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Abstract

Quantum communication has been shown to be vastly superior to classical commu-
nication in many problems. However no general statements exist which tells us how
much better quantum communication is to its classical counterpart. In this thesis it was
studied the minimum amount of classical bits required to exactly simulate a quantum
communication process. The quantum communication process specifically studied was a
quantum prepare and measurement communication problem. It has been shown that
the calculation of the amount of classical bits of communication required for simulation
reduces to a minimization-maximization optimization problem. Several results have been
presented for for solving this optimization problem and in addition a link was made
between classical simulations of quantum communication and a recent debate on the
reality of the quantum state.
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1 INTRODUCTION

1. Introduction
Quantum computing has been shown to be better than classical computing at many different
tasks. But there are theoretical limits to how much more efficient quantum computers can
be in certain tasks. For example it has been shown that quantum computers are unable to
compress data more efficiently than a classical computer. With quantum internet becoming
more and more advanced this then raises the question of how more efficient a quantum
computer is at communication tasks than a classical computer. Efficient communication
between different devices is important for tasks where data is divided over several devices
which need to communicate to solve a given task. That is why in this thesis the results from a
series of different papers on the subject of comparing classical and quantum communication
will be presented.

The most general communication problem known to us is the communication complexity
problem. This problem as depicted in Figure 1 has two parties, Alice and Bob, which both
receive a set of data in the form of bit strings 𝑋 and 𝑌. Their job is then for Bob to calculate
the value of function dependent on both data sets 𝑓 (𝑥, 𝑦) while communicating as little
as possible. The exact form of 𝑓 (𝑥, 𝑦) depends on which communication problem one is
studying. How much communication takes place is quantified by counting how many bits
both parties exchange during the entire process.

BobAlice

Communication

f(x,y)

Bit string X Bit string Y

Figure 1: The general communication complexity problem where Alice and Bob receive a bit
string 𝑋 and 𝑌 and their job is to calculate 𝑓 (𝑥, 𝑦) while communicating as little as possible.

Above the classical case for the communication complexity problem has been presented
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1 INTRODUCTION

where Bob and Alice are constrained to communicating using bits. But with the advent
of quantum computing multiple methods have been found where Alice and Bob can use
quantum effects to make their job easier. While plenty of models of quantum communication
exist today the one we will be focusing on today is the case Alice and Bob no longer
communicate with classical bits but instead start using quantum bits or rather qubits. While
it has been shown that qubits are not better than regular bits at data compression, as 1 bit
of classical data still requires 1 qubit to store, using clever algorithms one can make an
assortment of communication tasks easier.

The main problem with directly comparing quantum communication and classical com-
munication is that both utilise different resources. In classical communication problems the
amount of classical bits communicated should be minimized while in quantum computation
one tries to minimize the amount of qubits used. The difficulty being that there is no one
way to say that a qubit is equal to a certain amount of classical bits. However it has been
shown that there are communication problems where one uses exponentially less qubits
than classical bits to solve certain communication problems so we know qubits are more
efficient than regular bits. So in this thesis it will be explored how many classical bits would
be required to exactly simulate a generic quantum communication process which then tells
us how much more efficient quantum communication is than classical communication.

In this thesis all the necessary mathematics will be presented to evaluate the amount of
classical bits needed to simulate quantum communication processes. In section 2 the key
mathematical concepts required for classical communication are presented and these are
expanded upon in section 3 by allowing a new kind of communication problem. In section
4 necessary concepts from quantum mechanics are introduced and this all culminates in
section 5 where all mathematical theory touched upon in sections 2 and 3 are applied to
quantum communication. Lastly in section 6 theoretical applications of this problem are
applied to quantum ontological theories and in section 7 a discussion of the key points
presented in this thesis is presented.

This research has been done as a bachelor thesis to complete the bachelors of science
Applied Physics and Applied Mathematics at the Delft University of Technology.
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2 CLASSICAL INFORMATION THEORY

2. Classical Information Theory
Before we can examine how to simulate qubits using classical bits, we must first examine
how communication works via classical bits. To understand this we will explore the concepts
of entropy, encodings and communication channels. This is all in buildup towards the main
theorem of communication theory: the noisy channel coding theorem, published by Claude
E. Shannon in 1948 [1]. With this theorem we have all we need to describe all classical
communication processes and thus how to simulate quantum communication.

2.1 What is Information?
A big question we will start of with is what exactly is meant by communication? It is a
vague term and can have plenty of interpretations. In the broadest sense communication is
about distributing information, one party has information about a certain event and wants
to share it with another party. In general communication theory the event that is being
communicated about is the outcome of a stochastic variable. What we would like to know is:
“How much communication is necessary to inform a second party about the outcomes of a
stochastic variable?". As communication is the sharing of information we would first like to
define how much ’information’ is stored in a stochastic variable.

2.1.1 Information & Entropy

To define communication processes we must define a mathematical concept of information,
as communication entails the sharing of information between two parties. We view gaining
information as learning more about the possible outcomes of a random process. Say Bob
rolls a six sided die in secret and tells Alice that the outcome is even, then Alice gains
information on the die as 3 outcomes are discarded (1, 3 and 5). We would like to quantify
exactly how much information Alice has gained by knowing the result is even.

Gaining information is thus about reducing the amount of possible outcomes a stochastic
variable can have. Similarly we can also ask how much information we gain once we know
what specific outcome a stochastic variable takes, as taking a specific value is simply reducing
the space of possible outcomes to 1 outcome. So we define the information content of a
single outcome as being how much information is contained in the removal of every other
outcome. Using this definition we expect our measure of information content to satisfy the
following 3 properties:

1. An event with probability 100% yields no information.

2. The less probable an event is the more information it yields.

3. If two independent events are measured separately, the total amount of information is
the sum of the surprise of the individual events.

The first property is easy to grasp, if an event has 100% probability then all other events
have 0%, so we do not learn anything new about the system by removing events which could
not occur. To explain the second property we will provide an example. Imagine a twenty
sided die and we learn that the die has taken a value less than 5 which has probability 20%,.
This event reduces our space of possible outcomes to just 4 values down from 20. However
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2.1 What is Information? 2 CLASSICAL INFORMATION THEORY

if we had only been told the die had taken a value less than 11, which has probability of 50%,
we would reduce our space of possible outcomes to 10 elements thus we have learned less.

The third property ensures that we do not learn more or less about a stochastic variable
𝑋 by viewing the outcome of an unrelated stochastic variable 𝑌, one does not learn about
the outcome of a die by rolling another die. Thus we require that the information contents
simply sum and if we decide we no longer care about event 𝑦 occuring we subtract the
information we got from it and have the same information we have from event 𝑥 as if event
𝑦 never occured.

Definition 2.1 (Information content). Given a stochastic variable X with a set of possible outcomes
{𝑥1 , 𝑥2 , . . . , 𝑥𝑛}, we denote the information content of the realision 𝑥𝑖 as:

𝐼(𝑥𝑖) = − log2(𝑃(𝑥𝑖)). (2.1)

The above measure for information content satisfies all our axioms and as it turns out
is the only function which does so, up to multiplication by a constant. This constant is
determined by what value we take as base for the logarithm. Different applications of
information theory use different bases for the logarithm which also changes in which unit
information is measured. In base 2 we measure information in bits as mentioned in the
definition, but in base 3 it is measured in trits and in base e in nats. From now on every
logarithm is taken in base 2 thus all information is measured in bits.

The term bits can be confusing as they already have a seemingly different meaning
in computer science: the binary digits which computers use for calculations. The bits in
which information is measured seem to have nothing to do with the binary digits used by
computers but there is a connection. This will be explored in later sections, so for now think
of bits as an abstract form of representing the information of a variable and completely
distinct from the binary digits used by computers.

Definition 2.2 (Entropy). The entropy, also referred to as Shannon’s entropy, of a stochastic variable
is given by:

H(𝑋) = E(𝐼(𝑋)) = −
∑
𝑖

𝑃(𝑥𝑖) log(𝑃(𝑥𝑖)). (2.2)

Shannon entropy is thus the expected amount of information contained in a stochastic
variable. The name entropy was chosen for this quantity as there is a direct link between
Boltzmann entropy and Shannon entropy, we will not go in depth proving this but for those
familiar with the former quantity: Shannon entropy reduces to Boltzmann entropy (differing
only by a constant) when the microstates are all equiprobable. For those interested further
exploration of this relation can be found in [2].

An interesting question is then what probability distribution maximizes the entropy.
This question can be answered with two facts, the first of which is that the function −𝑥 log(𝑥)
is a concave function and the second is the following theorem about concave and convex
functions[3]:

Theorem 2.1 (Jensen’s inequality). Given a convex function 𝜙 : [𝑎, 𝑏] → R with domain
[𝑎, 𝑏] ⊆ R. Let 𝑦𝑖 ∈ [𝑎, 𝑏] be a sequence of points, for any positive weights 𝑎𝑖 ∈ R we have that

𝜙

(∑
𝑎𝑖𝑥𝑖∑
𝑎𝑖

)
≤

∑
𝑎𝑖𝜙(𝑥𝑖)∑
𝑎𝑖

. (2.3)
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2.1 What is Information? 2 CLASSICAL INFORMATION THEORY

And for concave functions we have

𝜙

(∑
𝑎𝑖𝑥𝑖∑
𝑎𝑖

)
≥

∑
𝑎𝑖𝜙(𝑥𝑖)∑
𝑎𝑖

. (2.4)

We will now apply Jensen’s inequality to the entropy of a stochastic variable 𝑋 with 𝑁
possible outcomes. Let the concave function be 𝑥 ↦→ −𝑥 log(𝑥) with the sequence of points
being given by 𝑦𝑖 = 𝑃(𝑥𝑖) and weights 𝑎𝑖 = 1/𝑁 with 𝑁 ∈ N, putting this all into Eq. 2.4 we
get that

−
(∑ 1

𝑁 𝑃(𝑥𝑖)∑ 1
𝑁

)
log

(∑ 1
𝑁 𝑃(𝑥𝑖)∑ 1

𝑁

)
≥

∑ 1
𝑁 𝑃(𝑥𝑖) log(𝑃(𝑥𝑖))∑ 1

𝑁

. (2.5)

The above inequality can then be simplified into the following form:

log(𝑁) ≥ 𝐻(𝑋). (2.6)

This then holds true for any discrete probability distribution as it holds true for any
𝑁 and any sequence of probabilities 𝑃(𝑥𝑖). In addition one can easily check that equality
is achieved for uniform distributions. So the distribution with the highest entropy is the
uniform distribution. In fact it is the only distribution which has maximum entropy log(𝑁)
[4, p. 29].

2.1.2 Multivariable Entropies

As not all probability distributions are functions of one variable we will need to define
entropy for multivariate distributions. There are two more types of entropy for different
multivariate distributions of which the definition is similar to that single variable entropy
but they are still important enough to give special attention to.

Definition 2.3 (Joint entropy). The joint entropy of two stochastic variables X and Y with possible
outcomes given by the sets 𝒳 and 𝒴 respectively is given by:

H(𝑋,𝑌) = −
∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑃(𝑥, 𝑦) log𝑃(𝑥, 𝑦). (2.7)

The joint entropy describes the informational content of the two variables together. Two
important properties of the joint entropy are:

Property 2.3.1. The joint entropy of two stochastic variables 𝑋 and 𝑌 is lower or equal to the sum of
the individual entropies, i.e. H(𝑋,𝑌) ≤ H(𝑋) + H(𝑌).

Property 2.3.2. The joint entropy of two stochastic variables 𝑋 and 𝑌 is larger or equal to the
maximum of the individual entropies of both variables, i.e. max{H(𝑋),H(𝑌)} ≤ H(𝑋,𝑌).

Both properties lend themselves to nice intuitive explanations. the first property is true
as the 2 variables can be correlated. So if variable 𝑌 contains some information about 𝑋
we want the joint entropy to be lower than the sum of individual entropies. The second
property states that we do not expect the information content of a stochastic variable to
decrease as we add another variable, even if they are correlated adding more variables will
never tell us more about the original variable 𝑋, similarly for 𝑌.
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2.1 What is Information? 2 CLASSICAL INFORMATION THEORY

Definition 2.4 (Conditional entropy). The conditional entropy of two stochastic variables X and Y
with images 𝒳 and 𝒴 is given by:

H(𝑌 |𝑋) =
∑
𝑥∈𝒳

∑
𝑦∈𝒴

𝑝(𝑥, 𝑦) log
(
𝑝(𝑥, 𝑦)
𝑝(𝑥)

)
. (2.8)

A more intuitive form for the conditional entropy is:

H(𝑌 |𝑋) = H(𝑋,𝑌) − H(𝑋). (2.9)
Now we can see that the conditional entropy 𝐻(𝑌 |𝑋) is the surprise left in Y after we

remove the surprise in 𝑋 by seeing the outcome of 𝑋.Property 2.3.1 shows us then that it
must be true that H(𝑌 |𝑋) ≤ H(𝑌).

2.1.3 Mutual Information

To finish off this section we will look at one last quantity which plays a major role in
communication processes.

Definition 2.5 (Mutual information). The mutual information of two stochastic variables X and Y
is

ℐ(𝑋,𝑌) = H(𝑋) − H(𝑋 |𝑌) = H(𝑋,𝑌) − H(𝑋 |𝑌) − H(𝑌 |𝑋) (2.10)

The mutual information gives us a measure of how much information we gain about one
variable by measuring the result of the other variable. Some important properties of the
mutual information which we want to pay extra attention to are:

Property 2.5.1. The mutual information is convex in P(Y|X).

Property 2.5.2. The mutual information is symmetric, that is ℐ(𝑋,𝑌) = ℐ(𝑌, 𝑋).

In addition to these properties the mutual information also has an important inequality
attached to it named the data-processing inequality [4, p. 34-35]. Before we introduce the
inequality we have to introduce the concept of a Markov chain.

Definition 2.6 (Markov chain). Three stochastic variables 𝑋,𝑌, 𝑍 are said to form a Markov chain
𝑋 → 𝑌 → 𝑍 if the conditional probability of Z given Y is conditionally independent of X.

A common example of a Markov chain is 𝑍 = 𝑓 (𝑌), as the values for the variable 𝑍 are
entirely defined by𝑌 where𝑌 is a variable correlated with 𝑋. The data processing inequality
states

Theorem 2.2 (Data-processing inequality). Given a Markov chain 𝑋 → 𝑌 → 𝑍 the mutual
information satisfies

ℐ(𝑋,𝑌) ≥ ℐ(𝑌, 𝑍). (2.11)

Applying this to our previous example of a Markov chain one finds that performing any
transformation 𝑓 (𝑌) on the data of a stochastic variable 𝑌 will not provide any additional
information on the stochastic variable 𝑋.

Now with a solid grasp on what information means we can now move on to the more
complicated task of communicating information about stochastic variables to external parties.
The quantities introduced in this chapter will play an important part in communication
theory.
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2.2 Communicating Information 2 CLASSICAL INFORMATION THEORY

2.2 Communicating Information
Now that we know how much information is contained in a stochastic variable we would
like to know how one goes about the process of communicating events of the variable to the
outside world. In general we want to know how to mathematically describe the process of
one party, called Alice, measuring the outcome of a stochastic variable and sending this to a
second party, called Bob, such that Bob knows with 100% certainty what the outcome of the
variable was.

2.2.1 Encoders & Decoders

Before Alice and Bob can start communicating over long distances they need to get together
and agree on a language to translate the outcomes of the stochastic variable into. This is
done via encoders and decoders which map outcomes to a set of agreed upon symbols
which Alice and Bob both know beforehand. We also want to define a measure which tells
us how efficient a given encoding and decoding scheme is.

In a given communication problem there is a finite set of possible messages ℳ Alice can
send to Bob. Bob knows the entire content of ℳ but does not know which specific message
Alice has received. Beforehand Alice and Bob agree on a finite alphabet 𝒳 which defines
what kind of symbols Alice is allowed to use to describe the outcome of a stochastic variable,
this is called the source code alphabet. Strings of these symbols are called source words. So
to effectively communicate with Bob Alice has to encode her message in terms of her source
code alphabet.

Definition 2.7 (Encoder). An encoder is a map 𝐸𝑛 : ℳ → 𝒳𝑛 that translates messages into
codewords.

Similarly there is a finite alphabet 𝒴 of symbols which defines what Bob receives from
Alice. It is important that we do not assume that Bob and Alice use the same alphabet as it
could happen that whatever medium Alice and Bob use changes the message through noise,
which then changes what kind of symbols Bob could receive. This will be elaborated upon
further later when dealing with noisy communication. For now all Bob has to do the reverse
of Alice and decode a message from 𝒴 to the original set ℳ.

Definition 2.8 (Decoder). A decoder is a map 𝐷𝑚 : 𝒴𝑛 → ℳ that maps source words back to
messages.

We define a combination of a certain set of messages with a given encoder and decoder as
a coding scheme. We define the efficiency of a coding scheme as the amount of information
being transmitted divided by the amount of symbols used by Alice to encode the variable.

Definition 2.9 (Coding rate). The rate R of a coding scheme (ℳ , 𝐸𝑛 , 𝐷𝑛) is defined as

𝑅 =
log(|ℳ|)

𝑛
(2.12)

The rate as viewed from the definition is equal to the amount of information transmitted
divided by the amount of symbols Alice has to use to encode this information. We take
the amount of information transmitted to be equal to log(|ℳ|) as we assume a worst case
scenario, which is when the input distribution of the variable taking values in ℳ is the
uniform distribution. Rate is often given in bits/second, as it is often known in practical
applications how many symbols Alice can send to Bob per second.
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2.3 Communication Channels 2 CLASSICAL INFORMATION THEORY

2.2.2 Shannon’s coding theorem for symbol codes

A very important question in data compression is what the minimal amount of bits is to
encode all the events of a stochastic variable? For that we need to know what properties an
encoding scheme must satisfy to be uniquely decodable. A common type of coding scheme
is called a prefix coding scheme and satisfies the following properties:

1. Every codeword corresponds to a single outcome.

2. No codeword is a prefix of any other codeword.

This second property is required purely for the encoding of multiple outcomes one after
the other. For instance, when you have a binary encoder using the codewords 0, 1, 10 for a 3
outcome variable, then it is not clear what is meant by the sequence of symbols 1010.

These types of codes are referred to as prefix-free codes. For all symbol codes, including
prefix-free codes, we have the following theorem which tells us the expected length of the
code and finally gives us an operational meaning of Shannon entropy. Now the main type
of codes we are interested in are known as uniquely decodable codes. These codes satisfy
that after Alice has encoded a message and send it to Bob that Bob has a 0% chance that Bob
has a different message after encoding.

Theorem 2.3 (Source coding theorem for symbol codes). Given two alphabets 𝒳 and 𝒴, let 𝒳∗

and 𝒴∗ be the set of all finite words composed out of symbols from their respective alphabets. Let X be
a stochastic variable taking values in 𝒳 and let 𝑓 : 𝒳∗ → 𝒴∗ be a uniquely decodable code. If f is an
optimal encoding, then the expected length 𝑆 of the encoding satisfies

𝐻(𝑋)
log(|𝒴|) ≤ 𝑆 ≤ 𝐻(𝑋)

log(|𝒴|) + 1 (2.13)

The simplest example of applying this theorem is that of a fair coin, which has entropy
of 1 bit and can take two values we want to encode 2 possible messages. Thus if we want
to encode the coin into an alphabet with two symbols the lower bound specifies that the
expected message length is at least 1 symbol. Of course the optimal method for encoding
the results of a fair coin is labelling one result 0 and the other 1, which has an expected
message length of 1 symbol.

The +1 in the upper bound is necessary as there are situations where it is impossible
to get the expected code length exactly equal to its lower bound but we still want to know
something about how many symbols are necessary. For example, given a stochastic variable
𝑋 taking values in {𝑥1 , 𝑥2 , 𝑥3 , 𝑥4} with respective probabilities {0.7, 0.26, 0.02, 0.02}. X has
an entropy of 1.09 bits so the expected code length 𝑆 satisfies 0.55 < 𝑆 < 1.55 . The most
efficient prefix free code one can use is {0, 10, 110, 111} for the events {𝑥1 , 𝑥2 , 𝑥3 , 𝑥4}, here
we expect to send 1.34 binary digits on average.

The presented theorem is a weaker version of Shannon’s source coding theorem which
applies to all possible encodings, not just symbol codes. Shannons source coding theorem
essentially states that the lower bound in Theorem 2.3 is true for every possible encoding
one can think of, not just the prefix-free codes presented here.

2.3 Communication Channels
The only thing missing now for Alice and Bob to communicate is the method to go from
Alice’s alphabet 𝒳 to Bob’s alphabet 𝒴. This mapping from one alphabet to the other is
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referred to as the communication channel used by Alice and Bob. A communication channel
can be viewed as a conditional probability distribution where we give probabilities of all
possible outputs given a certain input. A probability distribution is used as we want to allow
for the possibility that the channel is noisy, that is that the message can get disturbed in
the process of sending it. The question now is, given a communication channel, is there an
intrinsic limit to how much information can be transmitted in a single use of said channel?

2.3.1 Channel Capacity

To make studying channels a bit easier we will limit ourselves to a specific type of channel.
The limitation will be that we the probability distribution defining the communication
channel only depends on current input and not on previous or future inputs, when a channel
satisfies this requirement it is called a memoryless channel. From here on out it is assumed
that every channel is memoryless. This means that we can define a channel by a probability
distribution 𝑃(𝑦 |𝑥) where 𝑦 represents the output and 𝑥 any input. Often we are required
to input strings of the input variable 𝑥 into our channel but using that we only allow the
output to depend on the input we can write

𝑃(𝑥1 , . . . , 𝑥𝑛 |𝑦1 , . . . , 𝑦𝑛) = 𝑃(𝑥1 |𝑦1) . . . 𝑃(𝑥𝑛 |𝑦𝑛) (2.14)

A simple example of a discrete memoryless channel is known as the noiseless binary
channel (NBC) as shown in Figure 2. Here the input and output alphabet contain just two
symbols {0, 1} and is defined by the probability distribution 𝑃(𝑦 |𝑥) = 𝛿𝑥𝑦 . This is what is
known as a noiseless channel, there is 0% chance that Bob decodes the wrong message from
Alice as long as the coding scheme is unambiguous.

0

1

0

1

X Y

Figure 2: The simplest example of a communication channel: the noiseless binary channel.
The source code alphabet for sender and receiver are both {0, 1} and the output of the
channel is equal to the input.

When Alice and Bob use a communication channel we imagine that Alice will use her
encoder to encode her message in 𝑛 symbols and then proceed to send these symbols one
by one to Bob. Bob then reassembles the message and uses his decoder to interpret Alice’s
original message. However in the example of the binary channel we know that not every
coding rate is possible for a given coding scheme, it will be impossible for Alice to send Bob
10 bits of data using the channel only once without introducing the chance that error occurs.
Put differently, a communication channel has an inherent limit to which communication
rates do not introduce error. For the binary channel this limit is obvious, it should be

12
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equal to the limit given by Theorem 2.3. However we lack a way of evaluating this limit of
information rates for a noisy channel.

To calculate this maximum rate of a channel we will first define a new, at first seemingly
unrelated quantity, called the channel capacity.

Definition 2.10 (Channel capacity). Given a channel 𝑃(𝑦 |𝑥). For a random variable 𝑋 with
distribution 𝑃𝑋(𝑥) let 𝑌 be the variable with distribution

𝑃𝑌(𝑦) =
∑
𝑋

𝑃𝑋(𝑥)𝑃(𝑦 |𝑥). (2.15)

The channel capacity of this communication channel is then equal to

𝐶 = max
𝑃𝑋 (𝑥)

ℐ(𝑋,𝑌) (2.16)

where the maximization is over the space of possible distributions for X.

The channel capacity turns out to be equal to maximum coding rate we wanted to find
previously. This was shown by Shannon in 1948 in Shannon’s noisy channel coding theorem
or sometimes referred to as simply Shannon’s theorem.

Theorem 2.4 (Shannon’s noisy channel coding theorem). Given a communication channel with
channel capacity 𝐶. Then there exists a sequence of coding schemes, encoding a set of messages ℳ
with encoder 𝐸𝑛 and decoder 𝐷𝑛 , with rates 𝑅 < 𝐶 which satisfy that the maximum probability of
faulty decoding, denoted 𝜆(𝑛), satisfies that 𝜆(𝑛) → 0 as 𝑛 → ∞.

Conversely any such sequence of codes with rates 𝑅 > 𝐶 must have that the probability of faulty
decoding cannot go to 0 as 𝑛 → ∞.

Shannon’s noisy channel coding theorem gives us a way to let channels with noise
simulate channels without noise. While the proof of the theorem is constructive, as in it
gives a method to construct an algorithm to achieve such rates for any channel, the given
algorithm is extremely computationally heavy so the discovery of more efficient algorithms
for noisy channels remains an important area of research. To check if the theorem matches
up with expectations, the channel capacity of the channel in Figure 2 is equal to 1 bit, where
the maximization was achieved by using a uniform distribution. So it is not possible to
use coding schemes with rate higher than 1 bit/second with the noiseless binary channel
without introducing error.

An important fact to note is that when someone is using a noisy channel a person is not
limited to sending less symbols through the channel. We are only limited in how much
information we can send through the channel. To actually send a message through a noisy
channel Alice has to add additional symbols to her message to ensure that Bob can properly
decode the message without chance of error. The amount of symbols needed to send a
message of length 𝑘 through a noisy channel is equal to 𝑘 divided by the channel capacity.
Several examples of noisy channels and their capacities are given below but these examples
will not be of major importance for the rest of this thesis.

2.3.2 Binary Symmetric Channel

An easy channel which is not noiseless is the binary symmetric channel (BSC), as represented
in Figure 3. This channel uses the same alphabets as the NBC but the key difference is with
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Figure 3: Binary symmetric channel. It uses the binary alphabet for input and output but
has with every transmission there is a chance 𝑝 that a bit gets ’flipped’, a 0 becomes a 1 and
a 1 becomes a 0.

every transmission there is a chance p that a bit flip occurs, that is a 0 turns into a 1 and vice
versa. The channel capacity of this quantity can be derived as follows:

𝐶 = max
𝑃(𝑥)

ℐ(𝑋,𝑌)

= max
𝑃(𝑥)

H(𝑋) − H(𝑋 |𝑌)

= 1 − H(𝑋 |𝑌).

The entropy in X is maximized with the uniform distribution and the conditional entropy
does not depend on the input distribution as we will show now. For this we write that Y
takes the value 0 with chance q, and we introduce the notation H(𝑝) to be the entropy of a 2
outcome stochastic variable with respective chances of occuring 𝑝 and (1 − 𝑝).

1 − max
𝑃(𝑋)

∑
𝑝(𝑦)H(𝑋 |𝑌 = 𝑦)

= 1 − max
𝑃(𝑋)

(𝑞H(𝑋 |𝑌 = 0) + (1 − 𝑞)H(𝑋 |𝑌 = 1)

= 1 − max
𝑃(𝑋)

(𝑞H(𝑝) + (1 − 𝑞)H(𝑝))

= 1 − H(𝑝).

So the maximum achievable rate for the binary symmetric channel is 1 − H(𝑝). This
means that the binary symmetric channel with 𝑝 = 1/2 is completely unusable.

2.3.3 Binary Deletion Channel

In the binary deletion channel, as seen in Figure 4, a fraction p of the bits will be deleted.
The receiver however does know which bits are deleted so the channel can be seen as having
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Figure 4: The binary deletion channel (BDC), every bit send through has a chance p to get
erased. The receiver knows when a bit is erased so it can be represented by a symbol ’e’ in
the output.

three outputs: 0, 1 and e for erased. We calculate the channel capacity as follows:

𝐶 = max
𝑝(𝑥)

ℐ(𝑋;𝑌)

= max
𝑝(𝑥)

(H(𝑌) − H(𝑌 |𝑋))

= max
𝑝(𝑥)

(H(𝑌) − H(𝑝)).

Calculating the entropy of Y is easiest by defining new variables E and 𝑌∗ with respective
events {𝑌 = 𝑒, 𝑌 ≠ 𝑒} and {𝑌 = 0, 𝑌 = 1}. Then we can write the entropy of 𝑌 into the
following form

H(𝑌) = H(𝑌∗ , 𝐸) = H(𝐸) + H(𝑌∗ |𝐸). (2.17)

In the next step we will use that the conditional entropy can be rewritten into the form

H(𝑌 |𝑋) =
∑
𝑥∈𝒳

𝑃(𝑥)𝐻(𝑌 |𝑋 = 𝑥). (2.18)

So we can now calculate both entropies on the right hand side of Eq. 2.17 and we can see
that:

H(𝐸) = H(𝑝)
H(𝑌∗ |𝐸) = 𝑃(𝑌 = 𝑒)H(𝑌∗ |𝑌 = 𝑒) + 𝑃(𝑌 ≠ 𝑒)H(𝑌∗ |𝑌 ≠ 𝑒) = 𝑝 · 0 + (1 − 𝑝)H(𝑞).

Where q is the chance that X=0. Subsituting these expressions for the initial expression for
𝐶 we see that:

𝐶 = max
𝑞

H(𝑌) − H(𝑝)

= max
𝑞

(1 − 𝑝)H(𝑞) + H(𝑝) − H(𝑝)

= 1 − 𝑝.

Where maximization is achieved by q = 1
2 .
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In the situation where there is feedback from the receiver from the sender this capacity
makes sense. Every time a bit has been corrupted resend the bit, since there is a chance 1-p
that a bit gets through this translates to an effective capacity of 1-p. However Shannon’s
noisy channel coding theorem states that even without feedback an effective rate of 1-p
should be possible.

2.3.4 Additivity of Channel Capacities

A small result we will use in later chapters about channel capacities is that when we have 2
independent channels that when they are used together that the channel capacities add.

Theorem 2.5 (Additivity of channel capacities). Given 2 channels 𝒩1 and 𝒩2. 𝒩1 has input
alphabet 𝒳1, output alphabet 𝒴1, 𝒩2 is defined similarly. We define the product channel 𝒩 as
having input and output alphabets (𝒳1 ,𝒳2) (𝒴1 ,𝒴2) respectively. The transfer probability of 𝒩 is
𝑝1(𝑦1 |𝑥1)𝑝2(𝑦2 |𝑥2) with both distributiosn being the transfer probabilities of their respective channels.
Then

𝐶(𝒩) = 𝐶(𝒩1) + 𝐶(𝒩2) (2.19)

Intuitively this can be seen as Alice and Bob using two separate channels at once and
then it makes sense that the channel capacities add, as when combining two noiseless binary
channels we expect to be able to send 2 bits of information at a time.

2.4 Reverse Shannon Theorem
Shannon’s noisy channel coding theorem gives us a way for a noisy channel to simulate
a noiseless channel, now we would like to know if it is possible for a noiseless channel to
simulate a channel with noise. This might seem useless as there is no reason why one might
want to make a noiseless channel noisy, however it has useful applications in quantum
communication theory. More importantly to some it gives the intuitive result that there is
no real difference between noiseless and noisy channels, as with clever coding schemes both
types of channels can simulate the other [5].

Theorem 2.6 (Reverse Shannon theorem). Let 𝒩 be a discrete memoryless channel with channel
capacity C and let 𝜖 > 0. Then for each n there exists an exactly faithfull simulation protocol 𝑆𝑛
simulating n uses of 𝒩 while using a noiseless classical channel and prior random information shared
between Alice and Bob. The number of bits of forward communication used by 𝑆𝑛 on channel input
𝑥 ∈ {1 · · · 𝑑𝐼}𝑛 is a random variable, denoted 𝑚𝑛(𝑥). The simulation is exactly faithful in the sense
that

∀𝑛𝑥𝑦𝑃𝑆𝑛 (𝑦𝑛 |𝑥𝑛) = 𝑃𝑁𝑛 (𝑦𝑛 |𝑥𝑛). (2.20)

In addition the protocol is asymptotically efficient in the sense that the probability that the protocol
uses more than 𝑛(𝐶 + 𝜖) bits of forward communication approaches zero in the limit of large n,

lim
𝑛→∞

max
𝑥∈{1···𝑑𝐼 }𝑛

𝑃(𝑚𝑛(𝑥) > 𝑛(𝐶 + 𝜖)) = 0. (2.21)

We see that this simulation has to satisfy two properties. The first is that the conditional
probabilities of the outputs given a certain input should be equal to that of the noisy channel.
The second condition is a bit more complex and will be explained using the BSC as example.
When sending 𝑛 bits through the BSC, we know that a message of 𝑛 bits was encoded. But
if we want to simulate the BSC with a NBC then we can’t send 𝑛 bits through the NBC,
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because then we encode a message of 𝑛 bits as the NBC has a channel capacity of 1. So to
simulate the BSC with the NBC we can send 𝑛𝐶 bits through it at most. The 𝜖 term in the
proof denotes an error term and the theorem is true for every 𝜖 > 0.
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3. Two Input Communication Problem
To simulate a quantum communication problem we will see that both Alice and Bob both
get an input, Alice a quantum state and Bob a quantum measurement. This is an example of
a 2 input communication problem where both parties get an input. We will study such
communication problems without using properties specific to quantum mechanics in this
section. We will then try to find how how much communication is required to classically
simulate 2 input communication problems. In later sections we will start using quantum
effects more to try and solve the problem for quantum prepare and measurement problems.

3.1 The Black Box
The problem is as follows: Alice receives an input 𝑎, sends this to Bob and he proceeds
to alter the input 𝑎 dependent on his received input 𝑏 and outputs a value 𝑠. Note that 𝑠
does not have to be determined deterministically so for any 𝑎 and 𝑏 there can be multiple
possible outputs 𝑠. What we would like to know is how many bits are required to classically
simulate this process. As previously stated we will not assume that we know what 𝑎, 𝑏 and 𝑠
actually are. They are general inputs and can be anything from quantum states to encoding
and decoding schemes. This means that we cannot assume that it even is possible to use a
classical channel to fully encode all information about 𝑎 (we will later see that this is the case
with qubits). To work around this we avoid dealing with 𝑎, 𝑏 and 𝑠 by pulling a ’black box’
over the problem and represent it as a relatively simple probability distribution 𝑃(𝑠 |𝑎, 𝑏).

Before we start with simulating a black box we will simplify the problem by making
several assumptions. It is assumed that 𝑎 and 𝑏 are elements of finite sets 𝐴 and 𝐵, which
are both known to Alice and Bob beforehand, in addition we assume that for any given
𝑎 and 𝑏 the amount of possible outcomes 𝑠 is also finite. In later sections we will analyze
the problem where we allow uncountably many 𝑎 and 𝑏 but the assumption that there
are finitely many possible outcomes given two inputs will always be there. We introduce
the notation where we describe a black box game as a 3-tuple G=(𝑃, 𝐴, 𝐵) , defined by the
probability distribution 𝑃(𝑠 |𝑎, 𝑏) and the sets of possible inputs 𝐴 and 𝐵.

To simulate the black box we will follow the process as described in [6], which is also
represented in Figure 5. For this process Alice and Bob have the option to make use of a
shared random variable Y which is generated in advance and is uncorrelated with both
inputs. With possible use of this random variable Alice can map every input 𝑎 to a message
𝑘 with probability 𝜌(𝑘 |𝑦, 𝑎) which she proceeds to send over a noiseless channel to Bob. Bob
then can decode this message 𝑘 with use of his input 𝑏 and finally generates an output 𝑠
with probability 𝜌(𝑠 |𝑘, 𝑦, 𝑏).

This protocol exactly simulates the black box 𝑃(𝑠 |𝑎, 𝑏) if the probability of outputting 𝑠
via this simulation is the same of generating it via the distribution 𝑃(𝑠 |𝑎, 𝑏) that is, if∑

𝑘

∫
𝜌(𝑠 |𝑘, 𝑦, 𝑏)𝜌(𝑘 |𝑦, 𝑎)𝜌(𝑦)𝑑𝑦 = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑎, 𝑏, 𝑠. (3.1)

To calculate the cost of our classical simulation we would like to know the average
amount of information over all inputs 𝑎 send through our classical channel. There are
several distinct ways to measure the average length of the message but the one we will look
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Figure 5: (a) The standard 2 player communication game, Alice receives input 𝑎 and Bob
receives input 𝑏. Alice sends 𝑎 to Bob and he proceeds to output 𝑠. (b) The classical
simulation of (a), instead of sending 𝑎 Alice encodes A into a codeword 𝑘 which can be send
over a classical channel to Bob. For generating 𝑎 and the final output 𝑠 both parties can
make use of a shared random variable 𝑦.

at is the average expected message length before Alice gets her input a but after she and Bob
got the value for Y. Then we can calculate the average communication cost as

𝒞 = max
𝜌(𝑎)

H(𝐾 |𝑌). (3.2)

Shannon’s source coding theorem then states that 𝒞 then represents how many bits
are required on average to encode 𝑘. We would like that our algorithm for determining
which 𝑘 to send is independent of the input distribution 𝜌(𝑎) so we maximize over that
distribution. This way should our algorithm depend on 𝜌(𝑎) the communication cost will
always represent the worst case scenario.

What we are interested in is the minimum value of 𝒞 over all possible distributions of 𝐾
and 𝑌. We call this value 𝒞𝑚𝑖𝑛 the communication complexity of the black box 𝑃(𝑠 |𝑎, 𝑏).

3.2 Asymptotic Simulations
Instead of trying to simulate a single shot of the communication game we will simulate
many instances at once. This simplifies the problem as when one is encoding infinitely
many messages the average cost per message is exactly equal to the entropy of the message,
instead of an approximation.
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The asymptotic simulation goes as follows, Alice gets as input 𝑎1 , 𝑎2 , . . . , 𝑎𝑁 and similarly
Bob gets as input 𝑏1 , 𝑏2 , . . . , 𝑏𝑁 . We still assume that all inputs come from finite sets 𝐴 and
𝐵. Next Alice encodes all data into a single variable 𝑘 which she can send over a classical
channel to Bob. Bob then uses his inputs and Alice’s message to output the values 𝑠1 , 𝑠2 , . . .
for each game being simulated.

In the asymptotic simulation we then see that distribution 𝜌(𝑘 |𝑎, 𝑦) is replaced with the
distribution 𝜌(𝑘 |𝑎1 , · · · , 𝑎𝑁 , 𝑦). We cannot assume that the cost of 𝑘 is finite so we define
the asymptotic communication cost as lim𝑁→∞ 𝒞𝑝𝑎𝑟/𝑁 where 𝒞𝑝𝑎𝑟 is the total length of 𝑘
required for N simulations. The calculation 𝒞𝑝𝑎𝑟 is similar to calculating 𝒞 in Eq. 3.2 but
with the maximization made over the space of distributions 𝜌(𝑎1 , · · · , 𝑎𝑁 ).

As with the one shot communication complexity, we refer to the minimum asymptotic
communication cost 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
as the asymptotic communication complexity. An important fact

is that the asymptotic communication complexity is always less than or equal to the single
shot communication complexity, as in the worst case scenario the protocol for asymptotic
communication simply comes down to repeating the protocol for the single shot case N
times. Which in turn leads to a total communication cost of 𝑁𝒞𝑝𝑎𝑟

3.2.1 Simulation through Classical Channels

The power of asymptotic simulations is that if we should apply Theorem 2.6 in some way
we would get that the amount of bits of forward communication is exactly 𝑁𝐶 with N
being the amount of simulations and 𝐶 the channel capacity of the channel being used. For
this theorem to then be useful we want a classical channel for which a single use exactly
simulates our two input communication game. Once we have found such a channel we
can calculate its channel capacity and thus calculate the amount of bits needed for 𝑘 by the
reverse Shannon theorem.

The naive way to construct this channel is simply creating the probability distribution
𝜌(𝑘 |𝑎) by averaging over the probabilities of 𝜌(𝑦), however this does not get us very far as
we do not simply have any knowledge over 𝑘 unless we construct an actual algorithm to
simulate 𝑃(𝑠 |𝑎, 𝑏). Thus calculating the channel capacity will be impossible. What we would
like is channel which uses the variables 𝑠, 𝑎 and 𝑏. This may be unintuitive to some, as we
started this section by stating that we do not posses any knowledge about 𝑠, 𝑎 and 𝑏. The
catch is that in actual applications of this theory we do know what 𝑠, 𝑎 and 𝑏 are and their
properties, while 𝑘 is an unknown bit string. And in addition we know the sets 𝐴 and 𝐵 so
in fact we know a lot more about 𝑎, 𝑏 than we do about 𝑘.

In the simulation of the black box game (𝑃, 𝐴, 𝐵) , Alice sends Bob a variable 𝑘 with
probability 𝜌(𝑘 |𝑦, 𝑎). Bob then outputs the outcome 𝑠 according to the probability 𝑃(𝑠 |𝑦, 𝑎, 𝑏)
which satisfies Eq. 3.1. But as Alice does not know what input 𝑏 Bob has gotten surely 𝑘
must contain enough information for Bob to output a value 𝑠 according to 𝑃(𝑠 |𝑎, 𝑏) for every
𝑏. So upon receiving 𝑘 Bob should be able to construct a list s = {𝑠1 , . . . , 𝑠 |ℬ|}, where 𝑠𝑖
represents one of the possible outputs if Bob chooses 𝑏 = 𝑏𝑖 . Simulating G now comes down
to Bob outputting the value 𝑠𝑖 ∈ s which has the same index as his received input 𝑏𝑖 . Given
a 𝑘 the probability that Bob should construct a certain list s is

𝜌(s|𝑘, 𝑦) := 𝜌(𝑠1 , . . . , 𝑠 |𝐵| |𝑘, 𝑦) =
|𝐵|∏
𝑖=1

𝜌(𝑠𝑖 |𝑘, 𝑦, 𝑏𝑖). (3.3)

As we know the probability distribution 𝜌(𝑘 |𝑦, 𝑎) we can remove the above dependency
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on 𝑘 and 𝑦

𝜌(s|𝑎) =
∑
𝑘

∫
𝜌(s|𝑘, 𝑦)𝜌(𝑘 |𝑦, 𝑎)𝜌(𝑦)𝑑𝑦. (3.4)

The distribution 𝜌(s|𝑎) is exactly what we were looking for when we wanted to find a channel
to classically simulate G. Now to confirm that a channel of this type simulates G we have to
check that the marginal distributions of the mth variable 𝜌(s|𝑎) is equal to the distribution
𝜌(𝑠 |𝑎, 𝑏𝑚). To do this we introduce the notation∑

𝑠1

(3.5)

to denote summing over every possible outcome Bob could output if he receives input 𝑏1.
Taking the marginal distribution of the ith variable of 𝜌(s|𝑎) then gives us∑

𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(s|𝑎) =
∑

𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(𝑠1 , . . . , 𝑠𝑖−1 , 𝑠 , 𝑠𝑖+1 , . . . , 𝑠 |𝐵| |𝑎)

=
∑

𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

∑
𝑘

∫
𝜌(𝑠1 , . . . , 𝑠𝑖−1 , 𝑠 , 𝑠𝑖+1 , . . . , 𝑠 |𝐵| |𝑘, 𝑦)𝜌(𝑘 |𝑦, 𝑎)𝜌(𝑦)𝑑𝑦

=
∑
𝑘

∫ ∑
𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(𝑠1 , . . . , 𝑠𝑖−1 , 𝑠 , 𝑠𝑖+1 , . . . , 𝑠 |𝐵| |𝑘, 𝑦)𝜌(𝑘 |𝑦, 𝑎)𝜌(𝑦)𝑑𝑦

Now using Eq. 3.1 we can see that we must have that the marginal distribution of 𝜌(s|𝑘, 𝑦)
must be equal to 𝜌(𝑠 |𝑘, 𝑦, 𝑏𝑚) for exact simulation. Evaluating this marginal distribution
gives

∑
𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(𝑠1 , . . . , 𝑠𝑖−1 , 𝑠 , 𝑠𝑖+1 , . . . , 𝑠 |𝐵| |𝑘, 𝑦) =
∑

𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

|𝐵|∏
𝑖=1

𝜌(𝑠𝑖 |𝑘, 𝑦, 𝑏𝑖)

=
∑
𝑠1

∑
𝑠2 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

|𝐵|∏
𝑖=1

𝜌(𝑠𝑖 |𝑘, 𝑦, 𝑏𝑖)

=

(∑
𝑠1

𝜌(𝑠1 |𝑘, 𝑦, 𝑏1)
) ©«

∑
𝑠2 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

|𝐵|∏
𝑖=1

𝜌(𝑠𝑖 |𝑘, 𝑦, 𝑏𝑖)
ª®®¬

=
∑

𝑠2 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(𝑠2 , . . . , 𝑠𝑖−1 , 𝑠 , 𝑠𝑖+1 , . . . , 𝑠 |𝐵| |𝑘, 𝑦)

...

= 𝜌(𝑠 |𝑘, 𝑦, 𝑏𝑚).
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Here the last step denotes that it is possible to repeat the steps seen in the first four lines
to remove the summation over every variable except over the ith variable which remains
fixed. We have now achieved both our original goals, we wanted to remove to create a
classical channel which simulates G which has a single input and output neither of which
are the communicated variable 𝑘.

Definition 3.1. Given a black box game G=(𝑃, 𝐴, 𝐵) the set 𝒱(G) contains any conditional
probability distribution 𝜌(s|𝑎) over the vector s = (𝑠1 , · · · , 𝑠 |ℬ|)𝑇 where the marginal distributions
𝜌(𝑠 |𝑎) over each variable 𝑠 ∈ s satisfy

𝜌(𝑠 |𝑎) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏. (3.6)

𝒱(G) contains every classical channel capable of simulating G exactly. Now the natural
question to ask is what the channel capacity of a given channel in 𝒱(G) is and to give a
formal proof that this channel capacity is exactly equal to the amount of bits required for 𝑘.

Lemma 3.1. Given a conditional probability 𝜌(s|𝑎) ∈ 𝒱(G) there is a classical protocol simulating
N parallel black box games G, whose asymptotic communication cost per game is equal to the capacity
of the channel 𝜌(s|𝑎) as N goes to infinity.

Proof. Let 𝐶(S|𝐴) be the channel capacity of the communication channel 𝜌(s|𝑎). According
to the reverse Shannon theorem there is a protocol 𝑆𝑁 for a noiseless channel which use
the channel 𝑁𝐶(S|𝐴) times and is exactly faithful to the probability distribution 𝜌(s|𝑎) as
𝑁 → ∞. We are allowed to apply the reverse Shannon theorem as we allow for use of a
shared random variable 𝑌. The communication cost of this protocol is 𝑁𝐶(S|𝐴), so the
asymptotic cost of this protocol is 𝐶(S|𝐴) and the lemma is proven. □

So every channel in 𝒱(G) corresponds to a protocol for sending a variable 𝑘 over
with communication cost equal to the channel capacity. So to calculate the asymptotic
communication complexity we simply have to find the channel in 𝒱(G) with the smallest
capacity, for this we will now define the following quantity

𝒟(G) = min
𝜌(s|𝑎)∈𝒱(G)

max
𝜌(𝑎)

ℐ(S, 𝐴). (3.7)

Now we sadly cannot state that the asymptotic communication complexity is equal to this
quantity 𝒟(G) and be done with it. Lemma 1 only states that every 𝜌(s|𝑎) induces a protocol
with asymptotic communication cost equal to the 𝐶(S|𝐴) but not that every protocol to
generate 𝑘 induces a channel 𝜌(s|𝑎).

Theorem 3.2. The asymptotic communication complexity of the game (𝑃, 𝐴, 𝐵) is the minimum of
the capacity of the classical channels 𝜌(s|𝑎) ∈ 𝒱(G).

Proof. Lemma 1 directly implies that 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
≤ 𝒟(G). To proof the theorem we will show

that 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
≥ 𝒟(G). Let N denote the amount of instances of G being simulated. Let

the distributions 𝜌(𝑘 |𝑦, 𝑎1 , . . . , 𝑎𝑁 ) and 𝜌(𝑠1 , . . . , 𝑠𝑁 |𝑘, 𝑦, 𝑏1 , . . . , 𝑏𝑁 ) satisfy Eq. 3.1, where
the superscript denote which game is simulated. These probability distributions thus
effectively simulate N parallel instances of the black box game G. Let 𝒞0 be the asymptotic
communication cost of this simulation. The marginal distribution 𝜌𝑖(𝑠 𝑖 |𝑘, 𝑦, 𝑚1 , . . . , 𝑚𝑁 ) =
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𝜌𝑖(𝑠 𝑖 |𝑘, 𝑦, 𝑚 𝑖) can then be used to generate a probability distribution 𝜌𝑖(s|𝑎) as described in
the previous section. This distribution can then be used to create the distribution

𝜌(s1 , . . . , sN |𝑎) =
𝑁∏
𝑖

𝜌𝑖(s𝑖 |𝑎). (3.8)

Distributions build in this way satisfy Eq. 3.6 for every 𝑠 ∈ ⋃
𝑖 si.

We now have a Markov chain a → 𝑘 → (s1 , . . . , sN) on which we will apply the data-
processing inequality. The mutual information ℐ(a, (s1 , . . . , sN)) can be taken to be equal to
the channel capacity 𝐶(s1 , . . . , sN |a) as the protocols defined are independent of the input dis-
tribution and the data-processing inequality is true for every input distribution. The mutual
information ℐ(𝑘, a) is equal to 𝑁𝒞0 + 𝑜(𝑁)1, as we should have that lim𝑁→∞ ℐ(𝑘, a)/𝑁 = 𝒞0.
The data-processing inequality now reads:

𝐶(s1 , . . . , sN |a) ≤ 𝑁𝒞0 + 𝑜(𝑁) (3.9)

Let 𝜌0(s|𝑎) ∈ 𝒱(G) be the probability distribution with minimal capacity 𝒟(G). Then the
probability distribution

𝜌𝑚𝑖𝑛(s1 , . . . , sN |𝑎) =
𝑁∏
𝑖

𝜌0(s𝑖 |𝑎). (3.10)

is the channel with minimum capacity 𝑁𝒟(G) due to the additivity of channel capacities.
As this is the minimum capacity we have that

𝑁𝒟(G) ≤ 𝐶(s1 , . . . , sN |a) (3.11)

and thus
𝑁𝒟(G) ≤ 𝑁𝒞0 + 𝑜(𝑁) (3.12)

dividing both sides by 𝑁 and taking the limit 𝑁 to infinity finally gives us

𝒟(G) ≤ 𝒞0 (3.13)

and the theorem is proven. □

3.2.2 Tight Bounds for Communication Complexity

Now that we have a way to calculate the asymptotic communication complexity as per the
optimization problem Eq. 3.7 we can start trying to calculate the one shot communication
complexity 𝒞𝑚𝑖𝑛 . It is currently unknown how to easily calculate this quantity as of right
now but there are tight upper and lower bounds given by the asymptotic communication
complexity. We first start off with the following lemma

Lemma 3.3. Given a conditional probability 𝜌0(s|𝑎) ∈ 𝒱(G) there is a protocol simulating a the
black box game G with communication cost 𝒞 such that

𝐶(S|𝐴) ≤ 𝒞 ≤ 𝐶(S|𝐴) + 2 log(𝐶(S|𝐴) + 1) + 2 log(𝑒) (3.14)

The proof of this lemma works similar to the proof of Theorem 3.1 and makes use of the
one-shot reverse shannon theorem proved in [7].

1𝑜(𝑁) is used to describe any function 𝑓 satisfying lim𝑁→∞ 𝑓 (𝑁)/𝑁 = 0.
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Theorem 3.4. The communication complexity of black box game G satisfies

𝒟(G) ≤ 𝒞𝑚𝑖𝑛 ≤ 𝒟(G) + 2 log(𝒟(G) + 1) + 2 log(𝑒) (3.15)

Proof. The second inequality is given by Theorem 3.3, as we know that the protocol 𝜌(s|𝑎)
with minimal channel capacity 𝒟(G) induces a protocol with cost 𝒞 such that

𝒞 ≤ 𝒟(G) + 2 log(𝒟(G) + 1) + 2 log(𝑒) (3.16)

and the definition of communication complexity states that 𝒞𝑚𝑖𝑛 ≤ 𝒞. The first inequality is
due to that it is impossible for the asymptotic communication complexity cannot be larger
than the communication complexity. □

With Eq. 3.7 and Eq. 3.16 we now have the tools to calculate the communication complexity.
This is also as far as the black box will get us, as to continue we have to start doing calculations
and for this we need to know the properties of our inputs and outputs. For this we will start
applying our theory to a new technology which has revolutionized computer science to its
core: quantum computing.
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4. Quantum Communication
In this section we will apply the general theory we have developed in Section 3 to quantum
communication. Quantum communication is a broad subject roughly defined by usage of
quantum processes to communicate information between parties. There are many ways to
exploit the postulates of quantum mechanics to achieve these goals but we will be looking
at the most basic model of quantum communication where Alice and Bob simply replace
their classical bits with qubits. It is assumed that the reader is comfortable with quantum
mechanics but for those who are not, or need a quick refresher, can find a brief review of the
basics of Quantum Mechanics in Appendix A.

The problem we will be examining here goes as follows: Alice gets as input a quantum
state 𝜓 which she proceeds to send to Bob through the quantum channel ℒ. Bob then
performs a possible measurement ℳ which is his received input. Then Bob proceeds to
output the measured 𝑠. Afterwards we will see how one can construct the conditional
distribution 𝑃(𝑠 |𝑎, 𝑏) for a two input communication problem from this quantum prepare
and measurement communication problem. This application of a two input communication
problem is also referred to as a quantum game.

4.1 Mixed States
Just like how classical channels can be represented by a probability distribution 𝜌(𝑦 |𝑥)
quantum channels will also be represented by a conditional probability distribution for the
output given a certain input. Only in the quantum case the input and output are of course
quantum states. Due to this the math for quantum communication can get tedious as a single
input corresponds to several outputs and every output corresponds to different outputs
upon measurement. Luckily there is a way to represent quantum states which makes the
calculations a lot easier, this representation is called the density operator.

Suppose Bob receives a quantum state |𝜓𝑖⟩ out of multiple possible states |𝜓1⟩ , . . . , |𝜓𝑛⟩.
Just like with classical channels Bob also knows the probability 𝑝𝑖 with which he received
|𝜓𝑖⟩. We then construct the density operator as

𝜌 =
∑
𝑖

𝑝𝑖 |𝜓𝑖⟩ ⟨𝜓𝑖 | . (4.1)

Density operators allow us to describe entire statistical ensembles of quantum states with
a singular matrix. Such ensembles are also called mixed states, in contrast to pure states
which are states not in ensemble. This density operator allows us to represent the output of
a quantum channel as a density operator which then simplifies the math. Using only the
definition of density operators we can derive the following useful properties:

1. (Trace condition) A density operator 𝜌 has trace equal to 1.

2. (Positivity condition) 𝜌 is a positive operator.

3. (Hermitian condition) 𝜌 is a Hermitian operator.

4. (Idempotency condition) If the state is pure then the density matrix is idempotent, that
is 𝜌2 = 𝜌.
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While these conditions are easy to derive using Eq. 4.1 it is worth it to examine what
they physically represent. The trace condition implies that the probabilities of the different
measurement outcomes sum to 1 as one would expect from any quantum state. Even if we
have that the quantum state is represented by a statistical ensemble we will always get a
single outcome.

Another way of viewing the density operator is, as the name implies, an operator
composed out of several projection operators |𝜓⟩ ⟨𝜓 | with weights 𝑝𝑖 . As we can use
projection operators to create measurement operators we then must have that for any density
operator that ⟨𝜓 |𝜌|𝜓⟩ must be greater than 0 for every 𝜌 and 𝜓. This is in fact the definition
of a completely positive operator so 𝜌 must be completely positive.

The idempotency condition also can be explained in a similar way. When we are dealing
with a pure state the density operator is a projection operator. So if we apply the density
operator to itself we expect no change, we are simply projecting a quantum state onto itself.

Using these properties we can rewrite all postulates of quantum mechanics in terms of
density operators. The proofs that the proceeding postulates are equivalent to the regular
versions of the postulates of quantum mechanics are omitted but can be found in [8].

Postulate 1’: Associated with any isolated physical system is a complex vector space associated
with an inner product, also known as a Hilbert space, which is known as the state space of the
system. The system is completely described by a positive density operator with trace one. The density
operator of a mixed state is given by

𝜌 =
∑
𝑖

𝑝𝑖𝜌𝑖 . (4.2)

Postulate 2’: The time evolution of a closed quantum system 𝜌1 at time 𝑡1 to the quantum state
𝜌2 at time 𝑡2 is given by a unitary transformation U dependent on 𝑡2 − 𝑡1. That is,

𝜌2 = 𝑈𝜌1𝑈
† (4.3)

Postulate 3’: A quantum measurement is described by a set {𝑀𝑚} of measurement operators.
These are operators acting on the state space of the quantum system. The index m refers to the different
outcomes of the measurement being performed. The probability that result m occurs is given by

𝑝(𝑚) = Tr(𝑀†
𝑚𝑀𝑚𝜌) (4.4)

and the post measurement quantum state is given by

𝑀†
𝑚𝑀𝑚𝜌

Tr(𝑀†
𝑚𝑀𝑚𝜌)

. (4.5)

The measurement operators must satisfy the completeness relation:∑
𝑚

𝑀†
𝑚𝑀𝑚 = 1. (4.6)

Now we can view every quantum channel, even those with some form of noise, as
mappings from density operators to density operators.
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4.2 The Bloch Sphere
Even the simplest form of quantum state, the qubit, requires 4 coordinates to describe so
cannot be nicely visualized. However by exploiting some of the properties of qubits we can
find a way to represent qubits in 3d space, which in turn will give us a nice way to visualize
the effects of quantum channels.

4.2.1 Pure States on the Bloch Sphere

As a standard qubit is described by 2 complex numbers it has 4 degrees of freedom and
thus requires 4 values to represent. However the requirement that the qubit is normalized
removes 1 degree of freedom as the magnitude of 1 of the variables is fixed by the other
complex variable. There is a second trick we can use to remove 1 more degree of a pure state
qubit using only two coordinates. To do this we first rewrite the qubit into the following
form

|𝜓⟩ = 𝑒 𝑖𝛾
(
cos(𝜃2 ) |0⟩ + 𝑒 𝑖𝜙 sin(𝜃2 ) |1⟩

)
𝜃, 𝛾, 𝜙 ∈ R. (4.7)

We can rewrite the qubit into this form as we require that the qubit must be normalised.
The trick we will use is that the factor 𝑒 𝑖𝛾, also known as the global phase, turns out to be
physically irrelevant and can be ignored. This can be seen by examining the probabilities
for acquiring an outcome 𝑚, with associated POVM operator 𝐸𝑚 , for the quantum state��𝑒 𝑖𝛾 |𝜓⟩〉. One can then see that ⟨𝜓 |𝑒−𝑖𝛾𝐸𝑚𝑒 𝑖𝛾 |𝜓⟩ = ⟨𝜓 |𝐸𝑚 |𝜓⟩, so the global phase does not
change the statistics of the measurement outcomes. As we are only interested in the statistics
of measurement results and not the actual state itself we can then assume that the 𝛾 = 0 and
write every qubit as

|𝜓⟩ = cos(𝜃2 ) |0⟩ + 𝑒 𝑖𝜙 sin(𝜃2 ) |1⟩ . (4.8)

The values 𝜃 and 𝜙 now represent points on a unit sphere. Such a sphere is called the
Bloch sphere and is represent in Figure 6. The Bloch sphere allows for easy visualizations of
quantum operations mapping qubits to different qubits.

4.2.2 Mixed States on the Bloch Sphere

We know how to represent pure states on the Bloch sphere but we would in addition like a
way to represent mixed states for qubits on the Bloch sphere. This should be possible as
mixed states are described by density operators, which have 3 degrees of freedom due to the
trace and hermitian condition. However it should not be allowed to map mixed states to
points on the surface of the Bloch sphere, as those points are reserved for pure states. A
good starting point is describing density operators in the basis of all hermitian matrices,
which is given by {[

1 0
0 1

]
,

[
0 1
1 0

]
,

[
0 −𝑖
𝑖 0

]
,

[
1 0
0 −1

]}
. (4.9)

The latter three of these are called the Pauli matrices, denoted respectively 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 . As
density operators are hermitian they can be represented by a vector a ∈ R4 with respect to
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Figure 6: The Bloch sphere representation of a qubit |𝜓⟩. All qubits can be represented by a
point on the surface of the Bloch sphere. The angles 𝜃 and 𝜙 represent the two variables
required to describe a qubit and the poles of the Bloch sphere correspond to the |0⟩ and |1⟩
states.

the basis. We rewrite every density matrix to the form

𝜌 =

[
𝑎𝑖 + 𝑎𝑧 𝑎𝑥 − 𝑖𝑎𝑦
𝑎𝑥 + 𝑖𝑎𝑦 𝑎𝑖 − 𝑎𝑧

]
. (4.10)

Where the subscripts of 𝑎 refer to their corresponding basis matrices. Thus 𝑎𝑖 is associated
with the identity matrix and 𝑎𝑥 , 𝑎𝑦 and 𝑎𝑧 with their corresponding Pauli matrices. By using
the fact that the density operators have trace one we can see that we must have that 𝑎𝑖 = 1/2.
So we will refer to the vector a as a 3 dimensional real vector with values 𝑎𝑥 , 𝑎𝑦 and 𝑎𝑧 . With
this notation we can rewrite every density operator into the following form:

𝜌 =
1
2 (𝐼 + a · 𝜎)

(a · 𝜎) := 𝑎𝑥

[
0 1
1 0

]
+ 𝑎𝑦

[
0 −𝑖
𝑖 0

]
+ 𝑎𝑧

[
1 0
0 −1

]
.

(4.11)

Now the 3 remaining coordinates in the vector a correspond to points in 3d space and
what we would like to show is that these points are coordinates in the Bloch sphere. To
formally prove this we have to show that a pure state corresponds to a vector satisfying
|a| = 1. To do this we will use the idempotency condition for pure states. We write

1
4 (𝐼 + a · 𝜎)(𝐼 + a · 𝜎) = 1

2 (𝐼 + a · 𝜎) (4.12)
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which upon expanding the brackets on the left hand side turns into

1
4 (𝐼 + 2(a · 𝜎) + (a · 𝜎)2) = 1

2 (𝐼 + a · 𝜎). (4.13)

To continue we will use the property of Pauli matrices that (a · 𝜎)2 = |a|2𝐼 [9]. This allows us
to write

1
4 (𝐼(1 + |a|2) + 2(a · 𝜎)) = 1

2 (𝐼 + a · 𝜎).

Where the last expression is only true if and only if |a|2 = 1.
Now have a way to represent density operators on the Bloch sphere. But even in the case

that |a|2 < 1 the vector a still points to a point in a unit sphere and still represents a valid
density operator through Eq. 4.11. So what this implies is that interior points on the Bloch
sphere represent mixed states and the surface represents all pure states. This will allow us
visually represent the effects of quantum channels via the Bloch sphere, even if the output
of a quantum channel is a mixed state.

4.3 Quantum Channels
Using the theory of the Bloch sphere and density operators we have the full mathematical
toolkit to start talking about quantum channels and visualizing them as well. First we
introduce what kind of mapping between density operators fully describes a quantum
channel and then some examples are worked out to build up intuition.

4.3.1 Superoperators

Finally we have all the tools we need to fully present quantum channels and start applying
our black box theory. At the start of this chapter we mentioned that Alice is able to send a
quantum state through a quantum channel ℒ. With all the theory we have developed we
will work through the quantum communication problem one more time and rigorously
define everything that happens.

First Alice receives a quantum state, either mixed or pure. This state can be represented by
a density operator and will afterwards be send through a quantum channel. This quantum
channel can be noisy which then means that whatever qubit Bob receives is not necessarily
the same as Alice send. It can also be the case for a channel that there is a chance that the
quantum state Alice sends has a chance to be send through unchanged, or a chance to be
changed in some way just like in the examples of classical channels we saw in Section 2. So a
single input can be mapped to a statistical ensemble or rather, the mixed states we already
encountered. A quantum channel must map density operators to density operators, this
then means that a quantum channel must preserve all properties of density operators.

Definition 4.1 (Superoperator). A superoperator ℒ is a linear operator acting on a vector space of
linear operators which preserves trace and is completely positive.

Superoperators are exactly what we are looking for to depict quantum channels. It
has to be a linear mapping, as we expect that upon giving it a mixed state as given in
Eq. 4.1 we want the same results if we used the channel multiple times with input state
|𝜓𝑖⟩ with probabilites 𝑝𝑖 . The properties of density operators have to be preserved thus the
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superoperator has to preserve trace and it must be completely positive, which means that if
the input is a positive operator the output must also be.

Now we are finally able to give a method to construct the probability distribution 𝑃(𝑠 |𝑎, 𝑏)
for our quantum game. Alice receives a quantum state 𝜌 and sends this to Bob through a
quantum channel with superoperator ℒ, such that Bob receives the quantum state ℒ[𝜌].
Bob then performs a POVM measurement where the probability of giving output 𝑠 is given
by

𝑃(𝑠 |𝑎, 𝑏) = Tr(𝐸𝑠ℒ[𝜌]). (4.14)
Which is what we originally set out to construct. With Eq. 4.14 we have a probability
distribution on which we can apply all derived results in Section 3, in particular we can now
start working on solving Eq. 3.7 for particular quantum channels.

4.3.2 Quantum Teleportation and the Depolarizing Channel

An important channel often seen is the quantum depolarizing channel. This channel has a
chance 𝑝 that any input is replaced by the maximally mixed state 𝐼/2 and a probability 1 − 𝑝
that the qubit is left untouched. This means that the channel corresponds to the mapping

ℒ[𝜌] = 𝑝
𝐼

2 + (1 − 𝑝)𝜌. (4.15)

A quick calculation shows that the effect of this mapping on the Bloch sphere corresponds to
contracting the Bloch Sphere by a factor 𝑝 as depicted in Figure 7. When 𝑝 = 1 for example
we expect the Bloch sphere to contract entirely into the point (0, 0, 0) which represents the
maximally mixed state.

Figure 7: Visualization of the effect of the quantum depolarizing channel on the pure states,
where the quantum depolarizing channel has a 50% chance to flip a state to the maximally
mixed state.

This particular quantum channel arises physically in the case of quantum teleportation.
Quantum teleportation entails the process of Alice wanting to send a qubit |𝜓⟩ to another
party Bob, often over very large distances.
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The protocol for quantum teleportation is as follows: say Alice has a quantum state |𝜓⟩𝐶
and wants to send this over to Bob. What they have at their disposal is a classical channel
they can communicate across and a pair of entangled quantum states, where we denote
Alice’s entangled particle with subscript A and Bob’s with B. Now we will require that
the entangled particle is in one of four Bell states, the Bell states are a set of maximally
entangled quantum states forming a basis for a 4 dimensional quantum state, thus form a
basis for all systems composed of 2 qubits. The four Bell states are denoted as follows:

|Φ+⟩ = 1√
2
(|0⟩𝐴 ⊗ |0⟩𝐵 + |1⟩𝐴 ⊗ |1⟩𝐵 (4.16)

|Φ−⟩ = 1√
2
(|0⟩𝐴 ⊗ |0⟩𝐵 − |1⟩𝐴 ⊗ |1⟩𝐵) (4.17)

|Ψ+⟩ = 1√
2
(|0⟩𝐴 ⊗ |1⟩𝐵 + |1⟩𝐴 ⊗ |0⟩𝐵) (4.18)

|Ψ−⟩ = 1√
2
(|0⟩𝐴 ⊗ |1⟩𝐵 − |1⟩𝐴 ⊗ |0⟩𝐵). (4.19)

Now Alice has access to particles A and C. As the Bell states form a basis Alice can perform
a measurement on the combined states of these particles thus collapsing the combined state
AC to one of the four Bell states. This causes Bob’s particle B to collapse to a state closely
related to or equal to the original state of |𝜓⟩𝐶 . Once Alice has send her measurement result
to Bob which only requires 2 bits of communication as there are 4 possible results, Bob can
perform a unitary operation dependent on Alice’s measurement result on his particle B and
finally have a particle in the same state as |𝜓⟩𝐶 at the start.

Crucially for this protocol to work Alice and Bob need to know exactly what Bell state they
have. Any four of the Bell states work but the unitary operation Bob performs is dependent
on the initial Bell state. However as with any practical implementation it could happen that
due to noise the Bell states can be turned into another state without the knowledge of Alice
or Bob. But if a model is known for the quantum noise it should be possible to rewrite the
entangled state as a mixed state of the original Bell state and the states which have been
altered. This result is important as it is possible to model a quantum teleportation process
which makes use of an arbitrary mixed state as a quantum depolarizing channel[10].

As quantum teleportation plays an important role in the development of a potential
quantum internet it it is important to study how much classical information is needed
to simulate a quantum depolarizing channel. As this then shows us how much better a
potential quantum internet is than the current classical internet.
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5. Convex Optimization
To compute the asymptotic communication complexity we now have to find a solution for
the following optimization problem

𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
= min

𝜌(s|𝑎)∈𝒱(G)
max
𝜌(𝑎)

ℐ(S, 𝐴) (5.1)

together with the constraints ∑
𝑠1 ,...,𝑠𝑖−1 ,
𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(s|𝑎) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏 (5.2)

𝜌(s|𝑎) ≥ 0 ∀s, 𝑎 (5.3)
𝜌(𝑎) ≥ 0 ∀𝑎. (5.4)∑

𝑎

𝜌(𝑎) = 1 (5.5)

An important feature of this problem is that the problem is convex in 𝜌(s|𝑎) and concave
in 𝜌(𝑎). Optimization of convex and concave functions is a well studied area and thus
there are multiple important results we can utilize to solve our problem. In this section
several of these results will be presented in addition to some results unique to the two input
communication problem.

The results presented in this section can in general be applied to all two input communi-
cation problems but from here on out we will solely refer to the quantum game as the two
input communication problem being studied.

5.1 The Minimax theorem
In solving our problem Eq. 5.1 we have to both minimize and maximize the objective function
in regards to 𝜌(s|𝑎) and 𝜌(𝑎) respectively. The current form of Eq. 5.1 implies that we are
required to know the optimal distribution 𝜌𝑚𝑎𝑥(𝑎) before we can start minimizing over 𝜌(s|𝑎).
This makes it quite difficult to derive algorithms for solving the minimization problem, as
we are not minimizing over a simple objective function but over a pointwise maximum of
objective functions. Ideally we would want to swap the order in which the minimzation
and maximization are done, as in that case we can search for a function 𝜌(s|𝑎) maximizing
the objective function without caring about 𝜌(𝑎) and vice versa. As it turns out there is a
theorem which allows us to do exactly this swapping of minimization and maximization,
the minimax theorem proven by John von Neuman in 1928 [11].
Theorem 5.1 (Minimax theorem). Let 𝑋 ⊂ R𝑛 and 𝑌 ⊂ R𝑚 be compact convex sets. If
𝑓 : 𝑋 × 𝑌 → R is continuous and is concave in x and convex in y then we have that

max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓 (𝑥, 𝑦) = min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓 (𝑥, 𝑦) (5.6)

We already know that mutual information is convex in 𝜌(s|𝑎) and it is concave in 𝜌(𝑎) so
we can apply Theorem 5.1 to Eq. 5.1. In proceeding sections we can then look for distributions
𝜌(s|𝑎) minimizing the ℐ(S, 𝐴) without having to care about 𝜌(𝑎). This greatly simplifies the
search for the distribution 𝜌(s|𝑎) minimizing ℐ(S, 𝐴).
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5.2 Maximization over Input Distributions
The first problem we then turn our attention to is the optimization of the input distributions
with the restrictions given by

Problem 1.
max
𝜌(𝑎)

ℐ(S, 𝐴) (5.7)

subject to: 𝜌(𝑎) > 0 ∀𝑎 (5.8)

The first problem one might notice is that our objective function is not convex in 𝜌(𝑎)
but concave. This could be a problem as most optimization algorithms are specifically
designed for convex optimization problems. However an easy fix one can do is try to solve
the optimization problem

min
𝜌(𝑎)

−ℐ(S,A). (5.9)

The objective function in Eq. 5.9 is convex in 𝜌(𝑎) and minimzing −ℐ(S,A) is equivalent to
maximizing ℐ(S,A). So our solution to Eq. 5.9 is the same as for Eq. 5.1, as long as we still
require that 𝜌(𝑎) ≥ 0.

The presented minimization problem is then a convex optimization over |𝒜| variables.
There are several algorithms available to solve such a problem. However in this section we
will present a condition on 𝑃(𝑠 |𝑎, 𝑏) which is sufficient for the optimal input distribution to
be a uniform distribution. We will start off by presenting two lemmas which can then be
combined to proof a condition sufficient for the optimal input distribution to be uniform.

5.2.1 Conditions for Uniform Input Distribution

We will now present two lemmas which will be used to derive a result on the amount of
variables defining the input distribution.

Lemma 5.2. Given a quantum game G = (𝑃, 𝐴, 𝐵) and the associated optimization problem with
objective function ℐ(S, 𝐴). Without loss of generality let 𝑆 be the set of all possible outcomes for
every possible measurement 𝑏 ∈ 𝐵. Let 𝜌𝑚𝑎𝑥(𝑎) be the input probability distribution maximizing
ℐ(S, 𝐴). If there exists bĳective transformations 𝑓 : 𝐴→ 𝐴 and 𝑔 : 𝐵 × 𝑆 → 𝐵 × 𝑆 satisfying that

𝑃(𝑠′ | 𝑓 (𝑎), 𝑏′) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (5.10)

where (𝑏′, 𝑠′) = 𝑔(𝑏, 𝑠), then 𝜌𝑚𝑎𝑥( 𝑓 (𝑎)) also maximizes the objective function ℐ(S, 𝐴).

Proof. Given the quantum game G=(𝑃, 𝐴, 𝐵) , let S be the set of all possible measurement
outcomes for every measurement. If two measurements have different labels for their
respective measurement outcomes, but the same amount of outcomes, then one can change
one of the measurements by relabeling the outcomes of one of the measurements to the
same labels as the other measurement. This process does not alter the quantum game in any
meaningful way. Similarly if two measurements have a different amount of measurement
outcomes one can alter the measurement with the least amount of outcomes by adding
outcomes with 0% probability of occurring, this process also does not change the quantum
game. So we can assume that every measurement takes on outcomes given by the same set
𝑆.

Let 𝑓 : 𝐴→ 𝐴 and 𝑔 : 𝐵 × 𝑆 → 𝐵 × 𝑆 be bĳective transformations such that
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𝑃(𝑠′ | 𝑓 (𝑎), 𝑏′) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑠 ∈ 𝑆 (5.11)

where (𝑏′, 𝑠′) = 𝑔(𝑏, 𝑠). Let 𝜌𝑚𝑎𝑥(𝑎) be the optimal input distribution for the associated
optimization problem with G. We will now construct a separate quantum game by applying
the relevant transformations to all elements defining G, except the set of measurements, like
so

G′ = (𝑃(𝑠′ | 𝑓 (𝑎), 𝑏′), 𝑓 (𝐴), 𝐵) (5.12)

As 𝑓 is bĳective we have that 𝑓 (𝐴) = 𝐴 and due to 𝑔 being bĳective the domain on which
𝑃(𝑠′ | 𝑓 (𝑎), 𝑏′) is defined remains unchanged. As 𝑃(𝑠 |𝑎, 𝑏) satisfies Eq. 5.11 we have that
G=G’ as all 3 elements defining the quantum game are the same. We will now proof that
𝜌𝑚𝑎𝑥( 𝑓 (𝑎)) is a solution to G’ and then also a solution to G due to the games being identical,
this will be done via a proof by contradiction.

Let 𝜌𝑚𝑎𝑥( 𝑓 (𝑎)) be a non-optimal solution to G’. We will now apply the inverse transfor-
mations used to construct G’ to construct the new game

G′′ = (𝑃(𝑠′′ | 𝑓 −1( 𝑓 (𝑎)), 𝑏′′), 𝑓 −1( 𝑓 (𝐴)), 𝐵) (5.13)

where again (𝑏′′, 𝑠′′) = 𝑔−1(𝑔(𝑏, 𝑠)). Trivially we then have that G′′ = G, so we must then
have that 𝜌𝑚𝑎𝑥( 𝑓 −1( 𝑓 (𝑎)) = 𝜌𝑚𝑎𝑥(𝑎). By the same assumption that 𝜌𝑚𝑎𝑥( 𝑓 (𝑎)) is non-optimal
we have that 𝜌𝑚𝑎𝑥( 𝑓 −1( 𝑓 (𝑎)), and thus 𝜌𝑚𝑎𝑥(𝑎), is a non-optimal solution to G. Hence we
have a contradiction and then we must have that 𝜌𝑚𝑎𝑥( 𝑓 (𝑎)) is an optimal solution of G’. □

Lemma 5.3. Given a concave maximization problem with objective function 𝑓 (x) with solutions
x1 , . . . , x𝑛 . Any sum

∑
𝑖 𝑎𝑖x𝑖 satisfying

∑
𝑎𝑖 = 1 is also a solution, as long as

∑
𝑖 𝑎𝑖x𝑖 does not

violate any constraints.

Proof. We will apply Jennsen’s inequality to the function 𝑓 on points x1 , . . . , xn and with
any weights satisfying

∑
𝑖 𝑎𝑖 = 1 and that

∑
𝑖 𝑎𝑖𝑥𝑖 = 1 not violating any possible constraints

of the optimization problem. We then have

𝑓

(∑
𝑖 𝑎𝑖x𝑖∑
𝑖 𝑎𝑖

)
≥

∑
𝑖 𝑎𝑖 𝑓 (x𝑖)∑

𝑖 𝑎𝑖

𝑓

(∑
𝑖

𝑎𝑖x𝑖

)
≥

∑
𝑖

𝑎𝑖 𝑓 (x𝑖)

𝑓

(∑
𝑖

𝑎𝑖x𝑖

)
≥ 𝑓 (x1)

where in the last line it was used that 𝑓 (xi) = 𝑓 (x1) for any 𝑖. As x1 is a solution to a
maximization problem we must have that 𝑓 (∑𝑖 𝑎𝑖x𝑖) = 𝑓 (x1) which implies that

∑
𝑖 𝑎𝑖x𝑖 is a

solution. □

Finally we can combine the results of both Theorem 5.2 and Theorem 5.3 to derive the
following theorem.

Theorem 5.4. If the probability distribution 𝑃(𝑠 |𝑎, 𝑏) of a quantum game G = (𝑃, 𝐴, 𝐵) is invariant
under a transformation 𝑎 → 𝑎 + 𝑙 mod |𝒜| together with bĳective transformations on 𝑠 and 𝑏 we
have that the amount of variables over which must be maximized can be reduced to gcd(𝑙 , |𝒜|) − 1.
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Proof. Let 𝜌𝑚𝑎𝑥(𝑎) be the input probability distribution solving the optimization problem
associated with G. As per Theorem 5.2 we have that 𝜌𝑚𝑎𝑥(𝑎 + 𝑙) is also a solution to our
optimization problem. Then by Theorem 5.3 we also have that

𝜌(𝑎) = 1
|𝒜|

|𝒜|∑
𝑖=1

𝜌𝑚𝑎𝑥(𝑎 + 𝑖𝑙) (5.14)

is also a solution if 𝜌(𝑎) satisfies all relevant conditions. We will now proof that 𝜌(𝑎) does
satisfy the conditions and also show that the distribution has gcd(𝑙 , |𝒜|) − 1 degrees of
freedom.

The first condition requires that 𝜌(𝑎) ≥ 0. It is trivial to show that this is true as
𝜌𝑚𝑎𝑥(𝑎) ≥ 0. The second condition requires that

∑
𝑎 𝜌(𝑎) = 1. To show this see that 𝑎 we

have that 𝑎 + 𝑖𝑙 can take on 𝑘 := |𝒜|
gcd(𝑙 ,|𝒜|) distinct values. This means that we can rewrite

Eq. 5.14 as

𝜌(𝑎) = 1
|𝒜| gcd(𝑙 , |𝒜|)

𝑘∑
𝑖=1

𝜌𝑚𝑎𝑥(𝑎 + 𝑖𝑙) =
1
𝑘

𝑘∑
𝑖=1

𝜌𝑚𝑎𝑥(𝑎 + 𝑖𝑙). (5.15)

This can be done as we know that 𝜌(𝑎 + 𝑖𝑙) can take on 𝑘 distinct values and each of those
distinct values appear gcd(𝑙 , |𝒜|) times in the sum. With this new notation we can easily
write ∑

𝑎

𝜌(𝑎) = 1
𝑘

∑
𝑎

𝑘∑
𝑖=1

𝜌𝑚𝑎𝑥(𝑎 + 𝑖𝑙)

=
1
𝑘

𝑘∑
𝑖=1

∑
𝑎

𝜌𝑚𝑎𝑥(𝑎 + 𝑖𝑙)

=
1
𝑘

𝑘∑
𝑖=1

1

= 1

And we see that the condition holds. As 𝜌(𝑎) can only take on 𝑘 values and one of these
values is fixed due to the condition that all values summed together are equal to 1 the
probability distribution 𝜌(𝑎) has 𝑘 − 1 degrees of freedom. □

An important corollary from this theorem is then if gcd(𝑙 , |𝒜|) = 1, then we have that
our input distribution is the uniform distribution.

5.2.2 Measurements for Uniform Input Distribution

An easy way to start constructing sets of states and measurements so that the input
distribution is uniform is by limiting the possible measurements to only Projective valued
measurements. A way to construct such sets is for example by creating

v𝑥 =

cos( 𝜋𝑥|ℬ| )
sin( 𝜋𝑥|ℬ| )

0

 (5.16)
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Where of course |ℬ| is the total amount of measurements. Now if the eigenvectors of
the mth measurement correspond to ±v𝑚 with eigenvalues 𝑠𝑚 = ±1 and if the allowed
states 𝒜 consist out of all 2𝑀 eigenvectors we have that 𝑃(𝑠 |𝑎, 𝑏) is invariant under the
transformations 𝑎 → 𝑎 + 1 and 𝑏 → 𝑏 + 1.

The fact that projective measurements means we project onto vectors in our Hilbert space
makes it easier to find and visualize these transformations. The probability of measuring
an outcome is now only dependent on the distance between a quantum state and the
eigenvectors of the measurement. While the proposed set of states and measurements
restrict us to states on the 𝑥𝑦 plane of the Bloch sphere it still is useful as it can work for any
amount of measurements. This is especially useful once on starts considering infinite states
and measurements as we will do at the end of this chapter.

5.3 Minimization over Classical Simulation Protocols
By either applying the minimax problem or knowing the optimal input distribution one can
remove the maximization performed in Eq. 5.1 and construct the following problem:

Problem 2.
min

𝜌(s|𝑎)∈𝒱(G)
ℐ(S, 𝐴) (5.17)

subject to: 𝜌𝑖(𝑠 |𝑎) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏 (5.18)
𝜌(s|𝑎) ≥ 0 ∀s, 𝑎 (5.19)

This is a convex minimization problem and to solve it we will apply a technique called
Lagrangian Duality. Lagrangian duality relies on the idea of creating a seperate ‘dual’
problem to this problem and then use the solutions to that problem to study the original
problem. First we will explain the main ideas and theory behind the Lagrangian dual
problem and afterwards we will apply it to Problem 2.

5.3.1 Lagrangian Dual Problems

To start off we must first state a general form for convex optimization problems to which
we can then apply our theory for lagrangian duality. We say that a convex optimization
problem is a primal problem if it is in the following form

Primal problem.
minimize 𝑓0(𝑥)
subject to: 𝑓𝑖(𝑥) ≤ 0 𝑖 = 1, . . . , 𝑚

ℎ𝑖(𝑥) = 0 𝑖 = 1, . . . , 𝑝

Any finite optimization problem can be rewritten into such a form, hence we call it the
primal form. When trying to solve such a problem one might encounter that some of the
constraints have difficult forms and make the search for an analytic solution very difficult.
To solve this we can relax some of the constraints and instead of making the constraints
requirements we merely start viewing them as suggestions and penalizing solutions which
violate the constraints instead of not permitting them.
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Definition 5.1 (Lagrangian). Given an optimization problem in primal form we define the
Lagrangian as

𝐿(𝑥,𝜆, 𝜈) = 𝑓0(𝑥) +
𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖(𝑥) +
𝑝∑
𝑖=1

𝜈𝑖ℎ𝑖(𝑥) (5.20)

where 𝜆 and 𝜈 are referred to as the Lagrangian multipliers.

This Lagrangian formalizes what we wanted to do when we wanted to relax our
constraints. If one now tries to minimize this function 𝐿(𝑥,𝜆, 𝜈) with regards to x, as long
as 𝜆𝑖 is positive for every i we get that positive 𝑓𝑖(𝑥) increase the value of the Lagrangian
thus punishing us for using solutions violating our previous constraints. It then becomes
important to choose optimal Lagrangian multipliers to ensure that our the minimum of our
Lagrangian satisfies all our constraints. To find these optimal Lagrangian multipliers we
introduce the dual function:

𝑔(𝜆, 𝜈) = inf
𝑥
𝐿(𝑥,𝜆, 𝜈). (5.21)

The dual function has several interesting properties which can help us find a solution to
the primal problem. First of all, as shown in [12] the dual function is always concave even
when the primal problem is not. The most important however is that the Lagrangian dual
gives lower bounds on the optimal value 𝑝∗ of our primal problem when 𝜆 > 0. This is easily
shown by showing that if �̃� is a solution of our primal problem then we have that

𝑔(𝜆, 𝜈) ≤ 𝐿(�̃� ,𝜆, 𝜈) = 𝑓0(�̃�) +
𝑚∑
𝑖=1

𝜆𝑖 𝑓𝑖(�̃�) +
𝑝∑
𝑖=1

𝜈𝑖ℎ𝑖(�̃�) ≤ 𝑓0(�̃�). (5.22)

As this is true for any feasible point �̃� it is also true for the solution �̃�𝑚𝑖𝑛 which minimizes
𝑓0(𝑥). The fact that the dual problem gives lower bounds for the optimal value 𝑝∗ of our
primal problem is called weak duality. Now we would like a lower bound as big as possible
to get as close to our optimal value as possible. To do this we can construct the following
optimization problem called the dual problem

Dual problem.
maximize 𝑔(𝜆, 𝜈)
subject to: 𝜆𝑖 ≥ 0 𝑖 = 1, . . . , 𝑚

It is often the case that 𝑔(𝜆, 𝜈) = −∞ which gives a nontrivial lower bound. This is why
the first step in studying the Lagrangian duality is finding out which conditions are required
such that 𝑔(𝜆, 𝜈) > −∞. These conditions are then added to our dual problem as additional
constraints.

As the name weak duality implies there also is a kind of stronger duality between our
dual and primal problems. Whenever we have that the optimal value for the dual problem
𝑑∗ is equal to 𝑝∗ we speak of strong duality. There are many conditions which can be used
to proof strong duality for a given optimization problem but the one we will be focusing on
is called Slater’s condition. Before we can introduce Slaters condition we must first define a
certain type of constraint.
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Definition 5.2 (Affine Function). A real function is affine when it can be expressed in the following
form

𝑓 (𝑥1 , . . . , 𝑥𝑛) = 𝐴1𝑥1 + · · · + 𝐴𝑛𝑥𝑛 + 𝑏 (5.23)

where 𝐴𝑖 , 𝑏 ∈ R for all 𝑖.

There is a generalisation of affine functions for non real functions but for our purposes
this definition is enough. Slaters condition for any primal problem then reads

Theorem 5.5 (Slaters condition). For a given convex primal problem where without loss of
generality the first k constraints are affine we have that strong duality holds if there exists an 𝑥∗ such
that

𝑓𝑖(𝑥∗) ≤ 0 𝑖 = 1, . . . , 𝑘
𝑓𝑖(𝑥∗) < 0 𝑖 = 𝑘 + 1, . . . , 𝑚
𝐴𝑥∗ = 𝑏.

Thus we want that there is a feasible point which satisfies strict inequality for non-affine
inequality constraints.

5.3.2 Conditions for Optimality

Our current goal is then finding the Lagrangian dual to the following problem

Problem 2a.

min
𝜌(s|𝑎)∈𝒱(G)

ℐ(S, 𝐴) =
∑
s,𝑎

𝜌(s|𝑎)𝜌(𝑎) ln
(
𝜌(s|𝑎)
𝜌(𝑎)

)
(5.24)

subject to: 𝜌𝑖(𝑠 |𝑎) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏 (5.25)
𝜌(s|𝑎) ≥ 0 ∀s, 𝑎 (5.26)

Where we refer to the problem as problem 2a instead of simply as problem 2 like we did
earlier. Important to note is that every one of our inequality constraints in this problem are
affine so we automatically have strong duality.

Before we state the Lagrangian of our problem we will note that the are allowed to ignore
the second constraint as the positivity of 𝜌(s|𝑎) is already defined by the domain of the
objective function. That is, ℐ(S, 𝐴) is not even defined if there is a negative value of 𝜌(s|𝑎) so
no need to keep it as a constraint. However we would still denote it as a constraint to remind
us that in general it has to hold true and that it is a property of the solutions to problem 2a.
With this in mind we write the Lagrangian as

𝐿 = ℐ −
∑
𝑠,𝑎,𝑏

𝜈(𝑠, 𝑎, 𝑏)

∑
s/𝑠𝑏

𝜌(s|𝑎) − 𝑃(𝑠 |𝑎, 𝑏)
 . (5.27)

Which we rewrite into the following form

𝐿 = 𝐿0 +
∑
𝑠,𝑎,𝑏

𝜈(𝑠, 𝑎, 𝑏)𝜌(𝑎)𝑃(𝑠 |𝑎, 𝑏). (5.28)
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where

𝐿0 =
∑
s,𝑎

𝜌(s|𝑎)𝜌(𝑎)
[
ln

𝜌(s|𝑎)
𝜌(s) −

∑
𝑏

𝜈(𝑠𝑏 , 𝑎, 𝑏)
]
. (5.29)

Now we will search for the constraints necessary so that the infinum of our Lagrangian
is a finite value. Note that upon the relaxation of the first constraint of problem 2a we no
longer strictly require that 𝜌(s|𝑎) is normalized. This allows 𝜌(s|𝑎) to go to infinity as we
take the infinum.

The second term in Eq. 5.28 is independent of 𝜌(s|𝑎) so we only have to focus on 𝐿0.
Specifically, if we can pick our Lagrangian multiplier 𝜈 such that the term in square brackets
is negative 𝜌(s|𝑎) our infinium is −∞ as 𝜌(s|𝑎) and 𝜌(𝑎) are non-negative. The term in square
brackets is less than 0 when

𝜌(s|𝑎) < 𝜌(s)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏). (5.30)

So if any distribution 𝜌(s|𝑎) satisfies this inequality we have that the infinum of our
Lagrangian is −∞. Now if we rewrite the conditional distribution 𝜌(s|𝑎) into the following
form

𝜌(s|𝑎) = 𝛼
𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏)∑

�̄� 𝜌(�̄�)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,�̄� ,𝑏)

. (5.31)

we get that
𝜌(s) = 𝛼. (5.32)

Plugging this into Eq. 5.31 one can rewrite the inequality to∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) > 1. (5.33)

Which is exactly the kind of condition we are looking for to construct the dual problem with.
As we are summing over s in Eq. 5.29 if there is a single s such that Eq. 5.33 holds then one
can see that the infinum of 𝐿0, and thus 𝐿, is equal to −∞.

Now we would like to show that when Eq. 5.33 does not hold that the infinum is positive.
A way to prove is to use Jensen’s inequality. The function ln(𝑥) is concave function however
so to apply Jensen’s inequality to prove positivity we rewrite 𝐿0 to

𝐿0 = −
∑
s,𝑎

𝜌(s|𝑎)𝜌(𝑎)
[
ln

𝜌(s)
𝜌(s|𝑎) −

∑
𝑏

𝜈(𝑠𝑏 , 𝑎, 𝑏)
]

(5.34)

Now we have the convex function − ln(𝑥) to which we apply Jensen’s inequality with the
weights

𝑎s =
∑
𝑎

𝜌(s|𝑎)𝜌(𝑎) = 𝜌(s) (5.35)

Note that the before applying Jensen’s inequality we will multiply both sides of our
inequality by

∑
s 𝜌(𝑠) so that the right hand side of Eq. 2.3 is equal to 𝐿0. We then get

𝐿0 ≥ −
∑

s
𝜌(s) ln

(∑
s′ 𝜌(s′)

∑
𝑎 𝜌(𝑎)𝑒𝜈(𝑠𝑏 ,𝑎,𝑏)∑

s′ 𝜌(s′)

)
≥ 0. (5.36)
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The above is only true when ∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ≤ 1 (5.37)

which is the exact negation of Eq. 5.33 so we have that when the above condition is satisfied
that the infinum is of our Lagrangian is non-negative. By differentiating 𝐿 with respect to
𝜌(s|𝑎) and setting the derivative equal to 0 one finds that 𝐿 is equal to 0 when

𝜌(s|𝑎) = 𝜌(s)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏). (5.38)

Which is then a necessary condition for the minimality of the Lagrangian. By multiplying
both sides of this condition by 𝜌(𝑎) and summing over 𝑎 one finds

𝜌(s) = 𝜌(s)
∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏). (5.39)

This constraint then tells us that for a given s we must have that 𝜌(s) and thus 𝜌(s|𝑎) must be
equal to 0 for every 𝑎. Now we then find our dual objective function by plugging Eq. 5.38
into Eq. 5.28 and we formulate the dual problem as follows

problem 2b.

max
𝜈

ℐ𝑑𝑢𝑎𝑙 =
∑
𝑠,𝑎,𝑏

𝜈(𝑠, 𝑎, 𝑏)𝜌(𝑎)𝑃(𝑠 |𝑎, 𝑏)

subject to:
∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ≤ 1 ∀s, 𝑏

𝜌(s) = 𝜌(s)
∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ∀s, 𝑏.

5.3.3 Reduction of Variables

We now have that the solution 𝜌(s|𝑎) to problem 2a is only the optimal solution if and only
if there exists variables 𝜈(𝑠, 𝑎, 𝑏) such that∑

𝑠1 ,...,𝑠𝑖−1 ,𝑠𝑖+1 ,...,𝑠𝐴

𝜌(s|𝑎) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏 (5.40)

𝜌(s|𝑎) ≥ 0 ∀s, 𝑎 (5.41)

𝜌(s|𝑎) = 𝜌(s)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ∀s, 𝑎 (5.42)∑

𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ≤ 1 ∀s, 𝑏. (5.43)

Using additional theorems we can replace some of these constraints with weaker
constraints to make the problem easier. To make sure that the new constraint is sufficient to
replace the old one, we have to make sure that the new constraint is satisfied if and only if
the old one is.
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We will start with the easiest constraint to replace which is the second one which we
will replace with 𝜌(s) ≥ 0. If 𝜌(s) ≥ 0 we have that 𝜌(s|𝑎) ≥ 0 due to the third constraint.
Conversely if 𝜌(s|𝑎) ≥ 0 then 𝜌(s) ≥ 0 due to the definition of 𝜌(s).

The third constraint tells us the values of 𝜌(s|𝑎) if we know the values for 𝜌(s) and
𝜈(𝑠, 𝑎, 𝑏). So we can reduce the amount of variables over which to optimize by replacing the
first constraint by ∑

𝑠1 ,...,𝑠𝑖−1 ,𝑠𝑖+1 ,...,𝑠𝐴

𝜌(s)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) = 𝑃(𝑠 |𝑎, 𝑏). (5.44)

And we can replace the third constraint by Eq. 5.39 to finally obtain the new and
equivalent constraints

∑
𝑠1 ,...,𝑠𝑖−1 ,𝑠𝑖+1 ,...,𝑠 |𝐵|

𝜌(s)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) = 𝑃(𝑠 |𝑎, 𝑏) ∀𝑠, 𝑎, 𝑏 (5.45)

𝜌(s) ≥ 0 ∀s (5.46)

𝜌(s) = 𝜌(s)
∑
𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ∀s, 𝑏 (5.47)∑

𝑎

𝜌(𝑎)𝑒
∑
𝑏 𝜈(𝑠𝑏 ,𝑎,𝑏) ≤ 1 ∀s, 𝑏. (5.48)

These constraints allow for easier optimization as we have replaced 𝜌(s|𝑎) with 𝜌(s), the
latter of which is only defined by |S| variables and the former by |S| |𝐴| variables, where |S|
is the amount of possible vectors s.

5.4 Infinite States and Measurements
So far we have limited ourselves to the case where Alice and Bob can choose from a finite set
of quantum states and measurements. However one might be interested into how much
classical communication a quantum channel can replace when Alice and Bob can pick from
an uncountably infinite set of possible quantum states or measurements. Such quantum
games will be referred to as infinite quantum games, in contrast to the finite quantum
games we already know. In this section we will discuss how to calculate the asymptotic
communication complexity in the case of uncountably infinite states and measurements.
For this we assume the reader is acquainted with measure theory and in particular the
construction of the Lebesque integral.

5.4.1 Interpreting the limit and real analysis

One method of interpreting an infinite quantum game is to view it as a limit of the
asymptotic communication complexity as we let the amount of possible measurements and
states approach infinity. That is, imagine we have two sequences of sets 𝐴𝑛 and 𝐵𝑛 which
have that 𝐴𝑛 ↑ 𝐴 and 𝐵𝑛 ↑ 𝐵. Now if 𝐴 and 𝐵 are dense in the unaccountably infinite sets 𝒜
and ℬ we can view the quantum game ℒ = (𝑃(𝑠 |𝜓,ℳ),𝒜 ,ℬ) as a limit object of the finite
quantum games G𝑛 = (𝑃(𝑠 |𝑎, 𝑏), 𝐴𝑛 , 𝐵𝑛). What we mean with being the limit object is that
we expect the solutions of every game G𝑛 approach the solutions to the game ℒ.

Now with an idea of what we want to show we will now start defining everything we
need to view the infinite quantum games. To signify that the problem we are now studying
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is continuous we will change some of the notation. While we still want our states and
measurements to come from 𝒜 and ℬ we now denote elements from these sets as 𝜓 and ℳ
respectively. To properly define our problem we need to choose integration measures on
both states and measurements. We choose these measures such that∫

ℬ
𝑑ℳ =

∫
𝒜
𝑑𝜓 = 1. (5.49)

Then if we have that the input distribution 𝜌(𝜓) is uniform we get∫
𝒜
𝜌(𝜓)𝑑𝜓 = 𝜌(𝜓) = 1. (5.50)

In general we will assume for the next sections that the optimal input distribution is known
and only focus on the harder problem of minimizing over classical channel. In the case of
infinite states and measurements it becomes easier to find sets of measurements and states
which obey the requirements in Theorem 5.4 especially if only the only measurements being
considered are PVM.

5.4.2 Partitions of the Measurement Manifold

While we no longer assume that our space of states and measurements the two assumptions
we made about our problem still pose true. Those are that the Hilbert space dimension is
still finite and that every measurement has finitely many outcomes.

In a finite quantum game our method of classically simulating the game involved sending
a variable 𝑘 so that Bob can construct a vector s from which he can pick a value corresponding
to his input 𝑏 to simulate the game. This vector s can be summarised as a function 𝑆 : ℳ ↦→ 𝑠
and in equations Eq. 5.40 to Eq. 5.43 we then have that every constraint which has to be true
for every s has to be true for every function 𝑆. Analyzing such a constraint analytically is
difficult so we would like to replace this function 𝑆 with something else.

To be able to replace the function 𝑆 this we have to make an additional assumption
about the measurements Bob can use. We will require that the amount of measurement
outcomes any measurement can have is bounded. Put differently is that there is a finite
number 𝑀 which bounds the total amount of outcomes every measurement can have. This
is necessary as even though every measurement has finitely many outcomes, as we have
infinite measurements it is still possible that there is no upper bound to the amount of
measurement outcomes.

With this assumption we can say without loss of generality that we can label the set of
possible outcomes {1, . . . , 𝑀} . Now Alice can construct a disjoint partition of the space of
all measurements dubbed {Ω1 , . . . ,Ω𝑀} := Ω which has to satisfy that 𝑆(ℳ) = 𝑖 for every
ℳ ∈ Ω𝑖 . If Alice sends Bob such a partition Bob can assign a measurement to a certain
outcome by simply looking in which part of the partition his measurement is. Then the
partition Ω replaces the role of s in our infinite quantum game.

Together with the measures presented we now have enough to construct the infinite
versions of both problem 2a and problem 2b.
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Problem 3a.

min
𝜌(Ω|𝑎)

ℐ =

∫
𝒫

∫
𝒜
𝜌(Ω|𝜓)𝜌(𝜓) ln

(
𝜌(Ω|𝜓)
𝜌(Ω)

)
𝑑𝜓𝑑Ω (5.51)

subject to:
∫
𝒫𝑠 (ℳ)

𝜌(Ω|𝜓)𝑑Ω = 𝑃(𝑠 |𝜓,ℳ) ∀ 𝑠,𝜓,ℳ (5.52)

𝜌(Ω|𝜓) ≥ 0 ∀ Ω,𝜓 (5.53)

problem 3b.

max
𝜈

ℐ𝑑𝑢𝑎𝑙 =
∑
𝑠

∫
ℬ

∫
𝒜
𝜈(𝑠,𝜓,ℳ)𝜌(𝜓)𝑃(𝑠 |𝜓,ℳ)𝑑ℳ𝑑𝜓

subject to:
∫
𝒜
𝜌(𝜓)𝑒

∫
Ω𝑠

𝜈(𝑠,𝜓,ℳ)𝑑ℳ
𝑑𝜓 ≤ 1 ∀ Ω,ℳ

𝜌(Ω) = 𝜌(Ω)
∫
𝒜
𝜌(𝜓)𝑒

∫
Ω𝑠

𝜈(𝑠,𝜓,ℳ)𝑑ℳ
𝑑𝜓 ∀ Ω,ℳ .

The strength of using Ω instead of the function 𝑆 is that when we restrict ourselves to the
case where Bob is only allowed to use PVM. Only allowing PVM makes our problem at
least intuitively easier as it allows us to represent our measurements in the Hilbert space
of quantum states and there are useful mathematical results about partitioning vector
spaces into different subsets. For example in [13] in the calculation of a lower bound for
the asymptotic communication complexity in the case of a noiseless quantum channel and
Bob using only rank-1 PVM measurements an application was found for the double cap
conjecture. The conjecture states the maximum volume two subsets on a unit ball can have
without containing orthogonal vectors.

While weak duality still holds for problem 3a and problem 3b it remains an open question
whether strong duality still holds as Slater’s conditions is only applicable to optimization
problems with finite variables and constraints.

5.4.3 Proving strong duality

In [13] the case for generalizing the quantum game to uncountably many states and
measurements has been presented. However it remains unclear that strong duality holds
for this case. Slater’s condition cannot be used for the infinite case as it only holds for
optimization problems with finitely many variables and constraints. Here we present a
possible method for proving strong duality but whether this method could work remains an
open question.

The general approach to the proof is by using sequences of quantum games. The idea is
that given two sequences of sets 𝐴𝑛 and 𝐵𝑛 which approach sets that are dense in the space
of all quantum states and measurements respectively. Of course it is required that for every
𝑛 that the sets 𝐴𝑛 and 𝐵𝑛 are finite. In that case one can construct a sequence of quantum
games G𝑛 = (𝑃(𝑠 |𝑎, 𝑏), 𝐴𝑛 , 𝐵𝑛) for each of which strong duality holds for the associated
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optimization problem. This method does however require a definition of a distance metric
in the set of measurements.

The first step is proving that problems 3a and 3b are feasible. This will require the
definition of a measure on the space of all partitions Ω which is rather difficult. The second
step is proving that the limit object of the sequence of functions 𝜌𝑚𝑖𝑛𝑛 (s|𝑎) and 𝜈𝑚𝑖𝑛𝑛 (𝑠, 𝑎, 𝑏)
which are the solutions of the nth quantum game respectively. It is hypothesized that these
functions approach functions 𝜌𝑚𝑖𝑛(s|𝑎) and 𝜈𝑚𝑖𝑛(𝑠, 𝑎, 𝑏) respectively which solve problems
3a and 3b. By the fact that the functions 𝜌𝑚𝑖𝑛𝑛 (s|𝑎) and 𝜈𝑚𝑖𝑛𝑛 (𝑠, 𝑎, 𝑏) are simple functions
we have that the objective functions and constraints of the games optimization problems
associated with G𝑛 approach those of the infinite quantum game. Then the final step is
showing that as strong duality holds for every finite quantum game then that it must also
for the infinite quantum game.
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6 ONTOLOGICAL THEORY

6. Ontological Theory
Ever since the advent of quantum mechanics the reality of the wave function has been a
debated subject. The main question is whether the wave function really represents a part of
reality or does it just represent our statistical knowledge of reality? The field of research
dealing with this question is called ontological theory. The main results in ontological
theory are the famous EPR and Kochen-Specker no-go theorems, which place limits on the
properties an underlying theory of quantum mechanics can have [14][15]. In this section
we will present a link between the classical simulations of the quantum games we saw
in preceding sections and ontological theory. This link would allow for cross correlation
between the fields of quantum communication and ontological theory to derive further
results for both fields.

6.1 Reality of quantum state
To formalize the question on whether the wave function is real we will refer to a certain state
of reality as the ontic state denoted as 𝜆. This 𝜆 is simply a set of variables which uniquely
describe reality. Reality in this case is described as an observation-independent state of the
universe. Thus here it is assumed that there exists a description of reality without having to
take the observer into account in said description of reality. This was the view of Einstein
while on the other Niels Bohr believed that it was only possible to describe the properties of
an object in regards to another object as detailed in [16].

Another assumption made in this section is that as an ontic state describes reality there
must be a wave function associated with this ontic state. This assumption would turn out to
be wrong if it were to turn out that quantum physics is simply an approximation of reality,
in the same way that Newtonian mechanics is an approximation of relativistic mechanics.
The question is now to which degree the variables defining the ontic state also define the
corresponding wave function.

6.1.1 𝜓-Ontic Theories

As every ontic state is a state of reality we know that there is at least one quantum state
associated with said ontic state. Conversely when one has a quantum system given by 𝜓
there must be an ontic state corresponding to the quantum state. Note that this ontic state
does not have to be unique, as if it is the case that the wave function represents our statistical
knowledge of reality then multiple ontic states correspond with the wave function. In any
case we can conclude that there exists a mapping

|𝜓⟩ → 𝜌(𝜆|𝜓) (6.1)

which assigns to each wave function a probability distribution of ontological space. A
requirement is that this mapping is injective, as every distinct wave function needs to
correspond to a different state of reality.

The support of the distribution 𝜌(𝜆|𝜓) is a very important concept, as the support of
this function now represents all ontic states possible for a given wave function, thus what
states of reality associate with a wave function. Using the ontic state one should be able to
calculate the probability of measurement outcomes for a wave function. This is why it is
also possible to set up the following mapping for every measurement ℳ
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ℳ → 𝑃(𝐸𝑖 |𝜆,ℳ) (6.2)

where 𝐸𝑖 are the measurement outcomes of ℳ.
Any ontological theory can then be described by the mappings Eq. 6.1 and Eq. 6.2 when

coupled with a method for the time evolution of the ontic state. A trivial ontic theory is of
course the one stating that the wave function does depict reality and thus that the mappings
come down to basically being the identity mappings. It is trivial that that theory matches
up with quantum theory but for every other ontic theory it should be checked that the
predictions made by the theory match up with reality, the predictions match up when the
following equation is satisfied:∫

𝑃(𝐸𝑖 |𝜆,ℳ)𝜌(𝜆|𝜓)𝑑𝜆 = 𝑃(𝐸𝑖 |𝜓,ℳ) = ⟨𝜓 | 𝐸𝑖 |𝜓⟩ . (6.3)

Theories which claim that the wave function represent a part of reality are called 𝜓-
ontic. For a theory to be 𝜓-ontic one must have that the for 2 distinct quantum states that
their probability distributions as induced by Eq. 6.1 have disjoint supports, as depicted in
Figure 8a. Whether or not this implies that this means that the wave function has a physical
interpretation has been a subject of recent debate [17]. However an important subclass of
𝜓-ontic theories called complete 𝜓-ontic2 require that every wave function corresponds to a
single unique ontic state, as depicted in Figure 8b.

(a) Representation of a 𝜓-ontic theory where the
wave functions map to distinct ontic states.

(b) Representation of a complete 𝜓-ontic theory
where every wave function corresponds to a single
unique ontic state.

For every 𝜓-ontic theory the amount of information required to specify the ontic state is
infinite [18]. As every ontic state corresponds to a wave function then knowing the ontic
state is equal to knowing the wave function. As a wave function requires infinite information
to encode we automatically have that an ontic state also requires this amount of information.

6.1.2 𝜓-Epistemic Theories

Theories which are not 𝜓-ontic are called 𝜓-epistemic theories. These theories claim that
the wave function represent information about reality and not reality directly, a graphical
depiction of such theories can be seen in Figure 9.

While epistemic theories face heavy constrictions on predicting all of quantum mechanics
it very much is possible to construct models for simple quantum mechanical situations. An
example of this is the Kochen-Specker model [14] which is a 𝜓-epistemic model capable
of simulating single qubits. The Kochen-Specker model models the ontic state as a three
dimensional vector denoted x, which when given the Bloch vector v of a quantum state , is

2Sometimes referred to as ’ontic in the strong sense’
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Figure 9: Graphical representation of a 𝜓-epistemic theory. A theory where the wave
function only depicts our information of reality and thus not reality itself

set according to the following distribution

𝜌(x|v) = 1
𝜋

v · x𝑢(v · x) (6.4)

where 𝑢 is the unit step function.
Many constraints exist on epistemic theories like the famous Bell-Kochen-Specker theorem

and the more recent Pusey-Barret-Rudolph theorem. Both of which place major constraints
on various types of epistemic theories. However in recent times interest in epistemic theories
have been renewed due to applications of these theories in quantum communication and as
thus still remain relevant field of research.

An important subclass of epistemic theories are where the information contained in
the ontic state about the wave function is finite. This subclass of epistemic theories we are
interested in are called completely 𝜓-epistemic and a theory has two requirements to fulfill
to be classified as such. The first is that the entropy H(Λ|Ψ) has to be finite, where Λ is a
stochastic variable with outcomes given by the set of all possible ontic states and similarly
for Ψ and all possible wave functions. The second is that the entropy of the maximally
mixed state

∫
𝜌(𝜆|𝜓)𝜌(𝜓)𝑑𝜓 = 𝜌(𝜆) where 𝜌(𝜓) is the uniform distribution is finite. These

conditions combined imply that the mutual information 𝐼(Λ,Ψ) between the ontic state
and wave function is finite. The Kochen-Specker model shown in Eq. 6.4 is a completely
𝜓-epistemic theory with a mutual information of approximately 1.28 bits.

The reason that we care about completely 𝜓-epistemic theorems is that there is a
correspondence between simulations of quantum games and these kind of theories as shown
in [18]. It is easy to show that any classical simulation induces a 𝜓-epistemic theory, simply
let the role of the ontic state be replaced by the communicated variable 𝑘 and the shared
noise 𝑦 and one can then see that equations Eq. 6.3 and Eq. 3.1 are the same.

To proof that a completely 𝜓-epistemic theory induces a classical simulation protocol
requires a bit more work. That is as we cannot assume that the ontic state 𝜆 itself can
be described by finitely many bits. Instead what happens in the induced protocol Alice,
after receiving her input 𝜓, sends Bob enough information for Bob to set an ontic state
according to the distribution 𝜌(𝜆|𝜓). The amount of information that Alice requires to do
this is essentially equal to 𝐼(Λ,Ψ) and since this quantity is finite we have a classical protocol
simulating a quantum game.

6.2 Applications to Communication Complexity
With a strong link between completely 𝜓-epistemic theories and quantum communication
we can now present several results from one field of research which could have impact on
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the other. These highlight two more recent results but there are many more examples which
could have impact.

6.2.1 Lower Bound on Required Variables

One recent result published by A. Montina which could have impact on quantum commu-
nication concerns so called Markovian ontic theories [19]. A Markovian ontic theory is a
theory in which the time evolution of the ontic variables depends only on a single past state
of the variables and not their entire history. An easy example of the Markovian property
outside of ontological theory is the time evolution of a closed quantum system. For a closed
quantum system we have that the time evolution of a quantum state is given by a unitary
operator U, so we can write

|𝜓(𝑡2)⟩ = 𝑈(𝑡2 , 𝑡1) |𝜓(𝑡1)⟩ . (6.5)

This system is thus Markovian as if one knows the quantum state at time 𝑡1 and the unitary
operator𝑈(𝑡2 , 𝑡1), then we do not require more information to determine the quantum state
at time 𝑡2. While if the time evolution where non Markovian one would also be required to
know the quantum state before time 𝑡1 to determine the state at time 𝑡2.

A Markovian ontic theory thus requires that the variables describing the ontic state 𝜆𝑡1
are enough knowledge about the system to determine 𝜆𝑡2 . The result in [19] states that
any Markovian theory requires at least 2𝑁 − 2 continuous variables to describe the ontic
state 𝜆. This then gives a lower bound for the amount of variables Alice and Bob need to
communicate with one another to simulate a quantum game if their communicated variable
𝑘 and random shared variable 𝑦 turn out to obey Markovian like transformation rules. The
exact form these transformations entail is not given but due to quantum states evolving in a
Markovian like manner it seems likely that almost all classical protocols would as well.

6.2.2 Possibility of Epistemic Theories

In [13] two hypotheses are presented to derive the lower bound of 1
2𝑁 log(𝑁), with N being

the Hilbert space dimension, for the asymptotic communication complexity for noiseless
channels with 2 outcome projective measurements. The hypotheses are very technical as is
the derivation of the lower bound given the hypothesis so they will not be presented in this
thesis. However there is an important consequence of this lower bound but to explain this
consequence first some further context is required.

As has been stated the Bell-Kochen-Specker is a theorem which prohibits a large class of
𝜓-epistemic theories. However a recent result known as the Pusey-Barrett-Rudolph (PBR)
theorem is a stronger theorem in that it disallows a larger class of 𝜓-epistemic theories
that are impossible to integrate with quantum mechanics. Their theorem relies on the
preparation independence axiom, which states that if two quantum states are prepared
independently then that the ontic state of their product state is an independent combination
of their individual ontic states [15].

Should the shown lower bound of 1
2𝑁 log(𝑁) hold true it turns out that the preparation

independence property can be replaced with the weaker equipartition property [20]. The
formal definition of this property requires more mathematics to describe but it suffices to
know the approximate idea of this property. For an ontic theory to satisfy this theory one
will require that given 𝜓 there is a set of ontic states for which 𝜌(𝜆|𝜓) is approximately
constant. The probabilities are largely required to be in the same order of magnitude so
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this property largely discards any ontic theories which produce large narrow fluctuations in
𝜌(𝜆|𝜓).

Any theory satisfying the equipartition property also has another useful property
stemming from quantum communication. This additional property states that should an
epistemic theory satisfy the equipartition property that the theory collapses to a 𝜓-ontic
theory in the limit of infinite qubits, as long as the asymptotic communication complexity
of the theory grows faster than 2𝑛 , where n is the amount of qubits. As of right now the
consequences of these results have yet to be fully explored but it could be the case that they
have consequences in a recent debate on the reality of the quantum state [13]. This debate
was started by [15] which renewed interest in the subject and further results elaborating on
this debate can be found in [21] and [22].
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7. Conclusion
In this thesis we examined how to classically simulate a preparation and measurement
quantum communication problem exactly. For this we introduced the basic concepts of
information science and also elaborated on several concepts in quantum mechanics. Finally
a minimization maximization problem was presented to solve our problem and this problem
was then analyzed using several results from optimization theory. At the end a connection
between ontological theory and quantum communication was via the classical simulations
of quantum communication presented in this thesis. This connection will allow for cross
correlation between the fields which could lead to interesting results of both fields. In this
thesis 2 examples where given of where results in one field could have impact on the other.

An important assumption made in this thesis is that the Hilbert space is finite and
thus that no measurement has infinitely many possible outcomes. It seems unlikely that
this assumption can be dropped without making the amount of required communication
becoming infinite but this is not proven. However any practical implementation of quantum
communication will require that the Hilbert space is finite so this assumption does not limit
the theory in practical applications. On the other hand it could be present a problem in the
applications of the communication complexity of various quantum games to ontological
theories.

An open question presented in Section 5 was whether or not strong duality holds when
we consider infinite qubits and measurements being usable by Bob and Alice. A strategy to
proof this was presented but not worked out further. This then immediately presents a good
subject for further research which could have implications beyond just classical simulations
of quantum games and have impact on other optimization problems concerning infinitely
many variables.

As of this moment when the thesis was written 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
has only been evaluated for a

handful of situations in [6][13][18]. The only channels which have been evaluated thus far
are the noiseless and the binary quantum depolarizing channel so research could focus on
finding 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
of other channels. However for the noiseless quantum channel only upper

and lower bounds have been foundbounds for 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
and for the depolarizing 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
has

only been found in the case where quantum states are restricted to the XY plane on the Bloch
sphere. Especially finding 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
for the depolarizing channel is of interest as this channel is

used in quantum teleportation which plays an important in a potential quantum internet.
Lastly it was presented that there is a strong link between 𝜓-epistemic theories and

communication complexity. A hypothesized lower bound for 𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
of a noiseless quantum

channel could replace an assumption for the PRB no go theorem with a weaker assumption
thus making it even more unlikely that a 𝜓-epistemic theory could ever represent quantum
mechanics.

All mathematical methods presented in this thesis are also applicable to contexts out of
quantum mechanics. Any communication problem represented by 2 parties receiving an
input and communicating can be simulated classically and the amount of bits required for
such a process is evaluated the exact same way as for the𝒞𝑎𝑠𝑦𝑚

𝑚𝑖𝑛
. Thus solving the optimization

problems presented in this thesis could have an effect on a variety of communication
problems.
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A BASICS OF QUANTUM MECHANICS

A. Basics of Quantum Mechanics
The basis of quantum mechanics relies upon several postulates. Three of these postulates are
relevant for this thesis and are thus presented in the following sections. In addition POVM
formalism gets introduced as an alternative method of formulating the second postulate.

A.1 Quantum States
To start off we introduce the first postulate of quantum mechanics, which describes the way
we mathematically represent the state of a particle.

Postulate 1: Associated with any isolated physical system is a complex vector space associated
with an inner product, also known as a Hilbert space, which is known as the state space of the
system. The system is completely described by the unit vectors of the state space which are known as
the state vectors of the system.

To clarify the above we will introduce the quantum equivalent of the binary digit: the
qubit. The qubit is associated with a 2 dimensional Hilbert space with the regular dot
product. Thus we can denote any qubit as

|𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ 𝛼, 𝛽 ∈ C. (A.1)

Where we utilise the orthonormal basis {|0⟩ , |1⟩} with |0⟩ = (1, 0)𝑇 and |1⟩ = (0, 1)𝑇 . As
we will see later the value |𝛼 |2 represents the chance that an observer measures that the
quantum state is in the state |0⟩ and similarly for 𝛽 and |1⟩. So the state vectors of this space
are thus all vectors obeying the equation |𝛼 |2 + |𝛽 |2 = 1.

A.2 Quantum Measurement
Now with a way to describe a quantum particle in isolation we want to know how the
particle changes once an observer interacts with it, or put differently how it changes when
we want to measure one of its properties.

Postulate 2: A quantum measurement is described by a set {𝑀𝑚} of measurement operators.
These are operators acting on the state space of the quantum system. The index m refers to the different
outcomes of the measurement being performed. The probability that result m occurs is given by

𝑝(𝑚) =
〈
𝜓

��𝑀†
𝑚𝑀𝑚

��𝜓〉
(A.2)

and the post measurement quantum state is given by

𝑀𝑚 |𝜓⟩√
𝑝(𝑚)

. (A.3)

The measurement operators must satisfy the completeness relation:∑
𝑚

𝑀†
𝑚𝑀𝑚 = 1. (A.4)
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The completeness relation represents that the probabilities of the outcomes of the
measurement must sum to 1. Measurements are important to quantum systems as they are
the only way to physically extract values from a quantum system.

An easy but important measurement for qubits is described by the measurement operators
{|0⟩ ⟨0| , |1⟩ ⟨1|} with outcomes 0 and 1. The probability of obtaining 0 is

𝑝(0) =
〈
𝜓

��𝑀†
0𝑀0

��𝜓〉
= |𝛼 |2 (A.5)

and similarly 𝑝(1) = |𝛽 |2. The respective post measurement states of the measurements are
|0⟩ and |1⟩.

Measurements explain us why quantum systems cannot be used to convey infinite
information, as Eq. A.1 implies that there are uncountably many normalized qubits thus a
single qubit can encode infinite information. But as we cannot directly extract the values of
𝛼 and 𝛽 and only approximate these values by successive measurements they carries infinite
information.

A.2.1 POVM formalism

It is often the case in quantum computing that one is only performing a measurement to
learn something about the current state of the quantum system and is not concerned with the
state after measurement. This is the case in our quantum version of the black box game as
Bob outputs the outcome of the measurement and does nothing with the post measurement
state. In this case it helps to helps to define the quantity

𝐸𝑚 = 𝑀†
𝑚𝑀𝑚 (A.6)

where 𝑀𝑚 is a measurement operator. As one can see this allows us to rewrite Eq. A.2 as

𝑝(𝑚) = ⟨𝜓 | 𝐸𝑚 |𝜓⟩ . (A.7)

Two important properties of 𝐸𝑚 are

1.
∑
𝑚 𝐸𝑚 = 𝐼.

2. 𝐸𝑚 is a positive semi definite operator.

The second property comes from that 𝑝(𝑚) ≥ 0 for every quantum state 𝜓. Thus the
measurement described by {𝐸𝑚} is called a POVM (positive operator-valued measure) with
the elements 𝐸𝑚 being called POVM elements. One may suspect that given a POVM that
one cannot know what the post-measurement state is but this turns out to be wrong, it still
is possible to create a general measurement from a POVM and vice versa. These POVM’s
are simply an easier way to examine the statistical properties of a qubit without worrying
about its post-measurement state.

We now understand everything we need to know about the input Alice and Bob receive
and in turn what the output of the problem is. But now we will turn our attention to the
how Alice and Bob communicatie: the quantum channel.
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A.3 Quantum Time Evolution
Measurement only describes half of all the changes a quantum state can undergo. While
measurement describes a way for a open quantum state to evolve we also want to know how
a quantum state changes if there is no outside world to interact with it, or rather the system
is isolated. How then do quantum states evolve when there is no external interaction such
as a measurement?

Postulate 3: The time evolution of a closed quantum system |𝜓1⟩ at time 𝑡1 to the quantum state
|𝜓2⟩ at time 𝑡2 is given by a unitary transformation U dependent on 𝑡2 − 𝑡1. That is,

|𝜓2⟩ = 𝑈 |𝜓1⟩ . (A.8)

The isolated time evolution play an important roll in quantum noise and thus in quantum
channels. As when a particle is being transmitted through a quantum channel, thus no
longer isolated, we can still view the combined system of the entire environment and sent
particle as being isolated and thus the 3rd postulate applies on this new total system. We
now possess two possible ways for a quantum system to evolve, either through measurement
or via time evolution.
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