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Automated detection of cribriform 
growth patterns in prostate 
histology images
pierre Ambrosini1*, eva Hollemans2, charlotte f. Kweldam2, Geert J. L. H. van Leenders2, 
Sjoerd Stallinga1,4 & frans Vos1,3,4

cribriform growth patterns in prostate carcinoma are associated with poor prognosis. We aimed to 
introduce a deep learning method to detect such patterns automatically. to do so, convolutional 
neural network was trained to detect cribriform growth patterns on 128 prostate needle biopsies. 
ensemble learning taking into account other tumor growth patterns during training was used to cope 
with heterogeneous and limited tumor tissue occurrences. Roc and fRoc analyses were applied to 
assess network performance regarding detection of biopsies harboring cribriform growth pattern. 
The ROC analysis yielded a mean area under the curve up to 0.81. FROC analysis demonstrated a 
sensitivity of 0.9 for regions larger than 0.0150mm

2 with on average 7.5 false positives. To benchmark 
method performance for intra-observer annotation variability, false positive and negative detections 
were re-evaluated by the pathologists. Pathologists considered 9% of the false positive regions as 
cribriform, and 11% as possibly cribriform; 44% of the false negative regions were not annotated 
as cribriform. As a final experiment, the network was also applied on a dataset of 60 biopsy regions 
annotated by 23 pathologists. With the cut-off reaching highest sensitivity, all images annotated as 
cribriform by at least 7/23 of the pathologists, were all detected as cribriform by the network and 
9/60 of the images were detected as cribriform whereas no pathologist labelled them as such. In 
conclusion, the proposed deep learning method has high sensitivity for detecting cribriform growth 
patterns at the expense of a limited number of false positives. It can detect cribriform regions that 
are labelled as such by at least a minority of pathologists. therefore, it could assist clinical decision 
making by suggesting suspicious regions.

Prostate cancer is one of the most common cancer types in men: about one man in 9 is diagnosed with prostate 
cancer in his  lifetime1. Histological image analysis of biopsy specimens is generally considered the reference 
standard for detection and grading of prostate cancer. The Gleason grading system is often used in practice 
to evaluate the severity of prostate cancer. The Gleason system distinguishes five basic architectural growth 
patterns, numbered Gleason grade G1 to G5. Presently, combinations of prevalent growth patterns are usu-
ally considered which is reflected in the Gleason Score and Grade Group (Table 1). However, in spite of such 
updates the current system is still associated with high inter-observer  variability2. For example, the classification 
between Grade Group 2 and 3 (Gleason Score 3+ 4 = 7 and 4+ 3 = 7 ) is often subject to disagreement among 
pathologists. The classification between these two Grade Groups is highly relevant since it influences therapeutic 
decision-making. Actually, each individual Gleason grade is a collection of different growth patterns (Fig. 1). 
Particularly, Gleason grade 4 comprises glands forming cribriform, glomeruloid, ill-defined, fused, and complex 
fused growth  patterns3,4. Unfortunately, the disagreement among pathologists is also relatively high regarding 
the sub-type classification.

In a recent inter-observer study, high consensus, i.e. 80% agreement among 23 pathologists, was reported on 
23% of the cribriform cases, but rarely on fused and never on ill-defined  patterns5. At the same time it was found 
that presence of cribriform growth patterns in prostate cancer imply a poor  prognosis6–8. The cribriform growth 
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Table 1.  The Gleason grading system. A prostate specimen is classified in Gleason grade 1 to  52. The Gleason 
Score of a tissue is the sum of the primary Gleason grade and the secondary Gleason grade (in terms of 
predominance). In order to differentiate tissues with Gleason Score 7 = 3+ 4 and 7 = 4+ 3 , Grade Group 
classification was introduced, replacing the Gleason Score.

Gleason grade 1, 2 or 3 3 + 4 4 + 3 4 + 4 3 + 5 5 + 3 4 + 5 5 + 4 5 + 5

Gleason score ≤ 6 7 7 8 8 8 9 9 10

Grade group 1 2 3 4 4 4 5 5 5

Figure 1.  (top) Examples of different biopsy tissues with glands classified as Gleason grade 3 or 4. (bottom) 
Deep convolutional neural network architecture: a biopsy patch image is fed into the network and the output 
after a softmax normalization is composed of 7 segmentation maps 32 times smaller than the input. The 
network is composed of 6 consecutive conv blocks. A conv block consists of 2 consecutive convolutions of input 
features (f feature maps of height h and width w) with a squeeze-and-excitation block and a residual connection. 
Downsampling is done using strided convolutions with a kernel 2x2, after which batch normalization (BN) and 
an activation rectifier linear unit (ReLU) are applied.
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pattern could therefore be an important prognostic marker and its detection might add valuable information 
on top of the Gleason grading system.

Many clinical decisions have to be made during the treatment of prostate cancer patients, often by multi-
disciplinary teams or tumor boards. These decisions are complex due to the increasing number of available 
parameters e.g. from radiological imaging, pathology and genomics. There is a clinical need for technology that 
enables objective, reproducible quantification of imaging features. Specifically, automatic qualification of the 
biopsies regarding the Gleason grade and biomarkers derived from automated detection of cribriform glands 
would add objective parameters in a clinical decision support algorithm. Such automated detection tools can 
also bring visualization support to aid clinical decision-making.

We propose a method to automatically detect cribriform glands in prostate biopsy images. As the annota-
tion of cribriform glands is subject to intra- and inter-observer variability, erroneous cases will be re-evaluated 
by the original annotators and the algorithm’s performance will be compared against the assessments of a large 
group of pathologists.

Engineered feature based machine learning approaches were used to identify stroma, benign and cancerous 
tissue for radical prostatectomy tissue  slides9. Automatic Gleason grading were proposed as well using multi-
expert annotations and multi-scale features based  methods10. Additionally, deep learning methods have proven 
useful in digital pathology for various tasks such as detection and segmentation of glands, epithelium, stroma, 
cell nuclei and  mitosis11. This is relevant as such tissue segmentations can be a first step to a more detailed 
characterization. More recently, a variety of CNN-based methods were also used to classify prostate cancer 
tissue. These approaches differed regarding the type of histological images: Tissue Micro-Arrays (TMAs)12 and 
Whole Slide Images (WSIs)13,14 acquired after radical prostatectomy versus WSIs obtained from prostate needle 
biopsies. Biopsy interpretation is challenging, though, due to the narrow tissue width since typically a needle 
diameter of around 1 mm is used. Importantly, assessment of needle biopsies can have impact on management 
of individual patients. Previously, segmentation and classification methods for automatic processing of prostate 
needle biopsies were developed to detect malignant  tissue15,16, as well as for  partial17,18 and full Grade Group 
 classification19,20. Automated detection of cribriform growth patterns in prostate biopsy tissue has, to the best 
of our knowledge, not yet been studied. Indeed, Gertych et al.21 proposed a CNN combined with a soft-voting 
method to automatically distinguish four growth patterns including the cribriform growth pattern, but this was 
applied to lung tissue samples only. Moreover, it was stated that the method had only moderate recognition 
performance (F1-score=0.61) with regards to the cribriform growth pattern.

In order to assist pathologists and support clinical decision making, we aim to introduce a method for auto-
matic detection of cribriform growth patterns. In summary, this paper presents the following contributions:

• Cribriform growth patterns are automatically detected and segmented from tissue slides obtained from 
prostate needle biopsies.

• Annotations of erroneous cases are re-considered to account for intra-observer variability.
• Algorithm performance is compared against assessments by a large group of pathologists.

Materials and methods
neural network model. A convolutional neural network (CNN) was used to segment cribriform 
growth patterns in prostate biopsies stained with hematoxylin and eosin (H&E). The network took as input 
x(i) an 1024x1024 pixels RGB colored biopsy region, with i indexing a particular pixel. The pixel sizes were 
0.92x0.92µm2/pixel in all cases (see Experiments section). In order to better discriminate between cribriform 
and other G4 growth patterns, the network was trained to additionally detect other G3 and G4 tissue types. 
Accordingly, the output consisted of 7 probabilities ŷl(i) where l ∈ L being one of the following labels: non-
labelled, G3, G4 fused, G4 ill-defined, G4 complex fused, G4 glomeruloid and G4 cribriform. The non-labelled 
class was included to represent the non-tissue background and any other non G3 and G4 tissue (healthy tissue, 
G5, mucinous, perineural growth...).

Henceforth, yl(i) represents the reference label, which consists of 7 masks, again with i indexing a particular 
pixel. Each such reference label contained a 1 for one particular class and 0 for all other classes.

The Dice coefficient which quantifies positive overlap between label and prediction was used as loss function 
to be minimized during training of the network. With a batch of P images, the loss was defined as:

in which wl is a weight associated with tissue label l. Our goal was to detect the cribriform growth pattern and 
therefore we used for that tissue a higher weight. Note that the other labels were included in the loss function 
only to obtain a better convergence during the training of the neural network. Practically, a weight of 0.4 was 
applied for the cribriform label and 0.1 to all other labels (so that weights sum to 1).

Details of the network architecture are depicted in Fig. 1. The design was based on the following two criteria. 
First, we focused on coarse cribriform growth pattern localization. Therefore, the resolution of the segmented 
output did not have to be as high as the original 1024x1024 input resolution. Instead, the outputs were masks 
of 32x32 pixels, which was sufficient to segment the smallest relevant glands. Accordingly, the 1024x1024 ref-
erence masks were downsampled to 32x32 in order to match the output of the neural network using an aver-
age pooling with a 32x32 kernel. Second, we wanted to achieve fast convergence and simultaneously accurate 
training. To accomplish this we applied several architectural features that have been shown to enhance training 
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efficiency: residual connections with every convolution  block22, 2x2 strided convolutions effectively learning to 
 downsample23 and squeeze-and-excitation blocks for adaptively weighting channels in the convolution  blocks24. 
The output of the network was not post-processed afterwards.

implementation. In order to have representative training data with each iteration of back-propagation, we 
made sure that a training batch of images always contained all the 7 possible labels. Accordingly, the batch size 
of the neural network was chosen to be the size of the label set L = 7.

Every network was initialized with weights randomly sampled from a uniform  distribution25 and trained 
during 60000 iterations with the stochastic gradient descent optimizer with a learning rate of 0.01, a decay of 
5× 10−4 and a momentum of 0.99. No explicit stopping criterion was included. Instead a validation set was used 
to choose optimal weights according to a metric as specified in the Experiments section. The method has been 
implemented in Python using Keras 2.2.4 and TensorFlow 1.12 libraries. We used the Titan Xp and GTX 1080 
Ti GPU’s from Nvidia Inc. to perform the experiments.

To avoid over-training and add more variability in the training set, on-the-fly data augmentation was per-
formed on each input patch. Input patches with their associated label masks were randomly vertically and/or 
horizontally flipped, translated in the range of ±10% of the image size, rotated (around the image center) by 
maximally 5 degrees and scaled with a factor in the range of 0.9 to 1.1. In histopathology, the staining method 
with H&E can result in different image contrasts. Therefore, after normalizing the RGB values (yielding values 
for each channel between 0 and 1) a random intensity shift was globally applied to each color channel of every 
image with a magnitude in the range of ±0.05 . Furthermore, the full range of the intensity (0 to 1) in each channel 
was also randomly rescaled in a linear fashion between minimum value ∈ [0, 0.1] and maximum value ∈ [0.9, 1].

Experiments
The proposed network was trained and tested on an annotated biopsy dataset. However, cribriform growth 
pattern detection by pathologists themselves is not a trivial task. Consequently, uncertainties in the annota-
tions occur, which hinders the training of the network. Therefore we let the misclassified biopsy regions by the 
algorithm in the previous experiment be annotated for a second time by the same pathologist. We did this for 
a detailed assessment of the misclassifications of the neural network, but also to quantify the reproducibility of 
annotating the growth patterns. Moreover, the image dataset from an extensive inter-observer  study5 was used 
to evaluate our network in comparison to the assessment by 23 pathologists.

ethics statement. The research and the analysis of prostate tissues was approved by the institutional Medi-
cal Ethics Committee (MEC) from Erasmus University Medical Center, Rotterdam, The Netherlands (MEC-
2018-1614) and samples were used in accordance with the “Code for Proper Secondary Use of Human Tis-
sue in The Netherlands” as developed by the Dutch Federation of Medical Scientific Societies (FMWV, version 
2002, update 2011). The institutional Medical Ethics Committee (MEC) from Erasmus University Medical 
Center, Rotterdam, The Netherlands (MEC-2018-1614) stated that the study was not subject to the “Medical 
Research Involving Human Subjects Act” (WMO, Wet Medisch-wetenschappelijk Onderzoek) and so waived 
the informed consent procedure.

cribriform detection performance. The CNN was first trained and tested on a dataset of prostate tissue 
images from 128 biopsies (one WSI per biopsy; one biopsy per patient) acquired by the department of Pathology 
of Erasmus University Medical Center, Rotterdam, The Netherlands. We selected only one WSI per patient in 
order to include data from as many patients as possible for an acceptable processing time. These data concerned 
clinical prostate biopsies from 2010 to 2016 with acinar adenocarcinoma cancer and a Gleason Score 6 or higher. 
From each patient, the biopsy with the most tumor volume was selected. 132 biopsies were digitized after which 
4 of them were excluded due to severe artefacts and too little tumor tissue. The biopsies were stained with H&E 
and digitized using a NanoZoomer digital slide scanner (Hamamatsu Photonics, Hamamatsu City, Japan). The 
resulting images had a resolution of 0.23µm/pixel . Two genitourinary pathologists sat together and annotated 
in consensus the different regions of each biopsy using the ASAP  software26. Subsequently, a label l ∈ L was 
assigned to each such region according to the updated standard  classification3,4. The biopsies contained mainly 
G3 and G4 carcinoma. G5, mucinous differentiation, perineural growth and prostatic intraepithelial neoplasia 
were also present in respectively 6, 6, 1 and 1 biopsy slides. These rare tissues were assigned to the non-labelled 
group.

To discard the background region from the samples, a thresholding procedure was applied to the optical 
density transformation of the RGB  channels15:

where ODc is the optical density of the channel c, Ic is the initial intensity and Imax is the maximum intensity 
measured for the concerned channel. We found that the background was easily identifiable by ODc < 0.12 in 
any of the channels.

Subsequently, each biopsy was downsampled to a resolution of 0.92µm/pixel (i.e. by a factor 4 from the 
acquisition resolution) and subdivided in half-overlapping patches of 1024x1024 pixels (thus, taking steps of 512 
pixels). Patches with more than 99.5% of background were discarded. For training, all remaining patches from 
each biopsy in the training set were shuffled and fed to the CNN while making sure that all classes were present 
(see Implementation section). During testing, all the patches of a test biopsy image were inferred by the CNN. 

(2)ODc = −log10
Ic

Imax
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Subsequently, to reassemble the full biopsy segmentation, only the 512x512 region in the center of each patch 
was kept in order to avoid overlapping segmentations. Also, we expected that the center part would yield the best 
classification accuracy as there is more context around it compared to the periphery of the patch.

An 8-fold cross-validation training scheme was applied. The 128 prostate biopsy images were therefore 
distributed over 8 groups (see Table 2). As detection of cribriform growth pattern is the focus of this study, the 
biopsies were first partitioned such that the cribriform annotations were uniformly distributed. Subsequently, 
the remaining biopsies were split up in a way to yield an approximately equal distribution of labels. This was 
done by means of the bin packing  algorithm27.

In each fold, 6 groups of images were used to train the network. Furthermore, one group was taken as a 
validation set to select the optimal neural network weights from all the weights saved after each epoch of train-
ing. The metric V to do so was a combination of the Dice function LD (eq.1) and also the specificity in order 
to minimize false positives:

where α ∈ [0, 1] is a weight factor that balances the two terms; LS is the negative average pixel specificity of a 
batch of P images:

Within each fold the network was trained four times during which patches were randomly shuffled to yield an 
altered training order. Furthermore, four weights were applied in the validation metric V: α ∈ [0.2, 0.3, 0.4, 1] . 
Empirically, we found that any α > 0.4 yielded the same weights as the Dice-only metric LD ( α = 1 ). In total 
16 (=4*4) networks per fold were trained. In addition, an ensemble classifier was defined as the arithmetic mean 
of the predictions of the 16 networks.

The remaining group (of 8) served as the test set to evaluate the performance of the 16 networks as well as 
the ensemble network.

From the predictions, i.e. the probability maps for each biopsy, the performance of the cribriform detection 
was assessed with receiver operating characteristic (ROC) and free-response receiver operating characteristic 
(FROC) analyses. To do so, cut-offs on the cribriform probability were varied to select the cribriform pixels. 
Thereafter, for each cut-off, neighboring cribriform pixels were taken together to form cribriform regions. The 
cribriform regions were analyzed in two ways: biopsy-wise and annotation-wise. The biopsy-wise analysis con-
sidered a biopsy positive for reference purposes if there was at least one annotation by the pathologists labelled 
as cribriform. Similarly, the prediction of a biopsy was considered positive if there were at least one predicted 
cribriform pixel in it. Complementary, the annotation-wise analysis considered an annotated (reference) cribri-
form region correctly detected if and only if at least one pixel of a predicted cribriform region overlapped with it. 
We performed both types of analyses while also studying the effect of only taking into account predicted regions 
with a cumulative pixel area larger than 0.0150mm2 . This size was chosen since the smallest cribriform region 
in the annotations was 0.0155mm2.

Re-evaluation study. To increase our insight into wrong classifications of the network, the pathologists 
who made the initial annotations re-evaluated the false positive and false negative detected regions. While doing 
so, they were not informed of the classification outcome of the network nor of their own original annotation. The 
re-evaluation has been done more than one year after the initial annotations which we think is sufficient time 
for the pathologists to not recall their previous labelings. From each false negative and false positive region a 
512x512 patch was extracted surrounding the center of gravity of the region. Practically, this provided sufficient 
context for the pathologists to classify glands. For each such patch, the pathologists only re-evaluated the center. 
As with the original annotations, the same 7 labels could be assigned. Simultaneously, a confidence level had to 
be indicated on a scale from 0 (meaning undecided), to 4 (highly confident). Furthermore, if the pathologist was 
in doubt about the growth pattern, secondary labels could be registered. The outcomes were summarized in a 
confusion table.

(3)V = αLD + (1− α)LS
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Table 2.  Number of instances, i.e. regions/biopsies distributed over cross validation folds.

Groups 1 2 3 4 5 6 7 8 Total

Number of biopsies 13 15 16 17 17 18 18 14 128

G3 124/13 121/14 106/14 124/16 78/16 143/18 132/15 148/14 976/120

G4 fused 24/7 9/5 22/8 20/4 26/9 27/8 48/12 21/5 197/58

G4 ill-defined 57/6 75/11 44/6 51/11 51/11 41/11 51/9 71/9 441/74

G4 complex fused 6/2 1/1 4/2 1/1 9/2 4/2 3/1 0/0 28/11

G4 glomeruloid 15/1 1/1 54/7 14/2 34/4 32/4 27/7 6/3 183/29

G4 cribriform 20/5 20/5 20/5 20/6 20/6 20/6 20/6 21/6 161/45
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inter-observer study. The performance of our method in relation to the inter-observer variability of the 
gland pattern annotations was evaluated based on the data from the inter-observer study performed by Kweldam 
et al.5. This dataset contains 60 prostate histopathology images extracted after radical prostatectomies and was 
classified by 23 genitourinary pathologists. Kweldam et al.5 aimed to include 10 images classified as G3, 40 as G4 
(10 per growth pattern) and 10 as G5. These were selected by two pathologists not involved in the subsequent 
assessment by the 23 raters. The selected prostate images were acquired with a NanoZoomer digital slide scan-
ner (Hamamatsu Photonics, Hamamatsu City, Japan). To avoid ambiguity during the annotation, for each case a 
yellow line delineated the glands to be classified (Fig. 6).

We applied our neural network to this dataset and compared the cribriform detection with the assessments 
of the pathologists.

We trained 8 versions of our neural network with the dataset described previously in the section Cribriform 
detection performance. Following the distribution shown in Table 2, each network was trained on 7 groups and 
one group was used to select 4 optimal neural network weights based on the validation metric V while applying 
different α ∈ [0.2, 0.3, 0.4, 1] . We repeated this 4 times and iterating accross the 8 groups to obtain in total 128 
(=4*4*8) different neural networks. The ensemble of the 128 trained neural network was applied to each image 
of the inter-observer dataset.

To do so the images of this dataset were resampled to yield the same resolution as the training data: 
0.92µm/pixel . The resulting images were fed in patches of 1024x1024 pixels into our networks (as above), after 
which only the predicted output within the contoured regions was retained. If at least one pixel in the output was 
predicted as cribriform with a probability superior to a particular cut-off (between 0 and 1), we considered that 
a cribriform growth pattern was detected. Cut-offs to be applied were chosen based on the FROC curve derived 
from the validation set used during the training.

Results
cribriform detection performance. Figure 2 shows the ROC curves representing the cribriform detec-
tion sensitivity as a function of false positive rate per biopsy. Complementary, it shows the FROC curves of the 
cribriform detection sensitivity per annotation as a function of the mean number of false positive detections in 
biopsy.

In both figures, the dashed curves (and associated shaded areas) depict the mean performance (and cor-
responding standard deviation) of the ensemble network between the 8 folds. The green curve collates results 
based on all cribriform prediction regions, whereas the blue curve considers only results of predicted regions 
larger than 0.0150mm2.

Figure 2.  (left) Receiver operating characteristic (ROC) curves showing cribriform detection sensitivity per 
biopsy as a function of the false positive rate (i.e. 1-specificity). Dashed lines represent mean ROC curves 
from the ensemble networks of the 8 folds; the associated shaded areas represent the corresponding standard 
deviations. The green curve concerns all predicted cribriform regions, the blue curve was based on predicted 
regions larger than 0.0150mm

2 . (right) Free-response receiver operating characteristic (FROC) curves of the 
cribriform detection sensitivity per annotation as a function of the average number of false positive predictions 
per biopsy. The green dot indicates, for the mean FROC curve with all prediction regions, the cut-off probability 
of network output ( p = 0.5 ) conveniently chosen for the re-evaluation experiment (see Re-evaluation study 
section).
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The area under the curve (AUC) of the ensemble network in the ROC curve was on average 0.80 with all 
regions and 0.81 for regions larger than 0.0150mm2 . In order to compare the impact of the ensemble network 
with regards to the 16 individual networks, Table 3 shows the AUC of the network ensemble and mean AUC of 
the 16 networks across the 8 folds.

Several representative example images with predictions and annotations are presented in Fig. 3.

Re-evaluation study. In order to extract the false positive and negative regions of the ensemble network, 
we applied a cut-off to the cribriform prediction probability. We conveniently chose the cut-off to 0.5 (Fig. 2, 
right) in order to have a moderate amount of false positive regions to annotate, given the limited time the 
pathologists could allocate to this task. Applying the cut-off to the cribriform prediction probability yielded in 
total 632 false positive and 25 false negative cribriform region patches.

During the re-evaluation, the pathologists gave ‘cribriform’ as the first label to 9%(= 59/632) of the false 
positive patches. Furthermore, the pathologists indicated ‘cribriform’ as the first or second label (the ‘doubtful’ 
cases) to 20% of false positive patches.

At the same time, upon re-evaluation the pathologists did not indicate ‘cribriform’ as the first label in 
44%(= 11/25) of the false negative cases. Furthermore, the pathologists did not indicate ‘cribriform’ as the first 
nor as the second label in 16% of those cases.

For 71%(= 468/657 ) of the wrongly classified patches (taking false positives and negatives together), the 
originally given label was identical to the first label during re-evaluation. Furthermore, in 48% of the false posi-
tive patches and 36% of the false negative patches, no second label was given.

The median confidence level was 4 (highly confident) for patches with same labels during the initial annota-
tion and the first annotation of the re-evaluation. The median confidence level was 2 for patches labelled differ-
ently as such. Furthermore, confidence level 4 was given to 51% of the false positive patches and 28% of the false 
negative patches during re-evaluation.

An overview of the initial annotations and first label during re-evaluation of the false positives and false nega-
tives is contained in the confusion matrix in Fig. 4. Additionally, the figure shows examples of the false positive 
and negative cases including details on the annotations by the pathologist.

inter-observer study. Figure 5 shows the FROC curve of the ensemble network generated based on the 
evaluation set of the training data by varying the probability threshold. In order to compare the performance of 
the ensemble network to the assessments by the 23 pathologist we applied three probability thresholds/cut-offs: 
(1) 0.0125 corresponding to the highest attained sensitivity on the evaluation set; (2) 0.1 at which level 95% sen-
sitivity is reached; (3) 0.5 at which level 85% sensitivity is reached.

Top-right and bottom-right charts in Fig. 5 show the number of regions predicted as cribriform and not 
cribriform respectively by the neural network as a function of the percentage of pathologists annotating these 
images as cribriform.

Observe that there are 9, 3 and 0 regions labelled as cribriform by the network applying the thresholds at 
0.0125, 0.1 and 0.5, respectively, which no pathologist annotated as cribriform. These could be considered as false 
positive cases. Furthermore, the 21, 27 and 30 regions with the same thresholds labelled as not-cribriform by the 
network nor labelled as cribriform by any pathologist could be considered true negatives. The bottom-right chart 
in Fig. 5 demonstrates that with the cut-off at 0.0125 all the images annotated as cribriform by more than 30% 
( ≥ 7/23) of the pathologists are predicted as cribriform by the neural network. Increasing the threshold to 0.1 
and 0.5 leads to more regions not classified as cribriform and simultaneously less false positives. It may be noted 
that for 63% (=19/30) of the cribriform cases, less than 60% of the pathologists agreed regarding the labeling.

The average of Cohen’s kappa coefficient across all paired pathologist labelings is 0.62. The average of Cohen’s 
kappa coefficient between our method and each pathologist is 0.29, 0.36 and 0.39 at cut-offs of 0.0125, 0.1 and 
0.5, respectively.

Figure 6 shows examples images for varying agreements between the pathologists on which the cribriform 
regions detected by the neural network are overlaid.

Discussion
We proposed a method to automatically detect and localize G4 cribriform growth patterns in prostate biopsy 
images based on convolutional neural networks. In order to improve the detection of cribriform growth patterns 
the network was trained to detect other growth patterns (complex fused, glomeruloid, ...) as well. Furthermore, 

Table 3.  AUC of the network ensemble and mean AUC of the 16 networks over cross validation folds.

Groups 1 2 3 4 5 6 7 8

Ensemble, all regions 0.80 0.84 0.89 0.85 0.41 0.79 0.92 0.91

Mean, all regions 0.60 ± 0.06 0.69 ± 0.10 0.68 ± 0.11 0.70 ± 0.08 0.37 ± 0.10 0.67 ± 0.08 0.76 ± 0.11 0.72 ± 0.08

Ensemble, regions 
> 0.0150mm

2 0.84 0.81 0.92 0.87 0.36 0.86 0.92 0.93

Mean, regions 
> 0.0150mm

2 0.76 ± 0.07 0.82 ± 0.07 0.84 ± 0.12 0.83 ± 0.04 0.37 ± 0.12 0.75 ± 0.05 0.86 ± 0.05 0.83 ± 0.07
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to enhance the stability of the prediction, an ensemble of networks was trained after which the average predic-
tion was used.

The ensemble networks focusing on regions larger than 0.0150mm2 reached a mean area under the curve 
of 0.81 regarding detection of biopsy images harboring a cribriform region. The FROC analysis showed that 
achieving a sensitivity of 0.9 for regions larger than 0.0150mm2 goes at the expense of on average 7.5 false posi-
tives per biopsy.

The evaluation of the 16 individual neural networks show marked variation in AUC value. This could be an 
indication that the training data order (stochastic variation) influences the performance of the network. Our 
solution to cope with this was to apply the ensemble of neural networks. An alternative solution could be hard 
negative mining by prioritizing ’difficult’ regions during training. In this way, the training process would more 

Figure 3.  Biopsy slides with overlays showing predicted regions by the ensemble network as well as annotations 
(serving as reference). Light blue indicates true positive predictions; green are false negative regions; dark blue 
are false positive predictions. The scale of the images differs merely for illustration purposes.
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frequently present patches with large classification discrepancy across training iterations and thus would reduce 
the influence of the training data order. On the other hand, the AUC variation between the folds of the cross-
validation has an even higher standard deviation than the stochastic variation on the ROC and FROC curves. 
Of course, yet another solution would be to acquire a larger training set, to take into account the heterogeneity 
of the data in a better way.

During the evaluation of the method, the variations among pathologists regarding cribriform growth pattern 
recognition was also studied. In particular, false positive and false negative patches from the ensemble classifier 
were re-evaluated by the same pathologists.

The evaluation of the method with the original annotations showed that sensitive cribriform region detec-
tion can be done, but at the expense of a high number of false positives. However, the re-evaluation study dem-
onstrated that up to 20% of the false positive detections could actually be cribriform regions. Concurrently, it 
showed that up to 44% of the false negatives might not be cribriform regions.

We also tested the ensemble network on a dataset annotated by 23 pathologists to put its performance into 
perspective regarding inter-observer variability. In 63% of the cases, less than 60% of the pathologists agreed 
regarding the cribriform labeling. Using a probability cut-off at 0.0125 (corresponding to the highest sensitivity 
in the training set) all images annotated as cribriform by at least 30% of the pathologists were also predicted 
as cribriform by the neural network. In other words, the network is rather conservative in classifying regions 
as cribriform even with a low percentage of agreement, which is opposed to detecting only regions for which 
there is large agreement. This is also reflected by the Cohen’s kappa which showed higher agreement amongst 
pathologist than between our method and the pathologists. As such, with the cut-off at 0.0125, the network is 
more inclusive than the consensus of pathologists. This could be clinically relevant as preferably no potentially 
cribriform region should be missed by the automated detection algorithm at this stage.

Some fused and tangentially sectioned glands were falsely labelled as cribriform. In practice, biopsies are cut at 
three or more heights giving additional information to the pathologist, while we only used one level in the current 
study. We believe that the performance for recognition of cribriform architecture or grading in general can be 
improved if information of different levels of the same biopsy specimen can be registered and integrated in the 
future. Furthermore, due to its relatively large size, cribriform architecture may not be visualized in its entirety 
in biopsies, which is different from the situation in operation specimens from radical prostatectomies. Therefore, 
optimal training sets for cribriform pattern should be slightly different for biopsy and prostatectomy specimens.

There were typical false positive cribriform detections. First, as malignant glands are not properly attached 
to the surrounding stroma, tearing may happen during tissue processing. Figure 6c,d show resulting retraction 

Figure 4.  (left) Confusion matrix showing initial label versus first label during re-evaluation attributed by 
the pathologists to false positive and false negative patches. (right) Example false positive and false negative 
cases re-evaluated by the pathologists. Blue indicates a false positive detection and green indicates a false 
negative annotation. (a) False positive patch initially annotated as ‘fused’ and given ‘cribriform’ as the first label 
during re-evaluation. (b) False positive patch initially annotated as ‘fused’ and given ‘complex fused’ as the 
first label and ‘cribriform’ as the second label during re-evaluation. (c) False negative patch initially annotated 
as ‘cribriform’ and ‘fused’ during re-evaluation. (d) False negative patch annotated as ‘cribriform’ both during 
initial annotation and re-evaluation. Observe that the automatic segmentations (top) are coarse because the 
output of the neural network is 32 times smaller than the input; annotations (bottom) were manually drawn on 
the originals and are therefore smoother.
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and slit-like artifacts surrounded by cells with clear cytoplasm. The resulting background could be mistaken 
for cribriform lumina by the network. Second, in Fig. 3c,f, some regions in non-labelled tissue have complex 
anastomosing glands, not meeting the criteria for cribriform growth. Finally, in the latter figure, the background 
seems confused by the network for cribrifrom lumina. Since these areas are but a small part of the total area of 
non-labelled tissue it could be that the network might not have seen sufficient examples of such patterns during 
the training.

The latter observation signifies the importance of diversity in the training data also for our application. Inclu-
sion of healthy tissue simultaneously with rare tissues such as G5, mucinous, and perineural structures are indis-
pensable in the training set. For similar reasons, an important direction for future work could be to particularly 
focus on multi-center data. Also, annotations from multiple pathologists might help to build a more detailed 
probabilistic model and cover the variability from large consensus to large ambiguity. Previously, such approaches 
were proposed by Nir et al.10 for Gleason grading and by Kohl et al.28 for segmentation of lung abnormalities.

A limitation of our study is that a re-evaluation by the pathologists of true positives and true negatives cases is 
lacking. While our re-evaluation analysis indicates that some of the false positives and false negatives cases may 
not necessarily be false, it is likely that reassessing all the samples would also turn some true positives and true 
negatives patches into false positives and false negatives, respectively. Furthermore, as it is stated in Kweldam 
et al.5, the dataset from the inter-observer study has been deliberately chosen to be difficult which may lead to 
more disagreement between pathologists than with biopsy analyses during daily clinical practice. The perfor-
mance of the neural network is also impacted by this as such uncommon cases were not present in the training. 
Also, despite its predictive value, no global consensus exists yet on the definition of cribriform architecture and 
its delineating features from potential mimickers. The pathologists who annotated our dataset have however 
shown statistically significant correlation of cribriform pattern with clinical outcome in large biopsy and opera-
tion specimens cohorts, clinically validating the criteria used in this  study6,8,29.

conclusion
We proposed a convolutional neural network to automatically detect and localize cribriform growth patterns in 
prostate biopsy images. The ensemble network reached a mean area under the curve of up to 0.81 for detection 
of biopsies harboring cribriform tissue. This result must be valued taking into account the large disagreement 
among pathologists. The network is showing rather conservative performance: cases were detected as cribriform 
even when just a limited number of pathologists labelled them as such. The method could be clinically useful by 
serving as a sanity check, to avoid missing cribriform patterns.

Figure 5.  (left) Free-response receiver operating characteristic (FROC) curve of the cribriform detection 
sensitivity per annotation as function of the average number of false positive predictions per biopsy. This curve 
was resulted from the evaluation set using the ensemble of neural networks trained for the inter-observer study. 
The green dot corresponds with a probability cut-off at 0.0125, at which point the highest sensitivity is attained. 
The blue and orange dots correspond to probability cut-off at 0.1 and 0.5 yielding 95% and 85% sensitivity, 
respectively. (top-right) Numbers of images predicted as cribriform by the neural network as a function of the 
percentage of pathologists labeling these images as cribriform. (bottom-right) Numbers of images not predicted 
as cribriform by the neural network as a function of the percentage of pathologists labeling these images as 
cribriform.
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Figure 6.  Cribriform growth pattern detection on images from the dataset of Kweldam et al.5. The yellow 
contours delineate the regions that were assessed by the pathologists. Green, blue and orange colors correspond 
to detection of cribriform regions at probability thresholds of 0.0125, 0.1 and 0.5 respectively. (a,b) Images 
annotated as cribriform by 22 and 23 pathologists, respectively. (c,d) Images annotated principally as ill-
defined and as G3, respectively (no cribriform annotation). (e,f) Images annotated as cribriform by 22 and 8 
pathologists, respectively. Image (f) was annotated as fused by 13 pathologists. Note that the yellow contours for 
images (e) and (f) is at the image border.
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Data availability
Data from the inter-observer study performed by Kweldam et al.5 are available as an appendix at https ://doi.
org/10.1111/his.12976 .
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