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The marginal ice zone represents the periphery of the sea ice cover. In this region,
the macroscale behaviour of the sea ice results from collisions and enduring contact
between ice floes. This configuration closely resembles that of dense granular flows, which
have been modelled successfully with the μ(I) rheology. Here, we present a continuum
model based on the μ(I) rheology that treats sea ice as a compressible fluid, with the
local sea ice concentration given by a dilatancy function Φ(I). We infer expressions
for μ(I) and Φ(I) by nonlinear regression using data produced with a discrete element
method (DEM) that considers polygon-shaped ice floes. We do this by driving the sea
ice with a one-dimensional shearing ocean current. The resulting continuum model is a
nonlinear system of equations with the sea ice velocity, local concentration and pressure
as unknowns. The rheology is given by the sum of a plastic term and a viscous term. In
the context of a periodic patch of ocean, which is effectively a one-dimensional problem,
and under steady conditions, we prove this system to be well-posed, present a numerical
algorithm for solving it, and compare its solutions to those of the DEM. These comparisons
demonstrate the continuum model’s ability to capture most of the DEM results accurately.
The continuum model is particularly accurate for ocean currents faster than 0.25 m s−1;
however, for low concentrations and slow ocean currents, the continuum model is less
effective in capturing the DEM results. In the latter case, the lack of accuracy of the
continuum model is found to be accompanied by the breakdown of a balance between
the average shear stress and the integrated ocean drag extracted from the DEM. Since
this balance is expected to hold independently of our choice of rheology, this finding
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indicates that continuum models might not be able to describe sea ice dynamics for low
concentrations and slow ocean currents.

Key words: sea ice, dry granular material, rheology

1. Introduction

The periphery of the ice cover is known as the marginal ice zone (MIZ) and consists of
relatively small, typically polygon-shaped ice floes. It is often defined as the region where
ocean waves play an important role in shaping the morphological properties of the ice
(Dumont 2022). On large scales, sea ice dynamics is typically described with Hibler’s
model (Hibler 1979), which treats ice as a viscoplastic fluid whose yield strength depends
on the sea ice concentration and thickness. This model was developed for the central ice
pack, where ice floes are closely interlocked, and deformation is due mostly to the opening
of leads or the formation of ridges. Recently, elasto-brittle rheologies have also been used
to model the evolution of the central ice pack. This class of rheological models, which was
first proposed by Girard et al. (2011), appears to be superior to Hibler’s model in capturing
the ice deformation field (Rampal et al. 2019).

In the MIZ, however, it is the collisions and enduring contact between ice floes
that give rise to the macroscale dynamical properties of the ice cover (Feltham 2005;
Herman 2011, 2022). This configuration closely resembles that of dense granular flows,
albeit at different spatial scales, since practically all studies for granular materials
consider e.g. polystyrene beads, glass beads and sand, whose particles’ diameters are
of the order of 0.1 and 1 mm (GDR MiDi 2004). Dense granular flows have been
modelled successfully with the so-called μ(I) rheology (Da Cruz et al. 2005). The dense
granular flow regime is understood as a transition between the quasi-static and dilute
flow regimes. Whenever grain inertia is negligible, a quasi-static regime emerges that is
often modelled as an elastoplastic solid (Nedderman 1992). The critical state at which
plastic deformation occurs is characterized with a Coulomb-like criterion dependent on a
so-called internal angle of friction (Wood 1990). Conversely, under great agitation and/or
dilute concentrations of grains, particles interact only through binary, instantaneous,
uncorrelated collisions. As a result, ideas from kinetic theory become applicable in
this dilute regime (Jenkins & Savage 1983). However, in dense granular flows, grains
interact via collisions and enduring contacts, such that inertial effects are important yet
the collisions may no longer be assumed to be binary, instantaneous, or uncorrelated in
general. This transitional regime is characterized in terms of the inertial number I and an
effective friction coefficient μ that is dependent on I (Da Cruz et al. 2005).

Existing models for the MIZ recognize the importance of both collisions and plastic
deformation, and derive rheological models based on first principles (Shen, Hibler &
Leppäranta 1987; Gutfraind & Savage 1997; Feltham 2005). Recently, Herman (2022)
suggests the use of the μ(I) rheology for modelling sea ice in the MIZ, and derives a μ(I)
function from computations performed with a discrete element method (DEM). In these
computations, disk-shaped ice floes are sheared by a moving wall in the classical manner
of rheological studies. Unlike the previous models for the MIZ, Herman (2022) infers the
rheological properties from data generated by a DEM. In particular, Herman (2022) fits a
μ(I) function to the DEM data, although the resulting continuum model and its accuracy
in replicating the DEM results is not examined.

This work represents an advance in the development of a continuum model for the MIZ
that could improve the accuracy of Hibler’s model, which is currently used in large-scale
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Modelling sea ice in the MIZ as a dense granular flow

climate models over the MIZ; see e.g. Danabasoglu et al. (2020). A comparison of Hibler’s
model with the DEM data is presented in § 6.1, where it is demonstrated that it cannot
capture the DEM results accurately. We extend the investigation initiated in Herman
(2022), and explore the μ(I) rheology’s accuracy in modelling sea ice dynamics in the
MIZ. We infer a μ(I) function from data produced with the DEM implemented in SubZero
(Manucharyan & Montemuro 2022). This DEM considers polygon-shaped ice floes that
are driven by oceanic currents in an open patch of ocean, a set-up that we believe to be
more natural for studying sea ice than the classical shearing test with a moving wall and
disk-shaped ice floes. This inference results in a continuum viscous fluid model whose
rheology is given by the sum of a viscous term and a plastic term. Moreover, for this system
to be well-posed, the emerging model problem requires the continuum to be compressible
and complemented with a constraint on the global sea ice concentration. Assuming the
continuum to be compressible requires the inference of a dilatancy function Φ(I) from the
DEM computations that establishes a relationship between local sea ice concentration and
the inertial number I.

The contributions of this paper can be summarized as follows. (1) Inference of the μ(I)
and Φ(I) constitutive functions for sea ice in the MIZ from data produced with the DEM.
These computations are performed in an open ocean configuration where the sea ice is
sheared by ocean currents. (2) Analysis of the resulting continuum model, establishing the
existence and uniqueness of solutions. (3) Determination of the continuum model’s range
of validity by comparing its numerical solutions to those of the DEM.

We remark that the analysis of the continuum model and its comparisons with the
DEM are restricted to a steady one-dimensional set-up. The model can be extended
to unsteady two-dimensional problems as explained in § 2.1, although we expect that
new complications will arise with these extensions. For example, Barker et al. (2015)
demonstrate the emergence of time-dependent instabilities in μ(I) models, which
Schaeffer et al. (2019) remedy with further modifications of the model. These potential
complications should be studied carefully in future investigations.

This paper is structured as follows. In § 2, we formulate the continuum model, first
in a general two-dimensional unsteady setting, then in the one-dimensional steady
configuration considered in this paper. In this formulation, two functions, μ(I) and
Φ(I), are to be inferred from DEM data. This inference is presented in § 3. Section 4
contains a detailed analysis of the continuum model resulting from this inference. This
analysis examines several properties of the momentum equation, the numerical solution
of the continuum model, and its well-posedness. Then in § 5, we compare the continuum
model and the DEM. This comparison allows us to establish the range of validity of the
continuum model and its limitations. In § 6, we discuss the similarities and differences
between our continuum model and other sea ice models, such as Hibler’s model. We then
end this paper with § 7, where we recommend potential extensions of this work to be
explored in the future.

2. Mathematical formulation of the continuum problem

The dense flow regime represents a transition between the quasi-static and dilute flow
regimes (Da Cruz et al. 2005). This transitional regime is characterized in terms of the
inertial number I, an effective friction coefficient μ(I), and, whenever the continuum
is assumed to be compressible, a dilatancy function Φ(I). Below, we define these three
terms and present a general formulation of the μ(I) rheology in two dimensions and in the
one-dimensional steady configuration considered in the subsequent sections of this paper.
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2.1. The two-dimensional setting
Although the problems presented in this paper are effectively one-dimensional, we first
present the general form of the flow model in two dimensions for completeness. We denote
the ice velocity, concentration and Cauchy stress tensor by u, A and σ , respectively. We
write the components of the Cauchy stress tensor and the velocity vector field as

σ =
[
σxx σxy
σxy σyy

]
and u = (u, v), (2.1a,b)

respectively. We assume that the morphology of the ice floes remains invariant by
neglecting all thermomechanical effects, such as fracturing, melting or ridging, that can
change the shape of a floe. For simplicity, we also neglect the Coriolis force, ocean
tilting and the atmospheric drag (we assume low-wind conditions). Under these conditions,
conservation of momentum and mass lead to the following system of equations:

ρH
Du
Dt

= ∇ · σ + to, (2.2a)

DA
Dt

= −A ∇ · u; (2.2b)

see Hibler (1979) or Gray & Morland (1994). For any scalar or vector-valued function
f , the material derivative is given by Df /Dt = ∂f /∂t + (u · ∇)f . Here, we assume the
ice thickness H to be spatially uniform for simplicity, although in general we require an
additional equation, analogous to (2.2b) but in terms of H, for mass to be conserved.
Equation (2.2a) is a depth-averaged statement of conservation of momentum of the sea ice
layer; here, to is the drag force exerted by the ocean on the sea ice. Given the surface ocean
velocity field uo, this drag force is generally parametrized in terms of the drag coefficient
Co and the ocean water density ρo by

to := ρoCo ‖uo − u‖ (uo − u), (2.3)

with ‖ · ‖ denoting the Euclidean norm of a vector.
The conservation laws (2.2) must be accompanied by constitutive relations. To write

these, we first decompose the Cauchy stress tensor into a pressure term p and its deviatoric
component τ ,

σ = τ − pI, (2.4)

where I is the identity tensor, and define the strain rate tensor D and its deviatoric
component S as

D := 1
2 (∇u + ∇uT) and S := D − 1

2 (∇ · u)I. (2.5a,b)

In the following, for a given tensor T , its second invariant is denoted by

‖T‖ =
√

1
2 tr(T 2). (2.6)

The fundamental idea behind the μ(I) rheology is that the constitutive relation for a
granular flow depends on the inertial number, a dimensionless quantity defined as

I := d̄

√
Hρi

p
‖S‖, (2.7)

where ρi is the ice density, d̄ denotes an average ice floe size, and p is the pressure emerging
in (2.4) (Da Cruz et al. 2005; Jop, Forterre & Pouliquen 2006; Pouliquen et al. 2006).
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Modelling sea ice in the MIZ as a dense granular flow

Throughout this paper, we set d̄ to be spatially constant over the whole domain, avoiding
the need to consider the transport of this quantity. Savage (1984) interprets the quantity
I2 as the ratio between collisional (i.e. inertial) stresses and the total shear stress exerted
on the material. Accordingly, for low values of I, the inertial effects of grains become
negligible, and the flow approaches a quasi-static regime; conversely, as I increases,
collisional forces become increasingly important relative to the external forces exerted on
the material. The functional relationship that establishes the material’s rheology is written
in terms of an effective friction μ(I), defined as

μ(I) := ‖τ‖
p

. (2.8)

We remark that the effective friction μ is defined in analogy with Coulomb’s model of
friction as the ratio between the shear (tangential) stress and the pressure (normal stress).
Moreover, it is also helpful to think of the pressure p as a quantification of the material’s
strength and its resistance to viscous and plastic deformation, as is made clear in § 4. It
should be noted that the μ(I) model is a phenomenological model that has been found to
work well with granular media, yet it is unclear if it represents some kind of limit for a
large particle system.

To obtain a relationship between stress and strain, we need an additional constitutive
law. Jop et al. (2006) propose the following equality that aligns S with τ :

S
‖S‖ = τ

‖τ‖ . (2.9)

Combining (2.8) and (2.9), the relationship between deviatoric components of the stress
tensor and the shear strain can be written as

τ = μ(I) p
S

‖S‖ . (2.10)

Compressible granular flows require a dilatancy law that relates the concentration A to
the inertial number I:

A = Φ(I); (2.11)

see Da Cruz et al. (2005). In general, Φ is found to be a strictly decreasing function of I, in
such a way that the concentration A decreases with the rate of shearing ‖S‖, a phenomenon
know as dilatancy. Moreover, if Φ is strictly decreasing, then it is invertible, and one can
write an expression for the pressure p analogous to an equation of state in thermodynamics:

p = ρid̄2H
( ‖S‖

Φ−1(A)

)2

, (2.12)

where we have combined (2.7) and (2.11). In the problems considered in this paper, we
find the spatial variations in sea ice concentration to be small. Although this would make
the assumption of incompressibility reasonable, the periodic one-dimensional nature of
these problems renders the dilatancy law (2.11) necessary for the model to be well-posed.
This point is explained in § 2.2.

2.2. The steady one-dimensional periodic ocean problem
The model problem considered in this paper consists of a square patch of ocean of length
L with periodic boundaries in both the x- and y-directions. The ice floes floating on this
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x

y

Figure 1. The periodic ocean set-up. The domain is a square patch of ocean, periodic in the horizontal and
vertical directions. The ice floes are driven by the ocean velocity field (2.15) (in blue), which does not vary in
the x-direction.

patch are driven by an ocean velocity field that varies only in the y-direction, as depicted
in figure 1. We neglect time-dependent effects, and consider only steady conditions in the
forcing, i.e. uo(x, y, t) = (uo( y), 0).

This configuration renders the continuum problem one-dimensional and independent
of time, such that u(x, y, t) = (u( y), 0), A(x, y, t) = A( y) and p(x, y, t) = p( y). In this
setting, the equations for conservation of momentum (2.2a), together with the constitutive
equation (2.10), simplify to the following system on (0, L):

−dσxy

dy
= ρoCo |uo − u| (uo − u), (2.13a)

dp
dy

= 0, (2.13b)

σxy = μ(I) p
du/dy
|du/dy| , (2.13c)

I = d̄

√
Hρi

p
|du/dy|. (2.13d)

Due to (2.13b), which represents the balance of momentum in the y-direction, the pressure
is constant (but unknown) over the domain. Da Cruz et al. (2005) and Herman (2022)
find p by enforcing normal stress boundary conditions along a boundary of the domain,
but we cannot do the same because the domain is periodic. In the DEM computations,
which we introduce in § 3, we set a global ice concentration A0 ∈ [0, 1] that equals the
domain-averaged value of the local concentration A, such that

1
L

∫ L

0
A dy = A0. (2.14)

Therefore, if we assume the sea ice to behave like a compressible fluid, then condition
(2.14) and the dilatancy law (2.11) close the system of equations. In §§ 3 and 5, we justify
this modelling choice by demonstrating that dilatancy emerges in the DEM computations
and that our model is capable of capturing it accurately.
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x/L

y/L

t = 0

x/L

t = 27.8 h

0 0.5 1.0

u/uo,max

Ocean Ice

0.7 0.8 0.9

A

Initial Final

(b)(a) (c) (d )

Figure 2. Emergence of dilatancy in the DEM. Here, A0 = 0.8 and uo = 1 m s−1. Ten runs to steady state are
performed from randomized initial conditions. (a,b) Examples of initial and final states, respectively. (c) Ocean
and sea ice velocities. (d) Initial (red) and final (black) mean local sea ice concentration, with the standard
deviation (bars). Clearly, A decreases in the areas of maximum shear strain; compare (c) and (d).

In this paper, we consider only the following ocean velocity profile for simplicity:

uo( y) = uo,max(1 − |1 − 2y/L|), (2.15)

for some maximum velocity uo,max > 0. Figure 1 contains a plot of this velocity profile.

3. Inferring the constitutive equations of the system from the DEM

The system of equations presented in § 2.2 is incomplete because we need additional
expressions for μ(I) and Φ(I). In this paper, we infer these additional equations from
data generated with SubZero, a DEM developed by Manucharyan & Montemuro (2022)
and used for modelling sea ice dynamics with polygon-shaped ice floes. Following the
set-up presented in § 2.2, we perform runs with n = 2000 floes over a square patch of
ocean of length L = 100 km, driven by the ocean velocity field (2.15). This means that the
μ(I) and Φ(I) functions are inferred from DEM solutions with a constant number of floes
(and therefore constant average floe size). In theory, the effects of floe size are included in
the non-dimensional parameter I. In practice, the effects of n are subtle and not too well
captured with our continuum model; see figure 12 in § 5 below.

For a given number of floes and a global sea ice concentration A0, the initial
configuration of ice floes is generated with SubZero’s packing algorithm, which is
based on a Voronoi tessellation of the domain (Manucharyan & Montemuro 2022) (see
figure 2(a) for an example of the outcome of this packing algorithm). Defining the
floe size d as the square root of the floe area, this generates a polydisperse floe size
distribution whose histogram we can see in figure 3 for three values of A0; we find that
d/L is approximately between 0.01 and 0.04. Although we do not study the effects of
polydispersity on the rheology here, we remark that Herman (2022) finds the dilatancy
law Φ to vary visibly with the degree of polydispersity, while the effective friction μ

presents much smaller variations.
We run the DEM simulations for 2 × 104 time steps, each of 5 s (the total running

time is approximately 27.8 h). In general, we find that the velocity, stress and sea ice
concentration, averaged over the last 25 % of the time steps, remain relatively unchanged
when a longer computation is performed, hence we consider that a steady state has been
reached. This temporal averaging is performed over data that at each time step has been
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0 0.01 0.02 0.03 0.04 0.05

d/L (normalized floe size)

20

40

60

80
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) A0 = 0.7
A0 = 0.8
A0 = 0.9

Figure 3. Floe size distributions for different global sea ice concentrations A0 and a total number of ice floes
n = 2000. The floe size d is defined as the square root of the floe area.

Co ρi ρo E ν μ∗

3 × 10−3 900 kg m−3 1026 kg m−3 6 × 106 Pa 0.3 0.2

Table 1. Values for material parameters used throughout this paper. Here, Co is the drag coefficient for the
ocean current, and ρi and ρo are the ice and ocean water densities, respectively. The Young’s modulus E,
Poisson’s ratio ν, and inter-floe friction coefficient μ∗ are used in the calculation of collisional forces, as
described in § A.1.

averaged spatially over a grid as described in § A.2. For these simulations, the material
parameters that determine the effects of the ocean drag and the collisions among floes
are presented in table 1. Collisional forces and the resultant stresses, which determine the
fields σ and p, are computed as explained in § A.1.

In figure 4, we plot the values of the friction μ = |σxy|/p and local concentration
A against I for different global concentrations A0 between 0.7 and 0.95, and different
maximum ocean velocities uo,max between 0.1 and 1 m s−1. The mean ocean velocities in
the ocean patch are therefore between 0.05 and 0.5 m s−1, values that are consistent with
real observations (Stewart, Klocker & Menemenlis 2019). In all of these computations, we
set the ice thickness to H = 2 m. We find an increase in the friction μ and a decrease in
the local concentration A as I increases. The decrease in the local concentration of sea ice
A with an increase in I is due to dilatancy. Figure 2 presents an example of how dilatancy
emerges in the DEM computations: given a random initial distribution of ice floes, when
a steady state is reached, the concentration A decreases in the areas where the largest
shearing occurs (y = 1/4 and y = 3/4), and increases elsewhere. Since the global sea ice
concentration A0 is constant, in this context dilatancy represents a reorganization of the
local concentration profile A( y).

The trends found in the data in figure 4 are well fitted with the following family of
functions:

μ(I) = μ0 + μ1I and Φ(I) = 1 − φ0Iα. (3.1a,b)

A linear behaviour is also found for μ in Da Cruz et al. (2005). The four parameters
μ0, μ1, φ0, α are calculated by minimizing the least squares misfit problem between the
points in figure 4 and the functions in (3.1a,b). The resulting values are shown in table 2.
For the remainder of the paper, any numerical solution of the one-dimensional system
(2.13) is obtained by setting the parameters in functions (3.1a,b) to the values given in
table 2.

1000 A22-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1026


Modelling sea ice in the MIZ as a dense granular flow

0.2

0.4

0.6

0.8

μ
μ(I ) ≈ μ0 (quasi-static) Collisions

increasingly
important

A0 = 0.70
A0 = 0.75

A0 = 0.80
A0 = 0.85

A0 = 0.90
A0 = 0.95

10−5 10−4 10−3 10−2 10–1 100

I

10−5 10−4 10−3 10−2 10–1 100

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A

uo,max = 0.10 m s–1

uo,max = 0.25 m s–1
uo,max = 0.50 m s–1

uo,max = 1.00 m s–1

μ(I )

Φ(I )

(b)

(a)

Figure 4. Plots of (a) friction μ = |σxy|/p and (b) concentration A, against I. Ten friction and concentration
values are extracted from each DEM run by averaging along the grid cells plotted in figure 15. The black lines
correspond to the functions (3.1a,b) fitted to the data by minimizing the least squares misfit.

μ0 μ1 φ0 α

0.26 4.93 0.53 0.24

Table 2. Parameters for the functions μ(I) and Φ(I) in (3.1a,b) obtained by minimizing the least squares misfit
with the data plotted in figure 4. These are the numerical values used for computing solutions to the continuum
model (2.13) throughout this paper.

Departures from the fitting curves are most visible when the ocean velocities and
sea ice concentrations are low; see the case where uo,max = 0.1 m s−1 and A0 = 0.7.
Unsurprisingly, in § 5, we also find the greatest misfit between the DEM and the continuum
model precisely in this setting, when uo,max = 0.1 m s−1 and A0 = 0.7; see figure 9(m)
below. In particular, in this setting, the fundamental balance between shear stress and
ocean drag in the DEM is found to no longer hold; see § 5.

The constitutive equation in two dimensions resulting from functions (3.1a,b) is the sum
of a plastic term and a viscous term:

τ = μ0p
S

‖S‖︸ ︷︷ ︸
plastic

+μ1d̄2
√

ρiHp S︸ ︷︷ ︸
viscous

. (3.2)

A consequence of this linear behaviour is that μ is approximately constant for small values
of I, and this is precisely what we see for I < 10−2 in figure 4. For I � 1, we have that
μ(I) ≈ μ0, therefore it is the plastic term that dominates the rheology. This is essentially
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the quasi-static regime, where collisions are negligible. This plastic term follows from
a Mohr–Coulomb yield criterion with internal angle of friction tan−1(μ0); examples of
the Mohr–Coulomb yield criterion used for sea ice modelling can be found in Ip, Hibler
& Flato (1991), Gutfraind & Savage (1997) and Ringeisen et al. (2019). The viscous term,
which becomes increasingly important as the inertial number I increases, can be associated
with the collisional component of the rheology. A viscous rheology is derived in Shen et al.
(1987) for modelling the rheological effects of collisions in sea ice, which, as we explain
in § 6, is very similar to the viscous component in (3.2).

4. Analysis of the inferred continuum model

This section focuses on the one-dimensional system of equations presented in § 2.2, with
the functions μ and Φ taking the form (3.1a,b). First, in § 4.1 we non-dimensionalize the
system of equations to understand the relative importance of the different terms involved.

The remaining two subsections explore the existence and uniqueness of solutions to this
system, a regularization technique that facilitates its numerical solution, and the behaviour
of solutions under different limits. In particular, in § 4.2, we focus only on the momentum
equation (2.13b). In § 4.2.1, we show that the momentum equation can be rewritten as
a minimization problem. This allows us to establish that solutions to this equation exist
and are unique, and it allows us to make sense of the plastic component (see (3.2)) in a
rigorous sense (as a variational inequality). Moreover, this equivalence also motivates a
regularization of the plastic term that simplifies its numerical solution considerably, as
described in § 4.2.2. We end § 4.2 with an analysis of how the sea ice velocity behaves
under different limits in parameter values: in § 4.2.3, we explore the behaviour of the sea
ice velocity for small and large pressures p; then in § 4.2.4, we derive an analytical solution
for the sea ice velocity in the purely plastic limit. Understanding these limit solutions for
the velocity is helpful for interpreting the DEM results that we present in § 5. It is also
useful for the analysis that we present in § 4.3, which considers the complete system of
equations (2.13). We begin by presenting a numerical method for solving the complete
system in § 4.3.1. Then in § 4.3.2, we sketch out a demonstration of the existence and
uniqueness of solutions to the complete system.

We remark that §§ 4.2.1, 4.2.2 and 4.3 are mostly concerned with questions of a
mathematical and numerical nature. Although we believe these to be important topics in
establishing the suitability of our model for modelling purposes, they are not required for
understanding the remainder of the paper. We also note that, for simplicity, the solutions
presented throughout this section result from driving the ice floes with the ocean velocity
profile (2.15), although the analysis can be extended to more general ocean velocity profiles
by following the same steps.

4.1. Non-dimensionalization of the system
For the non-dimensionalization, we set the characteristic magnitudes

[y] = L, [H] = H, [u] = uo,max and [σ ] = ρi[u]2[H] (4.1a–d)

for the length, thickness, velocity and stress, respectively. We scale the velocities u and uo

with [u], the spatial variables y and d̄ with [y], the thickness H with [H], and σxy and p
with [σ ].

From this point onwards, all variables considered are non-dimensional unless made
explicitly clear to the contrary, or units are specified. Keeping the same notation as used
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for dimensional variables, the following normalized system of equations is derived for u,
I and A, and for the constant p > 0:

−ε
d
dy

(
μ0p

du/dy
|du/dy| + μ1

√
p

A0

n
du
dy

)
= βo |uo − u| (uo − u), (4.2a)

I =
√

A0

pn
| du/dy|, (4.2b)

A = 1 − φ0Iα, (4.2c)∫ 1

0
A dy = A0. (4.2d)

Here, ε = H/L and βo = ρo/ρiCo, and the non-dimensional average floe size d̄ is set to√
A0/n. The system (4.2) is closed by enforcing periodic boundary conditions for u, I and

A. Following our findings in table 2, we assume that the parameters μ0, φ0 and α are
strictly greater than zero. We also assume that μ1 > 0 in all but § 4.2.4, where we study
the case when μ1 = 0 with the intention of understanding the plastic component of the
momentum equation (4.2a).

All numerical results computed in this section take (2.15) as the ocean velocity, which
is written as

uo( y) = 1 − |1 − 2y| (4.3)

for y ∈ (0, 1) when non-dimensionalized.

4.2. The momentum equation
In order to understand the system of equations (4.2), we first focus on the momentum
equation (4.2a). When considering the entire system (4.2), the pressure p ∈ R is one of the
unknowns. However, it is useful to first assume it to be known, in which case we can solve
the momentum equation (4.2a) for u, and study the effect of p on u. Here, we show that
(4.2a) can be understood as a minimization problem. This reformulation of the momentum
equation allows us to establish the existence and uniqueness of solutions. Moreover, the
optimality conditions for the minimization problem result in a different formulation of
the plasticity component of the rheology, which avoids the singularity, present in (4.2a),
at du/dy = 0. With this reformulation of the plastic term, we are able to find analytical
solutions to the purely plastic problem that arises when I � 1, near the quasi-static regime.

4.2.1. Reformulation of (4.2a) as a minimization problem
Given a pressure p > 0, solutions u to (4.2a) minimize the functional

J (u) := εμ0p
∫ 1

0

∣∣∣∣du
dy

∣∣∣∣ dy + εμ1

2

√
p

A0

n

∫ 1

0

∣∣∣∣du
dy

∣∣∣∣2 dy + βo

3

∫ 1

0
|uo − u|3 dy (4.4)

over the space of velocity profiles

V := {v ∈ H1((0, 1)) : v is a periodic function}. (4.5)

In the definition of V , the space H1((0, 1)) denotes the Sobolev space of weakly
differentiable and periodic functions on the unit interval (Adams & Fournier 2003).
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As explained in Appendix B, the functional J is strictly convex and coercive over V ,
and therefore admits a unique minimizer. In this sense, one can state that the momentum
equation (4.2a) also has a unique solution.

To derive (4.2a) for the minimizer u of J , we first note that if u minimizes J , then

1
t

(J (u + t(v − u)) − J (u)) ≥ 0 ∀ v ∈ V, ∀ t ∈ (0, 1). (4.6)

The three terms on the right-hand side of (4.4) are convex, with the last two differentiable
over all V . By exploiting the convexity of the first term (the L1 norm) and the
differentiability of the other two terms, we find that

εμ0p
(∣∣∣∣dv

dy

∣∣∣∣−
∣∣∣∣du
dy

∣∣∣∣
)

+ εμ1

√
p

A0

n

∫ 1

0

du
dy

d(v − u)

dy
dx

− βo

∫ 1

0
|uo − u| (uo − u)(v − u) dx ≥ 0 ∀v ∈ V. (4.7)

A variational statement as in (4.7) is known as a variational inequality. Under the
assumption that the solution u not only is in V but is twice continuously differentiable,
we may deduce that

−ε
d
dy

(
σP

xy + μ1

√
p

A0

n
du
dy

)
= βo |uo − u| (uo − u), (4.8a)

|σP
xy| ≤ μ0p, (4.8b)

σP
xy

∣∣∣∣du
dy

∣∣∣∣ = μ0p
du
dy

. (4.8c)

A derivation similar to that of (4.8) from (4.7) can be found in Glowinski, Lions &
Trémoliéres (1981, § 1.3). In (4.8), we have introduced σP

xy, the purely plastic component
of the shear stress. Introducing this new variable allows us to reformulate (4.2a) such that
the singularity at du/dy = 0 is removed. Indeed, if du/dy /= 0, then it is clear that (4.8) is
equivalent to (4.2a). In this case, we have that |σP

xy| = μ0p, and we say that the material
has reached its plastic yield strength μ0p. Conversely, when du/dy = 0, (4.8a) remains
well defined, unlike (4.2a). We remark that du/dy = 0 must follow from (4.8c) whenever
|σP

xy| < μ0p (the material has not reached its plastic yield strength). Below, in § 4.2.4, we
provide further insight into the plastic component of the shear stress by computing purely
plastic solutions to the momentum equation analytically.

4.2.2. Regularization of the plastic term to facilitate its numerical solution
The first-order optimality condition for the minimization of J is a variational inequality
(rather than a variational equality) because the first term on the right-hand side of (4.4)
(the L1 norm) is non-differentiable when du/dy = 0. We can make J differentiable by
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u

0.5
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u

Ocean
Ice Δ = 10
Ice Δ = 0.100
Ice Δ = 0.010
Ice Δ = 0.001

(b)(a)

Figure 5. Solutions u to the momentum equation (4.10) for different values of the ice pressure p and the
numerical regularization parameter Δ. We set uo equal to (2.15), normalized with [u] = uo,max, and ε = 2 ×
105, A0 = 0.8 and n = 2000. We observe convergence to a solution as Δ → 0 and (a) for small p, u → uo, and
(b) for large p, u → 0.5, as expected from the theory.

regularizing it as follows:

JΔ(u) := εμ0p
∫ 1

0

√∣∣∣∣du
dy

∣∣∣∣2 + Δ2 dy + εμ1

2

√
p

A0

n

∫ 1

0

∣∣∣∣du
dy

∣∣∣∣2 dy + βo

3

∫ 1

0
|uo − u|3 dy,

(4.9)

where Δ > 0 is a small parameter. The first-order optimality conditions for the
minimization of JΔ over V corresponds with the equation

−ε
d
dy

(
μ0p

du/dy√
|du/dy|2 + Δ2

+ μ1

√
p

A0

n
du
dy

)
= βo |uo − u| (uo − u). (4.10)

Although the system (4.8) can be solved numerically by e.g. introducing a Lagrange
multiplier (Glowinski et al. 1981), it is easier to solve (4.10). This is the strategy that we
use for solving the momentum equation, and, as we explain below in § 4.3.1, the complete
system (4.2). To do so, we use the finite element method (FEM) implemented in Firedrake
(Ham et al. 2023). In particular, we approximate the velocity profile u with continuous
piecewise linear functions. In figure 5, we plot solutions to (4.10) for two different values
of p and a range of Δ > 0. Convergence of the velocity profiles as Δ → 0 is clearly visible
in these plots; in fact, for Δ ≤ 10−2, the solutions become indistinguishable. We remark
that if we remove the viscous component of the rheology in the regularized equation (4.10),
then we essentially arrive at Hibler’s model in one dimension, given below by (6.1a).

4.2.3. Velocity profiles in the limits of small and large pressures
The pressure or ice strength p is a fundamental variable in the continuum model;
understanding its effect on u is fundamental for making sense of our sea ice model.
Figure 5 suggests that for small p, the velocity profile u approaches the ocean’s uo, and for
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large p, u flattens and comes close to a constant-valued velocity profile. We can deduce
this behaviour from the functional J . For small values of p,

lim
p→0

J (u) = βo

3

∫ 1

0
|uo − u|3 dy, (4.11)

therefore since u minimizes J , it must follow that u → uo. On the other hand, for large
values of p, we see that

J (u) ≈ εμ0p
∫ 1

0

∣∣∣∣du
dy

∣∣∣∣ dy as p → ∞, (4.12)

and in principle, any constant velocity profile uc ∈ R minimizes (4.12). However, this
constant velocity field is constrained by the total force balance of the system. That is,
due to the periodic boundary conditions, if we integrate (4.8a) along (0, 1), then we must
have that

βo

∫ 1

0
|uo − u| (uo − u) dy = 0. (4.13)

Therefore, the constant value to which u tends as p → ∞ will be a solution to (4.13) with
u = uc ∈ R. In § 4.2.4, we show that a critical pressure pc can be found such that u is
constant whenever p > pc and I � 1.

4.2.4. Purely plastic solutions to the momentum equation
In figure 4, we can see that μ(I) approximately becomes constant for small inertial
numbers I � 1, such that μ(I) ≈ μ0 and the flow rheology is plastic. This regime is
closely related to the quasi-static regime for granular media, with the material behaving
like a purely plastic flow characterized by a critical state at which plastic deformation
occurs (Wood 1990).

The momentum equation for the purely plastic problem where μ(I) = μ0 is given by

ε
dσP

xy

dy
= −βo |uo − u| (uo − u). (4.14)

Equation (4.14) must be complemented with (4.8b) and (4.8c). Here, we present a method
for calculating purely plastic solutions. Additionally, we find a critical pressure pc such
that for p > pc, the velocity profiles u that solve (4.14) remain constant, and no shear strain
occurs in the sea ice. In § 5, we show that this critical pressure approximates the pressure
computed from the DEM when the global sea ice concentration is high. When following
the derivation of purely plastic solutions, it is helpful to look at their plots in figure 6.

Conditions (4.8b) and (4.8c) for the plastic stress tensor indicate that there exist two
distinct regions of the flow field: a region where the sea ice has yielded and |σP

xy| = pμ0,
and another region where the ice has not yielded and |σP

xy| ≤ pμ0 and du/dy = 0. By
working with this distinction, we can find a purely plastic solution to (4.14). Due to the
symmetry of the problem, we assume that σP

xy = 0 at y = 0, 1/2 and 1. Then integrating
(4.14) along the interval (0, y) for some y ∈ (0, 1), we find that

σP
xy( y) = −βo

ε

∫ y

0
|uo − u| (uo − u) dy. (4.15)

Since σP
xy(0) = 0, we must necessarily have an interval (0, y1) where the ice has not

yielded and the velocity equals a constant u1. In the context of the ocean velocity profile
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Figure 6. Solutions u to the purely plastic momentum equation (4.14). We use the same parameter values
as those used for figure 5, and Δ = 10−2. The numerical solutions (black) to the purely plastic problem are
indistinguishable from the analytical solution given by (4.20) (red dashed lines). As the ice pressure p increases,
the velocity profiles flatten at the critical pressure pc given by (4.19), and pc ≈ 13.2 in this case.

(4.3), it makes sense to assume that u1 > 0, and therefore u1 ≥ uo near y = 0, so that

σP
xy( y) = βo

6ε
((2y − u1)

3 + u1). (4.16)

Since the material has not yielded for y ∈ (0, y1), we have that |σP
xy( y)| < μ0p. Equation

(4.16) tells us that σP
xy( y) increases with y over this interval; this means that

lim
y→y1, y<y1

σP
xy( y) = μ0p, (4.17)

and we find that

u1 =
(

6εμ0p
β0

)1/3

. (4.18)

Clearly, an upper bound is needed for u1 in (4.18) because it grows indefinitely with p, yet
it is senseless for the ice to circulate at speeds greater than the maximum ocean velocity
when a steady state has been reached. We can make sense of this paradox by first assuming
the existence of an interval ( y1, y2), where y1 < y2 < 1/2, in which the sea ice has yielded
and σP

xy = μ0p. In this interval, we must have that u = uo because σP
xy is constant and

therefore the ocean drag is zero. This means that y1 = u1/2. Moreover, repeating the same
argument as that used for deriving (4.18), we assume that u = u2 for some constant u2 < 1
on ( y2, 1/2), and find that u2 = 1 − u1 and y2 = u2/2. Now, the assumption that y1 <

y2 < 1/2 will hold only for values of p for which u1 ≤ u2, i.e. u1 ≤ 1/2, and this upper
bound on u1 defines a critical pressure pc given by

pc = βo

48εμ0
. (4.19)

For p ≥ pc, the integral force balance along the domain must hold (see (4.13)); as a result,
u1 can be at most equal to 1/2. Putting these results together, we may write the analytical
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solution to (4.14) as

u( y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1, 0 < y <
u1

2
,

uo( y), y1 < y <
1
2

− y1,

1 − u1,
1
2

− y1 < y <
1
2
,

if p < pc, (4.20a)

u( y) = 1
2

if p ≥ pc, (4.20b)

for y ∈ [0, 1]. We test the validity of (4.20) by showing that it is indistinct from its
numerical counterpart in figure 6. We compute this numerical solution by regularizing
the shear stress σP

xy as in (4.10), and setting Δ = 10−3.

4.3. Solutions to the complete continuum model
In § 4.2, we have seen that, given a value for the pressure p, we can solve the momentum
equation and find a velocity profile u for the sea ice. We also prove that solutions to the
momentum equation must exist and be unique. However, in general, the pressure p is one
of the unknowns in the system of equations (4.2), together with the sea ice concentration A
and the inertial number I. Here, we first present a numerical method for solving (4.2), and
show that solutions to this system always exist and, under some circumstances, are unique.

4.3.1. A numerical method for the complete model (4.2)
In order to solve the system (4.2), we follow the approach discussed in § 4.2.2 for solving
the momentum equation. There, the regularized equation (4.10) is solved numerically
with the FEM. When solving the complete system (4.2), we find that also regularizing
the inertial number I improves the convergence properties of our numerical solver
substantially. Therefore, we solve for

IΔ :=
√√√√A0

pn

(∣∣∣∣du
dy

∣∣∣∣2 + Δ2

)
and A = 1 − φ0Iα

Δ (4.21a,b)

instead of (4.2b) and (4.2c). Then we use the FEM to solve the system of equations given
by the regularized momentum equation (4.10), (4.21a,b), and the constraint for global
concentration (4.2d). We approximate u with continuous piecewise linear functions, and
IΔ and A with piecewise constant functions. Our solver is implemented in Firedrake (Ham
et al. 2023) in such a way that the complete nonlinear system is solved with Newton’s
method. For small values of Δ, Newton’s method tends to fail unless a very good initial
guess for the solution (u, IΔ, A, p) is given. For this reason, we find that solving for a
sequence of decreasing values of Δ, using the solution for the previous Δ as the initial
guess for the next Δ, yields a robust solution method.

We test the sensitivity of solutions (u, IΔ, A, p) to changes in Δ by solving the system for
values of Δ between 10−3 and 10, and for A0 = 0.75 and A0 = 0.9. The numerical results,
which are plotted in figure 7, indicate that the solutions become more sensitive to Δ as
A0 increases; this is natural, since I decreases with A0, and the plasticity term becomes
more important. It is also clear from these plots that although the velocity profiles u come
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Figure 7. Solutions u and A to the continuum model (4.2) with (a,b) A0 = 0.75, and (c,d) A0 = 0.9, regularized
with a parameter Δ as explained in § 4.3.1. (e) Plot of the variation of the pressure p with Δ. We use the same
parameter values as those used for figure 5.

very close to convergence for the smallest values of Δ, the local concentration profiles still
experience visible changes around the symmetry points y = 0, 0.5 and 1. In these points,
the shear strain drops to 0, and by the definition of I, we expect A = 1 there. However, as
we argue in § 5, when comparing the continuum model and the DEM, we consider such
drastic changes in the local concentration to be artificial. This argument motivates the use
of Δ not just as a numerical parameter that helps us to solve the system numerically, but
as a parameter that improves the model and may have a physical significance.

4.3.2. Existence and uniqueness of solutions
We conclude the analysis of the continuum model by showing that at least one solution
to (2.13) must exist, and whenever uo is given by (2.15), the solution is unique. To do so,
we first reformulate (2.13) solely in terms of u and p by eliminating A and I as follows.
Substituting (4.2c) into (4.2d) yields∫ 1

0
Iα dy = 1 − A0

φ0
. (4.22)

Then by substituting the definition of I in (4.2b) into the integrand in the expression above,
we arrive at ∫ 1

0

∣∣∣∣du
dy

∣∣∣∣α dy = 1 − A0

φ0

(
p

n
A0

)α/2

. (4.23)

Therefore, the system of equations (4.2) is equivalent to solving the momentum equation
(4.2a) together with the constraint (4.23) for u and p. We can interpret this problem as the
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Figure 8. Functions F( p) and C( p), defined in (4.24) and (4.25), respectively, for different values of A0.
The lighter tones of blue and red are associated with lower values of A0, although F hardly changes with A0.
A pressure p solves (2.13) whenever C( p) = F( p) (circles). To generate these curves numerically, the same
problem setting as that of figure 5 is used.

minimization of the functional (4.4) over a set of velocity profiles subject to the constraint
(4.23). Next, we define F : R+ → R+ by

F( p) :=
∫ 1

0

∣∣∣∣du
dy

∣∣∣∣α dy, (4.24)

with u denoting the solution to (4.2a) with the pressure set to p; this operator is
well-defined because, given a pressure p > 0, a unique velocity profile u solves the
momentum equation (4.2a). We also define C : R+ → R+, given by the left-hand side
of (4.23), that is,

C( p) := 1 − A0

φ0

(
p

n
A0

)α/2

. (4.25)

It is then clear that a pressure p is part of the solution to the system of equations (4.2) if
and only if

C( p) = F( p). (4.26)

In § 4.2.3, we show that the velocity profile u has two distinct limit behaviours. We find
that u approaches uo as p → 0, and that du/dy tends to 0 as p → ∞. This means that

lim
p→0

F( p) =
∫ 1

0

∣∣∣∣duo

dy

∣∣∣∣α dy and lim
p→∞F( p) = 0. (4.27a,b)

On the other hand, the function C is strictly increasing, with C(0) = 0. Therefore,
whenever

∫ 1
0 |duo/dy|α dy > 0 (i.e. uo is not a flat velocity profile) and F is a continuous

function, we must have at least one solution p to (4.26). Moreover, if F is a decreasing
function, then this pressure must be unique.

In figure 8, we plot the functions C and F for several values of A0 and an ocean velocity
profile given by (4.3). In this case, we have that∫ 1

0

∣∣∣∣duo

dy

∣∣∣∣α dy = 2α, (4.28)

and the function F appears to be strictly decreasing. This is expected, because an increase
in pressure is accompanied by a flattening of the sea ice velocity profile. This means that
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there is a unique p for which (4.26) holds; since there is only one velocity profile u that
solves the momentum equation (4.2a), it follows that the solution to the continuum model
(4.2) must be unique.

5. Comparison of the DEM with the continuum model

The continuum model (4.2) is designed with the objective of capturing the averaged
behaviour of the sea ice simulations carried out with the DEM. Here, we verify that
in the one-dimensional setting of the steady ocean periodic problem, the continuum
model is indeed capable of replicating most of the results of the DEM. We remind the
reader that the DEM solutions can be considered steady and one-dimensional only in the
sense that for spatially and temporally averaged data, we can expect variations in time
and in the x-direction to be negligible. At a small scale, we certainly expect the data
to present variations in time and in the x-direction, and the vertical velocity of the sea
ice to be non-zero. Moreover, DEM computations are initialized using a random floe
initialization; however, as displayed in figure 2, the (spatially and temporally averaged)
steady states that the DEM computations reach from different floe initializations are almost
indistinguishable.

Throughout this section, we use the parameters in tables 1 and 2 when solving the
continuum model. The continuum model is solved with the FEM as explained in § 4.3.1,
setting Δ = 10−3 and using a uniform mesh of 300 cells.

5.1. Variation in global concentration A0 and ocean speed uo,max

We first evaluate the continuum model’s accuracy in replicating the DEM results used for
fitting the functions μ(I) and Φ(I) in § 3. These results are computed for the ocean velocity
profile (2.15) and ice thickness H = 2 m. We consider six global sea ice concentrations A0

between 0.7 and 0.95, and four ocean velocities uo,max between 0.1 and 1 m s−1. For each
of these cases, we run the DEM until a steady state is reached, then we extract 10 values
of the sea ice velocity and concentration along the y-direction, as explained in § 3, and one
value for the pressure p, averaged over the whole square patch of ocean.

Figure 9 displays the velocity and sea ice concentration profiles u and A, and the
pressure p, for both the continuum model and the DEM. The velocity profile u and the
pressure p are normalized as explained in § 4.1 using [u] = uo,max. A consequence of
this normalization is that the non-dimensional solutions u, A and p to the continuum
model (4.2) are indifferent to the value of uo,max. For most of the DEM results, this
is also the case. For each value of A0, almost all of the normalized velocity profiles
(figures 9a,c,e,g,i,k) and pressure points (figure 9m) appear to collapse onto a single curve
or point, which is well approximated by the continuum model.

Departures from the other normalized DEM results are most visible for slow ocean
currents and low concentrations. This becomes particularly clear when looking at the
pressure in figure 9(m) when uo,max = 0.1 m s−1 and A0 ≤ 0.8, where the pressure
values from the DEM (circles) depart substantially from the prediction of the continuum
model (black solid line). These mismatches signal the continuum model’s limitations to
capture the DEM results for the range of regimes considered. When fitting the dilatancy
function Φ(I), the largest misfit is also found for points of slow ocean currents and low
concentration (uo,max = 0.1 m s−1 and A0 ≤ 0.75); see figure 4(b). If the DEM results are
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Figure 9. Solutions to the non-dimensional continuum model (4.2) (black lines) compared with results from
the DEM (markers), with the ocean velocity in blue. For each pair of panels in the first three rows, we fix the
global sea ice concentration A0, vary the maximum ocean velocity uo,max for the DEM, and plot the velocities
in (a,c,e,g,i,k) and the local concentrations in (b,d, f,h, j,l). In (m), we plot the pressure p in terms of A0. Due to
the normalization in terms of [u] = uo,max, the solutions to the continuum model are indifferent to a change in
uo,max.

to approximate a continuum model as in (4.2), then we expect the equality

σxy( y) = −
∫ y

0
tox dy (5.1)
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Figure 10. Shear stress σxy,i and integrated ocean drag
∫

tox,i := �y
∑i

j=1 tox,j extracted from the DEM for
(a,b,c) A0 = 0.7 and (d,e, f ) A0 = 0.9, and uo,max values (a,d) 0.1 m s−1, (b,e) 0.5 m s−1 and (c, f ) 1 m s−1.

to hold approximately for the DEM results, with tox denoting the horizontal component of
the ocean drag. If we denote by σxy,i and tox,i the values extracted from the DEM at the
grid cell of width �y located at yi (see § A.2 for an overview of how these quantities are
obtained), then a discrete balance analogous to (5.1) is

σxy,i = −�y
i∑

j=1

tox,j. (5.2)

We remark that the term tox,j results from averaging the ocean drag on each ice floe, as
opposed to introducing the averaged sea ice velocity into (2.3). We also note that (5.2)
ignores any choice of rheology, and should hold independently of our choice of functions
μ(I) and Φ(I). A surprising result that we find when investigating the DEM data is that
the terms on the left- and right-hand side of the equality in (5.2) differ in orders of
magnitude whenever the sea ice concentration is low and the ocean currents are slow; see
figure 10(a). Conversely, for faster ocean currents and denser concentrations, these terms
become approximately equal (see figures 10c–f ). Inertial effects are found to be negligible
in all of the cases that we consider; moreover, since DEM quantities are averaged along the
whole length of the domain in the x-direction, the term corresponding to ∂σxx/∂x, which
should be considered in a two-dimensional setting, becomes zero. Therefore, this finding
raises the questions of whether a fundamentally different continuum model should be used
for low sea ice concentrations and slow ocean currents, or if a continuum model is valid at
all.

The DEM local concentration A is accurately captured by the continuum model for low
sea ice concentrations; see figures 9(b,d, f,h). For A0 = 0.90 and 0.95 (figures 9j,l), the
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Figure 11. Solutions to the non-dimensional continuum model (4.2) (black lines) compared with results from
the DEM (markers). For each pair of panels in the first row, we fix the sea ice thickness H and vary the
maximum ocean velocity uo,max (the ocean velocity is plotted in blue in (a,c)). In (e), we plot the pressure p
in terms of H. Due to the normalization in terms of [u] = uo,max, the solutions to the continuum model are
indifferent to a change in uo,max.

continuum model overestimates the degree of dilatancy, although the general trends are
visibly similar, with regions of higher concentration around y = 0, 1/2 and 1, where the
strain rates are lowest. Since an increase in Δ diminishes the local variations in A (see
figure 7), this suggests that Δ could be adjusted to improve the fit with the data. In this
case, it would enter the model as a physical parameter whose interpretation should be
explored further.

In figure 9(m), we also test two limit approximations of the pressure that we find in § 4
when uo is given by (4.3). When p � 1, which occurs for the smaller values of A0, we
expect C( p) ≈ 2α because u ≈ uo. This implies that

p ≈ 4
A0

n

(
φ0

1 − A0

)2/α

as A0 → 0. (5.3)

On the other hand, high values of A0 result in I � 1 (see figure 4), therefore μ(I) ≈ μ0,
leading to the purely plastic regime studied in § 4.2.4. Figure 9(k) shows that the velocity
profiles are mostly flat in this region, suggesting that the critical pressure pc calculated in
(4.19) is a good approximation of p. By plotting (5.3) and pc in figure 9(m), we find that
these are indeed good approximations in their respective limits.

5.2. Variation in ice thickness and number of floes
Next, we test the effectiveness of the continuum model in capturing the DEM results for
different ice thicknesses and floe sizes. In figure 11, we plot results for the DEM and the
continuum model for steady states with H = 0.5 and 4 m, different ocean velocities uo,max,
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Figure 12. Solutions to the non-dimensional continuum model (4.2) (lines) compared with results from the
DEM (markers). The solutions to the continuum model are plotted in red for n = 500, blue for n = 2000, and
green for n = 5000; the tone is set to light if A0 = 0.8, and dark if A0 = 0.9 (see legend in (e)). For each pair of
panels in the first row, we fix the sea ice thickness H and vary the maximum ocean velocity uo,max (the ocean
velocity is plotted in blue in (a,c)). In (e), we plot the pressure p in terms of n.

and a global sea ice concentration A0 = 0.8. The ice thickness H enters the continuum
model via the parameter ε = H/L in the momentum equation (4.2a). An increase in H is
accompanied by an increase in ε, which effectively acts as a decrease in the normalized
external forcing. We therefore expect an increase in H to result in a decrease in the
shear strain and pressure. As observed in figures 11(a,c), this is the case for the velocity
profiles of both the continuum model and the DEM; an increase in H is accompanied by a
flattening of the normalized velocity profiles. The continuum model is once again accurate
in capturing the averaged velocities of the DEM and the general trends in the variation of
the sea ice concentration. The pressure resulting from the continuum model and the DEM
also decreases as the ice thickness increases (see figure 11e); for the pressure, we find a
decent fit between the DEM and the continuum model.

Finally, figure 12 contains a comparison between the DEM and the continuum model
for different numbers of floes n. In particular, we present results with n = 500, 2000 and
5000 for A0 = 0.8 and 0.9, and uo,max = 0.5 m s−1. An increase in n implies a decrease in
the effective viscosity of the model, and we therefore expect a decrease in the ice strength
or pressure p; in the limit where n → ∞, the rheology becomes purely plastic, this can
be seen by taking this limit in (4.2a). In figure 12, one can see that the pressure in the
continuum model indeed decreases with n, but this is not the case with the DEM. In fact,
the results of the DEM appear to change little with n, especially for A0 = 0.9. Despite this,
the results from the DEM do not depart from those of the continuum model excessively.
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6. Comparisons with existing models for sea ice

The continuum model studied in this paper shares features with existing models for sea
ice. Here, we examine those similarities and also establish differences with our continuum
model. Due to its ubiquity in sea ice modelling, we first consider Hibler’s model in § 6.1,
before considering other models in § 6.2.

6.1. Hibler’s model
The most widely used model for sea ice is Hibler’s model, which was first presented in
Hibler (1979) and treats sea ice like a viscoplastic material. Under the one-dimensional
conditions of the steady square ocean patch and the non-dimensionalization in § 4, Hibler’s
model reduces to the form

−ε
d
dy

(
p
2e

du/dy√
|du/dy|2 + δ2

)
= βo |uo − u| (uo − u), (6.1a)

p = P∗

ρiu2
o,max

exp (−20(1 − A)). (6.1b)

In (6.1), the parameter P∗ is an empirical constant, δ is a regularization parameter, and
e = 2 represents the eccentricity of the elliptical yield curve from which Hibler’s model
is derived. That is, Hibler’s model assumes a plastic rheology based on an elliptical yield
curve that is then regularized. Inside the plane of principal stresses, the yield curve is set
in such a way that the ice resists only compression, not pure extension. This geometrical
configuration is motivated by the observation that in pack ice, deformation occurs through
ridging (compression) and the opening of leads (extension); of these two mechanisms,
only ridging requires a non-negligible amount of plastic work (Rothrock 1975).

In the steady one-dimensional setting, (6.1a) can be recovered from the regularized
momentum equation (4.10) by setting μ0 = 1/(2e) and μ1 = 0 (pure plasticity). In fact,
1/(2e) = 0.25, which comes very close to the value μ0 = 0.26 that we infer from the
DEM. This means that close to the quasi-static regime, when I � 1 and μ(I) ≈ μ0,
we essentially work with the momentum equation from Hibler’s model. This is a very
reasonable coincidence, because Hibler’s model was designed for the central ice pack
where the sea ice concentration is very high.

The main departure between our model and Hibler’s is the expression for the pressure
(6.1b): as uo,max increases, p decreases in Hibler’s model, unlike our continuum model,
where p is independent of uo,max. This makes it impossible for Hibler’s model to capture
the invariance of the non-dimensional sea ice velocity and pressure with uo,max, which
we find in most of the DEM results in § 5. This is made clear in figure 13, where we show
solutions to Hibler’s model and compare them with the DEM for different values of A0 and
uo,max; an increase in uo,max is accompanied by excessively large changes in the velocity
profile. We set P∗ = 5 × 104 N m−1 and δ = 0.1 in order to get a good fit with the DEM
for some values of uo,max. We remark that Hibler’s model is designed for ice that fractures
and ridges; in this setting, an increase in the ocean drag weakens the ice through this
mechanical deformation. Below, in § 7, we state that future extensions of our continuum
model should include the effects of fracturing and ridging, available in SubZero. These
future investigations should study the validity of (6.1b) when fracturing and ridging are
accounted for.

The choice of an elliptical yield curve in Hibler’s model is motivated by the simplicity
of the resulting rheological formulation, yet other possibilities consistent with the
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Figure 13. Solutions to Hibler’s model for different global concentrations A0 and ocean velocities uo,max. We
also plot the results from the DEM as a reference. Here, we set H = 2 m and n = 2000.

requirement of null resistance to pure extension are available, such as the parabolic lens
and the teardrop yield curves (Zhang & Rothrock 2005; Ringeisen, Losch & Tremblay
2023), and the Mohr–Coulomb criterion (Ip et al. 1991). In fact, as mentioned at the
end of § 3, the purely plastic rheology in the μ(I) formulation considered here (given
by (3.2) with μ1 = 0) can be written as the Mohr–Coulomb rheology presented in Ip et al.
(1991) and Gutfraind & Savage (1997). This becomes clear if we note that ‖S‖ = D1 − D2,
where D1 and D2 denote the principal components (eigenvalues) of D, and we compare the
plastic component in (3.2) with expression (6) in Gutfraind & Savage (1997). A significant
difference between the two expressions is that in (6) from Gutfraind & Savage (1997), the
viscosity is capped to a maximum value in order to avoid the inevitable blow-up that occurs
with a purely plastic rheology; this is another form of regularization. This difference of
plastic yield curves between Hibler’s model and the purely plastic version of our model is
another point of departure between both models in a two dimensional setting.

6.2. Other models
In § 3, we explain that the viscous component in (3.2) can be interpreted as the rheological
effects of collisions, which become increasingly important as I increases. As mentioned
in that section, a collisional rheology is derived in Shen et al. (1987) that is also of a
linearly viscous nature. In fact, this collisional rheology establishes a viscosity that is
linearly proportional to d̄

√
ρiHp, as in (3.2) (see Herman (2022) for a clear description of

the collisional rheology). For this, the model proposed in Feltham (2005) comes close to
(3.2), since it takes the ice rheology to be the sum of Hibler’s rheology and the collisional
rheology from Shen et al. (1987).

To the knowledge of the authors, the only other study using the μ(I) rheology to model
sea ice is Herman (2022). There, the floes are driven by a moving wall (as opposed to an
ocean or atmospheric current, as in our case), and the DEM is based on disk-shaped floes,
with a much more severe polydispersity. Two main differences can be found between the
function μ(I) that we infer (figure 4) and the one found in Herman (2022). First, although
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both cases consider a very similar range of I values, the magnitude of the friction μ differs
considerably, although it is of the same order of magnitude. Second, the μ(I) curve in
Herman (2022) plateaus for I > 10−1 – something that we do not observe. It remains
unclear what may cause these differences. Regarding the second point, we justify our
use of a linear function for μ, as in (3.1a,b), by remarking that it simplifies the resulting
constitutive equation, enabling a more thorough analysis of the model, and resembles the
μ function proposed in Herman (2022) over a large range of I values.

7. Conclusions and future work

In this paper, we have presented a novel mathematical model for sea ice in the MIZ
based on the μ(I) rheology. We have inferred the form of this rheology in § 3 using data
produced with DEM computations. With the analysis in § 4, we prove that the steady
one-dimensional formulation of this model, given by (4.2), is well-posed in the sense
that it has a unique solution. The numerical results presented in § 5 demonstrate that this
model is capable of replicating most of the results of the DEM in the context of steady
one-dimensional problems. The most visible departure from the continuum model occurs
for low ocean velocities and sea ice concentrations, with uo,max = 0.1 m s−1 and A0 ≤
0.85; in this case, the DEM results indicate that the shear stress no longer balances the
integrated ocean drag, signalling a breakdown of the underlying grid-averaged momentum
balance equation. That is, since inertial effects are found to be negligible in the steady
states that we consider, and the extensional stresses cancel out when integrating across
the x-direction of the domain to perform the averaging of DEM quantities, our basic
continuum model, prior to any choice of rheology, establishes a balance between shear
stresses and ocean drag. In figure 10, this balance is found to hold approximately for all
cases except those of slow ocean currents and low sea ice concentrations.

The lack of validity of the continuum model for slow ocean currents and low
concentrations found in § 5 should be explored further, since this is a regime that we expect
to find in parts of the MIZ (Stewart et al. 2019). As explained in § 5, this lack of accuracy
is accompanied by the breakdown of the balance between the averaged shear stress and
the integrated ocean drag extracted from the DEM. This balance precedes the choice of
rheology and therefore indicates that either a fundamentally different continuum model
should be used or some assumption necessary for a continuum model to even hold is no
longer valid.

Mechanical processes such as fracturing, ridging and welding are fundamental processes
in sea ice dynamics (Feltham 2008). Therefore, future improvements of the model
presented here should consider the inclusion of these effects. Since ridging and fracturing
are fundamental processes in the central ice pack (Rothrock 1975), our continuum model
could also be valid in this area when these effects are included, yielding a unified
sea ice model. Since SubZero includes these mechanical interactions between ice floes
(Manucharyan & Montemuro 2022), it is a promising tool for exploring their macroscopic
effects on the rheology. A first step could be to explore the consequences of including floe
fracturing. We expect that this would set an upper bound on the pressure and shear stress
that the ice cover can sustain. This bound will probably be closely related to the fracture
criterion used at the ice floe level. Moreover, floe fracturing will create smaller floes that
lead to higher degrees of polydispersity.

The comparisons between the continuum model and the DEM in § 5 are confined to
the context of the steady periodic ocean problem, which is essentially one-dimensional.
Any future studies must examine the accuracy of the μ(I) rheology in modelling sea ice
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dynamics under unsteady conditions and in a two-dimensional configuration. Barker et al.
(2015) discovered the μ(I) formulation presented in § 2.1 to be mathematically ill-posed
in time-dependent problems, and Schaeffer et al. (2019) has proposed modifications
that avoid these instabilities while leaving the steady equations unchanged. A future
investigation in the context of sea ice should take these studies into account.

The rheology that we propose in (3.2) is local in the sense that the viscosity and
the pressure at a certain point of the domain depend only on other quantities and their
derivatives at that same point. Yet granular materials create complex contact networks
that enable the interaction of grains set far apart. This leads to non-local effects, and
extensions of the μ(I) rheology that include these effects have been proposed in the context
of granular flows (Kamrin & Koval 2012; Bouzid et al. 2013). Such effects will probably
also arise in sea ice modelling and should be considered in future extensions of the model
that we propose here.
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Appendix A. Some notes on the DEM SubZero

A.1. Computing the stress tensor for an ice floe
At a given instant in time, the floe i is in contact with floes whose indices are given by the
set Ci. For each floe j ∈ Ci, there are nc

i,j contact points (there can be several contact points
between two floes if one of them is concave). The stress tensor σ i of floe i is given by

σ i = 1
ai

∑
j∈Ci

nc
i,j∑

k=1

f k
i,j ⊗ rk

i,j, (A1)

where ai is the area of floe i, f k
i,j is the force at the kth contact point exerted by floe j

on floe i, and rk
i,j is the vector connecting the centre of mass of floe i with the kth contact

point. Expression (A1) corresponds to the Love–Weber formula, and in general, additional
terms corresponding to dynamics effects must also be accounted for (Nicot et al. 2013).
However, we find these dynamic terms to be negligible in all of our computations. We
also remark that (A1) differs from its counterpart in Manucharyan & Montemuro (2022,
(9)) in two points. (1) We divide by the floe area ai rather than its volume aiHi to obtain
the right units and account for the fact that we are working with depth-integrated stresses.
(2) We avoid forcing σ i to be symmetric, and simply use the Love–Weber formula. In
general, we find that σi,xy ≈ σi,yx in all of our DEM computations.
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Floe i

Floe j

nk
i,j

c

Figure 14. Collision between two floes. The contact forces are calculated in terms of geometric properties
of the overlap area, shown in grey. Here, c represents the centre of mass of the overlap area, and the normal
direction nk

i,j is taken normal to the line connecting the two intersection points between the floes.

For the convenience of the reader, we now summarize the calculation of contact
forces between two colliding floes in SubZero. A complete account is given in
Manucharyan & Montemuro (2022). The contact force f k

i,j is the sum of its normal and
tangential components:

f k
i,j = f N,k

i,j + f T,k
i,j . (A2)

In figure 14, we represent the parameters and vectors involved in the collision of two floes.
Two colliding floes intersect; this intersection results in an overlap polygon, represented
in grey in figure 14, of area A and centre of mass c. The point c is then considered the
contact point between floes i and j. The normal direction nk

i,j from floe j to floe i is defined
perpendicular to the chord uniting the two intersection points between the floes, as in
figure 14. The normal force is then defined as

f N,k
i,j = κAnk

i,j, (A3)

where

κ = E
HiHj

Hidi + Hjdj
. (A4)

In (A4), E is Young’s modulus, Hi is the floe thickness, and di = √
ai is a measure of the

floe size. Normal forces are thus elastic and do not dissipate energy.
The tangential force is given by

f T,k
i,j = ck

i,jG �t vk
i,j | f N,k

i,j | tk
i,j, (A5)

where ck
i,j is the length of the chord uniting the two intersection points between floes i and

j, and G is the shear modulus G = E/(2(1 + ν)), defined in terms of Poisson’s ratio ν.
The parameter �t is the simulation’s time step, vk

i,j is the tangential velocity difference
between both floes, and tk

i,j is the tangential direction. The tangential force is limited to the
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x

y

u/uo,max

Ocean

Ice (DEM)

(b)(a)

Figure 15. The values of the horizontal velocity u and the stress tensor σ are extracted from the DEM data
for each time step by averaging spatially over the 10 regions, elongated in the x-direction, shown here. In this
figure, n = 2000, uo,max = 2 m s−1 and A0 = 0.8.

upper bound

| f T,k
i,j | ≤ μ∗| f N,k

i,j |, (A6)

where μ∗ is the inter-floe friction coefficient.

A.2. Spatial averaging of data
To average the DEM data in space, we must grid the square domain. Taking into account
the one-dimensional nature of the problem, we divide the domain into N = 10 cells that
stretch in the x-direction, such that the edges separating these cells are defined along N + 1
equispaced points (y0, y1, . . . , yN) in the y-direction. Hence the resulting grid consists
of the cells [0, L] × [yi−1, yi] for i = 1, . . . , N, as depicted in figure 15. At each time
step, we compute the horizontal velocity u and the components of the stress tensor σ by
spatially averaging the velocities and stresses of the ice floes contained in each region. (The
manner in which the stress tensor σ is computed for each ice floe is explained in § A.1.) In
particular, for each cell of the grid, we perform a mass-weighted averaging such that for
ice floes that are only partially contained in the cell, only the mass of the floe inside the
cell is considered. More information about the averaging can be found in Manucharyan &
Montemuro (2022). In order to be consistent with (2.13b), for each run we extract a single
pressure p = 1

2 (σxx + σyy) by spatially averaging this quantity over the whole domain.
By performing the spatial and temporal averaging, for each DEM computation we

obtain a pressure p ∈ R and the vectors (ui), (σxy,i) and (Ai) of data points in R
N . To

compute the inertial numbers I, we first find the strain rate vector (dui) via central finite
differences, such that dui = (ui+1 − ui−1)/(2( yi+1 − yi−1)). Then Ii = d̄

√
Hρi/p |dui|,

with d̄ =
√

AoL2/n.

Appendix B. Existence and uniqueness of solutions to the momentum equation

Since the momentum equation (4.8) of the continuum model is equivalent to the
minimization of the functional J over the space V , defined in (4.5), it suffices to show
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that J admits a unique minimizer to prove the existence and uniqueness of solutions to
the momentum equation. To do so, we first write the functional J : V → R as follows for
simplicity:

J (v) = γ1 |v|1 + γ2 |v|22 + γ3 ‖uo − v‖3
3, (B1)

where γi > 0 for i = 1, 2, 3 are constants, and for q ≥ 1, ‖ · ‖q and | · |q are the Sobolev
norm and semi-norms, respectively, for the Lq((0, 1)) and W1,q((0, 1)) spaces; more
precisely, these are defined by

‖v‖q =
(∫ 1

0
|v|q dx

)1/q

and |v|q =
(∫ 1

0

∣∣∣∣dv

dx

∣∣∣∣q dx

)1/q

. (B2)

We first remark that J is well defined for all v ∈ V by the Sobolev embedding theorem,
which implies that ‖v‖3 < ∞. Moreover, for the sake of rigour, we must also assume that
uo ∈ L3((0, 1)).

According to Evans (2022, theorem 2, chapter 8), at least one function in V exists that
minimizes J if the functional is convex and coercive. It is straightforward to check that J
is convex. The functional J is said to be coercive in V if

‖v‖V → ∞ =⇒ J (v) → ∞, (B3)

where ‖v‖2
V = ‖v‖2

2 + |v|22. We first note that by the triangle inequality and Young’s
inequality, it follows that

‖v‖3
3 ≤ 4(‖uo − v‖3

3 + ‖uo‖3
3). (B4)

Therefore, for any v ∈ V ,

J (v) ≥ γ1 |v|1 + γ2 |v|22 + γ3

4
‖v‖3

3 − γ3 ‖uo‖3
3. (B5)

Using Hölder’s inequality, we can show that ‖v‖3 ≥ ‖v‖2, such that

J (v) ≥ γ2 |v|22 + γ3

4
‖v‖3

2 − γ3 ‖uo‖3
3, (B6)

from which coercivity follows. We note that this argument fails whenever γ2 = 0, which
corresponds with the purely plastic regime, because |v|1 → ∞ does not necessarily follow
from ‖v‖V → ∞.

To prove that there is only one function that minimizes J , we assume by contradiction
that both u1 and u2 minimize J , and u1 /= u2. In this case, we must have that J (u1) =
J (u2). We define w = 1/2(u1 + u2), and note that

‖uo − w‖3
3 < 1

2 ‖uo − u1‖3
3 + 1

2 ‖uo − u2‖3
3, (B7)

due to the strict convexity of the function ‖ · ‖3 in R, and the injectivity of ‖uo − ·‖3
3 in V .

As a result, by appealing to the convexity of the seminorm ‖ · ‖q for all q ≥ 1,

J (w) < 1
2 J (u1) + 1

2 J (u2) = J (u1), (B8)

which is a contradiction because J (u1) ≤ J (v) for all v ∈ V .
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