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A heliogyro is a solar sail concept that divides the solar sail membrane into a number of 

long, slender blades of film extended from a central hub, maintained in a flat state through spin-

induced tension. The heliogyro can redirect and scale the solar radiation pressure (SRP) force 

and can achieve attitude control by twisting the blades, similar to a helicopter rotor. Different 

pitch profiles exist, including pitching the blades in a collective, cyclic or combined collective and 

cyclic manner. While the forward mapping, i.e., computing the SRP force and moment gener-

ated by the heliogyro for a given pitch profile, is straightforward, the inverse of the problem is 

much more complex. However, this inverse problem (finding the blades’ pitch that results in a 

desired SRP force and/or moment) is crucial for heliogyro mission design and operations. This 

paper therefore solves the inverse problem numerically: first, only for a desired SRP force or 

SRP moment and subsequently for the fully coupled inverse problem. The developed methods 

are subsequently applied to track a reference trajectory that corrects for injection errors into a 

solar sail Sun-Earth sub-L1 halo orbit.  

I. Introduction 

Research into solar sailing as well as previous and future solar sail initiatives (IKAROS (JAXA, 2010), NanoSail-

D2 (NASA, 2010), Lightsail-1 (The Planetary Society, 2015), and NEA Scout§ (NASA)) are driven by the huge po-

tential of solar sail missions that are not constrained by propellant mass [1, 2]: solar sailing exploits the radiation 

pressure generated by solar photons that reflect off a large, highly reflective membrane to produce continuous thrust. 
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With the Sun as ‘propellant’ source, solar sail missions have in principle infinite lifetime and can build up vast quan-

tities of V  over that mission lifetime, enabling high-energy and long-duration missions [3]. 

While traditional solar sails adopt a flat (either square- or disc-shaped) configuration, renewed interest exists in 

the heliogyro concept [4, 5]. The heliogyro divides the reflective membrane into several long blades and by slowly 

spinning, the blades are maintained in a flat state. The spin-induced flattening removes the need for a relatively heavy 

mechanical deployment and stiffening structure as required for the flat sail configuration. The heliogyro concept is 

therefore more efficient, allowing a higher force per unit mass because of a lower sail loading (the spacecraft mass-

to-sail-area ratio). In addition, while the thrust acceleration of a flat sail is fully prescribed by the sail’s attitude with 

respect to the Sun, the heliogyro can scale down the acceleration in any direction (away from the Sun) by pitching its 

blades [6].  

Different blade pitch profiles exist, including collective and cyclic profiles or a combination of the two [4, 7, 8]. 

The collective pitch profile applies a constant and equal pitch to each of the blades whereas the cyclic pitch profile 

sinusoidally changes the blades’ pitch over one or two rotational periods of the heliogyro. The case of a sinusoidally 

changing pitch over two rotational periods is referred to as the half-p pitch profile. Besides the amplitudes of these 

three pitch profiles, the cyclic and half-p profiles also have a phase angle. Therefore, this paper uses a total of five 

pitch controls to determine fully the heliogyro’s SRP force and moment at a specific attitude with respect to the Sun. 

Obtaining the SRP force and moment is straightforward as both can be explicitly written as a function of the pitch controls 

[7]. Except for a few very specific and simplistic cases, however, the problem cannot be analytically inverted, i.e. given 

a specific SRP force and/or moment, the pitch controls that enable that force and moment cannot be derived analytically 

and must be determined numerically.  

The need for a numerical solution method is especially evident from the fact that the fully coupled problem is over-

determined as it uses a maximum of five controls for a total of six degrees of freedom. Another issue with the inverse 

problem is the choice of the controls, i.e., which controls are selected to generate the desired moment and which ones are 

allocated to the generation of the required force? Furthermore, the numerical nature of the problem introduces the diffi-

culty that a solution can only be found if a solution indeed exists.  It is important to note that a heliogyro can, for example, 

only generate forces that are constrained to the volume of a bubble around the Sun-sail line. A related issue is the fact 

that the momentum transferred by the solar photons to the heliogyro needs to be divided over the force and moment 

generating capabilities of the sail. For example, generating the moment required to reorient the heliogyro reduces the 

SRP force available for orbital maneuvering. This further restricts the force and moment combinations for which a solu-

tion to the inverse problem exists.  

This paper addresses all these issues and defines a numerical approach to solving the inverse problem, finding the 

pitch controls to enable either a desired force, a desired moment, or a fully coupled force and moment. One of the few 

inputs required for the numerical method is an initial guess for the pitch controls, which are all angles. The performance 

of the numerical method is then expressed through how good this initial guess needs to be in order for the method to 

converge to a solution. This paper shows that, in many cases, the initial guess can be quite poor (i.e., far from the 

solution), on the order of tens of degrees, providing a robust approach for solving the inverse problem. Finally, after 
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applying the developed method to randomly selected forces and/or moments, the approach is applied to track a refer-

ence trajectory that has previously been developed to correct for injection errors into a solar sail Sun-Earth sub-L1 

halo orbit [6, 9]. 

II. Heliogyro force and moment models 

This paper assumes an ideal solar sail reflectance model [1, 2] that considers the heliogyro blades to be perfectly 

reflecting and perfectly flat, without wrinkles or optical imperfections. Under these assumptions, the incoming solar 

photons are specularly reflected and the solar radiation pressure force and acceleration act perpendicular to the helio-

gyro blade. To define the forces and moments generated by the heliogyro, a set of reference frames is involved (see 

Figure 1), with their transformations detailed in the Appendix of References [6, 9]. This paper expresses the SRP force 

produced by the heliogyro in the Sun coordinate system  ˆˆ ˆ, ,S s l p  and the SRP moment in the despun coordinate 

system  1 2 3
ˆ ˆ ˆ, ,D d d d . In the Sun coordinate system, ŝ  is the Sun-sail unit vector,  ˆ ˆ ˆˆ ˆ/  l z s z s  where ẑ  is the 

unit vector perpendicular to the Earth’s orbital plane, and p̂  completes the right-handed reference frame. In the despun 

coordinate system, 1d̂ is along the heliogyro spin axis, Ω , 3d̂  is along blade 1 at time 0t   (where the orientation of 

blade 1 at 0t   is defined by the heliogyro’s clock angle,  , with respect to p̂ ), and 2d̂ completes the right handed 

reference frame. The despun reference frame is thus defined at time 0t   and remains fixed relative to the Sun coor-

dinate system,  ˆˆ ˆ, ,S s l p , for given heliogyro attitude angles   (cone angle) and   (clock angle), while the heliogyro 

rotates around the heliogyro spin-axis. Reference [7] expresses the averaged SRP force and moments in these reference 

frames as:  

     
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In Eqs. (1) and (2), P  is the solar radiation pressure (4.563 10-6 N/m2 at 1 Astronomical Unit (AU) [1]), A  is 

the total heliogyro blade area, R  is the heliogyro blade radius, ,3iLs  is the component of the Sun vector, ŝ , normal to 

the 
thi  blade and expressed in the 

thi  blade coordinate system (  1 2 3
ˆ ˆ ˆ, ,iL l l l , see Figure 1c), and i  is the 

thi  blade 

azimuth angle in the spin plane (see Figure 1b for the first blade). Furthermore,      1 3SD R R   is the rotation 

matrix that translates a vector in the  1 2 3
ˆ ˆ ˆ, ,D d d d -frame to the  ˆˆ ˆ, ,S s l p -frame. Finally, i  is the individual blade’s 

pitch angle, which is elaborated upon below. First note that, because the heliogyro rotates, the SRP force and moment 

vectors change as the heliogyro spins. They are therefore averaged over two revolutions (in case the selected blade 
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pitch profile includes half-p) through the integrals in Eqs. (1) and (2) and the subsequent division by 4 . Because the 

integral is the same for each blade, the average acceleration for all blades can be obtained by evaluating the integral 

for one blade only (i.e., i  in Eqs. (1) and (2) can be set to 1i  ) and multiplying by the total blade area, A . Note that 

only very specific cases allow for the integrals in Eqs. (1) and (2) to be evaluated analytically (see Section III) and are 

therefore evaluated numerically in most cases.  

 

a) b) 

 

 
c)  

 

Figure 1 Definition of reference frames [9]. a) S - and D -frames. b) D - and B -frames. c) B - and iL  -

frames. 
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As mentioned below Eq. (2), i  is the blade’s pitch angle, and its value depends on the pitch profile selected. 

Reference [4] and many following works (e.g. References [5, 7-9]) define three different pitch profiles, which can be 

used independently or in combination: the collective profile (‘Co’), ½-period cyclic profile (half-p, ‘HP’), and the 1-

period cyclic profile (cyclic, ‘Cy’). The collective profile pitches the blades at a constant value, equal for all blades, 

while the heliogyro rotates, whereas the half-p and cyclic profiles pitch the blades sinusoidally with revolution. While 

the half-p profile repeats after two revolutions (requiring the force and moment vectors in Eqs. (1) and (2) to be 

averaged over two revolutions), the cyclic profile repeats after one revolution. Each of the pitch profiles and its effect 

on the solar radiation pressure force and moment is illustrated in Figure 2, which is taken from Reference [7]. In the 

example of a Sun-facing heliogyro (with 0  ), the collective and half-p profiles only generate a force along the Sun 

direction (or equivalently, along the spin axis), while the cyclic profile can also generate a force component in the 

plane perpendicular to the Sun-sail line. Note that the latter is a unique capability of the heliogyro compared with 

traditional, flat solar sails. In the Sun-facing case, the collective profile allows a spin-up or spin-down of the heliogyro, 

the half-p profile allows attitude changes, and the cyclic profile generates no moment. Note that, while these force and 

moment generating capabilities change when considering different attitudes of the sail (i.e., 0  ), a purely cyclic 

profile never generates a net moment. This capability is exploited in Section VIII.  

 

Collective ½-Period cyclic 1-Period cyclic 

 

Figure 2 Illustration of pitch profiles for Sun-facing heliogyro ( = 0) (source: [7]). 
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For use in Eqs. (1) and (2) the actual pitch angle of each blade needs to be known and is given by Reference [7] 

for any combination of the three pitch profiles described above: 

    
1

sin sign sin
2 2

i co hp i hp hp cy i cya a a a


    
  

        
    

 (3) 

where coa , hpa , and cya  are the amplitudes of the collective, half-p and cyclic profiles, respectively, and hp  and cy  

are the phase angles of the half-p and cyclic profiles, respectively. Equations (1)-(3) combined provide the forward 

mapping from blade pitch controls to the resultant SRP force and moment. 

To demonstrate the force and moment generating capabilities of the heliogyro, Figure 3a and Figure 4a show the 

spin-averaged force contours (and Figure 3b the moment contours around the  1 2
ˆ ˆ,d d -axes for the collective profile) 

of equal pitch amplitudes for a collective and cyclic profile, respectively. Each curve represents one specific amplitude 

of either the collective or cyclic profiles and is constructed by considering heliogyro attitudes of 90 ,90o o      and 

assuming that the clock angle   equals zero. Extending the results to non-zero values for   yields the three-dimen-

sional force curves of Figure 3c, d and Figure 4b. The figure shows that a non-zero   angle rotates the two-dimensional 

“bubble-shaped” force curves around the ŝ -axis (Sun-sail line). Note that the moment generated by the collective 

profile is not affected by a non-zero value for the angle   and will always produce a moment along the 1d̂ - and 2d̂ - 

axes only. As concluded in previous works [6, 9], the results in Figure 3 and Figure 4 show that a heliogyro can fill 

up a force bubble volume around the Sun-sail line through appropriate choices for the pitch profile, while a traditional 

flat sail can only generate forces that are constrained to the surface of that bubble. The authors previously demonstrated 

this unique capability of the heliogyro to provide superior orbital control capabilities compared to a flat sail configu-

ration when correcting for injection errors or solar sail deployment delays upon injection into solar sail Sun-Earth sub-

L1 halo orbits [6, 9]. 
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a) b) 

  

c) d) 

 
 

Figure 3 Spin-averaged SRP force and moment per square meter sail area and meter blade radius for a 

collective pitch profile at 1 AU. a-b) For   = [-90, 90] and   = 0. c-d) For   = [-90, 90] and  

  = [-90,90]. 

a) b) 

 
 

Figure 4 Spin-averaged SRP force per square meter sail area and meter blade radius for a cyclic pitch 

profile (Cy = 0) at 1 AU. a) For   = [-90, 90] and   = 0. b) For   = [-90, 90] and   = [-90, 90]. 

   
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III. Analytical solution to inverse problem 

Section II and particularly Eqs. (1) and (2) show that the forward mapping from blade pitch controls to the resulting 

SRP force and moment is straightforward. The inverse of the problem, finding the blade pitch controls required to 

produce a desired force and/or moment, is, however, far from straightforward. The main reason for this is that the 

integral in Eqs. (1) and (2) cannot be evaluated analytically for a generic pitch profile in Eq. (3) and even if an analyt-

ical solution to the integral would exist, the discrepancy between the number of controls (five at maximum: Coa ,  

HPa , HP , Cya  and Cy ) and number of equations (between one and six) does not always allow an analytical expres-

sion of the inverse problem. Only in very specific cases does an analytical solution to the inverse problem exist [10]. 

For example, when considering a collective profile and a Sun-facing attitude of the heliogyro ( 0o   ), the result-

ing force and moment can be computed analytically from Eqs. (1) and (2). The result of this forward mapping is: 

     32 cos sign cos 0 0S s l p Co Cof f f AP a a      F   (4) 

       
1 2 3

2cos sign cos sin 0 0D d d d Co Co CoM M M APR a a a      M   (5) 

With one control, Coa , and two equations, the analytical inverse mapping can only satisfy either the force or the 

moment. When considering only the force, the inverse mapping provides four solutions, i.e., four collective pitch 

amplitudes that provide the same SRP force along the Sun-sail line: 

  
1 1

1 3 3cos 2 /Co sa f AP


  
      

 
  (6) 

When considering only the moment, the inverse mapping provides six solutions. For conciseness, only one solution 

is provided here: 
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

  
       
     
  
       
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 with APR   (7) 

While Eqs. (6) and (7) provide closed-form solutions for the collective, Sun-facing case, analytical solutions only 

exist for very few other cases when moving away from the Sun-facing condition or when considering profiles other 

than the collective [10]. 

 

IV. Numerical approach to inverse problem 

When no analytical solution to the inverse problem exists, a numerical approach is required to find the blade pitch 

controls, ˆ , , , ,Co HP HP Cy Cya a a   x , that provide a desired force, 0 0, 0, 0,

T

s l pF F F   F , and/or moment, 

1 2 30 0, 0, 0,

T

d d dM M M   M . The system of non-linear equations to solve is thus: 
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 
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0

0

ˆ

ˆ

S

D





F x F

M x M
. (8) 

Here, the algorithms implemented in Matlab®’s fsolve.m function are used to solve the system in Eq. (8). The 

authors used the ‘Trust region dogleg’ algorithm for square systems and the ‘Levenberg-Marquardt’ algorithm other-

wise, with their options set as optimset('TolX',10-10,'TolFun',10-10,'MaxFunEval',1000,'MaxIter',1000). The only nec-

essary input for these algorithms is the system of nonlinear equations in Eq. (8) and an initial guess for the blade pitch 

controls, 0x̂ . A schematic of the core of the numerical approach is provided by the  black elements in Figure 5: an 

initial guess, 0x̂ , is provided to the solver and the force and moment corresponding to this initial guess, F̂  and M̂ , 

are computed through a forward mapping using Eqs. (1)-(3). These resulting force and moment are compared to the 

desired force and moment, 0F  and 0M , and if the absolute difference between the two is smaller than a predefined 

tolerance, 
1010  , the algorithm has converged, otherwise the algorithms in Matlab®’s fsolve.m function are used 

to iteratively update the initial guess until convergence occurs.  

The red elements in Figure 5 are added to the algorithm to cope with and investigate a range of issues related to 

the use of a numerical approach for this particular problem. First of all, the numerical approach will only be able to 

find a solution if a solution truly exists. As mentioned in the introduction, it is important to realize that the heliogyro 

cannot create just any force and/or moment. For example, a desired force needs to belong to the force bubbles shown 

in Figure 3 and Figure 4 (for a pure collective or cyclic profile, respectively) in order for a solution to exist. Further-

more, from Figure 4a for a cyclic profile it is clear that for 0   some  ,s lF F -combinations do not exist (a similar 

infeasibility region exists for the half-p profile). To cope with this issue, the desired force and moment, 0F  and 0M , 

will initially be generated by the forward mapping of a given or randomly selected set of blade pitch controls, 0x , to 

ensure that a set of blade pitch controls exists that can deliver 0F  and 0M . Subsequently, the robustness of the nu-

merical technique may be an issue, which (for the current problem) can be expressed through how sensitive the algo-

rithm is to the initial guess. From the forward mapping of 0x  it is known that 0x is (one of) the solution(s) to 0F  and 

0M . Therefore, when providing 0x  as an initial guess to the numerical solver, i.e., 0 0
ˆ x x , the solver will converge 

on the initial iteration. To find the sensitivity of the algorithm to the initial guess, the initial guess is perturbed by an 

amount x , i.e., 0 0
ˆ   x x x , and this paper investigates for what values of the perturbation, x , the solver still 

converges.  

Another issue related to the numerical character of the solver is how to know which blade pitch controls to choose 

in order to generate the desired force and/or moment. Again, as demonstrated in Figure 4a, a cyclic profile may not 

be able to generate just any value for 0F  and/or 0M  and no single solution may exist as already became clear from 

the solution to the simplified collective Sun-facing case in Eqs. (6) and (7). This issue can partly be tackled by common 

sense. For example, when the aim is to find a particular force without inducing any moments, a cyclic profile may be 

chosen. Alternatively, if the main task of the blade pitch is to spin-up or spin-down the heliogyro or to deploy the 

heliogyro blades, a simple collective strategy may be chosen (more details on specific attitude control tactics can be 
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found in Reference [7]). However, when multiple force or moment components are required, or the heliogyro is not 

facing the Sun, combinations of blade pitch controls may have to be considered to find a solution or the most desirable 

solution. The final section of this paper, Section VIII, applies this common sense approach to a designed trajectory, 

but first (throughout Sections V to VII) a particular set of blade pitch controls is assumed (e.g., a pure collective 

profile, a pure cyclic profile, or a profile employing all five controls).   

 

 

Figure 5 Schematic of numerical inverse algorithm. 

 

V. Results - Inverse problem for SRP force  

This first section of results applies the numerical approach described in Section IV to find the blade pitch controls 

that generate a desired SRP force. Different profiles are considered, including a collective-only and a cyclic-only 

profile.  

 

A. Collective-only profile  

Starting with a relatively simple case, Figure 6 provides the results for a collective profile and assuming that the 

heliogyro is at a Sun-facing attitude ( 0o   ). Note that this problem has an analytical solution (see Section III), 

but is used here to get a first impression of the performance of the numerical solver. The horizontal axis considers a 

range of values for the variable 0x , i.e., the collective profiles that are used to create desired force vectors, 0F , onto 

which the numerical solver has to converge. The vertical axis indicates by how much the initial guess is perturbed 

from 0x  (in the range 90 ,90o o    x ) and white and gray areas indicate unsuccessful and successful convergence 

of the numerical solver, respectively.  

 

Forward mapping Forward mapping 

Matlab® fsolve.m 

        

  

 

 

No 

Convergence 

Yes 
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a) b) 

  

Figure 6 Performance of numerical inverse problem on SRP force only for collective profile. White and gray 

areas indicate unsuccessful and successful convergence, respectively. 

 

The results in Figure 6a show that the numerical approach works very well, allowing convergence for very bad 

initial guesses (that are up to 90 perturbed from the solution), except for a few cases that are represented by the 

diagonal white lines in Figure 6a. In those cases, the initial guess is very close or equal to a collective amplitude of 

90 for which the heliogyro does not generate any SRP force and as a result, the algorithm finds it difficult to move 

away from the initial guess, i.e., it gets trapped in a local minimum.  

Additional results are presented in Figure 6b for a non-Sun-facing attitude of the heliogyro ( 45o   ). Exactly 

the same procedure as for the case 0o    is adopted, this time with immaculate performance. In this case, initial 

guesses close to 90 do not cause any problems due to the non-Sun-facing attitude of the heliogyro. 

Finally, rather than fixing the heliogyro’s attitude, the attitude can be assumed to be part of the inverse problem 

(i.e.,  ˆ
Coa x ), which can become of importance when a generic three-dimensional force vector needs to be 

provided by the collective profile without any information on what attitude might be capable of producing that force. 

Therefore, 250 combinations of collective amplitudes and attitudes are randomly selected from a uniform distribution 

within the domains 90,90o

Coa     , 90,90o     , and 90,90o     . Each combination of  0 Coa x  is 

mapped forward to generate 250 values for 0F  and the 250 values for 0x  are perturbed in the range  

45 ,45o o    x . The 250 randomly selected profiles, 0x , are provided in Figure 7, where they are sorted in ascend-

ing order to show that the domains are properly sampled.  
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Figure 7 Randomly selected collective amplitudes, aCo, and heliogyro attitude angles  and ,  sorted in as-

cending order. 

 

  When solving this particular inverse problem, use can be made of some further insights into the problem. Let’s 

first focus on the clock angle  . For the collective profile, the effect of the clock angle   is a rotation of the two-

dimensional SRP force curves around the ŝ -axis over an angle equal to  , see Figure 3d. The angle   can therefore 

easily be obtained from the transverse, lF , and out-of-plane, pF , force components as: 

 1tan
p

l

F

F
   
  

 
. (9) 

Note that the angle   can be defined on the interval 90 ,90o o      as it defines the orientation of the force-

plane, again see Figure 3d. Values for   outside this domain can be captured with a change in sign of the angle  . 

This is demonstrated in Figure 8a, where the force combinations marked with ‘1’ exist for    , , 32 ,25 ,20o o o

coa     

while the force combinations marked with ‘2’ exist for    , , 32 ,25 180 ,20o o o o

coa     , but also for 

   , , 32 ,25 ,20 .o o o

coa     

The remaining two variables, coa  and   can be obtained by solving the following nonlinear system for coa  and 

 : 

 
 

 

0,

2 2

0, 0,

, 0,

, 0,

s co s

l co l p

F a F

F a F F

 

 

 

  
 (10) 

Because the angle   can be obtained analytically (as per Eq. (9)), Eq. (10) reduces the three-dimensional problem 

to a two-dimensional problem, i.e. in the gray force-plane of Figure 8c) by setting 0  . In this gray force plane the 

desired force components are 0,sF  and 2 2

0, 0,l pF F , as also illustrated in Figure 8c). 

 



` 13 

a) b) 

  

c)  

 

Figure 8 Illustration to support inverse problem definition. a) Force curves for a range of collective ampli-

tudes for   = 25. b) (Fl,Fp)-view of subplot a). c) Detail of subplot a). 

 

The results of the inverse problem are shown in Figure 9. Subplot a) provides similar information as for a fixed 

attitude in Figure 6 only now with the 250 runs over the randomly selected control profiles,  0 Coa x , along 

the horizontal axis. The white regions in Figure 9a, especially those close to the boundaries on x , show the impact 

of the additional controls of the cone and clock angles,   and  , as the algorithm does not always converge. To 

eliminate some of the randomness of the problem set-up, Figure 9b is added to show what percent of the 250 runs 

converges for each value for x . Clearly, if  x 0, i.e. the initial guess is not perturbed with respect to the known 

solution, all runs converge.  But even for initial guesses that are within -33 to +28 of the solution, 90 percent of the 

runs converge. This means that, if no information on the potential solution is available, the domains of  ,  , and Coa  

only need to be sampled a few times to ensure convergence of the numerical algorithm. For example, the domains for 

 ,  , and Coa  each span 180, which can be divided into three sub-domains each spanning 60 (to cover the -33 to 

+28 domain). If each of these subdomains is sampled, convergence of the algorithm can almost be guaranteed. The 

   

lF   

pF   

2 2

l pF F   

1 

2 

  
   
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result in Figure 9b also shows a symmetry around the value  x 0, which indicates that the direction (positive or 

negative) in which the initial guess is perturbed does not on average influence the performance of the numerical solver.  

 

a) b) 

  

Figure 9 Performance of numerical inverse problem on SRP force only for collective profile and heliogyro 

attitude. a) White and gray areas indicate unsuccessful and successful convergence, respectively. b) Percent-

age successful convergence per value for x. 

 

B. Cyclic-only profile 

A similar approach to the one described for a collective profile can be applied to the use of a cyclic profile. When 

starting with a fixed attitude of the sail (either    0 or    45), 250 control profiles, 
0 Cy Cya    x , are 

randomly sampled within the domains 90 ,90o o

Cya      and 180 ,180o o

Cy      and perturbed in the range 

90 ,90o o    x . The performance of the numerical solver is presented in Figure 10a and b in a similar fashion as in 

Figure 9 for a collective profile. The figures first of all show that the attitude of the heliogyro has little influence on 

the performance of the numerical algorithm. Furthermore, when comparing the results in Figure 10a and b with those 

in Figure 6 for the collective profile, it can be concluded that the increase in number of controls for the cyclic profile 

causes a decrease in performance compared to that of the collective profile. However, the results in Figure 10a and b 

still show that convergence is almost guaranteed if the initial guess is within 55 of the solution, requiring only very 

few samples across the domains for Cya  and Cy  to ensure convergence if no information on the solution is available. 

Additional results are presented in Figure 10c for the case that the heliogyro’s attitude is considered part of the inverse 

problem, i.e., 
0 Cy Cya     x . Note that the approach in Eq. (10) cannot be applied here, because no clear 

relation between   and the three-dimensional force vector exists for the cyclic profile, see Figure 4b. The problem 

thus has to be solved as a full three-dimensional problem. Although the impact of the additional controls,   and  ,  
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becomes clear from comparing Figure 10a and b with Figure 10c, 90 percent of the runs converges with initial guesses 

that are within  27 of the solution.   

 

a)  

  

b)  

  

c)  

  

Figure 10 Performance of numerical inverse problem on SRP force only for cyclic profile. In the left col-

umn, white and gray areas indicate unsuccessful and successful convergence, respectively, and the right col-

umn shows the percentage successful convergence per value for x. a)  =  = 0. b)  =  = 45. c)  and   are 

part of inverse problem. 



` 16 

VI. Inverse problem for SRP moment  

Similar to the inverse problem for the SRP force only, the numerical algorithm can also be applied to find the 

heliogyro blade pitch controls that generate a desired moment. Reference [7] already investigated in great detail a set 

of specific attitude tactics that reflect typical heliogyro operations (e.g. spin and precession tactics), providing the 

required pitch profile to meet a range of desired moments. This paper will complement the work in Reference [7] by 

investigating the pitch profile required to generate any moment for any attitude of the heliogyro, applying the numer-

ical scheme of Section IV in exactly the same way as was done in Section V for an SRP force only.  

Because the cyclic profile does not generate any moment and the collective profile has already been considered in 

quite some detail in Section V, this section will focus on the use of the half-p profile. The results for a fixed attitude 

of the sail are provided in Figure 11a and b; however, note that   has no influence on the moments in the  1 2 3
ˆ ˆ ˆ, ,D d d d  

frame. The only difference between Figure 11a and b is thus the value for  , where 0   only generates moments 

around the 2d̂ - and 3d̂ -axes, while 0   generates moments around all body axes. The reduction in the performance 

of the numerical solver between the cases 0   and 45o   (90 percent convergence for 029 ,32o    x  and 

22 ,26o o    x , respectively) thus shows the effect of an increase in the number of equations (i.e., from two to 

three). The results in Figure 11c further increase the dimensionality of the problem, by adding the cone angle,  , as 

control (again, the angle   is not considered because it does not affect the moments in the  1 2 3
ˆ ˆ ˆ, ,D d d d  frame), with 

a further reduction in the performance as a result.  

As a final comparison, the red lines in the right column of Figure 11 are the results for a collective profile only. 

Because the collective profile reduces the number of controls and equations by one compared to the half-p profile, a 

better performance can be observed.  
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a)  

  

b)  

  

c)  

  

Figure 11 Performance of numerical inverse problem on SRP moment only for half-p profile (red results 

in right column are for a collective profile). In left column, white and gray areas indicate unsuccessful and 

successful convergence, respectively, and the right column shows the percentage successful convergence per 

value for x. a)  =  = 0. b)  =  = 45. c)  and   are part of inverse problem. 
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VII. Inverse problem for coupled SRP force and moment 

The last case to investigate is the inverse problem for the fully couple SRP force and moment, i.e., finding the 

blade pitch controls that provide both a desired force and a desired moment. This problem can be investigated for each 

pitch profile separately (collective, cyclic and half-p), but to limit the number of results presented, this section will 

only consider the case where all pitch controls are used simultaneously. When fixing the heliogyro’s attitude, this 

results in five pitch controls, ˆ
Co Cy Cy HP HPa a a    x , to solve for six equations (three force components and 

three moment components). When also including the attitude of the heliogyro, the number of controls increases to 

seven.  

 The results for a fixed attitude of the sail are provided in Figure 12a and b and show a relatively good performance 

of the numerical solver, when considering that 90 percent of the runs converge for 13 ,17o o    x  and 

13 ,16o o    x , respectively. These domains for x  are approximately half those for the collective, force-only, 

free heliogyro attitude case in Figure 9, while the number of controls and equations between these two cases has scaled 

up from three to five and three to six, respectively. These results would imply a nearly linear scaling in how well the 

initial guess has to be for the numerical solver to converge. Furthermore, when comparing Figure 12a and b it becomes 

clear that the attitude of the heliogyro has very limited influence on the performance of the linear solver, much less 

influence than for the cases considered for the force-only or moment-only in Sections V and VI. From the results in 

Figure 12c it can be even be concluded that adding the attitude to the inverse problem can have a positive effect as 90 

percent of the runs converge for 18 ,19o o    x .   
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a)  

  

b)  

  

c)  

  

Figure 12 Performance of coupled force and moment numerical inverse problem for all pitch profiles com-

bined. In left column, white and gray areas indicate unsuccessful and successful convergence, respectively, 

and the right column shows the percentage successful convergence per value for x. a)  =  = 0.  

b)  =  = 45. c)  and   are part of inverse problem. 
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VIII. Application to reference trajectory 

In this final part of the paper, the insights obtained and algorithms developed in the previous sections are applied 

to a reference trajectory. In particular, References [6, 9] present a range of heliogyro trajectories that enable recovery 

from injection errors into a solar sail Sun-Earth sub-L1 halo orbit. Displaced halo orbits can be created by exploiting 

the solar radiation pressure acting on a solar sail and have been proposed for several mission concepts (e.g., Geostorm 

[11] and Sunjammer [12]). Details on how to generate these orbits are omitted here for brevity, but they can be found 

in a range of references, including References [13-15]. These references show that displaced halo orbits exist for 

different sail steering laws, e.g., a steering law where the sail’s attitude remains perpendicular to the axis connecting 

the Sun and Earth or a Sun-facing steering law where the sail’s attitude remains perpendicular to the Sun-sail line. In 

this paper, the latter steering law is adopted for a sail with a characteristic acceleration of 0.2153 mm/s2 (the perfor-

mance of the previously proposed Sunjammer mission [12]), where the characteristic acceleration is the acceleration 

created by the sail when facing the Sun at 1 AU distance from the Sun. The corresponding displaced halo orbit is 

presented in Figure 13a (in the synodic Sun-Earth  ˆ ˆ ˆ, ,C x y z -reference frame), which also indicates the nominal in-

jection point and the actual injection point (i.e., including an injection error). The halo orbit considered has an orbital 

period of approximately 270 days, in- and out-of-plane amplitudes of approximately 1.5 million km and 450,000 km, 

respectively, and an injection error of 500,000 km in position and 130 m/s in velocity is applied in the direction of the 

unstable eigenvector. To recover the nominal halo orbit, a linear-quadratic regulator (LQR) feedback controller is used 

as per the analyses in References [6, 9]. The LQR feedback controller returns the solar sail accelerations required to 

maneuver the heliogyro back onto the nominal halo orbit. Important to note is that the LQR feedback controller is 

built in such a way that the requested accelerations are constrained to the volume enclosed by the force bubbles of 

Figure 3 and Figure 4, ensuring that a blade pitch profile exists that can provide the requested accelerations. Also 

important to note is that the heliogyro is slightly ‘oversized’, i.e., its characteristic acceleration is slightly larger than 

that needed to generate the nominal orbit: 0.2213 mm/s2. This is done to improve the heliogyro’s orbital control au-

thority. However, the larger characteristic acceleration implies that, once the nominal orbit is recovered, a Sun-facing 

steering law of the heliogyro (for which the halo orbit was designed) would produce too much acceleration and the 

blades of the heliogyro will need to be pitched in order to reduce the acceleration it produces. The result of the LQR 

feedback controller is provided as the acceleration components in the  ˆˆ ˆ, ,S s l p -frame, see the solid lines in Figure 

13b. Note that the time on the horizontal axis is provided as the number of revolutions in the nominal halo orbit.  

In this section, the inverse problem for the trajectory in Figure 13a and b is to find the heliogyro’s attitude and 

blade pitch profile that provides the accelerations in Figure 13b. For this, a cyclic profile is selected, as it does not 

generate a net torque (see Section II). The numerical approach to obtain the heliogyro’s attitude and cyclic profile is 

exactly as detailed in Section IV and Figure 5, only replacing the red elements on the right-hand side of Figure 5 by 

the accelerations (or, equivalently, forces) of Figure 13b. Furthermore, from the analyses in Section V.B. it is clear 

that the inverse algorithm can be initiated with a relatively inaccurate initial guess, allowing the red elements in the 

top-left corner of Figure 5 to be replaced by a trial-and-error method at the initial time. For subsequent time steps, a 
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continuation approach is used, where the solution at the previous time step is used as an initial guess for the current 

time step.  

 

a) b) 

  

c)  

 

Figure 13 Inverse problem solution for SRP acceleration for control of solar sail halo orbit. a) Trajectory. 

b) Acceleration components requested by LQR controller (lines) and from solution of inverse problem (mark-

ers). c) Attitude and cyclic pitch profile controls. 

 

The result of the inverse problem in terms of the heliogyro’s attitude (angles   and  ) and cyclic pitch profile 

(amplitude Cya  and phase Cy ) is shown in Figure 13c. Furthermore, for verification purposes, the markers in Figure 

13b indicate the acceleration components that follow from a forward mapping of the inverse solution, which agree 

with what the LQR feedback controller requested. The control profiles in Figure 13c furthermore show that a rapid 

change in blade pitch and attitude is required to track the acceleration in the first few days of the recovering trajectory. 

Once the orbit is recovered, the controls converge to a solution close to 

ˆ 8.5 79.1 17.0 90o o o o

Cy Cya            x . Again, note that the inverse problem does not converge to 

a Sun-facing steering law as this would produce too much acceleration. A constant cyclic pitch of  -17 is used to 
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reduce this acceleration together with a cone angle,  , and phase angle of the cyclic pitch profile, Cy , to ensure that 

the cyclic profile only produces a force along the Sun-sail line. Note that the value for   is arbitrary for a force along 

the Sun-sail line only.  

Future work will focus on finding an additional pitch profile to provide the moments necessary to track the helio-

gyro’s attitude as presented in Figure 13c. Because this pitch profile may in turn produce an SRP acceleration, it must 

be noted that it must be designed such that, combined with the SRP acceleration produced by the cyclic profile in the 

above, the desired SRP acceleration of Figure 13b is generated.  

 

Conclusions 

This paper has provided and assessed a numerical approach to solving the heliogyro’s inverse problem. The solu-

tion to the inverse problem provides the required heliogyro blade pitch (as well as heliogyro attitude in some cases) 

to produce a desired SRP force and/or moment. As with many numerical approaches, the algorithm requires an initial 

guess and the performance of the numerical approach is quantified by how good that initial guess needs to be in order 

to converge onto the solution. A range of test cases are considered, selecting either a single pitch profile (collective, 

cyclic or half-p) or a combination thereof and considering only the inverse problem for the SRP force or moment or 

the fully coupled force + moment problem. The results show that the numerical solver performs extremely well for 

simple, low-dimensional problems. For example, for the case where a collective profile is the only control and the 

inverse problem for the SRP force-only is solved, the algorithm converges to a solution for initial guesses for the 

collective amplitude angle that are within  90 of the solution. When increasing the dimensionality by adding the 

heliogyro’s attitude angles as controls, the performance decreases, but the algorithm still converges if the initial guess 

is within  30 of the solution. Therefore, if no knowledge or insights about the solution is available, the full domains 

for each control only need to be sampled at few locations to find an initial guess for which the algorithm converges. 

When increasing the dimensionality even further, up to the maximum where all five controls are involved to create a 

coupled SRP force & moment, the performance is at its worst, but it still allows convergence for initial guesses within 

approximately 15 of the solution. Finally, the algorithm has been applied to find the heliogyro pitch controls that 

can deliver the accelerations required to follow a reference trajectory, in particular a trajectory that will bring the 

heliogyro back onto a nominal solar sail Sun-Earth sub-L1 halo orbit after injection errors into the orbit. A cyclic 

profile has been shown to be able to provide the desired accelerations for a particular attitude profile of the heliogyro.  
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