<]
TUDelft

Delft University of Technology

Conditions for upscalability of bioclogging in pore network models

Lopez Pena, Luis A.; Meulenbroek, Bernard; Vermolen, Fred

DOI
10.1007/s10596-018-9773-1

Publication date
2018

Document Version
Final published version

Published in
Computational Geosciences

Citation (APA)

Lopez Pena, L. A., Meulenbroek, B., & Vermolen, F. (2018). Conditions for upscalability of bioclogging in
pore network models. Computational Geosciences, 22(6), 1543-1559. https://doi.org/10.1007/s10596-018-
9773-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1007/s10596-018-9773-1
https://doi.org/10.1007/s10596-018-9773-1
https://doi.org/10.1007/s10596-018-9773-1

Computational Geosciences (2018) 22:1543-1559
https://doi.org/10.1007/510596-018-9773-1

ORIGINAL PAPER

@ CrossMark

Conditions for upscalability of bioclogging in pore network models

Luis A. Lopez-Pefa’ © . Bernard Meulenbroek' - Fred Vermolen'

Received: 3 May 2018 / Accepted: 31 August 2018 / Published online: 19 September 2018
© The Author(s) 2018

Abstract

In this work, we model the biofilm growth at the microscale using a rectangular pore network model in 2D and a cubic
network in 3D. For the 2D network, we study the effects of bioclogging on porosity and permeability when we change
parameters like the number of nodes in the network, the network size, and the concentration of nutrients at the inlet. We use a
3D cubic network to study the influence of the number of nodes in the z direction on the biofilm growth and on upscalability.
We show that the biofilm can grow uniformly or heterogeneously through the network. Using these results, we determine
the conditions for upscalability of bioclogging for rectangular and cubic networks. If there is uniform biofilm growth, there
is a unique relation between permeability and porosity, K ~ ¢?2, this relation does not depend on the volume of the network,
therefore the system is upscalable. However, if there is preferential biofilm growth, the porosity-permeability relation is not
uniquely defined, hence upscalability is not possible. The Damkoéhler number is used to determine when upscalability is
possible. If the Damkdhler number is less than 10!, the biofilm grows uniformly and therefore the system is upscalable.
However, if the Damkéhler number is greater than 103, the biofilm growth exhibits a deviation from uniform biofilm growth
and heterogeneous growth is observed, therefore upscalability is not possible. There is a transition from uniform growth to
preferential growth if the Damkéhler number is between 10! and 103.

Keywords Biofilm growth - Pore network model - Upscaling bioclogging - Porosity-permeability relation - Damkdohler
number

1 Introduction

In primary oil production, a wellbore is drilled from the
surface to the ground and oil is extracted from the reservoir
by natural mechanisms such as the internal pressure of the
reservoir. When the initial production declines secondary oil
recovery techniques such as waterflooding or gas injection
are implemented. However, two thirds of the oil are still
trapped in the ground even after primary and secondary
recovery [5]. Microbial enhanced oil recovery (MEOR) is a
tertiary oil recovery technique which aims at increasing the
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mobility of the remaining oil using the growth of bacteria
and the resulting by-products. Bacterial growth enhances oil
recovery by increasing the efficiency of the waterflooding
process, by clogging highly permeable layers such that
the flow through the oil-containing regions, with low
permeability, is enhanced. Furthermore, bacterial growth
reduces interfacial tension and changes the rock wettability
[1, 12] which enhances oil mobility.

The development of computational models is of vital
importance to design a proper field strategy for MEOR
in oil reservoirs. These models describe bacterial growth
and predict the changes in the characteristics of the porous
media like the permeability and porosity [22]. Among
bacterial growth models in porous media, there are the
Darcy continuum models [24, 29], bacterially based models
[16], Lattice Boltzmann-based simulations [9, 17], and pore
network models (PNM) [6, 8, 18, 21, 23, 26, 28]. The
secretion of extracellular polymeric substances (EPS) by
bacterial population causes the formation and growth of
biofilm on the walls of the porous media. In biofilm growth
models, it is usually assumed that the porous medium
consists of three components: the grains, the biofilm, and
the fluid which contains the nutrients needed for the biofilm
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growth. The equations that describe biofilm growth are
written only for the fluid and biofilm since the grains are
assumed to be impermeable to the liquid and the nutrients
[17].

Cunningham et al. [7] studied experimentally the effect
of biofilm growth on the porosity, permeability, and
friction factor of the porous medium. They reported a
decrease in the porosity between 50% and 96% and a
decrease in permeability between 92% and 98% due to the
accumulation of biofilm. In the continuum scale, Taylor
et al. [25] obtained an analytic expression that describes
the relation between porosity and permeability. However,
they assumed that the biofilm grows uniformly through
the domain of computation which not always occurred
according to laboratory experiments [15]. Therefore, micro-
scale biofilm growth models such as pore network models
(PNM) and pore-scale models are used to describe a non
uniform biofilm growth [8, 32]. It is needed to state the
conditions such that the biofilm grows uniformly.

In PNMs, the porous medium is usually represented
as a two or three-dimensional lattice of cylindrical
interconnected tubes in which water or any fluid can flow
[4]. The biofilm development is caused by the injection
of nutrients into the network which are transported within
an aqueous phase. The injection and consumption of
nutrients are described by a convection-diffusion-reaction
equation in which the reaction term models the consumption
of nutrients caused by bacteria which results in biofilm
growth. The biofilm grows and it adheres to the walls
of the cylinders. Thereby, the biofilm changes the radii
of the pores, which consequently leads to porosity and
permeability reduction [6, 23, 28].

Even though the bacterial population and the EPS are
two different phases, they are usually lumped together and
are represented as a continuous uniform layer of biomass
attached to the walls of the pores [8, 23, 28]. This uniform
layer of biomass is referred to as biofilm.

Biofilm growth models at the microscale are needed to
account for heterogeneities in the biofilm growth, which
are typically ignored in large-scale models. In PNMs, the
information obtained at microscale is averaged over the
network to get a macroscopic description at the continuum
scale [13]. The influence of network characteristics such
as the coordination number on macroscopic transport
phenomenon has been shown in [30]. They showed that the
dispersivity decreases if the coordination number increases.

In general, the purpose of upscaling is to get an effective
description on a macro level when there exists a good
description on a small-scale level [10]. Hese et al. [10] use
upscaling methods to obtain an effective one dimensional
representation based on a system of two-dimensional partial
differential equations. Their study is focused on the scaling
behaviour of Monod-type reaction kinetics. They showed
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that the upscaled description of Monod kinetics leads to a
concentration dependent transition between a reaction and
a diffusion limited regime. Wu et al. [31] computed the
upscaled grid-block permeability from fine-scale solutions
of the flow equation. They studied the upscaling of
single phase flows through media with a periodic small
amount of heterogeneity. They claim that their results
are also useful for the understanding of the upscaling of
random media. The equivalent permeability is a constant
permeability that represents an heterogeneous medium.
However, it is impossible to obtain a one-to-one mapping
as a complete mapping between the real heterogeneous
medium and the homogeneous upscaled medium. Therefore
the equivalence, that is the one-to-one mapping, is defined
in a limited sense [19]. Battiato and Tartakovsky [3] studied
the transport of a solute in a porous medium which is
subjected to a nonlinear heterogeneous reaction. This solute
precipitates on the solid matrix to form a crystalline solid.
They investigated the sufficient conditions under which
the macroscopic advection-dispersion-reaction equations
provide an accurate description of the pore-scale processes.
Despite their relevant findings, they did not consider any
change on the morphology of the porous medium. In the
present study, we investigate under which conditions we
can upscale a small-scale heterogeneous medium to a large-
scale homogeneous medium, in which we can apply models
for uniform growth.

In this work, we study the effects of biofilm growth on
the porosity and permeability of the network. We use the
model for biofilm growth described in [14], which models
incomplete transmigration of nutrients through the biofilm
as a result of high bacterial consumption rate and a low
diffusion rate of the nutrients. In particular, we study the
process of bioclogging which features inhibition of the flux
through the network due to biofilm growth. We compute the
amount of biomass per volume needed to block the network
for different number of nodes in the network, different
network sizes and different inlet concentrations of nutrients
in the network. Furthermore, we describe the conditions for
uniformity and upscalability of the pore network biofilm
growth model.

As long as the medium, in this case the pore network
model, is evolving in a spatially homogeneous manner,
upscaling can be performed on the basis of computing an
effective porosity and permeability. In the current paper,
however, we are dealing with the injection of nutrients on
the inlet boundary. The nutrients are being consumed by
the bacteria in the porous medium and thereby, effectively,
converted into biomass that clogs the network tubes. If the
concentration of the nutrients at the inlet boundary is not
sufficiently high, then, the nutrients will all be consumed
and converted before they are able to reach the regions
in the domain that are further away form the inlet. If this
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happens in the current network, then the network cannot
be used for upscaling purposes in which one determines
the effective permeability and porosity relation. The current
paper will address this issue in terms of derivation of a
relation between permeability and porosity. For upscalable
conditions we will derive a tractable, functional relation
between the effective porosity and permeability of the
network, which can be used as an alternative relation to
standard Kozeny-Carman relation. We will analyze the
applicability of such a relation by varying the characteristics
of the pore network. The current network provides a
computational approach to classical upscaling that is carried
in more mathematical rigor.

The paper is organized as follows. In Section 2, we
describe the equations for the transport of nutrients and the
model used for the biofilm growth. In Section 3, we describe
the effects of biofilm growth on porosity and permeability
when we vary the number of nodes in the 2D network, the
2D network size and the inlet concentration of nutrients. In
addition we present the results of the biofilm growth in a
3D cubic network when we vary the number of nodes in the
z direction. Finally, in Section 4, we present the discussion,
draw the conclusions, and present the outlook.

2 Mathematical model

In this section, we present the equations that describe the
transport of nutrients and the biofilm growth in the porous
medium. We consider two type of networks. Firstly, the
porous medium is represented as a 2D rectangular network
composed of interconnected cylindrical tubes whose radii
and length are the same (see Fig. 1). Secondly, a cubic
network is used to study the influence of the number of

Tube Node

Ni+nx Y —F

Ni-1 ni Ni+1

Fig. 1 Quadrangular network for the 2D simulations

nodes in z direction on the porosity-permeability relation
(see Fig. 2).

We assume that the bacteria and biofilm are lumped
together and hence we refer to them as a single phase:
biofilm. The growth of biofilm is initiated by the nutrients
which are injected into the network and transported within
a fluid phase. The thickness of the biofilm in the tube #;; is
represented by rp,;;, the radius available for water by ry,;,
and the total radius of the tube by R (see Fig. 3a). The
volumetric flow of the aqueous phase g;; in the tube ¢;;
is described by a modified form of the Poiseuille equation
[27],

T _
%j=§;ip;,+(R4—r;)ﬁ ' ap. (n)

where Ap is the pressure drop between neighboring nodes,
w is the viscosity of water that flows in the bulk, / is
the length of the tube, and the dimensionless number B is
the ratio between the viscosity of water flowing through
the biofilm and the viscosity of water flowing through the
bulk. We use 8 = 107 which according to [27] is a good
approximation for an impermeable biofilm. Despite the S
term is only a negligible addition in Eq. 1, we incorporate it
to keep the description general.

In each of the nodes, mass conservation is required.
Therefore, for the node n;, we have

> gij =0, ©)
JESi

where S; = {j | n; is adjacent to the node n;} and where
qij is the flux through the tube that connects node n ; to node
n;.

z i T \
N
Y Tube ode

X

Fig.2 Cubic network used for the 3D simulations

@ Springer
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Fig.3 a A cylindrical tube #;; is shown. b, ¢ The side view of the tube
t;j. The volume of biofilm Vs is shown in green and the penetration
volume V), is showninred. a Vpy < V,. b Vpr > V),

The transport of nutrients is described by an advection
diffusion reaction equation. The concentration of nutrients
is denoted by C,

aC 2 bt
—4+u-VC - DVC=——
Jat ot

where D is the diffusion coefficient of nutrients through
water and u is the average advection velocity which is
related to the local flux q by u = q/A, where A is the
area of the cross-section of the tube. Additionally, bt is
the concentration of the biofilm produced as a result of the
consumption of nutrients (no detachment of biofilm is taken
into account in this term). The concentration of biofilm b is
related to the volume of biofilm by,

, 3

P
b="v,,, 4
vy Ver 4
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where p denotes the mass density of biofilm, V7 the total
volume of the tube and Vj,; the volume of biofilm.

The reaction rate is described in the following para-
graphs. In this work, we use the model for the biofilm
growth reported in [14]. Since the reaction rate of nutri-
ents is higher than the diffusion rate within the biofilm,
it is assumed that nutrients interact with the biofilm only
in a thin layer adjacent to the water biofilm interface, I"p,.
This layer defines implicitly a volume which is called the
penetration volume of the nutrients V, ~ 27 RT',/, and
it is assumed to be constant during the whole process of
biofilm growth. In general, in each of the tubes, there are
two different water biofilm interfaces. Therefore, we con-
sider two modes of biofilm growth: internal biofilm growth
and biofilm growth at the extremes of the tube. The interior
biofilm growth takes place within the tube and is described
as follows. If the volume of biofilm is smaller than the pen-
etration volume V), the nutrients are present in the whole
biofilm volume and hence the biofilm growth rate is propor-
tional to the volume of biofilm (see Fig. 3b). However, if the
biofilm volume is much larger than the penetration volume,
the nutrients are consumed only within this volume and the
biofilm growth rate is proportional to the area between water
and biofilm interface (see Fig. 3c).

The biofilm interior growth rate in the tube #;;, Vbi fis can
be written as,

aVl;fij —k Aiubfv Cij

ot VAl P E G

I Vb)) )

In this equation, f(Vpy5;) > 0 is a sigmoid-like function
for Vjy, that depends on the penetration volume V).
Further, Afu by = 2mryl 1s the internal interfacial area
between water and biofilm, C;; is the concentration of
nutrients within the tube, E is a saturation constant, kj is
a growth rate constant and A%, = 27 Rl is the external area
of the tube. The ratio between the interior interfacial water
biofilm area Afﬂ bf and the external area of the tube AiT isa
measure of the biofilm growth within the tube. If this ratio
is zero, then there is no biofilm in the tube or the tube is full
with biofilm. This means that if the tube is entirely filled
with biofilm, then, interior growth stops since there is no
more space in the tube. The sigmoid-like function is defined
as,

Vs

F(Vip) = 1+V—V_f ©6)

VP
If % < 1, the sigmoid-like function f tends to % and
P p

i
Vi,
a1

since Ayps ~ Al the biofilm growth rate ~ Vps.On
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the other hand, if the the ratio Y2 is large, the s1gmo1d -like

ft/

~

function f ~ 1 and then the biofilm growth rate
Awp f -

Note that the function f = V, f(Vpg;) is an increasing
function of V). This means that if V), increases the biofilm
growth rate increases.

We write the area Afﬂb in terms of the total volume of
the pore V7 and the volume of biofilm Vj,¢, which gives,

Vg 4

bfij Vy Cij \/7
:kR—— L(V; Vie ) F(Vi). (7

or = AR T e VIV = Ve ) W) (D

If there is no initial biofilm in the tube, the interfacial
area between water and biofilm area is zero, therefore there
is no biofilm growth in the interior of the tube.

Note that Eq. 7 represents a continuous relation between
the biomass growth rate and the volume of biofilm Vé: fit

Secondly, we describe the biofilm that grows in the
extremes of the tube. Since the penetration layer in the
extremes is very small compared to the whole volume
of biofilm, the biofilm growth rate is approximately
proportional to the interfacial area between water and
biofilm in the extremes A;bf (see Fig. 4). We assume
only interactions between nearest neighboring tubes. The
interfacial area between water and biofilm Ai}bf between
the tube 7#;; and the tube #;; can be written in terms of the
difference between volumes of biofilm of these neighboring
tubes. If the volume of biofilm bejk in the tube ti
(connected to the node n;) is larger than the volume of

I'p

Awbf
H
Iy
T b
RTl i l v JRT
tjk Awbf tij
(a)

&

(b)

Fig.4 Biofilm growth in the interior and in the extremes of the tube. a
The side view of two neighboring tubes is shown. b The cross-section
of the boundary between the neighboring tubes #;; and #;; is shown.
The biofilm growth rate from ¢ to #;; is proportional to A7, -

biofilm Vjy, i in the tube #;;, then the biofilm grows in the
extreme of the tube 7 and it is given to the neighboring tube
t;j. The biofilm growth in the extreme of the neighboring
tube ¢} is given by

Vs Ay Cijk
=k Vi . ®)
Jt At E; +Cji
Here, A7 is the cross-sectional area of the tube. The ratio
between the external interfacial water biofilm area A¢ Y and
the cross-sectional area of the tube Ay is a measure of the
biofilm growth in the extremes of the tube. This ratio is zero
if the volume of biofilm is the same in both interacting tubes
which means there is no biofilm growth in the extreme of
the tube and hence no volume of biofilm is added to either of
them. On the other hand, when this ratio is one, the biofilm
grows at a maximal rate and the accumulated biofilm is
added to the tube 7;;. Note that there is no biomass exchange
between neighboring tubes; the biomass is produced in the
extreme of the tube and it is given to the neighboring one,
hence no biomass is lost in the tube. In this way, this
model for the biofilm growth allows the spreading of the
biofilm through the whole network which is consistent with
experimental observations. The area A® wh between the tube
t;j and the tube 7 can be written in terms of the volume of
the biofilm of the tubes. Hence, the equation for the biofilm
growth at the extreme of the tube 7, reads as

BVlffjk _ Vp

= sk Vis ). 9
ar Vr E, +c bfiy) ©)

(bejk

We take into account all the neighboring tubes whose
volumes of biofilm are larger than the volume of biofilm in
the tube #;;. To this extent, we introduce the following index
set notation for the tube #;; which connects nodes n; and
nj. Consider node n ;, then we define the set of neighboring
nodes of it, except n; by A j;. Therefore, the equation for the
biofilm growth in the tube #;; due to biofilm growth in the
extremes of the neighboring tubes is written as

Vorie — Vi) +

aV;ﬁj—k—Z Cik
ar 0 E,+Cii

Cri
oy 22 Z N (Vi = Vo )+ (10)
o, Es + Ci

where (Vpr,, — beij)+ = max(0, Vps, — Vhfij)'
We assume that the detachment of biomass is propor-
tional to the area of the interface between water and biofilm,

@ Springer
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hence, detachment rate can be written in terms of the volume
of biofilm as

Vs,
— =koR,/l(Vy — Vpy..),
dt  detach 2 Vr hf”)

where k> is the detachment rate coefficient. Finally, when
we take into account the interior growth, the growth in
the neighboring tubes and the detachment of biofilm, the
equation for the biofilm growth in the tube 7;; can be written
as

—L =k R_P_J\/W Ve
ot YV Es ¥ G l(Vr = Vi) f (Vosi;)

s ij

Vv Cik
4k 2 E Tk
! Vr Es+Cjk
ji

an

Vosie — Vor)+

V Ci
+h L2 Y (Vyp — Ve
'y, k;:” Et Cki( bfui bfi; )+
ij

—kyR, /l(Vp — be,-_,-)H(be,-j)-

Further, H (Vpy;;) is defined as,

12)

0 if be,-j =0

1if beij > 0. (3)

H(Vpy;) = {

We include the function H because detachment occurs
only when there is biofilm within the tube. In case there is
no biofilm in the tube, H = 0, which means the detachment
rate is zero. In Eq. 12, the first term is the interior biofilm
growth, the second and third term describe the biofilm
which grows in the extremes of the neighboring tubes, and
the fourth term is a term for the detachment of the biofilm.

The nutrients consumption in the tube #; is the result
of the interior biofilm growth and biofilm growth in the
extremes of the tube.

+
Wil _ kipVy Ci
ot Y VT2 Es + Cij

R\ /wl(Vr — Vi) f (Vig;;)

+ Z Vo = Voru)+
kEAj,'

+ Z (beij - beki)+ (14)

keA;j

The equations that describe the transport of nutrients (3)
and the biofilm growth (12) hold for the rectangular and
the cubic network. The boundary conditions are different
due to the different domain of computations. We present the
boundary conditions for 2D case and for the 3D case in the
following paragraphs.

@ Springer

When the mass conservation (2) is applied to every node
in the network, a linear system for the pressure arises. The
boundary conditions for the pressure in the 2D case are:

p(0, y; 1) = 1600L,
p(Lx,y;t) =0,
9
%P (x,0:1) =0,
dy

ap
@(x, Ly;t) =0, (15)

Here, L, is the size of the network in the x direction and
Ly the size in y direction.
The initial condition for the concentration of nutrients is,

(16)

The boundary conditions for the concentration of
nutrients are:

C(x,y,00=0

C@O,y,t) =1,
aC
_(Lx’yJ) = 07
ox

aC
—(x,0,1) =0,
ay

—— X, s = U.
ay y
The initial condition for the biofilm growth is:
Vi (t = 0) = bOTYT if the tube #;; is chosen (18)
P T T o elsewhere.

Our algorithm randomly chooses 4% of the tubes. We have
chosen by = 10~* [kg/m?] for the initial tubes that were
seeded with biofilm.

Further, C;; = C";C"' links the concentration of nutrients
in the nodes and the concentration in the tubes.

For the 3D case, the boundary conditions for the pressure

are:

p(ov ya Z) - 1600L)h
P(Lx,y,Z) =0’
0
2P (x,0,2:0) =0,
dy
ap
E(xa Ly, Z; t) = Oa
d
P (x,y,0;1) =0,
9z
ap
—(x,y,L;t)=0, (19)
0z

The initial and boundary conditions for the concentration
are:

C(x,y,z,00=0 (20)
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CO,y,z,1) =1,

aC
(LX7 yvz9t) =07
ax

aC
_(x’ 07 Z, t) = 07

aC

R — &, Ly, z,1) =0

aC

PP —(x,y,0,1) =0,

aC
a—z(x,y, Lz,t)=0. (21)

2.1 Numerical method

The equation for the transport of nutrients is solved for
the concentration C; at each node of the network. The
advection part is solved using first order upwind scheme and
a time-implicit method for the time integration. Hence, the
discretization of the advection part reads as,

AC; i
|: A li| — Z q"/_/(c]‘['i‘l _ Cir+l), (22)
t adv jes; T

where £2; = {j | g;; is directed towards the node n;}.

The diffusion part is discretized using a time-implicit
method for the concentration. However, the area used is
from the previous time step,

s,
At diff

To write the reaction term in each node, we assume that
at each node there is a perfect mixture of biofilm. Therewith
we get,

Z(CZT+1 C T+1) wl} . (23)

jeSsi

ek Crtl YLjes GWVyp )Vr

= 24
cons Y E; + Cl.T ZjESi Vr (24
where,
G(Vyr) = —’; R [7l(Vr = Vi ) f(Vyg)
+ Z (Vbtfij o Vbrfjk)"'
kEA_,','
+ 2 Vi, = Vig )+ |- (25)
kG/\,‘j

Therefore,

Ac; Ac;
it =cf+at( | = = RTFLT) (26
- Ar adv+ At aliff+ cons’” ) (20)

The biofilm growth takes place within the tubes of the
network. Here, we use an explicit Euler time-integration
method to arrive at,

beij
At

T+1 _ beijt:|

kiR— (Vi =VE Vi
1 VT[E G :|,/7T( 7=V ) f Vi)

“r kZ [E +CY }(be’k Viny)+

tayl 3 [E 2 v Vi

mi
_ _yr T
kR [ml(Vr Vbﬁj)H(be,-j) 27

The computational procedure used in this work is as
follows. Firstly, the pressure is imposed in the left and right
boundary of the network. Subsequently, the pressure in each
node is computed from the linear system resulting from the
mass conservation in each node. For solving this system, we
consider Dirichlet boundary conditions in the left and right
boundaries and homogeneous Neumann boundary condition
for the upper and lower boundary. The pressures in each
node are used to compute the flux in each tube by means
of Eq. 1. After this step, we proceed to solve the advection
diffusion reaction equation for the nutrients and we compute
the concentration of nutrients in each node as well as the
volume of biofilm in the tubes. The thickness of the biofilm
and the radius of the void space available for water is
updated and the process starts again at the next time step
(see Fig. 5).

3 Results

In this section, we describe the overall mechanism
of biomass growth and its implications on network
characteristics such as the porosity and permeability.
In addition, in order to determine the conditions for
upscalability to real reservoir dimensions, we study the
influence of the numerical parameters such as the number
of nodes and physical parameters such as the size of the
network and the inlet concentration of nutrients on the
dynamics of transport of nutrients and biofilm growth. In
addition, we use a 3D cubic network to study the influence
of the nodes in the z direction. At the end, we mention
the requirements in terms of the Damkohler number for
upscaling this microscopic model to a continuum-scale
model.

Firstly, we present the results of the transport of nutrients
and the biofilm growth process in the pore network. Initially,
there is a biomass concentration by = 1 x 10™* [kg/ m3]
in 4% of tubes (Fig. 6a). When the biomass gets into
contact with the nutrients, biofilm starts growing and

@ Springer
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Y

Pressure per node

Flux in the tubes

Concentration of
nutrients

Concentration of
biomass

Thickness of biofilm

Fig. 5 Computational steps followed during each time step to solve
the dynamics of biofilm growth

spreading to the neighboring tubes (Fig. 6b, c). Due to a
high injection rate, the nutrients are distributed over the
whole network shortly after the beginning of the process.
Therefore, biofilm grows uniformly through the network
and hence the nutrients are consumed (Fig. 6d). After
several minutes, depletion of nutrients near the outlet of the
network is observed. This is because the consumption of
nutrients by the bacteria near the inlet is very high, most
nutrients are unable to reach the outlet. Hence, preferential
biofilm growth is observed near the inlet (Fig. 6e, ) and
the biofilm developed in this area causes the plugging of
the network. This implies that a heterogeneous end-state
is reached if the inlet concentration of nutrients is not
large enough. The heterogeneous or preferential growth
depends on parameters like the size of the network or the
number of nodes in the network; therefore, the relation
among the fraction of biomass and permeability varies with
these parameters and upscaling is not possible in this case.
However, if there is sufficient amount of nutrients, there
is no depletion and the biofilm grows uniformly during
the whole process. Therefore, the relation between fraction
of biomass does not depend on the size of the domain of
computation or the number of nodes and the problem is
upscalable. This scenario is not shown in the Fig. 6.
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3.1 Variation of input parameters
3.1.1 Number of nodes

In this first set of simulations, we study the effect of
the number of tubes in the network. The length in x and
y direction and the initial porosity are constant for this
simulations. We perform four simulations in which we use
four different networks with different number of nodes (25
x 15, 50 x 30, 100 x 60, and 200 x 120). The length of
the tubes decreases as the number of nodes increases. In
order to keep the initial porosity constant throughout all four
simulations, the radii of the tubes are adjusted in each of the
simulations. Note that for each simulation, the radius of the
tubes is constant over the network. The inlet concentration
for these simulations is C;;, = 1[kg/ m3]. The value of the
radii and the length of the tubes for this set of simulations
are shown in Table 1. The complete list of parameters is
shown in Table 2. The normalized flux Q,, is defined as,
O, = %, where Qg is the initial flux in the network (i.e.
before biofilm growth). The evolution of the normalized flux
through the network for the detachment rate kp = 0 [1/s] is
shown in Fig. 7. We observe that there are some deviations
among the curves; however, the network is plugged in all
the cases around 300 min an even an S-shape is observed for
very large number of tubes. The fraction of biofilm volume
in the network is given by S, = %, where Vyy;, is the
volume of biofilm in the tube #;; and Vr is the volume of
the tube 7;;. In Fig. 8, we present the results obtained for the
evolution of the fraction of biofilm volume in the network
for kp = 0[1/s]. At the beginning of the process, the biofilm
starts growing and spreading through the network, then, the
biomass grows uniformly and in the final stage a preferential
growth near the inlet causes the plugging of the network.
We observe that the fraction of biomass necessary to
block the network §b decreases as the number of nodes
increases. We can explain this by drawing an analogy with
the minimum fraction of biomass needed to block one
column of tubes in y direction. In order to keep the same
initial porosity, if the number of nodes in the x and y
direction doubles, then the radii of the tubes and the length
reduces approximately to the half. Therefore, the volume
of biomass in one column of the tubes decreases by 1/4
when the number of nodes in the y direction doubles.
The sum of the volume of all the pores in the network
decreases approximately by 1/2 when the number of nodes
increases. Therefore the fraction of biomass needed to block
the network decreases by a factor of 1/2. Note that in
order to keep the same porosity, the total volume of the
network, V,;; = L, x L, x 2R decreases by 1/2 when the
number of nodes increases. Hence, the fraction of biomass
needed to block the network decreases when the number of
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nodes increases. In our simulations, the preferential growth ~ Table2 Physical parameters for all the simulations
is taken over more than one column; however, a similar
. 5. . Name Symbol  Value
argument to explain the decrease of S}, is valid.
Pressure difference AP 1.6 Ly [kPa/m]
Viscosity of water % 0.001/60 [Pa - min]
. . . ; 3
Table 1 Network parameters values for the first set of simulations Density of water Pw 1000 [kg/m’]
. ) Density of biofilm Obf 20 [kg/m3][20]
Number of nodes in Radius of the tube Length of the tube Diffusion coefficient of water D 9% 10-8 [m2/min] (1]
the network ) .
Yield coefficient Y 0.34 [2]
25 % 15 4.5933 x 1073 [m] 3.8 x 1074 [m] Specific growth rate ki 1.148 x 10% [1/min]
50 x 30 2.3563 x 1073 [m] 1.9 x 107 [m] Half-saturation constant for Ep 2 x 1073 [kg/m3] [2]
100 x 60 11937 x 1075 [m] ~ 9.5000 x 1075 [m] ~ Diofilm
200 x 120 6.0078 x 106 [m] 47500 x 1075 [m] Initial biomass concentration bo 1x1074 lkg/ m3]
Biofilm / bulk water viscosity B 107 [27]
ratio

All configurations have the same initial porosity
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Fig. 7 The normalized flux for different number of nodes for a
rectangular network

In Fig. 9, we show the normalized flux versus the fraction
of biomass. We observe that if the fraction of biomass
remains small, then the curves coincide for the four cases;
however, as the fraction of biomass increases, the curves
deviate from the uniform growth and exhibit a steeper
descend as the number of nodes increases.

In order to determine when the preferential growth devi-
ates from uniform growth, and therefore when upscalability
is possible, we study the effects of biofilm growth on the
Damkohler number, which is defined as

Reaction rate

Da =

= y . (28)
Advective transport rate

In this case, we compute the Damkdhler number related
to the advective rate because the transport of nutrients is
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Fig. 8 The fraction of biomass for different number of nodes for a
rectangular network
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Fig. 9 The fraction of biomass vs the normalized flux for different
number of nodes for a rectangular network

mainly determined by this process, since the Peclet number
is larger than 10! from the beggining of biofilm growth to
250 minutes approximately.

The Damkohler number for the entire network, is
obtained by dividing the average of the reaction rate by the
average of the advective rate,

bp Eij%ﬁG(Vbﬁ,)
Xijuij

Ly

Da =

. (29)

Here, the sum is taken over all the tubes in the network.
In Fig. 10, the Damkohler number for a various number
of nodes in the network is shown. We plot two horizontal
lines that enclosed the Damkdhler number at which a
transition from uniform growth to preferential growth
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Fig. 10 The Damkohler number for different number of nodes for a
rectangular network
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Table 3 Network parameters values for the second set of simulations

Network Number of nodes in the network Size of the network L, Size of the network L, Radius of the tube
L 25 % 15 9.5 x 1073 [m] 5.7 x 1073 [m] 45933 x 1072 [m]
L 50 x 30 1.9 x 1072 [m] 1.114 x 1072 [m] 47126 x 1073 [m]
Ly 100 x 60 3.8 x 1072 [m] 2.28 x 1072 [m] 47746 x 1072 [m]
Lg 200 x 120 7.6 x 1072 [m] 456 x 1072 [m] 4.8063 x 107° [m]

occurred. The transition from uniform growth to preferential
growth occurs at different times for different number of
nodes. However, the Damkohler number of the transition
ranges between the two horizontal lines for all the cases.
For a Damkdhler number less than 10! the biofilm grows
uniformly for all the cases. Further, for Damkohler number
greater than 10 there is no uniform growth and upscaling is
not possible.

3.1.2 Size of the network

In the second set of simulations, we study the impact of
the size of the computational domain. We perform four
simulations in which we enlarge the domain of computation.
The ratio between the length in the x direction and the
length in the y direction is constant. In order to keep the
same initial porosity, the radius increases slightly while we
increase the size of the network. The inlet concentration
for these simulations is C;, = 1[kg/m3]. In Table 3,
the size of the network and the radius for each network
are shown. For each simulation, the tubes in the network
have the same radius. In Fig. 11, the normalized flux
as a function of time for each simulation is shown. We
observed that the network is plugged after 300 min for all
the cases. In Fig. 12, the fraction of biomass as a function
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Fig. 11 The normalized flux for different sizes of the domain of
computation

of time is shown for various sizes of the computational
domain. We observe that when the size of the computational
domain is larger, the fraction of biomass needed to block
the network decreases (see Fig. 13). Note that the total
amount of biomass increases when the size of the network
increases. The minimal amount of biomass required to block
the network is the volume of all the tubes in one column.
When we increase the size of the computational domain,
the amount of tubes in one column is doubled while the
total amount of tubes is four times higher, hence the relative
contribution to the volume from one column decreases when
we increase the size of the network. The minimal amount
of biomass to block the network tends to zero as the size
of the network increases and it is lower than the percolation
threshold for a rectangular network. On the other hand, there
is a maximum of biofilm growth when there is uniform
growth because in that case all the tubes have to be filled
with biofilm in order to plug the network completely. A
transition from uniform growth to preferential growth is
observed as we increase the size of the network.

In Fig. 14, the Damkohler number is shown for different
sizes of the network. We observe that there is uniform
growth and therefore upscalability when the Damkdohler
number is less than approximately 10'. Above 103, there is
a preferential growth and upscalability is not possible.
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Fig. 12 The fraction of biomass for different sizes for a rectangular
network
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3.1.3 Inlet concentration of nutrients

In the third set of simulations, we study the effects of the
inlet concentration on the biofilm growth. In this set of
simulations, the size of the network is 100 x 60 nodes and
we use five different inlet concentrations, C;,, 1 [kg/ m3 1,
5 [kg/m3], 10 [kg/m?], 25 [kg/m?], 50 [kg/m>]. In Fig. 15,
the normalized flux is shown. We observe that the network
is plugged at around 300 minutes for all the cases. In
Fig. 16, the evolution of the fraction of biomass is shown.
It is shown that the biomass saturation value increases as
the inlet concentration increases. When the concentration
C;, = 1, the biomass saturation value is around 5;, = 0.70;
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Fig. 14 The Damkohler number for different sizes for a rectangular
network
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Fig. 15 The normalized flux for different inlet concentration of
nutrients, with network size L4

however, if the inlet concentration is C;;, = 50, then
the fraction of biomass necessary to block the network is
5;, = 1. Therefore, when we increase the concentration, the
nutrients can reach the region near the outlet of the network
and no preferential growth is observed; hence, the model
predicts a uniform biofilm growth for concentrations larger
than 25 [kg/m?>] (see Fig. 17).

In Fig. 18, the Damkohler number is shown for different
inlet concentrations of the network. We observe that there
is uniform growth and therefore upscalability when the
Damkdhler number is lower than 101, Further, we observe
that when the inlet concentration C;, = 25 and C;,, = 50,
there is always uniform growth and hence upscalability.
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Fig. 16 The raction of biomass for different inlet concentration of
nutrients, with network size L4
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Fig. 17 The fraction of biomass vs the normalized flux for different
inlet concentration of nutrients, with network size L4. For ¢ =
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3.2 Results for a 3D cubic network

In this section, we present the results obtained for the
biofilm growth model in a 3D cubic network. The number
of nodes in the x direction is Ny = 50 and the number
of nodes in y direction is Ny, = 30. The number of nodes
in the z direction, N,, was varied to study the influence of
the number of nodes on the porosity-permeability relation.
The inlet concentration of nutrients was set constant and the
radius is the same for all the tubes in the network.

We performed five simulations with a different number
of nodes in the z direction, N; = 2, N, = 4, N, = 8§,
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Fig. 18 The Damkohler number for different inlet concentration of
nutrients, with network size L4

1 T T T T T T T
\
\\ -~ - Nz=1
Ly --#= Nz=2 | |
0:3 [y --0 - Nz=4
Q - Nz=8
o8l Y *  Nz=16| ]
\ O  Nz=32
\
A}
0.7 § 1
| ¥
\
\
So6f \ 4
w
= 8
v |
NOS5H \ ]
© \
£ 8
5 \
S04} \ ]
8
\ )
0.3 N 1
LS
\\\e
o2r NS T
.\.\A\
3
01f '\i* A 1
‘o.é%‘
L
0 1 1 . L B 0-0-0-06-0-0
0 50 100 150 200 250 300 350 400
Time [min]

Fig. 19 Normalized flux vs time for different number of nodes in z
direction

N, = 16 and N; = 32 and we compare these results with
the results of our 2D network model (N, = 1).

In Fig. 19, the normalized flux as a function of time is
shown. We observe that the flow through the network ceases
after approximately 300 min for all the cases.

In Fig. 20, the evolution of the fraction of biomass in the
network S, is shown. When the network is blocked, §b is
around 0.7 for the 2D case. For the 3D cases, this fraction is
larger: if N, = 2, then fb is around 0.8 and as the number of
nodes in the z direction increases, this fraction converges to
0.8510 approximately. The order of convergence computed
is o = —0.93 approximately.

Figure 21 shows the relation between the normalized flux

and S, for the 2D case, the 3D cases and the case of uniform
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Fig. 20 Fraction of biomass vs time for different number of nodes in
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biofilm growth in 2D. Note that the uniform biofilm growth
in 2D and 3D yield similar results because there is no flux in
the z direction. The biofilm growth in the 2D case deviates
from uniform growth at around S, = 0.5. For the 3D
cases, the deviation from uniform growth occurs at around
S, = 0.7. We also observe this behavior in Fig. 22 where
the average Damkohler number is plotted as a function of
time. For the 2D case, there is a transition between uniform
growth and preferential growth between 70 and 100 min.
For the 3D cases, this transition is between 120 min and
160 min. However, the transition from uniform growth to
preferential growth takes place in the same Damkohler
regime.
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Fig. 22 Damkohler number for different number of nodes in z
direction
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3.3 Uniform biofilm growth

In the uniform biofilm growth, the biomass grows at the
same rate in all the tubes of the network. Using a similar
process as the equivalent resistance in electric circuits, we
can easily obtain a relation between the total flux in the
network and the fraction of biomass. Since the radii are
reduced in all the tubes at the same rate and assuming that
initially the radii are equal in all the tubes of the network,
it follows that during the whole uniform biofilm growth
process the radius remains the same in all the tubes of the
network. This implies that there is only flux in the horizontal
tubes of the network. Hence, the total flow in the network
can be written as,
0= &L r;‘) -
Ny 8ul = ™
in which Ny is the number of tubes in the y direction and
N is the number of tubes in x direction. This expression is

equivalent to consider the whole network as a single tube.
If we disregard the second term in Eq. 30 and we express

4

Fuy; 3 the fraction of volume of biofilm, the normalized flux

for uniform growth is given by,
(1= 8)?

(1 — Spo)?

In which Sy is the initial fraction of volume of biofilm
in the network. In terms of porosity, the normalized flux is
given by the following equation,

0, = [;#0]2, (32)

where ¢y is the initial porosity.
We use Darcy’s Law to relate the permeability K with
the flux Q,

K = QLu/APA. (33)

+ (Rf; =y, )B711AP, (30)

On €19

If the pressure drop AP, the cross-sectional area of the
network A, the length in the flux direction L, and the
viscosity u are constant, we have that K% = % = Q0,.In
which Ky is the initial porosity and Qg is the initial flux.
Therefore we can express (32) as,
e =)
Ko Lol
which relates the porosity and the permeability for the
uniform biofilm growth.

(34)

4 Discussion and conclusions

In this work, we study the conditions for upscalability
of bioclogging using a pore network model. We use a
biofilm growth model that takes into account the spreading
of the biofilm through the network and assumes that the



Comput Geosci (2018) 22:1543-1559

1557

consumption of nutrients is taken only in a small layer of
biofilm adjacent to the water biofilm interface since the
consumption of nutrients is faster than the diffusion of
them through the biofilm in each tube. The biofilm growth
requires the injection of nutrients through the network
which are transported within a fluid phase. In general, it
is shown that initially the biofilm grows uniformly across
the network but afterwards there is a preferential growth
near the inlet of the network, due to depletion of nutrients
in the back of the network. This causes the plugging of
the network and blocks the nutrient inflow. The amount of
nutrients needed to clog the network depends on factors
like the size of the network, the number of nodes, and
the inlet concentration of nutrients. Therefore, the analytic
relation between fraction of biomass and normalized flux
may not be unique and upscalability is not always possible.
However, if the inlet concentration of nutrients is about
25 [kg/m?>] there is no preferential growth and the biofilm
grows uniformly through the network. This analytic relation
does not depend on the size of the network, the number of
nodes, or the inlet concentration; therefore, upscalability is
possible. In the case of uniform growth, there is a unique
relation between the fraction of biomass or porosity and the
permeability of the network.

We use the Damkohler number to determine when the
biofilm grows uniformly through the network and therefore
when upscalability is possible. We found that if Da < 10!
the biofilm grows uniformly through the network. However,
if the Da > 103, there is preferential growth and therefore
no upscalability is possible. If 10! < Da < 103, there is a
transition between uniform and preferential growth.

We performed four sets of simulations to determine the
conditions for upscalability of bioclogging. In the first set
of simulations, we vary the number of nodes in the network,
we observe that at early stages the biofilm growth is mostly
uniform for Ny = 25 and N, = 50. However at the end of
the process, a heterogeneous biofilm growth in the network
is observed. This phenomenon does not allow upscalability
for the whole process. For N, = 100 and N, = 200,
the preferential growth is more significant than in the
previous case. For this set of simulations, it is shown that
if the Damkdohler number is lower than 10! approximately,
uniform growth is still observed in all the cases. However,
if the Damkohler number is larger than 103, the biofilm
growth model starts to deviate from uniform growth and
upscaling is not possible. Note that increasing the number
of nodes leads to a decrease in velocities and hence to a
increase in the Damkohler (see Eq. 29).

In the second set of simulations, we vary the size of the
network. We observe that the fraction of biomass needed to
block the network decreases when the size of the network
increases. In this case, similar to the first one, there is
not a unique relation between the fraction of biomass and

the permeability of the network for the entire process. The
Damkohler number predicts uniform growth below 10!
approximately and preferential growth above 103. We see
from Eq. 29 that if we increase the size of the network, the
Damkohler number also increases.

For the third case of simulations, we vary the inlet
concentration of nutrients. We observe that for inlet
concentrations Cj;, = 25 [kg/m3] and C;, = 50 [kg/m3],
the fraction of biomass needed to block the network is
approximately equal to one. For larger inlet concentration
of nutrients, there is no depletion and hence upscaling is
possible since there is uniform biofilm growth. In this case,
if we increase the inlet concentration the Damkohler number
decreases.

In the last set of simulations, we obtained that for the
z = 1 (2D case), the depletion of nutrients occurs faster.
This implies that the biofilm growth deviates from uniform
growth earlier in the 2D case than in the 3D case. The
depletion occurs faster in 2D since in 3D there are more
ways in which the water can flow, hence, the nutrients are
able to travel further in a 3D network and depletion takes
longer. The amount of biomass needed to block the network
is larger for the 3D cases than for the 2D case. However, as
the number of nodes in the z direction increases, the amount
of biomass needed to block the network converges to a limit
value.

Even though the depletion of nutrients occurs faster for
the 2D case, the transition between uniform growth and
preferential (or heterogeneous) growth occurs for the same
values of the Damkohler number, which is between Da =
10! and Da = 103. Therefore, we conclude that the criteria
for uniform growth and therefore upscalability in 3D are
similar to the criteria used for the 2D network.

In 2D, we performed three sets of simulations in which
we vary the number of nodes in the network, the size of
the network and the inlet concentration of nutrients. For the
first two cases, upscalability is not possible since there is
no a unique relation between the amount of biofilm and
the permeability of the network. However for the third
case, when we vary the inlet concentration of nutrients, we
observe that for concentrations larger than 25 [kg/m>] the
model describes uniform biofilm growth in the network,
which allows upscalability of these results, since in uniform
biofilm growth the relation between the fraction of biomass
and the permeability does not depend on the volume of the
network. In addition, we show that if the Damkohler number
is less than approximately 10!, the biofilm evolves similarly
to uniform growth and that if it is above 10%, preferential
growth is observed; therefore, we can use the Damkdhler
number to determine whether upscaling is possible. For the
first two cases, the Damkohler number is not always below
this limit and therefore upscalability is not possible in these
cases. However, for the third set of simulations, we observe
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that the Damkohler number is below this limit for the entire
process for an inlet concentration of C;,, = 25 [kg/ m3] and
Cin, = 50 [kg/m3]. For the upscalable case, we obtain a
relation between the permeability and the porosity, K ~ ¢>.
This formula can be seen as an alternative to the classical
Kozeny-Carman equation in the case of gradually clogging
of the network.

Interesting research may be the extension of this model
to 3D networks with different topologies to determine the
effects of biofilm growth on the relation between porosity
and permeability. This relation could differ from K ~ @>.
In addition, it might be interesting to verify the relation
between porosity and permeability, K ~ ¢, in laboratory
scale and obtain an appropriate Damkdhler number regime
for uniform growth. Forthcoming research might be the
extension of this model to two phase flow for studying
the possibility of flow diversion for MEOR. Finally, this
model can be used in other problems like pore-elasticity
or in physiological situations such as the modelling of
clogging of arteries in the brains or on the heart due to
arteriosclerosis.
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