εikz,pS

ψ
3 )]− k2

βK2S
χ
6 )

uθ = Cf sin(θ) (K2[2k2
r(S

φ
2 + εikz,paS

ψ
2 )−+k2

βK5S
χ
6 ])

uz = Cf cos(θ) J1[−2k2
r(εikz,sS

φ
2 + k2

rS
ψ
2 ) + cs9(εikz,sS

φ
3 + k2

rS
ψ
3 )]

MY Z :


ur = Cf sin(θ) (K5[−2k2

r(S
φ
2 + εikz,pS

ψ
2 ) + cs9(Sφ3 + εikz,pS

ψ
3 )]− k2

βK2S
χ
6 )

uθ = Cf cos(θ) (K2[−2k2
r(S

φ
2 + εikz,pS

ψ
2 ) + cs9(Sφ3 + εikz,pS

ψ
3 )]− k2

βK5S
χ
6 )

uz = Cf sin(θ) J1[−2k2
r(εikz,sS

φ
2 + k2

rS
ψ
2 ) + cs9(εikz,sS

φ
3 + k2

rS
ψ
3 )]

MXX :


ur = Cf ((K3 cos2(θ) +K4)[cs2(Sφ1 + εikz,pS

ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )] + cos(2θ) cs3K4 S

χ
5 )

uθ = −Cf sin(2θ)(K4[cs2(Sφ1 + εikz,pS
ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )] + cs3

2 K3 S
χ
5 )

uz = Cf (K1 cos2(θ) +K2)[cs2(εikz,sS
φ
1 k

2
rS

ψ
1 ) + (εikz,sS

φ
4 + k2

rS
ψ
4 )]

MY Y :


ur = Cf ((K3 sin2(θ) +K4)[cs2(Sφ1 + εikz,pS

ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )]− cos(2θ) cs3K4 S

χ
5 )

uθ = Cf sin(2θ) (K4[cs2(Sφ1 + εikz,pS
ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )] + cs3

2 K3 S
χ
5 )

uz = Cf (K1 sin2(θ) +K2)[cs2(εikz,sS
φ
1 + k2

rS
ψ
1 ) + (εikz,sS

φ
4 + k2

rS
ψ
4 )]

MZZ :


ur = Cf J1 k

2
r [ikz,s(S

φ
1 + εikz,pS

ψ
1 ) + (Sφ4 + εikz,pS

ψ
4 )]

uθ = 0

uz = −Cf J0 kr[ikz,s(εikz,sS
φ
1 + k2

rS
ψ
1 ) + (εikz,sS

φ
4 + k2

rS
ψ
4 )]

(A-48)

In the previous equations ε can be 1 for upgoing waves, or -1 for downgoing waves.
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