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A B S T R A C T   

Visual inspection is one of the most common non-destructive testing (NDT) methods that offers a fast evaluation 
of surface damage in aerospace composite structures. However, it is highly dependent on human-related factors 
and may not detect barely visible impact damage (BVID). In this research, low velocity impact tests with different 
energy levels are conducted on two groups of composite panels, namely ‘reference’ and ‘sensor-integrated’ 
samples. Then, the results of impact tests, together with C-scan and visual inspection images, are analysed to 
define the BVID range and create an original image dataset. Next, four different deep learning models are trained, 
validated and tested to capture the BVID only from the images of the impacted and non-impacted surfaces. The 
results show that all four networks can learn and detect BVID quite well, and the sensor-integrated samples 
reduce the training time and improve the accuracy of deep learning models. ResNet outperforms other networks 
with the highest accuracy of 96.2% and 98.36% on the back-face of reference and sensor-integrated samples, 
respectively. The proposed damage recognition method can act as a fast, inexpensive and accurate structural 
health monitoring tool for composite structures in real-life applications.   

1. Introduction 

Artificial Intelligence (AI)-based techniques for detecting impact 
damage in composite materials can be broadly categorised into the 
following primary types: (i) image-based, (ii) vibration-based, and (iii) 
acoustic-based techniques. Image-based methods utilise computer 
vision algorithms to scrutinise images of the surface of composite panels 
both before and after an impact event. This technique detects any 
changes in surface topography, such as cracks and fibre breakage. 
Vibration-based methods, on the other hand, focus on measuring and 
analysing the vibrational response of the composite structure to detect 
any changes in mechanical properties, including stiffness and damping, 
caused by impact damage. Acoustic-based techniques involve using 
acoustic sensors to detect changes in the acoustic emission signals 
generated by impact damage [1–4]. Several studies have explored the 
application of AI-based methods for detecting impact-induced damage 
in polymer composite materials [5–11]. In addition to impact damage 

detection, AI-based techniques can be applied for damage classification, 
damage quantification, and remaining useful life prediction [12]. For 
example, Zargar and Yuan [9] demonstrated the possibility of using a 
Deep Learning (DL) model to characterise impact damage by analysing 
the evolution of impact-generated propagating waves. The DL model 
used there was not merely data-driven, but the physics of the wave 
propagation phenomenon was embedded into the model’s architecture 
to make it a physics-inspired DL model. Fotouhi et al. [13] proposed the 
exploitation of DL for quantitative assessment of visual detection of both 
microscale damage (matrix cracking) and macroscale damage (impact 
and erosion damages). The damage severity was identified on images of 
the impacted and non-impacted sides with a validation accuracy of 96% 
and 87%, respectively. Their results indicated the promising perfor
mance of DL to automate visual inspection; however, it highlighted the 
need for an improved dataset library and customised classifiers for DL 
training. Wei et al. [10] used infrared thermography data of impacted 
curved Carbon Fibre Reinforced Polymer (CFRP) composites to train two 
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different DL models. Both models could identify impact damage and 
predict the damaged location with an F1-score of 92.74% on mid-wave 
infrared data and an F1-score of 87.39% on long-wave infrared data. 
Hasebe et al. [8] applied three Machine Learning (ML) models on a 
dataset extracted from low-velocity impact (LVI) tests on composites 
with particular attention to three influential factors, namely stacking 
sequence, impactor shape, and impact energy. Their results indicated 
that local volume, the gradient of the dent surface, and the pure dent 
depth could be used for characterising internal damage in CFRP 
laminates. 

It is seen that in all similar research works, collecting a dataset needs 
advanced knowledge and measurement facilities such as Pulsed Ther
mography equipment [5], 3D measurement systems for evaluating 
impact dent depth [6,8], or signal processing to convert impact signals 
into input image data [11]. In addition, these methods may not be 
widely feasible. For example, when measuring the dent depth, the 

relaxation in dent depth over time is often neglected [8]. Moreover, the 
dent depth of impact-induced damage depends on impactor size and 
cannot be determined based on visual observation alone [14]. In the 
case of using thermal images as input data, there is a challenge of light 
reflection and not enough emissivity, as most composite structures have 
a reflective surface [15]. Accordingly, the method cannot be widely used 
to collect thermal image datasets of various composite materials and 
structures. As for further research, the authors of [8] suggested devel
oping new Structural Health Monitoring (SHM) methods to directly use 
the surface profiles as features without a reduction in raw data (surface 
profile) to human-designed features (depth, volume, etc.). Also, they 
suggested studying whether AI models are effective even if the target 
contains paint or other features which may be found in real structures, 
but not in laboratory-level research. This is a source of inspiration for 
this research, to use only surface images as inputs to the AI system. An 
improvement of this work over other research in the literature is the 

Fig. 1. The procedure followed in this study: 
a) data acquisition, b) model training, c) output BVID 
information, including accuracy, F-1 score, precision, 
recall and training time of each of the four DL models 
(shown with different colours) for four different tasks. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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successful implementation of four different DL models, from a simple 
two-layer Convolutional Neural Network (CNN) to an advanced CNN 
composed of a Residual Network (ResNet) and a Prototypical network, 
to predict the Barely Visible Impact Damage (BVID) only from very 
simple surface images. The data collection procedure in this research is 
very simple, and there is potential to add a remote photography system 
to make the SHM process fully autonomous. In addition, the idea of 
applying AI while adding self-reporting hybrid glass/carbon coatings 
[16] on the surface is explored and shows how this sensing technology 
can improve the autonomous recognition of BVID using DL models. A 
detailed description of different DL models used in this research is pre
sented in Section 2. Fig. 1 shows the procedure followed in this research. 

2. Methodology 

2.1. Experiments 

Two groups of samples were manufactured, including CFRP com
posites without a sensor (reference) and CFRP composites with a sensor 
(sensor-integrated). In the former, 32 plies of T800 carbon prepregs 
were laid up with the [45/0/90/-45]4s configuration. In the latter, a 
sensor composed of a layer of YS-90 carbon and a layer of S-glass (both 
with ply degree of 90◦) was added on each side of the panel, where the 
32-ply substrate and sensors on two sides were co-cured according to 
supplier’s instructions (Fig. 2) [17]. 

Quasi-static indentation tests were first used to understand the 
behaviour of the investigated samples and to choose appropriate energy 
levels for the impact tests, as described in a previous paper [17]. This is 
because quasi-static indentation and LVI tests can provide comparable 
results according to several research in the literature [18–20]. LVI tests 
with different energy levels, from 3J to 128J, were then carried out 
using an Instron Dynatup 9250 HV drop weight impact tower and ac
cording to the ASTM D7136 standard (see Fig. 3(a)). A single acceler
ometer inside the tup measured the impact load and deflection, and the 
measured data was processed by a 4 kHz filter of the console software to 
reduce the noise and oscillations. Fig. 3(b) shows different types of 
impact damage with respect to the impact energy level. At the first stage, 
the dent size is so small, and damage happens in the form of matrix 
cracks. As impact energy increases, damage appears in the form of 
delamination, and dent size becomes larger. In the second stage, all 
three damage types, matrix cracks, delamination, and fibre breakage, 
can occur, and visual inspection becomes easier due to a larger dent size 
(dent depth and diameter). The fibre breakage in this stage can help 
achieve better inspection results. Nevertheless, this can have a detri
mental effect on the residual strength after impact, which explains the 
complexity of the interaction of different damage types during an impact 
event. In the third stage, the damage is visible to the naked eye due to 
perforation. Therefore, the second stage, which deals with BVID and the 
interaction of different damage types, is of great interest and is the focus 
of this paper. 

After completing LVI tests, two Non-Destructive Evaluation (NDE) 
methods, including C-scan and visual inspection were conducted. In the 
first approach, a10 MHz transducer was used to scan the samples in a 
water tank. The damage area was measured in the software and the 
results were then recorded [17]. In the second approach, a Nikon D5600 
camera was used to take images of the front-face and back-face of all 
samples. Multiple images of each sample with viewing angle of 0 ◦ and 
viewing distance of 40 cm were taken. Effort was made to set a lighting 
level which is intense enough to achieve quality images but avoid the 
reflection as much as possible. Accordingly, a detailed internal (C-scan) 
and surface (visual inspection) damage dataset was collected. 

2.2. An overview of AI algorithms 

The field of AI, especifically ML and computer vision, offers a way to 
detect defects in materials in seconds [2,22]. Regardless of the task at 

hand, certain parts of a ML algorithm’s pipeline are almost always 
prevalent. The general idea is that data-driven algorithms are not 
completely hard-coded by the programmer, but rather learn from the 
data itself. In this way, ML algorithms can be tailored to specific tasks. A 
ML algorithm is defined by a hypothesis, a loss function and an opti
misation procedure. A hypothesis is a function that receives data as 
input and outputs a prediction. It is parametrised by its trainable pa
rameters and hyperparameters. The data automatically determines the 
former, while the ML engineer pre-sets the latter. The loss function is a 
function that outputs the error made by the model while using the 
output of the hypothesis as input. In the case of classifying if an image 
contains damage or not, since it is a binary classification, the common 
approach is to use a Binary Cross Entropy (BCE) loss function. This 
measures the difference between the classification predicted by the 
model’s hypothesis and the true classification of the datapoint. Another 
popular loss function for classifying is a Categorical Cross Entropy 
(CCE). This is a more generic form of the BCE, meaning that a datapoint 
can be classified into more than only classes for damaged and undam
aged [23,24]. An optimisation procedure is an algorithm that defines 
how the trainable parameters of the ML model are iteratively changed to 
improve its accuracy, which is achieved by minimising the error of the 
model’s prediction tasks. These errors are defined by the loss function. 
When it comes to the construction of the dataset, the data is split into 
three parts: the training set, the validation set and the testing set. The 
training set is used to determine the trainable parameters of the model 
via an optimisation process. The validation set determines the model’s 
hyperparameters by trying out different values. Finally, the testing set 
estimates the model’s performance on unseen data. 

ML can be used to automate damage detection in composite mate
rials. However, more complicated ML architectures are required when 
the dataset is a collection of images. A ML architecture that mimics the 
workings of the human brain is known as an Artificial Neural Network 
(ANN). The simplest neural network is a Multi-Layer Perceptron (MLP). 
It contains multiple functions where the output of a function is used as 
an input to the next one. These functions are called the layers of the 
model. The simplest layers of a MLP are Fully Connected (FC) layers 
[25]. When using a neural network with multiple layers as an ML hy
pothesis, it falls into the realm of DL. Rautela et al. [26] applied two ML 
and one DL algorithms in three benchmark experimental datasets to 
develop a SHM tool for delamination prediction in composite structures. 
It was clarified that the DL approach could generate better re
constructions with lower mean squared error and provide higher accu
racy on all the datasets compared to ML models. When dealing with an 
image-based dataset, a more complex family of neural networks, such as 
Convolutional Neural Networks (CNNs) might be needed [3,4]. CNNs 
differ from other neural network architectures because of their con
volutional layers [27]. There might be some layers of a CNN which do 
not have any trainable parameters. Prime examples of this are max 
pooling and average pooling layers [28,29]. 

ResNet is a deep neural network architecture that was introduced in 
2015 to address the problem of vanishing gradients in very deep CNNs 
[30]. ResNet allows for the training of much deeper networks with 
hundreds of layers by introducing shortcut connections between the 
layers, which skip over certain layers and allow the network to learn 
residual functions. The residual connections enable the network to 
better propagate gradients through the entire network, leading to 
improved performance and faster training time than simpler CNNs [5]. 
Another advantage of using a well-known architecture, such as ResNet, 
is that it is possible to start the training with the values of its weights 
learned from a different task or dataset. For example, ImageNet [31] is a 
large-scale image database containing over 14 million images, widely 
used for training and evaluating computer vision models. In this paper, 
ResNet weights trained on the ImageNet dataset were used as the initial 
starting values before the network was trained on the dataset. This 
approach is known as transfer learning [32]. Another subfield of ML is 
few-shot learning that deals with the problem of learning from a limited 
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amount of labelled data [33]. In traditional supervised DL, a large 
amount of labelled data is required to train a model that can accurately 
classify new (unseen) data. However, in few-shot learning, the goal is to 
learn from a small number of labelled examples. Few-shot learning can 
be combined with metric learning to learn from small datasets. Metric 
learning is another subfield of ML that focuses on learning a vector 
representation of an image, known as embedding, in the feature space 
[34]. The few-shot learning and metric learning can be combined in 
Prototypical networks. Prototypical networks are a type of neural 
network architecture commonly used in few-shot learning tasks. They 
are designed to learn a feature space in which examples from the same 
class are closer to each other than to examples from other classes. The 
dataset splitting here is more complex than in standard supervised ML. 
Firstly, the dataset is split into meta-train and meta-test sets. Then, each 
of these sets is divided into shot-images and query-images. This 

approach is effective in few-shot learning tasks, where only a few 
labelled examples are available for each class [35]. 

A binary classification contains four entries: True Positives (TP), 
True Negatives (TN), False Positives (FP) and False Negatives (FN). In 
the case of damage detection, these terms can be defined as follows: 

TP: The number of images that the network has correctly identified 
as containing damage. 

TN: The number of correctly identified images without damage. 
FP: The number of images without damage that are incorrectly 

identified as containing damage. 
FN: The number of images containing damage that are incorrectly 

identified as images without damage. 
In addition to the confusion matrix (see Table 1), other common 

metrics to evaluate the model’s performance are precision, recall, F-1 
score, and accuracy. Also, measuring a model’s training time can be 

Fig. 2. Schematic of manufactured composite panels: reference samples (left) and sensor-integrated samples (right).  

Fig. 3. (a) Schematic of impact test setup, (b) different impact damage stages with respect to the impact energy and permanent indentation size [21].  
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important. The equations below show the definition of the evaluation 
metrics. 

Precision=
TP

TP + FP
(1)  

Recall=
TP

TP + FN
(2)  

Accuracy=
TP + TN

TP + TN + FP + FN
(3)  

F1 = 2
precision ∗ recall
precision + recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(4)  

In this research, four different supervised networks are used as follows:  

- Model one is a simple two-layer CNN  
- Model two is a ResNet with 18 trainable layers pretrained on 

ImageNet dataset  
- Model three is a Prototypical network, a more complex CNN that can 

use other simpler CNNs as a base. In the third model, the simple two- 
layer CNN from the first approach was used as a base for the Pro
totypical network.  

- In the fourth model, the ResNet from the second approach was used 
as a base for the Prototypical network (pretrained on ImageNet 
dataset). 

Also, to pre-process the data, instead of using raw pixels, the mean 
and standard deviation of each of the three RGB channels1 of an input 
image were calculated and the raw image data were standardised before 
starting any of these pipelines. Note that the mean and the standard 
deviation for standardisation were only calculated on the training set, 
and this information was saved and fixed for test data. The reason to 
choose these four networks is that the first model is a simple CNN that is 
commonly used for image-based dataset. Then, ResNet-18 is used as the 
second model. This is a powerful deep neural network that has shown a 
promising performance in the field of computer vision and image 
recognition and can presumably capture complex data [1]. Given the 
small size of dataset in this research, a pretrained version of ResNet is 
used. Another type of DL models which work well with small dataset is a 
Prototypical network. This class of DL models uses few-shot learning, 
enabling an efficient generalisation of unseen data based on only a small 
number of samples. Therefore, it is used in the third and fourth models of 
this study. All models have been implemented in Python programming 
language (version 3.9) using a popular library, PyTorch, for imple
mentation and experimentation with artificial neural networks. 

2.2.1. Description of the first supervised network 
The first network used a simple CNN with only two convolutional 

layers. Both convolutional layers output 64 feature maps, have 3x3 
kernels, and are followed by: batch normalisation2 layers, Rectified 
Linear Unit (ReLU) activation functions [36], and max pooling layers 
with a 3x3 kernel. The output of the CNN is flattened and used as an 
input to the MLP with FL layers. MLP also consists of two layers, where 

the first layer outputs a 512-dimensional representation, and the second 
layer takes that and outputs a one-dimensional representation of the 
image. This value is then passed on to the Sigmoid layer to get a value 
between 0 and 1, which classifies an image in one of the two classes. 
Finally, the outputted value is rounded up to either 0 or 1 to receive the 
final classification of the network (see Fig. 4). Furthermore, Adam is 
used as an optimiser [5,37], and BCE function is used as a loss function. 

2.2.2. Description of the second supervised network 
The second network used a pre-trained ResNet architecture with 18 

trainable layers. Even though there are available pre-trained ResNet 
architectures with more layers, because of the small size of dataset in 
this paper, a bigger architecture was not used to avoid overfitting the 
data. ResNet 18 (available from Pytorch [38]) was pre-trained on more 
than a million images from the ImageNet database. However, its last FC 
layer was replaced with a new one that outputs only one number. After 
that, a Sigmoid activation function was added to turn it between 0 and 1, 
so that it could be used as a probability of the input image either being 
damaged or not. Furthermore, Adam was used as an optimiser, and the 
BCE as a loss function. 

2.2.3. Description of the third and fourth supervised networks 
The third and fourth models used a Prototypical network, which 

works very differently from the first two approaches. During the meta- 
training phase, a random batch is sampled from a subset of meta- 
training images. The meta-training subset contains 30% of the total 
number of images in the dataset. The base network used in the Proto
typical networks outputs a 32-dimensional embedding. Any desirable 
network can be used as a base network to embed the image into this 
latent space with 32-dimensional representations. The 32-dimensional 
output is not a representation of a binary classification label, but it 
captures the semantical representation of an image in a high- 
dimensional latent space (which is used for binary classification later 
in the pipeline). To that note, 50% of the embeddings are used for 
training (shot-images) and 50% for testing (query-images). Since this is a 
supervised approach, the labels of the shot-images are known, and they 
are used to calculate the mean for each label, resulting in two 32-dimen
sional embeddings, one for each label (labels are ‘damaged’ and ‘un
damaged’). These are known as the prototypes of labels. Then, the 
distances from each query-image to each prototype are calculated. The 
query image takes the label of its closest prototype (in this latent space), 
which is how prototypical networks perform classification. The 
Euclidian distance is used to calculate the means, similar to Ref. [35]. 
Prototypical networks allow the use of any desirable CNN to encode the 
image into the 32-dimensional latent space. However, this network does 
not output the classification prediction of the image, but instead, its 
32-dimensional embedding in the latent metric space, where the dis
tances are calculated. This approach was used on the networks that had 
been used in the first and second models. They both have the same setup 
as the first two approaches, but this time instead of outputting a 
one-dimensional number, they output a 32-dimensional vector. 

3. Results and discussion 

3.1. LVI and NDE 

The results of LVI tests are shown in Fig. 5. As seen in Fig. 5(a), 
except for 3J and 6J, a significant load drop can be seen in all energy 
levels associated with delamination initiation. Low energy levels (3J and 
6J) do not cause any damage to the samples; therefore, there is no load 
drop for these energies. A considerable load drop occurred in 96J and 
128J due to fibre failure. In these impact energies, there is a significant 
residual deflection. Energy absorption in composite structures under 
impact can cause various damage mechanisms. Therefore, damage 
mechanisms can be characterised by analysing energy absorption. As 
shown in Fig. 5(b), there is a significant change in the absorbed energy- 

Table 1 
Confusion matrix.  

Truth \ Predicted Defect No defect 

Defect TP FN 
No defect FP TN  

1 Red-Green-Blue (RGB) channels. That is how images are stored in the 
computer.  

2 Batch Normalisation is written as (BN) in Fig. 4. 
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time response of specimens, where energy absorption for impact en
ergies lower than 64J is almost half of those higher than 64J. This is in 
line with the results of Fig. 5(a), suggesting that a specific range of en
ergy from 8J to 64J is of great importance as the damage mechanism in 
this energy range is delamination, which causes BVID. Fig. 5(c) shows a 

comparison of impact response in reference and sensor-integrated 
samples for two impact energies within the BVID range (12J and 36J). 
The results suggest that adding the hybrid glass/carbon sensor does not 
significantly change the mechanical properties (impact response), as in 
both 12J and 36J, the same trend is followed for reference and sensor- 

Fig. 4. A simple flowchart of the first network’s architecture.  

Fig. 5. Low velocity impact test results: a) Force-time response of reference samples (without a sensor) under different impact energies from 3J to 128J, b) Absorbed 
energy-time response of reference samples (without a sensor) under different impact energies from 3J to 128J, c) comparison of the impact response in reference and 
sensor-integrated samples at impact energies of 12J and 36J 
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integrated samples. 
Fig. 6 shows the C-scan, front-face, and back-face images of the 

reference samples. The C-scan images show no internal damage associ
ated with 3J and 6J impact energies, and delamination starts from 8J. It 
is also indicated that damage size varies in line with impact energy. 
Images of the front-face and back-face of samples clarify that damage is 
visible only at the energy levels of 96J and 128J, barely visible at 
12J–64J, and invisible at 8J. These images suggest that the back-face 
may allow for better damage visibility than the front-face, particularly 
for higher energy levels such as 64J, 96J, and 128J. Fig. 7 demonstrates 
C-scan, front-face, and back-face images of sensor-integrated samples. 
Similar to the reference samples, there is no damage in 3J and 6J impact 
energies. However, a significant improvement in visual inspection of 
damage is achieved when adding sensors. The hybrid glass/carbon 
sensor allows the visually detecting of the damage caused by low en
ergies such as 8J. A comparison of Figs. 6 and 7 suggests that this sensing 
technology can work well and improve visual inspection, particularly for 
BVID, ranging from 8J to 64J. More detail about these smart hybrid 
composite sensors can be found in Ref. [16]. 

BVID can be defined based on different metrics or standards. For 
example, based on the Airbus damage definition, “BVID is the minimum 
impact damage surely detectable by scheduled inspection. Dent depth is 
the damage metric for transverse impact. For an edge impact, where 
internal cracks and delamination become visible, the damage metric is 
the dent depth and/or the crack length” [39]. Boeing defines BVID as 
“small damages which may not be found during heavy maintenance 
general visual inspections using typical lighting conditions from a dis
tance of five feet (1.524 m). The damage metric is typically a dent depth 
of 0.01–0.02 inches (0.254 mm–0.508 mm). Dent depth relaxation must 
be accounted for” [40]. According to general guidelines, permanent 
indentations between 0.3 mm and 0.5 mm can indicate BVID, whereas 
permanent indentations of 2 mm or perforations of 20 mm indicate 
minor Visible Impact Damage (VID) [21]. In this research, after con
ducting quasi-static indentation tests, impact tests were conducted at 
different energies, ranging from 3J to 128J, to generate a complete 
dataset of different impact-induced damage modes such as matrix 
cracks, delamination, fibre failure and perforation. The C-scan results 
revealed that the internal damage happens from 8J. However, visual 
inspection results suggested that damage (permanent indentation) is 
(barely) visible from 12J. Moreover, it was observed that impact en
ergies higher than 64J can cause fibre failure, which was beyond the 
BVID (the damage was not an indentation but a significant fibre frac
ture). This was also confirmed by load-displacement curves obtained 
from the impact tests. Therefore, this range (12J–64J) was considered as 
the BVID range and images of samples impacted at 12J, 18J, 27J, 36J, 
and 64J were used used as an input for training the models. 

Table 2 represents the classification of the dataset. After experi
mental investigations, it was concluded that the best way to train and 

test the CNNs is to classify the dataset into four main groups (or tasks), as 
shown in Table 2. In task 1, the model is trained and tested to recognise 
BVID using images of the back-face of reference samples. In task 2, the 
model uses images of the front-face of reference samples. Similarly, tasks 
3 and 4 deal with images of the back-face and front-face of sensor- 
integrated samples, respectively. Therefore, a model can output one of 
the two possible classes (damaged or undamaged) in each task. 

3.2. First DL model (ConvNet) 

The results of the first model are presented in Tables 3–5 and Fig. 8. 
Note that evaluation parameters presented in these tables were intro
duced in Section 2.2. All evaluation parameters show that it is easier for 
the model to detect the damage on back-face than front-face, regardless 
of whether using a sensor or not. For example, the accuracy of damage 
prediction on back-face is 37% higher than on the front-face in reference 
samples. This could be due to different visible or barely visible damage 
patterns developed during the impact event on the two sides. This dif
ference in sensor-integrated samples is only 19%, proving the effec
tiveness of adding a sensor in generating recognisable damage patterns 
on both sides. The beneficial effect of adding a sensor can also be seen 
through comparing the accuracy in back-faces of reference and sensor- 
integrated samples (tasks 1 and 3), and front-faces, similarly (tasks 2 
and 4), where there has been an increase in damage prediction accuracy 
of 8% and 26% on back-face and front-face, respectively. Here, the 
higher improvement percentage achieved on the front-face is because 
when there is no sensor (reference samples), and the damage is within 
the BVID range, the damage pattern on the front-face is very difficult to 
detect. That explains the lowest accuracy of 51.25% (task 2) among all 
four different tasks. However, adding a sensor generates a significantly 
easier-to-detect damage pattern. The highest accuracy is achieved in 
task 3 (96.72%), where the damage is studied on the back-face of sensor- 
integrated samples. Note that here, only images of samples damaged 
within the BVID energy range are used, and different results may be 
achieved if images of higher impact energies are used as input to the 
model. Table 5 suggests that the network’s training time for the two 
sides of the same samples is almost the same, while it is significantly 
faster in sensor-integrated ones. Therefore, adding a sensor can improve 
the damage detection process in terms of accuracy and time, when using 
this network. 

3.3. Second DL model (ResNet) 

Tables 6–8 and Fig. 9 show the results of the second model. Similar to 
the first model, all metrics confirm that the model can learn and predict 
damage on the back-face easier than front-face. However, the difference 
between the two sides is less significant than that of the first model. For 
example, the difference between the accuracy of the front-face and back- 

Fig. 6. Front-face, back-face, and C-scan images of reference samples at different impact energies [17].  
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face in reference and sensor-integrated samples is only 10% (tasks 1 and 
2) and 1% (tasks 3 and 4), respectively. This model has the highest and 
lowest accuracy of 98.36% (task 3) and 86.25% (task 2). This aligns with 
the visual observation results, as damage on the back-face of sensor- 
integrated samples is the most visible, and on the front-face of refer
ence samples is the least visible. The results also suggest that adding a 
sensor can improve this model’s accuracy, which is more considerable 
on the front-face (comparing tasks 2 and 4). The results presented in 
Table 8 indicate that the difference between the training time for the 
back-face and front-face of reference samples is considerably higher 
than that of sensor-integrated ones. Also, overall, the training time for 
both sides of the sensor-integrated samples is lower than for reference 
samples, proving the effectiveness of adding a sensor on the second 
model’s performance. 

3.4. Third DL model (ProtoNet + convnet) 

The results of the third model are presented in Tables 9–11 and 
Fig. 10. It is seen that when comparing the evaluation metrics values of 

the front-face and back-face, the same trend as the two previous models 
is followed here, meaning that the model can predict the damage on 
back-face better than the front-face. Overall, the network has a better 
performance compared to the first model, which suggests that using the 
first model as a base for a Prototypical network, for this analysis, is a 
good choice. This is more notable when comparing the training time of 
the first and third models, where the third network offers a higher ac
curacy (or other evaluation metrics), while requiring the same training 
time. This model has the best and worst prediction performance in task 1 
and task 4, respectively. An interesting result here is that the model’s 
performance deteriorates when adding a sensor, as opposed to the two 
previous models. This might be explained by the different working 
principles of a Prototypical network compared to a simpler CNN. Adding 

Fig. 7. Front-face, back-face, and C-scan images of sensor-integrated samples at different impact energies [17].  

Table 2 
Classification of the dataset.  

Task 
number 

Type of composite 
panel 

Damage 
location 

Damage range 

1 Reference Back-face Within the BVID 
range 

2 Reference Front-face Within the BVID 
range 

3 Sensor-integrated Back-face Within the BVID 
range 

4 Sensor-integrated Front-face Within the BVID 
range  

Table 3 
Evaluation metrics for four different tasks (1st model).  

NAME Values per dataset 

Task 1 2 3 4 
Accuracy 88.46% 51.25% 96.72% 77.94% 
Precision 90.90% 78.26% 100% 86.84% 
Recall 88.89% 55.38% 93.93% 76.74% 
F-1 89.88% 64.86% 96.87% 81.48%  

Table 4 
Confusion matrix for four different tasks (1st model).  

Task: 1 

Predicted \Truth Defect No defect 

Defect 39 5 
No defect 4 30  

Task: 2 

Predicted \Truth Defect No defect 

Defect 36 29 
No defect 10 5  

Task: 3 

Predicted \Truth Defect No defect 

Defect 31 2 
No defect 0 28  

Task: 4 

Predicted \Truth Defect No defect 

Defect 33 10 
No defect 5 20  

Table 5 
Average training time of each task (1st model).  

Task 1 2 3 4 

Average Train Time 54 m 12s 40 m 55s 16 m 56s 13 m 18s  
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a sensor can improve the visibility of damage by causing a clear colour 
change and a nice damage pattern. However, when adding a sensor, the 
difference between the damage patterns of a sample impacted at 12J and 
64J is much higher than those of 12J and 64J in the case of a reference 
sample (without any sensor). Given that the dataset includes images of 

all samples damaged within the BVID range, in sensor-integrated sam
ples, a more different damage pattern between various images can 
adversely influence the network’s performance, thus, achieving a 
slightly lower accuracy, precision, or recall. Even though adding the 
sensor makes the damage on the images easier to predict, this shows how 

Fig. 8. Example of train and validation losses of the 1st model (task 1).  

Table 6 
Evaluation metrics for four different tasks (2nd model).  

NAME Values per dataset 

Tasks 1 2 3 4 
Accuracy 96.2% 86.25% 98.36% 97.05% 
Precision 100% 91.3% 100% 97.37% 
Recall 93.62% 85.71% 96.88% 97.37% 
F-1 96.7% 88.42% 98.42% 97.37%  

Table 7 
Confusion matrix for four different tasks (2nd model).  

Task: 1 

Predicted \ 
Truth 

Defect No defect 

Defect 44 3 
No defect 0 31  

Task: 2 

Predicted \ 
Truth 

Defect No defect 

Defect 42 7 
No defect 4 27  

Task: 3 

Predicted \ 
Truth 

Defect No defect 

Defect 31 1 
No defect 0 29  

Task: 4 

Predicted \ 
Truth 

Defect No defect 

Defect 37 1 
No defect 1 29  

Table 8 
Average training time of each task (2nd model).  

Task 1 2 3 4 

Train Time 1h 2 m 2s 42 m 7s 17 m 10s 13 m 5s  

Fig. 9. Example of train and validation losses of the 2nd model (task 1).  

Table 9 
Evaluation metrics for four different tasks (3rd model).  

NAME Values per dataset 

Task 1 2 3 4 
Accuracy 94.87% 84% 88.52% 69.12% 
Precision 100% 81.25% 93.55% 78.95% 
Recall 91.67% 72.22% 85.29% 69.77% 
F-1 95.65% 76.47% 89.22% 74.11%  

Table 10 
Confusion matrix for four different tasks (3rd model).  

Task: 1 

Predicted \ 
Truth 

Defect No defect 

Defect 44 4 
No defect 0 30  

Task: 2 

Predicted \ 
Truth 

Defect No defect 

Defect 13 5 
No defect 3 29  

Task: 3 

Predicted \ 
Truth 

Defect No defect 

Defect 29 5 
No defect 2 25  

Task: 4 

Predicted \ 
Truth 

Defect No defect 

Defect 30 13 
No defect 8 17  

Table 11 
Average training time of each task (3rd model).  

Task 1 2 3 4 

Train Time 53 m 32s 36 m 20s 20 m 54s 16 m 3s  
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AI works differently from the human brain, and sometimes a task that is 
easier for humans is harder for an AI. It should be noted that the sensor 
can still be beneficial when looking at the training time of different tasks 
(Table 11). Therefore, using the third model for the sensor-integrated 
dataset may still be advantageous, particularly if images of only spe
cific impact energy are used as input. 

3.5. Fourth DL model (ProtoNet + ResNet) 

This section presents the results of the fourth model in Tables 12–14 
and Fig. 11. Like all previous models, here, detection and prediction of 
damage on the back-face is a more straightforward task than the front- 
face. This model shows the best and worst performance in task 1 and 
task 4, respectively. As this model employs a Prototypical network in its 
architecture, its performance is more similar to the third model, than the 
first two. This is particularly true when comparing the results of refer
ence and sensor-integrated samples (tasks 1&3 and 2&4), where a slight 
accuracy reduction can be seen in the latter. The reason for this poorer 
performance was discussed in the previous section. However, here, the 
performance deterioration due to adding a sensor is less considerable 
compared to the third model, suggesting that the ResNet can act better 
as a base for the Prototypical network compared to the first simpler 
CNN. With an exception for task 4, the results of the training time 
(Table 14) also indicate the efficiency of the fourth model for different 
damage prediction tasks. Given the complex architecture of this model, 
it might be more beneficial when dealing with more challenging damage 
detection tasks, for example, composite structures without a sensor with 
lower impact damage energies. 

3.6. Comparison and discussion 

Herein, two important evaluation metrics, accuracy (Fig. 12) and 
training time (Table 15), are chosen to compare and analyse the results 
of the four models. The reason for selecting accuracy is that it considers 
both TF and TN (all correct predictions) when considering the whole 
dataset (not just a part). Therefore, in the case of damage detection, this 

criterion may allow for a better understanding of the system’s perfor
mance. Moreover, training time can be an important parameter, as in 
some real-life or controlled laboratory monitoring scenarios, the struc
ture’s health should be assessed rapidly. For example, short-term 
monitoring might take only a few hours [41]. Furthermore, it may be 
necessary to apply the NDE part by part in very large composite struc
tures through different steps, highlighting the necessity of developing a 
fast damage recognition tool. Accordingly, in real-world applications, 
longer training times can make it harder to deploy the model since it can 
impact its scalability and practicality. Therefore, finding the optimal 
training time that balances accuracy and efficiency is crucial in devel
oping effective DL models. 

A comparison of all results suggests that the first convolutional 

Fig. 10. Example of train and validation losses of the 3rd model (task 1).  

Table 12 
Evaluation metrics for four different tasks (4th model).  

NAME Values per dataset 

Task 1 2 3 4 
Accuracy 96.15% 88.24% 91.8% 85.29% 
Precision 100% 94.12% 96.77% 92.1% 
Recall 93.6% 84.2% 88.24% 83.3% 
F-1 96.69% 88.88% 92.3% 87.48%  

Table 13 
Confusion matrix for four different tasks (4th model).  

Task: 1 

Predicted \ 
Truth 

Defect No defect 

Defect 44 3 
No defect 0 31  

Task: 2 

Predicted \ 
Truth 

Defect No defect 

Defect 32 6 
No defect 2 28  

Task: 3 

Predicted \ 
Truth 

Defect No defect 

Defect 30 4 
No defect 1 26  

Task: 4 

Predicted \ 
Truth 

Defect No defect 

Defect 35 7 
No defect 3 23  

Table 14 
Average training time of each task (4th model).  

Task 1 2 3 4 

Train Time 55 m 33s 37 m 59s 23 m 2s 39 m 45s  

Fig. 11. Example of train and validation losses of the 4th model (task 1).  
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network achieves the lowest score while the ResNet or combining a 
Prototypical network with a ResNet achieves the highest scores. This is 
as expected because the first convolutional network is the simplest one, 
whereas the fourth one was adapted for the case of a ‘few-shot’ classi
fication. Prototypical networks are a good choice for a small dataset and 

a simple task (such as a binary classification on this dataset). Compar
ison of the outcomes of the first and third models, as well as those of the 
second and fourth models, shows a great improvement in damage 
recognition accuracy both on front-face and back-face due to applying a 
Prototypical network. It is seen that both in the second model (when 
ResNet is used as a classification model) and in the fourth model (when 
ResNet is used as a base model for the Prototypical network), the ResNet 
performs better than a simpler convolutional network. This is because of 
the better architecture of the ResNet (by using the residual connections) 
and the fact that it has been pre-trained. Using pre-trained models that 
have been trained on other datasets can improve their performance 
because the network does not start learning from scratch. Instead, it 
starts learning with the set of parameters where the last learning 
converged. Also, a deeper network such as ResNet offers a higher ca
pacity to understand and analyse the image. 

Overall, all models perform quite well on the third and fourth 

Fig. 12. Comparison of the accuracy for different tasks in all four models.  

Table 15 
Comparison of the training time for different tasks in all four models.  

Model \ 
Task 
Number 

1 (reference, 
back face) 

2 (reference, 
front face) 

3 (with 
sensor, back 
face) 

4 (with 
sensor, front 
face) 

1st model 54 m 12s 40 m 55s 16 m 56s 13 m 18s 
2nd model 62 m 2s 42 m 7s 17 m 10s 13 m 5s 
3rd model 53 m 32s 36 m 20s 20 m 54s 16 m 3s 
4th model 55 m 33s 37 m 59s 23 m 2s 39 m 35s  

Fig. 13. Damage patterns on different datasets (tasks): a) back-face of reference samples (task 1), b) front-face of reference samples (task 2), c) back-face of sensor- 
integrated samples (task 3), d) front-face of sensor-integrated samples (task 4). 
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datasets. This is due to adding a hybrid glass/carbon sensor on the back- 
face and front-face, achieving images with higher contrast between the 
damaged and undamaged areas (the damaged area is brighter, and the 
background is darker) (see Fig. 13). The damage recognition accuracy of 
the first model on the back-face and front-face increases by 8.26% and 
26.74% when using a hybrid glass/carbon sensor. Similarly, adding a 
sensor improves the accuracy of the second model by 10.8% and 2.16% 
on the front-face and back-face, respectively. In both cases, the front- 
face benefits more from adding a sensor. A more complex nature of 

Prototypical networks in the third and fourth models may capture very 
detailed features of damage patterns on each side of the sensor- 
integrated samples, which explains a slightly lower accuracy of these 
two models on the third and fourth datasets (see Fig. 14). Regarding the 
training time, it is almost the same for all models. If the training time is 
significantly higher for a model while not improving the performance, it 
can also be an important factor when selecting the model. Given that 
ResNet has more layers, it is expected to have a longer training time in 
models with this network. This has proved to be the case here, but the 

Fig. 14. Graphical explanation of a lower accuracy in 
the third and fourth models (Prototypical networks) 
when adding a sensor. Impact damage on (a) front- 
face of reference samples impacted at 36J (left) and 
64J (right), and (b) front-face of sensor-integrated 
samples impacted at 18J (left) and 27J (right). The 
visual difference between the damage pattern of 
reference samples impacted at two different energies 
is significantly less identical than that of sensor- 
integrated samples. This is true, even though a 
bigger energy gap exists in (a) than in (b). Given the 
strong pattern recognition of Prototypical networks, 
more different damage patterns in sensor-integrated 
samples impacted at various energies (within the 
BVID range) may adversely influence the network’s 
performance.   

Fig. 15. Some examples of the predictions that are most prevalent across networks: 
a) true positive, b) true negative, c) false positive, d) false negative. 
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difference is not big. The results show a faster training time in the third 
and fourth tasks, confirming the beneficial effect of the hybrid glass/ 
carbon sensing technology in the autonomous detection of BVID using a 
CNN model. 

Finally, some points to note: first, when it comes to an understanding 
of false positives (FPs) and false negatives (FNs), there are a few relevant 
factors. It is noticeable on the FP images that there are prevalent light 
reflection anomalies. Images with defects also tend to be brighter on 
average. This can sometimes give the network the impression that there 
is a correlation between image brightness and the presence of damage. 
Similarly, most FN images are darker because images without damage 
tend to be darker. Some examples of this can be seen in Fig. 15. For 
future work, a more in-depth pre-processing can be performed on images 
to ensure that the influence of brightness is minimised across the entire 
image dataset. Second, this study focused only on BVID; all results are 
based on the performance of the different models on the BVID image 
dataset. Note that due to the small size of dataset (limited number of 
images), images of all samples damaged at or below BVID energies (12J, 
18J, 27J, 36J, 64J) were included. In this case, the results represent the 
average model performance on a range of impact energies within the 
BVID range. This can be seen as a good assessment of the CNN model’s 
performance because the impact damage in real-world examples does 
not always happen at a well-known energy. However, depending on the 
specific application and damage monitoring scenario, it might be 
interesting for future studies to focus on only a particular impact energy, 
for example, the threshold of BVID and VID, to achieve a more precise 
prediction result. It would allow not only damage detection and local
isation, but classification and severity estimation as well. Another po
tential route for future work is exploring different fibre types and 
architectures in the sensor structure to generate a different damage 
pattern on composite surfaces. For example, our preliminary in
vestigations show that if using HS40 carbon prepregs as the sensing 
layer (instead of YS-90 carbon) or woven glass prepregs as the outer 
layer (instead of unidirectional glass), a better contrast between the 
damage pattern of a reference and sensor-integrated sample can be 
achieved, which accordingly improves the DL or ML model’s perfor
mance (see Fig. 16). The proposed SHM method in this research can be 
further automated by adding a Remotely Operated Vehicle (ROE) that 
takes surface images of large composite structures, including inacces
sible parts, in real-life applications. 

4. Conclusions and future work 

This research successfully applied four DL models to detect BVID on 
both impacted and non-impacted surfaces of composite panels with and 
without a hybrid glass/carbon sensor. The input in all DL models was 
simple surface images; thus, this study proposed an autonomous BVID 
recognition system in composite materials using DL models, then 
improved the DL model’s performance by introducing hybrid glass/ 
carbon sensors. The following conclusions can be drawn from the 
results:  

- Depending on the dataset, different CNNs can be trained to detect 
BVID using simple images of the composite structure’s surface. The 
results of all four CNNs in both reference and sensor-integrated 
composites of this study confirmed that the AI-based BVID detec
tion accuracy is higher on the back-face than the front-face. This is 
due to a more recognisable damage pattern on the back-face of these 
thin-walled composite structures. Therefore, where the non- 
impacted side is accessible, using back-face images as input to an 
AI network is preferred.  

- All four DL models could learn and identify BVID quite well. ResNet 
outperformed other models in most of the tasks. This is because of the 
flexible and robust architecture and using residual connections. Also, 
a Prototypical network can offer higher accuracy than a simple CNN, 
especially for small datasets, but it may require a higher computa
tional time.  

- The hybrid glass/carbon sensing technology provides a higher 
contrast between the damaged and undamaged areas, thus, 
improving the AI model’s performance to a great extent, especially 
on the front-face. The results of the first and second models showed 
an improvement of 26.74% and 10.8% in damage detection accuracy 
when adding a sensor on the front-face. It should be noted that a very 
complex network, such as a Prototypical network, may capture very 
detailed features of damage patterns. In this case, as the sensor may 
add to the variance of the damage pattern, it can slightly decrease the 
model’s accuracy. Nevertheless, the training time of models 
confirmed that the glass/carbon sensing system could significantly 
reduce the training time, enhancing the computational efficiency of 
AI-based damage detection systems. 

Fig. 16. Potential strategies to generate various 
damage patterns with higher detection possibility: a) 
using an HS40 carbon layer as the sensing layer 
(right). The damage pattern is larger and different 
from a sample without a sensor (left), or with a sensor 
composed of a YS-90 carbon layer (middle) (these 
images were taken after the impact test), b) using a 
woven glass layer as the outer layer (right). The white 
color and bi-directional fibres of this glass layer may 
generate a more recognisable and larger pattern than 
a sample without a sensor (left), or with a sensor 
composed of a unidirectional S-glass layer (middle) 
(these images were taken after the indentation test). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   
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In future work, the following research directions could be 
considered:  

- A more in-depth pre-processing could be performed on input data to 
refine the design and further optimise the AI model’s performance. 
For example, the BVID range can be narrowed, closer to the threshold 
of VID and BVID. Also, more efforts can be made to ensure that the 
influence of the brightness is minimised in the image dataset.  

- Exploration of the potential of AI-based damage detection methods 
in a real-world setting, including scalability and reliability testing. 
For example, the proposed SHM method can be further automated by 
adding an ROE that takes surface images of large composite struc
tures, including inaccessible parts.  

- Design of sensors to create more recognisable damage patterns, 
achieving a higher contrast between the damaged and undamaged 
areas. Further analysis of different DL models with input data, 
including images of composites surface with various sensors, can 
help find a better relationship between the network performance and 
damage pattern caused by the sensor. 
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