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Abstract—Aggregate peak Electric Vehicle (EV) charging de-
mand is a matter of growing concern for network operators as
it severely limits the network’s capacity, preventing its reliable
operation. Various tariff schemes have been proposed to limit
peak demand by incentivizing flexible asset users to shift their
demand from peak periods. However, fewer studies quantify the
effect of these tariff schemes on the aggregate level. In this
paper, we compare the effect of a multi-level segmented network
tariff with and without dynamic energy prices for individual
EV users on the aggregate peak demand. Results based on real
charging transactions from over 1200 public charging points in
the Netherlands show that the segmented network tariff with
flat energy prices results in more diverse load profiles with
increasing aggregation, as compared to cost-optimized dispatch
based on only dynamic day-ahead energy prices. When paired
with dynamic energy prices, the segmented tariff still outperforms
only dynamic energy price-based tariffs in reducing peaks.
Results show that a balance between power thresholds and price
per threshold is crucial in designing a suitable tariff, taking into
account the needs of the power network. We also provide valuable
insights to network operators by calculating the diversity factor
for various peak demands per charging point.

Index Terms—Aggregate, Distribution system, Electric vehicle,
Flexibility, Segmented tariff

I. INTRODUCTION

ELECTRIC Vehicles offer an essential shift in the trans-
portation sector by offering a sustainable alternative to

internal combustion-based engines. This transition aligns with
the global effort to reduce the dependence on fossil fuels and
thus contribute to the energy transition [1], [2]. The adoption
of Electric Vehicles (EVs) has resulted in an extensive network
of EV chargers, primarily connected to the low voltage grid.
With the addition of more EVs, their aggregate peak demand
poses a threat to the operational reliability of the power
networks through network congestion [3], [4].

Current low voltage grids are already operating at their
peak capacity, unable to accommodate additional loads without
timely reinforcement [5]. The majority of grid congestion
primarily occurs when periods of high demand from non-
EV loads coincide with peak charging demand for EVs. For
instance, residential Charging Stations (CSs) experience a
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the Netherlands Enterprise Agency.

surge in charging demand during evening hours, aligning with
the peak demand for houses where individuals return from
work and charge their EVs.

The charging flexibility of EVs offers an opportunity to
shift or distribute their charging demand over the connection
period, which is typically much longer than the minimum time
required to charge them [6]. However, the lack of standardized
incentive schemes limits the potential of aggregate EV charg-
ing. For example, charging based solely on energy prices can
result in new peaks during periods of low prices instead of
eliminating them [7]. Additionally, there is limited research
on the effect of network tariffs on the aggregate peak EV
charging demand.

As a solution to this problem, researchers have proposed
leveraging EV flexibility to reduce peaks during hours of high
demand through peak shifting, valley filling, or peak shav-
ing [8]. These demand response methods can either be applied
centrally through a central agent or individually at the device
level. Centralized control and scheduling of EVs can result
in optimal schedules but requires sophisticated mathematical
models and powerful optimizers. On the other hand, individual
EV charging can be optimized individually based on a signal,
which is often based on prices. The prices can comprise
varying energy prices and constant network tariffs [9], or a
combination of varying energy prices and network tariffs [5],
[10]. The authors in [11] provide a comprehensive overview
of dynamic charging tariffs for charging stations, such as time-
of-use pricing, critical peak pricing, and real-time pricing. All
these studies show the importance of using additional network
tariffs apart from energy prices to be able to manage EV
charging peaks and solve congestion problems.

Scheduling EVs based on only energy prices can result in
lower charging costs but may exacerbate coincidence of peak
demand at the aggregate scale. One of the ways to limit the
aggregate peak charging demand is by restricting individual
charging power levels. Various researchers have implemented
this through the addition of a new tariff component based on
power, which can replace the conventional flat/fixed network
tariffs.

The work in [12] explores the concept of power-based distri-
bution tariffs for distribution system operators by charging cus-
tomers based on peak power usage. It highlights the benefits
of using power-based tariffs to incentivize customers to reduce
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peak demand. [13] discusses the transition towards power-
based tariffs. It proposes alternative, more cost-reflective tariff
structures like the power tariff, threshold power tariff, power
limit tariff (also known as power band tariff), and step tariff.
The power tariff consists of three cost components: basic
charge (in C/month), energy charge (in C/kWh), and power
charge (in C/kW) based on peak power (i.e. the highest or
the there highest hourly power of the month). The threshold
power tariff has a similar cost component but applies the
power charge only when consumption exceeds a predefined
threshold. This tariff structure and its implications for reducing
peak demand and ensuring Distribution System Operators
(DSOs) cost recovery have been further examined in studies
in [14]–[16]. The power limit tariff simplifies to a single
power charge, where consumers pre-select a maximum power
level and are penalized for exceeding this limit, a concept
aligning with capacity subscription tariffs discussed in the
work of [17]–[19]. Conversely, the step tariff uses a basic
charge (in C/month) and a consumption charge (in C/kWh).
If the average power remains within a certain predefined
limit, then the charge is low; otherwise, the charge is very
high. Another type of power-based tariff - segmented tariff, is
proposed in [20]; it uses a consumption charge (in C/kWh),
where it assigns a tariff to each power threshold, the higher
the threshold is, the higher the tariff is. The results show that
this method can efficiently flatten the aggregate load profile in
the case of residential users with energy storage. Further [21]
shows how a multi-level segmented network tariff can do a
better job in flattening peaks along with cost recovery for
DSOs.

EV charging is similar to conventional load consumption but
with more flexibility. Also, due to the small size of batteries
and distributed usage, the full potential of EV flexibility can
only be realized at an aggregate level. Hence, it is important to
assess the impact of different tariff structures on the aggregate
peak charging demand of EVs. However, limited studies exist
to assess the effect of tariffs based on power levels when used
for EV charging and how its effect scales with aggregation.

In this study, we study aggregate EV charging demand
using real EV charging session data. We compare unoptimized
charging with cost-minimized charging schemes based on day-
ahead hourly prices, and the effects on aggregate peak demand.
For each of these base scenarios, we investigate the effective-
ness of segmented network tariffs on mitigating aggregate peak
EV charging demand. Furthermore, we quantify the aggregate
peak demand of EV fleets using relevant metrics such as the
peak-charging power per connection and the diversity factor,
for different aggregation levels.

The remainder of this paper is organized as follows: Section
II describes the models and formulates the decision problems
of EV owners mathematically. Results are analyzed in Section
III. Finally, Section IV concludes the paper by providing future
work recommendations.

II. METHODS AND MODELS

A. Overview of charging topology

This paper considers the impact of pricing incentives on EV
charging. For the purpose of this paper, we restrict the analysis
to EV chargers that have their own grid connection, which does
not need to be shared with other loads or injections. In this
context, an EV user’s total charging costs consist of energy
and network costs. Energy costs refer to the actual energy
charged, while the network costs cover both Transmission
System Operator (TSO) and DSO costs that these operators
incur to maintain and operate the network infrastructures [22].

Presently, in the Netherlands, EV users who have a private
charging point within their residence pay for the energy they
consume at the same rates as their regular household electricity
consumption. These energy prices can be dynamic (based on
day-ahead prices), varying based on time-of-use, or, in some
cases, can be fixed [23]. Along with the energy costs, the
users also pay fixed network costs based on their connection
capacity. The users of public EV chargers only pay for the
energy used based on a fixed price per kWh. Currently, this
price is determined by the municipality after consultation with
the Charging Point Operators (CPOs). CPOs cover energy
expenses based on day-ahead market rates and fixed network
costs corresponding to their connection capacities. Their profit
margin is the difference between the expenses covered by
CPOs and the revenue from EV users [24].

In this paper, public CSs operated by a single CPO are
analyzed. These CSs usually consist of two Charging Points
(CPs), which are the physical outlets where an EV can be
connected. For the analyzed data, each CSs can provide up
to 23 kW of power distributed among two CPs, each with
a maximum power output of 23 kW. In the following, we
analyze the results per CP in order to normalize their usage
pattern. The data is analyzed for 2022 with approximately
300,000 charging transactions spread over 650 CSs. A single
charging transaction is characterized by maximum charging
power (p̄) and energy (ē) that have to be charged between
its arrival (ta) and departure (td) time. Different dispatch
strategies are simulated for each of the charging transactions
based on historical data and then aggregated to quantify the
desired matrices.

B. Electricity pricing

In this paper, we consider two types of electricity pricing:
one is flat energy pricing, which is constant over the whole
year, and the other is dynamic energy pricing, which varies
with each hour. In this paper, we consider the hourly day-ahead
energy prices for 2022 in the Netherlands, provided by [25].
This omits taxes and additional fees imposed by the energy
supplier. Note that price data is taken from the same year as
the charging transactions, ensuring the correct dependence on
the charging sessions from the same year.

C. Network tariffs

Two types of network tariffs are modelled. The first is
a fixed connection fee, regardless of consumption behaviour



TABLE I: Overview of different analyzed tariffs

Tariff type Alias Power levels (kW) Prices (C/kWh)
Unoptimized ( II-D1) Unopt - -

Dynamic energy pricing (II-D2-1) DE - -

Segmented network tariff with flat energy price (II-D2-2) FE-p+ p̄0,1,2 = {4, 8, 11} -
FE-p− p̄0,1,2 = {2, 4, 17}

Segmented network tariff with dynamic energy price (II-D2-3)

DE-p+λ−
p̄0,1,2 = {4, 8, 11} λ̄0,1,2 = {0, 0.055, 0.900}

DE-p+λ+ λ̄0,1,2 = {0, 0.158, 0.900}

DE-p−λ−
p̄0,1,2 = {2, 4, 17} λ̄0,1,2 = {0, 0.055, 0.900}

DE-p−λ+ λ̄0,1,2 = {0, 0.158, 0.900}

(up to the contractual limit). The second type is a segmented
network tariff that introduces an additional cost structure tied
to power consumption [20]: users pay an additional volumetric
fee (C/kWh) for their power consumption above a threshold.
Multiple thresholds can be used to create an escalating fee
structure. This encourages users to flatten their load profiles,
thus preventing possible congestion in the distribution net-
work [21]. The segmented network tariff with three power
levels is illustrated in fig. 1 for three time steps. In this
illustration, the power-related network costs for time step 2
amount to

∑
s=0,1,2 λsp2,s, where p2,s represents the power

utilized within the p̄s segment during time step 2, and λs

signifies the network price (C/kWh) assigned to that specific
power segment. In this model, λ0 represents a base volumetric
fee that applies even to low power consumption. It may be set
to zero.

A network tariff, with or without segmentation, may also
contain a consumption-independent (fixed) component. The
magnitude of this component is important for cost recovery of
the network owner/operator [21]. However, it is not considered
for the analysis in this paper because it does not impact the
charging schedule.

D. Dispatch strategies

Three different cost-optimizing dispatch strategies are mod-
elled to assess their impact on the aggregate peak of EV
charging power. Their performance is compared to the un-
optimized charging strategy, also known as ‘dumb charging’.
All strategies are explained below.

1) Unoptimized charging: The unoptimized charging strat-
egy is the default strategy, which charges the EV with the
maximum power as soon as it is connected until the EV’s
battery is charged to the desired level. Unoptimized charging
is modeled as a linear program using (1)-(2e):

max
p

∑
t∈T

et (1)

subject to:

et = 0, t ≤ ta (2a)

et = et−1 + pt−1∆t, ta < t < td (2b)

et = e, t ≥ td (2c)

pt = 0, t < ta ∧ t ≥ td (2d)

0 ≤ pt ≤ p, ta ≤ t < td (2e)

2) Cost optimized charging: Minimizing the cost of charg-
ing is a natural objective for EV users exposed to price
incentives. In this paper, we present three dispatch strategies
based on minimizing charging costs, as shown below:

1) Charging with dynamic energy prices: Dynamic energy
prices (λe

t ), such as day-ahead prices, vary with time
and can be used to incentivize charging during periods
when energy is produced at low (marginal) cost. Here,
we assume the network costs are fixed and are not
considered in the optimization model.

min
p

∑
t∈T

λe
tpt∆t subject to: (2) (3)

This yields a unique solution when prices are not iden-
tical for different time steps.

2) Segmented network tariff with flat energy price: When a
connection with an EV charger is exposed to segmented
network tariffs and flat energy prices, the optimal charg-
ing pattern is computed by solving the problem:

min
p

∑
t∈T

∑
s∈S

λspt,s − ϵ
∑
t∈T

et (4)

subject to: (2) and

pt =
∑
s∈S

pt,s ∀t ∈ T (5a)

0 ≤ pt,s ≤ p̄s ∀s = {0, · · · , |S| − 1}, t ∈ T
(5b)

λs ≤ λs+1 ∀s ∈ S (5c)

As flat energy prices have no effect on the optimal
charging schedule, they are excluded from the optimiza-
tion model. An additional term ϵ

∑
t∈T et is included in

the objective function (4), with a small coefficient ϵ.
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Fig. 1: Illustration of three-level segmented
tariff. The three thresholds of the segmented
tariff are denoted by p̄0,1,2 along with their
respective prices (λ0,1,2).
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Fig. 2: Representative charging profiles illustrating different dispatch strate-
gies for a single EV. The low-price (λ−) variants of segmented tariffs are
not shown because the results are identical to the high-price (λ+) variants
for this session.

This secondary objective ensures that - among equally
costly solutions - the one that completes charging first
is preferred. For sufficiently small values of ϵ, this also
guarantees the uniqueness of the solutions.

3) Segmented network tariff with dynamic energy prices:
Finally, flexible EV users may be exposed to segmented
network tariffs and dynamic energy prices at the same
time. The resulting model, combining both objectives,
is shown below:

min
p

∑
t∈T

∑
s∈S

λspt,s +
∑
t∈T

λe
tpt∆t (6)

subject to: (2) & (5). The ϵ-weighted additional objective
is not included here, due to the greater variation of price
levels within a single charging session.

III. RESULTS

A. Individual and aggregate charging profiles

The interaction between grid tariff and electricity price in-
centives is sensitive to the choice of the capacity thresholds pi
and the relation between the surcharges λi and the electricity
price signal. For this reason, two scenarios are implemented
for each of these, resulting in the charging scenarios that are
summarized in Table I. The price level λ1 for the middle
threshold (p̄1) band was set to the 5th and 25th quantile of the
electricity prices in the hourly price series for the year 2022.
The base level λ0 was set to zero and λ2 to 0.90 C/kWh. The
latter exceeds the maximum price seen in the data and thus
serves as a strong deterrent to high-power charging without
strictly curtailing users.

The charging profiles for a representative EV charging ses-
sion in combination with incentives scenarios are shown in fig.
2. Where applicable, power levels for the segmented network
tariff and dynamic energy prices are indicated. The presented
EV transaction has a maximum charging power of 11 kW
and a charging demand of 60 kWh for a connection duration
of 12.25 hours. The results illustrate that (1) implementing a

dynamic energy pricing strategy effectively shifts peak demand
from high-price to low-price hours, (2) a segmented tariff
combined with a flat energy price significantly reduces peak
demand if there is sufficient time to charge, and (3) when
a segmented tariff is paired with dynamic energy pricing, the
outcomes depend on the relative levels of the tariff and energy
prices.

The quantile distribution of charging power per CP over
the year for different dispatch strategies are presented in fig.
3. Optimizing the individual charging schedule based on
dynamic energy (DE) prices (here, day-ahead prices) results
in larger peaks, surpassing the unoptimized case. This is due
to the scheduling of charging at the same moment when
prices are low. The maximum average peak for the case
of dynamic energy tariff can increase by as much as 16%
when compared with the unoptimized case. Hence, using cost-
minimized charging based only on energy costs can result in
higher aggregate power peaks.

Segmented network tariffs with flat energy tariffs (FE-p+ &
FE-p−) result in a flatter charging profile at the aggregate level
due to additional costs based on the power level of individual
EVs. As segmented tariffs are sensitive to different power
thresholds, we analyzed two power levels, one with a higher
(FE-p+) threshold than the other (FE-p−). As expected, the
aggregate charging profile is flatter for the low threshold case.

We also examined the cases of segmented network tariffs
with dynamic energy prices (DE-p{+,−}λ{+,−}). Although,
in this case, there are considerable peaks in the aggregate
charging profile compared to the case with flat energy prices,
profiles are still much flatter than in the dynamic energy or
unoptimized case. With the addition of a dynamic energy price
component, the performance of segmented network tariffs is
now sensitive to the relative value of the energy prices and
prices of power thresholds. This dependence is illustrated by
simulating two prices (λ+ and λ−), based on the 5th and 25th

quantile values of the yearly day-ahead price, respectively.
In cases where the energy price difference within a charging
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Fig. 3: Quantile distribution of charging demand for different
dispatch strategies across all days in the year 2022 for all
sets of CPs. Colours indicate the quantiles of charging power
for each hour relative to all days in the year. The dashed lines
indicate the maximum observed charging power for each hour.

session exceeds the cost of charging above a tariff threshold,
the EV may opt to charge with a higher power, resulting in
differences between the λ+ and λ− scenarios.

Comparing the cases of segmented network tariffs with
and without flat energy prices, it is clear that the power
levels are the primary determinant affecting aggregate power
consumption, and the price level for the middle capacity band
has a lesser impact. It should be noted that in all cases, the
price level for the upper capacity band exceeds the dynamic
energy prices.

B. Quantifying aggregate peak EV charging demand

The peak electricity demand of CSs at various aggregation
levels is of particular concern for distribution grid owners,
because it is a key driver for asset investments. To assess
peak demand, we randomly selected N CPs (without replace-
ment) and generated a load profile from all sessions linked
to those CPs. This process was done for aggregation levels
N = 1, . . . , 1024, and for each incentive combination. Fig. 4
shows the peak annual power consumption (normalised by
the number of CPs) across 15-min intervals, including the

statistical variation of this value across 100 random selections
of CPs from the dataset.

The diversity factor is a useful measure of the diversity
of charging behaviour across the population [26], [27]. It is
defined as

d =
maxt p

single
t

maxt p
agg
t

=
23 kW

maxt p
agg
t

, (7)

where paggt is the simulated aggregate power signal and
(maxt p

single
t ) = 23 kW, i.e. the network capacity required

for a single CP. The one-to-one relationship between peak
power consumption and the diversity factor is used to define
the second axis on fig. 4.

With the increase in aggregation level, the maximum load
per CP reduces for all the cases. When aggregation levels are
small, there is a rapid decrease in maximum power per CP
and a corresponding increase in diversity. This trend saturates
for larger aggregations.

Among the 8 scenarios considered, the highest power levels
are observed for dynamic energy prices (DE), and the lowest
for the flat energy prices with segmented tariffs (FE-p+/−).
In all cases, the addition of a segmented network tariff effec-
tively reduces the peak power consumption, with lower power
thresholds (p−) and higher fees (λ+) being more effective.

IV. CONCLUSIONS

The study analyzes the aggregate peak EV charging demand
on distribution networks when cost-optimizing EV users are
exposed to various combinations of network tariffs and energy
prices. The results indicate that, when users are not exposed to
varying energy prices, multi-level segmented network tariffs
that incentivize flattening of individual demand patterns are
also able to effectively flatten aggregate load profiles and
reduce demand peaks, as evidenced by the diversity factor
and distribution of maximum charging power per CS results.
In a more realistic setting where the current EV users are
exposed to dynamic energy prices, our simulation results
indicate that the combination of segmented network tariffs
and dynamic energy prices is effective in limiting power
demand in low-price hours compared to the scenario only with
dynamic energy prices. In addition, lower power levels and
higher price levels for the middle capacity band (i.e., more
restrictive tariffs) are the most favourable configurations for
the segmented network tariff.

In conclusion, peak-limiting tariffs are a promising approach
for reducing the challenge posed by peak EV charging de-
mand, whether or not they are used in combination with
dynamic energy prices. This emphasizes the importance of
tariff design in promoting efficient utilization of distribution
network resources. Future work will further investigate the
sensitivity of results to different data sets and tariff/price
parameters.
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