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1 Abstract 1 

Learning to process speech in a foreign language involves learning new representations for 2 

mapping the auditory signal to linguistic structure. Behavioral experiments suggest that even 3 

listeners that are highly proficient in a non-native language experience interference from 4 

representations of their native language. However, much of the evidence for such interference 5 

comes from tasks that may inadvertently increase the salience of native language competitors. 6 

Here we tested for neural evidence of proficiency and native language interference in a naturalistic 7 

story listening task. We studied electroencephalography responses of 39 native speakers of 8 

Dutch (14 male) to an English short story, spoken by a native speaker of either American English 9 

or Dutch. We modeled brain responses with multivariate temporal response functions, using 10 

acoustic and language models. We found evidence for activation of Dutch language statistics 11 

when listening to English, but only when it was spoken with a Dutch accent. This suggests that a 12 

naturalistic, monolingual setting decreases the interference from native language representations, 13 

whereas an accent in the listeners’ own native language may increase native language 14 

interference, by increasing the salience of the native language and activating native language 15 

phonetic and lexical representations. Brain responses suggest that such interference stems from 16 

words from the native language competing with the foreign language in a single word recognition 17 

system, rather than being activated in a parallel lexicon. We further found that secondary acoustic 18 

representations of speech (after 200 ms latency) decreased with increasing proficiency. This may 19 

reflect improved acoustic-phonetic models in more proficient listeners. 20 

1.2 Significance Statement 21 

Behavioral experiments suggest that native language knowledge interferes with foreign language 22 

listening, but such effects may be sensitive to task manipulations, as tasks that increase 23 



 3 

metalinguistic awareness may also increase native language interference. This highlights the 1 

need for studying non-native speech processing using naturalistic tasks. We measured neural 2 

responses unobtrusively while participants listened for comprehension, and characterized the 3 

influence of proficiency at multiple levels of representation. We found that salience of the native 4 

language, as manipulated through speaker accent, affected activation of native language 5 

representations: significant evidence for activation of native language (Dutch) categories was only 6 

obtained when the speaker had a Dutch accent, whereas no significant interference was found to 7 

a speaker with a native (American) accent.   8 
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2 Introduction 1 

A plethora of behavioral studies has shown that non-native speech processing is slower and more 2 

error-prone than native speech processing, even in highly proficient listeners (Garcia Lecumberri 3 

et al., 2010; Scharenborg and van Os, 2019). One reason for this is the influence of the native 4 

language on non-native listening at different linguistic processing levels (Garcia Lecumberri et al., 5 

2010; Cutler, 2012). Listeners’ knowledge of the sounds of their native language influences how 6 

they perceive non-native sounds, which increases the number of misperceived sounds in non-7 

native compared to native listeners (Garcia Lecumberri et al., 2010). This problem percolates 8 

upwards in the recognition process, leading to spurious activation of similar-sounding words from 9 

the non-native (target) language (Cutler et al., 2006; Scharenborg et al., 2018; Karaminis et al., 10 

2022), as well as from the native language (Spivey and Marian, 1999; Marian and Spivey, 2003; 11 

Weber and Cutler, 2004; Hintz et al., 2022). These sources of interference slow down word 12 

recognition and decrease word recognition accuracy for non-native listeners (Broersma and 13 

Cutler, 2008, 2011; Drijvers et al., 2019; Perdomo and Kaan, 2021). 14 

In addition to bottom-up recognition, listeners engage predictive language models during speech 15 

processing. In the native language, listeners employ predictive models at different linguistic levels 16 

in parallel, including the sublexical, word-form and sentence levels (Brodbeck et al., 2022; Xie et 17 

al., 2023). We thus hypothesized that acquiring a new language involves developing such 18 

predictive models, and that those models exhibit interference from the native language. Such 19 

interference would be evident if native language statistics influence perception of the non-native 20 

language. At the sublexical level, phoneme transition probabilities from the native language may 21 

influence what phoneme sequences are expected in the non-native language. In word recognition, 22 

we contrast two different possible mechanisms of native language interference (see Figure 1). 23 

The standard view is that native and non-native word forms directly compete for recognition in 24 
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one shared lexicon (Figure 1-A; Brysbaert and Duyck, 2010; Dijkstra et al., 2019). Alternatively, 1 

words from the two languages could be activated in segregated lexical systems (Figure 1-B), and 2 

interference would then only occur at the level of behavioral output (e.g., eye movements in a 3 

visual world study). 4 

One cue for activating native language knowledge during non-native listening may be a speaker 5 

accent consistent with the listener’s native language. However, the effect of such an accent is 6 

complex. For some non-native listeners it facilitates recognition (Bent and Bradlow, 2003), but not 7 

for others (Hayes-Harb et al., 2008; Gordon-Salant et al., 2019), likely due to an interaction with 8 

proficiency: non-native listeners with lower proficiency in the target language tend to benefit from 9 

the accent of their own native language, whereas higher proficiency listeners show better 10 

accuracy for native accents of the target language (Pinet et al., 2011; Xie and Fowler, 2013). 11 

Previous research on native language interference typically focused on behavioral experiments 12 

using carefully crafted stimuli. However, recent results suggest that tasks which increase meta-13 

linguistic awareness also increase the influence of the native language on non-native speech 14 

perception (Freeman et al., 2021). This may have led to an overestimation of the effects of native 15 

language interference. Here we used a naturalistic listening paradigm and measured neural 16 

responses to speech unobtrusively with electroencephalography (EEG), while native speakers of 17 

Dutch listened to two versions of an English story, once spoken with an American accent and 18 

once with a Dutch accent. We investigated four related questions: 1) Is there evidence for parallel 19 

predictive language models in non-native listeners? 2) Do brain responses to non-native speech 20 

exhibit evidence for interference from native language statistics? 3) Do these effects depend on 21 

the accent of the speaker? 4) Do the effects change as a function of language proficiency, and is 22 

the effect of accent modulated by proficiency? I.e., do highly proficient listeners benefit more from 23 

a native accent (American accented English), and low proficiency listeners from an accent of their 24 

own native language (Dutch accented English)?  25 
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3 Materials and Methods 1 

In order to measure neural representations during naturalistic non-native story listening, we used 2 

the multivariate temporal response function (mTRF) framework (Lalor and Foxe, 2010; Brodbeck 3 

et al., 2021). Participants listened to an approximately 12 minute long English  story twice, once 4 

spoken with an American English accent, and once with a Dutch accent, with the order 5 

counterbalanced across participants. Using 5-fold cross-validation, mTRFs were trained to predict 6 

the EEG responses to each story separately from multiple predictor variables, reflecting different 7 

acoustic and linguistic properties of the stimuli (see Figure 2 and below). Predictor variables for 8 

English closely followed previously reported research (Brodbeck et al., 2022). The influence of 9 

native language (Dutch) knowledge on neural representations was assessed by generating 10 

additional predictors from Dutch language statistics. To determine which neural representations 11 

change as a function of non-native proficiency, the predictive power of the different groups of 12 

predictors across listeners was correlated with behavioral tests measuring non-native language 13 

proficiency. 14 

3.1 Participants 15 

Forty-six Dutch non-native listeners of English from the Radboud University, Nijmegen, the 16 

Netherlands, subject pool participated in the experiment. All participants reported to be 17 

monolingual, native speakers of Dutch, and had started to learn English around the age of 10 or 18 

11. All were right-handed. Seven participants were excluded due to technical issues during data 19 

acquisition: for two participants, part of the EEG recordings was missing; for one participant the 20 

sound level was initially too low, so part of the English story was presented twice; for one 21 

participant the event codes were missing; for one participant the connection with the laptop was 22 

lost; for one participant the battery failed during the experiment; for one participant the behavioral 23 
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data was missing. This left a sample of 39 participants (14 males, mean age: 21.6, standard 1 

deviation (SD): 2.7; range 18-29). The experiment consisted of two parts: a lexically-guided 2 

perceptual learning experiment followed by listening to the two stories. The lexically-guided 3 

perceptual learning experiment, which investigated the neural correlates underlying lexically-4 

guided perceptual learning, was reported in Scharenborg et al. (2019). The participants reported 5 

here are a superset of those reported in Scharenborg et al. (2019). All participants were paid for 6 

participation in the experiment. No participants reported hearing or learning problems.  7 

3.1.1 Non-native proficiency: LexTale 8 

General English proficiency of the Dutch non-native listeners of English was assessed using the 9 

standardized test of vocabulary knowledge, LexTale (Lemhöfer and Broersma, 2012). LexTale 10 

scores ranged from 46 (which corresponds to a “B1 and lower” level of proficiency according to 11 

the Common European Framework of Reference for Language) to 92 (which indicates  a C1 and 12 

C2 level of proficiency or an “upper & lower advanced/proficient user”; note Lemhöfer and 13 

Broersma do not differentiate between C1 and C2 levels). Overall, 4 participants were classified 14 

as “lower intermediate and lower” (LexTale < 60; B1 and lower), 25 as “upper intermediate” (60 ≤ 15 

LexTale < 80; B2), and 10 as “advanced/proficient user” (LexTale > 80; C1/C2). The mean score 16 

was 73.3 (SD=11.0), which corresponds to “upper intermediate”/B2. All participants were taught 17 

English in high school for at least 6 years. 18 

3.1.2 Acoustic-phonetic aptitude: LLAMA_D 19 

The LLAMA test (Meara et al., 2002) consists of five tests to assess aptitude for learning a foreign 20 

language, and is based on Carroll and Sapon (1959). The five tests assess different foreign 21 

language learning competencies, including vocabulary learning, grammatical inferencing, sound-22 

symbol associations, and phonetic memory. Here we used the LLAMA_D sub-test, which 23 



 8 

assesses the ability to recognize auditory patterns, a skill that is essential for sound learning and 1 

ultimately word learning. We therefore refer to the LLAMA_D score as acoustic-phonetic aptitude. 2 

We expected that higher acoustic-phonetic aptitude may be associated with more efficient accent 3 

processing, and that acoustic-phonetic aptitude may thus modulate effects of speaker accent 4 

independently of effects of English proficiency (LexTale). 5 

During the test, participants first heard a list of words; in the second part of the test, participants 6 

heard new and repeated words, and were asked to indicate whether the stimulus was part of the 7 

initial target words. The words were synthesized using the AT&T Natural Voices (French) on the 8 

basis of flower names and natural objects in a Native American language of British Columbia, 9 

yielding sound sequences that are not recognizable as belonging to any major language family. 10 

The participants got feedback regarding the correctness of their answer after each trial. They 11 

scored points for correctly recognized target words and lost points for mistakes. This tested the 12 

ability to recognize repeated stretches of sound in an unknown phonology, which is an important 13 

skill for learning words in a foreign language (Service et al., 2022), and for distinguishing variants 14 

that may signal morphology (Rogers et al., 2017). 15 

The LLAMA_D scores range from 0 to 100%, where 0-10 is considered a very poor score, 15-35 16 

an average score (most people score within this range), 40-60 a good score, and 75-100 an 17 

outstandingly good score (few people manage to score in this range) (Meara, 2005). A previously 18 

reported average score is 29.3%, SD=11.4 (Rogers et al., 2017). 19 

3.2 Stimuli 20 

The short story was the chapter “The daily special” from the book “Garlic and sapphires: The 21 

secret life of a critic in disguise” by Ruth Reichl (2005). We aimed to select a story on a neutral 22 

topic, while avoiding books that our participants would be familiar with. At the same time we 23 
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wanted the story to be entertaining so that participants would be engaged with the story and would 1 

want to continue to listen.  2 

The stories were read by a female native American speaker and a female Dutch speaker, both 3 

students at the Radboud University at the time of recording. Recordings were made in a sound-4 

attenuated booth using a Sennheiser ME 64 microphone. Each speaker read the story twice. The 5 

story with the fewest mispronunciations was chosen for the experiment. Both stories were around 6 

12 minutes long.  7 

3.3 Procedure 8 

Participants were tested individually in a sound-attenuated booth, comfortably seated in front of 9 

a computer screen. The two short stories were administered in a single session after the lexically-10 

guided perceptual learning experiment reported previously (Scharenborg et al., 2019). The 11 

intensity level of both stories was set at 60 dB SPL and was identical for all participants. The 12 

stories were played with Presentation 17.0 (Neurobehavioral Systems, Inc.), and were presented 13 

binaurally through headphones.   14 

Participants saw an instruction on the computer screen informing them that they would be 15 

listening to two short stories in English. To start the story, participants had to press a button. Once 16 

the story was finished, the participants were prompted to press another button to start the second 17 

story. The order of the presentation of the two stories was balanced across participants. 18 

We recorded EEG activity continuously during the entire duration of the experiment from 32 active 19 

Ag/AgCI electrodes, placed according to the 10-10 system (actiCHamp, Brain Products GmbH, 20 

Germany). The left mastoid was used as online reference. Eye movements were monitored with 21 

additional electrodes placed on the outer canthus of each eye and above and below the right eye. 22 
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Impedances were generally kept below 5 KOhm. Data were sampled at 500 Hz after applying an 1 

online 0.016 – 125 Hz bandpass filter.    2 

3.4 Experimental Design and Statistical Analysis 3 

Accent was a within-subject factor, as all participants listened to both the American and the Dutch 4 

accented story. The behavioral tests (LexTale and LLAMA_D) were between-subject measures 5 

(one measurement per subject). 6 

3.4.1 Preprocessing 7 

EEG data were preprocessed with MNE-Python (Gramfort et al., 2014). Data were band-pass 8 

filtered between 1 and 20 Hz (zero-phase FIR filter with MNE-Python default settings), and 9 

biological artifacts were removed with Extended Infomax Independent Component Analysis (Bell 10 

and Sejnowski, 1995). Data were then re-referenced to the average of the two mastoid electrodes. 11 

Data segments corresponding to the timing and duration of the two stories were extracted and 12 

downsampled to 100 Hz. 13 

3.4.2 Predictor variables 14 

In order to measure the neural representations of speech at different levels of processing, multiple 15 

predictor variables were generated. Each predictor variable is a continuous time-series, which is 16 

temporally aligned with the stimulus, and quantifies a specific feature, hypothesized to evoke a 17 

neural response (see Figure 2 for an overview). The predictors for auditory and English linguistic 18 

processing closely followed previously used representations that were developed as measures of 19 

processing English as a native language (see Brodbeck et al., 2022).  20 

Auditory processing was assessed using an auditory spectrogram and acoustic onsets. 21 

Linguistic processing was assessed at the sublexical, word-form, and sentence level using 22 
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information-theoretic models. These models are all predictive language models that predict 1 

upcoming speech phoneme-by-phoneme, but they differ by taking into account different amounts 2 

of context (for a detailed theoretical motivation see Brodbeck et al., 2022). Previous research has 3 

shown that such models track speech comprehension more closely than acoustic models 4 

(Brodbeck et al., 2018; Verschueren et al., 2022). Sublexical processing was assessed using a 5 

context that consisted of a sublexical phoneme sequence, taking into account only the previous 6 

4 phonemes. Word form processing was assessed using a within-word context, taking into 7 

account only the phonemes in the current word. Sentence level processing was assessed using 8 

a multi-word context consisting of the preceding four words. At all linguistic levels, the influence 9 

of context representations on brain responses was operationalized through phoneme surprisal 10 

(Equation 1) and phoneme entropy (Equation 2) measures: 11 

Equation 1 𝐼𝑖 = −𝑙𝑜𝑔2(𝑝(𝑝ℎ𝑖|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)) 12 

Equation 2 𝐻𝑖 = − ∑ 𝑝(𝑝ℎ𝑖+1 = 𝑝ℎ|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑙𝑜𝑔2(𝑝(𝑝ℎ𝑖+1 = 𝑝ℎ|𝑐𝑜𝑛𝑡𝑒𝑥𝑡))
𝑝ℎ𝑜𝑛𝑒𝑚𝑒𝑠
𝑝ℎ  13 

Phoneme surprisal at position i, 𝐼𝑖, reflects how surprising the phoneme at position i is, given a 14 

certain context (e.g., sublexical phoneme surprisal quantifies how surprising the current phoneme 15 

is based on a prediction using the past 4 phonemes; sentence level phoneme surprisal reflects 16 

how surprising the current phoneme is based on a prediction using the past four words and the 17 

current partial word). Phoneme entropy 𝐻𝑖 reflects how much uncertainty there is about the 18 

identity of the next phoneme. For lexical processing models, cohort entropy (Equation 3) 19 

additionally reflects how much uncertainty there is about what the current word is: 20 

Equation 3 𝐻𝑙𝑒𝑥𝑖 = − ∑ 𝑝(𝑤𝑜𝑟𝑑 = 𝑤|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑙𝑜𝑔2(𝑝(𝑤𝑜𝑟𝑑 = 𝑤|𝑐𝑜𝑛𝑡𝑒𝑥𝑡))𝐿𝑒𝑥𝑖𝑐𝑜𝑛
𝑤  21 

This, again, depends on what context is used. For example, using only the word-form context, the 22 

partial word s… is much more uncertain than when using the sentence context, coffee with milk 23 
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and s…. Significant brain responses related to these variables were taken as indicators of 1 

incremental linguistic processing of speech at these different levels. Finally, in addition to 2 

information-theoretic models, neural correlates of lexical segmentation were controlled for using 3 

a predictor for responses to word onsets (Brodbeck et al., 2018). A predictor with an equally 4 

scaled impulse at each phoneme onset was included to control for any phoneme-evoked 5 

response not modulated by the predictors of interest (analogous to the intercept term in a 6 

regression model). 7 

To generate the sublexical and lexical predictors, word- and phoneme locations are needed, 8 

which were determined in the auditory stimuli using forced alignment. To that end, an English 9 

pronunciation dictionary was defined based on merging the Montreal Forced Aligner (McAuliffe et 10 

al., 2017) English dictionary with the Carnegie-Mellon Pronouncing Dictionary, and manually 11 

adding five additional words that occurred in the short story. The time point of words and 12 

phonemes in the acoustic stimuli were then determined using the Montreal Forced Aligner. Below, 13 

the different predictors and how they were created are explained in detail. 14 

3.4.2.1 Auditory processing 15 

Two predictors were used to assess (and control for; Daube et al., 2019; Gillis et al., 2021) 16 

auditory representations of speech: An auditory spectrogram and an acoustic onset spectrogram. 17 

The auditory spectrogram reflects moment by moment acoustic power, using a transformation 18 

approximating peripheral auditory processing, and thus models sustained neural responses to the 19 

presence of sound. The onset spectrogram specifically contains acoustic onset edges, and thus 20 

models transient response to the onset of acoustic features.  21 

An auditory spectrogram with 128 bands ranging from 120 to 8000 Hz in equivalent rectangular 22 

bandwidth (ERB) space was computed at 1000 Hz resolution with the gammatone library (Heeris, 23 

2018). The spectrogram was log-transformed to more closely reflect the auditory system’s 24 
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dynamic range. For use as the auditory spectrogram predictor variable, the number of bands was 1 

reduced to 8 by summing 16 consecutive bands. 2 

The 128 band log spectrogram was transformed using a neurally inspired auditory edge detection 3 

algorithm (Fishbach et al., 2001) to generate the acoustic onset spectrogram (Brodbeck et al., 4 

2020). For use as a predictor variable, the number of bands was also reduced to 8 by summing 5 

16 consecutive bands. 6 

3.4.2.2 Sublexical English representations 7 

Sublexical representations were assessed using a context consisting of phoneme sequences. To 8 

that end, first a probabilistic model of phoneme sequences in English without consideration of 9 

word boundaries was generated: all sentences of the SUBTLEX-US corpus (Brysbaert and New, 10 

2009) were transcribed to phoneme sequences by substituting each word with its pronunciation 11 

from the pronunciation dictionary and concatenating these pronunciations across word 12 

boundaries. The resulting phoneme strings were used to train a 5-gram model using KenLM 13 

(Heafield, 2011). This 5-gram model was then used to estimate probability distributions for the 14 

next phoneme at each position in the story (𝑝(𝑝ℎ𝑖+1|𝑝ℎ𝑖−3, 𝑝ℎ𝑖−2, 𝑝ℎ𝑖−1, 𝑝ℎ𝑖), with i indexing the 15 

current position in the story). These probability distributions were used to generate two predictors, 16 

phoneme surprisal 𝐼𝑖 and phoneme entropy 𝐻𝑖 (Equations 1 and 2). Each of these predictors was 17 

constructed by placing an impulse at the onset of each phoneme, scaled by the respective 18 

surprisal or entropy value. These predictors were used to measure the use of sublexical 19 

phonotactic knowledge during speech processing.  20 

Additionally, a phoneme onset predictor was included, with impulse size of one at each phoneme, 21 

to serve as an intercept for the sublexical predictors (i.e., capturing any response that occurs to 22 

phonemes but is not modulated by any of the quantities of interest). 23 
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3.4.2.3 English word-form representations 1 

A word onset predictor was generated with equal sized impulses at each word onset to assess 2 

lexical segmentation (Sanders et al., 2002; Brodbeck et al., 2018). This predictor was taken as 3 

an indicator of lexical segmentation, when contrasted with the phoneme predictor which measures 4 

responses related to phonetic processing without regard for lexical segmentation. 5 

Word-form representations were assessed using a model of word recognition that takes into 6 

account word boundaries, but disregards the preceding multi-word context. This model is based 7 

on the cohort model of word recognition (Marslen-Wilson, 1987). A lexicon was defined based on 8 

the pronunciation dictionary (also used for forced alignment), in which each unique grapheme 9 

sequence identifies a word, and each word may have multiple pronunciations. At each word 10 

boundary, the cohort is initialized using the whole lexicon, with the prior likelihood for each word 11 

proportional to its frequency in the SUBTLEX-US corpus (Brysbaert and New, 2009). At each 12 

phoneme position, the cohort is pruned by removing all words whose pronunciations are 13 

incompatible with the new phoneme, and word likelihoods are renormalized. Thus, at the jth 14 

phoneme of the kth word, this cohort model tracks the probability distribution over what word the 15 

current phoneme sequence could convey as 𝑝(𝑤𝑜𝑟𝑑𝑘|𝑝ℎ1, . . . , 𝑝ℎ𝑗). Since each word is 16 

associated with a likelihood and also makes a prediction about what the next phoneme would be, 17 

this amounts to a predictive model for the next phoneme 𝑝(𝑝ℎ𝑗+1|𝑝ℎ1, . . . , 𝑝ℎ𝑗). These evolving 18 

probability distributions over the lexicon are in turn used to compute phoneme surprisal (i.e., how 19 

surprising the current phoneme is given what words were still in the cohort at the previous 20 

position), phoneme entropy (uncertainty about the next phoneme) and lexical entropy (uncertainty 21 

about what the current word is) (Equations 1, 2 and 3). These predictors were used to measure 22 

word-form processing independent of the wider sentence context. Thus, if sublexical surprisal is 23 

a significant predictor of brain activity, this suggests that listeners use sublexical phoneme 24 
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sequences to make predictions about upcoming phonemes; if word-form surprisal is significant, 1 

this suggests that they also use information about what the current word could be. 2 

3.4.2.4 Sentence level representations 3 

Sentence-level processing was assessed using a lexical model augmented by the preceding 4 

multi-word context. The model is identical to the English word-form model, except that now in the 5 

word-initial cohorts, prior probabilities for the words are not initialized based on their lexical 6 

frequency, but instead based on a case-insensitive, lexical 5-gram model (Heafield, 2011) trained 7 

on the word sequences in the SUBTLEX-US corpus (Brysbaert and New, 2009). Thus, instead of 8 

tracking the probability of a word k, given the phonemes of word k heard so far, 9 

𝑝(𝑤𝑜𝑟𝑑𝑘|𝑝ℎ1, . . . , 𝑝ℎ𝑗), this model tracks the probability of a word k given the previous 4 words in 10 

addition to the phonemes of word k, 𝑝(𝑤𝑜𝑟𝑑𝑘|𝑤𝑜𝑟𝑑𝑘−4, . . . , 𝑤𝑜𝑟𝑑𝑘−1, 𝑝ℎ1, . . . , 𝑝ℎ𝑗). Predictors 11 

based on this language model were used to measure the use of the multi-word context during 12 

speech processing. 13 

3.4.2.5 Sublexical Dutch representations 14 

Interference from Dutch sublexical phonotactic knowledge was assessed with a model analogous 15 

to the English sublexical model, but trained on Dutch lexical statistics. Phoneme sequences were 16 

extracted from version 2 of the Corpus Gesproken Nederlands (CGN; Oostdijk et al., 2002), and 17 

used to train a phoneme 5-gram model (Heafield, 2011). Since Dutch and English have different 18 

phoneme inventories, and the 5-gram model was trained on Dutch phonemes, each English 19 

phoneme of the stimulus story was transcribed to the closest Dutch phoneme. The resulting 20 

phoneme sequence, reflecting a transcription of the English story with the Dutch phoneme 21 

inventory, was then used to compute phoneme surprisal and phoneme entropy as for the 22 

sublexical English model using the phoneme 5-gram model trained on Dutch. The resulting 23 
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predictors were used to measure brain responses that would indicate that listeners activated their 1 

knowledge of their native Dutch sublexical phonotactics when listening to the English story. 2 

3.4.2.6 Word-level native language interference 3 

To test for interference from native language word knowledge, we generated two alternative word-4 

form models. These were built and used like the English word-form model, differing only in the 5 

set of lexical items that were included in the pronunciation lexicon. First, we built a Dutch word-6 

form model (word-formD). This model contained only Dutch words and their pronunciations, taken 7 

from the CGN lexicon. In order to evaluate lexical cohorts in the (English) input phoneme 8 

inventory, the Dutch phonemes of those words were mapped to the closest available English 9 

equivalent (as for the sublexical Dutch model), or, in the absence of a close English phoneme, to 10 

a special out-of-inventory token (which always leads to exclusion from the cohort when 11 

encountered). Relative lexical frequencies were taken from the SUBTLEX-NL corpus (Keuleers 12 

et al., 2010) to closely match the way in which the English lexical frequencies were determined 13 

using SUBTLEX-US. Finally, we also built an English/Dutch combined lexicon, using the union of 14 

the two pronunciation dictionaries (word-formED). 15 

3.4.3 mTRF analysis 16 

An mTRF is a linear mapping from a set of nx predictor time series, xi,t, to a response time series 17 

yt. The response at time t is predicted by convolving the predictors with a kernel h, called the 18 

mTRF, at a range of delay values 𝜏: 19 

𝑦𝑡̂ = ∑ ∑ 𝑥𝑖,𝑡−𝜏ℎ𝑖,𝜏

𝑛𝜏

𝜏

𝑛𝑥

𝑖

 20 

The mTRFs were estimated using the boosting algorithm (David et al., 2007) implemented in 21 

Eelbrain (Brodbeck et al., 2021), separately for each story. Delay values (𝜏) ranged from -100 to 22 
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850 ms. For 5-fold cross-validation, predictors and EEG responses were split into 5 segments of 1 

equal length. To predict the EEG response to each segment, an mTRF was trained on the four 2 

remaining segments. This mTRF in turn was the average of 4 mTRFs, which were trained by 3 

iteratively using one of the four segments as validation data and the remaining 3 segments as 4 

training data. The mTRFs were trained using coordinate descent to minimize ℓ2 error of the 5 

predicted response in the training data. If after any training step the ℓ2 error in the validation data 6 

increased, then this last step was undone and the TRF corresponding to this predictor was frozen 7 

(i.e., excluded from further modification by the fitting algorithm). Fitting continued until all TRFs 8 

were frozen. 9 

3.4.3.1 Predictive power 10 

Evidence for specific neural representations was assessed by testing whether the corresponding 11 

predictors significantly contributed to predicting the held-out EEG data. In order to evaluate the 12 

predictive power of a specific predictor, or a group of predictors, two mTRFs were estimated: one 13 

for the full model (i.e., all predictors), and one for a baseline model, consisting of the full model 14 

minus the predictor(s) under investigation. The null hypothesis is that the two models predict the 15 

data equally well, whereas the alternative hypothesis is that adding the predictor(s) under 16 

investigation improves the model fit. Because the predictive power was measured on data that 17 

was held out during mTRF estimation, using 5-fold cross-validation, the two models should predict 18 

the data equally well unless the predictors under investigation contain information about the 19 

neural responses not already contained in the baseline model. 20 

Predictive power was quantified as the proportion of the variance explained in the EEG data. This 21 

was calculated as 1 − ∑ (𝑦𝑡 − 𝑦̂𝑡)2
𝑡 / ∑ 𝑦𝑡

2
𝑡 , which is directly related to the ℓ2 loss that was 22 

minimized during mTRF estimation, ∑ (𝑦𝑡 − 𝑦̂𝑡)2
𝑡 . In order to test whether the predictive power of 23 

two models differed reliably across participants, we first compared the predictive power of the two 24 
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models, averaged across all sensors, with a repeated measures t-test. We report Cohen’s d effect 1 

sizes. In case there was a significant difference, we then used mass-univariate tests to find sensor 2 

regions that contributed to the effect. These mass-univariate tests were cluster-based permutation 3 

tests (Maris and Oostenveld, 2007), using as cluster-forming threshold a t-value corresponding 4 

to an uncorrected p=.05, and estimating corrected p-values for each cluster’s cluster-mass 5 

statistic (summed t-values) on a null distribution estimated from 10,000 random permutations of 6 

condition labels. 7 

In some comparisons where we are interested in the null hypothesis (e.g., whether there is 8 

evidence for native language interference) we also report Bayes factors (B) (Rouder et al., 2009) 9 

estimated using the BayesFactor R library, version 0.9.12-4.4 (Morey et al., 2022). For directional 10 

contrasts (e.g., that predictive power is > 0), we report the Bayes factor for evidence in favor of 11 

the value being >0 vs <0 (Morey and Rouder, 2011). 12 

3.4.3.2 Correlations with language proficiency 13 

To test whether language proficiency measures explained neural responses, we analyzed the 14 

predictive power of the different language models as a function of the LexTale and LLAMA_D test 15 

scores. As dependent measure we extracted the predictive power for a given set of predictors 16 

across all EEG sensors. This measure of predictive power is the difference in explained variance 17 

(∆v) between two models which differ only in the inclusion or exclusion of the predictors under 18 

investigation. We then analyzed the predictive power in R (R Core Team, 2021) using linear mixed 19 

effects models as implemented in lme4 (Bates et al., 2015), with the following formula: 20 

∆𝑣 ~ (𝐿𝑒𝑥𝑇𝑎𝑙𝑒 +  𝐿𝐿𝐴𝑀𝐴) ∗ 𝑎𝑐𝑐𝑒𝑛𝑡 ∗ 𝑠𝑒𝑛𝑠𝑜𝑟 + (1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)   Equation 4 21 

Including higher level random effect structure generally resulted in singular fits, with one 22 

exception: for the analysis of auditory responses, we were able to specify sensor as random 23 
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effect. We tested for significant effects using likelihood ratio tests. In order to minimize the number 1 

of comparisons, we first tested whether there was any effect of proficiency, by comparing model 2 

Equation 4 with a model in which all terms including LexTale were removed (and analogous for 3 

aptitude/LLAMA). In case of a significant difference, we then tested whether the effect of 4 

proficiency was modulated by speaker accent by comparing model Equation 4 to a model lacking 5 

only terms including a LexTale:accent interaction. When significant interactions with accent were 6 

detected we fit separate linear models for the English and Dutch accented conditions.  7 

When we detected significant effects involving LexTale or LLAMA, we then performed further 8 

analyses to explore the topographic distribution of these effects across EEG sensors. For this, we 9 

fitted a multiple linear regression with the following model, independently at each sensor and for 10 

each accent condition: 11 

∆𝑣 ~ 𝐿𝑒𝑥𝑇𝑎𝑙𝑒 + 𝐿𝐿𝐴𝑀𝐴  Equation 5 12 

We show topographic plots of the t statistic corresponding to the predictors of interest from this 13 

regression (LexTale/LLAMA). We further selected sensors at which t≥2 to produce scatter plots 14 

for illustrating the relationship, and for analyzing TRF magnitudes (next paragraph). 15 

We further analyzed the TRFs corresponding to the predictors that were related to proficiency, to 16 

gain more insights in the brain dynamics underlying the predictive power effects. If a predictor 17 

contributes to the predictive power of a model, it does so through the weights in its TRF. We 18 

investigated these weights to gain more insight into the time-course at which the predictor’s 19 

features affect the brain response. For this, we upsampled TRFs to 1000 Hz and calculated the 20 

TRF magnitude as a function of time (for each lag, the sum of absolute values of the weights 21 

across sensors and, for acoustic predictors, frequency). We analyzed these time-courses using 22 

a mass-univariate multiple regression model with the same model as in Equation 5, correcting for 23 
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multiple comparisons across the time course (0–800 ms) with cluster-based permutation tests 1 

with the same methods described for the analysis of predictive power.  2 

4 Results 3 

We hypothesized that acquiring a new language involves learning new acoustic-phonetic 4 

representations, as well as developing predictive language models that use different contexts to 5 

anticipate upcoming speech. Here we looked for evidence of such representations in EEG 6 

responses to narrative speech. To address the research questions outlined in the Introduction, 7 

we proceeded in three steps: 1) we verified that the previously described predictive language 8 

models for English at the sublexical, word-form and sentence level (Brodbeck et al., 2022; Xie et 9 

al., 2023) are also significant predictors for EEG responses of non-native listeners; 2) we tested 10 

the influence of Dutch, the native language, on processing of English by testing the predictive 11 

power of language models that incorporate Dutch language statistics; 3) we determined to what 12 

extent these effects are modulated by English proficiency (LexTale) and acoustic-phonetic 13 

aptitude (LLAMA_D). 14 

4.1 Proficiency and aptitude test results 15 

Figure 3 shows that English proficiency (LexTale) and acoustic-phonetic aptitude (LLAMA_D) 16 

were uncorrelated (r(37)=-.06, p=.700). This confirms that the two tests measure independent 17 

aspects of second language ability.  18 
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4.2 Robust acoustic and linguistic representations of the non-native 1 

language 2 

To test whether listeners formed a specific kind of representation, we tested whether a predictor 3 

designed to capture this representation has unique predictive power, i.e., whether an mTRF 4 

model including this predictor is able to predict held-out EEG responses better than the same 5 

model but without the specific predictor. We initially started with a model containing predictors for 6 

auditory and linguistic representations established by research on native language processing 7 

(Brodbeck et al., 2022), illustrated in Figure 2:  8 

𝐸𝐸𝐺 ~ 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐸 + 𝑤𝑜𝑟𝑑– 𝑓𝑜𝑟𝑚𝐸 + 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸  Equation 6 9 

The auditory predictors consisted of an auditory spectrogram and onset spectrogram. The English 10 

(E) linguistic predictors were based on three information-theoretic language models, all modeling 11 

incremental, phoneme-by-phoneme information processing: a sublexical phoneme sequence 12 

model, a word-form model and a sentence model. 13 

To determine whether the different components of model Equation 6 describe independent neural 14 

representations, we tested for each component whether it significantly contributed to the 15 

predictive power of the full model (Figure 4 and Table 1). We first tested the average predictive 16 

power in the two stories (American & Dutch, A&D, Figure 4 first row), then tested for a difference 17 

between the two stories (American vs Dutch, AvD, not shown in Figure 4) and confirmed the effect 18 

separately in the American (A) and Dutch (D) accented stories (Figure 4 second and third row). 19 

Auditory predictors (Figure 4-A) and the three language levels (Figure 4-B) all made independent 20 

contributions to the overall predictive power, and none of them differed between stories (statistics 21 

in Table 1). The topographies of predictive power are comparable to known distributions reflecting 22 

auditory responses, suggesting contributions from bilateral auditory cortex (e.g. Lütkenhöner and 23 
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Mosher, 2007), similar to native listeners’ responses (Brodbeck et al., 2022). Taken together, 1 

these results suggest that non-native Dutch listeners, as a group, use English sublexical transition 2 

probabilities (sublexical context), word-form statistics (word-form context), as well as multi-word 3 

transition probabilities (sentence context) to build incremental linguistic representations when 4 

listening to an English story.  5 
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Table 1. Statistics for the predictive power of English language models, averaged across all EEG 1 

sensors (corresponding to swarm plots in Figure 4). Significant results in bold font (p≤.05). 2 

 American & Dutch American vs Dutch American Dutch 

 t(38) p d t(38) p d t(38) p d t(38) p d 

Auditory 10.7 < .001 1.71 -0.37 .716 -0.06 9.87 < .001 1.58 8.86 < .001 1.42 

Sublexical 4.68 < .001 0.75 -0.87 .387 -0.14 2.81 0.004 0.45 3.65 < .001 0.59 

word-form 3.95 < .001 0.63 0.7 .485 0.11 3.11 0.002 0.50 2.69 .005 0.43 

Sentence 4.31 < .001 0.69 -0.83 .411 -0.13 3.39 < .001 0.54 3.75 < .001 0.60 

 3 

Previous results suggested that native English listeners activate sublexical, word-form and 4 

sentence models in parallel, evidenced by simultaneous early peaks in their brain response to 5 

phoneme surprisal (Brodbeck et al., 2022). This contrasts with an alternative hypothesis of 6 

cascaded activation, which would predict that lower level models are activated before higher level 7 

models, i.e., first the sublexical, then the word-form, and then the sentence model (e.g. 8 

Zwitserlood, 1989). Figure 5 shows TRFs for phoneme surprisal associated with the three 9 

language models in model Equation 6. Each language model is associated with an early peak 10 

around 60 ms latency (peaks might appear earlier than expected because the forced aligner does 11 

not account for coarticulation). This suggests that the different language models are activated in 12 

parallel in non-native listeners, as they are in native listeners. 13 
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4.3 Influence of the native language on non-native language 1 

processing 2 

4.3.1 A Dutch sublexical phoneme sequence model is activated when 3 

listening to Dutch-accented English 4 

Learning English as a non-native language entails acquiring knowledge of the statistics of English 5 

phoneme sequences, i.e., a new sublexical context model. Given the relatively large overlap of 6 

the Dutch and English phonetic inventories, the native language Dutch sublexical model might 7 

still be activated when listening to English. To test whether this is indeed the case, we added 8 

predictors from a Dutch sublexical context model, sublexicalD, to model Equation 6. The Dutch 9 

sublexical model was analogous to the English sublexical model, containing phoneme surprisal 10 

and entropy based on Dutch phoneme sequence statistics. To test whether the Dutch sublexical 11 

model can explain EEG response components not accounted for by the English sublexical model, 12 

the predictive power of the model containing both (Equation 7) was compared to a model without 13 

the Dutch sublexical predictor (Equation 6), and vice versa.  14 

𝐸𝐸𝐺 ~ 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐸 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐷 + 𝑤𝑜𝑟𝑑– 𝑓𝑜𝑟𝑚𝐸 + 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸  Equation 7 15 

When averaging the predictive power of the two stories, both the Dutch and the American 16 

sublexical models contributed explanatory power (Figure 4-C; sublexicalD: t(38)=1.72, p=.046, 17 

d=0.28; sublexicalE: t(38)=3.67, p<.001, d=0.59). The explanatory power of the English 18 

sublexicalE model remained robust across stories (A: t(38)=2.30, p=.013, d=0.37; D: t(38)=2.87, 19 

p=.003, d=0.46; AvD: t(38)=-0.67, p=.506, d=-0.11). However, this was not the case for the Dutch 20 

sublexicalD model. Evidence for an effect of the Dutch sublexicalD model in the Dutch-accented 21 

story was strong (t(38)=2.32, p=.013, d=0.37, B=64.45). However, evidence for interference in 22 

the American-accented story was weak, with only negligible evidence in favor of some 23 
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interference (t(38)=0.33, p=.373, d=0.05, B=1.66). The effect was not significantly stronger in the 1 

Dutch accentend story compared to the American accented story, suggesting that some caution 2 

is warranted, but the Bayes factor suggests some evidence in favor of a stronger effect in the 3 

Dutch accented story (t(38)=1.02, p=.156, one-tailed, d=0.16, B=5.12). We conclude that 4 

interference was likely stronger in the Dutch accented story, but some interference may have 5 

occurred in both stories. 6 

4.3.2 Dutch and English word forms are activated together when listening to 7 

Dutch accented English 8 

Several previous studies suggest that Dutch word forms are activated alongside English word 9 

forms when listening to English (see Introduction). This could occur in two different ways (Figure 10 

1): Dutch word forms could be activated in a separate lexical system, without competing with 11 

English word forms. Alternatively, Dutch and English word forms could compete for recognition in 12 

a connected lexicon. 13 

To test the first possibility (Figure 1-B), we tested whether a separate word-form model with only 14 

Dutch word forms, word-formD, improved predictive power when added in addition to the English 15 

word-form model: 16 

𝐸𝐸𝐺 ~ 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐸 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐷 + 𝑤𝑜𝑟𝑑– 𝑓𝑜𝑟𝑚𝐸 + 𝑤𝑜𝑟𝑑– 𝑓𝑜𝑟𝑚𝐷 + 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸17 

 Equation 8 18 

This implements the hypothesis that two independent brain systems track English and Dutch word 19 

forms independently, i.e., at each phoneme the two systems encounter different amounts of 20 

surprisal and entropy according to their respective lexicon, and each system generates a neural 21 

response, with the two responses combining in an additive manner. Comparing model Equation 8 22 

with Equation 7 tests for the existence of such a Dutch lexical model alongside the English model. 23 
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The results showed that the Dutch word-form model did not further improve predictions after 1 

controlling for other predictors. Indeed, the addition of the Dutch word-form model made 2 

predictions worse, as might be expected in cross-validation from a predictor that adds noise (A&D: 3 

t(38)=-3.09, p=.998; AvD: t(38)=-0.20, p=.840). 4 

To test the second possibility (Figure 1-A), we tested a merged lexicon, i.e., a model analogous 5 

to the English word-form model, but including both English and Dutch word forms: word-formED. 6 

This merged word-form model embodies the hypothesis that a single lexical system detects word 7 

forms of both languages, i.e., at each phoneme there is only a single surprisal and entropy value, 8 

which depends on the expectation that the current word could be English as well as Dutch. Since 9 

this merged word-form model is hypothesized as an alternative to the English-only word-form 10 

model (word-formE), we here tested the effect on predictive power of substituting the merged 11 

word-form model for the English word-form model (two-tailed test) – i.e., we compared model 12 

Equation 9 with Equation 7:  13 

𝐸𝐸𝐺 ~ 𝑎𝑢𝑑𝑖𝑡𝑜𝑟𝑦 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐸 + 𝑠𝑢𝑏𝑙𝑒𝑥𝑖𝑐𝑎𝑙𝐷 + 𝑤𝑜𝑟𝑑– 𝑓𝑜𝑟𝑚𝐸𝐷 + 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝐸 14 

 Equation 9 15 

Overall, the merged word-form model improves predictions over the English word-form model 16 

(A&D: t(38)=2.39, p=.022, two-tailed, d=0.38; Figure 4-D). It is conceivable that compared to the 17 

American accent, a Dutch accent, which better matches Dutch phonological categories, increases 18 

activation of Dutch competitors. Indeed, when analyzing accents separately, the evidence in favor 19 

of the merged word-formED model was strong in the Dutch-accented story (t(38)=2.98, p=.005, 20 

d=0.48, B=312.26) and negligible in the American accented story (t(38)=0.29, p=.771, d=0.05, 21 

B=1.57), and there was considerable evidence for a difference between speaker accents (AvD: 22 

t(38)=1,77, p=.042, one-tailed, d=0.28, B=20.11). 23 
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Crucially, the merged word-form model was significantly better than the parallel lexicon model, 1 

confirming that a lexicon with direct lexical competition between candidates from the two 2 

languages better accounts for the data than activation in two parallel lexica (model Equation 9 vs. 3 

Equation 8, A&D: t(38)=4.11, p<.001; A: t(38)=2.98, p=.005; D: t(38)=3.10, p=.004). 4 

4.4 Modulation of non-native language processing by language 5 

proficiency 6 

We next asked whether the acoustic and linguistic representations are modulated by non-native 7 

language proficiency. We used model Equation 9 as the basis for these analyses, because the 8 

results reported above suggested that Equation 9 was the best model. Thus, predictive power 9 

reported in the following section was always calculated by removing the relevant predictors from 10 

model Equation 9. We used linear mixed effects models to determine whether a given 11 

representation is influenced by language proficiency (LexTale) or acoustic-phonetic aptitude 12 

(LLAMA_D), and if so, whether this relationship is modulated by speaker accent. Table 2 shows 13 

results for the LexTale score, and Table 3 shows corresponding results for the LLAMA_D score.  14 
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Table 2. Influence of proficiency on the predictive power of different EEG model components, 1 

determined with linear mixed effects models. The LexTale column reports tests for any 2 

influence of lexTale, i.e., whether all terms including LexTale combined (main effect and 3 

interactions) significantly improved models (likelihood ratio tests). If this was the case, the 4 

LexTale × accent column reports whether the effect of LexTale was modulated by speaker 5 

accent by testing whether the terms including a LexTale:accent interaction significantly 6 

improved models. Reported p-values are uncorrected; results in bold indicate significance 7 

(p<.05) after correcting for false discovery rate among the tests reported in this table. 8 

 LexTale LexTale × accent 

 𝜒2(28) p 𝜒2(28) p 

Auditory 123.41 <.001 48.70 .009 

SublexicalE 156.87 <.001 135.82 <.001 

SublexicalD 59.00 .367   

Word-
formED 

58.78 .374   

Word-
formED>E 

63.53 .228   

Sentence 46.99 .799   

 9 

  10 
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Table 3. Influence of acoustic-phonetic aptitude as measured by the LLAMA_D test on the predictive 1 

power of different EEG model components. Details as in Table 2. 2 

 LLAMA LLAMA × accent 

 𝜒2(28) p 𝜒2(28) p 

Auditory 133.52 <.001 104.82 <.001 

SublexicalE 45.73 .835   

SublexicalD 35.76 .984   

Word-
formED 

55.28 .502   

Word-
formED>E 

57.81 .408   

Sentence 39.87 .949   

 3 

4.4.1 Increased proficiency (LexTale) is associated with reduced late 4 

auditory responses 5 

The predictive power of the auditory predictors was significantly modulated by proficiency as 6 

measured by LexTale (Table 2). Even though this association differed between accents, it was 7 

independently significant for American and Dutch accented speech (A: 𝜒2(28)=59.59, p<.001; D: 8 

𝜒2(28)=98.25, p<.001). In both cases, individuals with higher proficiency had weaker auditory 9 

representations, and this modulation involved electrodes across the head (Figure 6-A and C). An 10 
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analysis of the TRFs suggests that in both accent conditions, lower proficiency was associated 1 

with larger sustained auditory responses at relatively late lags (A: 250–393 ms, p<.001; D: 220–2 

287 ms, p=.008 and 348–407 ms, p=.015; Figure 6-B and D). These results indicate that listeners 3 

with lower proficiency exhibit enhanced sustained auditory representations at relatively late lags. 4 

4.4.2 Acoustic-phonetic aptitude (LLAMA_D) is associated only with 5 

processing of Dutch-accented speech 6 

The predictive power of auditory responses was also modulated by acoustic-phonetic aptitude, 7 

and this effect was qualified by an interaction with speaker accent (Table 3). Figure 7-A and C 8 

illustrate the pattern creating this interaction. Acoustic responses to the American accented story 9 

were not modulated by aptitude (𝜒2(28)=17.74, p=.932), but responses to the Dutch accented 10 

story were (𝜒2(28)=88.75, p<.001), with a broadly distributed topography (Figure 7-C). Consistent 11 

with this, TRF magnitudes were not related to phonetic ability in the American accented story 12 

(Figure 7-B). In TRFs to the Dutch accented story, increased aptitude was associated with 13 

decreased sustained responses to  acoustic features at relatively late lags (224–277 ms, p=.048; 14 

Figure 7-D), similar to the effect of proficiency described above (cf. Figure 6). 15 

Thus, Dutch listeners with higher acoustic-phonetic aptitude exhibited reduced acoustic 16 

responses when listening to English spoken with a Dutch accent. However, acoustic-phonetic 17 

aptitude did not affect acoustic responses when listening to English accented speech. 18 



 31 

4.4.3 English proficiency reduces sublexical representations of American-1 

accented speech, and enhances sublexical representations of Dutch-2 

accented speech 3 

The predictive power of the English sublexical model (sublexicalE) was significantly associated 4 

with language proficiency, and this effect was modulated by speaker accent (Table 2). Proficiency 5 

affected responses in both American and Dutch accented speech (A: 𝜒2(28)=49.62, p=.007; D: 6 

𝜒2(28)=63.81, p<.001). The interaction is illustrated in Figure 8. When listening to the American 7 

accented speaker, higher proficiency was associated with a decrease in predictive power, with 8 

large effects at frontal sensors bilaterally (Figure 8-A); in contrast, when listening to the Dutch 9 

accented speaker, proficiency was associated with an increase in predictive power primarily at 10 

right frontal sensors (Figure 8-C). Thus, when listening to English spoken with an American 11 

accent, more proficient listeners show less activation of English sublexical statistics compared to 12 

listeners with low proficiency; on the other hand, when listening to a Dutch accent, more proficient 13 

listeners activate English sublexical statistics more strongly. 14 

To determine how brain responses lead to this modulation of predictive power, we analyzed the 15 

corresponding TRFs, shown in Figure 8-B and D. Here, a TRF reflects the component of the brain 16 

response to phonemes that scales with the corresponding predictor’s value, i.e., surprisal or 17 

entropy. The TRF to sublexical surprisal in the American accented story exhibit increased 18 

responses in listeners with low proficiency in middle (160–226 ms, p=.003) as well as later parts 19 

of the response (558–609 ms, p=.007). This suggests that the stronger activation of the sublexical 20 

model in individuals with low proficiency is due to increased extended cortical processing. On the 21 

other hand, the TRFs to the Dutch accented story do not exhibit a significant effect of LexTale, 22 

and thus do not provide a clear explanation for higher predictive power in high proficiency 23 

individuals. 24 
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4.4.4 No evidence for a decrease in native language interference with 1 

increasing proficiency 2 

Even though effects of native language interference persist in highly proficient non-native listeners 3 

(Garcia Lecumberri et al., 2010), we hypothesized that the magnitude of the interference might 4 

decrease with increasing proficiency. However, the predictive power of the models of native 5 

language interference (the sublexicalD predictor and the word-formED>E contrast) were not 6 

significantly related to LexTale. Figure 9 shows plots of native language interference as a function 7 

of proficiency. The evidence for native language interference was averaged at 18 anterior sensors 8 

(manually selected, based on the observation that predictive power of the relevant comparisons 9 

was strongest in this region, cf. Figure 4). Even though some of the regression lines seem to 10 

exhibit a negative trend, none of these associations were significant (Table 2). This suggests that 11 

in the range of proficiency studied here, native language interference does not significantly 12 

decrease with increased proficiency.  13 

5 Discussion 14 

EEG responses of native speakers of Dutch, listening to an English story, exhibited evidence for 15 

parallel activation of sublexical, word-form, and sentence level language models. This parallels 16 

previous findings from native speakers of English listening to their native language (Brodbeck et 17 

al., 2022; Xie et al., 2023).  18 

5.1 Activation of the native language  19 

We found evidence for two ways in which the native language (Dutch) influenced brain responses 20 

associated with non-native (English) speech processing. First, listening to English activated a 21 

predictive model of Dutch phoneme sequences, in addition to the appropriate English phoneme 22 
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sequence model. This interference was only significant in Dutch accented speech (although the 1 

evidence for a difference by speaker accent was weak). This suggests that listeners were not able 2 

to completely “turn off” statistical expectations based on phoneme sequence statistics in their 3 

native language, at least when listening to English spoken with a Dutch accent. 4 

Second, brain responses to Dutch accented English also exhibited evidence for activation of 5 

Dutch word-forms. Our results suggest that, in advanced non-native listening, Dutch and English 6 

words are activated in a shared lexicon and compete for recognition, rather than being activated 7 

in independent parallel lexica. This provides a neural correlate for a phenomenon seen in 8 

behavioral studies, showing activation of words from the native language during non-native 9 

listening (Spivey and Marian, 1999; Marian and Spivey, 2003; Weber and Cutler, 2004; Hintz et 10 

al., 2022). However, in our results this effect was significant only for Dutch accented speech, and 11 

was not detectable for English accented speech. Thus, in this more naturalistic listening scenario, 12 

the activation of words from the native language specifically depended on the accent. This may 13 

be because Dutch speech sounds are inherently linked to Dutch lexical items more strongly than 14 

the newly learned American sounds, or because the Dutch accent makes Dutch more salient in 15 

general and thus primes Dutch lexical competitors. Moreover, a Dutch-accented speaker may 16 

indeed sometimes use Dutch words, whereas a native accent signals a strictly monolingual 17 

setting, which may allow listeners to minimize cross-language interference (García et al., 2018). 18 

Concerning earlier behavioral results using native accents, we surmise that, compared to 19 

naturalistic listening,  visual world studies may have exaggerated the interference effect, because 20 

native language competitors may have been primed due to their presence on the visual display.  21 

Neither of the effects of native language interference was modulated by proficiency, suggesting 22 

that this interference does not disappear in more proficient listeners. This is consistent with 23 

previous behavioral results suggesting that native language interference persists even in 24 

advanced non-native listeners (Spivey and Marian, 1999; Weber and Cutler, 2004; Hintz et al., 25 
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2022). Together with our finding of increased native language interference in an accent from the 1 

listener’s native language, this could explain why such an accent becomes relatively more 2 

challenging at higher proficiency (Pinet et al., 2011; Xie and Fowler, 2013; Gordon-Salant et al., 3 

2019): At lower proficiency, the non-native accent bestows an advantage due to the familiar 4 

acoustic-phonetic structure. At higher proficiency, the acoustic-phonetic structure of the native 5 

accent becomes more familiar, thus reducing the initial advantage of the non-native accent. Now, 6 

the disadvantage due to the increased native language interference in the non-native accent 7 

becomes the dominant factor, making the non-native accent relatively more difficult than a native 8 

accent.  9 

Note that Dutch and English are both West Germanic Languages and share many properties. 10 

High lexical overlap between two languages may promote interference and competition, whereas 11 

such effects may be inherently lower for less closely related language pairs (see e.g. Wei, 2009). 12 

5.2 Acoustic representations are reduced by proficiency 13 

More proficient listeners exhibited reduced amplitudes in brain responses to acoustic features. 14 

Our result replicates an earlier finding (Zinszer et al., 2022) and further suggests that this was 15 

primarily due to a reduction in late (>200 ms) responses. We broadly interpret this to indicate that 16 

in more proficient listeners, less neural work is being done with the acoustic signal at extended 17 

latencies. A potential explanation is that, when lower level signals can be explained from higher 18 

levels of representation, the bottom-up signals are inhibited (Rao and Ballard, 1999; Tezcan et 19 

al., 2022). Under these accounts, the observed result could reflect that more proficient listeners 20 

get better at explaining (and thus inhibiting) acoustic representations during speech listening. This 21 

would explain why the reduction is found primarily in late responses: Early responses reflect 22 

bottom-up processing of the auditory input and are similar across participants, but more proficient 23 



 35 

listeners have better acoustic-phonetic models that more quickly explain the bottom-up signal and 1 

thus inhibit the later responses.  2 

5.3 Acoustic representations of Dutch accented English are 3 

reduced by acoustic-phonetic aptitude 4 

Listeners that scored high on the LLAMA_D test of acoustic-phonetic aptitude also exhibited 5 

reduced auditory responses, but only in Dutch-accented English. As with proficiency, this affected 6 

primarily later response components (>220 ms). Similarly to the effect of proficiency, the reduced 7 

responses may indicate a reduction in neural work or better acoustic-phonetic models. The 8 

interaction with speaker accent, then, would indicate that acoustic-phonetic aptitude facilitates the 9 

recognition of English language words in a Dutch accent, and is less relevant for the American 10 

accent. While this might sound counterintuitive, Dutch people tend to be exposed more to native 11 

English accents than to Dutch accented English (e.g. through subtitled movies). Consequently, it 12 

might be that the Dutch accent is to some extent less naturally mapped to English word forms 13 

than the American accent. 14 

5.4 Sublexical processing of the foreign language 15 

Sublexical processing of English was modulated by proficiency in a complex manner, depending 16 

on the speaker's accent: When listening to the story spoken with an American accent, increased 17 

proficiency was associated with decreased activation of the English sublexical language model. 18 

This is consistent with a previous report on Chinese non-native listeners, where increased English 19 

proficiency was associated with smaller responses related to a phonotactic measure (Di Liberto 20 

et al., 2021). Our results replicate this effect in Dutch non-native listeners, and tie it to sublexical 21 

(vs. word-form) processing. However, our results also suggest that the effect depends on the 22 
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speaker’s accent: when listening to the story spoken with a Dutch accent, increased proficiency 1 

was associated with increased activation of the English sublexical model.  2 

Interestingly, behavioral data indicate a similar interaction of proficiency with speaker accent: low 3 

proficiency listeners benefit from an accent corresponding to their own native language, whereas 4 

more proficient listeners benefit more from an accent native to the target language (Pinet et al., 5 

2011; Xie and Fowler, 2013). Thus, as more proficient non-native listeners have tuned their 6 

phonetic perception more to a native accent (Eger and Reinisch, 2019; Di Liberto et al., 2021), 7 

phonetic cues in the non-native accented speech may become relatively less reliable. This may 8 

be due to the mismatch of the acoustic cues with the stored acoustic representations, but also 9 

due to the persistent native language interference (see above). This perceived reliability may 10 

influence the degree to which listeners rely on expectations from short-term transition probabilities 11 

between phonemes (i.e., the sublexical model) to provide a prior for interpreting the acoustic input: 12 

Decreased activation of the sublexical language model when listening to a native speaker might 13 

indicate that more proficient listeners rely less on this lower level prior. In contrast, the increase 14 

in activation of the sublexical language model when listening to the non-native accent may 15 

indicate that more proficient listeners increasingly recruit the sublexical language model to provide 16 

a prior for the imperfect bottom-up signal. 17 

5.5 Lack of modulation of sentence level responses 18 

We found no relationship between proficiency and responses related to the sentence-level 19 

language model. This suggests that listeners across our sample (intermediate to higher 20 

proficiency) comprehended and used the English multi-word context to predict upcoming speech. 21 

This may indicate that listeners develop predictive models early during non-native language 22 

learning (Sanders et al., 2002; Frost et al., 2013), especially when languages are structurally 23 



 37 

similar (Alemán Bañón and Martin, 2021). It may also reflect the language experience of our 1 

sample, as English is frequently encountered in the Netherlands.  2 

5.6 Conclusions 3 

We found relatively stable higher level neural language model activations (word-form and 4 

sentence level) from intermediate to high proficiency listeners, but reductions in the activation of 5 

auditory and sublexical representations with increased proficiency. This may indicate that 6 

listeners of intermediate proficiency are able to extract and use sentence level information 7 

appropriately in the non-native language (at least in the context of listening to the relatively easy 8 

story), but keep refining computations related to lower level acoustic and sublexical 9 

representations.  10 

We also found evidence for a continued influence of native language statistics during naturalistic 11 

non-native listening. However, our results suggest a significant influence only in Dutch accented 12 

speech, where the Dutch speech sounds may increase activation of Dutch language 13 

representations. This selective interference may explain why a Dutch accent becomes relatively 14 

more challenging for highly proficient listeners. For native accents, behavioral research may have 15 

inadvertently increased native language interference by increasing meta-linguistic awareness 16 

(Freeman et al., 2021), or by priming native language distractors. 17 
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Figure Captions 1 

Figure 1. Alternative explanations for activation of native language (Dutch) lexical candidates when 2 

listening to a non-native language (English). (A) Word-forms from both languages compete in 3 

a single recognition system. (B) The native language and the non-native language lexicons 4 

are independent systems that are both activated in parallel by acoustic input. Outputs of the 5 

two systems may still interact, e.g. in guiding eye movements in visual world studies.  6 

Figure 2. Analysis design: predictors and groups of predictors used to test specific hypotheses. Each 7 

predictor was constructed as a continuous time series, aligned with the stimuli and 8 

corresponding EEG responses. Both auditory predictors were reduced to 8 bands, equally 9 

spaced in equivalent rectangular bandwidth, to simplify the analysis computationally. 10 

Predictors were grouped into sets that reflect specific processes of interest, as indicated by 11 

brackets. 12 

Figure 3. LexTale and LLAMA_D measure independent aspects of language ability. Each dot 13 

represents scores from one participant. The line represents the linear fit, with a 95% 14 

confidence interval estimated from bootstrapping (Waskom, 2021). Because scores take 15 

discrete values, a slight jitter was applied to the data for visualization after fitting the 16 

regression.   17 

Figure 4. Auditory and linguistic neural representations in Dutch listeners when listening to an 18 

English story. Each swarm-plot shows the change in predictive power for held-out EEG 19 

responses when removing a specific set of predictors (each dot represents the change in 20 

predictive power, averaged across sensors, for one participant). Predictive power is 21 

expressed in percent of the variance explained by the English model (Equation 6) averaged 22 

across subjects. Stars indicate significance based on a one-tailed related measures t-test. 23 
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Topographic maps show corresponding sensor-specific data, with predictive power 1 

expressed as percent of model Equation 6 at the best sensor. The marked sensors form 2 

significant clusters in a cluster-based permutation test based on one-tailed t-tests. (A) 3 

Auditory predictors contribute a large proportion of the explained variance. The measure is 4 

based on the difference in predictive power between the English model Equation 6, and a 5 

model missing auditory predictors (acoustic onset and auditory spectrogram). (B) All three 6 

linguistic models significantly contributed to the predictive power of the English model, in 7 

both stories. Note that predictive power can be negative, indicating that adding the given 8 

predictor made cross-validated predictions worse. (C) A sublexical Dutch model, reflecting 9 

phoneme sequence statistics in Dutch (sublexicalD), significantly improved predictions even 10 

after controlling for English phoneme sequence statistics (sublexicalE), suggesting that Dutch 11 

listeners create expectations for phoneme sequences that would be appropriate in Dutch 12 

even when listening to English. The English sublexical model remained significant after 13 

adding the Dutch sublexical model. (D) Addition of Dutch word-forms suggests word 14 

recognition with competition from a combined lexicon: Adding a word-form model using only 15 

Dutch pronunciations (word-formD) does not improve predictions (left column, comparison: 16 

model Equation 8 > Equation 7), suggesting that native language word recognition does not 17 

proceed in parallel. In contrast, replacing the English word-form model word-formE with a 18 

merged word-form model word-formED, which combines English and Dutch word-forms, 19 

leads to improved predictions of EEG responses to Dutch accented speech (right column, 20 

comparison: Equation 9 > Equation 7). *: p≤.05; **: p≤.01; ***: p≤.001. 21 

Figure 5. Simultaneous early peaks in temporal response functions (TRFs) suggest parallel 22 

processing. Each line represents the TRF magnitude (sum of the absolute values across 23 

sensors) for surprisal associated with a different language model. TRFs are from the mTRF 24 

estimated using the model in Equation 6, and are plotted at the normalized scale used for 25 

estimation. 26 
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Figure 6. Auditory responses are modulated by non-native language proficiency. (A) The strength of 1 

the auditory responses to American-accented English decreases with increased language 2 

proficiency. The topographic map shows the multiple linear regression t statistic for the 3 

influence of LexTale scores on the predictive power of the auditory model. Sensors with t 4 

values exceeding 2 (positive or negative) are marked with yellow. The scatter-plot shows the 5 

predictive power of the auditory model (y-axis, average of marked sensors) against LexTale 6 

scores (x-axis). Each dot represents one participant. The solid line is a direct regression of 7 

predictive power on the LexTale score; bands mark the 95% confidence interval determined 8 

by bootstrapping. (B) TRFs suggest that less proficient listeners have stronger sustained 9 

auditory representations at later response latencies. The line-plot shows the magnitude of 10 

the TRF across sensors as predicted by the multiple regression for small and large values of 11 

LexTale (60, 90), while keeping other regressors at their mean. Red bars at the bottom 12 

indicate a significant effect of LexTale (regression model Equation 5). The rectangular image 13 

plot above shows the average TRF for each sensor, and the topographic maps show specific 14 

time points (marked by dashed black lines below) for participants with low and high LexTale 15 

scores (median split). While auditory TRFs were estimated as mTRFs for 8 spectral bands in 16 

each representation, for easier visualization and analysis the band-specific TRFs were 17 

summed across bands (after calculating magnitudes where applicable). (C) The strength of 18 

auditory responses to Dutch-accented English also decreases with increased language 19 

proficiency. (D) TRFs to Dutch-accented speech show a similar effect of proficiency on 20 

sustained representations as in American accented speech. 21 

Figure 7. Auditory responses are modulated by acoustic-phonetic aptitude when listening to Dutch 22 

accented speech only. Unless mentioned otherwise, details are as in Figure 6. (A) Because 23 

predictive power at no sensor was meaningfully related to the LLAMA score (all t<2), the 24 

scatter-plot shows data for the average of all sensors. (B) Consistent with results from 25 

predictive power, TRFs were not significantly modulated by phonetic ability. Line plots show 26 
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predictions for LLAMA_D scores of 10 and 50. (C) In brain responses to Dutch accented 1 

speech, increased phonetic ability was associated with smaller predictive power of auditory 2 

predictors, i.e., with weaker auditory responses. (D) TRFs related to sustained auditory 3 

representations of Dutch accented speech were modulated by aptitude at relatively late lags 4 

(224–277 ms). 5 

Figure 8. Activation of the English sublexical language model is modulated by proficiency and 6 

speaker accent. Unless mentioned otherwise, details are as in Figure 6. (A) For American 7 

accented English, higher proficiency is associated with reduced sublexical responses. (B) 8 

TRFs to the surprisal and entropy predictors based on the English sublexical language 9 

model. Surprisal is associated with a decreased response in more proficient listeners. (C) 10 

For Dutch accented English, higher proficiency is associated with stronger representation of 11 

the sublexical language model. (D) TRFs do not show significant effects of proficiency. 12 

Figure 9. EEG responses that quantify the influence of the native language on non-native speech 13 

processing were not significantly related to proficiency. SublexicalD quantifies activation of 14 

the Dutch phoneme sequence model (i.e., comparison Equation 7 > Equation 6); E∪D>E 15 

quantifies the increase in predictive power due to including Dutch word forms (i.e., 16 

comparison Equation 9 > Equation 7). Data shown on the y-axis correspond to the average 17 

predictive power at anterior sensors (top left, pink sensors). Even though some regression 18 

plots seem to exhibit a negative trend, associations were not significant.  19 

 20 


