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Abstract

This thesis is divided into five parts (covering chapter 1–5), that together try to give the reader
a basic understanding of the symmetries of and the mathematical structure behind the standard
model.

The first two chapters cover some Lie and representation theory of the Lie groups U(1), SU(2)
and SU(3), which play a central role in the standard model. In the third chapter, the structure
of the standard model is given, based purely on observed symmetries and (quantum numbers of)
particles. In this chapter, the mathematics of the first two chapters is not used yet.

In the fourth chapter, the Lie theory of chapter 1 is used to treat the gauge theory of U(1), SU(2)
and SU(3), where for SU(2) also spontaneous symmetry breaking is incorporated. Finally, the
fifth and last theoretical chapter gives examples of how representation theory and gauge theory can
together structure the particles of the standard model and can dictate which particles and particle
interactions are physically allowed.

The thesis ends with some recommendations for further study of the topic at hand and for further
research to symmetries beyond the standard model.
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Introduction

Symmetries can be found in many different and unexpected places in nature: in the spirals of the
milky way, in the web of a spider and in the structure of snowflakes. But also, in a way that is
both very explicit and beautiful, in the organization and interactions of the elementary particles
of which our world is made. Since the first observations of elementary particles, theoretical and
mathematical physicists have been trying to mathematically describe the structure and interactions
of elementary particles. And to a great extend, they have succeeded: in the form of the Standard
Model of elementary particles.

The standard model is a theory that describes two different aspects of particle physics that are
closely connected. First of all, the standard model classifies all known (observed) particles. Sec-
ondly, it describes how three of the four fundamental forces in the universe, namely the electro-
magnetic, the weak and the strong force, act on these particles. It excludes the gravitational force,
which is one of the (increasingly many) reasons that the standard model is not believed to be
complete. However, the standard model is still a powerful theory. With it, multiple predictions
have been made and verified. The hypothesized and proven existence of the top quark and the
Higgs boson are probably the most famous examples of the predictive power of the standard model.
Furthermore, the standard model is still used as a basis for many new theories that try to explain
observations that the standard model leaves unexplained.

The aim of this bachelor thesis is to provide an introduction to the symmetries of the standard
model for undergraduate students in physics and mathematics. The thesis is divided into five parts
(covering chapter 1–5), that together give the reader a basic understanding of the mathematical
structure behind the standard model.

The first and also the shortest chapter gives an introduction to Lie groups and Lie algebras. Here,
we restrict ourselves to matrix Lie groups and focus on the symmetry groups U(1), SU(2) and
SU(3). This focus is motivated by the central role that these three groups play in the description
of the standard model. In chapter 2, we further expand our knowledge of Lie groups and Lie
algebras by looking at the representations of U(1) and SU(3). Then, in chapter 3, the structure of
the standard model is described on the basis of the symmetries and elementary particles that are
observed in the universe. Hereafter, in chapter 4 we treat the subject of gauge theory, motivated
by the conservation of certain quantum numbers of particles.

Chapter 5 concludes our treatment of the symmetries of the standard model, by showing how gauge
theory can be combined with representation theory, to structure the particles in the standard model
and dictate which particle interactions are allowed. In this chapter, we will furthermore see how
certain symmetry requirements have led to restrictions on particle masses and to the prediction of
new particles.

Finally, in chapter 6, some suggestions for further study are given. For, while this thesis aims to
give a basic understanding of the symmetries of the standard model, it is still just an introduction
to the subject. Many topics that have been touched upon during the theoretical chapters can be
explored further, to get a deeper understanding of the subject.

Acknowledgement

I would hereby like to thank my supervisors for all their guidance, their involvement in both my
progress and study career and their willingness to accompany me on my journey to the symmetries
of the standard model.
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Chapter 1

Lie groups and algebras

Together with chapter 2, this chapter aims to give an overview of the definitions and theorems
that are necessary to mathematically describe the standard model. While chapter 2 focuses on
representation theory, this chapter mainly gives an introduction to basic (matrix) Lie theory. The
chapter starts with a short recap of groups and group homomorphisms and from here continues to
the subject of Lie groups and Lie algebras.

The last section of this chapter, section 1.3, is the most extensive. It focuses on the Lie algebras of
the Lie groups U(1), SU(2) and SU(3), which play a central role in the description of the particles
of the standard model.

1.1 Groups and homomorphisms
In this section, a short recap of the basic definitions of group theory will be given, that can often
be found in first year algebra courses and that will be used throughout the whole thesis.

Definition 1.1. A group is a setG with an operationG×G→ G (here denoted as (g1, g2)→ g1·g2),
satisfying

• ∀g1, g2, g3 ∈ G : g1 · (g2 · g3) = (g1 · g2) · g3

• ∀g ∈ G : g · e = e · g = g

• ∀g ∈ G there is a g−1 ∈ G such that g · g−1 = g−1 · g = e

here e ∈ G denotes the identity and g−1 is called the inverse of g. If G additionally satisfies the
commutativity property

• ∀g1, g2 ∈ G : g1 ◦ g2 = g2 ◦ g1

the group is called abelian.

As we will only talk about matrix groups whose group operation “ ·” is ordinary matrix multipli-
cation, we will from now on omit the group operator and just write gh instead of g · h. For Lie
groups consisting of n× n matrices, the group identity corresponds with the identity matrix. We
will denote the n× n identity matrix by 1n and write it instead of e.

Later, when we look at particles, the group elements are going to play the role of transformations.
The group operation then determines the way in which multiple transformations – leading again to
a new transformation – have to be performed. If the group elements are transformations, there has
to be something that they transform. Indeed, we will see that particles can be viewed as vectors
that are transformed when multiplied by the elements of a matrix group.

When studying a group G, we look at its subgroups, defined to be the nonempty subsets H of G
such that H is a group. Some types of subgroups are

• a proper subgroup: A group H is a proper subgroup of the group G if it is a subgroup
containing some but not all elements of G.
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• a normal subgroup: A group N is a normal subgroup of G if it is a subgroup of G such that
∀g ∈ G,n ∈ N : g−1ng ∈ N .

Depending on its type of subgroups, G can be assigned different names.

• a simple group is a group that has only itself as a non-trivial normal subgroup, the trivial
normal subgroup being {e}.

• a semisimple group is a group that has no abelian, normal subgroups.

1.1.1 Group homomorphism
The relationships between different groups can be expressed by homomorphisms.

Definition 1.2. A homomorphism is a map ϕ : G → G′ that preserves products, meaning that
for all g1, g2 ∈ G ϕ(g1 ◦ g2) = ϕ(g1) ? ϕ(g2), with “◦” the group operation of G and “?” that of G′.

From this definition, one can easily show that ϕ also preserves inverse and identity [16] so that
the image φ[G] is itself a group. A homomorphism from G to itself is called an endomorphism.
The set of endomorphisms is denoted by End(G). If a homomorphism ϕ is bijective, it is called
an isomorphism. In that case the groups can in a way be seen as “equal” because they have a
comparable size and structure and we write G ∼= G′. An endomorphism that is an isomorphism as
well, is called an automorphism. The set of automorphisms is denoted by Aut(G).

1.1.2 Direct product
Two or more groups can be combined into another group by taking their direct product.

Definition 1.3. For two groups G1 and G2 the direct product of G1 and G2 is the set

G1 ×G2 = {(g1, g2) : g1 ∈ G1, g2 ∈ G2},

with the operation “·” of G1 ×G2 given by (g1, g2) · (h1, h2) = (g1 ◦ h1, g2 ? h2) for all g1, h1 ∈ G1

and g2, h2 ∈ G2. Here “◦” is the group operation of G1 and “?” the group operation of G2.

By checking the three group properties of definition 1.1 one can directly show that G1×G2 is itself
a group.

1.2 Lie groups
Transformations can take many forms, but usually we see them as the change of position of an
object in space (or space-time). Examples of transformations are reflection in a plane, translation
along a line or rotation about a certain axis. The concept of transformations is closely related
to that of groups, for very often a set of transformations can be described mathematically by a
group.

We can distinguish two types of groups of transformations, namely so called continuous groups
and discrete groups. Continuous groups consist of transformations that can be described by one
or more continuously varying parameters. For a discrete group, this is not possible for all its
elements.

An example of a set of continuous transformations that forms a group is the set of rotations of a
2-dimensional Euclidean space. These rotations are elements of SO(2), the group of orthogonal
2× 2 matrices with unit determinant. We can write every element in SO(2) as [2](

cos θ − sin θ
sin θ cos θ

)
(1.1)

for some θ ∈ (0, 2π], from which we see that indeed elements of SO(2) correspond with rotations
in the xy-plane. Furthermore, because the interval (0, 2π] ⊆ R contains infinitely many elements,
we see that SO(2) contains infinitely many elements as well.

Clearly, any group that consists of finitely many elements, is a discrete group, as continuity is
only possible for infinite sets. The group of rotations of a three dimensional cube, such that after
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rotation the cube looks the same from all perspectives, is an example of a discrete group, because
this group consists of finitely many (namely 24) elements. Intuitively, this is true as well, for the
transformations of this discrete group, rotate the cube with discrete “jumps” in space.

We define the dimension of a continuous group not to be the number of elements, but the number
of independent parameters needed to describe all group elements. These independent parameters
are then called the group parameters. Because equation 1.1 tells us that each element in SO(2)
can be described using only one parameter θ, we conclude that SO(2) has dimension 1.

The same conclusion can be found when deriving the dimension directly from the definition of
SO(2). The definition of SO(2)

SO(2) :=

{(
a −b
b a

)
: a, b ∈ R with a2 + b2 = 1

}
,

tells us that each element of SO(2) can be written in terms of the two 1-dimensional variables
a and b restricted to a2 + b2 = 1. The restriction removes one degree of freedom and leaves us with
one free parameter. Thus, again it follows that SO(2) has dimension 1.

If both the group multiplication and inverse depend smoothly on the group parameters, the group
is a so called Lie group [16]. The formal, most general definition of a Lie group is that it is a group
that is smooth manifold. However, we will not go into depth of the exact meaning of this definition
and restrict ourselves to the informal, but, for our use, tolerable definition given above.

Before we give an overview of the Lie groups that we will encounter, we introduce the general
linear group, of which all the groups that we will consider are subsets.

Definition 1.4. The General Linear group GL(V ) of a finite dimensional vector space V over a
field F, consists of all n×n invertible matrices over F. For an n-dimensional vector space V = Fn,
we can write GL(n,F) instead of GL(V ).

Definition 1.5. A matrix Lie group is a closed1 subgroup of GL(n,R) or GL(n,C), for some
n ∈ N.

In our case, the field F in definition 1.4 and 1.5 will always be either R or C2. In the sequel, we
will restrict our treatment of Lie groups to matrix Lie groups, because these groups are the only
Lie groups that play a role in the description of the standard model.

The matrix Lie groups that we will encounter, are given in table 1.1. In this table, U∗ denotes the
conjugate transpose of the complex matrix U . In the sequel, we will always denote the complex
conjugate of a matrix by the superscript ∗.

Lie Group Definition
O(n) {M ∈ GL(n,R) : MMT = 1}
U(n) {M ∈ GL(n,C) : MM∗ = 1}
SO(n) {M ∈ O(n) : detM = 1}
SU(n) {M ∈ U(n) : detM = 1}

Table 1.1: Overview of the matrix Lie groups under consideration.

1.3 Lie algebras
One of the interesting properties of Lie groups is that they have a Lie algebra, which we will
introduce in this section. Lie groups are usually quite complicated, curved objects. However, they
have the special property that they can be completely or almost completely captured by a flat
vector space, namely by the so called ‘tangent space at the identity’.

1Closeness is topological subject that we will not treat in this thesis. Topologically, this subject is treated in
much detail in [5]. In [8], it is shown why the Lie groups of our interest (i.e. U(1), SU(2) and SU(3)) are closed
groups of respectively GL(C), GL(C2 and GL(C3.

2Because R and C are known sets and because we will not encounter any other fields, we will not give the general
definition of a field.
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1.3.1 The tangent space of a Lie group
Because matrix Lie groups depend in a continuous manner on their group parameters, we can take
so called paths in the group.

Definition 1.6. A path in a group G is a differentiable function3 A from [a, b] ⊆ R (with a < b)
to G.

Hence, the range of a path consists of an infinite set {A(t) : t ∈ [a, b] ⊆ R} of matrices A that
change continuously as a function of the parameter t.

Definition 1.7. A tangent vector of G at the identity is equal to A′(0), with A(t) a path in G,
whose derivative A′(t) (with respect to t) exists and with initial value A(0) = 1.

Definition 1.8. The tangent space at the identity T1(G) of a group G consists of all the tangent
vectors in G.

For the matrix Lie groups that we will consider, the tangent space can be determined quite easily.
We will show how to obtain the tangent space of SO(n) and state the result for the other relevant
groups.

Theorem 1.1. The tangent space of SO(n) is equal to the set of n×n real matrices X such that
X +XT = 0 [16].

Proof. “ =⇒ ” Suppose that X is a tangent vector of SO(n) at the identity 1. We will prove that
X satisfies X +XT = 0.

By definition 1.7, every tangent vector X of SO(n) will be of the form A′(0), where A = A(t) is a
path of matrices in SO(n) such that A′(t) exists and A(0) = 1.

Furthermore, because A(t) ∈ SO(n) for any t, it holds that A(t)A(t)T = 1 by the definition of
SO(n). If we take the derivative to t on both sides of this equality we get, by the product rule

A′(t)A(t)T +A(t)A′(t)T = 0.

The above equation holds for any t and hence for t = 0. For t = 0 we get

A′(0) +A′(0)T = 0,

from which follows that any tangent vector X = A′(0) satisfies X +XT = 0.

“ ⇐= ” Suppose that X is an n× n real matrix such that X +XT = 0 (?). We will show that X
is an element of the tangent space of SO(n) at the identity.

For n× n matrices satisfying AB = BA it holds that eA+B = eAeB . For a proof see e.g. [16]. By
our assumption (?) we have

XXT = X(−X) = (−X)X = XTX,

meaning that
eXeX

T

= eX+XT = e0 = 1.

Furthermore, because (XT )m = (Xm)T for any integer m, from the definition of the matrix
exponential it follows that e(XT ) = (eX)T . This means that

1 = eXeX
T

= eX(eX)T

from which follows that X is an orthogonal matrix. If we can furthermore show that eX has
determinant 1, we can conclude that eX ∈ SO(n). And indeed we can, by the following argument.

Because of orthogonality, eX must have determinant ±1. If we take a path of matrices tX with
t ∈ [0, 1], varying continuously, then etX varies continuously from 1 = e0X to e1X = eX . Further-
more, det(etX) must stay the same, as it cannot jump between only two values when etX varies
continuously. Because e0 has determinant 1, we must therefore have det eX = 1.

3Recall from analysis: a differentiable function is a function whose derivate exists and is finite in each point of
the domain [11].
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Thus we can conclude that if X satisfies X +XT = 0, then eX ∈ SO(n). If we now take the path
A(t) = etX in SO(n), we see that for this path X is the tangent vector at 1. We have

A′(t) =
d

dt
etX = XetX ,

meaning that A′(0) = X. Therefore, X must be a tangent vector of SO(n) at the identity.

Theorem 1.2 (Lie bracket property [16]). The tangent space T1(G) of a Lie group G is closed
under the Lie bracket, meaning that

∀X,Y ∈ T1(G) : [X,Y ] := XY − Y X ∈ T1(G).

Definition 1.9. A matrix Lie algebra g is a vector space of matrices that is closed under the Lie
bracket.

Combining definition 1.9 with theorem 1.2, makes us conclude that the tangent space of a Lie
group G is a Lie algebra of G. Furthermore, using theorem 1.1, we see that the Lie algebra of
SO(n) consists of the n× n matrices X such that X +XT = 0.

The following table gives the Lie algebras of the groups in table 1.1. The proofs are comparable
to the proof of theorem 1.1 and can be found e.g. in [16].

Lie Group Lie Algebra
O(n) see Lie algebra of SO(n)
U(n) u(n) = {n× n complex matrices X : X +X∗ = 0}
SO(n) so(n) = {n× n real matrices X : X +XT = 0}
SU(n) su(n) = {n× n complex matrices X : X +X∗ = 0 and Tr(X) = 0}

Table 1.2: The Lie algebras of the Lie groups in table 1.1.

1.3.2 From the Lie algebra to the Lie group
In the introduction of this section, we said that Lie groups could often be completely captured by
their (flat and therefore less complex) Lie algebras. In this subsection, we will further investigate
the relation between the Lie group and its Lie algebra.

For every matrix Lie group G ⊆ GL(n,F), we can write its Lie algebra g as [9]

g = {X ∈ GL(n,F) : ∀a ∈ R, eaX ∈ G}.

Theorem 1.3. For a compact and connected4 Lie group G with Lie algebra g = T1(G), the map
exp : g→ G, given by

exp(X) = eX ,

for all X ∈ g, is surjective [9].

Definition 1.10. A Lie algebra homomorphism is a homomorphism φ : g → g′, with g the Lie
algebra of the Lie group G and g′ that of G′, that respects the Lie bracket, meaning that

φ([X,Y ]) = [φ(x), φ(y)], (1.2)

for all X,Y ∈ g.

Theorem 1.4. If ρ : G1 → G2 is an isomorphism of the two matrix Lie groups G1 and G2, then
π̇ is an isomorphism of the Lie algebras g1 and g2, where π̇ is defined by

π̇(X) :=
d

dt

∣∣∣
t=0

ρ(etX) [9].
4We will not treat the exact meaning of compactness and connectedness. A topological treatment of these

subjects can be found in e.g. [5].
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Because the homomorphisms in theorem 1.3 and 1.4 are surjective, we can visualize them in the
following diagram.

G1 G2

g1 g2

π

exp(G1)

π̇

exp (G2)

This diagram is said to ‘commute’ in that it does not matter whether we follow the arrows via the
upper or the lower path, when starting from the Lie algebra g1: both directions result in the same
group G2.

Suppose that we have a Lie algebra g of a Lie group G and that g has dimension5 d < ∞. This
means that a basis of g can be given, in the form of d matrices in the Lie algebra, that span the
whole matrix vector space. Such matrices are called generators of G. The choice of this name
becomes clear when we consider a complete set of generators {T1, ..., Td} of G. Then every X ∈ g
can be written as

X = ξ1T1 + ...+ ξdTd, (1.3)

where the ξi (i = 1, ..., d) are elements of R. They are called the group parameters. Combining
theorem 1.3 and equation 1.3 enables us to write each g ∈ G as

g = eX = eξ1T1+...+ξdTd .

Thus, we see that the generators of G indeed ‘generate’ the Lie group G. To make our notation
more compact, in the following we will use the Einstein notation. This is simply a short way of
writing a finite summation

y =

n∑
i=1

cix
i

(where the superscript denotes the ith component of x, not the power) as y = cax
a, where it should

be clear from the context from and till which integer the summation runs. In the above example
a runs from 1 to n.

Definition 1.11. A subgroup T of the non-abelian group G is called a maximal torus, if it is the
largest compact, connected, abelian subgroup of G.

Definition 1.12. The rank of a group G is the dimension of the maximal torus of G. If G is
abelian, the rank of G is equal to the dimension of G.

1.3.3 The Lie algebras of U(1), SU(2) and SU(3)

In the next chapters, we will focus of the Lie groups U(1), SU(2) and SU(3), because of the role
that they play in the standard model. In this section, we will, for the three groups separately,
determine the dimension of the Lie algebras and give a suitable set of group generators.

The Lie algebras of U(1), SU(2) and SU(3) (which follow directly from the Lie algebras of U(n)
and SU(n) as given in table 1.2) are finite dimensional. Their dimension can easily be determined
by counting the number of independent real parameters in the matrices of the Lie algebra. We will
show this for general n in the the following theorem.

Theorem 1.5. The dimension of the Lie algebra of

• (1): U(n) is equal to n2

• (2): SU(n) is equal to n2 − 1 6.

Proof. (1): For U(n), we know that the Lie algebra consists of the n × n complex matrices such
that X + X∗ = 0. Each matrix in the Lie algebra has n(n − 1)/2 elements above the diagonal.
Those terms can be complex and hence contribute to 2 · n(n− 1)/2 = n(n− 1) independent group
parameters. We denote the element of the i-th row and the j-th column of a matrix X in the
Lie algebra of U(1) by Xij . Then, to have X + X∗ = 0, the elements Xij below the diagonal (so

5Note that the definition of ‘the dimension of a Lie algebra’ is the same as that of the dimension of any other
Lie group. This definition has been given in section 1.2.

6The proof of this theorem is based on a proof in [16].
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with i > j) must be equal to −X̄ji. Hence, these elements depend fully on the already determined
group parameters.

To finish our counting, we still have to take into account the n diagonal terms. These must be
purely imaginary and hence result in n additional group parameters. Our final result for the
dimension of u(n) is

dim u(1) = n(n− 1) + n = n2.

(2): For SU(n), we know that the Lie algebra consists of the n×n traceless, complex matrices such
that X + X∗ = 0. Without the condition of tracelessness, we have seen in the proof of (1) that
the dimension of the Lie algebra is equal to n2. The condition of Tr(X) = 0 reduces the number
of independent group parameters with 1, leaving the dimension of su(n) to be n2 − 1.

Note that the dimensions of the Lie algebras of U(1) and SU(n) is equal to the Lie group dimension,
because the Lie algebras generate these Lie groups based on x independent parameters, where x
is the dimension of the Lie algebra.

U(1)

By theorem 1.5, u(1) has dimension 12 = 1. Therefore U(1) has one generator Y . We can
choose

Y = i,

which clearly spans the Lie algebra u(1) = iR, and write, using theorem 1.3, each z ∈ U(1) as

z = eaY = eai (1.4)

with single group parameter a ∈ R.

SU(2)

By theorem 1.5, su(2) has dimension 22 − 1 = 3. Therefore SU(2) has three generators ta. They
are generally written in terms of the Pauli spin matrices τa (a = 1, 2, 3). We choose the tree
generators as ta := 1

2 iτa, with the Pauli spin matrices given by

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (1.5)

One can check that indeed every element of su(2), as given by table 1.2, can be written in terms
of the generators ta and that the generators are linearly independent. Hence, by theorem 1.3, we
may write each U ∈ SU(2) as

U = eαat
a

,

with αa ∈ R, (a = 1, 2, 3). The generators satisfy the following commutation relation

[ta, tb] = −εabctc, (1.6)

where ε is the Levi-Civita symbol, defined to be

εabc =


1 (a, b, c) is (1, 2, 3), (2, 3, 1) or (3, 1, 2)

−1 (a, b, c) is (3, 2, 1), (2, 1, 3) or (1, 3, 2)

0 else.

We see that εabc is anti-symmetric in (a, b, c), meaning that symmetric permutations of (a, b, c)
result in the same value of ε and anti-symmetric permutation in a value of −ε.
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SU(3)

By theorem 1.5, su(3) has dimension 32 − 1 = 8. Therefore SU(3) has eight generators Ta. As a
basis, we take the matrices iTa := iλa/2, where λa (a = 1, ..., 8) are the Gell-Mann matrices, given
by

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

One can prove that the set of matrices {iT1, iT2, ..., iT8} indeed form a basis of su(3) by showing
that they span su(3) and that they are linearly independent. With this basis, again by theorem
1.3, we can write each g ∈ SU(3) as

g = eiξaT
a

for some values of the eight real group parameters ξa. The following commutation relation holds
for the generators

[Ta, Tb] = fabcT
c, (1.7)

with fabc the structure constants of SU(3). Just as the Levi-Civita symbol, they are anti-symmetric
(for a proof see e.g. [10]). They are given by [4]

fabc =


1 (a, b, c) = (1, 2, 3)
1
2 (a, b, c) = (1, 4, 7), (1, 6, 5), (2, 4, 6), (2, 5, 7), (3, 4, 5) or (3, 7, 6)
√

3
2 (a, b, c) = (4, 5, 8) or (6, 7, 8),

where we have not written down all permutation of (a, b, c) as these can be determined by the fact
that fabc is anti-symmetric. The fabc that are not determined by permutations of the indices in
equation 1.3.3 have value zero.

11



Chapter 2

Group representations

Groups and definitely non-matrix groups are often abstract sets. However, many groups can be
represented by a group of finite dimensional, invertible matrices: by subsets of the general linear
group (definition 1.4), on which ordinary matrix multiplication acts as the group operator. The
matrices of the group representation are often easier to categorize than the original group. Hence,
a group representation gives a new way to receive information about the original group.

However, in particle physics, representation theory plays another important role. To be able to
fully understand this importance, in this chapter, the representation theory of the Lie groups U(1)
and SU(3) will be treated. The representation theory of SU(2), which is also relevant for the
topic at hand, will not be treated in this chapter. We will encounter it briefly in the beginning of
chapter 5.

This chapter is divided into six sections. The first three sections treat respectively unitary, irre-
ducible and Lie algebra representations. Using the theory of weights given in section 2.4, section
2.5 and 2.6 treat the topic of dual and tensor product representations of SU(3).

2.1 Unitary representations
Because the groups U(1), SU(2) and SU(3) are all defined in terms of the field C, in the following,
we will assume that the vector spaces under consideration are defined over C (and not over R or
any other field).

Definition 2.1. A representation of a group G on a vector space V is a group homomorphism
π : G→ GL(V ).

The dimension of the representation is defined to be equal to the dimension of V . We often denote
the representation π of G on the vector space V by (π, V ) and call this pair the representation
of G. Sometimes, when it is clear about which group representation we are talking, we just call
V the representation of G. Besides, we sometimes shorten ‘the representation of G’ to ‘the G-
representation’.

Every Lie group G has a so called trivial representation (π, V ), given by π(g)v = v for all g ∈
G, v ∈ V . Furthermore, each matrix Lie group has a so called defining representation, that maps
each element to itself. For example, the defining representation of SU(2) acts on the vector space
V = C2 and is the map π : SU(2)→ SU(2) given by

π(U)

(
v1

v2

)
= U

(
v1

v2

)
, (2.1)

for all U ∈ SU(2). This representation has dimension 2, because it acts on a 2-dimensional vector
space, while the group SU(2) itself has dimension 3, as we have seen in section 1.3.

Definition 2.2. The adjoint representation (πad, V ) of a matrix Lie group G with Lie algebra g
is given by the homomorphism πad : G→ Aut(g) as

πad(g)(X) := gXg−1, (2.2)
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for X any element in g, g ∈ G1.

Definition 2.3. A representation (π, V ) is called a unitary representation, if it respects the inner
product on V , meaning that

〈π(g)v, π(g)w〉 = 〈v, w〉
for all v, w ∈ V .

Theorem 2.1. A representation of G is unitary if and only if π(g)∗ = π(g−1) for all g ∈ G.

Proof. We have that (π, V ) unitary iff

〈π(g)v, π(g)w〉 = 〈v, w〉
= 〈π(g)−1π(g)v, w〉
= 〈π(g)v, (π(g)−1)∗w〉,

(2.3)

where the last equality holds because, by the definition of the inner product, for any operator A
acting on v ∈ V we can write

〈Av,w〉 := (Av)∗w = (v∗A∗)w = v∗(A∗w) = 〈v,A∗w〉.

From equation 2.3, it follow that π(g)w = (π(g)−1)∗w. This can be rewritten as π(g)∗ = π(g)−1 =
π(g−1). Because the above argument can be read backwards as well, this completes the proof.

For a representation π : G→ GL(V ) we write π|W : G→ GL(W ) for a restriction of the mapping
to elements of W ⊂ V .

Definition 2.4. A homomorphism π|W is called a subrepresentation of the G-representation (π, V )
if W is a subspace of V such that W is invariant under G, meaning that

∀w ∈W, g ∈ G : π(g)w ∈W.

Theorem 2.2. If W is a subrepresentation of a unitary representation V , then the orthogonal
complement W⊥ = {v ∈ V : 〈v, w〉 = 0 ∀w ∈W} is a subrepresentation of V as well.

Proof. Suppose W is a subrepresentation of a unitary representation V . Take w⊥ ∈W⊥ arbitrary.
Then for any w ∈W

〈π(g)w⊥, w〉 = 〈w⊥, π(g)∗w〉
= 〈w⊥, π(g)−1w〉 theorem 2.1.

Because W is a subrepresentation, each w ∈ W can be written as w = π(e)w = π(g)π(g)−1w =
π(g)π(g−1)w = π(g)w′, with w′ ∈W . The last equality is true because W is a subrepresentation,
meaning that π(g)w ∈W for all g ∈ G, so also for g−1. Hence, we are allowed to write

〈w⊥, π(g)−1w〉 = 〈w⊥, w′〉,

for some w′ ∈ W . By the definition of W⊥, this means that 〈w⊥, w′〉 = 0. Combining the the
equalities results in 〈π(g)w⊥, w〉 = 〈w⊥, w′〉 = 0, meaning that π(g)w⊥ ∈ W⊥, so that W⊥ is
indeed a subrepresentation of V .

Definition 2.5. For two representations (π, V ) and (ρ,W ) on a group G, the linear map A : V →
W is called an intertwiner if

Aπ(g) = ρ(g)A

for all g ∈ G.

If A is invertible, it is called an equivalence. Two representations are called equivalent if there
exists an equivalence between them. A is a unitary equivalence if it is an equivalence that respects
the inner product, meaning that

〈v, v′〉V = 〈Av,Av′〉W ,
where the subscripts denote that the inner product is taken respectively in the vector space V and
W . If two representations are unitary equivalent, they can be seen as ‘the same’.

1This definition is well-defined, as is explained in e.g. [9]
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2.1.1 Direct sum of representations
Definition 2.6. For two vector spaces V and W over the same field F, the direct sum V ⊕W is
defined to be the set

V ⊕W = {(v, w) : v ∈ V,w ∈W},

such that (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2) and λ(v, w) = (λv, λw) for any λ ∈ F.

Furthermore, a vector space U is the direct sum of two linear subspaces V and W if for any u ∈ U
we can uniquely write u = v+w, with v ∈ V and w ∈W . In that case we write U = V ⊕W .

Definition 2.7. The direct sum of two representations (π, V ) and (ρ,W ) is the vector space V ⊕W ,
with representation φ given by φ(g)(v ⊕ w) := (π(g)v, ρ(g)w).

We can write φ in the above definition equivalently as a representation ofG that maps g ∈ G, v⊕w ∈
V ⊕W to

φ(g)(v ⊕ w) =

(
π(g) 0

0 ρ(g)

)(
v
w

)
,

where the zeros denote matrices will all entries zeros of the appropriate dimension (e.g. dim(V )×dim(W )
for the upper right zero). We then immediately see that the representation preserves products and
hence is well-defined, because for all g, h ∈ G we have

φ(g)φ(h) =

(
π(g) 0

0 ρ(g)

)(
π(h) 0

0 ρ(h)

)
=

(
π(g)π(h) 0

0 ρ(g)ρ(h)

)
=

(
π(gh) 0

0 ρ(gh)

)
π and ρ are representations

= φ(gh).

Theorem 2.3. The direct sum (φ, V ⊕W ) of two representations (π, V ) and (ρ,W ) is unitary if
and only if (π, V ) and (ρ,W ) are unitary.

Proof. “ =⇒ ” Suppose φ is unitary, so we can write for any g ∈ G and for all v, v′ ∈ V , w,w′ ∈W

〈v, v′〉V + 〈w,w′〉W = 〈v ⊕ w, v′ ⊕ w′〉V⊕W
= 〈φ(g)(v ⊕ w), φ(g)(v′ ⊕ w′)〉V⊕W φ is unitary
= 〈(π(g)v, ρ(g)w), (π(g)v′, ρ(g)w′)〉V⊕W Definition 2.7
= 〈π(g)v, π(g)v′〉V + 〈ρ(g)w, ρ(g)w′〉W .

This equation also holds for w′ = 0. In that case, we get

〈v, v′〉V = 〈v, v′〉V + 〈w, 0〉W 〈w, 0〉 = 0

= 〈π(g)v, π(g)v′〉V + 〈ρ(g)w, 0〉W
= 〈π(g)v, π(g)v′〉V 〈ρ(g)w, 0〉W = 0,

from which follows that (π, V ) is unitary. In the same way we can obtain that (ρ,W ) is unitary.

“ ⇐= ” Suppose that π and ρ are unitary. Then we can write

〈v ⊕ w, v′ ⊕ w′〉V⊕W = 〈v, v′〉V + 〈w,w′〉W
= 〈π(g)v, π(g)w′〉V + 〈ρ(g)w, ρ(g)w′〉W π and ρ unitairy
= 〈(π(g)v, ρ(g)w), (π(g)v′, ρ(g)w′)〉V⊕W
= 〈φ(g)(v ⊕ w), φ(g)(v′ ⊕ w′〉V⊕W ,

from which follows that φ is unitairy.

Theorem 2.4. If W is a subrepresentation of a unitary representation (π, V ) (with V a vector
space over C), then V is unitary equivalent to W ⊕W⊥.
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Proof. Suppose that W is a subrepresentation of a unitary representation (π, V ). By theorem 2.2,
we know that W⊥ is a subrepresentation as well. Because W and W⊥ span V and have an empty
intersection, we can write each v ∈ V as v = aw + bw⊥, for w ∈ W,w⊥ ∈ W⊥ and a, b ∈ C. From
definition 2.6, it follows that V = W ⊕W⊥.

Furthermore, by definition 2.7, our representations on W and W⊥ induce a representation on
W ⊕W⊥ given by φ(g)(w ⊕ w⊥) := (π(g)w, π(g)w⊥).

Suppose that dim(V ) = n. If we then take A = 1n, we see that A is an intertwiner of the
representations (φ,W ⊕W⊥) and (π ⊕ ρ, V ). This follows directly from definition 2.7. Moreover,
for the inner product, we can write

〈v, v′〉V = 〈Av,Av′〉V A = 1n

= 〈Av,Av′〉W⊕W⊥ V = W ⊕W⊥,
(2.4)

from which we conclude that A is an unitary equivalence and hence that V is unitary equivalent
to W ⊕W⊥.

2.2 Irreducible representations
Definition 2.8. An irreducible representation is a representation π(g) : G→ GL(V ) that has only
V and {0} as a subrepresentation. If a representation is not irreducible, it is called reducible.

Theorem 2.5. Every finite-dimensional, unitary representation of G is unitary equivalent to a
direct sum of finitely many irreducible, unitary representations.

Proof. We divide the proof into three steps. Let (π, V ) be a unitary representation of G with finite
dimension n.

(1) If (π, V ) is irreducible, then we are done. Otherwise, continue to step 2.

(2) If (π, V ) is not irreducible, then it has a non-trivial subrepresentationW ⊂ V , withW of smaller
dimension m < n. Now, by theorem 2.4, V is unitary equivalent to the direct sum W ⊕W⊥. If W
and W⊥ are both irreducible, then we are done. Otherwise, continue to step 3.

(3) We repeat step 1 and 2 for the vector spaces W and/or W⊥ instead of V , and hereafter for
their (potential) subrepresentations, and then for the possible subrepresentations of their subrep-
resentations, etc. The direct sum of the irreducible subrepresentations that we end up with, will
be unitary equivalent to (π, V ).

However, we still have to show that this repetition will be finite and that the direct sum will
consist of finitely many irreducible representations. We can easily argue this, for, because V is
finite dimensional and each subrepresentation will be of smaller dimension, we can repeat step 1 and
2 maximally n times, resulting in a direct sum of maximally n irreducible, unitary representations.

Theorem 2.6 (Schur’s Lemma). If (π, V ) is an irreducible, unitary representation of G, with V
a vector space over a C, then every intertwiner A : V → V is a multiple of the identity: A = λ1 (λ
in C, depending on the field over which V is defined).

Proof. Let (π, V ) be an irreducible, unitary representation of a group G, with V over C. Let A be
an intertwiner from V to V , so that Aπ(g) = π(g)A for all g ∈ G. We first show that A has at
least one eigenvalue (1), and then that this implies that A must be a multiple of the identity (2).

(1) Denote the dimension of V by n. Take v ∈ V, v 6= 0 and take the set {v,Av,A2v, ..., Anv}.
Because this set consists of n+ 1 elements, while a linearly independent set of vectors in V has at
most dimension n, the set is linearly dependent. Therefore, there exist complex numbers a0, ..., an
that are not all equal to zero and that are such that

a0v + a1Av + ...+ anA
nv = 0.

Furthermore, also the numbers a1, ..., an can not all equal zero, because in that case a0v = 0, from
which unavoidable follows that a0 = 0. We can therefore see the above equation as a polynomial
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p(A) with (at least two) non-zero complex coefficients. According to the fundamental theorem
of algebra, any polynomial with complex coefficients has at least one root [15]. Hence, we can
factorise this polynomial as

p(A)v = (a01 + a1A+ ...+ anA
n)v

= c(A− λ11)...(A− λm1)v,

with c and λ1, ..., λm some complex constants, c 6= 0. In the factorization, we write m instead of n
(m < n), because for m > 1 it is possible that the coefficients am+1, ..., an are zero.

Note that the matrices A− λi1 and A− λj1 can be interchanged for any i, j ∈ {1, ...,m}, because
these matrices commute. This means that the following argument holds for any order of the
matrices A− λi1 in p(A).

Because p(A)v = 0, we can argue as follows. If the term (A − λm1)v is equal to zero, we have
found an eigenvalue of A. Otherwise, we take the largest i ∈ {1, ...,m} such that

0 = (A− λi1)(A− λi+11)...(A− λm1)v = (A− λi1)w,

and w = (A−λi+11)...(A−λm1)v 6= 0. This results in the eigenvalue λi of A. We know that there
will always be such an i, because if w = 6= 0, for all i ≤ 1, we still must have

0 =
p(A)

c
= (A− λ11)w,

from which follows that λ1 is an eigenvalue of A.

(2) Because A has at least one eigenvalue λ, the kernel ker(A − λ1) := {v ∈ V : Av = λ1v} is
nonempty. Now for v ∈ ker(A− λ1), g ∈ G

Aπ(g)v = π(g)Av A is an intertwiner
= π(g)λv v ∈ ker(A− λ1)

= λπ(g)v,

so that π(g)v is an element of the kernel as well. This means that ker(A−λ1) is a subrepresentation
of V . Because (π, V ) is irreducible and the kernel is non-empty, we must have ker(A − λ1) = V .
This means that ∀v ∈ V we have Av = λ1v, from which we conclude that A = λ1.

Theorem 2.7. If T is an abelian group, then every irreducible, unitary representation of T is
1-dimensional.

Proof. Let T be an abelian group and let (π, V ) be an irreducible representation of T . Take t ∈ T
arbitrary. Now for each t ∈ T , π(t) is an intertwiner from T to T , because for all t′ ∈ T

π(t)π(t′) = π(tt′) = π(t′t) = π(t′)π(t).

By theorem 2.6, we know that every intertwiner equals λ1 for some λ ∈ C. Thus, we have for any
v, v′ ∈ V, t ∈ T

〈v, v′〉 = 〈π(t)v, π(t)v′〉 π is an intertwiner
= 〈λv, λv′〉 π(t) = λ1

= λλ̄〈v, v′〉,

so that λλ̄ = 1. Hence, we can write λ as λ = eiµ for some real valued µ. This means that for all
t, π(t) = λ1 is a diagonal matrix, with constant elements on the diagonal. This means that every
subspace of V will form a subrepresentation, as for all v ∈ V, t ∈ T

π(t)v = eiµ1v = eiµv. (2.5)

However, by assumption, π(t) is irreducible and hence has no subrepresentation. Therefore, we
must conclude that π(t) is a 1 × 1 matrix, from which it follows that π(t) = eiµ works on the
1-dimensional vector space C and thus that our representation is 1-dimensional. This completes
the proof.

With use of theorem 2.7, it is relatively easy to classify the irreducible representations of abelian
Lie groups. In the next section, we will classify the irreducible representation of the abelian Lie
group U(1).
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2.3 Lie algebra representations
In section 1.3, we have seen that there is a connection between Lie group and Lie algebra homomor-
phisms. In this section, we will use this connection to determine the irreducible representations of
U(1). As a consequence of theorem 1.4, the following statement about Lie algebra representations
holds. For a complete proof, see e.g. [9].

Theorem 2.8. If π : G → GL(n,F) is a continuous representation of the Lie group G, then
π̇ : g→ gl(n,F) is a Lie algebra representation of the Lie algebra g of G. Here π̇ is defined as

π̇(X) :=
d

dt

∣∣∣
t=0

π(etX), (2.6)

for any X ∈ g.

From the definition of π̇, it follows that [9]

π(etX) = etπ̇(X). (2.7)

We will first show how to find the irreducible representations of the 1-dimensional, abelian Lie
group U(1) and then proceed to the non-abelian Lie group SU(3).

Theorem 2.9. The irreducible, unitary representations of the abelian group U(1) = {z ∈ C :
|z| = 1} are labelled by n ∈ Z and are given by πn(z) = zn for each z ∈ U(1).

Proof. Suppose π : U(1)→ GL(n,C) is an irreducible representation of U(1). We will first consider
the irreducible representations of its Lie algebra u(1) and from it derive an expression for the
representation of U(1) itself.

The Lie algebra of U(1) is, as we have seen in section 1.9, equal to u(1) = iR. By theorem 2.7,
we know that all irreducible representations of an abelian group are 1-dimensional. Therefore, any
irreducible representation of U(1) will work on the 1-dimensional vector space C and will thus be a
homomorphism to the set GL(1,C) = U(1). Hence, by theorem 2.8, the Lie algebra representation
π̇ of u(1) will have both a domain and a range iR. This means that we can write π̇ : iR→ iR and
get a homomorphism of the following form

π̇(X) = µX µ ∈ R,

for any X ∈ u(1). Now, according to equation 2.7,

π(z) = π(etY ) = etπ̇(Y ) = etµY = zµ,

is the representation of the Lie group for any z ∈ U(1). In the above, we have used equation 1.4
to be able to write z = etY , with group parameter t ∈ R and group generator Y ∈ u(1) = iR.

However, to the above equality cannot be conformed for all µ ∈ R. To see this, suppose that t = 1
and that X takes the value i2π (∈ iR) and consider again equation 2.7. We have

1 = π(1) = π(e0) = π(e2πi) = eµ2πi,

which only holds if µ ∈ Z. Thus, the irreducible representations of the abelian group U(1) are
given by πn(z) = zn, with n ∈ Z.

For the non-abelian Lie group SU(3), our approach will be different. To obtain as much information
as possible about the irreducible representations of G, in the next section, we will first find the
maximal torus T of SU(3) and then classify the irreducible representations of T using the theory
of so called ‘weights’.

2.4 Weights
Our next desire is to be able to get as much information as possible about the representations of a
general Lie group G and specifically – because of their important role in particle physics – about
the the non-abelian Lie groups SU(2) and SU(3). Up and including section 2.6, we will focus on
the representation theory of SU(3). For SU(2) a comparable, but easier approach can be used.
We will not treat the representation theory of SU(2) in this chapter, but we will encounter and
briefly discuss it in chapter 5.
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2.4.1 Maximal torus
In section 1.3, we have seen that the Lie algebra of SU(3) is given by the 3× 3 complex matrices
X, such that X +X∗ = 0 and Tr(X) = 0 and that this Lie algebra had rank 2. This means that
the maximal torus T of SU(3) is 2-dimensional and hence can be generated by two generators that
span the Lie algebra t of T . We will show that the traceless, unitary diagonal 3× 3 matrices form
the Lie algebra of the maximal torus of SU(3). Indeed, this group is clearly abelian and a subgroup
of su(3). Furthermore, it is two dimensional as each element consists of 3 different elements on
the diagonal, with one degree of freedom removed by the requirement of zero trace. Hence, we
conclude that the Lie algebra t of T consists of matrices of the form

t =

ix11 0 0
0 ix22 0
0 0 ix33

 (2.8)

such that x11 + x22 + x33 = 0. As a basis of t, we choose the matrices

h1 = i

1 0 0
0 −1 0
0 0 0

 , h2 = i

0 0 0
0 1 0
0 0 −1

 .

These matrices indeed form a basis as they are linearly independent (there is no a ∈ r such that
h1 = ah2) and – by making the substitution x11 → x1 and x33 → −x2 in equation 2.8 – we can
write each t ∈ t as

t = i

x1 0 0
0 x2 − x1 0
0 0 −x2

 = x1i

1 0 0
0 −1 0
0 0 0

+ x2i

0 0 0
0 1 0
0 0 −1

 = x1h1 + x2h2.

Thus, we see that h1 and h2 span t.

2.4.2 Weight and root lattice
Definition 2.9. A weight of the lie algebra representation (π̇, V ) of the lie algebra t of the maximal
torus T of a group G is defined to be the linear mapping λ : t→ R such that the weight space Vλ
given by

Vλ := {v ∈ V : ∀X ∈ g, Xv = λ(X)v} (2.9)

is nonempty.

So for a weight, there exist vectors v in V such that Xv = λ(X)v. On the vector space Vλ, λ can
be seen as an eigenvalue of X. Because X = ah1 + bh2 for any X ∈ t, the weights of the maximal
torus are fully determined by λ(h1) and λ(h2), the eigenvalues of h1 and h2.

Theorem 2.10. The weights λ : t → R of the Lie algebra t of the group T of unitary diagonal
3× 3 matrices integrate into a group representation if and only if λ(hi) ∈ Z for i = 1, 2.

Proof. “ =⇒ ” Suppose that the weights λ : t → R integrate into a group representation. For all
t ∈ T we can write

π(t) = π(eX) = eπ̇(X) = eiλ(X). (2.10)

X is an element of t and hence can be written in term of the matrices h1 and h2. We write
X = ah1 + bh2, with a, b ∈ R to get

π(t) = π(eah1+bh2)

= π(eah1)π(ebh2) T is abelian

= eiλ(ah1)eiλ(bh2) equation 2.10

= eiaλ(h1)eibλ(h2) λ is a linear map.

Now for t = 1, we can write

1 = π(1) = π(e0)

= π(e2πh1) h1 diagonal matrix with entries 0,±i
= e2πiλ(h1) equation 2.10
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to which can be conformed only when λ(h1) is an integer, so we conclude that λ(h1) ∈ Z. The
above equation can also be written for X = 2πh2, from which in an equivalent way follows that
λ(h2) ∈ Z.

“ ⇐= ” Suppose that the weights λ(hi) ∈ Z for i = 1, 2. Equation 2.10 holds in general and can
still be used. Hence, by reading the above argument backwards, we can immediately conclude that
the weights integrate into a group representation. This completes the proof.

Inner product

We define an inner product κ on su(3) by

κ(X,Y ) = −Tr(XY ),

for all X,Y ∈ su(3). This definition is well-defined, as κ satisfies the three requirements of an
inner product: from the definition of the trace, it follows that it is linear in the first argument
(κ(aX, Y ) = aκ(X,Y )) and furthermore that κ(X,Y ) = κ(Y,X). Thirdly, we see that κ is positive
definite2, because

κ(X,X) = −Tr(XX) = Tr((−X)X) = Tr(X∗X).

X∗X is positive semidefinite, meaning that it has nonnegative eigenvalues [3]. The trace is equal
to the sum of the eigenvalues of X∗X and hence it follows that κ(X,X) ≥ 0. This also means that
the the inner product is equal to zero if and only if all eigenvalues of X∗X are zero. This is the
case only when X = 0, from which we conclude that κ(X,X) > 0 for all X 6= 0 in su(3).

The inner product is SU(3)-invariant, as for all X,Y ∈ su(3) and for all g ∈ G

κ(gXg−1, gY g−1) = −Tr(gXg−1, gY g−1)

= −Tr(gXY g−1)

= −Tr(XY gg−1) trace property, cyclic permutation
= −Tr(XY )

= κ(X,Y ).

(2.11)

Using the definition of the inner product, we can calculate the angle between h1 and h2. Analogue
to the angle between to vectors in an Euclidean vector space, we let the angle θ between two
elements X and Y in our Lie algebra be

θ = arccos

(
κ(X,Y )√

κ(X,X)
√
κ(Y, Y )

)
. (2.12)

With this formula, the angle between h1 and h2 becomes

θ12 = arccos

(
1√
2
√

2

)
= arccos

(
1

2

)
= ±π

3
. (2.13)

The root-lattice of t is equal to the set Zh1 + Zh2 and can be drawn on isometric dot paper with
a h1-and h2-axis that make an angle π/3 with respect to each other. The root-lattice gives all the
possible weights of the Lie algebra, for any representation of SU(3). However, we will see that for
each specific representation, only a few weights are ‘allowed’.

A representation of the maximal torus T of SU(3) can be decomposed into a direct sum of
irreducible representations. As the Lie algebra of T is spanned by h1 and h2, we can repre-
sent the weights of T as coordinates in the root-lattice3 of t. The weights are then given by
λ = (λ1(h1), λ2(h2)) for each 1-dimensional, irreducible subrepresentation of T .

Theorem 2.11. The weights of the restriction of the defining representation (π,C3) of SU(3) to
the maximal torus T of SU(3), are given – in the root lattice of the maximal torus of SU(3) – by

λ1 = (1, 0), λ2 = (−1, 1), λ3 = (0,−1). (2.14)
2Meaning that for all X ∈ su(3) it holds that κ(X,X) > 0 if X 6= 0.
3For a general group, this is the weight-lattice, however, for the representations of SU(3) that we will consider,

all weights are elements of the root-lattice. Therefore, we will not consider the weight-lattice here.
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Proof. When we restrict the defining representation of SU(3), given by π(U) = U for all U ∈ SU(3),
to T , we can argue as follows.

By theorem 2.5, we know that every finite-dimensional, unitary representation of T is unitary equiv-
alent to a direct sum of finitely many irreducible, unitary representations. Furthermore, because
T is abelian, from theorem 2.7 it follows that all components of the decomposed representation
are 1-dimensional. Hence, the defining representation C3 is unitary equivalent to the direct sum
of three 1-dimensional (irreducible) representations C and we can write

C3 = C⊕ C⊕ C.

If we now take a basis of C3 as the set {R,G,B}, with R, G and B given by

R =

1
0
0

 , G =

0
1
0

 , B =

0
0
1

 ,

we see that these vectors are eigenvectors of the elements of the Lie algebra t and hence that they
are elements of the weight space of T By definition 2.9, for z ∈ C3 the weights of the representation
(π̇, {

(
1 0 0

)
}T ) can be found by

h1z = i

1 0 0
0 −1 0
0 0 0

z0
0

 =

iz0
0

 = iz, (2.15)

h2z = i

0 0 0
0 1 0
0 0 −1

z0
0

 =

0
0
0

 = 0z, (2.16)

from which we see that λ(h1) = 1 and λ(h2) = 0, resulting in the weight λ1 = (1, 0) in the
root-lattice of SU(3). In the same way, we can obtain the weight λ2 = (h1G, h2G) = (−1, 1) and
λ3 = (h1B, h2B) = (0,−1). This completes the proof.

We draw the weights in the root-lattice described above to get a weight diagram of the defining
representation of SU(3), as given in figure 2.1.

Figure 2.1: The weight diagram of the defining representation of SU(3). The weights are
indicated by the (red) crosses.

We have now determined the three weights of the defining representation of SU(3). However, to
be able to make the step from representation theory to particle physics, we still have need some
information. In the next two sections, we will determine the weights of the dual representation
C3∗ and the tensor product representations C3 ⊗ C3∗ and C3 ⊗ C3 ⊗ C3 of SU(3).
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2.5 Dual representations
Definition 2.10. The dual vector space V ∗ of a vector space V over a field F is defined to be
the set of linear mappings α : V → F. Here, the linear mappings are equipped with addition and
scalar multiplication according to the two calculation rules

(α1 + α2)(v) = α1(v) + α2(v)

(aα1)(v) = a(α1(v))

for all α1, α2 ∈ V ∗, all v ∈ V and all a ∈ F.

Definition 2.11. For a representation (π, V ) of the matrix group G, the dual representation is
given by the representation (π′, V ∗), defined by

π′(g)v∗ := π(g)∗v∗,

for all g ∈ G and for all elements v∗ of the dual vector space V ∗ of V . Here, π(g)∗ corresponds
with the conjugate transpose of the representation π(g).

Theorem 2.12. If λ is a weight of the unitary representation (π, V ) of SU(3), then −λ is a weight
of the dual representation (π′, V ∗).

Proof. Suppose that λ is a weight of the unitary representation (π, V ) with weight vector v. Then

π(g)v = π(eX)v = eiλ(X)v.

Hence, for the dual representation (π′(g), V ∗) we can write

e−iλ(X)v∗ = (eiλ(X)v)∗ = (π(g)v)∗ = π(g)∗v∗ = π′(g)v∗,

from which we see that −λ is a weight of the dual representation (π′, V ∗), with weight vector
v∗ ∈ V ∗.

By theorem 2.12, the weights of the dual representation of SU(3) are given by {−λ1,−λ2,−λ3}.
In figure 2.2, we have draws the weights of the dual representation in the weight diagram of
SU(3).

Figure 2.2: The weight diagram of the defining and dual representation of SU(3). The weights of
the defining representation are again indicated by the (red) filled crosses. The weights of the dual

representation are indicated by the (blue) unfilled crosses.

2.6 Tensor product representations
In this section, we will show how to determine the weights of a unitary tensor product represen-
tation. We start with some general theory about tensor products and then focus on the SU(3)
representations of C3 ⊗ C3∗ and C3 ⊗ C3 ⊗ C3.
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Definition 2.12. Let V and W be two finite dimensional vector spaces V and W over C with
basis ei, (i = 1, ..., n) and basis fj , (j = 1, ...,m) respectively. Then the tensor product V ⊗W of
V and W has (nm)−dimensional basis ei ⊗ fj , with elements

v ⊗ w :=

n∑
i=1

m∑
j=1

viwjei ⊗ fj , (2.17)

for any vectors v = Σni=1viei ∈ V and w = Σmj=1wjfj ∈W .

Theorem 2.13. For two vector spaces V and W , the tensor product v ⊗ w of v ∈ V and w ∈ W
is independent of the choice of basis [17].

Theorem 2.13 tells us that definition 2.12 is well-defined. From the definition of the tensor product
it follows that the tensor product is bilinear, meaning that [17]

(av1 + bv2)⊗ w = a(v1 ⊗ w) + b(v2 ⊗ w)

v ⊗ (aw1 + bw2) = a(v ⊗ w1) + b(v ⊗ w2)

for all v, v1, v2 ∈ V , w,w1, w2 ∈W and a, b ∈ C.

Note that not every element of V ⊗W can be written in the form v ⊗ w, where v ∈ V,w ∈ W .
This holds for example for the vector e1 ⊗ e1 + e2 ⊗ e2 in the tensor product C2 ⊗ C2, where we
have chosen a standard basis. We can write any two vectors v, w in C2 as v = ae1 + be2 and
w = ce1 + de2, for a, b, c, d ∈ C. Their tensor product v ⊗ w should be equal to

v ⊗ w = (ae1 + be2)⊗ (ce1 + de2)

= ac(e1 ⊗ e1) + ad(e1 ⊗ e2) + bc(e2 ⊗ e1) + bd(e2 ⊗ e2)

= e1 ⊗ e1 + e2 ⊗ e2.

So we want to solve (
ac ad
bc bd

)
=

(
1 0
0 1

)
.

However, because the first matrix has determinant zero, it is not invertible. Hence it has no inverse,
which means that equation 2.6 has no solution. Thus we see that we cannot write each vector in
V ⊗W in the form v ⊗ w.

Theorem 2.14. For two linear maps A : V → V ′ and B : W →W ′, there is a unique linear map
A⊗B : V ⊗W → V ′ ⊗W ′ such that for all v ∈ V,w ∈W ,

(A⊗B)(v ⊗ w) = Av ⊗Bw [8].

By theorem 2.14, for two representations (π, V ) and (ρ,W ) of a group G, there is a unique tensor
product representation φ of G on V ⊗W defined by

φ(g)(v ⊗ w) := (π(g)⊗ ρ(g))(v ⊗ w) = (π(g)v)⊗ (ρ(g)w).

Theorem 2.15. If V and W are two inner product spaces, then there exists an unique hermitian
inner product on V ⊗W such that for all v ∈ V,w ∈W

〈v ⊗ w, v′ ⊗ w′〉V⊗W = 〈v, v′〉V 〈w,w′〉W [12].

Hence, the inner product between any two vectors a = Σi,jaijei ⊗ fj and b = Σi′,j′bi′j′ei′ ⊗ fj′ ∈
V ⊗W is given by

〈a, b〉V⊗W =
∑
i,j

∑
i′,j′

aijbi′j′〈ei ⊗ fj , ei′ ⊗ fj′〉V⊗W =
∑
i,j

∑
i′,j′

aijbi′j′〈ei, ei′〉V fj , fj′〉W .

If ei and fj are orthonormal bases, then 〈ei, ei′〉 = δii′ and 〈fj , fj′〉 = δjj′ so that the summation
reduces to

〈a, b〉 =
∑
i,j

aijbij .
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Theorem 2.16. If (π, V ) and (ρ,W ) are unitary representations, then the tensor product repre-
sentation (φ, V ⊗W ), with φ = π ⊗ ρ, is unitary as well.

Proof. Suppose that (π, V ) and (ρ,W ) are unitary representations, so 〈π(g)v, π(g)v′〉 = 〈v, v′〉 and
〈ρ(g)w, ρ(g)w′〉 = 〈w,w′〉 for all v ∈ V and w ∈W (?). Then,

〈φ(g)(v ⊗ w), φ(g)(v′ ⊗ w′)〉V⊗W = 〈(π(g)v)⊗ (ρ(g)w), (π(g)v′)⊗ (ρ(g)w′)〉V⊗W
= 〈π(g)v, π(g)v′〉V 〈ρ(g)w, ρ(g)w′〉W theorem 2.15
= 〈v, v′〉V 〈w,w′〉W (by ?),

from which follows that the tensor product representation (φ, V ⊗W ) is unitary as well.

Theorem 2.17. Let us denote the 1-dimensional representation of the abelian group T with weight
λ by (πλ,C) and that with weight λ′ by (πλ′ ,C). Then (πλ ⊗ πλ′ ,C ⊗ C) is the 1-dimensional
representation of T with weight λ+ λ′.

Proof. Suppose that (πλ,C) is a representation with weight λ and (πλ′ ,C) with weight λ′. By
equation 2.7 we can write for all t ∈ T

πλ(t) = π(eX) = eπ̇(X) = eiλ(X),

πλ′(t) = π(eX) = eπ̇(X) = eiλ
′(X),

with X an element of the Lie algebra t of T . Hence we can write for the tensor product represen-
tation

(πλ ⊗ πλ′)(t) = (πλ(t)⊗ πλ′(t)) = eiλ(X) ⊗ eiλ
′(X) = ei(λ+λ′)(1⊗ 1),

from which we see that λ + λ′ is a weight of πλ ⊗ πλ′ . The representation is 1-dimensional as it
works on the vector space C⊗ C, which has dimension 1 · 1 = 1.

Theorem 2.18. The weights of the SU(3)-representation V ⊗W correspond with the elements
λ′′ = λ+ λ′, where λ is a weight of V and λ′ is a weight of W .

Proof. Let (π, V ) and (ρ,W ) be two representations of T . By theorem 2.5 and 2.7, T can be
decomposed into 1-dimensional irreducible representations of V = Cn and W = Cm. This results
in the 1-dimensional representations (πλi ,C) with weight λi (i = 1, ..., n) due to the decomposition
of V and in the 1-dimensional representations (ρλj ,W ) with weight λ′j (j = 1, ...,m) due to the
decomposition of W . The tensor product representation π ⊗ ρ can now be written as

(πλ1 ⊕ ...⊕ πλn)⊗ (ρλ′1 ⊕ ...⊕ ρλ′m) =

n∑
i=1

m∑
j=1

πλi ⊗ πλ′j .

The tensor product representations in this sum are all 1-dimensional representations of T , which
by theorem 2.17, have weight λi + λ′j . Hence, we see that V ⊗W has weights λ′′ij = λi + λ′j for
i = 1, ..., n and j = 1, ...,m.

Using the above theorem, we can easily determine the weights for the tensor product representations
of SU(3).

2.6.1 The C3 ⊗ C3∗ representation of SU(3)

Because both (π, C3) and (π′,C3∗) are unitary representations of SU(3), using theorem 2.12 and
2.18 we can immediately write down the weights of the SU(3) tensor representation C3 ⊗ C3∗ .
The weights of C3 are given by λ = (1, 0), (−1, 1), (0,−1) and the weights of C3∗ by λ′ =
(−1, 0), (1,−1), (0, 1). By theorem 2.18, the weights λ′′ of C3 ⊗ C3∗ are given by λ + λ′ and
form 3 · 3 = 9 terms

λ′′ = (λ′′(h1), λ′′(h2)) =(2,−1), (1, 1), (−2, 1), (−1, 2), (−1,−1), (1,−2) each occurring one time,
(0, 0) occurring three times.

These weights are visualised in figure 2.3.
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Figure 2.3: The weight diagram of SU(3) for its C3 ⊗ C3∗ representation. The weights are
indicated by the (green) crosses. Because the weight zero occurs three times, three crosses are

placed at (0, 0).

2.6.2 The C3 ⊗ C3 ⊗ C3 representation of SU(3)

With theorem 2.18, we can immediately write down the weights of the tensor product representation
C3 ⊗ C3 ⊗ C3 of SU(3), as this is just the sum of the weights of C3. This results in the following
3 · 3 · 3 = 27 weights

(λ(h1), λ(h2)) =(0, 3), (3,−3), (−3, 0) each occurring one time,
(1, 1), (2,−1), (1,−2), (−1,−1), (−2, 1), (−1, 2) each occurring three times,
(0, 0) occurring six times.

These weights are visualised in figure 2.4.

Figure 2.4: The weight diagram of SU(3) for its C3 ⊗ C3 ⊗ C3 representation. The weights are
indicated by the (orange) crosses. To keep the picture clear, only one cross has been placed at

each weight position, even when the weight occurs multiple times.
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Chapter 3

The structure of the standard
model

Over time, physicists have created a theoretical, mathematical framework that corresponds with
the symmetries that are observed in the universe, in particle physics. At a certain point in history,
this led to the standard model [6]. Meanwhile, new observations have been done, based on which
modifications of the standard model have been made (such as the addition of neutrino masses
which originally was not included). The framework is still developed further and even extended to
theories beyond the standard model, to include recent observations and predict new ones.

We start this chapter with a treatment of the symmetries that are observed in the universe and
relevant in particle physics. Because the standard model ‘models’ the universe, these symmetries
should be symmetries of the standard model as well. The symmetries of section 3.1 will motivate
us to look at the gauge theory for the groups U(1), SU(2) and SU(3) in chapter 4 and will
finally form a theory for the structure and interactions of the particles in the standard model in
chapter 5.

In section 3.2, we will structure the particles of the standard model based on their properties in
the form of three particle generations and (gauge) bosons. Many parts of this structure, such as
the existence of the top quark, have actually been predicted by the standard model (instead of
being a motivation for the formulation of the standard model) and have since been experimentally
verified. However, we will not follow this historical development and just state the results as they
are known now.

Finally, section 3.3 combines the first two sections of this chapter. It makes the symmetries of
section 3.1 explicit by giving the quantum numbers that are conserved for the interactions of the
particles in section 3.2.

3.1 Symmetries
The standard model is a quantum field theory: a theory that brings together classical field theory,
quantum mechanics and special relativity. An important concept in quantum mechanics, that also
occurs in the standard model, is that of quantum numbers, which tell us that a particle can have
only discrete values of certain physical quantities such as energy, momentum and charge. In many
cases, certain quantum numbers are conserved during an interaction. A well known example is
conservation of charge: in a particle reaction the sum of the charges of the initial state equals the
sum of the charges of the final state. The observed conservation of certain properties of a physical
system, makes us introduce the following definition.

Definition 3.1. In physics, a physical system is said to have a symmetry, if some property of the
system is preserved after a certain type of transformation. In that case the property is said to be
invariant under the transformation.

This definition might still seem to be a bit vague, but will become more concrete in this section,
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when we will specify both the properties of a system that can be preserved (such as certain quantum
numbers) and the types of transformations under which these properties are invariant.

Many physical symmetries can be specified by groups. In section 1.2, we have seen that a group
can be discrete or continuous. A physical system is said to have a discrete or continuous symmetry,
when it has a preserved property under transformation by elements of respectively a discrete or
continuous group. The standard model has both discrete and continuous symmetries, which we
will treat separately in the next two subsections.

3.1.1 Discrete symmetry
The physical world is believed to have one fundamental, discrete symmetry, called CPT-symmetry.
CPT-symmetry is the invariance of the physical laws under simultaneous transformations of C, P
and T, which stand for the following transformations.

• C-symmetry (charge symmetry): all particles are replaced by their anti-particle.

• P-symmetry (parity symmetry): the position of all objects in space is reflected in the three
axis through an arbitrary point.

• T-symmetry (time-symmetry): the reversion of the momenta of all objects by the transfor-
mation T of time reversal, given as T : t→ −t.

Each of the above symmetries is broken when applied individually to the universe. However,
the so called CPT-theorem states that any Lorentz invariant quantum field theory (with energy
spectra that are bounded from below) must have CPT-symmetry and hence is invariant under
the combination of the three symmetries [1]. In the next subsection we will treat the subject of
Lorentz-symmetry and see that the standard model is a Lorentz invariant quantum field theory.
Hence, CPT-symmetry is a symmetry of the standard model.

3.1.2 Continuous symmetry
Definition 3.1 already tells us that there is a close relation between symmetries and conserved
quantities. This relation is made precise by Noether’s theorem, which states that for each continuous
symmetry, a system has a corresponding conservation law1. (Continuous) symmetries can be global
or local.

Definition 3.2. A system has a global symmetry if it has a symmetry whose transformations are
not a function of space-time.

An example of a global symmetry is a phase transformation of the electron field

Ψ(x, t)→ eiαΨ(x, t), (3.1)

where α is the angle by which the field is rotated. By filling in the transformed wave function in
the Schrödinger equation

i}
∂Ψ

∂t
= − }2

2m

∂2Ψ

∂x2
+ VΨ,

we see that if Ψ(x, t) satisfies the Schrödinger equation, then eiαΨ(x, t) satisfies it as well. This
means that the dynamics of our system is invariant under the transformation in equation 3.1. Fur-
thermore, as already mentioned, only the modulus of the wave function has a physical significance.
Hence, not only the dynamics, but also the physical interpretation of the situation is the same after
the phase transformation. We can therefore conclude that a phase transformation of the electron
field is a global symmetry.

Definition 3.3. A system has a local symmetry if it has a symmetry whose transformations are
a function of space-time.

Examples of local symmetries in physics are ample. We will introduce them in this subsection and
continue their treatment in the whole of chapter 4.

1More precisely, Noether’s theorem states that every differentiable symmetry of the action of a physical system
has a corresponding conservation law. We will not introduce the definition of a differentiable symmetry here.
However, as Lie groups are smooth manifolds, it is not strange to think of symmetries under transformations of Lie
groups as having a certain differentiability property. The action of a system corresponds with the time-integral over
the Lagrangian. We will encounter it in section 4.1, where it is given by equation 4.1.

26



Lorentz symmetry

A very important global symmetry in physics, is Lorentz symmetry. In the CPT-theorem, we
already encountered the term Lorentz invariance and stated that the standard model is a Lorentz
invariant theory. Lorentz invariance is a necessary requirement for every realistic, physical theory
and follows from special relativity. General relativity requires that the laws of physics are the
same in every inertial frame2. A physical system (for example, a particle field) is said to be
Lorentz invariant if it transforms trivially under Lorentz transformations, which are elements of
the Poincaré group3.

Furthermore, an equation is Lorentz covariant if the equations of motions are the same after appli-
cation of a Lorentz transformation to all its elements. Physically, this means that if the equations
of motion hold in one, they hold in every inertial frame. It is desired for every physical theory to
be Lorentz invariant – meaning that its equations of motion are Lorentz covariant equations – for
otherwise the theory is not consistent with general relativity.

Gauge symmetry

Local symmetries play an important role in in the description of particle interactions, in the form
of so called ‘local gauge symmetries’.

Definition 3.4. A gauge theory is a type of field theory in which the Lagrangian of the field is
invariant under local symmetries, that correspond with elements of a Lie group.

The local symmetries in definition 3.4 are called local gauge symmetries and the Lie group of which
they are elements is called the gauge group. If the gauge group is not abelian, the gauge theory is
called a non-abelian gauge theory. When the Lagrangian is invariant under the application of local
gauge symmetries to the particle field, we speak of gauge invariance.

Probably the most well-known gauge theory is that of quantum electrodynamics (QED), the fun-
damental theory of electromagnetism that unites quantum mechanics with special relativity [2].
The gauge theory that describes quark interactions, is called quantum chromodynamics (QCD).
The theory of weak interaction can be unified with that of electromagnetism in a gauge theory that
is called the unified electroweak model U(1) × SU(2). Together with QCD, this theory describes
the interactions of all particles of the standard model.

Gauge theory will be the focus of chapter 4. We will see examples of local gauge symmetries in
section 4.3 – 4.5, when we look in more detail at the transformations of particle fields. In the
remainder of this chapter, we will focus on the quantum numbers of the particles in the standard
model, with a main focus on the particles of the first generation of the standard model.

3.2 The elementary particles
The structure of the periodic table led physicists to the discovery of smaller elements that together
form the nuclei of the atoms in the periodic table. The nuclei appeared to consist of protons and
neutrons, which in their turn consist of quarks that are kept together by the strong force. Around
the nuclei, electrons move, bound to the nuclei by the electromagnetic force. Lastly, the neutron
can decay into a proton due to the so called weak force. From this decay, together with the proton,
also an electron and an anti-neutrino originate.

The above particle interactions can be observed experimentally. In a particle reaction, one can
measure which quantities are conserved during that reaction. Examples of such quantities are
mass, energy, momentum and spin. Many of these quantities are ‘quantized’: they are quantum
numbers of the observed interacting system. Depending on the type of interaction (e.g. electro-
magnetic, weak or strong), quantum numbers are found to be conserved or violated. This gives
information about the quantum numbers of individual particles, which can be used to subdivide
the particles of the standard model into different categories. First of all, all particles are either

2An inertial frame is a frame of reference that is not accelerating.
3Invariance under the Poincaré group implies e.g. invariance under translation and rotation in space. In the

following, we will not pay further attention to Lorentz symmetry. Hence, it is enough to know that invariance under
the Poincaré groups correspond with the having same laws of physics in different inertial reference frames. We will
not define the Poincaré group or treat its role in the standard model in more detail.
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bosons – particles with integer spin (S = 0, 1, 2, ...) – or fermions – particles with half integer spin
(S = 1

2 ,
3
2 ,

5
2 , ...).

3.2.1 Bosons
The three forces described above are believed to act by the interchange of a special type of bosons,
called gauge bosons, which play a central role in the gauge theory that we will treat in chapter 4.
Gauge bosons are also called force carriers, because by exchanging these bosons, energy, momentum
and other quantum numbers which we will specify later are ‘carried’ from one particle to another.
The force carrier of the electromagnetic interaction is the photon γ, that of the strong interaction
are eight gluons gi, (i = 1, ..., 8) and that of the weak interaction are three weak bosons W± and
Z0. Only the fourth fundamental force, the gravitational force, has not yet been explained using
particle interactions, although there are many theories on this subject. Some theories suggest the
existence of the graviton, the hypothesised force carrier of the gravitational force. However, up
until now, there has been no evidence for the existence of such a particle.

The standard model includes one other boson, called the Higgs boson. The Higgs boson had not
yet been observed when it was theoretically predicted by the SU(2) gauge theory that is treated
in chapter 4. However, in 2012, physicists have detected the particle in the Large Hadron Collider
in CERN, Geneva, which has increased the belief in the correctness of gauge theory.

3.2.2 Fermions
Fermions can be subdivided into three generations. Each generation consists of two leptons –
particles that undergo electroweak interactions – and two quarks – particles that undergo strong
interactions – together with their anti-particles. The three generations of fermions are shown in
table 3.1. Between different generations, particle masses and flavours differ, but the electroweak
and the strong force act in the same way.

First Second Third
Quarks u (up) c (charm) t (top)

d (down) s (strange) b (bottom)
Leptons e (electron) µ (muon) τ (tau)

νe (electron neutrino) νµ (muon neutrino) ντ (tau neutrino)

Table 3.1: The three generations of fermions without anti-particles.

The particles that are formed by quarks and hence feel the strong forces are called hadrons and
are held together by gluons. The hadrons can be subcategorized into mesons and baryons. Mesons
are particles that consist of a quark–anti-quark pair. Baryons are particles that consist of three
quarks. Examples of baryons are the well known proton and neutron.

Particles are either right-handed or left-handed. Massless particles are right- or left-handed de-
pending on the sign of the projection of their spin component on the axis of their momentum.
A massless particle is right-handed if this sign is positive and left-handed if it is negative. For
massive particles, this dependence is a bit more complex and we will not fully treat it here. Most
important to know is that the right-handed part ψR and the left-handed part ψL of a particle field
ψ can be received mathematically by letting the following projection operators act on ψ [4]

PR :=
1− γ5

2
to get ψR = PRψ (3.2)

PL :=
1 + γ5

2
to get ψL = PLψ,

where γ5 denotes the fifth Dirac (or gamma) matrix. The first four Dirac matrices can be written
in compact form as

γ0 =

(
12 0
0 −12

)
, γi =

(
0 τi
−τi 0

)
(i = 1, 2, 3), (3.3)

28



with τi the three Pauli spin matrices (equation 1.5) and 12 the 2-dimensional identity matrix. The
fifth Dirac matrix γ5 is now defined in terms of these matrices as

γ5 := iγ0γ1γ2γ3.

In the next section, we will see that symmetry breaking occurs for left- and right-handed particles
in the standard model, as they do not have the same quantum numbers.

3.3 Quantum numbers
Physicists have carried out many experiments to determine the quantum numbers of particles in
different reactions. In this section, we will state the conclusions that have been drawn from all
these observations: conclusions about the values of quantum numbers of different particles and
about which quantum numbers are conserved under which interactions. In chapter 5, we will use
these conclusions in our treatment of the mathematical framework of the standard model.

Of all the quantum numbers that a particle can possess, only three are believed to be conserved
in all fundamental interactions4, these are

• B: the baryon number (1
3 for each quark, − 1

3 for each anti-quark, 0 else)

• L: the lepton number (1 for each lepton, −1 for each anti-lepton, 0 else)

• Q: the electric charge, defined by
Q := I3 + 1

2YW ,

where I3 denotes the third component of weak isospin and YW is the weak hypercharge.

Weak isospin is a property that is carried by bosons of the weak interaction. The weak bosons
W± have isospin values ±1 and the electroweak boson Z0 has isospin value 0. In the following,
because we will only consider the third component of the weak isospin, we will call I3 just ‘weak
isospin’. Weak hypercharge is a quantum number that changes under the interaction of particles
with the Higgs boson.

An interesting, experimentally observed property of the weak interaction is that it transforms only
left-handed fermions and their corresponding right-handed anti-fermions. As a consequence, only
left-handed fermions (and their corresponding right-handed anti-fermions) have a nonzero value of
weak isospin. For each left-handed fermion with isospin value I3, its corresponding right-handed
antiparticle has isospin value −I3. The right-handed version of this fermion and its corresponding
left-handed anti-fermion, both have zero isospin.

In table 3.2, the quantum numbers that are conserved under both electroweak and strong inter-
actions are given for the first generation of fermions and the gauge bosons of the electromagnetic,
weak and strong interactions. Furthermore, the weak isospin and weak hypercharge are given as
well. From their values, one can see that in a particle interaction indeed only the weak bosons
can change the value of weak isospin and only the Higgs particle that of weak hypercharge. In
this table, the anti-particles could be given as well. The quantum numbers are given in so called
natural units. Natural units are obtained by choosing units such that ~ = c = 1.

Table 3.2 shows the conserved quantum number for left-handed particles. For right handed
particles, the table would be looking the same, except from the value of I3. As already men-
tioned, this value is zero for all right-handed particles and for their corresponding left-handed
anti-particles.

3.3.1 Quark flavour
Furthermore, each quarks can be given a flavour. For example, the flavour quantum number charm
(C) is given by

C = nc − nc̄ (3.4)
4There exist grand unification theories in which only the difference between B and L has to be conserved and

the individual quantum numbers can vary over an interaction. However, such a violation has not yet been observed
[13]
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Quarks Name S B L Q I3 YW

u up 1
2

1
3 0 + 2

3 + 1
2

1
3

d down 1
2

1
3 0 − 1

3 − 1
2

1
3

Leptons
e electron 1

2 0 1 -1 − 1
2 -1

νe electron neutrino 1
2 0 1 0 + 1

2 -1
Gauge bosons

γ photon 1 0 0 0 0 0
W±, Z0 weak bosons 1 0 0 ±1,0 ±1, 0 0

gi(i = 1, .., 8) gluons 1 0 0 0 0 0
Higgs boson

h Higgs boson 0 0 0 0 − 1
2 1

Table 3.2: The elementary particles under consideration. The last six columns correspond with
some quantum numbers of the particles: S denotes the spin, B the baryon number, L the lepton
number, Q the charge, I3 the weak isospin and YW the weak hypercharge. The quantum numbers

are given in natural units.

with nc the number of charm quarks in the system under consideration and nc̄ the number of
charm anti-quarks. In the same way, flavour quantum numbers can be defined for the strange quark
(S), the top quark (T) and the bottom quark (B’). Flavour is conserved by strong interactions,
but violated by weak interactions. Therefore, we did not include flavour quantum numbers in
table 3.2.

3.3.2 Quark color
Protons are baryons and hence they consist of three quarks. Based on the quantum numbers of u
and d, we can identify the proton with the quark combination uud5. Then the proton has charge
+ 2

3 + 2
3 −

1
3 = +1, baryon number + 1

3 + 1
3 + 1

3 = +1 (so indeed, it is a baryon) and lepton number
0 + 0 + 0 = 0 (so it is not a lepton). Other particles can be identified with quark combinations as
well. For example, the ∆++-baryon corresponds with the quark combination uuu.

However, this identification is puzzling, for u and d are fermions and the Pauli exclusion principle
states that two identical fermions are not allowed to be in the same ground state. So why can the
proton consist of the quark combination uud, which clearly has two identical quarks u occupying the
same state? And if it would, for some yet unknown reason, be allowed to have two identical quarks
in the same state, then why have there never been observed any particles that could correspond
with a quark combination qq or qq for some quark q with anti-quark q? Another interesting
observation is that, while the Pauli exclusion principle would allow singe quarks to exists, there
have never been observed any particles that could consist of a single quark.

These puzzling observations have led physicists to introduce the quantum number ‘color’. Quarks
have been assigned a color that is either red (R), green (G) or (B). Their corresponding anti-quarks
have the colors cyan (R), magenta (G) and yellow (B). Quark configurations are now required to
be colorless, which means that they have to be unchanged by rotations in the R, G, B space.

This requirement has great impact on the allowed particles, for there are only three ways in which
quark configurations can be colorless, namely in the combinations

• RGB

• RGB

• RR, GG or BB.

These options are visualised in figure 3.1. From these combinations all physically allowed hadrons
can be determined. This will be done in chapter 5, using the representation theory of chapter 2.

5In fact it is a superposition of quark combination uud, udu and duu [4]. However, because the proton field is
normalized and the combination uud, udu and duu all have the same quantum numbers, the arguments that follow
still hold.
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By requiring the quark compositions to be colorless, we see that single quarks and many quark
combinations that would have been allowed by the Pauli exclusion principle cannot exist.

Figure 3.1: The three circles R, G, B and their overlapping regions show in which ways two our
three quarks can can be combined to a colorless (white) particle.

Evidence for the existence of color is ample. One example is the R-ratio: the probability that e+e−

decays into a hadron (consisting entirely of strongly interacting quarks) divided by the probability
that e+e− decays into the muon pair µ+µ−. If quarks have color, the decay of e+e− into a hadron
can happen, with equal probability, in three different ways, as each hadron can be colorless in three
different ways, by permutations of (R,G,B). This means that in the decay

e+e− → hadrons, (3.5)

each quark has to be counted three times, one time for each color. The R-ratio can be determined
experimentally and indeed is found to be three times larger then would be the case if quarks did
not have color, hereby giving evidence for the actual existence of color.
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Chapter 4

Gauge theory

The interactions of particles under the electromagnetic, weak and strong force, are believed to
be closely connected with certain symmetry principles. More specifically, the interactions are
believed to be dictated by so called local gauge symmetries. In this chapter, we will describe these
symmetries using gauge theory, which has been introduced in section 3.1.

This chapter starts in section 4.1 with a general introduction to Lagrange formalism and particle
fields, which lie at the basis of gauge theory. In section 4.2, we look at the global invariance of
U(1), to prepare ourselves for the treatment of the local gauge invariances of U(1), SU(3) and
SU(2) in section 4.3–4.5 respectively. The last of these three sections is the most extensive. It
treats the subject of spontaneous symmetry breaking, which is needed to be able to integrate the
massive gauge bosons of the weak interaction in our theory.

We will see this necessity in chapter 5, where we will combine the representation theory of chapter
2 and the gauge theories of this chapter to form a mathematical framework that corresponds with
the structure of the standard model that has been described in chapter 3. Until chapter 5, we will
keep our treatment of the gauge theory of U(1), SU(2) and SU(3) general and give only a few
hints to the actual physical situation.

4.1 Lagrange formalism
In this chapter, we will describe particle fields. Particle fields can be seen as functions, that
assign some value (that gives information about the particle) to every point in space or space-time.
A concrete and well-known example of a particle field that you have probably already seen and
that we have encountered in section 3.1, is the wave function Ψ(x, t) of a non-relativistic electron
(with x = (x, y, z)), that satisfies the Schrödinger equation. The physical significance of the wave
function lies in its modulus, which defines the probability of an electron to be at a location x at
time t [7].

In the sequel, we will denote the space-time coordinates by the four-vector xµ := (x0, x1, x2, x3).
In four-vector notation, xµ is another four-vector: xµ = (x0,−x1,−x2,−x3). The parameter µ
can be seen as a space-time index, running from 0 to 3, with value zero for the time coordinate
t and values 1,2,3 for the spatial coordinates x, y and z. When this parameter occurs twice in
a multiplication, once as subscript and once as a superscripts (for example: aµbµ or aµbµ), this
corresponds to the Einstein summation convention, that has been introduced in section 1.3. In
the following, we will always use Greek characters to denote a summation from 0 to 3 for the
space-time coordinate xµ.

The aim of this chapter is to find an equation for the (quantum and relativistic) particle fields of
the particles of the standard model. For this, we use the Lagrange density L. It is related to the
Lagrangian L := T − V (where T denotes the kinetic and V the potential energy of the system
under consideration), by

L =

∫
L d3x,
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with x = (x1, x2, x3) in space-time coordinate notation. The action S of a system is defined to
be

S :=

∫
L dt =

∫
L d3xdt. (4.1)

The Euler-Lagrange equations, that describe a system with finitely many generalized coordinates
qi(t), (i = 1, .., n), can be extended to a formalism with continuously varying coordinates φ(xµ).
This extension is determined by a transformation of the action S [4]

S(qi,
∂q̇i
∂t
, t)→ S (φ, ∂µφ, xµ) , (4.2)

where φ denotes a particle field and where ∂µφ is short notation for

∂µφ :=
∂

∂xµ
φ =

(
∂

∂x0
,
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
φ

=

(
1

c

∂

∂t
,
∂

∂x
,
∂

∂y
,
∂

∂z

)
φ.

(4.3)

The extension from the discrete to the continuous formalism, results in an equation for the Lagrange
density [4]

∂

∂xµ

(
∂L

∂(∂φ/∂xµ)

)
− ∂L
∂φ

= 0. (4.4)

From now on we will follow the convention to call L itself the Lagrangian. Equation 4.4 gives
a relationship between any particle field and its Lagrangian. In the next sections, we will state
the Lagrangian for different particle fields and extend it to a ‘complete’ Lagrangian using gauge
theory1.

4.2 U(1) global invariance
Before we treat local gauge invariances, we first give an example of a global invariance of the
Lagrangian. For this, consider a spin-1/2 particle. This particle can be described by a four-
component complex field ψ(xµ). The Lagrangian is in this case given by [4]

L = iψ̄γµ∂µψ −mψ̄ψ. (4.5)

In this equation, ψ̄ := ψ∗γ0, m is the mass of the spin-1/2 particle, ∂µ is again the derivative
(equation 4.3) and γµ denote the four Dirac matrices that have been introduced in equation 3.3.
The Dirac matrices are 4-dimensional. Hence, the multiplication in the first term of equation
4.5 is well-defined, because the wave function is a 4-dimensional column vector, whose conjugate
transpose ψ∗ is a 4-dimensional row vector.

Suppose that we transform the field as

ψ → eiqαψ, (4.6)

where α ∈ R is the phase and where the parameter q ∈ R denotes the strength of the phase
transformation. By introducing q, we look ahead to chapter 5, where we will look at fields that
transform with different strengths and where q will start playing an important role. When ψ
transforms according to equation 4.6, its derivative and hermitian conjugate transform as

∂µψ → eiqα∂µψ, (4.7)

ψ̄ → e−iqαψ̄, (4.8)
so that by substitution of these transformation in equation 4.5, we can immediately see that the
Lagrangian L is unchanged. We recognise the set of phase transformations of the form eiqα, with
q, α ∈ R, as the abelian Lie group U(1).

The invariance of the Lagrangian under the transformation of the field by equation 4.6 is a global
symmetry: we can choose α arbitrarily, as for any value of α the Lagrangian is unchanged after
transformation.

1The explanation of how these initial Lagrangians are derived, goes beyond the scope of this thesis. The derivation
is based on the spin and mass of the particle and on the requirement of Lorentz invariance of the Lagrangian. In
the following, we thus take these Lagrangians for granted and focus on the development of a gauge theory for the
different particle fields.
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4.3 U(1) local gauge invariance
The global symmetry of section 4.2 is a very general form of invariance. A local gauge invariance of
the Lagrangian would be a stricter requirement and could be found if α is taken to be a function of
space-time. In the following, we will often denote a function f , that is a function of the space-time
coordinates xµ, by f(x) and omit the subscript or superscript µ. Hence, we write α = α(x) for the
space-time dependent phase.

The requirement of local gauge invariance is motivated by the thought that certain quantum
numbers (such as electric charge and color) are conserved not only globally, but locally as well.
However, if we make the same substitution as in equation 4.6 - 4.8, but now with α a function of
space-time, by the product rule we get

∂µψ → eiqα∂µψ + iqeiqαψ∂µα.

Clearly, in the derivative of ψ, an extra term arises that causes the Lagrangian to vary. To get the
desired invariance, we search for a modified derivative Dµ, that transforms like ψ itself, namely
as

Dµψ → eiqαDµψ,

so that the phase factor cancels the phase factor of ψ̄, as it did in the global invariance of section
4.2. Our desire can be fulfilled by defining

Dµ := ∂µ − iqAµ, (4.9)

where Aµ is a new vector field that transforms as

Aµ → Aµ + ∂µα. (4.10)

The transformation of Aµ is chosen such that Dµ transforms as

Dµψ = (∂µ − iqAµ)ψ

→ eiqα∂µψ + iqeiqαψ∂µα− iq(Aµ + ∂µα)eiqαψ

= eiqα(∂µ + iq∂µα− iqAµ − iq∂µα)ψ

= eiqα(∂µ − iqAµ)ψ

= eiqαDµψ,

as desired. Aµ is called the gauge field. Its introduction is necessary to be able to meet the demand
of local gauge invariance.

With our new derivative Dµ, the Lagrangian of equation 4.5 becomes

Lψ = ψ̄(iγµ∂µ −m)ψ + qψ̄γµψAµ. (4.11)

To make the theory complete, we look at whether there can still be added extra, gauge invariant
terms to the Lagrangian. The occurrence of Aµ in the ‘new’ Lagrangian of equation 4.11, motivates
us to search for an extra kinetic energy term of the form 1

2φ
2 in terms of the field Aµ, that is gauge

invariant as well. If such a term indeed exists, we can regard the total Lagrangian L as the sum of
the Lagrangian of the original spin-1/2 particle and the Lagrangian of the new gauge field.

L = Lψ + LA,

with Lφ given by equation 4.5 – only with the derivative replaced by the gauge invariant derivative
Dµ – and with LA given by

LA = 1
2φ

2,

for a still unknown field φ. However, the addition of LA to the total Lagrangian, is only possible
if LA is gauge invariant. We will show that this is indeed the case, by defining the so called field
strength tensor Fµν as

Fµν := ∂µAν − ∂νAµ. (4.12)
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Now, if our original field ψ transforms with a local phase transformation eiqα, Fµν transforms
as

Fµν := ∂µAν − ∂νAµ

→ ∂µ(Aν + ∂να)− ∂ν(Aµ + ∂µα) equation 4.10
= ∂µAν + ∂µ∂να− ∂ν∂µα− ∂νAµ

= ∂µAν − ∂νAµ interchanging partial derivatives of third term
= Fµν

from which it follows that Fµν is gauge invariant. This means that − 1
4FµνF

µν is gauge invariant
as well, and hence that we are allowed to add an extra term − 1

4FµνF
µν to the Lagrangian.

There might still be other gauge invariant terms that we can add to the Lagrangian. Could the
gauge field possibly induce an extra mass term in the Lagrangian? The answer to this question
is no, for this term would be of the form 1

2m
2
AAµA

µ, with mA denoting the mass of the particle
corresponding to the gauge field, and this mass term is not gauge invariant, because Aµ is not
gauge-invariant (see equation 4.10). Therefore, we must conclude that the particle of the gauge
field is massless.

Thus, the symmetry requirement of local phase invariance of the Lagrangian of an arbitrary spin-
1/2 particle, has resulted in an interacting field theory, with the massless gauge field functioning
as the interacting field particle. Our final Lagrangian for this particle is

L = iψ̄γµ∂µψ −mψ̄ψ + eψ̄γµψAµ − 1
4FµνF

µν . (4.13)

4.4 SU(3) local gauge invariance
In the same way as in section 4.3, we can try to obtain an interacting field theory for local gauge
invariance under transformation of the Lie group SU(3) (that we will interpret as QCD in section
5.2). The Lagrangian for the field qj (with j = R,G,B) is [4]

L = q̄j(iγ
µ∂µ −m)qj .

In this equation, q̄j := q∗j γ
0 and γµ and ∂µ are as before. Under SU(3) transformations, the field

q(x) = (qR(x), qG(x), qB(x))T transforms as

q→ Uq = eiξaT
a

q, (4.14)

where U is any element of SU(3), which by theorem 1.3 we are allowed to write as eiξaT
a

. Here,
T a (a = 1, .., 8) are the Gell-Mann matrices, as in section 1.3 and ξa the real group parameters.
In equation 4.14, again the Einstein notation is used. Because U is hermitian (UU∗ = 1, from the
definition of SU(3)) it holds that U∗ = U−1 and hence that, using the properties of the matrix
exponential,

(e−iξaT
a

) = (eiξaT
a

)−1 = U−1 = U∗ = (eiξaT
a

)∗ = e(iξaT
a)∗ = e−iξ

∗
aT

a∗

.

Because the ξa are real, it follows that2

T a = T a
∗
. (4.15)

Just as in section 4.3, we look at what happens to q̄ and ∂µq if q changes according to equation
4.14, with the group parameters a function of space-time: ξa = ξa(x). It suffices to look only at
infinitesimal phase transformations in SU(3), because by theorem 1.3, we can write each U ∈ SU(3)
as

U = eX = lim
n→∞

(
1 +

X

n

)
, (4.16)

for X ∈ su(3). Hence, we see that each element of SU(3) can be built up from infinitesimal
transformations around the identity.

2This could also be concluded by looking directly at the eight Gell-Mann matrices.
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If we take an infinitesimal phase transformation of q → [1 + igξaT
a]q (with g playing the role of

field strength parameter, which was played by q in section 4.3), then we get first of all

q∗ → ([1 + i(gξaT
a)]q)∗ = q∗[1− i(gξaT a)∗] = q∗[1− igξaT a].

The last equality holds by equation 4.15. For the derivative we get

∂µq→ [1 + igξaT
a]∂µq + igT aq∂µξa.

The extra term igT aq∂µξa ruins the invariance of the Lagrangian. We therefore again introduce a
new derivative Dµ, given by

Dµ := ∂µ − igTaGaµ, (4.17)

with this time not one but eight gauge fields Gaµ. We initially take the gauge fields such that they
transform in the same way as Aµ in equation 4.10, namely like

Gaµ → Gaµ + ∂µξa. (4.18)

but then run into a problem. From our definition of Dµ, an extra term arises in the Lagrangian
that should be gauge invariant, namely q∗γµTaq. We see that

q∗γµTaq→ q∗[1− iξaT a]γµTa[1 + iξaT
a]q

= q∗γµTaq + iξbq∗γµ(TaTb − TbTa)q + ξbξcTbq∗γµTaTcq

= q∗γµTaq + iξbq∗γµ[Ta, Tb]q (order ξ2 is negligible)

= q∗γµTaq− f cabξb(q̄γµTcq) (equation 1.7)

6= q∗γµTaq.

In section 4.3, this problem did not occur. For, as U(1) is abelian (and has a 1-dimensional Lie-
algebra), its generator always commutes. Indeed, if SU(3) would have been abelian, the structure
constants fabc would all be zero, so that the term q∗γµTaq would still be invariant under our
SU(3) transformation. This problem can luckily be solved quite easily, by adding an extra term
to equation 4.18 and letting Gaµ transform as [2]

Gaµ → Gaµ + ∂µξ
a + gfabcξ

bGcµ. (4.19)

Under this transformation of the gauge fields and with our new derivative Dµ, one can check that
the Lagrangian L is invariant under local gauge transformation. It is thus given by

L = q∗(iγµ∂µ −m)q− g(q∗γµTaq)Gaµ.

Again we look at which additional, invariant terms we can add to the Lagrangian. Specifically, we
can look at kinetic and mass terms for each gauge field. However, a term of the form 1

2m
a
G(Gµ)2

is not gauge invariant, unless mG is zero, from which we conclude that the gauge fields must be
massless.

Furthermore, we can search for a kinetic energy term for each gauge field. This is a term of the
form 1

2 (∂µψ
µ)2 for some field ψ that is a function of ∂µGµa . Analogously to our approach for the

field strength Fµν in section 4.3, one can show for Gµν that the term − 1
4G

a
µνG

µν
a results in a gauge

invariant kinetic energy term for the gauge fields Gaµ, when Gaµν is defined by

Gaµν := ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν . (4.20)

Adding the kinetic term to the Lagrangian, results in

L = q∗(iγµ∂µ −m)q− g(q∗γµTaq)− 1
4G

a
µνG

µν
a , (4.21)

the final, gauge invariant Lagrangian for the field q.
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4.5 SU(2) local gauge invariance
We had a good reason to start with the local gauge invariances of SU(3) instead of the invariances
of SU(2), which is of smaller dimension and hence usually easier to examine. In section 5.1,
we will see how SU(2) can be used to describe the (electro-)weak interactions. However, the
weak interactions have one big difference from the electromagnetic and strong interactions that
complicates the determination of the complete Lagrangian for the weak interactions. The difference
is that the force carriers of the weak interaction – that are closely connected with the gauge fields of
our theory (which we will make explicit in section 5.1) – are massive. If we use the same approach
as in section 4.4 for the Lagrangian of the weak interactions, it will once more follow that the gauge
fields correspond to massless particles. We do not want our theory to diverge from the physical
observations and hence a different approach must be taken.

We could for example let go the demand of invariance of the Lagrangian of the (electro-)weak
interaction under local transformations, as this was (initially) just done on “aesthetic grounds”.
We would then introduce mass terms of the form 1

2m
2WµW

µ for the gauge fieldWµ and ignore the
symmetry-breaking that they cause. However, if one does this, one encounters divergences that
cannot be restored and make the theory meaningless3.

We therefore do not give up local gauge invariance and try a second approach in which we do
introduce masses and still try not to break the gauge invariance. We will go with small steps
to our final goal, by first considering a (nonphysical) real scalar field, then – firstly global and
secondly local gauge – invariance of a complex scalar field and finally local gauge invariance of a
complex 2-dimensional vector field on which the symmetry group SU(2) is working.

4.5.1 Spontaneous symmetry breaking
In this subsection, we will introduce the subject of spontaneous symmetry breaking on the basis
of an nonphysical world that consists only of real, scalar particles. In such a world, a particle field
φ can be describe by the Lagrangian

L = 1
2 (∂µφ)2 − ( 1

2µ
2φ2 + 1

4λ
2φ4), (4.22)

with λ > 0. Our Lagrangian is invariant under the operation that replaces φ by −φ. If µ2 > 0, we
are in a familiar situation. Then the Lagrangian describes a scalar field with mass µ, as equation
4.5 did for the complex field of a spin-1/2 particle, but then with an extra term φ4 that tells us
that φ is a self-interacting field. The ground state (the state with the lowest energy) is equal to
φ = 0.

A new and interesting situation occurs when µ2 < 0. In that case, the potential energy V ,

V = 1
2µ

2φ2 + 1
4λ

2φ4,

has two minima at φ = ±ν = ±
√
−µ2/λ (and a local maximum at φ = 0). Because the kinetic

term vanishes for constant φ, the ground states of the Lagrangian for µ2 < 0 are at φ = ±ν. We
make the choice to look only at φ = ν. This is a choice that nature also has to make, for the
particle will be in only one of the ground states. The choice causes no loss of generality because of
the invariance of the Lagrangian under a change φ→ −φ. We look at small perturbations around
the minimum ν by writing the particle field as

φ(x) = ν + η(x)

with η(x) representing small fluctuations about the ground state. Substituting this equation for φ
in the Lagrangian gives a new Lagrangian in terms of η(x), namely

L′ = 1
2 (∂µ[ν + η(x)])2 − ( 1

2µ
2[ν + η(x)]2 + 1

4λ
2[ν + η(x)]4)

= 1
2 (∂µη(x))2 − λν2η(x)2 − λνη3 − 1

4λη(x)4 + const. (ν constant, µ2 = −ν2λ).

3‘Meaningless’ in that it can not predict anything [4]. More specifically, the theory becomes what is called
nonrenormalizable. A quantum field theory has to be renormalizable to be able to work on all scales. In a way,
the place where quantum mechanics and general relavitity clash, is on their renormalizability, as the quantum field
theories of all but the gravitational force are renormalizable [14].
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In this equation we see that the field η has mass term with sign opposite to the mass term of our
original Lagrangian. We namely have a term −λν2η(x)2, which is smaller than zero because both
λ and ν are assumed to be positive, while equation 4.22 has mass term − 1

2µ
2ψ2 > 0, as µ2 < 0.

We can thus identify a mass in the equation for L′. By writing down the equality

−λν2η(x)2 = −1

2
mη(x)2,

we see that the mass term is equal to
mη =

√
2λν2.

Something strange has happened. The two Lagrangians L and L′ are equivalent and yet they
do not translate to the same physical situation. The solution lies in the fact that we have used
perturbation theory. One can check that in perturbation theory L does not converge4, while L′
does [4]. Therefore, only L′ gives the correct physical result. This means that the scalar particle
φ described by both L and L′ has a mass.

We call the way that this mass was ‘revealed’ spontaneous symmetry breaking. One can make the
following comparison with a less abstract, physical example. Consider a needle that is compressed
with a force F along its axis (which we take to be the z-axis of a 3-dimensional, Euclidean coordinate
system). At first sight, the most logical position of the needle, is that it stays with its axis at
x = y = 0. However, this is only a meta-stable situation. When slightly perturbed in the x-or
y-direction, the needle will buckle and stay bend in the direction of the perturbation. In this
new ground state, that has been determined arbitrarily, the original symmetry of the system has
been broken. The same happens for the Lagrangian of the particle field φ: by allowing a slight
perturbation η(x) (which is indeed present in a realistic world due to quantum fluctuations) of its
initial meta-stable state, the reflection symmetry of the Lagrangian has been broken.

4.5.2 Spontaneous breaking of a global symmetry
We now go one step further and look at a complex scalar field φ = (φ1+iφ2)/

√
(2). The Lagrangian

of this field is given by

L = (∂µφ)(∂µφ)− µ2φφ− λ(φφ)2

= 1
2 (∂µφ1)2 + 1

2 (∂µφ2)2 − 1
2µ

2(φ2
1 + φ2

2)− 1
4λ(φ2

1 + φ2
2)2,

(4.23)

where φ̄ = φ∗γ0. This Lagrangian is invariant under the global transformation φ → eiαφ. The
first two terms in the last part of the above equation are kinetic energy terms. The last two form
the potential energy −V . From analysis, we know that a function V (φ1, φ2) reaches its extremes
when

∂V

∂φ1
=
∂V

∂φ2
= 0,

So when

∂V

∂φi
= µ2φi + λφ3

i + λφiφ
2
j

= φi(µ
2 + λ(φ2

i + φ2
j ) = 0

for (i, j) = (1, 2) and (2, 1). This corresponds with either φ1 = φ2 = 0 or

φ2
1 + φ2

2 = −µ
2

λ
=: ν2.

The first extreme is local maximum, the second (which is in fact a circle of extremes) is a global
minimum. We can – again without loss of generality, this time because or the invariance of the
Lagrangian under the global phase transformation eiα – choose one of the minima. We take
φ1 = ν, φ2 = 0. A perturbation around this minimum will be of the form

φ(x) =
√

1
2 (ν + η(x) + iξ(x)). (4.24)

4For then we would perturb around the unstable ‘ground state’ φ = 0.
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Just as in section 4.5.1, when we substitute the perturbed ground state into the original Lagrangian,
we get a Lagrangian of the form

L′ = 1
2 (∂µξ)

2 + 1
2 (∂µη)2 + µ2η2 + rest terms.

The rest terms consist of constants and functions in which η or ξ occurs in higher powers than 2.
In the new Lagrangian, we can identify a positive mass term mη =

√
−2µ2. However, while the

field ξ(x) does have a kinetic term, it has no mass term. This means that besides an extra, desired
massive gauge field, the spontaneous symmetry breaking of the Lagrangian of a complex scalar
particle also gives us an extra, massless scalar particle, which we call the Goldstone boson. We
will ignore the Goldstone boson for a while and continue to local gauge symmetry in the next
subsection.

4.5.3 Spontaneous breaking of a local gauge symmetry
For the gauge group U(1)

We are almost ready to study the spontaneous symmetry breaking of local SU(2) gauge symmetries.
In this subsection, we first look at the spontaneous symmetry breaking of the simpler group U(1)
and then continue to that of SU(2). In section 4.3, we have seen that to make the Lagrangian
invariant under a transformation

φ→ eiα(x)φ,

we must replace ∂µ by the alternative derivative Dµ given by equation 4.9, where the gauge field
Aµ transforms as in equation 4.10. Hence, the gauge invariant Lagrangian for the complex scalar
field φ becomes

L = (∂µ + iqAµ)φ̄(∂µ − iqAµ)φ− µ2φ̄φ− λ(φ̄φ)2 − 1
4FµνF

µν , (4.25)

by making the substitution ∂µ → Dµ in the first part of equation 4.23 and adding the gauge
invariant kinetic energy term of the gauge field Aµ.

If µ2 > 0 this equation almost corresponds with the Lagrangian for a charged scalar spin-1/2
particle of mass µ given by equation 4.13. The only difference is the extra ‘self interaction term’ φ4.
However, the situation µ2 > 0 is not in our interest, for we again want to investigate which masses
occur due to spontaneous symmetry breaking. Hence, we look at the case µ2 < 0.

The potential energy of the Lagrangian in equation 4.25 is the same as that of equation 4.23 and
therefore has the same global minima at φ2

1 +φ2
2 = ν2. We can again look at the influence of slight

perturbations around this minima and substitute 4.24 into equation 4.25 to get

L′ = 1
2 (∂µξ)

2 + 1
2 (∂µη)2 − ν2λη2 + 1

2q
2ν2AµA

µ − qνAµ∂µξ − 1
4FµνF

µν + rest terms.

The rest terms are again terms in which ξ and η occur in orders higher than two. We do not
write them down because we are only interested in the mass terms. In L′, we can identify three
particle fields, namely that of the massless Goldstone boson ξ, the massive scalar particle η and,
most importantly, a massive gauge field Aµ. This last gauge field could be able to function as the
massive, interacting particles of the weak interaction, that we introduced in the beginning of this
section and that we desire to merge into our theory. From the Lagrangian, we see that the masses
of ξ, η and Aµ are given by

mξ = 0, mη =
√

2λν2, mA = qν.

However, still the unwanted, massless Goldstone boson occurs in our Lagrangian. Luckily, this
problem can be solved by noting that the identification of the particles in equation 4.25 cannot
be correct. The occurrence of the extra term Aµ∂

µξ shows that the particles are not distinct, but
have a certain dependency. One can choose a different set of real fields h, θ and Aµ such that the
theory is independent of the field θ 5. This means that our final Lagrangian describes only two
interacting particles, namely a massive gauge field Aµ and a massive, real, scalar particle h.

5The details on how to choose these fields can be found in e.g. [4].
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For the gauge group SU(2)

Finally, we are ready to treat the spontaneous symmetry breaking of local SU(2) gauge symmetries.
We again take a Lagrangian comparable to that in equation 4.22, but now with φ a complex 2-
dimensional vector of the form

φ =

(
φa
φb

)
=
√

1
2

(
φ1 + iφ2

φ3 + iφ4

)
.

Hence our Lagrangian becomes

L = (∂µφ)∗(∂µφ)− µ2φ∗φ− λ(φ∗φ)2.

The above Lagrangian is invariant under a global SU(2) transformation

φ→ Uφ = eα
ata ,

because UU∗ = 1, by the definition of SU(2). ta again denote the group generators and αa the
group parameters of SU(2) (with a = 1, 2, 3) as given in section 1.3. However, we require more than
global invariance and search for a Lagrangian that is invariant under local SU(2) transformations.
This can be done in the same way as we did for SU(3), namely by replacing the derivative ∂µ by
a new derivative Dµ, this time given by

Dµ := ∂µ − igtaW a
µ ,

whereW a
µ are three gauge fields that transform under an infinitesimal SU(2) transformation6

φ(x)→ [1 + αa(x)ta]φ(x),

as7 [2]
Wµ →Wµ + gεabcW

b
µα

c + ∂µα
a.

Furthermore, we can add a gauge invariant field strength tensor of the form

W a
µν =:= ∂µW

a
ν − ∂νW a

µ + gεabcW
b
µW

c
ν ,

which is analogue to the field strength tensor in equation 4.20, but with a plus instead of a minus
in the last term, which occurs because the structure constants of SU(2) are −εabc (while those of
SU(3) are +fabc).

So we get – having passed quickly over the steps that we explained in much more detail for SU(3) – a
final Lagrangian for φ given by

L = (∂µ − igtaW a
µφ)∗(∂µ − igtaW a

µφ)− V (φ)− 1

4
W a
µνW

µν
a , (4.26)

with V (φ) the potential energy that can be received directly from the original Lagrangian and is
given by

V (φ) = µ2φ∗φ+ λ(φ∗φ)2.

We look again at the situation where µ2 < 0 and λ > 0. Minima of V (φ) can be found when

φ∗φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) = −µ

2

λ
.

Again we choose just one of all these minima (without loss of generality because of invariance of the
Lagrangian under global SU(2) transformations). We can for example take the minimum

φ1 = φ2 = φ4 = 0, φ2
3 =

µ2

λ
=: ν2.

6Just as for SU(3), each element g = eX ∈ SU(2) can be build up from infinitesimal transformations [2]. See
also equation 4.16.

7Compare with equation 4.19 to see that the transformation below is exactly as we saw for the gauge fields of
SU(3).
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At this minimum, the ground state of φ becomes

φ =
√

1
2

(
0
ν

)
.

One can check that a general perturbation of this ground state (where all four scalar fields are
perturbed) corresponds with perturbing the ground state only around φ3 = ν with the amount of
perturbation given by the scalar field h(x), so that we get [4]

φ(x) =
√

1
2

(
0

ν + h(x)

)
as a perturbed ground state of φ. Substitution of this field in equation 4.26, results in a final,
gauge invariant Lagrangian that contains only the scalar field h and the three massive gauge fields
W a
µ .

The masses of the gauge fields can be determined by looking only at the term in which |taW a
µ |2

occurs. From equation 4.26, we see that this is the term

∣∣igtaW a
µφ
∣∣2 = g2

∣∣∣∣12 1√
2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ W 3
µ

)(
0
ν

)∣∣∣∣2 φ = φ0, equation 1.5

=
g2ν2

8

[
(W 1

µ)2 + (W 2
µ)2 + (W 3

µ)2
]
,

where we have written ( )∗( ) as | |2 to shorten the notation. By comparing this equation to
1
2M

2B2
µ, the standard form of a mass term of a boson Bµ, we see that

MWa
µ

=

√
g2ν2

4
=

1

2
gν, (4.27)

for all three gauge fields W a
µ .
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Chapter 5

Particle representations

In this chapter, we apply the knowledge of Lie groups and representations gained in chapter 1
and 2, to the elementary particles of the standard model that have been described in chapter 3.
In chapter 4, we have seen three different types of gauge theories, namely with gauge invariance
under

• U(1), a Lie group with one generator Y , in section 4.3 and one gauge field Aµ

• SU(2), a Lie group with three generators ta(a = 1, 2, 3) and three gauge fields W a
µ , in section

4.5

• SU(3), a Lie group with eight generators Ta(a = 1, 2, ..., 8) and eight gauge fields Gaµ, in
section 4.4.

In general, particle fields can be represented by functions on R4 whose domain is some vector space
V on which group representations work. For the electroweak model this will be representations of
the direct product U(1)× SU(2), for QCD representations of SU(3). The representations dictate
how the particles transform under the group and hence which symmetries the particles have. In
this set-up, a system of two particles, can be represented by the tensor product representation
V ⊗ V .

In section 5.1, we will see how the representation and gauge theories of U(1) and SU(2) can
be combined to form the electroweak model. Hereafter, in section 5.2, we will explain how the
representation and gauge theory of SU(3) can be used to mathematically formulate QCD.

5.1 The electroweak model: U(1)× SU(2)

5.1.1 Representation theory
SU(2) plays a role in the electroweak interactions. The SU(2) transformations can be seen as weak
isospin transformations. Under this identification, the third generator of SU(2) can be identified
with I3. We will call these SU(2) transformations weak isospin transformations and denote them
by SU(2)L, as only left-handed particles are found to transform under these transformations.
Right-handed particles transform trivially, meaning that

t3ψR = 0,

for a right-handed particle field ψR. Left-handed particles on the other hand, transform under the
adjoint representation of SU(2). Physically, this means e.g. that a left-handed electron (with I3 =
− 1

2 ) can be transformed under the weak interaction into a left-handed neutrino (with I3 = + 1
2 ) with

the emission of a weak W− boson, while on the other hand right-handed particles do not interact
under the weak force. Furthermore, the group U(1) can be identified with weak hypercharge
transformations. We will denote it by U(1)Y to distinguish it from the U(1) transformations of
the quantum number Q, that we will encounter in the next subsection.
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5.1.2 Gauge theory
The theory described in section 4.3, almost completely agrees with QED if we interpret ψ as the
electron field; the phase parameter q as the electron charge e; the gauge field Aµ as the photon
field; and Fµν as the electromagnetic field strength tensor. In that case, from our conclusion that
no gauge invariant mass term of Aµ could be added to the Lagrangian, it follows that the photon
is massless, which indeed corresponds with the physical reality [4].

However, it is possible to combine the theory of electromagnetism with that of the weak interaction
in the unified electroweak model: a gauge theory whose Lagrangian is invariant under U(1)×SU(2).
As already mentioned in chapter 3, data of experiments suggest that under electroweak interactions,
the electric charge Q – which can be seen as a combination of weak isospin (corresponding with
the group SU(2)L) and weak hypercharge (corresponding with the group U(1)Y ) – is conserved.
In this combined theory a different physical interpretation of the gauge fields is made, which we
will treat in this section. In the following, we will denote the gauge field of U(1) by Bµ instead of
Aµ and use the term Aµ to denote the physical photon field.

We now want to formulate the physical fields Aµ,W± and Z0 in terms of the gauge fields of U(1)
and SU(2) in such a way that Aµ has zero mass and that the weak bosons are massive. The
local gauge theory of SU(2) for massive gauge fields tells us that if we incorporate massive force
carriers into the theory, inevitable another scalar field h appears in the Lagrangian of the initial
field φ. This scalar field corresponds with the field of the Higgs boson. The Higgs boson has been
introduced in chapter 3. If we manage to find a U(1) generator which is unbroken by the Higgs
field, we know that the corresponding gauge field is massless, as is desired for the photon.

The suitable generator is Q, which we will call the generator of ‘U(1)Q’. Q is defined by

Q := t3 + 1
2Y, (5.1)

where Y denotes the generator of U(1)Y and t3 is the third generator of SU(2)L, given by

t3 = 1
2

(
1 0
0 −1

)
.

If we compare equation 5.1 with equation 3.3, we can identify t3 with the weak isospin I3 and Y
with the weak hypercharge YW. Then, physically, Q corresponds with the electromagnetic charge.
Indeed, we see that it is such that it leaves the Higgs particle invariant. For with Q defined by
equation 5.1, we have

Q 1√
2

(
0
ν

)
= 1√

2

[
1
2

(
1 0
0 −1

)
+ 1

2

(
1 0
0 1

)](
0
ν

)
= 1√

2

(
1 0
0 0

)(
0
ν

)
=

(
0
0

)
.

This means that h is left invariant under local U(1)Q transformations, for then h→ eiαQh = h for
any local phase α(x). So under U(1)Q transformations, the symmetry remains unbroken and the
photon field – the gauge boson Aµ – of the U(1)Q gauge symmetries is massless.

The gauge field strength q is proportional to the charge of the particle field on which U(1)Q is
working. Because U(1) is abelian, we are free to choose q for different particle fields. This can be
seen by the following reasoning.

Consider a compact, connected Lie group G. Let g1 and g2 be two elements in G. By theorem 1.3,
we can write g1 = eq1X1 and g2 = eq1X2 , with X1 and X2 elements of the Lie algebra and where we
have incorporated the field strength q1 in our group. Now, for the definition of a group it follows
that

g3 = g1g2 ∈ G.
Suppose now that we describe the elements of G with another field with field strength q2. Take
e.g. q2 = 2q1. Then we can write the squares of our group elements g1 and g2 as g2

1 = (eq1X1)2 =
e2q1X1 = eq2X1 and in the same way g2

1 = eq2X2 . We would like to be able to write

g2
3 = g2

1 · g2
2 ,

for in that case the new field strength does not change the group multiplication. However, this is
only possible if G is abelian, for we only then we are allowed to write

g2
3 = (g1 · g2)2 = g1 · g2 · g1 · g2 = g1 · g1 · g2 · g2 = g2

1 · g2
2
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for all g1, g2 ∈ G.

The physical fields and the masses of the gauge bosonsW±, Z0 and γ of the electroweak interaction
can be found as follows. We start with substituting the ground state φ that we found in section
4.5 in the U(1) × SU(2) gauge invariant Lagrangian for the complex vector field φ. This causes
spontaneous symmetry breaking due to which mass terms arise. These mass terms corresponds
with the masses of physical particles. The real, physical, normalized fields that correspond with
these masses in terms of the field strengths and gauge fields of U(1)Y and SU(2)L are [4]

W±µ =
W 1
µ ± iW 2

µ√
2

MW = 1
2νg (equation 4.27)

Z0
µ =

g′W 3
µ + gBµ√
g2 + g′2

MZ = 1
2ν
√
g2 + g′2

Aµ =
gW 3

µ − g′Bµ√
g2 + g′2

MA = 0.

This finishes our treatment of the electroweak interactions.

5.2 Quantum chromodynamics: SU(3)

5.2.1 Representation theory
Let G = SU(3), and let C3 be its defining representation. This representation corresponds with
the internal degrees of freedom of a single quark when we interpret the colors red, green and blue
as e1, e2 and e3 of the standard basis of C3 respectively. In section 3.3, we have seen that quarks
have to be colorless. This means that they should corresponds with vectors that transform trivially
under permutations of {R,B,G}. These permutations can be given by the Weyl-group W of SU(3).
The Weyl-group is a discrete group of six elements that permutes the color basis of C3. More
precisely, it is the group consisting of transformations wσ : C3 → C3 such that

wσ(ei) = eσ(i), (5.2)

for a permutation σ of {e1, e2, e3} = {R,B,G}. An example of an element of W is0 0 1
1 0 0
0 1 0

 , (5.3)

which sends R,B and G to G,B and R respectively.

Because the Weyl-group clearly permutes all vectors in both C3 and C3∗ , we already see that no
particles consisting of a single quark can exist: any vector in C3 or C3∗ will change color under
transformation by some elements of the Weyl-group and hence is not colorless. Hence, if we want
to identify quarks with vectors, we will need to search for vector combinations that are unchanged
by transformations of elements in the Weyl-group.

Definition 5.1. The maximal trivial representation of the representation (π, V ) on a group G is
defined to be the vector space

V G = {v ∈ V : π(g)v = v ∀g ∈ G}.

Because the Weyl-group is a subgroup of SU(3), vectors in V G will transform trivially under the
Weyl-group. This means that all vectors v ∈ V G are colorless. Hence, physically allowed particle
fields exist only in representations that have a non-empty trivial subrepresentation.

In the introduction of this chapter, we have already seen that if a particle is represented by the
unitary representation (π, V ), then its anti-particle can be represented by the corresponding dual
representation. Hence, mathematically, a meson, which consists of a quark and an anti-quark,
would be a basis vector in C3 ⊗ C3∗ , which can be decomposed as [4]

C3 ⊗ C3∗ = C8 ⊕ C, (5.4)
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from which we see that the maximal trivial subrepresentation of C3 ⊗ C3∗ is 1-dimensional and
nonzero. Now, only vectors in the trivial representation of C3 ⊗C3∗ are ‘colorless’ and correspond
with physical particles. All other vectors are permuted by the Weyl-group. They can be identified
with the coloured gluons of the strong interaction.

We can also, for example, look at the representation of C3 ⊗ C3. This representation decomposes
as [4]

C3 ⊗ C3 = C6 ⊕ C3∗ , (5.5)

from which we see that C3 ⊗ C3 has no trivial subrepresentation. Hence, we can conclude that
there do not exist any particles that consist of only two quarks!

However, baryons are composed of three quarks, and are thus represented by the color representa-
tion C3 ⊗ C3 ⊗ C3 of SU(3), which decomposes as [17]

C3 ⊗ C3 ⊗ C3 = C10 ⊕ C8 ⊕ C8 ⊕ C. (5.6)

Hence, we see that C3 ⊗ C3 ⊗ C3 has one trivial subrepresentation which contains the colorless
quarks.

5.2.2 Gauge theory
The theory of QCD can be obtained from the gauge theory of SU(3). We interpret the eight gauge
fieldsGaµ as the eight vector gluon fields and g as the coupling constant of the strong force. Contrary
to the coupling constant q of the electromagnetic interaction, we have no freedom in choosing g.
In section 5.1, we already argued that only because U(1) is abelian, in section 5.1, we were allowed
to choose q in multiple ways. g on the other hand is fixed by experimental observations.

From our gauge theory it follows that gluons are massless, because no gauge invariant mass term
of the field Gµa could be added to the Lagrangian. Gaµν corresponds with the field strength tensor
of QCD.

If we compare the field strength tensor Gµν of QCD with that of QED, we see that Gµν contains
an extra term, that arises because SU(3) is non-abelian. Due to this extra term, the gauge bosons
are seen to be self-interacting and carry color charge [4], which corresponds with experimental
observations.

Now, finally, we can interpret equation 4.21 as the gauge-invariant Lagrangian for QCD, for the
eight interacting and self-interacting gluon fields Gaµ and the colorless quark field q.
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Chapter 6

Recommendations

This thesis has given an introduction to the symmetries of the standard model. However, the
picture that has been sketched is not complete. The standard model is a very complicated theory,
that can be studied at many depths. In this thesis, we have only treated the symmetries till a
certain extent and even then the treatment was not always complete. In this chapter, some recom-
mendations for further study (concerning already known topics) and further research (concerning
new investigations) will be made.

6.1 Further study
In this section, for each chapter, we name a few topics that can be studied further for a more
complete overview and – even more importantly – a deeper understanding of the symmetries of
the standard model.

Chapter 1: By the further study of Lie groups, a better intuition can be obtained of how the
Lie groups U(1), SU(2) and SU(3) function as symmetry groups and are connected to their Lie
algebra.

Chapter 2: We have treated the representation theory of SU(3) (and U(1)) only to a certain
extent and have omitted the representation theory of SU(2). Further study of the representation
theory of SU(2) and SU(3) and specifically of the decomposition of their tensor representations,
will enable the reader to further understand how U(1) × SU(2) and SU(3) dictate the particle
interactions under the electroweak and strong force and how they model the conservation and
violation of different quantum numbers in these interactions.

Chapter 3: In section 3.1, we have seen that Lorentz invariance is a requirement that follows
from special relativity. From general relativity it follows that the speed of light should be the
same in different frames of reference. Mathematically, this is a symmetry that can be described by
invariance under transformations of the so called Poincaré group. This description, together with
the representations of the Poincaré group, can be studied further to get a deeper understanding of
the Lorentz symmetry of the standard model.

Moreover, the physical meaning of the phenomenon of left- and right-handed particles and their
different treatment by the electroweak interactions, can be investigated further. With this, further
understanding of the mathematical description of left- and -right handed particles (as stated by
equation 3.2 – 3.3) can be obtained.

Chapter 4: Another reason to further study Lorentz invariance, is to understand how the initial
Lagrangians (such as the Dirac equation for spin-1/2 particles) that are posited in chapter 4 can
be derived for different particle fields. The derivation of these Lagrangians is also related to
the unitary representation theory of the Poincaré group, which ties with and extents the unitary
representation theory of chapter 2.

Chapter 5: Chapter 5 has gone briefly over the steps that are to be taken to be able to interpret the
representation and gauge theory of the earlier chapters with the particles and particle interaction
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of the standard model. This interpretation can be made more complete as follows: by extending
the representation theory of chapter 2. to be able to treat the electroweak model in more detail;
by showing in more detail which vectors in the representations correspond to which particles and
how these representations conserve and violate different quantum numbers and by considering the
– not fundamental – flavor symmetry of quarks.

6.2 Further research
As already mentioned in the introduction of this thesis, there are still multiple phenomena that the
standard model leaves unexplained. Further research has to be done, to better understand these
phenomena and to be able to incorporate them in our theory. Physicists are still searching for a
so called Grand Unification Theory (GUT), which includes all fundamental forces, by developing
theories that include symmetries (such as supersymmetry) and particles (such as the graviton)
beyond those of the standard model. Both theorists and experimenters try to support these
theories, but up until now, no working GUT has been found.

And, as often is the case, these searches for symmetries and particles beyond the standard model,
might motivate mathematicians and mathematical physicists to the further investigation of Lie
theory, representation theory or other mathematical areas: to mathematics beyond the standard
model.
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