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SUMSETS AND FIXED POINTS OF SUBSTITUTIONS

F. MICHEL DEKKING

(Communicated by Amanda Folsom)

Abstract. In this paper we introduce a technique to determine the sumset
A + A, where A is the indicator function of the 0’s occurring in a fixed point
x of a substitution on the alphabet {0, 1}.

1. Introduction

Let A be the sequence given by A(n) = �nα� for n ≥ 1, where α = (1 +
√
5)/2

is the golden mean. In the recent paper [5], it was proved that the sumset A + A
is equal to the natural numbers with exception of the numbers 1 and 3. Here the
sumset A+A is defined by

A+A = {a+ b : a ∈ A, b ∈ A}.
It was also shown that if B is defined by B(n) = �nα2�, then the set B + B has a
complement that is infinite. The determination of B +B takes more than 8 pages,
and the complicated structure of B + B is described as containing “some fractal
patterns”. The goal of the present paper is to elucidate what the source of these
fractal patterns is, and at the same time to introduce a vast generalization of these
types of sumsets.

Interestingly, Shallit in [7] also positioned the sumset problem of the paper [5] in
the combinatorics on words context, but in a completely different way. The focus
there is on the Fibonacci representation (also known as Zeckendorf representation)
of the natural numbers, and the proofs are computer assisted. See also the paper
[9].

The crucial observation that we make is that the sequences A = (�nα�) =
(1, 3, 4, 6, 8, 9, 11, . . . ) and B = (�nα2�) = (2, 5, 7, 10, 13, 15, . . . ) give the posi-
tions of 0’s, respectively the positions of 1’s in the infinite Fibonacci word xF =
010010100100 . . . , fixed point of the substitution 0 �→ 01, 1 �→ 0 (see, e.g., [6]). Let
σ be any substitution on the monoid {0, 1}∗, admitting a fixed point x = σ(x).
Then, let A give the positions of 0 in x, and let B give the positions of 1 in x.

Problem. Determine A+A, A+B and B +B.

The proofs in [5] are purely arithmetical. Our approach, inspired by [3], is to
analyse A+A by studying the product set A×A. This amounts to passing from fixed
points of substitutions to fixed points of two-dimensional substitutions. See, e.g.,
[4] for an overview of the theory of two-dimensional substitutions. Our application
of two-dimensional substitutions to the sumset problem is self-contained.
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In Section 3 we give a very simple proof of the A + A result of [5] using a two-
dimensional substitution which has xF × xF as fixed point. A proof of the B + B
result from [5], analogously to the way this is done in Theorem 4, is very complex.
The numbers of columns on the right side of the 2D fixed point of the product sub-
stitution that one has to use is unbounded for the Fibonacci substitution, whereas
it is 15 for the von Neumann substitution.

In Section 4 we solve the A+A, A+B and B +B problem for the Thue-Morse
word t = 0110100110010110 . . . , fixed point of the substitution 0 �→ 01, 1 �→ 10.
We remark that our result is equivalent to Theorem 2 of the paper [9], which is
proved in a completely different, computer-assisted way.

In Section 5 we solve the A+A and B+B problem for the von Neumann word.
The interest of this example lies in the fact that this example is one of a large family
for which the method of [7] does not work [8].

In Section 6 we present the classical ‘sum of two squares’ problem in our 2D
substitution context. This example also illustrates the fact that our technique
extends from fixed points of substitutions to 0-1-valued morphic sequences, i.e.,
fixed points of substitutions on arbitrary alphabets which are mapped to {0, 1}∗ by
a letter-to-letter map.

2. Substitutions and their products

A substitution σ is a homomorphism of the monoid A∗ of words over an alphabet
A, that is, A∗ consists of concatenations a1 . . . am with ai fromA for i = 1 . . .m, and
σ(vw) = σ(v)σ(w) for all v, w ∈ A∗. Since we are interested in the characteristic
functions of 0-1-words, we simplify the presentation and take A = {0, 1}.

Let σ on A∗ = {0, 1}∗ be a substitution given by

σ(0) = a1 . . . am, σ(1) = b1 . . . bm′ ,

for two natural numbers m and m′. We then define the direct product substitution
σ×σ on the alphabet A×A by

σ×σ((0, 0))(k,�) = (ak, a�), σ×σ((0, 1))(k,�′) = (ak, b�′),

σ×σ((1, 0))(k′,�) = (bk′ , a�), σ×σ((1, 1))(k′,�′) = (bk′ , b�′),

where 1 ≤ k ≤ m, 1 ≤ � ≤ m, 1 ≤ k′ ≤ m′, 1 ≤ �′ ≤ m′.

Example 1. Let σ be the Fibonacci substitution given by σ(0) = 01, σ(1) = 0
then, abbreviating (i, j) to ij for i, j = 0, 1 the direct product substitution σ×σ is
given by

00 �→ 00

01

10

11

01 �→ 00 10 10 �→ 00

01

11 �→ 00

Suppose that σ(0) has prefix 0. Then σn(0) converges to a fixed point x of σ as
n → ∞, and so [σ×σ]n((0, 0)) converges to the 2D fixed point x× x of σ×σ.

Thus the element of x×x with index (k, �) contains the symbol (0, 0) if and only
if xk = 0, x� = 0 if and only if k ∈ A and � ∈ A.

Let the diagonal words dn be defined for n ≥ 2 by

(1) dn = {[x× x](k,�) : k + � = n, k ≥ 1, l ≥ 1}.
Then n ∈ A+A if and only if dn contains a symbol (0, 0). So we have obtained the
following theorem.
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Theorem 1. Let σ be a substitution on {0, 1}, such that σ(0) has prefix 0, and
let x be the fixed point of σ with prefix 0. Let A be the sequence of positions
of 0 in x. Let dn be the diagonal words occurring in x × x, for n ≥ 2. Then
A+A = {n ≥ 2 : the symbol (0, 0) occurs in dn}.

Note that we also have that if B is the sequence of positions of 1 in x, then
B + B = {n ≥ 2 : the symbol (1, 1) occurs in dn}, and A + B = {n ≥ 2 :
the symbol (0, 1) or (1, 0) occurs in dn}.

3. The Fibonacci word

The Fibonacci word xF is the unique fixed point of the substitution σ : 0 �→
01, 1 �→ 0. Let ϕ := σ×σ be the direct product of σ.

It is convenient to code a := (0, 0), b := (0, 1), c := (1, 0), d := (1, 1), and to
assign colors to these four letters so that one obtains more easily an idea of the
structure of ϕn(a). The direct product substitution ϕ on this new alphabet is given
by

a �→ a

b

c

d

b �→ a c c �→ a

b

d �→ a

Here are some examples of 2D words obtained by iterating ϕ.

a

b

c

d

a c

a

b

a

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

a

b

c

d

a c

a

b

a

a

b

c

d

a c

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

a

a

b

c

d

a c

ϕ2(a) : ϕ3(a) : ϕ4(a) : ϕ2(b) : ϕ3(b) :

Note that

(2) d2 = a, d3 = bc, d4 = ada, d5 = acba, d6 = bcabc.

We are now in a position to give a completely different proof of Theorem 3.1. of
[5].

Theorem 2 ([5]). Let A = 1, 3, 4, 6, 8, 9, 11, 12, 14, 16, . . . be the sequence (�nα�),
where α is the golden mean. Then

A+A = N \ {1, 3}.

Proof. Recall from the introduction that the sequence (�nα�) is equal to the se-
quence of positions of 0 in the infinite Fibonacci word xF.

We use Theorem 1. Trivially, 1 is not in A+A, and we see that a does not occur
in d3. Further we see that a does occur in d2, d4 and d5. So it remains to show that
all dn contain a symbol a for n ≥ 6. To see this, note that the first five columns on
the left border of xF × xF are a concatenation of the 2D words ϕ3(a) and ϕ3(b) for
all n. So these five columns are composed of blocks ϕ3(a) on top of ϕ3(a), ϕ3(a)
on top of ϕ3(b), and ϕ3(b) on top of ϕ3(a):
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a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

a

b

c

d

a c

a

b

a

a

b

c

d

a c

a

b

c

d

a c

a

b

a

a

b

c

d

a c

a

b

c

d

a c

a

b

a

a

b

c

d

a

b

a

b

c

d

a c

a

b

c

d

ϕ3(a) :

ϕ3(a) :

ϕ3(a) :

ϕ3(b) :

ϕ3(b) :

ϕ3(a) :

In all three cases, the diagonal words starting at the left border in the top ϕ3(a)
or ϕ3(b) will cross a square with a symbol a in one of the four left most columns,
which finishes the proof. �

Remark. The proof shows that if n = a+ a′, with a, a′ from A, then a can always
be chosen from the set {1, 3, 4}.

4. The Thue-Morse word

The Thue-Morse word t is the fixed point of the substitution θ : 0 �→ 01, 1 �→ 10.
Although it is general practice (as in [5]) to index Beatty sequences starting from
n = 1, and similarly for fixed points of substitutions, this is not the case for
the Thue-Morse sequence. The Thue-Morse word t = t0t1 · · · = 01101001 . . . is
indexed starting from n = 0. Thus A = 0, 3, 5, 6, . . . gives the positions of 0 in t,
and B = 1, 2, 4, 7, . . . the positions of 1 in t.

Let 0 = 1, 1 = 0 be the symmetry operator on {0, 1}∗. Note that θ is symmetric,

i.e., θ(i) = θ(i) for i = 0, 1.
The direct product substitution of θ is the 2D substitution τ defined on the

symbols (i, j) for i, j = 0, 1 (written as ij) by

ij ij

τ : ij �→ ij ij.

When we code a := 00, b := 01, c := 10, d := 11, and color the squares of the
symbols a, b, c and d, then the substitution τ takes the form

a �→ a
b

c
d

b �→ b

a

d

c
c �→ c

d
a
b

d �→ d

c

b

a
, , ,

.
Since we start t at index 0, we have to reconsider the definition of the diagonal

words. It turns out that it is convenient to index these by their lengths. So
d1 = a, d2 = bc, etc. The iterate τ8(a) with the diagonal words d1, d2, . . . , d16
indicated by lines is given by
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a
b

c
d

b

a

d

c

c
d

a
b

d

c

b

a
b

a

d

c
a
b

c
d

d

c

b

a
c
d

a
b

c
d

a
b

d

c

b

a

a
b

c
d

b

a

d

c
d

c

b

a
c
d

a
b

b

a

d

c
a
b

c
d

b

a

d

c
a
b

c
d

d

c

b

a
c
d

a
b

a
b

c
d

b

a

d

c

c
d

a
b

d

c

b

a

d

c

b

a
c
d

a
b

b

a

d

c
a
b

c
d

c
d

a
b

d

c

b

a

a
b

c
d

b

a

d

c

c
d

a
b

d

c

b

a

a
b

c
d

b

a

d

c
d

c

b

a
c
d

a
b

b

a

d

c
a
b

c
d

a
b

c
d

b

a

d

c

c
d

a
b

d

c

b

a
b

a

d

c
a
b

c
d

d

c

b

a
c
d

a
b

d

c

b

a
c
d

a
b

b

a

d

c
a
b

c
d

c
d

a
b

d

c

b

a

a
b

c
d

b

a

d

c

b

a

d

c
a
b

c
d

d

c

b

a
c
d

a
b

a
b

c
d

b

a

d

c

c
d

a
b

d

c

b

a

Our goal is to describe the diagonal words dn, for n = 1, 2 . . . . We see that in
particular

(3) d1 = a, d2 = bc, d3 = bdc, d4 = adda.

Proposition 1. Let σ be the morphism given by σ(ij) = ij, ij for i, j = 0, 1. Then

d2n = σ(dn), for n = 1, 2, . . . .

Let β be the 2-to-1 morphism given by β(ij, i′j′) = ij′ for i, j, i′, j′ = 0, 1. Then

d2n+1 = β(d2n+2), for n = 1, 2, . . . .

Proof. Let the lines Δn := {(x, y) : x+y = n−1} correspond to the diagonal words
dn. The line Δ2n cuts through the diagonals of the 2× 2-blocks τ (a), . . . , τ (d), and
these 2× 2-blocks are images under τ of the symbols a, . . . , d on the line Δn. Thus
d2n = σ(dn) now follows from the observation that the ij, ij are exactly the symbols
on the diagonals of the 2× 2 blocks τ (ij).

For the second statement, we look at the successive 2 × 2 blocks τ (a), . . . , τ (d)
cut by the line Δ2n+2. The line Δ2n+1 cuts through the lower left squares of these
blocks. This implies that the symbols at the odd indices of the word d2n+1 can
be read off directly from the successive pairs of symbols of d2n+2 by mapping the
diagonals of the 2 × 2 τ -blocks to the symbols at the lower left corner of these
blocks. This gives β(ij, ij) = ij, which is an instance of β(ij, i′j′) = ij′.

For the symbols at the even indices of the word d2n+1 we have to do more work:
we have to determine the symbol at the upper right corner of the τ -block directly
below a pair of τ -blocks from the pair of symbols situated at lower left and the
upper right corner of these blocks. The situation is as in the following drawing:

i′j′

ij

i′j′

ij

i j′⇒

This gives: β(ij, i′j′) = i j′, which happens to be a version of β(ij, i′j′) = ij′. �



398 F. MICHEL DEKKING

Theorem 3. Let A = 0, 3, 5, 6, 9, 10, . . . give the positions of 0’s in Thue Morse
sequence, and B = 1, 2, 4, 6, 7, 8, . . . the positions of 1 in the Thue Morse sequence.
Then

A+A = N0 \ {2, 4, 22n+1− 1, n ≥ 0}.
B + B = N0 \ {22n+1− 1, n ≥ 0}.
A+B = N0 \ {22n− 1, n ≥ 0}.

Proof. We only prove the A + A result. The other two can be proved in a similar
way.

According to Theorem 1, n ∈ A + A if and only if dn−1 contains a symbol
(0, 0) = a. Note that we had to shift the diagonal words, as they are redefined for
this section.

Let σ be the morphism from Proposition 1 in abcd-coding, σ(a) = bc, σ(b) = ad,
σ(c) = da, σ(d) = cb. Then σ2 is given by

σ2(a) = adda, σ2(b) = bccb, σ2(c) = cbbc, σ2(d) = daad.

It follows from this and Equation (3) that d(22n+1) ∈ {b, c}∗, d(22n) ∈ {a, d}∗, for
n ≥ 0.

This takes care of the 22n+1−1 part of the theorem. Obviously 2 and 4 are not in
A+A. It remains to prove that all other numbers are in A+A, which is equivalent
to proving that a symbol a occurs in all diagonal words dn with n > 5 and n not
equal to a power of 2. It looks attractive to use Proposition 1 to accomplish this.
Indeed, let T be the set consisting of the twelve 2-blocks ab, ac, . . . , dc with two
different symbols. Then one may check that all elements of T occur in the length 4
blocks from σ(T ), and also in the length 3 blocks from β(σ(T )). This implies that
a diagonal word dn in which all elements from T occur propagates this property
to d2n and d2n−1. However, there are many diagonal words in which not all blocks
from T occur, in fact all n of the form n = 2N +2K for some non-negative integers
K and N . This makes an induction proof very complex, and so we will give a
completely different proof.

In Figure 1 we depict the τ3-squares. Here the red lines indicate diagonal words
without the symbol a, and the green lines indicate diagonal words with a symbol a.

τ3(a) τ3(b) τ3(c) τ3(d)

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
.
.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
.
.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

Figure 1. Diagonals in τ3-squares

We also indicated (parts of) the diagonal words above the main diagonal. These
are denoted by d+1 , . . . , d

+
7 , starting from the main diagonal. For instance the block

τ3(a) has the two red diagonal lines d+6 and d+7 .
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a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
.
.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
.
.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

τ4(a)

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.
.
.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

.
a

.

.
a
.
.
.

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.

.

.
a

.

.
a
.
.
.

.

.
.
a

.

.
a
.

a
.
.
.

.
a

.

.

.

.
a
.

.

.
.
a

.

.
a
.

.

.
.
a

a
.
.
.

.
a

.
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Figure 2. Diagonals in τ4-squares inherited from τ3-blocks

Figure 2 gives the red and green line structure for the τ4-blocks inherited from
the τ3-blocks.
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Figure 3. Final color assignment to the diagonals in τ4-blocks

Observe that any diagonal that is partly red, partly green, actually should be a
green diagonal. This leads to Figure 3.

We finish the proof with induction. Starting from n = 4, the blocks τn(a), τn(b),
τn(c), τn(d) have the following properties:

(1) There are some red diagonals di with i ∈ {1, 2, 3, 4, 5}.
(2) There are some red diagonals d+i with i ∈ {2n − 5, . . . , 2n − 1}.
(3) There are some red diagonals di and d+i with i ∈ {2N , N ≥ 2}.
(4) All other diagonals di and d+i are green.

One checks that these four properties hold for n = 4, and then using the induction
hypothesis makes the step from n to n+ 1 in the same way as the step from n = 3
to n = 4 is made as in Figures 1, 2 and 3. �

5. The von Neumann word

The von Neumann word u was introduced in the paper [1]. One has u =
u0u1 · · · = 1101100110110 . . . , fixed point of the substitution ν : 0 �→ 0, 1 �→ 110.

The 2D von Neumann substitution ψ = ν × ν is given by

a �→ a b �→ b

b

a

c �→ c c a d �→ d

d

c

d

d

c

b

b

a

Before we continue, we formulate a simple lemma on the language Lν of the
substitution ν, i.e., on the collection of words that can occur in u.
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Lemma 1. The words 010, 111 and 101101 do not occur in Lν .

Using Lemma 1 one simply derives the next lemma.

Lemma 2. The word 11 occurs uniquely as suffix of 011. The word 101 occurs
uniquely as suffix of 001101. The word 10110 occurs uniquely as suffix of 0110110.

Λ

0

00

Case 1

10

110

0110

00110

Case 5

10110

Case 6

1

01

001

Case 3

101

Case 4

11

Case 2

Figure 4. The prefix tree for the von Neumann words

c c a

c c a

c c a

Case 1

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

c c a c c a a

c c a c c a

Case 2 Case 3

d

d

c

d

d

c

b

b

a

c c a c c a

c c a c c a

c c a c c a

Figure 5. Diagonals for 2D von Neumann words in Cases 1, 2, 3

We split the possible occurrences of words of Lν in the von Neumann word u
according to a tree of prefixes, dividing these in six possible cases. This prefix tree
is given in Figure 4, where Λ is the empty word. Note that we used Lemma 1 again
to determine the offspring of the node labeled 10.

Theorem 4. Let A = 3, 6, 7, 10, 13, . . . give the positions of 0’s in the von Neumann
sequence, and B = 1, 2, 4, 5, 8, 9 . . . the positions of 1 in the von Neumann sequence.
Then

A+A = N \ {2, 3, 4, 5, 7, 8, 11, 15}.
B +B = N \ {1}.
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Proof. The proof of B +B = N \ {1} is almost trivial.
The proof for A+A is based on Theorem 1, with the trivial change that we con-

sider the fixed point starting with 1. The proof runs as the proof for the Fibonacci
word, except that here we need the 15 left most columns.

First one checks easily that the numbers 2, 3, 4, 5, 7, 8, 11, 15 are not in A+A.
To handle the diagonal words dn for n ≥ 16, we split into the six cases we

introduced in Figure 4. In Case 2, 3 and 4 we consider the three diagonals starting
at the left border in the blocks ψ(d), in Case 1, 5 and 6 the single diagonal starting
at the left border in ψ(c). See Figure 5 for the three cases 00, 11 and 001. This
means that in Case 1 the top two blocks are ψ(c)ψ(c), in Case 2 they are ψ(d)ψ(d),
and in Case 3 they are ψ(c)ψ(c)ψ(d).

Case 4

d

d

c

d

d

c

b

b
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d

d

c

d

d
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b

b
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c c a c c aa
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d
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b
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d
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b

b

a

b

b

a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

b

b

a

d

d

c

d

d

c

b

b

a

c c a c c a a c c a c c a

c c a c c a a c c a c c a

c c a c c a a c c a c c a

Case 5

c c a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

b

b

a

a c c a

c c a

c c a

Case 6

c c a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

b

b

a

a c c a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

d

d

c

d

d

c

b

b

a

b

b

a

a a

Figure 6. Diagonals for 2D von Neumann words in Cases 4, 5, 6

In Case 2 a block ψ(c) must precede the top blocks ψ(d)ψ(d), by Lemma 2. In
a similar way there are forced blocks in Case 4 and Case 6.

The other blocks are then inserted following the von Neumannn words ccaccaa . . .
or ddbddbb . . . . In all cases, except the last, a row ccaccaacca . . . has been added at
the bottom. This is allowed because both ψ(c) and ψ(d) have the letter c as prefix.

The red diagonals are those parts of the three diagonals starting in the top block
ψ(d), respectively the single diagonal starting in ψ(c), that do not cross a square
with label a, i.e., the red diagonal ends just before the first a-square. See Figure 6
for the three remaining cases.

The fact that in all six cases a square with label a is encountered finishes the
proof. �

6. The sum of squares

Here we give a classical example of a sumset. Let A = {n2 : n ≥ 1}. It is
well known (see, e.g., [2]), that the characteristic function of A, as a word, is a
letter-to-letter substitution λ of the fixed point with prefix 0 of the morphism

0 �→ 01, 1 �→ 221, 2 �→ 2.

The letter-to-letter map is given by λ(0) = 0, λ(1) = 1, λ(2) = 0.
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The corresponding 2D substitution is the morphism μ given by

00 �→ 00

01

10

11

01 �→ 02

02

12

12

01 11

02 �→ 02 12

10 �→ 20

21 21

20

11

10 11 �→ 22

22

21

22

22

21

12

12

11

12 �→ 22 22 12

20 �→ 20

21

21 �→ 22

22

21

22 �→ 22

The numbers s = n2 +m2 that are a sum of two squares occur as sums of the
indices (n2,m2) of the squares with the symbols 11 in the fixed point S of μ, limit
of μn(00) as n → ∞.

At first sight it is surprising that this set has a fractal structure, but due to
the fact that the morphism μ is not primitive (i.e., the incidence matrix of the
substitution is reducible), there is no exponential scaling structure in the 2D word S,
but rather a polynomial one. The latter simply amounts to the recursion (n+1)2 =
n2 + (2n+ 1). This recursion is clearly visible in Figure 7, which displays the two-
dimensional word μ4(00).
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Figure 7. The 2D word μ4(00)
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