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Summary 
 
Simulation of compositional problems in hydrocarbon reservoirs with complex heterogeneous structure requires 

adopting stable numerical methods that rely on an implicit treatment of the flux term in the conservation equation. 

The discrete approximation of convection term in governing equations is highly nonlinear due to the complex 

properties complemented with a multiphase flash solution. Consequently, robust and efficient techniques are 

needed to solve the resulting nonlinear system of algebraic equations. The solution of the compositional problem 

often requires the propagation of the displacement front to multiple control volumes at simulation timestep. 
Coping with this issue is particularly challenging in complex subsurface formations such as fractured reservoirs. 

In this study, we present a robust nonlinear solver based on a generalization of the trust-region technique to 

compositional multiphase flows. The approach is designed to embed a newly introduced Operator-Based 

Linearization technique and is grounded on the analysis of multi-dimensional tables related to parameterized 

convection operators. We segment the parameter-space of the nonlinear problem into a set of trust regions where 

the convection operators maintain the second-order behaviour (i.e., they remain positive or negative definite). We 

approximate these trust regions in the solution process by detecting the boundary of convex regions via analysis 

of the directional derivative. This analysis is performed adaptively while tracking the nonlinear update trajectory 

in the parameter-space. The proposed nonlinear solver locally constraints the updating of the overall compositions 

across the boundaries of convex regions. Besides, we enhance the performance of the nonlinear solver by 

exploring diverse preconditioning strategies for compositional problems. The proposed nonlinear solution 
strategies have been validated for both miscible and immiscible gas injection problems of practical interest. 

 

 



Introduction

Reservoir simulation is based on the solution of the discretized governing equations describing the mass
and energy transfer in the reservoir. The main source of nonlinearity is related to an implicit approxima-
tion of flux term in conservation equations which is needed for the robustness (unconditional stability)
of the reservoir simulation process. Therefore, efficient modeling of multiphase flow in reservoirs with
complex heterogeneous structures requires robust nonlinear solvers.

After the discretization of the governing Partial Differential Equations is complete, a nonlinear sys-
tem needs to be linearized. The most frequently used sets of variables for linearization are based on
natural (Coats, 1980) and molar formulations (Gabor et al., 1985; Collins et al., 1992) which uses phase-
dependent or mass-dependent variables respectively. Usually, linearization is made using Newton’s
method, which demands the assembly of the Jacobian and the residual for the combined system of equa-
tions. Due to the intrinsic nonlinear nature of the equations, Newton’s method is not guaranteed to
converge, and it is also known to be sensitive to the initial guess (Ortega and Rheinboldt, 1970; Deufl-
hard, 2004).

Once the solution of the linearized system is found, the nonlinear unknowns are updated and nonlinear
iterations are repeated until convergence. In reservoir simulation practice, heuristic techniques are used
to select the timesteps (Aziz and Settari, 1979). The use of such heuristics often leads to timestep
sizes that are either too conservative (i.e., small) or too large which often leads to wasted computations
(Younis, 2011). The limitation of timestep selection can be overcome by applying advanced nonlinear
strategy.

There are several advanced nonlinear solvers described in the literature for the natural formulation.
One of the promising ideas is the continuation method proposed by Younis (2011) that introduces a
continuous parameter changing between 0 to 1 through the timestep. This approach controls the residual
through the continuous integration along the nonlinear trajectory in parameter space. Another approach
is the flux-based trust region method, proposed by Jenny et al. (2009) for two-phase immiscible flow
with the S-shape fractional flow curves. This nonlinear solver is based on an inflection-point correction.
Later, Wang and Tchelepi (2013) extended the flux-based trust region for two-phase immiscible flow
and transport where buoyancy, capillary, and viscous forces are present.

To enhance further the performance of the advanced nonlinear solver, Wang (2012) proposed the pre-
conditioning strategy to overcome the slow convergence rate for viscous-dominated flow with initial
conditions started at the residual saturation. She demonstrated that the convergence difficulties are due
to the low wave propagation speed at the shock position where the injected fluid is about to invade a
single-phase cell. To obtain a better performance, Wang (2012) proposed to use the inflection point of
the flux function for the nonlinear preconditioning. However, this analysis was performed for simplest
physical formulation and was never extended and tested for more complex physics (including composi-
tional) or different formulation.

Even though different advanced nonlinear solvers were developed for the natural formulation, there is
a lack of advanced nonlinear strategies for the molar formulation. A version of trust-region correction
has been developed for molar formulation (Voskov and Tchelepi, 2011) but was not robust enough in
comparison with techniques proposed for the natural formulation. Recently, a new approach for the lin-
earization of governing equations, called operator-based linearization (OBL), was proposed by Voskov
(2017). In this approach, the exact physics of simulation model was approximated using abstract alge-
braic operators. In the OBL approach, the parameterization is performed dependent on the conventional
molar unknowns (pressure and overall composition).

In this work, we present an advanced nonlinear solver based on a generalization of the trust-region
technique for compositional multiphase transport in the OBL framework. First, we investigate the non-
linearity and detect boundaries of trust-region for the hyperbolic operator by assembling the directional
approximation of hessian matrix. Next, we design the nonlinear solver in which we track the nonlinear
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trajectory for binary and ternary kernel and approximate these trust regions in the solution process via
directional analysis of derivative. Moreover, we enhance our advanced nonlinear solver performance
further by introducing preconditioning for binary compositional kernel which can be directly extended
for compositional problems with more components.

Modeling approach

In this section we describe an operator form of governing equations used in our in-house open source
Delft Advanced Research Terra Simulator (Khait, 2019).

Governing equations

In this section, we describe the governing equations and nonlinear formulation for a general-purpose
compositional simulation. The transport equations for an isothermal multiphase compositional problem
with np phases and nc components can be written as:

∂

∂ t
(φ

np

∑
j=1

xc jρ js j)+div
np

∑
j=1

xc jρ jv j +
np

∑
j=1

xc jρ jq̃ j = 0, c = 1, . . . ,nc. (1)

Here, we introduce all variables in the equations as functions of spatial coordinate ξξξ and/or physical
state ωωω :

• φ(ξξξ ,ωωω)- porosity,

• xc j(ωωω)- the mole fraction of component c in phase j,

• s j(ωωω) - phase saturations,

• ρ j(ωωω)- phase molar density,

• v j(ξξξ ,ωωω)- phase velocity,

• q j(ξξξ ,ωωω,u)- phase rate per unit volume.

Spatial discretization

By applying a finite-volume discretization on a general unstructured mesh and backward Euler approxi-
mation in time, we transform the conservation equations into

V

(
(φ ∑

j
xl

c jρ js j)
n+1− (φ ∑

j
xc jρ js j)

n

)
−∆t ∑

j

(
∑
l∈L

xl
c jρ

l
jT

l
j ∆Ψ

l

)
+∆t ∑

j
ρpxc jq j = 0, (2)

where V is the volume of a control volume and q j = j̃ jV the source of a phase. Here we assume Darcy’s
law neglecting capillarity and gravity and used a Two-Point Flux Approximation (TPFA) with upstream
weighting introducing the summation over all interfaces L connecting the control volume with another
grid blocks. Based on these simplifications, ∆ψ l becomes a simple difference in pressures between
blocks a and b, where T l

j is a phase transmissibility. These assumptions are not required by the proposed
approaches, but help to simplify the further description.

Sources of nonlinearity

The main source of nonlinearity is related to the use of Fully Implicit Method (FIM) for time approx-
imation of the governing equations which requires the flux term in Equation 2 to be defined based on
the value of the nonlinear unknowns at a new timestep (n+1). The closure assumption of instantaneous
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thermodynamic equilibrium further increases the nonlinearity. We used overall molar formulation sug-
gested by (Collins et al., 1992). In this formulation, the following system must be solved at any grid
block contained a multiphase (np) multi component nc mixture:

Fc = zc−Σv jxc j = 0, (3)
Fc+nc = fc1(p,T,x1)− fc j(p,T,x j) = 0, (4)

Fj+nc∗np = Σ(xc1− xc j) = 0, (5)
Fnp+nc∗np = Σv j−1 = 0. (6)

Here zc = Σxc jρ js j/ρ js j is overall composition and fc j(p,T,xc j) is the fugacity of component c in phase
j. The solution of this system is called a multiphase flash (Michelsen, 1982) and needs to be applied at
every nonlinear iteration (Voskov and Tchelepi, 2012).

Operator form

We can rewrite Equation 2 as the component of a residual vector in general algebraic form. In this
case, each term can be represented as a product of state-dependent and space-dependent operators. The
resulting mass conservation equation, written for a control volume i in residual form, is

rc(ωωω) =V (ξξξ )φ0(ξξξ )(αc(ωωω)−αc(ωωω
n))−∑

l
β

l
c(ωωω)Λ(ωωω)∆tT ab(ξξξ )(pb− pa)+θc(ξξξ ,ωωω,u) = 0, (7)

where operators are defined as

αc(ωωω) = (1+ cr(p− pre f ))
np

∑
j=1

xc jρ js j, (8)

βc(ωωω) =
∑ j xc j

kr j
µ j

ρ j

Λ
= ∑

j
xc j f jρ j, (9)

Λ(ωωω) = ∑
j

kr j

µ j
, (10)

θc(ξξξ ,ωωω,u) = ∆t ∑
j

ρ jxc jq j(ξξξ ,ωωω,u). (11)

Notice, that in this formulation, an additional operator Λ is introduced in comparison to one suggested in
Voskov (2017). Here, cr is the rock compressibility, T ab is the geometric part of transmissibility (which
involves permeability and the geometry of the control volume), f j are fractional flow function. The
variables ωωω and ωωωn are nonlinear unknowns at the current and the previous timestep respectively, and
u is a vector of well control variables. The operator θc(ξξξ ,ωωω,u) is the influx/outflux term. In addition,
φ0,Vi, and p, are the initial porosity, volume, and pressure respectively.

The operator αc is dependent on the properties of rock and fluid and independent of spatially distributed
properties. Similarly, the divergence operator is present as a fluid-related operator βc independent of
spatial distributed properties. For simplicity, in this study, we will ignore the well source/sink and only
apply fixed boundary conditions.

Linearization and solution

In this section, we describe different types of linearization using the general algebraic form of governing
equation.

Standard linearization approach

To solve nonlinear equations 7, we need to linearize them. The conventional approach in reservoir
simulation is based on the application of the Newton-Raphson method. In each iteration of this method,
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we need to solve a linear system of equations of the following form:

J(ωωωk)(ωωωk+1−ωωω
k) =−r(ωωωk), (12)

where J is the Jacobian defined at nonlinear iteration step k.

The standard approach requires a sequential assembly of the residual and the Jacobian based on numer-
ical approximation of the analytic relations in Equations 8 - 11. This may demand a table interpolation
(for standard PVT correlations or relative permeabilities), or a solution of the highly nonlinear equations
(for EoS-based properties). Each property evaluation requires a storage space for both values of the
property and its derivatives with respect to the nonlinear unknowns. Most reservoir simulation software
performs numerical (Pruess et al., 1997), analytic (Geoquest, 2011) or automatic (Garipov et al., 2018)
differentiation of each property with respect to nonlinear unknowns.

Operator-Based Linearization

Operator-Based Linearization is a newly proposed strategy for the linearization of the reservoir simula-
tion problem described by Eq. 7. As can be seen from the structure of each operator in Equations 8- 11,
this system is based on a complex combination of different nonlinear properties and relations. Since the
space and time approximation is fixed, the discretization error depends on the variation of the timestep
size ∆t and the characteristic size of the mesh embedded in the T ab term.

The operators αc and βc represent the physics-based terms. The accuracy of the nonlinear physics
representation is controlled by these two operators (and a part of θc). In conventional linearization, we
introduce all nonlinear properties and their derivatives into residual and Jacobian assemble. Next, the
nonlinear solver tries to resolve all the details of the nonlinear description, struggling sometimes with
unimportant features due to the numerical nature and some uncertainty in the property representations.

The Operator-Based Linearization (OBL) strategy, utilized in this work, is based on the simplified repre-
sentation of the nonlinear operators αc and βc in the parameter-space of the simulation problem (Voskov,
2017). In this approach, we uniformly discretize the parameter space with a fixed number of points. Next
we apply a multi-linear interpolation in parameter space for the continuous representation of physics-
based operators and discrete representation of their derivatives. The number of points in the interpolation
controls the accuracy of approximation of the nonlinear physics, governs the process. This is similar to
the accuracy of the approximation in space and time being controlled by the grid and timestep size. The
details of OBL approach, test results and convergence analysis can be found in (Khait and Voskov, 2017)
and (Khait and Voskov, 2018).

Adaptive Nonlinear Solver for OBL framework

For simplicity, we assume in the following derivations that the system is incompressible which limits the
analysis to the convection operators βc only. We segment the parameter-space of the nonlinear problem
into a set of regions where βc maintain their second order behavior (i.e., they remain either convex
or concave). The proposed nonlinear solver locally constraints the updating of hyperbolic unknowns
(the overall compositions) across the boundaries of these regions similar to inflection point correction
proposed by Jenny et al. (2009). Essentially, it is a cell-wise chopping strategy guided by trust regions
of the operators. Our nonlinear solver ensures that the successive iteration update cannot cross any
trust-region boundary.

The delineation of the trust regions is dictated by kinks and inflection points in parameter space. We
estimate the inflection point(s) based on the analysis of the Hessian of the convective operator. The
Hessian matrix is a way of organizing all the second partial derivative information of a multivariable
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function. The general Hessian matrix for a convection operator can be written as:

H(ω) = J(∇[βc(ω)]) =


∂ 2β1
∂ω2

1

∂ 2β1
∂ω1∂ω2

. . . ∂ 2β1
∂ω1∂ωc

∂ 2β1
∂ω2∂ω1

∂ 2β1
∂ω2

2
. . . ∂ 2β1

∂ω2ω1

...
...

. . .
...

∂ 2β1
∂ωc∂ω1

∂ 2β1
∂ωc∂ω2

. . . ∂ 2β1
∂ω2

c

 , (13)

In this work, we focus on binary and ternary compositional problems only and evaluate the Hessian
matrix with respect to hyperbolic variables zc using the finite difference method.

For ternary system we uniformly discretize the parameter space and compute the Hessian numerically
as follow (

∂ 2β

∂ z2
1

)
i, j

=
( ∂β

∂ z1
)i+1, j− ( ∂β

∂ z1
)i, j

∆z
, (14)

(
∂ 2β

∂ z2
2

)
i, j

=
( ∂β

∂ z2
)i, j+1− ( ∂β

∂ z2
)i, j

∆z
, (15)

(
∂ 2β

∂ z2∂ z1

)
i, j

=

(
∂ 2β

∂ z1∂ z2

)
i, j

=

(
( ∂β

∂ z1
)i, j+1− ( ∂β

∂ z1
)i, j

∆z

)
. (16)

where i and j corresponds to the coordinates of the hypercubes centers for axes z1 and z2 respectively.
Next, for each point in the centers at the interface of parameterized hypecubes we define a quadratic
form

Q = dzHdz′. (17)

After calculating Q for all points in the parameter space, we identify trust-regions. If Q changes the sign
from positive to negative, it indicates that our operator goes from positive definite to negative definite
and changes its convex condition.

Adaptive detection of trust regions

The full Hessian evaluation used in the trust-region definition is a time-consuming procedure. To detect
the trust regions more efficiently, we apply a directional analysis of the second derivative while tracking
the nonlinear update and passing each interface in the OBL parametrization. The procedure is as follow:

1. detect OBL interfaces along the nonlinear update trajectory in the parameter space (e.g. Fig. 1),

2. compute directional second derivative for each convection operator at each crossing interface,

3. detect inflection point(s) and kinks based on the second derivative information,

4. limit the local nonlinear update by the location inside the trust region.
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(a) 2D parameter space (b) 3D parameter space

Figure 1: Tracking nonlinear update trajectories in the OBL parameter space

Next, we illustate our approach with exmaples and compare special points detected by directional anal-
ysis and reference results based on the construction of the full hessian matrix for binary and ternary
systems.

Nonlinear analysis of binary kernel

Hessian is constructed by finite difference method based on first derivatives computed by OBL. Since
operators are evaluated using piece-wise linear interpolation, the derivatives cannot be defined in the
OBL nodes. Re-sampling points in between the original points where derivatives are essentially constant
is problematic. To overcome this obstacle, we need to re-sample at different resolution with respect to
the original OBL grid.

As we can see in Fig. 2 for binary compositional kernel, we have two kinks in addition to the inflection
point of the fractional curve. These two points correspond to bubble and dew points compositions where
phase transition occurs. Kinks have different properties than inflection points and usually have a negative
impact on nonlinear converges (Li and Tchelepi, 2015). There is a discontinuity in derivative in the point
of kinks and thus there is an abrupt change in concavity and residual in this points.

(a) Fractional flow (b) Derivative of the fractional flow with respect to z

Figure 2: Binary incompressible compositional kernel

In Fig. 3, we detect an inflection line position in the parameter space based on the convex condition
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approximated by quadratic form of the Hessian matrix and compare it to the inflection point detected
during tracking the nonlinear update. In this example, we use dead-oil physical kernel with viscosity
dependent on pressure which explains the form of inflection line. Notice, that the exact location of the
detection points can be lightly shifted from the line position due to the discrete approximation of the
directional derivative.

Figure 3: Two trajectories illustrating an adaptive detection of inflection point procedure by directional
derivative analysis

Nonlinear analysis of ternary kernel

We extend our TR strategy for the ternary case for which we need to track the nonlinear update in
the three dimensional parameter space. In fact, algorithm for tracking is independent to the degree of
freedom of the system and is able to track nonlinear trajectories for an arbitrary number of dimensions.
In our analysis for the ternary system, we adapt the same method as in the binary test by investigating
the compositional system for a fix pressure. In this case we are interested in variation of convective
operators with respect to z1 and z2. Accordingly, we construct the Hessian matrix for the fix pressure as
follow:

H =

 ∂ 2β

∂ z2
1

∂ 2β

∂ z1∂ z2
∂ 2β

∂ z2∂ z1

∂ 2β

∂ z2
2

 , (18)

Figure 4 shows the hessian diagram for all three convection operators ( β1, β2, β3 ) and the phase diagram
corresponding to that ternary kernel. In phase diagram, red color corresponds to two-phase region
and blue color corresponds to the single-phase region. In Hessian diagram, each color corresponds to
different convex condition of the flux operators. Comparing Hessian diagram to phase diagram, it is
clear that there is an an abrupt changes in concavity (kink) on the boundaries between single phase and
two-phase regions. Moreover, there is an inflection line in two-phase region that segment two-phase
zone into concave and convex part.
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Figure 4: Hessian for three convective operators and phase diagram for incompressible ternary kernel

Computing hessian in each points of the parameter space is computationally expensive and cumbersome.
Therefore, we focus on directional analysis in parameter space in which we look at one direction at each
time passing an interface in the parameter space. Note that there is discontinuity in derivatives which
corresponds to the boundaries between single- and two-phase regions. Drawing random trajectories for
the nonlinear update, we show in Fig. 5 that special points can be detected using a directional derivatives
along the nonlinear update. However, some numerical artifacts and noise are usually present in the
computation of numerical derivatives in directional analysis. To overcome this problem, we use moving
average algorithm (Gilgen, 2006) to smooth second order directional derivatives.

(a) Random trajectories on H1 (b) Directional derivatives of the random trajectories.

Figure 5: Full and directional evaluations of second order behavior for ternary compositional kernel.

Performance of nonlinear solver

In this section, we illustrate the performance of the proposed nonlinear solver applied for several simu-
lation problems of increasing complexity.

Nonlinear convergence for single cell problem

By analyzing the nonlinear behaviour of the single cell binary compositional transport problem, we can
reveal some fundamental conclusion that are also valid for multiple cell problems. Our goal is to find
the solution zn+1 from the initial guess zn+1,0 for the given boundary condition on left and right sides (zl
and zr). We investigate the convergence map of the pure newton and trust region solver for dead-oil and
binary compositional kernels. We fix the right boundary conditions as zr = 1 and study if the root of the
residual is found by different nonlinear solvers for all possible starting points (zn+1,0,zl)∈ (0,1)×(0,1).
Maximum nonlinear iteration for all these test cases is equal to 20.
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(a) Convergence map for pure newton (b) Convergence map for TR algorithm

Figure 6: Convergence map for binary dead-oil problem

(a) Convergence map for pure newton (b) Convergence map for TR algorithm

Figure 7: Convergence map for compositional binary problem with C= dt
dx = 10

As it is clear from Fig. 7, pure newton struggles once the solution is in the two-phase region. Another
observation is that once the solution is in the single phase region (linear fractional flow), nonlinear
convergence based on the Newton’s method is guaranteed.

(a) Convergence map for pure newton (b) Convergence map for TR algorithm

Figure 8: Convergence map for compositional binary problem with C= dt
dx = 100
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As we increase the timestep (C= dt
dx ), we can observe that for pure Newton’s approach, the yellow region

increases when the solution is in the two-phase region. However, once the solution is in the single phase
region pure newton is able to find the solution. Trust Region solver is globally convergent for all initial
guesses.

Front propagation in fracture

In fracture reservoir, the difference in speed of transport front propagation between matrix and fracture
is significantly different due to the large contrast in permeabilities. Here we imitate this process for one
dimensional reservoir by running the simulation with small timesteps to develop a resolved displace-
ment solution at particular time. Next, we restart the simulation from this distribution for a one control
timestep only and account for the number of nonlinear iterations required to converge the solution. We
repeat this procedure gradually increasing the size of the control timestep and detect the change in the
number of nonlinear iterations.

0 100 200 300 400 500 600 700 800 900 1000

X

0

0.2

0.4

0.6

0.8

1

Z

Figure 9: Saturation propagation for different timesteps for a dead-oil kernel from Appendix A

Next we test the performance of nonlinear solver based on directional analysis in the proposed numerical
framework using several physical kernels with subsequent grow in complexity. In addition, we make
comparisons between our trust-region nonlinear strategy and different state-of-the-art solvers.

Global and local nonlinear solvers can be seen as different methods to damp the newton updates by
specifying the diagonal matrix Φ= diag(∆z1,∆z2, ...,∆zn) that can be written in each nonlinear iteration
in the general form:

∆ωωω =−ΦJ−1r, (19)

The standard Newton’s method select all of these diagonal weights to be unity. In global-chop nonlinear
strategy, all entries of the diagonal are identical, implying that the Newton direction is simply scaled
by a constant factor. In the local-chop nonlinear solver, the diagonal scaling entries are not necessarily
identical and can change on a cell-by-cell basis to limit the local compositional update ∆z to be greater
than the specified number (∆z = 0.1 in our study).

Binary systems

For binary systems, we test nonlinear solvers performance for both dead-oil and compositional kernels
with constant k-values equal to = {2.5, 0.3}. Initially, the 1D domain is fully saturated by non-wetting
phase and we inject wetting phase at the left boundary. We ran the simulation with the small timestep
for 1000 days. Next, we restart by enlarging the timesteps. Figure 10 shows the fracture test results
comparing different nonlinear solvers for binary kernel. We set the maximum number of nonlinear
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iterations to 50 for all test cases. It is clear that trust region solver performs better (provide less nonlinear
iterations) for both dead-oil and compositional kernels.

(a) Dead-oil kernel (b) Compositional kernel

Figure 10: Different nonlinear solver performance for binary systems

Ternary and Quaternary systems

For ternary system, we repeat a similar test with two systems of {CO2, H2O, C1} and 4 components
{CO2, H2O, C1, C2} . We inject at 135 bar using bottom hole pressure control and initial reservoir
pressure is 95 atm. For ternary system, reservoir initial condition is zini = {0.1,0.25} and injection
condition zin j = {0.98,0.01} and for 4 component system injection condition zin j = {0.98,0.001,0.001}
and initial condition zini = {0.1,0.2,0.2} . We ran the full simulation for 100 days. Next, we restart with
enlarging the timestep. Figure 11 illustrates different nonlinear solvers performance. TR solver works
better for both ternary and four components case.

(a) Ternary kernel (b) 4 component

Figure 11: Comparison of different nonlinear solvers for incompressible ternary kernel

Nonlinear preconditioning strategy

The proposed trust-region nonlinear solver guarantees to converge for arbitrary timesteps. However,
its application may become time prohibitive due to excessive number of nonlinear iterations for large
timesteps. To overcome this issue, we proposed the nonlinear preconditioning strategy described in this
section. In the OBL framework, we look into the sequential update on nonlinear iterations where changes
in transport unknowns in the downstream block depends on the derivatives of convective operator at the
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current block. If composition in the block is defined at the residual values (when convection for the
phase is absent), the update in the downstream block is zero, and transport wave cannot propagate on
this iteration. As the result, the nonlinear solver needs as many iterations as many blocks at residual
compositions it needs to propagate.

This problem is especially pronounced in fractured reservoirs, where transport front have to propagate
for a large number of grid-blocks once it reaches fracture. Here, we perform the analysis for the propaga-
tion of nonlinear wave in OBL approach which is a farther extension of the analysis performed in Wang
(2012). To simplify derivations, we assume that the model is limited by a 1D reservoir with Cauchy
boundary conditions on left and right side. This reduces the spacial discretization, which yields to the
following equation in vector form (the length of vector corresponds to the number of components nc)
for the block i:

ri(ωωω i−1,ωωω i,ωωω i+1,ωωω
n
i ) = (ααα(ωωω i)−ααα(ωωωn

i ))ai−βββ (ωωω i)bi+(ωωω i,ωωω i+1)+βββ (ωωω i−1)bi−(ωωω i,ωωω i−1), (20)

where
ai = φ0Vi, (21)

bi+(ωωω i,ωωω i+1) = ∆tTi,i+1(pi+1− pi)Λ(ωωω i), (22)

bi−(ωωω i,ωωω i−1) = ∆tTi−1,i(pi− pi−1)Λ(ωωω i−1). (23)

For simplicity, we assume a homogeneous reservoir with V , φ0 and T constants. Equation 20 can be
written for an internal reservoir block as

ri = (ααα i−ααα
n
i )+ γ(βββ ibi++βββ i−1bi−). (24)

Here

ααα i = ααα(ωωω i), βββ i = βββ (ωωω i), γ = ∆t
T ab

φ0V
, (25)

and
bi+ = (pi− pi+1)Λ(ωωω i), bi− = (pi− pi−1)Λ(ωωω i−1). (26)

Now the internal Jacobian row of the equation can be written as: γBi−1bi−+ γβββ i−1×b′i−,i−1
Ai + γ(Bibi++βββ i×b′i+,i +βββ i−1×b′i−,i)

γβββ i×b′i+,i+1

T

, (27)

where

Ai =

[
∂ααα i

∂ωωω i

]
=

[
∂αc

∂ pi

∂αc

∂ zi,1
...

∂αc

∂ zi,nc−1

]
,c = 1, ...,nc, (28)

Bi =

[
∂βββ i

∂ωωω i

]
=

[
∂βc

∂ pi

∂βc

∂ zi,1
...

∂βc

∂ zi,nc−1

]
,c = 1, ...,nc, (29)

b′i−,i−1 =

[
∂bi−

∂ωωω i−1

]T

= (pi− pi−1)
∂Λi−1

∂ωωω i−1
−


Λi−1

0
...
0

 , (30)

b′i−1,i =

[
∂bi−
∂ωωω i

]T

=


Λi−1

0
...
0

 , (31)
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b′i+,i =

[
∂ (−b(i+1)−)

∂ωωω(i+1)−1

]
=−b′(i+1)−,(i+1)−1, (32)

b′i+,i+1 =

[
∂ (−b(i+1)−)

∂ωωω(i+1)

]
=−b′(i+1)−,(i+1). (33)

For binary system, under the assumption of incompressible fluid, αc and βc are equivalent to overall
composition zc and the compositional fractional flow curve (Fc) respectively. When the residual satura-
tion is zero at the initial conditions, the β -operator becomes zero since the compositional fractional flow
is zero at residual saturation equals to zero. Therefore, the internal Jacobian for the nonlinear iteration
can be written as:

[
γBi−1bi− 1+ γ(Bibi+) 0

]
, (34)

In Eq. 34, if B becomes zero at end point of fractional flow for the component, the internal jacobian
matrix becomes identity matrix which does not allow the composition to propagate downstream. There-
fore, to maximize the propagation for the composition front downstream in single iteration, we need to
maximize B term.
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Figure 12: (a) The derivative of the β -operator with respect to z for dead-oil system (b) Fractional flow
for dead-oil system

From Fig. 12 for the incompressible version of dead-oil kernel without dependency of viscosity on
pressure, it is clear that the B is maximum at the inflection point. Therefore, to maximize the composition
propagation in more than one gridblocks in one iteration, we introduced the inflection point of the β -
operator for each gridblock as an initial guess. Fig. 13 compares our nonlinear solver performance with
and without preconditioning for both dead-oil with pressure variation and binary compositional kernel.
We can see that by applying preconditioning, the number of iterations for increasing timestep growing
slower for the preconditioned system. We are currently working on the similar preconditioning strategy
for general compositional systems.
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(a) Dead-oil kernel (b) Compositional kernel

Figure 13: TR nonlinear solver with/withoout preconditioning

Conclusions

In this work, we investigate the nature of nonlinearities in general-purpose simulation and propose so-
lution methods for a general compositional problem. The pure Newton’s strategy will not guarantee
to converge, and it is highly dependent on the timestep selection. We present an advanced nonlinear
solver based on a trust-region technique aimed to solve multiphase multi-component transport prob-
lems. The approach is designed to embed a newly introduced Operator-Based Linearization technique
and is grounded on the analysis of multi-dimensional tables related to parameterized convection opera-
tors associated with the governing equations. We track the nonlinear trajectory in the parameter-space
and segment the parameter-space of the problem into the set of trust-region where the hyperbolic op-
erators keep their second-order behavior (i.e., they remain either convex or concave). We approximate
these trust regions in the solution process by detecting the boundary of convex regions via analysis of
the directional derivative. The proposed nonlinear solver locally constraints the updating of the overall
compositions across the boundaries of these regions.

Besides, we address the issue related to the slow convergence of the advanced nonlinear solver for large
timestep and see how the number of iteration evolves nonlinearly by increasing the timestep in the frac-
tured reservoir for the binary kernel. The solution of the transport problem often requires the propagation
of displacement front to multiple control volumes per single timestep. To overcome this issue, we intro-
duce the composition corresponding to the inflection point as preconditioning for the nonlinear solver.
The nonlinear convergence benefits from such preconditioning, and the resulting number of iteration
reduces significantly. We are working on extending this strategy for general compositional problems.
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Appendix A: Parameters for numerical tests

The parameter defined in the table 1 are common for all the cases.

Dead oil fluid description

Table 1: Rock-Fluid parameters

Parameter Value Decription
Cr 1.00E-09 Rock compressibility
Spr 0.01 Phase residual saturation
Sor 0.01 Oil residual saturation
no 2 Oil exponents

Table 2: Dead oil properties

Parameter Oil Descrpition
ρ 1000 Surface density
µ 1-5 cp Viscosity range
Bo 1 Formation Volume Factor
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Parameter Water Desctiption
ρ 1000 kg/cm3̂ surface density
cp 10−9 Compressibility
µ 1cp Viscosity

Compositional properties

Table 3: Thermodynamic properties

Components C1 CO2 H2 C2
K-values 6 0.4 0.1 0.02

Table 4: Phase properties

Parameter Water Gas Desctiption
n 2 2 Corey exponent
µ 1.5cp 0.1cp Viscosity

Appendix B: Sensitivity of preconditioning to transport parameters

Next, we report the performance of the advanced nonlinear solver after running the simulation with the
small timestep (∆t = 0.001) days until (T = 0.3) days and save the solution. Next, we restart from the
solution for one large timestep equals to 0.2 days with different preconditioning strategy. Considering
the initial guess the inflection point and initial guess equals to the initial condition and initial guess the
solution of the saturation after running the simulation until T = 0.3d. We test the transport problems for
four types of the relative permeability curves.

Krw = Snw ;Kro = (1−S)no , (35)

Table 5: Different preconditioning strategy

Krp M Initial guess from
without preconditioning new timestep inflection point

0.5 60 13 9
no = np =2 1 56 14 9

10 11 4 10
0.5 142 22 11

no = np = 3 1 149 25 10
10 111 5 10
0.5 198 27 10

no = np = 10 1 204 27 12
10 229 30 11
0.5 142 20 11

no = 2, np = 10 1 149 21 10
10 111 22 10

It is noticed that:

(i) With preconditioning strategy, we accelerate the convergence for all the cases. As expected, choosing
the inflection point as an initial guess always works better since the derivative B is maximized which
maximizes the propagation of the compositional front downstream.
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(ii) By increasing the mobility ratio, the number of iteration generally increase for the same time step
and the same exponents. It can be explained by the fractional flow theory when by increasing the M
(unfavorable displacement), the shock speed increases. The preconditioning strategy helps in all cases.
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