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Abstract 

Non-recurrent traffic events, consisting of events of an unpredictable nature such as incidents and vehicle 

breakdowns, can either directly or indirectly influence road traffic. A better understanding of these events could 

prove beneficial towards improving a multitude of facets concerning the management of the Dutch road network. 

Traditional traffic event detection, based on significant changes in traffic flow/speed characteristics, is often 

limited by sparse road sensor coverage. More importantly, traditional detection methods are unable to categorize 

and describe traffic events.  

The aim of this study is to explore to which extent geosocial data (e.g., data from Twitter and Waze) could 

enrich traditional traffic data (e.g., traffic speed/flow data), in order to improve the detection, categorization, and 

description of traffic events in the Netherlands. In order to achieve this, a pipeline was designed for extracting 

knowledge on traffic events from geosocial data sources. We collected geosocial data from Twitter, Waze, and 

TomTom and used traffic data provided by DiTTLab. We specifically focused on reports by real road users, which 

we define as natural persons that report on their own account, therefore excluding all legal person entity accounts 

such as public/private organizations, and bots. A machine learning approach was applied to automatically classify 

tweets as either traffic event related or not. In order to categorize tweets into a traffic event category, a rule-based 

traffic domain annotator was created. Additionally, a geocoding method to link tweets to a geographic location 

was developed. As Waze and TomTom event reports are classified and geocoded by default, we could cluster these 

reports together with the processed tweets based on their categorical, spatial and temporal extent into a combined 

traffic event. These combined traffic event reports were then linked to traffic data, based on corresponding spatial 

and temporal aspects. In order to present the collected data, a web-based interactive map application was built.  

This methodology was applied to data collected over the period from 05-12-2017 to 17-02-2018. From the 

set of collected tweets approximately 6.71% proved traffic event related. Based on a linear support vector machine 

classification model we achieved an average f1-score of 0.95 and an accuracy of 0.954, for detecting traffic event-

related tweets. The rule-based traffic domain annotator showed an average f1-score of 0.874, and an accuracy of 

0.964. The geocoding method proved able to geocode tweets to a location that covers all place indicators in a tweet 

in 86% of the evaluated cases. The remaining 14% of the tweets either got geocoded to a part of relevant indicators 

or to no relevant indicators at all. Our clustering approach is able to cluster 39.61% of the event reports into a 

traffic event report cluster consisting out of more than one event report, from which 48.66% could be linked to 

traffic data. 

All in all, based on the achieved results, this work shows that geosocial data can be used to enrich traffic 

data towards the improvement of the detection, categorization, and description of non-recurrent traffic events. 
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1 Introduction 

Traffic events that cause road congestions are a daily phenomenon on the road network of 

the Netherlands. These traffic events can be divided into seven root causes: capacity, work 

zones, traffic control devices, fluctuations in normal traffic, traffic incidents, weather, and 

special events (Systematics & others, 2005). Capacity is the maximum amount of traffic that 

a highway is able to cope with, determined by factors such as the number and the width of 

lanes, shoulders, and interchanges. Traffic incidents cause the disruption of the normal 

traffic flow by road blockages which are the result of, e.g., vehicular crashes and breakdowns. 

Work zones are planned construction activities that influence the normal physical state of 

the road by, e.g., reducing the number of available or width of travel lanes. Weather could 

cause the normal driving behavior of drivers to change by, e.g., reducing the travel speed of 

vehicles due to icy roads or causing impaired vision due to heavy rain. Traffic control devices 

such as railway and bridge control systems could cause a change towards the typical traffic 

flow. Special events such as sports matches and festivals could also influence the typical 

traffic flow. Fluctuations in normal traffic are caused by varying traffic demand volumes 

while having roads with a fixed capacity. Additionally, these events can influence each other, 

e.g., bad weather could lead to car crashes.  

 

Traffic events can be divided in those with recurrent predictable causes and non-recurrent 

unpredictable causes. These non-recurrent events, consisting of traffic incidents, unplanned 

roadworks, weather, and special events, are a critical but difficult problem to detect, 

categorize and describe. These traffic events are of interest to a multiple of different 

stakeholders, which can be divided into three groups. First, stakeholders that are interested 

in traffic event detection, which takes place in the period moving towards the event. Second, 

stakeholders that have to apply traffic event management during the event. Third, 

stakeholders that apply a historical offline analysis on the traffic events and research the 

causes behind and statistics on the events. These organizations have multiple tools at their 

disposal to achieve their tasks, such as roadside detection sensors and cameras. In addition, 

they have the availability of information provided by traffic inspectors and emergency 

services. However, the problem with the current tooling is that their capabilities to detect, 

categorize and describe traffic events are limited and flawed. On the one hand, the detection 

part is not always reliable when it comes to events that are too small to have an impact on 

the traffic at that moment (Stephanedes & Chassiakos, 1993). However, this event could 

cause another event, later on, that is measurable and could, therefore, have been used as a 

predictor. Take for example traffic that has to evade road debris (tree branches, sharp objects, 

auto parts), which stays undetected at first but could cause future accidents due to flat tires 

or sudden dangerous evasion maneuvers. The underlying problem behind this is that these 

events are automatically detected with the use of algorithms, which assume that traffic 

events immediately cause a change in the traffic flow and speed characteristics. The data on 

which these algorithms depend is provided by traffic sensors which are limited in amount 

and cannot cover every point on the road. Besides, these algorithms are road-type dependent, 

algorithms that can be applied on freeways, are often not suitable for arterial situations 

which are much more complex. On the other hand, the description and categorization of 

traffic events are limited and inconsistent as they depend on the observations and deductions 

made by the instances arriving after the event occurred, as the traffic data itself does not 

contain the semantics to achieve this.  
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This thesis explores the extent to which new forms of geosocial data (e.g., data from Twitter 

and Waze) could enrich traditional traffic data (e.g., traffic speed and flow data from roadside 

detection sensors), in order to improve the detection, categorization, and description of traffic 

events. Geosocial data refers to data created by individuals that is voluntarily and knowingly 

shared on online platforms, and contains some sort of geographic property. Social media 

platforms as Twitter3 and Instagram4 have become a widely used tool to extract geosocial 

data within the Web Information Systems research field. Research by der Veer, Sival, and 

van der Meer (2017) shows that Instagram is used by 3.2 million Dutch users of which 1.5 

million are daily users and 2.6 million Dutch Twitter users of which are 871,000 daily users. 

As traffic is a part of almost everyone’s daily life, the assumption can be made that this also 

reflects on people their online social life, resulting in tweets and Instagram posts about traffic 

events. Additionally, less general but more traffic specialized social platforms such as Waze5 

could be used. Waze is a community-based traffic and navigation app, which enables users to 

share traffic event reports. These traffic event reports can be seen as categorized traffic based 

geosocial posts, and therefore could contribute towards the enrichment of traffic data. 

 

In recent years, limited research has been performed on how geosocial data can be used to 

detect and describe (traffic) events. Most of the research either focus on how geosocial data 

can be utilized to derive new and improved traffic event detection, categorization, and 

description approaches (e.g., Schulz, Ristoski, and Paulheim (2013), D'Andrea, Ducange, 

Lazzerini, and Marcelloni (2015), and Gu, Qian, and Chen (2016)). However, using only one 

geosocial data source comes with a number of disadvantages:  

 

1. Reliability of the category assigned to a detected traffic event: Did the user use 

distinctive enough words to derive the correct event category?  

2. Reliability of the spatial aspects of the detected traffic event: Was the user really on 

the location of the event at the time of posting the geosocial post, or did he post about 

an event he read or heard about? And did the user use accurate enough locational 

words to be able to derive the correct event location? 

3. Reliability of the temporal aspects of the detected traffic event: Was the geosocial post 

composed directly after the traffic event, or did it refer to a historical or future event? 

 

These disadvantages would mostly be non-existent if the number of tweets that refer to a 

single event would always be of a high quantity. That way, tweets could be aggregated 

together to improve the reliability of the detected event. However, research shows that the 

ratio of the number of traffic event-related tweets per location and time range proves to be 

very low, and thus additional data sources are needed to compensate for this. 

 

  

                                                
3 Twitter.com 
4 Instagram.com 
5 Waze.com 
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In the last few years research towards the combination of traffic and geosocial data has been 

conducted (e.g., Daly, Lecue, and Bicer (2013) and Giridhar, Amin, Abdelzaher, Wang, 

Kaplan, George, and Ganti (2017)). The limited amount of research shows that there is still 

a gap to fill by combining multiple (new) geosocial data and traffic data sources in order to 

improve upon existing traffic event detection, categorization, and description approaches.   

 

1.1 Research Objectives 

The main goal of this thesis is to investigate how geosocial and traffic data relate to each 

other and how this relationship can be utilized to improve upon the current state of the art 

traffic event detection, categorization, and description approaches. The main research 

question is therefore defined as follows:  

 
RQ: To what extent can geosocial data enrich traffic data to improve the detection, 
categorization, and description of non-recurrent traffic events?  
 

In order to answer this main research question, the following research sub-questions are 

posed: 

 
RQ1: What is the current state of the art regarding non-recurrent traffic event detection, 
categorization, and description by using traffic data and geosocial data, individually or 
combined? 

 
RQ2: How can non-recurrent traffic event-related geosocial posts be detected?  

 
RQ3: How can detected non-recurrent traffic event-related geosocial posts be categorized by 
event type? 

 
RQ4: How can categorized geosocial posts be used to describe non-recurrent traffic events? 

 
RQ5: How to develop a software system that is able to perform the detection, categorization, 
and description of non-recurrent traffic events?  
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1.2 Methods 

To address research question 1, we have to understand the decisions, demarcations, 

conclusions and future work directions that have been made in previous related scientific 

work. Related work is reviewed based on the data source types used in their research: traffic 

data sources, geosocial data sources, and a combination of the two. This way choices can be 

taken towards the selection and extension of certain data collection, pre-processing, feature 

engineering, classification, categorization, linking, aggregation, and visualization 

approaches. This literature study provides the foundation for the approach taken in the 

remaining research questions.  

 

To address research question 2, a data retrieval process is set up for the selected geosocial 

data sources Twitter and Instagram. In this approach, we only focus on Dutch data that is 

related to the road network of the Netherlands. The Twitter REST API is used to collect 

tweets based on an adaptively created traffic event-related keyword set. The main goal to 

achieve when collecting traffic event-related tweets, is to create a keyword set that maximizes 

the percentage of traffic event-related tweets over all acquired tweets and maximizes the 

amount of acquired traffic event-related tweets in the pool (all Dutch tweets in the 

Netherlands within a specific time range). Furthermore, a filtering method is applied to filter 

out the majority of non-real road user accounts. We define a real road user as follows: a 

natural person that tweets on his/her own account, therefore excluding all legal person entity 

accounts such as public organizations (government agencies, police, and infrastructure 

agencies), private organizations, and bots. This same keyword set is used to collect Instagram 

posts by using the Instagram API Platform. However, initial experiments show that 

Instagram provides extremely low amounts of traffic event-related posts. Therefore, we make 

a well-substantiated decision to no longer include Instagram in our setup. Besides Twitter 

data, data from Waze is collected by extracting a GeoRSS web feed from its web-based live 

map6. This way all traffic event data within a bounding box covering the entirety of the 

Netherlands is collected every 2 minutes. Furthermore, data from TomTom7 is collected 

through their Online Traffic Incidents API. Here, also a bounding box covering the entirety 

of the Netherlands is used to collect TomTom data every 2 minutes.  

 

Next, as preparation for the creation of a traffic event classifier, part of the tweets from the 

collected Twitter dataset are manually labeled as either traffic event-related (TE) or non-

traffic event-related (NTE). Next, pre-processing is applied to the TE tweets by applying 

tokenization and stop word removal. Subsequently, feature selection is applied to the Twitter 

data. Features based on the following characteristics are used: term frequency-inverse 

document frequency (TF-IDF) weighting, bag of words/n-grams, syntactic features 

(exclamation/question marks, emoticons, and total number of capital characters), and traffic 

domain categories based on our custom created rule-based traffic domain annotator. In order 

to automatically determine if a tweet is related to a traffic event, a classifier is applied. A mix 

of different machine learning classification algorithms (Support vector machine and Naïve 

Bayes), features and dataset sizes are explored to achieve the best classifier for identifying 

traffic event-related tweets. In order to estimate the performance of the model, 10-fold cross-

validation is applied on the Twitter training dataset. To measure the performance of the 

                                                
6 waze.com/livemap 
7 https://developer.tomtom.com/online-traffic 
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classification approaches the following metrics are reported: accuracy, precision, recall, f1-

score, and the area under the curve of receiver operating characteristic (ROC AUC). This 

provides us with an overview that evaluates all features and their combinations with 

different classifiers. The classifier with the best performance is used to classify the tweet in 

the Twitter dataset. Contrary to data collected from Twitter, data from Waze and TomTom 

have little pre-processing needs. Attributes that do not contain any descriptive value will be 

omitted and attribute terms are made uniform between the datasets. Besides, Waze and 

TomTom reports are by definition traffic event-related and therefore do not need to be 

classified by a classifier.  

 

In order to address research question 3, a rule-based traffic domain annotator is created. This 

annotator is used for extracting relevant traffic domain information from tweet text data. 

This allows for the automatic categorization of a tweet into one of 27 distinct traffic domain 

categories (e.g., categories that describe road users, spatial features and traffic events) of 

which 13 are related towards traffic events (e.g., traffic jam, accident and roadworks). The 

traffic domain categories are based upon the event categories from Waze, TomTom, the 

categories in the police accident reporting dossier (BRON)8, and acquired knowledge from 

reviewing literature and annotating tweets. The annotator uses a Backus-Naur form (BNF) 

grammar, allowing for partial matching of tokens, while using a combination of place names, 

temporal expressions, traffic domain knowledge, and lexical pattern dictionaries. 

 

To address research question 4, multiple data sources (Waze, TomTom, and a data source 

provided by Delft integrated Traffic & Travel Laboratory (DiTTLab)9) are combined with 

traffic event-related annotated and categorized Twitter data, to describe traffic events. Our 

description approach consists of the following three stages: 

 

1. Geocoding: tweets have to be linked to a geographic location, also known as geocoding. 

Approximately, only 1% of the tweets contains a geotag. Therefore, to identify the 

location of the other 99%, a location linking method is developed. This method utilizes 

the rule-based traffic domain annotator, which is able to annotate a multitude of spatial 

indicators from tweets. Based on the location category the Google Places API10, Google 

Directions API11, or custom created road database (consisting of road numbers and mile 

markers, with their respective coordinates) is queried to obtain a location. Tweets can 

contain multiple spatial indicators bringing the following challenges: 

contradiction/confirmation of each other, relation to different forms and scales, and 

ambiguity. Therefore, a model is designed to mitigate these challenges, by computing 

the intersections of spatial indicators in a tweet. 

2. Clustering of traffic event reports: in this step geocoded tweets are clustered together 

with other related tweets, Waze and TomTom event reports, eventually forming a 

described traffic event. First, a traffic event described by a newly incoming traffic event 

report (e.g., a tweet, Waze, or TomTom report) is compared to a previously reported 

traffic event report cluster. Matching is based on a rule-based approach, in which a rule 

specifies the categorical, spatial and temporal extent, used to assert if the new traffic 

event report should be part of an existing traffic event cluster. A traffic event report is 

                                                
8 https://www.rijkswaterstaat.nl/apps/geoservices/geodata/dmc/bron/ 
9 dittlab.tudelft.nl/ 
10 https://developers.google.com/places/web-service/ 
11 https://developers.google.com/maps/documentation/directions/ 
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added to an existing traffic event cluster when there is a match, otherwise a new traffic 

event cluster is created based on that traffic event. 

3. Linking to traffic data: based on the clustering results, traffic event reports are formed 

based on geosocial data. However, as it is not our goal to map traffic events based on 

geosocial data alone, but to enrich traffic data, an additional approach is taken. For this 

purpose, a traffic data set from DiTTLab is used, containing interpolated speed and flow 

values per 100m segments for each motorway (A-roads) in the Netherlands. This data 

could be used as a source for traffic event detection algorithms. However, as traffic event 

detection algorithms greatly depend on the type and properties of the road, it is not 

feasible to implement this for every highway. Besides, it would fall out of the scope of 

this research. As stated before this traffic data on its own does not tell anything about 

the kind of traffic event that has happened, is happening or will happen. Besides, a 

traffic event can also happen without influencing the traffic speed and flow, making this 

data in some cases on its own more or less useless. Therefore, a method is created that 

links traffic events to traffic speed and flow data, based on temporal and locational 

similarity.  

 

 

To address the final research question 5, the parts developed in the answering of research 

questions 2 to 4 are combined into a pipeline. This pipeline is able to perform the detection, 

categorization, and description of traffic events, and forms the back-end of the system. To 

present the collected data to the user a web-based interactive map application is build. This 

application enables the user to view the traffic events and their descriptions on an interactive 

map. Besides, a user will be able to filter traffic events based on event category, time range 

and location.  
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1.3 Contributions 

The main contributions made in this thesis are fivefold: 

 

1. A literature survey on state of the art techniques regarding non-recurrent traffic event 

detection, categorization, and description by using either traffic data, geosocial data 

or the combination. 

2. A model that combines multiple geosocial data sources to enrich traffic data to 

improve the detection, categorization, and description of traffic events. We extend 

upon previous related work by combining detection, categorization and description 

methods with each other, instead of focusing on one in particular. Additionally, 

instead of focusing on a single data source, we combine multiple social and traffic 

based data sources including Twitter, Waze, TomTom, and DiTTLab. We specifically 

focus only on geosocial posts by real road users, instead of a mix of posts by real road 

users, news agencies, bots etc. Lastly, we focus on Dutch geosocial data, which has not 

been researched before besides in the study by Dokter (2015). 

3. A dataset containing annotated tweets as well as Waze, TomTom and traffic data. 

This dataset can be used in future studies regarding this topic. This dataset could 

prove useful for any future research regarding this topic.  

4. Patterns and insights into the properties of the different data sources, and their 

relation towards getting a better understanding of traffic events. 

5. A software system named SocialTerraffic. This system consists of two parts. First, a 

pipeline that is able to perform the detection, categorization and description of traffic 

events, and store this data in a database. Second, a web-based interactive map that 

uses the collected and processed data from the pipeline to present traffic events to a 

user. This application enables a user to filter traffic events based on event category, 

date range and location. Additionally, the application is able to generate speed/flow 

charts based on traffic data related to a traffic event. 

 

1.4 Thesis Outline 

The remainder of this thesis is organized as follows. 2 introduces the scientific background 

of this thesis and discusses related work on how geosocial data can be used to detect, 

categorize and describe traffic events. The experiment design, in which the approaches and 

methodologies used in this work are described, takes place in 3. 4 describes the 

implementation and results of the designed experiments. In 5 we discuss and interpret the 

outcomes of our experiments. Finally, in 6 a conclusion of this thesis is provided, and 

opportunities for future research are explored.  
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2 Background and Related Work 

In this chapter, previous work regarding traffic event detection, categorization and 

description is discussed and compared. This is done in order to show how this thesis builds 

upon and extends from previous research on similar topics. Therefore, this chapter should 

provide an answer to the first research sub-question:  

 

 RQ1: What is the current state of the art regarding non-recurrent traffic event 
detection, categorization, and description by using traffic data and geosocial data, 
individually or combined? 

 

In order to answer this question, this chapter is divided into three sections based on the data 

source types used in the research:  

 

1. Traffic data sources, mostly used in Transport & Planning research field. 

2. Geosocial data sources, mostly used in Computer Science research field.  

3. A combination of traffic and geosocial data sources used in the Transport & Planning 

and Computer Science research fields. 

 

As we focus specifically on traffic event detection, categorization and description, some 

research using a combination of traffic and geosocial data would fall out of scope. This 

research could, however, contain valuable information for our research. Therefore an 

additional section is devoted to possible relevant topics including traffic prediction, traffic 

and geosocial data correlation, and traffic congestion monitoring. 

 

2.1 Traffic Data 

Research within the Transport & Planning field mainly focusses on the detection of traffic 

events. These traffic event detection systems can be divided into a data collection and a data 

processing part. Data collection describes the measurement techniques used to obtain the 

traffic data. These technologies can be divided into roadway-based and probe-based sensors. 

 

2.1.1 Data Collection 

Roadway-based sensors are integrated into the roadway infrastructure system, being 

embedded in the roads, at the side of the road or over the road. They provide traffic 

information from the passing vehicles over a fixed point or short segment. Therefore, the 

advantages of this system are that traffic volumes can be measured directly, while the traffic 

speed can be inferred from the traffic volume based on an average vehicle length. A 

disadvantage, however, is that the quality of travel time measurements is dependent on the 

density of the sensor network. Other disadvantages come with high deployment costs and 

intensive maintenance costs (Young, 2007). Roadway-based sensors can be divided into 

magnetic (piezoelectric detectors, active/passive magnetic detectors, inductive loop detectors 

(ILD)), range detectors (infrared detectors, ultrasonic detectors, microwave/millimeter wave 

radar, passive acoustic detector arrays, photoelectric detectors, spread-spectrum wideband 

radar), and image sensing detectors (video image processors (VIP)) (Kon, 1998).  
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Probe-based sensors are carried by vehicles instead of being part of the underlying road 

infrastructure. This allows for direct travel time measurements and increases the traffic flow 

coverage space. However, the quality of these sensors highly depends on the number of 

vehicles equipped with a sensor. Probe-based sensors can be categorized into: cell phone 

probes (by using signaling information or GPS), automated vehicle location (AVL) services 

by in-car systems that monitor the GPS of the car, and automatic vehicle identification (AVI) 

systems that use an in-vehicle tag or transponder to wirelessly communicate with a roadside 

unit to identify the vehicle location (Young, 2007). 

 

2.1.2 Data Processing 

Data processing uses traffic detection and classification algorithms by analyzing traffic data 

obtained from the data collection sensors. These algorithms can be classified by the traffic 

data they rely on resulting in roadway-based and probe-based algorithms.  

2.1.2.1 Roadway-based Algorithms 

Roadway-based algorithms can be divided into the following five main categories: 

comparative, statistical, time series, traffic modeling, and image processing algorithms. 

 

1. Comparative algorithms compare the traffic data to a pre-defined threshold value. This 

category includes algorithms based on decision trees which assume that traffic events 

cause significant increases in upstream occupancy (the percentage of time the detection 

zone of a detector is occupied by some vehicle) while reducing downstream occupancy 

(Tignor & Payne, 1977). And algorithms based on pattern recognition, which compare 

historically estimated vehicle speeds for particular traffic patterns with pre-established 

thresholds.  

2. Statistical algorithms use statistically determined traffic characteristics to find 

deviations in the traffic data. Dudek, Messer, and Nuckles (1974) propose a method 

based on the standard normal deviate to find sudden changes in traffic data that could 

suggest occurrences of traffic events. Levin and Krause (1978) propose a method based 

on Bayesian statistical techniques that use the relative distances of occupancies from 

comparative algorithms to compute if an event signal is caused by a lane-blocking event.  

3. Time series algorithms compare the traffic data to time series models that contain 

historically predictable traffic patterns. The commonly used techniques are the 

autoregressive integrated moving-average (ARIMA) model and the high occupancy 

(HIOCC) algorithm (Ahmed and Cook, 1979). 

4. Traffic modeling algorithms use traffic flow theory to develop models that describe traffic 

behavior when a traffic event occurs. One common technique is the dynamic model that 

uses speed and flow density relationships to apply traffic flow models to capture the 

dynamic nature of traffic (Willsky, Chow, Gershwin, Greene, Houpt, & Kurkjian, 1980). 

Another technique is based on the catastrophe theory model, which is based on the 

assumption that when a state changes from congested to uncongested, the traffic speed 

changes sharply while flow and occupancy change smoothly (Forbes and Hall, 1990).  

5. Image processing algorithms process surveillance video footage and use this processed 

data to provide traffic measures or to detect traffic events. Li and Porikli (2004) propose 

a mechanism to detect highway traffic events by extracting features directly from the 

videos, based on the Gaussian Mixture Hidden Markov Model framework. Additionally, 

they classify the traffic events into six traffic patterns (heavy congestion, high density 
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with low speed, high density with high speed, low density with high speed, low density 

with low speed, and vacancy) by using the Viterbi algorithm to determine the most likely 

traffic condition. Ikeda, Kaneko, Matsuo, and Tsuji (1999) performed a feasibility study 

towards detecting abnormal traffic events by using image processing technologies. In 

this study, they automatically detect traffic events and classify them into the following 

four categories: stopped vehicle, slow vehicle, and fallen object. Aköz and Karsligil (2014) 

propose a detection and classification mechanism by using traffic event severities at 

intersections. By clustering vehicle trajectories the system learns common traffic flow 

patterns which are used to detect abnormalities. These events are then classified into 

low and high severity classes.  

 

The major drawback of roadway-based algorithms (with the exception of image processing 

algorithms) is that the data source they use is easily corrupted by noise, which therefore 

should be filtered out before use. With a noisy dataset traffic event patterns may not be 

detected easily, and fluctuations could be misinterpreted as events. As a result, only severe 

traffic events can be detected with these kinds of algorithms (Stephanedes & Chassiakos, 

1993). 

2.1.2.2 Probe-based Algorithms 

Probe-based algorithms can be divided by their most commonly used probe sensor technology.  

 

 AVL sensor-based algorithms: Sethi, Bhandari, Koppelman, and Schofer (1995) propose 

a travel time algorithm that uses the event link and adjacent upstream link and average 

speed measures, based on GPS data. Sermons and Koppelman (1996) use GPS based 

algorithms that are based on the assumption that vehicles passing traffic events have 

higher travel times and a higher coefficient of speed variation. Kamran and Haas (2007) 

combine dynamic road segmentation logic with individual vehicle behavior identification 

methods based on GPS data to detect traffic events.  

 AVI sensor-based algorithms: Parkany and Bernstein (1995) discuss three algorithms 

(headways, lane switches, lane-monitoring algorithm) to use vehicle-to-roadside 

communication sensors in the form of electronic toll transponders. Niver, Mouskos, Batz, 

and Dwyer (2000) use the statistical travel time comparison between the TRANSMIT 

traffic surveillance and incident detection system (based on E-ZPass electronic toll 

collection tags) and probe reports.  

2.1.2.3 Freeway vs Arterial Algorithms 

Most of the described road-way and probe-based algorithms are only applicable on freeways 

and are not directly applicable towards arterials (high-capacity urban roads). This has a 

number of reasons. First, the variation of traffic on arterials is more complex and varied than 

on freeways. Second, arterials are susceptible to certain events that could signal false traffic 

events when applying freeway based algorithms, e.g., events caused by bus stops, parking 

maneuvers, traffic leaving and entering from side streets, traffic signal control (Ivan, Schofer, 

Koppelman, & Massone, 1995). Due to these additional difficulties, research on arterials has 

only caught the interest of researchers in the last number of years, while research towards 

freeways has been going on for the last few decades. An example of these arterial algorithms, 

which do not fall in the previously discussed freeway algorithms are the fuzzy logic-based 

algorithms. These are based on human-interference-oriented AI techniques and used for 
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models that operate in real-time and deal with uncertainty and need approximate reasoning 

(Yaguang and Anke, 2006). Hawas (2007) uses such a fuzzy-based system for traffic event 

detection at intersections in urban street networks. He developed a simulation-based 

methodology and tested its logic under various real-world scenarios. Additionally, show that 

a combination of SVM and fuzzy logic-based on volume and occupancy data from fixed 

detectors can be used to detect traffic events on urban arterial streets.  

2.1.2.4 Traffic Event Detection Key Points 

The most important theoretical key point on the detection of traffic events is that traffic is a 

spatiotemporal problem. This means that in order to detect an event by using just traffic data 

a couple of things are needed: 

1. There should be some sort of congestion. 

2. The outflow out of the congestion should be (much) lower than the (expected) capacity. 

3. The congestion is often homogeneous with very low speed and flow values. 

4. The congestion takes place at locations without a known bottleneck (known 

bottlenecks include ramps, bridges/tunnels, weaving sections etc.).  

 

Such cases of congestion can be translated to heat map charts depicting the speed/flow values 

on a lane over time. Figure 2-1 and Figure 2-2, depict a heat map of traffic speed/flow over a 

500 meters road lane segment, where the time is placed on the x-axis, the distance (in km) 

on the y-axis, and speed (km/h) /flow (vehicle/hour/lane) on the z-axis. These figures provide 

an example of a case where the congestion is homogenous with very low speed and flow values 

represented by the red segment in the traffic speed and blue segment in the traffic flow heat 

map. Such congestion could thus indicate something is going on, however this traffic data 

provides no context on the type of event. Traffic data can help to predict the traffic 

consequences of an event, but only if there can be made a prediction on how long the event 

itself will last.  

 

 

 

 

  

Figure 2-2: Heat map of traffic flow (vehicle/hour/lane) Figure 2-1: Heat map of traffic speed (km/h) 
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2.1.3 Traffic Data Evaluation 

Research within the Transport & Planning field shows us that there are numerous 

algorithms to detect traffic events based on roadway-based and probe-based sensors. 

However, these algorithms do not always provide reliable and constant results due to three 

factors. First, the quality of measurements from roadway-based sensors depends on the 

density of the sensor network. The same is true for probe-based sensors as they depend on 

the number of vehicles equipped with sensors. Second, data sources are easily corrupted by 

noise which makes detection of less severe traffic events near to impossible. Third, the 

difference between a freeway and arterial (urban) traffic data. Algorithms that can be applied 

on freeways are often not suitable for arterial situations which are much more complex. 

Beside these traffic event detection approaches, no methods for traffic event categorization 

and description could be found. This makes sense, as traffic data misses the semantics to 

derive these methods. In conclusion, this works shows that traffic data sources on their own 

can only be used for traffic event detection on a specific selection of roads. This shows that 

there lays an opportunity for this thesis to enrich this traffic data by adding a traffic event 

categorization and description approach. Additionally, by enriching the traffic data source 

itself we can show that our contribution is suitable for all algorithms that are based on such 

traffic data sources. 
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2.2 Geosocial Data 

Contrary to the previously discussed Transport and Planning field where the focus laid on 

traffic event detection, research within the Computer Science is more evenly focused on 

traffic event detection, categorization, and description. Each evaluated research paper 

contains at least one of these three categories, which will get discussed in depth. For the 

traffic event detection part, an overview is given of the used geosocial data and the data 

collection, preprocessing and feature engineering and machine learning techniques that are 

used to create a binary traffic event classifier. For the traffic event classifier part, techniques 

are discussed that are being used to classify a geosocial post into a traffic event categories. 

For the traffic event description part, we look at how (categorized) geosocial data is used to 

infer a traffic event, which includes linking, aggregation and visualization strategies.  

 

2.2.1 Geosocial Data based Related Work 

Wanichayapong, Pruthipunyaskul, Pattara-Atikom, and Chaovalit (2011) propose an 

extraction and classification technique for traffic information. They collect Thai tweets by 

using a query of two traffic-related keywords on the Twitter REST API. The resulted tweet 

set is tokenized and the tokens get parsed into four dictionary categories: “Place” (names of 

roads, places, crossroads, and alleys), “Verb” (traffic conditions, e.g., traffic jam), “Ban” 

(vulgarity, profanity, and question words), and “Preposition” (road directions). A tweet is 

considered traffic-related if it contains at least a word in the “Place” and “Verb” categories 

and does not contain a “Ban” category word. This dictionary and rule-based detection method 

are able to detect traffic event-related tweets with an accuracy of 91.75%, precision of 91.39%, 

and recall of 87.53%. Based on a dataset of 1249 tweets, consisting for 21% of traffic 

information center based tweets and for 79% of individual users based tweets.  

In addition to the proposed traffic event detector, a limited traffic event description 

method is proposed that links tweets classified as traffic event-related directly to a possible 

traffic event location. In this method, the start and end point of the possible traffic event get 

derived by finding “Preposition” and “Place” combinations in the tweet. These points are used 

to find a corresponding location, by using them to query the place dictionary of the Ministry 

of transportation Thailand, or to query Google geocoding (road segment-based). If a tweet did 

not contain a start or endpoint, the road keyword is used to determine a location (road point-

based). This method is able to classify traffic event-related tweets with 76.85% accuracy, 

62.77% precision, and 95.36% recall in the road segment category, based on a dataset of 3311 

tweets. And 93.23% accuracy, 81.72% precision, 92.20% recall in the road point category, 

based on a dataset of 2942 tweets.  

 

Ribeiro Jr, Davis Jr, Oliveira, Meira Jr, Gonçalves, and Pappa (2012) propose a real-time 

Twitter-based traffic event and condition identification method for the city Belo Horizonte. 

Portuguese tweets are collected by following ten influential accounts that report on traffic 

situations. Traffic event detection is performed based on a static dictionary list of frequently 

used traffic event terms in tweets. They do not apply any way of automated traffic event 

categorization. Instead, they focus on location detection and mapping based on tweets. For 

this purpose, a geographic dictionary is formed of thoroughfare names and segments, and 

street crossings with their related thoroughfares. Additionally, this dictionary also provides 

for common traffic abbreviations. By using exact string matching on words in tweets 
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combined with thoroughfare types, a traffic event location is determined. This location is then 

refined by using fuzzy string matching to find names of related roads.  

 

In the work by Li, Lei, Kwadiwala, and Chang (2012) a Twitter-based event (crime and 

disaster-related, including traffic accidents) detection and analysis system are proposed. 

Data is collected by using a seed keyword set to query the Twitter REST API. From the 

resulted tweet set, word bi-grams are extracted as possible candidates to add to the keyword 

set. They get added to the keyword set if the ratio between event-related and non-event 

related is positive. These new keywords get validated by comparing the ratio of newly 

retrieved event-related tweets to newly retrieved non-event related tweets. If this proves 

positive the keyword set gets added to the initial keyword set. This process is repeated until 

no new keywords can be found. Their method uses a combination of Twitter-specific features 

(links, hashtags, and mentions) and event-specific features (time, location, and numbers). 

Based on these features they train a classification model which tested to have an accuracy of 

80%. However, no specifics on feature extraction or the type of classifier are given.  

Positively classified tweets are indexed by a text search engine and stored in a 

database, which is used to answer real-time queries and provide visualizations. A clustering 

model is used to group similar tweets into similar geographic regions and temporal ranges. 

However, no further details were provided on the workings of this clustering model. Another 

event description part includes the ranking of tweets according to their importance, which is 

done based on content features (e.g., important words or URL’s), user features (e.g., verified 

account, number of followers/tweets, or the age of the account), usage features. Usage 

features are measured by the number of similar tweets, and tweets with the same hashtags 

within a time and location range to the current tweet.   

 

Cui, Fu, Dong, and Zhang (2014) propose a method to extract traffic information from the 

Chinese social media platform equivalent of Twitter, called Sina Weibo. The paper does not 

contain a specified data collection and pre-processing approach. It detects traffic event-

related posts into three categories (traffic flow, traffic accident, traffic control) by using a 

Bayesian classifier based on word n-gram features, however, no concrete results are provided. 

Moreover, temporal and locational features are extracted based on a custom natural language 

approach, which is not further elaborated. These two features are used to position the 

geosocial post on a geographic point or line. Besides a linking procedure, another novel idea 

has been implemented towards traffic event description, namely a QA system. When a 

geosocial post is labeled as traffic event-related but misses an incident category, temporal or 

locational aspect, the system sends a question to the user who posted the message to inquire 

additional missing information.  

 

An automatic road hazard detection system based on tweets is proposed by Kumar, Jiang, 

and Fang (2014). Tweets are retrieved with the Twitter Streaming API based on a dictionary 

of terms related to hazardous events in the categories: animals, emergency, weather, special 

events, and traffic. Tweets without a geopoint (single latitude/longitude point) were 

discarded, stop words were removed and stemming was applied. The result set was manually 

labeled as hazardous or not hazardous. In this study, it is claimed that there is a relationship 

between negative sentiment and the mention of road hazards in a tweet. Therefore sentiment 

classification is applied to the labeled tweets based on word n-grams, with the help of three 

machine learning methods: kNN, NB, and Dynamic Language Model (DLM). NB proved to 

have the best precision of 77.5%, with a recall of 51.5% and accuracy of 81.2%, based on a 

dataset of 30,876 tweets.  
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An approach of detecting small-scale incidents (not limited to the traffic domain) based on 

spatial-temporal-type clustering is proposed by Schulz, Schmidt, and Strufe (2015). In their 

research, they try to solve the problem of clustering incident-related tweets based on incident-

type, location and time. Data is collected through the Twitter Search API based on a geo-

radius and is then preprocessed so it can be used for feature generation. Their preprocessing 

steps consist of: replacing abbreviations with words from slang dictionary, identification and 

replacement of locational and temporal expressions with a token, interlinking entities with 

types and categories in linked open data, and lastly tokenization. Next, non-alphanumeric 

characters are removed from the tokens and lemmatization is applied on the tokens. They 

select the following features to use for their classifiers: word-n-grams, char-n-grams, TF-IDF 

scores, syntactic features, number of locational and temporal mentions, and linked open data. 

The features get combined and evaluated by using the binary classifiers multinomial Naïve 

Bayes (NB) and Support Vector Machine (SVM), based on a sub-dataset of 2000 tweets 

collected over a period of 2.5 months. SVM with word-3-grams and binary weighting provided 

the best results with an accuracy of 90.1% and micro-avg. F1 of 90.05%.  

The classified incident-related tweets are linked to a location, by using a custom 

location mapping technique. First, word-3-grams are created of location-tagged words 

(Stanford NER). Second, each n-gram gets mapped by using geocoding APIs (e.g., MapQuest 

Nominatim API). Third, based on the resulted sets of coordinate pairs for each n-gram a 

polygon is created. Last, the polygons get stacked and the highest area is used as an 

estimation of the incident location. In addition to location-based linking, tweets get linked to 

a time period by extracting temporal expressions (based on the HeidelTime framework, which 

uses regular expressions) and combining them with the creation date to calculate the most 

probable incident occurrence date. Based on the incident type, location and time period a 

rule-based clustering method is applied. Incident reports get clustered with each other when 

there is a corresponding incident type and the spatial and temporal extent falls within the 

extent of the defined in the rule. Their evaluation of the approach showed that 50% of real-

world incidents published in an emergency management system could be detected. 

Furthermore, 32.14% of the incidents could be detected within a 500-meter radius and 10-

minute interval around the actual event. 

 

D'Andrea et al. (2015) propose a real-time traffic event detection system. Data is collected 

through the Twitter Search API based on a geo-radius and keyword list. Their preprocessing 

steps consist of: discarding hashtags, links, mentions, special characters, non-Italian tweets. 

Additionally, tweets get tokenized and stop-word filtering and stemming are applied. Next, 

to form a feature set, the weight of all stems is computed by using the IDF index. Then a 

method based on the computation of the Information Gain (IG) value between the feature set 

(stem set) and output set (traffic class labels) is applied, in which the set of relevant stems 

have a positive IG value. Based on the feature set of relevant stems, a multi-class 

classification is applied in which three traffic classes get distinct: non-traffic related, traffic 

congestion/crash and traffic due to an external (scheduled) event (e.g., sports match or 

concert). Several classification algorithms have been taken into account: SVM, Multinomial 

NB (MNB), C4.5 decision tree, k-nearest neighbor (kNN), and PART. When applying the 

classifiers on a 2-class (non-traffic, traffic based) dataset, SVM turned out to be best with an 

accuracy of 95.75%, precision of 95.3%, recall of 96.5%, and F1-score of 95.8%. The evaluation 

was performed on a dataset of 1330 tweets, collected over a time span of four evening hours 

of two weekend days. SVM also proved to be the best classifier with an 88.89% accuracy when 
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applying the classifiers on a 3-class (non-traffic, traffic congestion/crash, traffic due to an 

external event) dataset of 999 tweets.  

 

Nguyen, Liu, Rivera, and Chen (2016) developed a system that detects traffic incidents in 

real time by monitoring Twitter. Data collection is achieved by using a keyword-based query 

on the Twitter REST API. The result set of tweets is afterward filtered on a combination of 

geo-location, time zone, location and country from the user’s profile in order to only obtain 

Australian tweets. Next, the following pre-processing techniques are applied: stop word 

filtering, special character filtering, and tokenization. In order to train the traffic incident 

classifier the following list of features are extracted: bag of words (each word gets a weight 

based on the accumulated TF-IDF score overall positive tweets); lemmatization and part-of-

speech (POS) by applying the Stanford Twitter tagger; date, time and numbers by applying 

a custom pattern recognizer; bag of tags (custom NER, trained based on CRFs). Based on 

these features experiments with the following classifiers were executed: kNN, BN, SVN, C4.5 

decision tree. The BN method based on a combination of all features delivered the best 

performance: precision of 94.2%, recall of 96.6%, and an F1-score of 95.4%, based on a dataset 

of 5000 tweets.  

 Even though the tweet sets have been annotated with a variety of location types (state, 

suburb, street, POI, place), entity types (people, vehicle, stationary object), incident types 

(queue, accident, breakdown, hazard, special event, police, roadwork) and properties (lane, 

direction, status), in order to train a custom NER, this information was not used to create a 

traffic event categorizer. However, tokens identified as one of the location types have been 

used to couple tweets to a location (no further details were given). Besides the 2.87% of tweets 

located based the device location, this custom geo-locator approach mapped an additional 

19% of tweets. The final application consists of geo-located traffic event-related tweets 

mapped on a map in a real-time fashion.  

 

In recent work by Gu et al. (2016) a methodology is proposed to crawl, process and filter 

tweets to extract incident information on highways and arterials. An adaptive data 

acquisition is used to collect tweets based on an iteratively composed keyword list used to 

query the Twitter REST API. First, an initial keyword list of traffic-related words that are to 

be included and words that are to be excluded from the query. In each iteration this keyword 

list gets expanded with a pair of synonyms per keyword derived from the WordNet database. 

Second, the resulted tweet set gets labeled traffic related or not. Third, for all tweets, the 

combinations of tokens and their labels (traffic event-related or not) get counted and 

aggregated. A set of tokens and their combinations with the highest positive and a set with 

the highest negative correlation, get added to the initial keyword set. This process is iterated 

until it is no longer cost-effective (adding new keywords does not yield enough new traffic-

related tweets). This resulted in a final keyword set with 131 positive and 383 negative 

keywords. Additionally, tweets from 46 influential users got queried. The final keyword set 

of positively correlated keywords and combinations of keywords is used to form the feature 

space for a Semi-Naïve-Bayes classifier for detecting traffic incident related tweets. Tests 

with this classifier resulted in an accuracy of 98.94%, precision of 99.02%, and recall of 

79.84%, based on a dataset of 5000 tweets.  

 In order to categorize traffic incident related tweets five categories are defined: 

accidents, road work, hazards & weather, events, and obstacle vehicles. Supervised Latent 

Dirichlet Allocation (sLDA) is used to assign a category label to the traffic incident related 

tweets. Its output is a vector containing a probability of a tweet falling in one of the five 
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categories. 51% of the tweets proved to be categorized into the correct category by applying 

this method.  

 In this research, a geo-parser linking approach, based on a large set of regular 

expressions, is used as a way to describe traffic incidents. It contains rules for identifying 

roads and segments (based on markers and relational words). The resulted output is used as 

a query for a Gazetteer in order to identify the geo-location. The linking of the tweets has 

been validated by comparing it with the traffic incident data from the Road Condition Report 

System from the Department of Transportation Pennsylvania (RCRS). When comparing the 

traffic incidents based on tweets, allowing a 30-minute reporting time and a 1-mile distance 

discrepancy with the traffic incident data from RCRS, 71% of the incidents matched.  

 

2.2.2 Geosocial Data based Related Work Evaluation 

The research discussed in this section shows how geosocial data, which is almost always 

Twitter-based, can be utilized for traffic event detection, categorization, and description. 

However, traffic event categorization seems to be a less researched topic. Research involving 

traffic event detection shows that this can be divided into a data collection, pre-processing, 

and feature engineering stage. These stages are steppingstones to arrive at the classification 

stage, where machine learning and rule-based approaches are applied in order to create a 

traffic event detector. Table 2-1, provides an overview of the research that includes a 

geosocial data based traffic event detection approach. Traffic event categorization was 

neglected in most research, due to unknown reasons. Only one paper discusses a 

categorization approach based on sLDA, as is made visible in Table 2-2. Traffic event 

description approaches can be divided into linking, aggregation and visualization 

approaches. Just like with the traffic event detector approaches, linking and aggregation are 

often used as steppingstones towards a map visualization. Most of the research focuses on 

geocoding approaches based on a dictionary/gazetteer method, or rule-based methods. 

Temporal linking is mostly done based on the creation date of a geosocial post. Aggregation 

methods are not applied most of the times, resulting into a visualization approach that 

directly maps tweets based on the combination of geo-coordinates and creation time. 

Aggregation approaches that do have been used, cluster geosocial posts based on rules 

regarding incident types, geo-regions, and temporal ranges. An overview of all research that 

includes traffic event description approaches can be found in Table 2-3.  

The overall weaknesses of only focusing on one source of geosocial data to detect, categorize, 

and describe traffic events are:  

 

1. Reliability of the category assigned to a detected traffic event: Did the user use 

distinctive enough words to derive the correct event category?  

2. Reliability of the spatial aspects of the detected traffic event: Was the user really on 

the location of the event at the time of posting the tweet, or did he post about an event 

he read or heard about? And did the user use accurate enough locational words to be 

able to derive the correct event location? 

3. Reliability of the temporal aspects of the detected traffic event: Was the tweet 

composed directly after the traffic event, or does it refer to a historical or future event? 

 

These disadvantages would mostly be non-existent if the number of social posts that refer to 

a single event would always be of a high quantity. That way, tweets could be aggregated 

together to improve the reliability of the detected event. However, the reviewed research 
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shows that the ratio of the number of traffic event-related tweets per location and time range 

proves to be very low.  

An overview of the weaknesses in/what is missing from, current research based on geosocial 

data only, and how our work extents upon current work based on the opportunities these 

missing parts offer, is provided below. 

 

1. Weakness: Research focusses on sub-parts of the traffic event domain, or mixes it with 

different incident domains. Including different incident domains could improve the 

overall results, while the sub-results related to traffic events are not as good. 

Opportunity: Focus on a large range of possible non-recurrent traffic events. 

2. Weakness: Data collection approaches often seem biased due to a limited keyword 

selection approach. For example, by choosing traffic related keywords that are not 

ambiguous better results could be achieved, yet this limits the diversity and amount of 

collected traffic event-related geosocial posts. 

Opportunity: Create a keyword based data collection approach that captures as many 

traffic event-related tweets as possible. 

3. Weakness: Data collection is performed over a too limited time range. This could cause 

bias towards traffic events that are time period bounded, e.g., rush hour traffic jams. 

Opportunity: Perform data collection over a time range that is likely to include all types 

of traffic events. 

4. Weakness: Datasets are small in size, and likely to miss traffic event categories. 

Opportunity: Collect larger datasets containing traffic events of every category. 

5. Weakness: Datasets include a mixture of traffic event-related geosocial posts from “real 

road-users”, news agencies, bots, and emergency agencies. This affects the results, as 

traffic event-related geosocial posts from news agencies, bots and emergency agencies 

contain a different syntax than geosocial posts from “real road-users”. This could have a 

biased positive result on the detection, categorization, and description methods. 

Opportunity: Focus only on traffic event-related tweets from “real road-users”. 

6. Weakness: Categorization approaches are almost non-existent or limited in scope. 

Opportunity: Categorization of a large range of non-recurrent traffic event categories. 

7. Weakness: Geocoding approaches only take geopoint based linking into account. 

Geosocial posts, often contain multiple locational terms. By linking a geosocial posts to a 

single geopoint one creates conflicts based on location resolution. 

Opportunity: Create a location linking approach that takes into account geopoint, -line, 

and –shape based linking. As well as takes into account the interrelationships between 

location terms in geosocial posts. 

8. Weakness: Visualization of traffic events (in an application) is static and only focuses on 

displaying the events on a map and showing their related descriptions. 

Opportunity: Create an interactive map-based application that allows for the 

visualization of traffic events, but also contains interactive elements for data analysis. 
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Geosocial Data - Traffic Event Detection 

Research Data Collection Pre-processing Feature 

Engineering 

Classifier Evaluation 

Wanichayapong 

et al. (2011) 

Twitter Search API: 

keyword list 

-Thai language 

filtering 

-Dictionary-based 

Tokenization 

N/A Rule-based 

Dictionary 

approach 

Dataset size: 1249 

tweets 

Accuracy: 91.75% 

Precision: 91.39% 

Recall: 87.53% 

Ribeiro Jr et al. 

(2012) 

Twitter: influential 

accounts 

-Portuguese 

language filtering 

N/A N/A N/A 

Li et al. (2012) 

 

Twitter REST API: 

adaptive keyword 

approach 

N/A -Twitter-specific 

(links, hashtags, 

mentions) 

- Traffic event-

specific (time, 

location, 

numbers) 

Unspecified 

classifier 

N/A 

Cui et al. 

(2014) 

 

Sina Weibo N/A -Word n-grams Bayesian N/A 

Kumar et al. 

(2014) 

Twitter Streaming API: 

keyword list 

-Discarding non-geo 

tweets 

-Stop word removal 

-Stemming 

 

-Word n-grams 

-Sentiment 

-kNN 
-NB 

-DLM 

Dataset size: 30,876 

tweets 

Accuracy: 81.2% 

Precision: 77.5% 

Recall: 51.5% 

Schulz et al. 

(2015) 

Twitter Search API: geo-

radius 

-Abbreviation 

replacement 

-Locational and 

temporal 

generalization 

-Linked open data 

-Tokenization 

 

-Word n-grams 

-Char n-grams 

-TF-IDF scores 

-Syntactic 

features 

-Number of 

locational and 

temporal 

mentions 

-Linked open 

data 

-Multinomial-NB 

-SVM 

Dataset size: 2000 

tweets 

Accuracy: 90.1% 

Micro-avg. F1: 90.05% 

D'Andrea et al. 

(2015) 

Twitter Search API: geo-

radius and keyword list 

-Italian language 

filtering 

-Discarding 

hashtags, link, 

mentions, special 

characters 

-Tokenization 

-Stop word removal 

-Stemming 

-Set of relevant 

stems based on 

Information 

Gain between 

stem set and 

traffic class 

labels set 

-SVM 

-NB 

-C4.5 decision 

tree 

-kNN 

-PART 

Dataset size: 1330 

tweets 

Accuracy: 95.75% 

Precision: 95.3% 

Recall: 96.5% 

F1-score: 95.8% 

Nguyen et al. 

(2016) 

Twitter REST API: 

keyword list 

-Discarding special 

characters 

-Stop word removal 

-Tokenization 

-Bag of words 

-Lemmatization 

-POS 

-Temporal, 

numerical 

features 

-Bag of tags 

(Custom NER) 

-kNN 

-Bayesian 

Network 

-SVN 

-C4.5 decision 

tree 

Dataset size: 5000 

tweets 

Precision: 94.2% 

Recall: 96.6% 

F1-score: 95.4% 

Gu et al. (2016) Twitter REST API: 

adaptive keyword 

approach in combination 

with influential accounts 

Tokenization Word n-grams of 

positively 

correlated 

(towards traffic 

incidents) 

keyword tokens 

Semi-NB 

 

Dataset size: 5000 

tweets 

Accuracy: 98.94% 

Precision: 99.02% 

Recall: 79.84% 

Table 2-1: Traffic event detection based on geosocial data sources. The best performing classifiers have been made bold and relate to the 

evaluation metrics.  
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Geosocial Data - Traffic Event Categorization 
Gu et al, (2016) -Categorization into 5 categories: accidents, road work, hazards & weather, events, and obstacle vehicles 

-sLDA is used to assign a category label, its output being a probability vector 

Table 2-2: Traffic event categorization based on geosocial data sources. 

Geosocial Data - Traffic Event Description 
Research Linking Aggregation Visualization/App Evaluation 

Wanichayapong 

et al. (2011) 

- Combination of 

Dictionary (Gazetteer) 

and Rule-based approach 

N/A N/A Linking to road segment: 

   -Dataset size: 3311 tweets 

   -Accuracy: 76.85% 

   -Precision: 62.77% 

   -Recall: 95.36% 

Linking to road point: 

   -Dataset size: 2942 tweets 

   -Accuracy: 93.23% 

   -Precision: 81.72% 

   -Recall: 92.20% 

Ribeiro Jr et al. 

(2012) 

- Combination of 

Dictionary ( Gazetteer) 

and Rule-based approach 

N/A Direct mapping of tweets 

based on geo-coordinates and 

creation time 

N/A 

Li et al. (2012) 

 

Unspecified linking 

method 

-Clustering on geo-

regions and temporal 

range 

-Importance ranking 

based on content, user, 

and usage features 

Direct mapping of tweets 

based on geo-coordinates and 

creation time 

N/A 

Cui et al. (2014) 

 

- Unspecified temporal 

and locational NLP 

extraction approach 

- Unspecified geo-

positioning approach 

- QA approach to 

complement missing 

labels 

N/A Direct mapping of tweets 

based on geo-coordinates, 

creation time or time specified 

through QA  

N/A 

Schulz et al. 

(2015) 

- Geocoding approach 

based on word n-grams 

retrieved with an NER, 

geocoding APIs and 

polygon stacking 

- Temporal linking 

derived from a 

combination of regular 

expressions (HeidelTime 

framework) and creation 

date of the tweet 

Rule-based clustering of 

event-related tweets 

based on incident type, 

location and time 

period. 

N/A Locational (500m)/Temporal 

(10min) linking: 

   -Dataset size: 1271 tweets 

   -Accuracy: 32.14% 

Nguyen et al. 

(2016) 

- A geocoding approach 

based on word types 

retrieved with a custom 

NER. 

N/A Direct mapping of tweets 

based on geo-coordinates and 

creation time 

Geocoding: 

   -Dataset size: 1056 tweets 

   -Accuracy: 21% 

Gu et al. (2016) - Combination of 

Dictionary Gazetteer) and 

Rule-based approach 

 

N/A Direct mapping of tweets 

based on geo-coordinates and 

creation time 

Geocoding: 

   -Dataset size: 3776 tweets 

   -Portion of geocodable tweets 

by influential users: 64.0% 

   -Portion of geocodable tweets 

by individual users: 4.9% 

Table 2-3: Traffic event description based on geosocial data sources. 
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2.3 Combination of Traffic and Geosocial Data 

On the one hand, there exists a fair amount of research on traffic event detection based on 

traffic data in the Transport & Planning domain. On the other hand, there is a considerable 

quantity of research on traffic event detection, categorization, and description based on 

geosocial data in the Computer Science domain. However, research focusing on the 

combination of these two domains regarding the topics on traffic event detection, 

categorization, and detection, seems to be still in its infancy. In this section, the research 

conducted in this domain is discussed.  

 

2.3.1 Combination of Traffic and Geosocial Data based Related Work 

Daly et al. (2013) developed the Dub-STAR system that uses a mechanism that fuses 

traditional city traffic data sources with tweets in order to describe the underlying causes of 

traffic conditions. The system is able to infer links between traffic events and traffic 

congestion based on a traffic diagnosis method trained on historical traffic data within 

Dublin. In other words, it is able to explain anomalies such as congestion in real-time based 

on historic conditions. This is achieved by using Dublin Bus GPS speed data to define road 

segments as congested based on pre-defined rules. Other traffic data including Eventful (a 

web-based event sharing service) matched with DBPedia, Dublin Road Works, and 

LinkedGeoData is used to describe possible causes of the congestion. This is done on the basis 

of the semantic similarity, time window, and road network of the event. In order to describe 

additional aspects of these derived traffic events, a dataset of tweets is collected from three 

influential users who tweet about traffic in the Dublin area. In this research, it is presumed 

that these tweets are traffic event-related, so no traffic event detection classification is 

applied. In order to link the tweets to a geo-location, punctuation is removed and traffic 

abbreviations are expanded (e.g., rd to road). Each word is used to perform a dictionary 

lookup (Lucene index based on OpenStreetMaps), if no result is found a spelling checker is 

applied to check for any misspelling. All found words are extracted from the tweet and used 

to create word n-grams. These n-grams are again used to perform a dictionary lookup and 

removed if no results are found. The resulting n-grams are used to search for a location. An 

evaluation of their geocoding approach, based on a dataset of 719 tweets, showed that 50% of 

the tweets were matched accurately with an error range of 500 meters (100% when applying 

an error range of 2 km). Additionally, tweets get semantically annotated based on a simple 

dictionary approach based on the categories: delay, incident, event, closure, roadworks, 

obstruction, and weather. The tweets are matched to the traffic events derived from the 

traffic data, based on a similarity estimation. This estimation is computed by using the 

semantic description of the event and spatial and temporal connectivity of events. This all 

comes together in an application called Dub-STAR in which real-time traffic events are 

visualized on a map. The system supports free text queries, coordinate-based queries, and 

filtering on specific types of events. The system itself is evaluated based on the same dataset 

of 719 tweets, having a recall of 78% and a precision of 20%.  

 

Dokter (2015), conducted his thesis research, as part of the WIS group at the TU Delft, on 

the characterization of traffic events using social media. In his thesis, geosocial data from 

Twitter and traffic data from the National Data Warehouse for Traffic Information (NDW) is 

used. Twitter data is collected by using a keyword list of traffic terms and a bounding box 

covering the Netherlands, in combination with the Twitter streaming API. A linkage method 
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is developed to link tweets to traffic events from the traffic data set of the NDW. Within this 

method, geocoding is performed based on the similarities of textual location descriptors 

within NDW data and tweets. Temporal linking is performed based on the creation date of 

tweets and the creation date of events in the NDW data. Linked events are classified by 

matching the linked tweet tokens with a traffic dictionary. This way the most occurring cause 

type is used as the type of the traffic event. An evaluation of the linking method on a small 

subset of tweets gave a precision of 96% and a recall of 80%. An evaluation of the classifier 

showed that the system is able to identify the traffic cause type for 63% of the events, from 

which 33% was classified correctly. The proposed system proved to have difficulties with the 

classification of cause types due to: incorrect linking of tweets to NDW data, tweets of non-

real-time nature, and the limited amount of traffic event-related tweets.  

Giridhar et al. (2017) propose a traffic anomaly explanation service using Twitter data, 

named ClariSense+. This service is an extension on their previous system ClariSense 

(Giridhar, Amin, Abdelzaher, Kaplan, George, & Ganti, 2014) and enhances their base 

algorithm by considering the credibility of the tweets and the spatial locality of detected 

traffic anomalies. On the one hand, the system relies on traffic sensor data. It detects 

anomalies in sensor reports and clusters these sensors based on distance and time overlap. 

An anomaly gets defined as an unusual flow interruption on major freeways. A sensor 

anomaly detection algorithm called the Performance Management Systems (PEMS) analysis 

tool is used to report the start, end, duration and sensor IDs for each detected anomaly. 

Additionally, each anomaly is classified in the categories: Accidents, Hazards, Breakdowns, 

Weather, and Other events. It must be noted that this anomaly detection algorithm is not 

further explained and no information is given on how traffic events are categorized based on 

unusual traffic flow interruptions. Clustering of nearby sensor anomaly reports is used to 

remove redundant observations. Sensors are part of the same cluster when they are less than 

2 miles apart from each other. On the other hand, the system relies on the data from the 

Twitter Search API, collected by using a bounding box for the chosen city and the keyword 

“traffic”. The proposed method does not rely on semantic analysis of tweets but instead 

focusses on the question if there can automatically be found a set of keywords that has a one-

to-one correspondence with a unique event. First, all words longer than four characters long 

get removed from the tweet set. Second, a POS tagger is applied to identify nouns, which 

serve as keywords. Last, bi-grams of keywords are formed and ranked by information gain. 

By comparing this information gain with a certain threshold it can be determined that these 

keyword pairs occur disproportionally more frequently compared to the historical normal. 

When this is the case the tweets get labeled as traffic event-related. After having created a 

traffic and geosocial data set, the geosocial data can get matched to the traffic data. Tweets 

get matched to a sensor anomaly based on location keywords that occur in the tweet and geo-

keywords (e.g., highway number, exit names, landmarks) associated with each physical 

sensor. Tweets that match the location of (containing one or more corresponding keywords), 

and occur within 24 hours from the traffic event are sorted by information gain. The top 

tweets are then used as an explanation of the traffic events. Their service is evaluated based 

on a dataset of tweets over a 3-week period for the cities Los Angeles (avg. of 850 tweets per 

day), San Francisco (avg. of 300 tweets per day) and San Diego (avg. of 800 tweets per day). 

The evaluation of their service showed an average recall over the three cities (number of 

correctly explained events among all returned tweets) of 85.7% for Hazard, 83.5% for 

Accident related traffic events. The precision is measured by determining how good the 
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algorithm is at picking the right traffic event category for the traffic data anomalies at hand. 

Their approach resulted in a precision over all three cities of 88.63%.  

 

2.3.2 Combination of Traffic and Geosocial Data based Related Work Evaluation 

Research based on the combination of traffic and geosocial data proved to be limited and 

distinguishes itself mostly in its traffic event description approach as summarized in Table 

2-6. Herein, possible traffic events derived from traffic data anomalies can be used to link 

geosocial data with, towards improving the description of traffic events. By enforcing 

geosocial data to be linked to traffic data in order to describe a traffic event, the overall 

weakness (reliability of the category, spatial, temporal aspects of the detected traffic event) 

of using only a geosocial data source is partly solved. Besides containing the same weaknesses 

and opportunities as described in Section 2.2.2, these works bring another weakness and 

opportunity to the light.  

 

1. Weakness: In these works, a combination of traffic data anomalies and geosocial data is 

always needed to infer a possible traffic event. However traffic events can happen 

without any traffic data anomalies appearing, e.g., road debris does not necessarily lead 

to traffic data anomalies, but is considered a traffic event. In this case, any geosocial data 

referring to this road debris would be discarded. 

Opportunity: Use multiple geosocial data sources and if possible link these to roads 

containing traffic data. On the one hand, by aggregating geosocial data sources, the 

weakness related to the reliability of one geosocial data source is reduced. On the other 

hand, geosocial data is always linked to roads containing traffic data, so when anomalies 

appear no geosocial data is lost and it can be used to describe the anomalies.  

 

Traffic and geosocial data based research containing traffic event detection methods are 

further summarized in Table 2-4. The only research containing a traffic event categorization 

approach can be found in Table 2-5. 
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Traffic Data & Geosocial Data - Traffic Event Detection 

Research Data Collection Pre-processing Feature 

Engineering 

Classifier 

Daly et al. (2013) Geosocial data: 

Twitter: influential accounts 

Traffic Data: 

-Dublin Bus GPS speed data 

-Eventful (matched with 

DBPedia) 

-Dublin Road Works 

-LinkedGeoData 

Geosocial data: 

-Abbreviation 

replacement 

-Discarding 

punctuation 

N/A Traffic Data: 

Rule based congestion classifier 

Dokter (2015) Geosocial data: 

Twitter streaming API: 

keywordset and boundingbox  

Traffic Data: 

-NDW dataset 

 

Geosocial data: 

  -Bot filter 

  -Ban word filter 

  -Discarding special 

characters and 

punctuation 

  -Tokenization 

  -Remove tokens 

with < 4 characters 

N/A Geosocial data: 

Linked tweets to NDW data get 

a matching percentage based 

on term similarity 

Giridhar et al. 

(2017) 

Geosocial data: 

Twitter Search API: geo-radius 

and keyword 

Traffic Data: 

Roadway-based sensors flow 

data 

Geosocial data: 

-Discarding words 

containing less than 

5 characters 

-Discarding non 

nouns based on POS 

tagger 

Geosocial data: 

-Set of word bi-

grams based on 

Information 

Gain 

Geosocial data: 

Classifier based on comparison 

of Information Gain with 

threshold 

Traffic Data: 

Performance Management 

System classifies flow 

anomalies into: accidents, 

hazards, breakdowns, weather, 

and ‘other’ events 

Table 2-4: Traffic event detection based on traffic data & geosocial data 

Traffic Data & Geosocial Data - Traffic Event Categorization 
Daly et al. 

(2013) 

-Categorization into 7 categories: delays, incidents, social events, closure, roadworks, obstruction, weather. 

-Dictionary approach 

Dokter (2015) -Categorization into 11 categories: rush-hour, accident, event, non-technical, technical, construction, weather, 

breakdown, other, unknown. 

-Dictionary approach 

Table 2-5: Traffic event categorization based on traffic data & geosocial data 
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Traffic Data & Geosocial Data - Traffic Event Description 
Research Linking Aggregation Visualization/App Evaluation 

Daly et al. 

(2013) 

- Dictionary approach 

applied first on all 

words in a tweet 

(spelling correction is 

applied when necessary) 

and followed by n-grams 

if a word matched a 

term from the dictionary 

- Gazetteer 

Confidence ranking, 

based on spatial-

temporal relationship 

between congestion 

and potential causes 

 

Direct mapping of tweets based 

on geo-coordinates and creation 

time 

Mapping of traffic data based on 

semantic similarity to historical 

events, time window, and road 

network.  

Geocoding: 

  -Dataset size: 719 tweets 

  -Accuracy: 50% (<500m) 

  -Accuracy: 

100%(<2000m) 

 

System: 

  -Dataset size: 719 tweets 

  -Precision: 20% 

  -Recall: 78% 

Dokter (2015) - Geocoding approach 

based on the similarities 

of textual location 

descriptors within NDW 

data and tweets.  

 

-Temporal linking 

approach based on the 

creation date of tweets 

and the creation date of 

events in the NDW data. 

Tweets get aggregated 

to NDW events based 

on locational and 

temporal similarities.  

Direct mapping of clusters based 

on geo-coordinates and creation 

time of NDW events. Tweets and 

NDW events also get mapped by 

themselves if geo-coordinates 

are available. Additionally, an 

experiments part is provided 

where users can interact with 

the system to test different 

linkage strategies.  

Event linking: 

  -Dataset size: 100 events 

  -Precision: 96%  

  -Recall: 80%.  

Classifier: 

  -Recall: 63% 

  -Precision: 33% 

Giridhar et al. 

(2017) 

-Dictionary approach, 

matching location 

keywords in tweets to 

location keywords 

associated with physical 

roadway –based sensors 

-Temporal linking based 

on creation time of 

tweets   

N/A Mapping of tweets based on geo-

coordinates and creation time to 

a physical sensor cluster that 

indicates a possible traffic event 

Event category: 

  -Dataset size: approx. 

40.950 tweets 

  -Recall: 85.7% Hazard 

event, 83.5% Accident 

event 

  -Precision: 88.63% 

Table 2-6: Traffic event description based on traffic data & geosocial data 
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2.4 Additional Related Work 

As the research on traffic event detection, categorization, and detection, by utilizing a 

combination of traffic and geosocial data seems to be still in its infancy, this section provides 

a short overview on closely relevant topics that do use this combination. These topics include 

traffic prediction, traffic and geosocial data correlation, and traffic congestion monitoring.  

 

He, Shen, Divakaruni, Wynter, and Lawrence (2013) examine the possibilities of using 

Twitter data to improve long-term traffic prediction. The Twitter Streaming API is used to 

collect tweets based on a geo-bounding box, and stop word removal and stemming is applied. 

For this same location, a traffic dataset is generated by collecting measurements of loop 

detectors. By applying a correlation technique they establish that there is indeed a significant 

correlation between the intensity of traffic and social activity (tweet counts). Next, a general 

optimization framework to extract traffic indicators based on traffic intensity and tweet 

semantics is proposed. The evaluation of the model shows that the additional information in 

tweets indeed helps to improve the performance of traffic prediction, in terms of mean 

absolute percentage error and root mean square error.  

 

Tostes, Silva, Duarte-Figueiredo, and Loureiro (2014) study the correlation between 

Foursquare and Instagram posts and congested traffic flows from Bing Maps. Their goal is 

to verify if these geosocial posts can be used as an indicator of traffic condition changes within 

Manhattan, New York City. Their method to evaluate the correlation consists of five steps. 

First, the geosocial posts are aggregated into 3-hour periods due to the long time intervals 

between posts. Additionally, the traffic flow for streets gets categorized into three groups 

representing fast, moderate and slow traffic. Second, the mean and standard deviation of the 

number of geosocial posts per street segment is calculated. Third, based on the relation 

between the number of posts and the mean and standard deviation, the geosocial post gets 

assigned to one of the three traffic flow categories. Fourth, five groups are created to analyze 

the correlation between the geosocial posts categories and traffic flow categories (e.g., 

geosocial posts category is less than the traffic flow category, in other words when the number 

of geosocial posts is low, the traffic flow is more congested). Last, for both categories, a 

distribution of the frequency of geosocial posts during 24 hours, and the frequency of 

congested average traffic flow is created. Based on a temporal and spatial analysis the 

authors were able to show that the distribution of geosocial posts is equal to that of congested 

traffic flows (with a discrepancy error). However, due to the time difference between an 

occurred congestion and a geosocial post, the signal time of traffic flow congestions has a 36 

minutes delay.  

 

Silva, de Melo, Viana, Almeida, Salles, Loureiro (2013) research how the geosocial data from 

Waze can be used to derive a participatory sensor network (PSN), to gain a better 

understanding of traffic problems, city dynamics and urban behavioral patterns of users. 

Waze data is collected through tweets containing Waze alerts, which means that only a 

fraction of all Waze data is used. They found that spatial coverage of Waze alerts is greatly 

influenced and correlated by the number of circulating vehicles per region. Additionally, 

Waze alert sharing happens at specific intervals, where alerts cluster towards specific events. 

When looking at the user activity, a great variability of user participation was measured. The 

routines of the users proved to correlate with rush hour peaks and proved much lower during 

late night hours and dawn.  
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P. Chen, F. Chen, and Qian (2014) propose an approach towards traffic congestion 

monitoring, by combining a language model and Hinge-loss Markov Random Fields based on 

Twitter data on traffic events. In this approach, two datasets containing Twitter data and 

traffic speed data are used. Tweets are collected by using the Twitter REST API and a 

selection of traffic-related keywords. These tweets are categorized based on if they report on 

traffic accidents or not by using an SVM classifier. Traffic data is taken from the INRIX 

database, which provides traffic speed and reference speed information for road links at a 5-

minute rate. Next, a custom traffic language model is applied to model tweet descriptions 

that describe free and congested traffic conditions. Furthermore, a probabilistic soft logic 

(PSL) model (based on 11 PSL rules) is used to detect traffic congestions and includes tweet 

geocoding. These two models are integrated into a newly proposed Language enhanced 

Hinge-Loss Markov Random Fields model. In an evaluation of the model, an average recall 

value of 70.4% and a precision of 48.7% was measured.  

 

Another traffic congestion estimation model is proposed by Wang, He, Stenneth, Yu, and Li 

(2015). In this study, a coupled matrix and tensor factorization algorithm is proposed to 

combine data from Twitter, road features, and social events, in order to create a traffic 

congestion estimation model. Twitter data is collected from 11 influential accounts that focus 

on traffic, as well as from users that have Chicago registered as their hometown in their 

Twitter profiles. These tweets are divided into traffic event categories based on a dictionary 

based word matching approach. Additionally, social events are extracted from Twitter 

accounts focusing on social events. These tweets are all geocoded to road segments by 

matching them to terms from a gazetteer. The traffic data set consists of road features 

including the segment length, number of lanes, one-way road, road heading, and number of 

intersections. And eight types of places of interest (POI), e.g., schools and hospitals. Based 

on this real-time data a real-time congestion matrix and event tensor are constructed. 

Besides real-time data, historical data is used to conduct congestion probability 

summarization of road segments, and road segment congestion co-occurrence pattern mining. 

Evaluations of these methods on real data in Chicago showed that the proposed method is 

effective. 
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2.5 Evaluation of Related Work 

In this chapter, we looked at the related work regarding traffic event detection, classification, 

and description methods. In this section we summarize the most important takeaways from 

this literature review.  

 

2.5.1 Related Work Key Points 

1. Traffic Data: traffic event detection proved to be the only focus of research based on traffic 

data. Traffic event detection is based on algorithms that depend on data from roadway-

based sensors. Weaknesses of this approach include:  

a. Quality of measurements depend on the density of the sensor network 

b. Noise corruption of sensor network. 

c. Algorithms are road-type dependent, i.e. algorithms that can be applied on freeways 

are often not suitable for arterial situations which are much more complex.  

2. Geosocial data: traffic event detection, categorization, and description were all part of 

research based on geosocial data. Weaknesses of this approach include:  

a. Reliability of the categorical, spatial, and temporal aspects of the derived traffic 

event, by only using one geosocial data report as basis to derive a traffic event. 

b. Focus lays on sub-parts of the traffic event domain, or is mixed with different 

incident domains unrelated to traffic. 

c. Biased data collection approaches, due to limited keyword selection and time ranges, 

dataset size, and mixed geosocial post authors (e.g., “real road-users”, news 

agencies, bots). 

d. Categorization approaches are non-existent or limited.  

e. Geocoding is limited. 

f. Visualization of traffic events is static. 

3. Combination of Traffic Data and Geosocial data: Research based on the combination of 

traffic and geosocial data proved to be limited and distinguished itself mostly in its traffic 

event description approach. Weaknesses of this approach include: 

a. A mandatory combination of traffic data anomalies and geosocial data can lead to a 

loss of important semantic data. 

4. Additional Related Work: Other related research showed us that geosocial data can 

contribute to traffic data for other means than traffic event detection, categorization, and 

description. Nevertheless, these works contain many overlapping approaches, and 

therefore gave us a better understanding of our own research domain. 
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2.5.2 This Work versus Related Work 

In this thesis, we aim to mitigate the weaknesses and fill in a selection of open research gaps 

found in the related work. First, in this work, we do not rely on traffic data alone to derive 

traffic events. Instead, we enrich traffic data with geosocial data and use the combination to 

derive traffic events. This way, even though the traffic data on its own would have been 

inconclusive to derive a traffic event, the inclusion of supporting geosocial data can help make 

this conclusive. Additionally, this work provides a traffic event categorization and description 

approach based on geosocial data, which is not possible when relying on traffic data alone. 

Second, in this thesis, we aim to mitigate the reliability issues related to the categorical, 

spatial and temporal aspects of geosocial data reports, by not relying on a single geosocial 

data report to derive a traffic event. Instead, we combine multiple geosocial data reports from 

different sources, by clustering them based on categorical, spatial and temporal similarities, 

to derive a traffic event. Third, a keyword-based data collection approach is created that 

mitigates the bias formed due to a limited keyword selection approach. Fourth, in this work, 

the focus lays on traffic event derivation through geosocial data from “real road-users”, 

instead of using a mixture of different user-types including news agencies, bots, and 

emergency agencies. Thus filling in the gap of specialization towards understanding traffic 

event through “real road-user” geosocial data. Fifth, a rule-based traffic domain annotator is 

created to annotate tweets and to assign a wide range of traffic event categories. This fills in 

the open research gap towards categorization, as these are limited in scope in related work. 

Sixth, related work only uses geocoding approaches based on locational terms and their 

derived geopoint, within geosocial posts. In this work, we fill this gap by taking into account 

that tweets can contain multiple locational terms that can correlate, contradict, and confirm 

each other. Additionally, our approach takes into account that spatial indicators can relate 

to different geographic forms and scales, and as well can be ambiguous (locational term 

matches multiple locations). Seventh, related work that combines traffic data and geosocial 

data work from the perspective of traffic data and try to describe this data by linking traffic 

event-related geosocial data to it. In this work, a less limited approach is taken, by working 

from the perspective of clustering geosocial data to derive a traffic event and link traffic data 

to this event based on temporal and locational features. This way we reduce the loss of 

valuable data caused due to mandatory linking of traffic data and geosocial data. This as, 

traffic events can happen without any traffic data anomalies appearing, e.g., road debris does 

not necessarily lead to traffic data anomalies but is considered a traffic event. Lastly, related 

work leaves a gap when it comes to using the implementation of the pipeline that detects, 

categories and describes traffic events, in an interactive map-based application. We fill this 

gap by creating this application, allowing for the visualization of traffic events, and providing 

interactive elements for data analysis. 
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3 Experiment Design 

This chapter focuses on the design of a pipeline for extracting knowledge on traffic events 

from geosocial and traffic data sources. The literature study as described in 2, showed us 

what current research on traffic event detection, categorization and description models based 

on a combination of traffic and geosocial data lacks and where the opportunities lay for our 

work. This enables us to design our own pipeline containing the detection, categorization, 

and description parts, as depicted in Figure 3-1. This chapter discusses the experiment design 

setup of each pipeline part, leading up to the answering of the following research sub-

questions:  

 

 RQ2: How can non-recurrent traffic event-related geosocial posts automatically be 

detected?  

 RQ3: How can detected non-recurrent traffic event-related geosocial posts be 

categorized by event type? 

 RQ4: How can categorized geosocial posts be used to describe non-recurrent traffic 

events? 

 RQ5: How to develop a software system that is able to perform the detection, 

categorization, and description of non-recurrent traffic events?  

 

Figure 3-1: Overview of experiment design methods 
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3.1 Data Collection 

The data collection part is the starting point of our pipeline. In this study data sources 

containing social and traffic data are used. For a data source to be used in this study, it needs 

to provide a significant enough amount of possible traffic event-related data in order to be 

able to conduct an analysis on it. Additionally, it must contain data within the targeted 

geographical area, as well as temporal period. The initially chosen data sources include 

Twitter, Instagram, Waze, TomTom, and DiTTLab. We describe the data collection approach 

for each data source, aligning the data towards the subject, temporal, and locational scope of 

the study.  

 

3.1.1 Twitter and Instagram 

The main goal that we want to achieve when collecting traffic event-related (TE) geosocial 

posts, is to create a keyword set that maximizes the percentage of TE geosocial posts over all 

acquired geosocial posts and maximizes the amount of acquired TE geosocial posts in the pool 

(all Dutch geosocial posts in the Netherlands within a specific time range). This means that 

at the same time we want to achieve as much recall and precision as possible. Recall and 

precision are defined as follows: 

 
 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐴 ∩ 𝐵 / 𝐴 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐴 ∩ 𝐵 / 𝐵 

  

Where A is the set of all TE geosocial posts within a specified time period and B is the set of 

all geosocial posts within the same specified time period. The recall is defined as the number 

of true positives, denoted as the intersection between A and B divided by the number of 

relevant geosocial posts. Whereas precision is defined as the number of true positives divided 

by the number of retrieved tweets (combination of true and false positives). Even though it is 

known how to calculate recall, doing so is complicated in the case of data mining Twitter, as 

there is no ground truth available that describes a full set of TE geosocial posts. Obtaining a 

100% precision is also impossible as the used keyword set will always contain ambiguous 

keywords, resulting in geosocial posts that are not traffic event-related (NTE).  

 

Twitter is offering two suitable options for data mining to developers. The first one is their 

REST API, which enables developers to search for tweets based on keywords and location 

radius. It is also possible to define a set of keywords with operators including OR, AND, and 

EXCLUDE, as well as pre-filtering out languages, specific user accounts, retweets, links, 

replies, and mentions. However, the free and standard version comes with a number of 

limitations. It only enables developers to search up to ten days back in time and API calls are 

limited to 180 calls every 15 minutes. The second option is their streaming API, which allows 

for real-time tweet collection. A single HTTP connection is opened between the app and the 

API, resulting in new results whenever matches occur. Compared to the REST API, which 

enables the app to obtain data in batches through multiple requests, the streaming API has 

a lower latency and supports a very high throughput. This, however, comes with a number 

of limitations. Only 1% of all public tweets can be obtained from the stream. The streaming 

API does not support keyword operators or pre-filtering operations. The original idea was to 
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use the SocialGlass12 application to obtain the TE-related Twitter data. But as SocialGlass 

makes use of the streaming API this option is not feasible, as this would lead to a massive 

loss of possible relevant tweets. Take for example a query containing the Dutch keyword “file” 

(EN: traffic jam). As the streaming API has no pre-filter option on language, it returns 1% of 

all public tweets containing the keyword “file”. This causes us to miss out on a lot of possible 

relevant TE tweets, as the returned set is “contaminated” with irrelevant English tweets. 

Therefore, we decided to use the REST API as it is more important to obtain the complete set 

of TE tweets than to get a large stream of public tweets in real time.  

 

The REST API can be used with a keyword set, a geocoordinates radius or a combination of 

the two. As we aim to obtain an as large as possible set of TE tweets, using only a keyword 

set is the most logical option. By only querying based on a geocoordinates radius, one collects 

many irrelevant tweets resulting in a possible loss of TE tweets, besides these tweets have to 

be filtered afterward to obtain a set of possible TE-related tweets. The initial set of keywords 

is based on the keywords used in the thesis by Dokter (2015). In this thesis a set of suitable 

keywords is defined to find TE-related tweets, consisting of: file (EN: traffic jam), ongeluk 

(EN: accident), pech (EN: breakdown), brug (EN: bridge), langzaam rijden (EN: drive slowly), 

traag rijden (EN: slow moving), km, spits (EN: rush hour), verkeer (EN: traffic), gekanteld 

(tilted), gekantelde (EN: overturned), aanrijding (EN: collision). 

It is our assumption however that this initial keyword set is just a subset of often used traffic 

event-related keywords within tweets. In addition, this initial keyword set could lead to too 

many NTE tweets, due to the ambiguity of some keywords. Therefore, a method is created to 

improve the quality and quantity of TE tweets that can be acquired through a keyword set.  

 

We extend the initial keyword set with the road numbers of the Dutch road network. Next, a 

Dutch language, retweet and replies filter is applied to the query, as we are only interested 

in Dutch tweets directly posted by road users. Initial results showed us that tweets 

containing URLs that link to external websites are never TE-related. Based on this discovery 

we decided to also filter out any tweets that contain a URL. Note that this does not include 

tweets that contain an embedded media link (containing a photo or video), as these are 

relevant. To achieve this, we use the “filter on links” option the API provides us. Furthermore, 

a rule-based filtering method is applied to filter out the majority of non-real road user 

accounts. We define a real road user as follows: a natural person that tweets on his/her own 

account and is a road user, therefore excluding all legal person entity accounts such as public 

organizations (government agencies, police, and infrastructure agencies), private 

organizations, and bots. Tweets from these accounts are filtered out, based on suspicious 

terms in their name or username, as well as a manually composed list of non-real road user 

accounts. The result set is manually labeled, as TE or NTE posted by a real road user account 

as well as TE or NTE related but posted by a non-real road user account. The entire set of 

tweets is then processed as follows: 

 

1. Filter tweets on stop words, based on a Dutch Twitter stop word list. 

2. Strip the tweets from any URL links. 

3. Transform tokens of road names to a general road number tag. 

4. Tokenization of tweets through the tokenizer from the Frog NLP library (Bosch, Busser, 

Canisius, & Daelemans, 2007). 

                                                
12 social-glass.tudelft.nl/ 
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5. For each token and its bigram, compute how many times it appears in TE and NTE 

tweets posted by a real road user account. 

6. For each token and its bigram, compute how many times it appears in TE and NTE 

tweets posted by a non-real road user account. 

7. For each token and its bigram, compute how many times it appears in combination with 

other tokens in TE tweets (positive co-occurrence) and NTE tweets (negative co-

occurrence). 

 

 

By following this process, we are able to identify keywords with their positive and negative 

correlation towards TE tweets. Tokens are manually added to the keyword set when they are 

not too ambiguous and appear in more than one TE-related tweets and the following is rule 

holds:  

 

# of tokens in TE tweets/ (# of tokens in NTE tweets by non-real road user accounts) > 0.05 

 

In this rule, we divide the number of appearances of a token in TE tweets through the number 

of times it appears in NTE tweets by non-real road user accounts, as these will get filtered 

out in the next iteration and should not result in a lower ratio. The five percent threshold has 

been chosen, based on initial tests with multiple thresholds. This threshold, proved to bring 

the best balance between accepting keywords indicating TE tweets and rejecting keywords 

indicating NTE tweets. The idea was to automatically extend these tokens with synonyms 

retrieved from ConceptNet (Speer & Havasi, 2012). However initial results showed that this 

adds too many ambiguous new terms, and therefore cannot be used as an automated process. 

Therefore, for this experiment we choose not to add synonyms. Additionally, we experimented 

with adding tokens to a negative keyword list when they are not too ambiguous, and if they 

do not appear in TE tweets and appear more than 20 times in NTE tweets. Tweets that 

contain a token from the negative keyword list would not have been collected. This however, 

resulted in the loss of too many TE tweets, due to ambiguity problems and was therefore left 

out. This entire process is iterative and ends when no more new positive keywords are found. 

An overview of the process can be found in Figure 3-2. Table 3-1 shows the properties of each 

collected tweet. The final keyword set is used to collect geosocial data from Twitter and 

Instagram.  
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For collecting data from Instagram we follow the same approach as with Twitter. The main 

difference however, is that Instagram offers an API that only allows for keyword queries on 

tag objects instead of text objects. This causes a significant decrease in results, as tags have 

to be manually added to an Instagram post by a user in contrast to Twitter where tags are 

part of the tweet text itself. Therefore, based on initial experiments, we made a well-

substantiated decision to no longer include Instagram in our setup. 
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Figure 3-2: Adaptive keyword selection flowchart 

  

Tweet Properties 

Tweet User 

Id Name 

Text Screen name 

Creation date Description 

Geocoordinates # Followers 

# Retweets # Friends 

Language Language 

In reply to 

status id 

Profile image 

URL 

In reply to user 

id 

User home 

location (as 

defined by the 

user in its profile) 

Source Profile creation 

date 

# Favorited  

URLs  

Hashtags  

User mentions  

Symbols  

Media  

Table 3-1: Tweet properties 
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3.1.2 Waze 

Waze is a community-based traffic and navigation application, which integrates data 

provided by users to inform other users on all sorts of traffic events. Contrary to the other 

data sources that we use, Waze does not have an API for data collection. Therefore, an 

alternative data collection approach is set up. In this approach, the web-based live map from 

Waze is monitored, as depicted in Figure 3-3. Through this map we extract data in the form 

of a GeoRSS web feed. By specifying a geo bounding box all Waze live map data within that 

region can be extracted, up to a limit of 200 alerts and 100 jams (two parent categories under 

which all data is grouped). Because of this limitation, the initial bounding box covering the 

Netherlands is automatically split into sub bounding boxes until we collect less than 200 

alerts and less than 100 jams. As the live map is updated every two minutes, our method 

downloads the JSON files in two-minute intervals.  

 

 
Figure 3-3: Waze Live Map, where the icons represent users and traffic events 

Waze subdivides its data into three main categories, each with its own set of attributes as 

shown in Table 3-2. The Alerts category, contains a wide selection of all sorts of traffic events. 

The Jams category, extends upon closed road types, including construction types from the 

alerts category. The category name “Jams” proved to be misleading as it includes no 

information on traffic jams. The Users category, contains anonymous information on active 

users. When a Waze user reports a traffic event he chooses from a set of inheritance based 

traffic event types. This way it is possible for a user to choose a more abstract parent type 

(e.g., Hazard) or a more specified child type (e.g., Hazard On Shoulder Car Stopped). The 

following event types can be used in Waze to categorize traffic events: 

 Accident: Minor, Major 

 Hazard: 

o On Shoulder: Animals, Car Stopped, Missing Sign 

o On Road: Car Stopped, Construction, Ice, Lane Closed, Object, Oil 

o Weather: Fog, Hail, Heavy Rain, Heavy Snow, Flood, Freezing Rain 

 Police: Visible, Hiding 

 Jam: Stand Still Traffic, Moderate Traffic, Heavy Traffic 

 Road Closed: Event Construction 
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As Waze users are able to link their Twitter account to their Waze account, we decided to 

also collect all Dutch Waze related data on Twitter. Automated Waze tweets contain either 

information on traffic events posted by the user or a summary of the car ride of the user. Only 

tweets containing information on traffic events are useful for this study and are therefore 

collected based on the bold tweet format as shown below. 

 

Automated Waze tweet: 

Hielp chauffeurs in de omgeving door het melden van wegwerkzaamheden op de N209 - 

Nieuwe Hoefweg, Bleiswijk via @waze - social navigation. (EN: Helped nearby drivers by 

reporting roadworks on the N209 – Nieuwe Hoefweg, Bleiswijk on @waze – Drive Social.) 

  

                                                
13 Reliability score based on the experience level of the user. Users gain experience levels by 

contributing to the map, from level 1 to level 6. The higher the level, the more experienced and 

trustworthy the user. The score ranges between 0 and 10, with 10 being the most reliable. 
14 Confidence score based on how other users react to the report - either with a “Thumbs up” to indicate 

the alert is accurate or “Not there” if the report is irrelevant. The score ranges between 0 and 10, and 

a higher score indicates more positive feedback from Waze users.   

Alerts Jams Users 
Attributes Example Attributes Example Attributes Example 

Country NL Country NL Speed 25.77 

City Delft City Delft GeoPoint [4.877815, 

51.823144] 

# of Thumbs 
Up 

1 Descriptio
n 

Werkzaamheden  

Report Rating 3 GeoLine [4.877815, 51.823144], 

[4.877817, 51.823145] 

Reliability13 7 Length 37 

Type HAZARD Type NONE 

Speed 0 Block Type ROAD_CLOSED_EVENT 

Subtype HAZARD_ON_ROAD

_OIL 

Speed 0 

Street Oostplantsoen Street A13 

Image URL https://s3.amazonaws

.com/waze.photos/364

08761-0c20-4a2a-

8730-2fcf847db845 

Severity 2 

Reported by BasdeBock Level 5 

Comments - Delay -1 

Confidence14 2 Published 
Millis 

1512322497351.0 

Description Olie op weg Last 
updated 
Millis 

1512322497352.0 

GeoPoint [4.877815, 51.823144]  

Published 
Millis 

1512322497351.0 

Table 3-2: Waze attributes overview with examples 
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3.1.3 TomTom 

TomTom is a company that produces traffic, navigation and mapping products. It enables 

developers to use their APIs and SDKs to enhance applications with search, routing, 

mapping, traffic and navigation features. For our research, the TomTom data should either 

contribute to geosocial data or traffic data. This leaves us with two possible useful data sets 

that they offer: Online Traffic Incidents15 and Online Traffic Flow16. 

 

The Online Traffic Incidents data can enrich our geosocial data set, in the same way Waze 

does. This service provides information on traffic incidents inside a given bounding box, 

updated every minute. This information is generated from anonymous real-time location 

trace information from connected GPS devices in vehicles, including personal navigation 

devices, in-dash navigation systems, smartphones and fleet management devices. This 

technique, called Floating Car Data (FCD), is able to measure traffic conditions on the road 

by using the previously described location-aware devices17. We contacted the developer 

relations helpdesk from TomTom to get more information regarding how traffic incidents are 

derived from their FCD technique. Unfortunately, they were not allowed to provide any 

specifics. We therefore make the assumption that TomTom incident data is provided by “real 

road-users”, and thus could provide a valuable geosocial data source for this work.   

 

The Online Traffic Flow data service, provides information about the speeds and travel times 

of the road fragment closest to the given coordinates. It is designed to work alongside the 

Flow layer of the Maps API, in order to support clickable flow data visualizations. After 

experimenting with this data source, we came to the conclusion that it could not be used in 

the way we would have liked. This because we can only provide one set of coordinates, which 

their system uses to map to the closest road and based on the provided zoom level it returns 

the values for a road section with a maximum of 1 kilometer. It is therefore impossible to 

scale this to get the flow data for the entire Netherlands, which is why we decided to only use 

the Online Traffic Incidents data from TomTom.  

 

An overview of the most important properties and incident categories from the TomTom data 

we collect in JSON format is shown in Table 3-3. On first sight, compared to Waze, TomTom 

seems to have a more limited non-inheritance based traffic event typing (incident category) 

system, containing the following types: Fog, Rain, Ice, Wind, Flooding, Accident, Dangerous 
Conditions, Jam, Lane Closed, Road Closed, Roadworks, and Detour. However, we noticed 

after some experimenting with the data that TomTom incidents sometimes also contain 

descriptions and causes of the incident. By contacting the developer relations helpdesk, we 

learned that these incident descriptions and causes are part of a set of 443 incident categories 

(note that these can be used interchangeably as description and cause). These are nowhere 

mentioned in the documentation of this service, but have been provided to us by the helpdesk. 

We can therefore see the incident category as the main category and the description/cause as 

a subcategory of the event.  

  

                                                
15 developer.tomtom.com/online-traffic/online-traffic-documentation/online-traffic-incidents 
16 developer.tomtom.com/online-traffic/online-traffic-documentation/online-traffic-flow 
17 https://www.tomtom.com/en_gb/traffic-news/traffic-incidents 
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TomTom Online Traffic Flow 

Attributes Example 
GeoPoint [4.877815, 51.823144] 

Incident category 6 

Magnitude of delay 5 

Description of incident Slow traffic  

Cause of incident Accident 

Start point Deil (N327) 

End point A2: Geldermalsen - A2 (N327) 

Caused time delay in seconds 231 

Affected road numbers by the incident N327 

Retrieval date 2017-12-05T13:05:18.179Z 
Table 3-3: TomTom Online Traffic Flow properties 

 

3.1.4 DiTTLab 

The Delft integrated Traffic & Travel Laboratory (DiTTLab), is a research lab at the TU Delft 

that works with traffic data and simulation models to develop knowledge and tools for the 

international traffic and transport community. This lab provides us with traffic data that 

contains raw and interpolated speed and flow values per 100 meter segments for each 

motorway (e.g., A10) in the Netherlands. The raw traffic data is collected by roadway-based 

sensors. As these are irregularly spread along the highways, the data is interpolated to cover 

consistent 100 meter segments. The data is collected within the DiTTLab and distributed to 

us in JSON formatted files.  
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3.2 Data Pre-processing  

In this section, we show how each data set is cleansed and transformed so that it is suitable 

to extract information out of it in the next phases of the pipeline. 

 

3.2.1 Twitter 

Before we start our pre-processing approach, we label the Twitter data as traffic event-

related (TE) and non-traffic event-related (NTE). Based on the many pre-processing 

techniques used in previous work, we make a selection of pre-processing techniques for the 

Twitter data. Table 3-4 shows the pre-processing techniques used in previous work and shows 

the arguments on why a technique is applied, replaced or rejected in our work.  

 

Technique Apply/Reject/

Replace 

Reason 

Tokenization Apply Demarcation of sections of a string of input characters is needed 

for all other forms of processing. 

Stop word removal Apply Removing the most common words in a language is needed to 

improve performance while keeping the words with the highest 

importance. 

Stemming Replace with 

Lemmatization 

The goal of stemming and lemmatization18 is to reduce 

inflectional forms and derivationally related forms of a word to 

a common base form. We replace stemming with lemmatization, 

as stemming chops off the ends of words and often includes the 

removal of derivational affixes. Lemmatization uses a 

vocabulary and morphological analysis of words, to remove 

inflectional endings only and to return the base or dictionary 

form of a word, called a lemma.  

Discarding non-geo 

tweets 

Reject Approximately 1% of the tweet dataset is geo-tagged, 

discarding all other tweets leaves us with a too small data set 

to work with. 

Abbreviation 

replacement 

Reject Automatic correction of abbreviations could lead to incorrect 

words, increasing possible false positives. 

Locational/ 

Temporal 

generalization 

Reject Locational/temporal features are used later on in the pipeline. 

Discarding 

hashtags, links, 

mentions, special 

characters, words 

based on length 

Reject Links are already removed during the data collection process. 

Hashtags, mentions, special characters, and words of all 

lengths are able to provide us valuable information and are 

therefore not discarded.  

Discarding non-

nouns based on 

POS Tagger 

Reject Words other than nouns can still provide valuable information 

and are therefore not discarded. 

Table 3-4: Pre-processing techniques selection 

 

  

                                                
18 https://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html 
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3.2.2 Waze and TomTom 

Both data sources from Waze and TomTom have little pre-processing needs. Attributes that 

do not contain any descriptive value will be omitted and attribute terms are made uniform 

between the datasets.   

 

3.2.3 DiTTLab 

DiTTLab provides us with raw and interpolated traffic speed and flow data. In this study, 

only the interpolated data is used, as this provides us with a higher possible anomaly 

coverage. This data could be used as a source for traffic event detection algorithms. However, 

as traffic event detection algorithms greatly depend on the type and properties of the road, it 

is not feasible to implement this for every motorway in the Netherlands. Besides, this would 

fall out of the scope of this research. Therefore, we only process the data in such way that it 

can be stored and accessed in and from our document database. In order to achieve this we 

store the data by road number, road side, road location and date.  

Table 3-5, shows an example of how DiTTLab data will be stored in our database. 

 

Key Value Type 

_id 5afc2974e8b2900e404e9ce6 ObjectId 

roadNumber A1 String 

roadSide R String 

roadLocation { 2 fields } Object 

x 4.959109 Double 

y 52.346883 Double 

roadData [ 2879 elements ]  Array 

0 { 3 fields } Object 

date 2017-12-05T00:00:00.000Z Date 

speed 101 Int32 

flow 398 Int32 
Table 3-5: DiTTLabReportCollection 
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3.3 Traffic Event Categorization 

In this section, we discuss the design of our rule-based traffic domain annotator, inspired by 

the work of Oostdijk, Hürriyetoglu, Puts, Daas, and van den Bosch (2016). This annotator is 

used for extracting relevant traffic domain information from tweet text data. This enables us 

to categorize a tweet to one or multiple traffic event categories.  

 

3.3.1 Category Composition 

This annotator enables us to automatically identify tokens belonging to multiple traffic 

domain related categories within tweets. The categories that are used to label the tweets are 

based on the event categories from Waze and TomTom, the categories in the police accident 

reporting dossier (Bestand geRegistreerde Ongevallen Nederland (BRON19)), and acquired 

knowledge from reviewing literature and annotating tweets. The event typing method from 

Waze and TomTom can be found in Sections 3.1.2 and 3.1.3. BRON contains information on 

causes and effects of traffic events. Table 3-6, describes the categories within BRON that are 

relevant to this study.  

   

Categories Description 
Lane subtypes All types of lanes within the road network, e.g., entry, service lane, bus lane. 

Vehicle details All types of vehicle brand, and sub brand names and their measurements, e.g., 

Volkswagen, Volkswagen Polo, and Skoda. 

Points of collision Point of impact from a collision on a vehicle, e.g., left side, center rear. 

Nature of 

accident 

Anything that could cause the accident, e.g., animal, parked vehicle, fixed 

object. 

Outcomes Outcomes for people and vehicles involved in the accident, e.g., injury, 

material damage. 

Movements Movement of involved vehicles during the accident, e.g., rollover, overturning, 

skidding. 

Particulars Any particulars during the accident such as nearby infrastructure or road 

types, e.g., bridge, speed bump, overtake prohibition. 

Devices Any type of vehicle involved in the accident, e.g., tipping wagon, taxy, caravan. 

Light conditions Conditions of light that could have been the cause of the accident, e.g., 

daylight, darkness, twilight. 

Manoeuvres Any type of movement of vehicle or person that caused the collision, e.g., 

collision with lose object, head-tail collision when turning to the right. 

Object types Any type of object that could cause the accident, e.g., tree, bike, bus. 

Circumstances Any circumstance related to driving or the driver that caused the accident, 

e.g., not giving right of way, ignoring a red traffic light, high-speed. 

Road surfaces Status of the road surface that could have caused the accident, e.g., dry, wet, 

snowy. 

Road Situations Type of road on which the accident occurred, e.g., crossroads, roundabout. 

Road Surfacing Type of road surface at the place of the accident, e.g., concrete, asphalt. 
Table 3-6: BRON relevant categories 

  

                                                
19 https://www.rijkswaterstaat.nl/apps/geoservices/geodata/dmc/bron/ 
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The following procedure is followed to compose the list of traffic domain categories. Firstly, a 

category from Waze is selected, as Waze has the most coherent traffic event taxonomy. 

Secondly, a related TomTom category is selected. Thirdly, categories from BRON that are 

related to the category are selected. Finally, a custom category with related sub categories is 

formed based on the categories from Waze, TomTom and BRON. Categories that are not 

described in Waze, TomTom or BRON, but are deemed relevant are added, and any 

overlapping categories are merged. Note that events within Waze and TomTom depend on a 

location and datetime, while approximately, only 1% of the traffic event-related tweets 

contains a geotag. Therefore, additional place based categories are defined that could be 

mapped to a location. In order to infer a datetime, a combination of the creation date of a 

tweet and temporal expressions in a tweet is used, as the creation date by itself is not 

necessarily a reflection of the date a traffic event occurred. By following this category 

composing procedure a set of 27 (not counting the not applicable, temporal, and media 

attachment categories) unique traffic related categories has been composed. For each 

category we explain the idea behind it, were it derived from (Waze, TomTom, BRON, 

literature), and provide an example of the sort of tokens it should describe. Note, that we do 

not make a distinction between positive/confirming categories and negative/disconfirming 

categories. For example, the token set “A man was injured” and “No man was injured” both 

get assigned the category Road User Casualty.  

 
1. No Applicable Category (N/A): Describes tokens that are not matched by the other categories.   

Derived from: Literature. 
Example: @joopb68flc we staan bij brug Zaltbommel in file. (EN: @joopb68flc we stand near bridge 
Zaltbommel in traffic jam.) 

2. Media Attachment: An indication of a media link. 

Derived from: Literature. 
Example: Ongeval 2 personenwagens . Snel bergen . #A16 Li 16,9 https://t.co/ovmSUIHLMv  (EN: 
Accident 2 passenger cars. Quick salvage. #A16 Le 16,9 https://t.co/ovmSUIHLMv) 

3. Temporal (Timex): An indication of time, a point in time, a time duration, or a time frequency.   

Derived from: Waze, TomTom, BRON, Literature. 
Example: Ik sta al 30 minuten in de file richting Den Haag. (EN: Standing in a traffic jam for 30 
minutes in the direction of Den Haag.) 

4. Advice: A mention of an announcement or guidance. 

Derived from: TomTom, Literature. 
Example: Pas je snelheid aan er heeft net een ongeluk plaatsgevonden op de A10. (EN: Adjust your 
speed, an accident just happened on the A10.) 

5. Road User Transport: Various types of groups of traffic. 

Derived from: Literature. 
Example: Veel vakantieverkeer richting Amsterdam vandaag. (EN: Lots of holiday traffic in the 
direction of Amsterdam today.) 

6. Road User Casualty: Various types of injuries and casualties. 

Derived from: BRON. 
Example: Meerdere inzittenden ernstig gewond bij kettingbotsing op de A10. (EN: Multiple 
passengers seriously injured at chain collision on the A10.) 

7. Road User Traffic: Information that describes traffic related persons and their road user role (e.g., 

driver, passenger). 

Derived from: Literature. 
Example: Bestuurder onwel geworden achter het stuur, politie is gearriveerd #A2. (EN: Driver 
unwell behind the wheel, police has arrived #A2). 

8. Road User General: Information that describes general persons. 

Derived from: Literature. 

https://t.co/ovmSUIHLMv
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Example: Persoon onwel geworden achter het stuur, politie is gearriveerd #A2. (EN: Person unwell 
behind the wheel, police has arrived #A2). 

9. Road User Vehicle: Various types of vehicle names and their brands.  

Derived from: BRON. 
Example: Reed net voorbij een ongeluk met een Audi en een vrachtwagen op de A1. (EN: Just 
drove past an accident between an Audi and a lorry on the A1.) 

10. Road User Emergency Service: Various types of emergency services and their status. 

Derived from: TomTom, Literature 
Example: Ongeval bij knooppunt Amstel politie is ter plaatse. (EN: Accident at junction Amstel 
police is on location.) 

11. Place Location: Exact locations in the Netherlands that contain a geopoint, geoline, or geoshape.  

Derived from: TomTom, Waze, BRON, Literature. 
Example: @RWS_verkeer En we rijden weer zeeburgertunnel is weer open. (EN: @RWS_verkeer 
And we’re driving again zeeburgertunnel is weer open.) 

12. Place Location Combination: Combination of areas having unique physical and human 

characteristics, and locations.  

Derived from: TomTom, Waze, BRON, Literature. 
Example: Ongeluk voor de rotonde Vliegveldweg. (EN: Accident in front of the roundabout 
Vliegveldweg.) 

13. Place Road Section: Section of a road containing a start and end point, indicated by places and 

locations. 

Derived from: TomTom, Waze, BRON, Literature. 
Example: Er staat een file van knooppunt Coenplein tot Zaandam. (EN: There’s a traffic jam from 
junction Coenplein to Zaandam.) 

14. Place Road Direction: Combination of directional terms and a location.  

Derived from: TomTom, Waze, BRON, Literature. 
Example: 5km file Delft richting Den Haag. (EN: 5km traffic jam Delft in the direction of Den 
Haag.) 

15. Place Road Mile Marker: Place on the road denoted with a mile marker. 

Derived from: TomTom, Waze, BRON, Literature. 
Example: Gat in wegdek #A58 re 13.4 afrit Middelburg. (EN: Pothole #A58 ri 13.4 exit 
Middelburg.) 

16. Place Infrastructure Type: Various types of road infrastructures. 

Derived from: TomTom, Waze, BRON, Literature. 
Example: File voor de brug, heb ik weer #Delft. (EN: Traffic jam in front of the bridge, just my luck 
#Delft.) 

17. Place Road Lane: Further specification of road strips.  

Derived from: TomTom, Waze, BRON, Literature. 
Example: Olie op de vluchtstrook nabij Utrecht. (EN: Oil on emergency lane near Utrecht.) 

18. Event Accident: Anything related to traffic collisions (including consequences) between vehicles 

and other vehicles, pedestrians, animals, road debris, or other stationary obstructions. 

Derived from: TomTom, Waze, BRON 
Example: Mercedes van de weg geraakt bij knooppunt Amstel. (EN: Mercedes of the road at 
junction Amstel.) 

19. Event Traffic Jam: Traffic jam terms and indicators of a traffic jam, e.g., traffic flow/ intensities 

and durations. 

Derived from: TomTom, Waze.  
Example: Korte file van 10 minuten voor de Kuip. (EN: Short jam of 10 minutes in front of de 
Kuip.) 

20. Event Closure: Anything related to a road being closed off. 

Derived from: TomTom, Waze. 

Example: Doorgaand rijverkeer gestremd in de richting van Delft-Noord. (EN: Through traffic 
obstructed in the direction of Delft-Noord.)  
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21. Event Enforcement: Activities held by traffic enforcement agencies.  

Derived from: TomTom, Waze, Literature. 
Example: Alcoholcontrole op de A2 richting Den Bosch. (EN: D.U.I. checkpoint on the A2 in the 
direction of Den Bosch.)  

22. Event Hazard Violation: Road activities that violate the law.  

Derived from: TomTom, Literature. 
Example: Auto achter me loopt irritant te bumperkleven #A5. (EN: Car behind me is annoyingly 
tailgating me #A5.)  

23. Event Hazard Traffic Sign: Indicators of broken, unreadable, or missing traffic signs.  

Derived from: TomTom, Waze. 
Example: @VID Defect matrixbord boven de rechter rijbaan hmp 56.1. (EN: @VID Defect matrix 
signal above the right lane hmp 56.1.)  

24. Event Hazard Traffic Light: Indicators of malfunctioning or broken traffic lights.  

Derived from: TomTom, Literature. 
Example: Stoplichten op hol geslagen bij kruispunt Sloeweg. (EN: Trafficlights out of control at 
crossroads Sloeweg.) 

25. Event Hazard Weather: Bad weather conditions that could have an effect on the traffic speed and 

flow, and sight of road users. 

Derived from: TomTom, Waze. 
Example: Dichte mist op de A2 zie geen hand voor ogen! (EN: Dense fog on the A2 can’t see a 
thing!) 

26. Event Hazard Stopped Vehicle: Indicators of a stopped vehicle, due to a breakdown.  

Derived from: TomTom, Waze. 
Example: Stilstaande auto met rookontwikkeling op de vluchtstrook bij afrit Goes. (EN: Stopped 
car with smoke on the emergency lane at exit Goes.) 

27. Event Hazard Roadwork: Indicators of unplanned roadwork activities.  

Derived from: TomTom, Waze. 
Example: Rechterrijbaan tussen Souburg en Vlissingen afgesloten vanwege spoedreparatie aan 
het wegdek. (EN: Right lane between Souburg and Vlissingen closed off because of emergency 
repair on the road surface.) 

28. Event Hazard Object: Foreign objects and road debris that could cause dangerous situations.  

Derived from: TomTom, Waze.  
Example: Boom omgewaaid op de rechterrijbaan bij station Delft. (EN: Tree blown down on right 
traffic lane near station Delft.) 

29. Event Hazard Animal: Stray animals or roadkill that could cause dangerous situations.  

Derived from: TomTom, Waze. 
Example: Tussen Nijkerk en Amersfoort ligt langs de A28 een overreden kat. (EN: Between 
Nijkerk and Amersfoort lays a run over cat besides the A28.) 

30. Event Hazard Road Condition: A hazardous condition to the road surface.  

Derived from: TomTom, Waze. 
Example: Gaten in wegdek #A5 li 13.24 afrit Middelburg. (EN: Potholes in road surface #A5 le 
13.24 exit Middelburg.) 
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3.3.2 Grammar 

Having established this set of categories, we can focus on the characteristics of the grammar 

and dictionaries behind each category. Our method uses a combination of place names, 

temporal expressions, traffic domain knowledge, and lexical pattern dictionaries. First, the 

place names dictionary, which is composed out of place names for the Netherlands from the 

GeoNames database, and the tagging system from OpenStreetMap20 . Note that the 

GeoNames database is only used as a source for place names, and is not used to derive any 

locations (coordinates). The system from OpenStreetMap enables us retrieve the names of 

the following features: 

 Highway: Names of roads for the entire road network of the Netherlands, e.g., bridges 

and residential roads.  

 Amenity: Names of facilities used by visitors and residents, e.g., colleges and parking. 

 Building: Names of buildings, e.g., warehouses and churches.  

 Leisure: Names of leisure and sports facilities, e.g., parks and sport stadiums. 

 Place: Names of settlements, e.g., suburbs and towns. 

 

The advantage of using such a comprehensive dictionary is that we significantly increase our 

possibilities of finding a locational term in a tweet. However, we do acknowledge that this 

library contains a lot of ambiguous terms that could be either a location name or a common 

word used in the Dutch language. Additionally, using such a large dictionary will most 

certainly also significantly increase the computation time of the annotator. We decided 

however that being able to map a traffic event-related tweet, with the risk of mapping it to a 

wrong location, is more important than not being able to map it due to a too limited 

dictionary. In order to mitigate false positives due to ambiguous location terms, a dictionary 

is manually composed based on these types of encounters. Second, the temporal expressions 

dictionary, which is composed of the temporal expressions dataset from the work by 

Hürriyetoglu, Oostdijk, & van den Bosch (2014). This dictionary contains tokens and phrases 

that serve to identify time intervals, e.g., “vanmiddag om 16.20 uur” (EN: this afternoon at 

16.20). Third, multiple traffic domain knowledge based dictionaries, e.g., vehicle 

names/brands, road debris, and emergency services. These dictionaries are composed of 

terms from the BRON dataset, the national scientific institute for road safety research in the 

Netherlands (SWOV) traffic terms set21, and synonyms/ colloquial speech derived from these 

sets. Additionally, this dictionary is updated manually, based on relevant terms encountered 

in traffic event-related tweets. Finally, lexical pattern dictionaries, that consist of non-traffic 

related terms that occur within traffic event-related tweets with high frequency.  

 

These resources are used to create a Backus-Naur form (BNF) grammar, allowing for partial 

matching of tokens. The grammar allows for case-insensitive matching as tweets are known 

for having an inconsistent usage of capitals. Additionally, the grammar includes rules to 

recognize spelling variations of domain terms, by matching on suffixes. For each of the 27 

defined traffic categories, key terms and syntactic knowledge for that particular category are 

defined. We include optional term matching and linguistic structures such as adjectives to 

restrict ambiguous terms from matching excessively. In practice this means that some traffic 

domain knowledge terms can be used by themselves, while other terms need to have 

preceding/succeeding terms. For instance, for the category Event Hazard Weather the term 

                                                
20 https://wiki.openstreetmap.org/wiki/Map_Features 
21 https://www.swov.nl/publicatie/verkeersveiligheidstermen-nederlands-engels-en-engels-nederlands 
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“weer”, which translates to both “weather” and “again”, needs to be preceded with a weather 

type (e.g., “misty”), as it is too ambiguous by itself. The documentation of each category, with 

rules and examples can be found in Rule-based Traffic Domain Annotator Grammar. Below, 

we provide an example of one of the grammar modules for the “Event Hazard Roadwork” 

category. In order to understand the grammar rules we first explain the subparts each rule 

consists of. Rules are build out of operators, predefined grammar methods, and tokens from 

the resources.  

 

Some of the commonly used operators are: 

 Token + Token: concatenates two tokens with an interspace. 

 Token | Token: exclusive or. 

 ~Token: disallows matching of this token. 

 

Some of the commonly used grammar methods are: 

 WordStart: matches if the current position is at the beginning of a word, and is not 

preceded by any character in a given set of characters, as well as at the beginning of 

a line. 

 WordEnd: does the exact opposite of WordStart. 

 Optional(Token): makes all tokens within the parentheses optional. 

 

The grammar module in this example uses the following traffic domain related dictionaries: 

 Roadwork: e.g., opruimingswerkzaamheden (clearing-up operations), spoedreparatie 

(emergency repair), onderzoek (examination) 

 Vehicle names:  e.g., auto (car), vrachtwagen (truck), caravan. 

 Vehicle brands:  e.g., Nissan, Volvo, Hobby. 

 Traffic lights: e.g., stoplicht (traffic light), verlichting (lighting), lantaarnpaal 

(lamppost) 

 Traffic signs: e.g., bewegwijzering (signage), matrixbord (matrix sign), wegmarkering 

(road marking) 

 Road lanes: e.g., rijbaan (lane), vluchtstrook (shoulder), parallelrijbaan (parallel lane) 

 

By establishing the definitions of all sub parts, the grammar rules become basically self-

explanatory. We colored the tokens within the example to reflect the subparts of the grammar 

rules: 

 R1: Optional(vanwegeLit | ivmLit | doorLit | tgvLit | alsgevolgvanLit 

|alsgevolgvanLit | metalsgevolgvanLit | naLit) + Optional(~Roadwork token + 

Arbitrary token) + Roadwork token + Optional(aanLit | vanLit | opLit | nabijLit | 

langsLit | bijLit | vlakLit| naastLit) + Optional(~(Vehicle names token | Vehicle 

brands token | Road lanes token) + Arbitrary token) + (Vehicles names token | 

Vehicle brands token | Road lanes token) 

 

Example: 

 E1: Vanwege langdurige spoedreparatie aan het wegdek bij afrit Delft-Noord. (EN: 

Because of prolonged repairs on the road surface at exit Delft-Noord.) 
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3.3.3 Evaluation 

We evaluate our rule-based traffic domain annotator on a randomly selected sample of 200 

annotated traffic event-related tweets. This set is omitted from the training phase of the 

traffic domain annotator in order to obtain an honest and unbiased assessment of the 

performance of the annotator. To prevent any personal bias in this evaluation phase, the 

evaluation is performed by two fellow ex-master students from our Web Information Systems 

research group, namely ir. Jan Zegers and ir. Alexander Grooff. Both will be assigned with 

an Excel file containing 100 annotated tweets, as partly depicted in Figure 3-4. For each 

annotated set of tokens within a tweet the following questions have to be answered:  

 

1. Is the correct category assigned to the token set? 

2. If a wrong category is assigned, what other category (from the predefined category 

list) should have been assigned to the token set instead.  

 

By answering these two questions, we will be able obtain the number of false 

positives/negatives and true positives/negatives for each category. Thereby, we can find out 

what categories should had been assigned in the case a false positive/negative is found. As 

natural language is ambiguous and thereby open to interpretation, the assessor has a third 

option “Not Sure”, besides “Yes/No” when answering if the correct category has been assigned 

to the set of tokens.  

 

 
Figure 3-4: Rule-based Traffic Domain Annotator Evaluation 
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3.4 Feature Engineering 

Feature selection is applied to the Twitter data. Based on the many feature engineering 

techniques used in previous work, we make a selection of the most relevant and useful 

features, as shown in Table 3-7. The selected features will be used by our traffic event 

classifier as described in the next step of the pipeline, to indicate if a tweet is traffic event-

related or not. The main objective of our feature selection approach is to improve the 

prediction performance of the classifier, providing faster and more cost-effective predictors, 

and to better understand the underlying process that generated the data (Guyon & Elisseeff, 

2003). For this process, we will use Scikit-learn22, a free software machine learning library 

for Python in combination with the Frog NLP library.  

 

Technique Reason 
Syntactic features  Exclamation/question marks, emoticons, and the total number of capital 

characters are part of the syntactic features. These features could indicate 

sentiment characteristics about the tweet.  

Bag of words/n-grams This process turns a collection of tweets into numerical feature vectors and 

is part of vectorization. Tweets are described by their word occurrences while 

ignoring the relative position information of words in the tweet. We will 

extract 1-grams (bag of words). However, this bag of words approach has its 

limitations. It is not able to capture phrases and multi-word expressions, 

thus effectively disregarding any word order dependence. This approach also 

does not account for misspellings/ word derivations. Therefore, we 

additionally use word bigrams to preserve some of the local ordering of 

information, as well as character bigrams as a solution against misspellings 

and derivations.  

TF-IDF term weighting Term frequency-inverse document frequency shows the importance of a term 

to a document in the corpus. The term-frequency (TF) resembles the amount 

of times a term is located in a document. The document frequency (DF) 

denotes the number of documents that contain this term. To measure the 

uniqueness of a term, the infrequency of the term occurring across documents 

is needed, in other words, the inverse document frequency (IDF). A high 

result of the product of TF and IDF shows that the term occurs frequently in 

the document and provides the most information about that document. 

Traffic domain types In the previous section, we showed how our traffic domain annotator is able 

to tag 27 different categories. These word categories thus appear as word n-

grams or character n-grams in our model and can all be regarded as features. 

This includes temporal and locational tags that were often used as features 

in previous work.  

POS tagging POS features, e.g., nouns and verbs, could be used to extract syntactic and 

linguistic representation out of the tweets. A POS tagger is able to tag words 

with different part of speech labels. This feature will be used in the same way 

as the traffic domain types. We must state, that due to the limited amount of 

characters in tweets, the effectivity of a POS feature is uncertain. 
Table 3-7: Feature selection 

  

                                                
22 Scikit-learn.org 
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3.5 Traffic Event Classification 

In order to predict if a tweet is related to a traffic event, supervised binary classification is 

applied, in which we classify a tweet to either the traffic event-related (TE) or non-traffic 

event-related (NTE) group. We first manually label each tweet in our dataset, collected with 

the data collection approach from Section 3.1.1, with a TE or NTE label. The next step is to 

choose a classification method based on the size of the dataset, number of features, and 

previous work related to supervised binary classification of tweets. Commonly used methods 

for binary classification consist of decision trees, random forests, Bayesian networks, support 

vector machines, neural networks, and logistic regression. When trying to predict a category 

and working with a dataset of less than 100-thousand text-based tweets, it is advised by the 

documentation of sci-kit learn (the machine learning library that we will be using), to use 

either a Support Vector Machine (SVM) or Naïve Bayes (NB) based method. During our 

literature review, we also found that methods based on SVM and NB were the most used and 

proved to deliver the best results when working with tweets. Based on this information we 

opt to start the traffic event classification approach with these two types of algorithms.  

 

3.5.1 Support Vector Machine Theory 

SVMs consist of multiple supervised learning algorithms for classification, regression and 

outlier detection. In this work, we focus on the classification methods SVM offers. The idea 

behind SVM is finding a hyperplane that best divides a data set into two classes. This is 

achieved by plotting the data items from the dataset as a point into an n-dimensional space, 

where n represents the number of features. The coordinates of the points correspond to the 

value of each feature. The further away data points (support vectors) lie from the hyperplane 

the more confident we can be about the classifier performance. In SVM theory the term 

margin is used for the distance between the hyperplane and the nearest support vector from 

either set. Therefore, the goal is to find the hyperplane with the greatest possible margin 

between the hyperplane and any support vector within the training set (Joachims, 1998).  

 

3.5.2 Naïve Bayes Theory 

Naïve Bayes typed classifiers apply the Bayes’ theorem, where the naïve part describes the 

independence assumptions between the feature values. So for example, a vehicle may be 

considered to be a school bus if it is yellow, longer than 5 meters and has 4 wheels. A NB 

classifier considers each of these features to contribute independently to the probability that 

the vehicle is a school bus, regardless of any correlations between the features. Which is why 

this algorithm is called naïve, as features are not always independent of each other. The 

Bayes’ theorem itself describes how to update the probabilities of hypotheses when provided 

data. Given a hypothesis H and data D, the theorem states that the relationship between the 

probability of the evidence P(D) and the probability of the hypothesis after getting the 

evidence P(H|D) is: 

 

 𝑃(𝐻|𝐷) =
𝑃(𝐷|𝐻)

𝑃(𝐷)
 𝑃(𝐻)  
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Where: 

 P(H|D) is the probability of hypothesis H given the data D, called the posterior 

probability. 

 P(D|H) is the probability of data D given that the hypothesis H was true.  

 P(D) is the probability of the data.  

 P(H) is the probability of hypothesis H being true, the so called prior probability of H.  

 

The NB classifier combines the probability model of the Bayes’ theorem with the maximum 

a posteriori (MAP) decision rule: 
 𝑀𝐴𝑃(𝐻) = max (𝑃(𝐷|𝐻) ∗  𝑃(𝐻))  

This provides us with the numerator and the class giving the largest response, being the 

predicted output (Murphy, 2006). 

 

 

3.5.3 Model Selection and Evaluation 

To determine which of our models has the best performance, we have to compare them based 

on the same evaluation techniques, which are discussed in this section.  

3.5.3.1 Resampling of Dataset 

The dataset to be used in the experiment is very likely to be imbalanced, as the number of 

collected NTE tweets will always outweigh the TE tweets. Therefore, we have to consider 

that some metrics can give a misleading picture. Take for example a dataset with a TE/NTE 

tweet ratio of 1:9. In this case, the accuracy score is misleading because when the classifier 

always predicts the most common class without performing any analysis of the features, it 

will still have a high accuracy rate of 90%. We therefore, use multiple types of metric scores 

to evaluate our model. Additionally, resampling is applied, which is a widely adopted 

technique for dealing with highly unbalanced datasets. Resampling consists of under-

sampling and over-sampling techniques. With under-sampling, records from the over-

represented class are removed, while with over-sampling copies of records from the under-

represented class are added. We apply over-sampling based on three popular methods: 

random over-sampling technique, SMOTE (Synthetic Minority Oversampling Technique), 

and ADASYN (Adaptive Synthetic sampling method). Under-sampling is applied based on a 

random under-sampling technique, and Cluster Centroids (Chawla, 2009).  
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3.5.3.2 Cross-validation 

K-fold cross-validation is applied to estimate how accurately the model performs in practice 

(on out-of-sample data) and to prevent overfitting. Overfitting is the situation in which a 

model is trained and tested on the same data (or closely related data), and therefore fails to 

fit additional data or provide reliable future observations. A common solution to this problem 

is to split the dataset into a train and a test set, so that the model can be trained and tested 

on different data. In the case of cross-validation, a bunch of these train/split sets is created. 

The training set is split into k smaller equal sets called folds. For each of these folds a model 

is trained using k-1 of the folds as training data, while the union of the other folds is used as 

the training set. The average of the values computed in the loop is used as a performance 

measure. This is a way more accurate estimate of out-of-sample performance can be gained, 

and we use our data more efficiently as every observation is used for both training and 

testing. Initial findings show that our dataset exhibits a large imbalance in the distribution 

of the target classes. We therefore, have to ensure that relative class frequencies are 

approximately preserved in each fold. To this end, we apply a variation of k-fold cross 

validation called stratified k-fold. This ensures that each fold contains approximately the 

same percentage of each target class as the complete set.  

3.5.3.3 Hyper-parameter Tuning 

Now that we have compensated for any possible overfitting, we can focus on tuning the hyper-

parameters of the classifiers we use. Hyper-parameters, express properties of the model that 

cannot be directly learned from the regular training process. These types of parameters 

define higher level concepts and influence the predictive of computation performance of the 

model. Examples of important hyper-parameters, which we will tune, for SVM based 

classifiers are:  

 Kernel: The used kernel method for pattern analysis. A kernel function returns the inner 

product between two points in a suitable feature space. Examples of kernels are: linear, 

polynomial, rbf, and sigmoid.  

 C: Penalty parameter of the error term. A large C corresponds to a smaller-margin 

separating hyperplane in the case that hyperplane does a better job of getting all the 

training points classified correctly. A small C corresponds to a larger-margin separating 

hyperplane, even if that hyperplane misclassifies more points.  

 Loss: The hinge loss is used to determine the maximum margin classification.   

In order to obtain the best combination of hyper-parameters, an exhaustive grid search will 

be applied. This grid search exhaustively generates candidates from a grid of user-specified 

parameter values, and evaluates all the possible combinations of these values.  
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3.5.3.4 Model Evaluation 

A range of different evaluation metrics will be used to evaluate our models: 

 

 Precision: the ability of the classifier not to label negative 

samples as positive. 
𝑃𝑃𝑉 =

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 Recall: the ability of the classifier to find all the positive 

samples. 
𝑁𝑃𝑉 =

𝑇𝑁

(𝑇𝑁 + 𝐹𝑁)
 

 Accuracy: the proportion of true results among the total 

number of examined cases. 
𝐴𝐶𝐶 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 F1: the weighted harmonic mean of precision and recall, 

between 0 (worst score) and 1 (best score). 
𝐹1 =

2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

 ROC AUC: Area Under the Curve (AUC) of Receiver Operating Characteristic (ROC). In 

a ROC curve true positives are plotted against false positives at various threshold 

settings. A perfect classifier would have a ROC curve that goes straight up the y-axis and 

then along the x-axis. While a classifier with no power (by random guessing) will sit on 

the diagonal, and other classifiers falling in between, as illustrated in Figure 3-5. 

Therefore, the area under the curve shows a classifier with no power when its value is 

0.5, and a perfect classifier at 1.0.  

 Precision-Recall curve: this curve shows the tradeoff between precision and recall for 

different threshold values, as depicted in Figure 3-6. By changing the threshold values 

different precision-recall ratios can gained.   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-5: ROC Curve Figure 3-6: Precision-Recall Curve 
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3.6 Geocoding 

In this section, we discuss how traffic event-related tweets can be linked to a location. A 

geocoding method is needed, as even though tweets can have their own location attribute 

(device location) in the form of a geopoint, this only occurs in very rare cases. Based on our 

initial findings, only 0.2% of the traffic event-related tweets contains a geopoint.  

 

3.6.1 Approach 

With the help of our annotator, as described in Section 3.3, we collect one or a multitude of 

spatial indicators from tweets. These spatial indicators are tagged with the following 

categories:  

 Place Location: Exact locations in the Netherlands that contain a geopoint, geoline, or 

geoshape.  

 Place Location Combination: Combination of “unnamed” areas, e.g., infrastructure and 

natural environments, and “named” locations, e.g., cities and street names.  

 Place Road Section: Section of a road containing a start and end point, indicated by 

places and locations. 

 Place Road Direction: Combination of directional terms and a location.  

 Place Road Mile Marker: Right or left side of the road, in combination with mile marker 

number or road number.  

 

These spatial indicators bring the following challenges with them: 

 Contradiction: Spatial indicators can contradict each other, as they describe multiple 

places (e.g., “#N247 near Edam accident, traffic redirected from Monnickendam via 

A7”). 

 Confirmation: Spatial indicators can coincide and provide a more precise description of 

the event location (e.g., “Accident with multiple cars on A13 near exit Ikea”).  

 Scale: Spatial indicators can relate to different forms and scales. An indicator can be a 

geopoint, geoline or geoshape. And it can vastly differ in size, e.g., Amsterdam (city 

level) and Noord-Holland (province level).  

 Ambiguity: Spatial indicators with the same name can be matched to different locations, 

e.g., “Michiel de Ruyterstraat” is a street name that appears in five different cities. 
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Therefore, we design a model that computes the intersections of a multitude of spatial 

indicators in a tweet. Figure 3-7, depicts a high-level view of the geocoding model. We will go 

through each step of the model, with the help of the following traffic event-related tweet 

example:  

 

TE Tweet: “@vid vast op de #A4 thv McDonald’s #Delft. Vermijd A4 richting Den Haag 
#File” (EN: @vid stuck on the #A4 near McDonald’s #Delft. Avoid A4 in the direction of 
Den Haag #Trafficjam) 

  

 

 

TE Tweets
Place Mention 

Extraction

Place Location?

Place Location 
Combination?

Place Road 
Section?

Place Road 
Direction?

Place Road 
Side?

Query Google 
Geocoding API

yes

no

Query Google 
Directions API

yes
Create N-gram 
of placenames

Query Road 
Database
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yes

no

no

no

yes

Locations
Compute the 

Intersection of 
Locations

Traffic 
Event 

Locations

Device 
Location

 
Figure 3-7: High-Level Geocoding Model 

 

1. Place mention extraction: place related tokens are categorized into our five predefined 

place categories. Each token within a place category can also relate to one of the following 

place sub categories: Location, Road Number, Mile Marker Number, and Road Side. 

Place labels: 

 Place Location Combination: #A4 thv McDonald’s 

o Road Number: A4 

o Location: McDonald’s 

 Place Location: #Delft  

o Location: Delft 

 Place Road Section: A4 richting Den Haag 

o Road Number: A4 

o Location: Den Haag 
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2. Geocoding: a geocoding approach is defined for each place category. Note, that queries are 

restricted to be within the borders of the Netherlands. Any locational mentions of places 

outside of the Netherlands are therefore being discarded.  

a. Place Location: a place that per definition must have a location, and therefore can 

be used to query the Google Places API to retrieve a bounding box, if its 

subcategory is “Location”. When its subcategory is “Road Number” or “Mile 

Marker Number”, a query is made to our road database, as the Google Places API 

does not provide road number based geolines. Our road database consists of road 

numbers, mile marker numbers, road sides, and geopoints, based on data from 

Rijkswaterstaat Ministry of Infrastructure and Water Management23.  

Example: #Delft = bounding box.  
b. Place Location Combination: a place and location that have some sort of relation 

to each other. Therefore, a combination of place tokens is used to query the Google 

Places API, except when one of the tokens is a “Mile Marker Number”, as the 

Google Places API cannot work with this category. In that case the tokens are to 

query either the Google Places API or road database by themselves.  

Example: #A4 McDonald’s = list of bounding boxes. #A4 = geolines. McDonald’s = 
list of bounding boxes.  

c. Place Road Mile Marker: these token combinations can be used directly to query 

our road database, to retrieve one or multiple geopoints, or a geoline.  

d. Place Road Section: the combination of place indicators is used to query the Google 

Directions API to retrieve geolines (note that we dilate geolines retrieved from the 

Google Directions API and the road database with a radius of 100m, in order to 

compensate for multi-lane roads). Where the first token indicates the start of a 

geoline and the last token the end. If one of the tokens is not of the subcategory 

“Location”, but of the category “Road Number” or “Mile Marker Number” the road 

database is queried for a geopoint instead. In the case of a “Road Number” the 

result could be a geoline, which cannot be used in the Google Directions API, 

therefore the centroid of this geoline is taken instead. This way a road section can 

be derived in every case.  

Example: A4 Den Haag  start: (A4, Den Haag), end: Den Haag = geolines.  
e. Place Road Direction: the token subcategory “Location”, “Road Number”, or “Mile 

Marker Number” defining the pointed to direction is used to query the Google 

Places API and road database by itself. Additionally, the closest preceding place 

category is used as a starting point, so that the Google Directions API can be 

queried, in the same way as the Place Road Section approach.  

f. Device Location: even though geotagged tweets are rare, the ones that are 

geotagged can provide valuable information.  

 

  

                                                
23 https://sites.google.com/site/hectometerpalendatanederland/ 
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3. Intersecting Locations: the location linking approach results in a list of possible relevant 

locations per place category. However, we want to find the most relevant location(s), 

instead of linking the tweet to all possible locations that can be found in a tweet. In order 

to find the most relevant location(s), we make the following assumption: all spatial 

indicators within a tweet are of equal importance and add to the description of one or 

multiple event locations. Therefore, for each place category, we intersect the found 

locations with each other. Note that an additional radius of 250 meters is added to the 

places, to increase the chance of intersection. After testing a variety of radiuses on a 

selection of tweet reports, this radius provided the best balance in keeping the precision 

of the location without missing out on possible relevant intersections. Next, we intersect 

the results of these intersections with each other. This results in one or multiple 

intersected locations, which we define as the locations the traffic events in the tweet are 

most likely referring to. These locations based on rules a, b, and c, have been visualized 

in Figure 3-9. The location based on rule d is visualized in Figure 3-8. The following rules 

apply to each location: 

 

a. 𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 = (𝐴4 , 𝑀𝑐𝐷𝑜𝑛𝑎𝑙𝑑′𝑠) ∩ (#𝐴4) ∩ (𝑀𝑐𝐷𝑜𝑛𝑎𝑙𝑑′𝑠)  
b. 𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = #𝐷𝑒𝑙𝑓𝑡 
c. 𝑃𝑙𝑎𝑐𝑒 𝑅𝑜𝑎𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 = (𝐴4 , 𝐷𝑒𝑛 𝐻𝑎𝑎𝑔)  
d. 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝐸𝑣𝑒𝑛𝑡 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = [(𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∩

𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛), (𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ∩  𝑃𝑙𝑎𝑐𝑒 𝑅𝑜𝑎𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛),
(𝑃𝑙𝑎𝑐𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∩ 𝑃𝑙𝑎𝑐𝑒 𝑅𝑜𝑎𝑑 𝑆𝑒𝑐𝑡𝑖𝑜𝑛)]   

 

 

 

 

Our defined model of geocoding, enables us to transform traffic event-related tweets into one 

or multiple traffic event-related locations. The presented example shows how three locations 

can be extracted from a tweet containing two mentions of traffic jam events. It shows a 

solution for contradicting spatial indicators by allowing a tweet to be linked to multiple 

locations. Coinciding spatial indicators are also taken into account by the predefined 

annotation rules and intersection of places. The intersections also help with the scaling 

problem, as it scales a city level indicator (Delft) back to a smaller scaled polygon within Delft 

(Place Location Combination). Ambiguity is also tackled by the intersection, e.g., the 

ambiguous term McDonald’s is only used in combination with less ambiguous locations as A4 

and Delft.  

Figure 3-9: Location Linking Approach (a, b, c) 

Figure 3-8: Location Linking Approach (d) 
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3.6.2 Evaluation 

We evaluate our geocoding approach on a randomly selected sample of 100 traffic event-

related tweets. By using our geocoding approach, locations are calculated for each tweet. As 

place mentions in tweets are highly ambiguous, a geocoded location cannot be either correct 

or incorrect. Therefore, each tweet is evaluated on how well the geocoded locations suit the 

contents of the tweet, by ranking it into one of four categories: 

 

Category 1: The geocoded result covers each place 

indicated in the tweet and includes no irrelevant 

locations, as shown in Figure 3-10. 

Example: #N201 hmp 28.0 rechts vrachtauto verzakt in 
de buitenberging . Rijstrook 2 afgesloten . @vid 
@ANWBverkeer https://t.co/sGAVpLHjTa  
(EN: N201 hmp 28.0 right truck subsided in the outside 
storage . Lane 2 closed . @vid @ANWBverkeer 
https://t.co/sGAVpLHjTa). 
 

 

 

 

 

 

Category 2: The geocoded result covers each place indicated in the tweet, but also includes 

irrelevant locations, as shown in Figure 3-11. 

Example: Afrit 7 en 8 #a28 zijn glad ! Utr ri Amersfoort (EN: Exit 7 and 8 #a28 are slippery ! 
Utr to Amersfoort) 

 

 

 

 

 

 

 

 

 

  

Figure 3-10: Geocoding evaluation category 1 

Figure 3-11: Geocoding evaluation category 2 
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Category 3: The geocoded result covers only part of the places indicated in the tweet, as shown 

in Figure 3-12. 

Example: Knijpbrug in #Hoogezand heeft er geen zin meer in , verkeer staat muurvast aan 
beide kanten @provgroningen @112groningennl (EN: Knijpbrug in #Hoogezand is not feeling 
it anymore, traffic is deadlocked on both sides @provgroningen @112groningennl) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Category 4: The geocoded result covers no places indicated in the tweet, as shown in Figure 

3-13. 

Example: @meldkamervid het is weer raak op #a10 thv s109 2x ❌ ❌ (EN: @meldkamervid 

it is a hit again on #a10 near s109 2x ❌ ❌) 

 

 

 

 

 

  

Figure 3-12: Geocoding evaluation category 3 

Figure 3-13: Geocoding evaluation category 4 
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3.7 Traffic Event Description 

In this section, the traffic event description step is discussed, in which a rule-based approach 

is used to cluster related information from TE tweets, Waze events, TomTom events and 

DiTTLab traffic data. Hereafter, TE tweets, Waze events, and TomTom events will be 

referred to as a traffic event reports. This clustering step will eventually result in the 

detection of traffic events. The event category, location and time period are used to conduct 

the clustering. The rule-based clustering approach works as follows. First, a traffic event 

described by a newly incoming traffic event report is compared to the previously reported 

traffic events. This comparison can have one of two outcomes: 

 

 Match to existing traffic event cluster: if the newly incoming traffic event report lies 

within the categorical, locational and temporal extent, then the traffic event report is 

added to the existing traffic event cluster. 

 No match to existing traffic event cluster: if the newly incoming traffic event report 

does not lie within the categorical, locational and temporal extent, then a new traffic 

event cluster is created. This traffic event cluster contains the categorical, locational 

and temporal properties of the newly incoming traffic event.  

 

Matching is based on a rule-based approach, in which a rule specifies the categorical, spatial 

and temporal extent, used to assert if the new traffic event report should be part of an existing 

traffic event cluster. A rule can thus be described as a triplet of the form:  

 

(traffic event category, radius/dilation, timespan) 

 

In which the traffic event category is one of the 13 event categories described in Section 3.3.1. 

Note that we used TomTom and Waze to co-create these 13 event categories for the tweet 

annotator. This means that these categories can be used to map TomTom events, Waze 

events, and TE tweets to traffic events clusters. We use a radius or dilation drawn around 

either geopoints or geolines/geoshapes that represent the spatial location of a traffic event. 

This is done because of the possible delay existing between the traffic event location and the 

location of the creation of the traffic event report. A timespan calculated in minutes from the 

creation time of the traffic event report, is used to represent the temporal extent of a traffic 

event. We use a timespan, because the time extracted from a traffic event description does 

not necessarily represent the exact time a traffic event took place. 

 

Let us take a look at the following example rule: (Event Enforcement, 250m, 30min).  

This rule asserts that for a new traffic event report to match to this existing cluster, it must 

have a category that can be matched to the “Event Enforcement” category. For example, a 

Waze event with the category “Police” can be matched to the “Event Enforcement” category 

as police is a type of enforcement. This rule further asserts, that a new traffic event report 

must be within a range of 250 meters, and within a time interval of 30 minutes.  

 

When a traffic event report successfully matches an existing traffic event cluster, the spatial 

and temporal information have to be merged. In this case, traffic event reports would only 

have a location in the form of a geopoint, they could be merged to a weighted average location. 

A 1:N ratio, where N is the number of associated reports to a traffic event cluster, could then 

be applied to the weights between new traffic event reports and the existing traffic event 
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cluster. By applying such a ratio, it is ensured that all traffic event reports have the same 

impact on the average traffic event location.  

However, in our case locations can also take the form of geolines, and geoshapes. Therefore, 

a different spatial merging approach has to be taken. We will elaborate the model, with the 

help of the following traffic event-related tweet, and simplified Waze, and TomTom examples 

listed below: 

 

 TE Tweet Report 1:  

o Text: “@vid ongeluk op de #A4 thv McDonald’s #Delft. Vermijd A4 richting Den 
Haag #File” (EN: @vid accident on the #A4 near McDonald’s #Delft. Avoid A4 in the 
direction of Den Haag #Trafficjam) 

o Category: Event Accident, Event Traffic Jam 
o Location: geoshape 
o Event date: 2018-03-13T10:00:00Z 

 Waze Event Report: 

o Category: ACCIDENT 
o Subcategory: ACCIDENT_MINOR 
o Location: geopoint (dilated with a radius of 100 meters) 
o Creation date: 2018-03-13T10:05:00Z 

 TomTom Event Report: 

o Category: Jam 
o Location: geoline (dilated with a radius of 100 meters) 
o Creation date: 2018-03-13T10:07:00Z 

 TE Tweet Report 2: 
o Text: “Zojuist kop-staartbotsing gezien bij Delft, viel gelukkig mee.” (EN: Just saw 

a rear-end collision near Delft, could have been worse.) 
o Category: Event Accident 
o Location: geoshape 
o Event date: 2018-03-13T10:08:00Z 

 

Figure 3-14 depicts the approximate visualization of the locations of these traffic event 

report examples. 

 
 

 

 

           

 

 

 

 

 

Figure 3-14: Traffic Event Report Location Examples 
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The first incoming report is a tweet that cannot be linked to an existing traffic event cluster. 

A new cluster, called the MainCluster, is therefore created with two categories and a 

geoshape location. When a report contains multiple categories, it also has multiple rules 

defining the traffic event category, radius/dilation, and timespan. The second incoming report 

is a Waze event, which category matches with the “Event Accident” category of the 

MainCluster. Its location also intersects with the geoshape location of the MainCluster. 

Therefore, one could say that the Waze event should be added to the cluster. Notice, however, 

that the Waze event does not match the “Event Traffic Jam” category. Adding the Waze event 

directly to the MainCluster would thus lead to a mismatch of category. Therefore, a 

subcluster is created based on the matching category. This leaves us with two clusters, one 

for the initial tweet report (MainCluster) and one for the tweet/Waze event report 

combination (SubCluster1). The third incoming report is a TomTom event, which category 

matches the “Event Traffic Jam” category and its geoline location intersects with geoshape 

location of the MainCluster. This results in a second subcluster (SubCluster2). The last 

incoming report is again a tweet, which has a “Event Accident” category matches with the 

category from SubCluster1. As its location also intersects with the location from SubCluster1, 

the report can be clustered to SubCluster1.  

 

Some traffic event reports however, are more relevant than others. We make the following 

assumption: the larger a traffic event report location is, the more traffic events it can relate 

to. For example, a traffic event report with Delft as the only location can relate to any traffic 

event within Delft. Therefore, we compute the relevance of a traffic event report as follows: 

we divide the area of the intersection of the locations from all traffic event reports by the area 

of a traffic event report location. For example, in SubCluster1 the area of the location of TE 

Tweet1 Report = 0.8km2, Waze Event Report = 0.2km2, and TE Tweet2 Report = 24km2. The area of 

((𝑇𝐸 𝑇𝑤𝑒𝑒𝑡1 𝑅𝑒𝑝𝑜𝑟𝑡) ∩ (𝑊𝑎𝑧𝑒 𝐸𝑣𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡)) ∩ (𝑇𝑤𝑒𝑒𝑡2 𝑅𝑒𝑝𝑜𝑟𝑡) =  0.2𝑘𝑚2. Thus, the TE Tweet1 
Report is most likely to contribute most towards this subcluster (1.00), followed by the Waze 
Event Report (0.25), and the TE Tweet2 Report is most likely to be the least relevant to this 

cluster (0.01).  

 

An example of what the final clustering would look like:   

MainCluster: 
 Based on traffic reports: TE Tweet1 Report 
 Category: Event Accident, Event Traffic Jam 
 Locations: geoshape 

o SubCluster1: 
 Based on traffic reports: TE Tweet1 Report, Waze Event Report, TE Tweet2 

Report 
 Category: Event Accident 
 Locations: ((𝑇𝐸 𝑇𝑤𝑒𝑒𝑡1 𝑅𝑒𝑝𝑜𝑟𝑡) ∩ (𝑊𝑎𝑧𝑒 𝐸𝑣𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡)) ∩ (𝑇𝐸 𝑇𝑤𝑒𝑒𝑡2 𝑅𝑒𝑝𝑜𝑟𝑡) 

o SubCluster2: 
 Based on traffic reports: TE Tweet Report, TomTom Event Report 
 Category: Event Traffic Jam 
 Locations: (𝑇𝐸 𝑇𝑤𝑒𝑒𝑡1 𝑅𝑒𝑝𝑜𝑟𝑡) ∩ (𝑇𝑜𝑚𝑇𝑜𝑚 𝐸𝑣𝑒𝑛𝑡 𝑅𝑒𝑝𝑜𝑟𝑡) 
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Contrary to the spatial merging approach, we do not apply a temporal merging approach. 

This because, the datetime of the first event report in a cluster, indicates the closest possible 

time to the real datetime of a traffic event. Any following matching traffic event reports to 

this cluster can add to the spatial information and descriptiveness, but cannot improve the 

datetime of the traffic event. A high-level overview of the traffic event reports clustering 

approach is given in Figure 3-15. 
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Figure 3-15: High-level overview of traffic event report clustering approach 
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The next step is to link DiTTLab traffic data, to related traffic events. The DiTTLab traffic 

dataset consists of the speed/flow values per 100 meter road segment for all motorways in 

the Netherlands. For DiTTLab data to be related to a traffic event, its motorway geolines 

have to intersect the location of the traffic event. If this is the case, the traffic data for the 

intersected segment plus two 100 meter road segments before and after the segment, are 

linked to the event. We add these additional segments, as a traffic event not only influences 

the location of the event, but possible also road segments before and after it. For example, a 

traffic event of the category “Event Accident” could cause an increased congestion level before 

it due to a traffic jam. Additionally, we extend the time interval as defined in the traffic event 

cluster rule (traffic event category, radius/dilation, timespan), with an additional 15 minutes 

before the event start. This way we do not miss any possible increased congestion levels that 

could have been indicators for the traffic event to happen. For example, a traffic event of the 

category “Event Accident” that was caused by road debris. That same road debris could thus 

have caused traffic to slow down (increase congestion) in the 15 minutes leading up to the 

traffic event. We want to state that we have chosen to only link DiTTLab traffic data to closed 

traffic events clusters. Traffic event clusters are closed after the time interval from its rule 

has passed. We chose to take this approach as the DiTTLab traffic data is currently not 

available in real-time. A high-level overview of the DiTTLab traffic data to traffic events 

linking approach can be found in Figure 3-16. 

 

Traffic Events

Start

Retrieve newest 
closed traffic event

Retrieve traffic data

DiTTLab Traffic 
Data

Intersection between 
traffic event location 

and motorway geoline?
No link possibleno

Link traffic data starting 200m before road 
segment intersection and ending 200m after, 
within a time interval of 15min before start of 

event till the closing time of event 

yes

Update traffic event 
in DB

 
Figure 3-16: High-level overview of DiTTLab traffic data to traffic events linking approach 
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3.8 System Architecture - SocialTerraffic 

In this section, we discuss the architecture behind our software system, named 

SocialTerraffic24. We first discuss how the back-end, formed by our developed pipeline 

containing the detection, categorization, and description of traffic events, is to be translated 

to an entity-relationship model. Second, we state the requirements our system has to comply 

with. Last, we discuss how the data is presented in the front-end layer.  

 

3.8.1 Entity-Relationship Model 

By creating an ER model we are able to provide a high-level description of the interrelated 

things of interest within the traffic event domain of knowledge. This logical data model can 

be used to form the database behind the SocialTerraffic system. We use the Crow’s Foot 

notation to create relationships between the entities, as illustrated in Figure 3-17. We will 

explain each entity from the perspective of a traffic event. A traffic event can consist of zero, 

one or multiple TE_TWEET, TOMTOM_EVENT, and WAZE_EVENT reports (note that it 

must have at least one of these reports to exist). It must have one or multiple event categories, 

where an EVENT_CATEGORY is a collection of multiple event categories, e.g., event hazard 

or event traffic jam. Each EVENT_CATEGORY has a RULE, describing the constraints for 

the traffic event description approach. A TRAFFIC_EVENT must have one or multiple 

Locations and can be linked to zero, one or multiple entities of DITTLAB_DATA. A 

TE_TWEET must be created by a USER, while a USER can create zero, one or multiple TE 

tweets. It always contains one or multiple text tokens, where a token is always linked to one 

TOKEN_CATEGORY. A TOKEN_CATEGORY is a collection of multiple categories, e.g., 

PLACE_CATEGORY, TEMPORAL_CATEGORY, or EVENT_CATEGORY. A TE_TWEET 

can have zero or one COORDINATES. A WAZE_EVENT also must be created by a USER in 

the same way as a TE_TWEET. It must contain one EVENT_CATEGORY and one 

LOCATION. A TOMTOM_EVENT is not created by a user, and must contain one 

LOCATION. A LOCATION always contains one or multiple COORDINATES, being able to 

form geopoints, -lines, and –shapes. It can contain one specific ADDRESS, where an 

ADDRESS does not have to be a unique location and can also just be a country. At an 

ADDRESS there can be zero, one or multiple ROAD entities. 

 

  

                                                
24 SocialTerraffic is a composition of the words social, traffic, and terrific. 
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Figure 3-17: ERD Traffic Event Domain Knowledge 
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3.8.2 Requirements 

A requirement list, prioritized with the MoSCoW method, has been composed based on 

meetings with the stakeholders within the Web Information Systems research group and the 

DiTTLab, as shown in Table 3-8.  

 

Nr. Requirement MoSCoW 
1. A user must be able to view the locations of traffic events on an interactive map. Must 

2. A user must get an overview of all traffic domain categories and their count, 

and a description for a specific traffic event. 

Must 

3. A user must be able to filter traffic events based on event category, time range 

and location.  

Must 

4. A user must be able to view the traffic event reports that are linked to a traffic 

event. 

Must 

5. A user must be able to view DiTTLab traffic data that is linked to a traffic event. Must 

6. A user should be able to view auto generated graphs by selecting a traffic 

domain category and timespan for a specific location.  

Should 

Table 3-8: Requirement List 
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3.8.3 Data Presentation 

To present the collected data to the end user a web-based interactive map application is build. 

Figure 3-18, depicts a wireframe of the front-end, created to serve as a visual guide 

representing the skeletal framework of the application. Traffic events, based on clusters from 

traffic event reports, are displayed on the map by drawing their locations. Different colors 

are used to represent each of the 13 traffic event categories and their locations on the map. 

In this wireframe an Event Accident is associated with the color red, an Event Traffic Jam 

with blue, and Event Hazard Stopped Vehicle with green. On the bottom row of the 

application, an interactive timeline is situated. This can be used to choose a specific time 

period to focus on, while the map automatically updates itself based on the new time range. 

Traffic events are each displayed on the time range with a custom icon/color combination. A 

sidebar with three different tabs enables a user to view information on events, the reports 

the events are based upon, and view auto-generated graphs. This wireframe provides an 

example of how traffic event information could be shown when a user clicks on the red Event 

Accident location.  

 

 

Figure 3-18: Wireframe for the front-end of the SocialTerraffic system 
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4 Implementation 

In this chapter, we discuss the technical implementation of every module discussed in the 

previous chapter. First, we discuss the data collection approach for tweet, Waze and TomTom 

event reports. Second, we discuss the evaluation of our custom rule-based traffic domain 

annotator. Third, we go through the machine learning based traffic event classification 

module and the achieved results. Fourth, the implementation of our geocoding method is 

discussed as well as its evaluation. Fifth, we further describe the traffic event description 

module and discuss the achieved results. Lastly, an overview is provided of the built 

SocialTerraffic system. 

 

4.1 Data Collection 

4.1.1 Collection Timespan Overview 

Before discussing each data collection approach for Twitter, Waze and TomTom data, an 

overview is provided for the different collection timespans. Figure 4-1, provides a visual 

overview of the collected data sets. A short explanation for each data set is provided below: 

 Twitter data was collected over the period from 28-10-2017 to 30-10-201725, for the 

purpose of creating a keyword set creation approach. This keyword set creation approach 

was then used to collect Twitter data over the period from 05-12-2017 to 17-02-2017. Due 

to some technical issues, we were not able to collect the data over the period from 04-02-

2018 to 05-02-2018. Approximately half of this data set was used to train our machine 

learning classifier, based on the data over the period from 05-12-2017 to 06-01-2018.  

 Waze data was collected over the period from 05-12-2017 to 06-02-2018, yet as the first 

day and last day of this period were missing parts of the data, we only focus on the period 

from 06-12-2017 to 05-02-2018.  

 TomTom data was collected over the period from 05-12-2017 to 14-02-2018. However, 

due to some technical issues regarding the TomTom Traffic Incident API, there were 

some days that we were not able to receive TomTom event reports for the complete day 

or did not receive any reports at all. This caused us to omit the following days: 05-12-

2017, 11-12-2017 to 08-01-2018, 30-01-2018 to 11-02-2018.  

 

We want to state that we would have preferred a more complete Waze and TomTom data set. 

However, we could not repeat our experiment for all three data sources as Waze unexpectedly 

changed their policies in February 2018, causing the feed to no longer work. 

                                                
25 Note that when we mention a date range from date 1 to date 2, it means that date 2 is inclusive. 

Figure 4-1: Timespan of the collected data sets. 
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4.1.2 Twitter Data Collection 

The Twitter data collection module was written in the Python326 (v. 3.6.1) language. We used 

the Python library Tweepy27 (v. 3.5.0) to access the Twitter REST API. We set up an 

asynchronous crawling approach which allowed us to use multiple Twitter accounts to crawl 

Twitter without missing out on data due to Twitter limitations (180 calls per 15 minutes per 

account). Based on the defined keyword set creation approach as described in Section 3.1.1, 

we implemented all necessary steps to get an optimal Twitter data collection approach. The 

approach was applied on a three day period from 28-10-17 to 30-10-17. First, a Dutch 

language, retweet and replies filter was applied. We then used an initial keyword set based 

on the keywords used in the thesis by Dokter (2015), combined with the road numbers from 

the Dutch road network, which resulted in a dataset of 16,563 tweets over a three day period. 

Second, a suspicious term filter and bot filter was added, which brought the set back to 7430 

tweets. Third, we applied a URL filter, bringing back the set to 2285 tweets. Last, we 

manually annotated each tweet in this set as TE or NTE and created by real road user 

accounts (RRU), as well as TE or NTE but created by non-real road user accounts (NRRU). 

This way we found 94 TE RRU tweets and 57 TE NRRU tweets.  

 

Next, we identified keywords with their positive and negative correlation towards TE tweets. 

Table 4-1 shows the top 20 positive tokens and their bigrams based on the first iteration, 

while, Table 4-2 shows the top 20 negative tokens. Note that tokens from the road number 

list (e.g., A10, N56, s5) have been replaced with the token “ROADNAME”. These results 

immediately show the difficulty of automating the positive keyword selection process, as the 

ambiguity of words and the appearance of them outside of the traffic domain plays a major 

factor. Take, for example, the token “file” (EN: traffic jam), which can relate to a traffic jam 

but also to the English word “file”. This gets even worse when trying to capture negative 

keywords, as even though they do not appear in any TE tweet within this data collection 

timeframe that does not mean they will never appear in TE tweets. Filtering out tweets based 

on negative keywords is therefore too rigorous and not integrated. Take for example the 

keyword “spits” (rush hour), which is obviously traffic related but did not appear in any TE 

tweet within this collection time range. 

  

                                                
26 https://www.python.org/ 
27 http://www.tweepy.org/ 
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Token # TE 

Created by 

RRU 

# NTE Created 

by RRU 

# TE Created 

by NRRU 

# NTE Created 

by NRRU 

Relation 

#ROADNAME 44 25 4 65 67.69 

ROADNAME 35 258 39 254 13.78 

@VID 13 10 1 22 59.09 

FILE 12 158 2 168 7.14 

ONGEVAL 10 14 7 17 58.82 

RICHTING 9 21 2 28 32.14 

#FILE 8 16 0 24 33.33 

RIJSTROOK 7 3 0 10 70.00 

RWS_VERKEER 6 4 0 10 60.00 

@ 

RWS_VERKEER 

6 4 0 10 60.00 

WEER 6 105 3 108 5.56 

AANRIJDING 6 43 5 44 13.64 

WEG 6 52 1 57 10.53 

@RIJKSWATERS

TAAT 

6 11 0 17 35.29 

LETSEL 5 9 6 8 62.50 

@MELDKAMERV

ID 

4 2 0 6 66.67 

AFGESLOTEN 4 5 2 7 57.14 

SNELWEG 3 7 0 10 30.00 

THV 3 2 1 4 75.00 

Table 4-1: Top 20 positive tokens in iteration 1 

 

 

 

 

 

Token # TE Related by RRU # NTE Related by RRU # TE Related by NRRU # NTE Related by 

NRRU 
SPITS 0 270 0 270 

BRUG 0 199 0 199 

' 0 79 0 79 

ECHT 0 59 0 59 

10 KM 0 56 0 56 

😂 0 46 0 46 

5 KM 0 44 1 43 

KM H 0 31 9 22 

JAAR 0 30 0 30 

ZIEN 0 29 0 29 

DAG 0 29 0 29 

LT 0 29 0 29 

8 0 28 3 25 

TREIN 0 27 0 27 

WIND 0 27 8 19 

50 0 26 0 26 

GING 0 25 0 25 

MOOIE 0 25 0 25 

VIND 0 25 0 25 

BETER 0 25 0 25 

Table 4-2: Top 20 negative tokens in iteration 1 
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Figure 4-2: Positive co-occurrence between tokens in iteration 1 

Besides single keywords, we tried to capture keywords that co-occur within the same tweet 

to increase the collection of TE tweets. Figure 4-2, shows the top 22 tokens based on their co-

occurrence within TE tweets. This shows for example, how traffic tokens often occur together 

with road numbers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the gained results we updated our positive keyword list and NRRU account list. 

Eventually, the third and last iteration provided us with a set of 1861 tweets, containing 138 

TE RRU tweets and 24 TE NRRU tweets. A fourth iteration was performed but did not 

provide any new positive keywords to improve the collection approach. When evaluating this 

approach we found that our initial iteration contained 2285 tweets from which 4.11% TE 

RRU and 2.49% TE NRRU. The last iteration contained 1861 tweets from which 7.42% TE 

RRU and 1.29% TE NRRU. By applying this approach we significantly increased the 

collection of TE tweets with 80.54%, while reducing NRRU TE tweets with 48.19%. Based on 

this iterative approach the following lists have been formed, and were used in our final 

Twitter data collection approach:  

 

Positive keyword set (in combination with a road numbers list): 

 

 

 

 

 

['VID', 'RIJSTROOK', 'FILE', '@RIJKSWATERSTAAT', 'ONGEVAL', 'THV', '@RWS_VERKEER', 

'@MELDKAMERVID', 'ONGELUK', 'VRACHTWAGEN', 'AFRIT', 'VERKEER', 'ASFALT','LETSEL', 

'WEGDEK', 'PECHGEVAL', 'AANRIJDING', 'VLUCHTSTROOK', 'PECH', 'BERGER', 

'SPITSSTROOK','RWS', 'RIJSTROKEN', 'AFSLAG', 'BERM', '@ANWBVERKEER', 'TANKSTATION', 

'SNELHEID', 'TUNNEL', 'KRUISING, AANRIJDING, AUTO, AUTO’S] 
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Suspicious terms set, used to filter non-real road user accounts: 

 
['FILE', 'VERKEER', 'NEWS', 'NWS', 'NIEUWS', 'WEER', '112', 'HEADLINE', 'P2000', 'NL', 'FLITS', 'P2K', 

'TV', 'RADIO', 'PROVINCIE', 'OMROEP', 'DAGBLAD', 'WEEKBLAD', 'ACTUEEL', 'GEMEENTE', 'MEDIA', 

'HOLLAND', 'NOORD', 'ZUID', 'OOST', 'WEST', 'VANDAAG', 'STUDIO', 'AUTO', 'METEO', 'BRUG', 

'ALARM', 'BRAND', 'AMBULANCE', 'BRANDWEER', 'VID', 'MELDKAMERVID', 'POLITIE', 'BOT', 'ANWB', 

'HV', 'WAZE','TRAFFIC', 'ALERT', 'BRW', 'COP', 'SPOTTER', 'P2', 'NU', 'REDACTIE', 'DAGBLAD', 'PD', 

'MEDIA', 'FM','STANDAARD', 'POLITIE', 'TRAUMA', 'HELI', 'ACTUEEL', 'INFO', 'STUDIO', 'REGIO', 

'GEMEENTE', 'STAD', 'COURANT', 'PERS', 'OMROEP', 'VANDAAG', 'KRANT', 'ACTUEEL', 'ALARM', 

'BRUG', 'CAR', 'AUTO'] 

 

Non-real road user accounts list, consisting of 454 account names (only 20 examples are 

shown). 

 
["Verkeerscentrum", "NMBS", "VGSpijkenisse", "ANWBeuropa", "CalabotsUtrecht", "hvalmere", 

"ANWBeuropa", "WazeTrafficGENT", "LL3", "lingewaalalert", "BrwKrabbendijke", "KristalITdotcom", 

"Tom_zulu10", "brug_open", "_Veluwe", "zwolle", "RijswijksBelang", "middelburg", "cop_spotter", "_kampen", 

"hvzeeland"] 
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Figure 4-3: Tweets collected with the Twitter data collection 

approach 

4.1.2.1 Twitter Data Collection Results 

With this traffic data collection approach, we collected Twitter data over the period from 05-

12-2017 to 17-02-2018, as visualized in Figure 4-3. Based on this visualization we get the 

impression that there is an even daily collection of tweets, with two extreme outliers at 11-

12-2017 and 18-01-2018. Both outliers are most likely caused by of extreme weather 

conditions during these dates. On 11-12-2017 the Royal Netherlands Meteorological Institute 

(KNMI) issued a code red for heavy snowfall28. On 18-01-2018 the KNMI issued a code red 

for a heavy storm (in top 10 storms within last 50 years)29. Due to some technical issues, we 

were not able to collect the data for 04-02-2018 and 05-02-2018. The quantitative results can 

be found in Table 4-3. 

 

  

 

 

 

 

 

 

 

 

 

Twitter Data Collection over 05-12-2017 – 17-02-2018 
Metric Total # of tweets 

Mean per day 873 

Median per day 837 

Std. Dev. Per day 349 

Min. per day 470 

Max. per day 2817 

Total 63,727 
Table 4-3: Twitter Data Collection Metrics 05-12-2017 to 17-02-2018 

 

 

 

                                                
28 https://www.knmi.nl/kennis-en-datacentrum/achtergrond/code-rood-voor-zware-sneeuw-op-11-

december-2017 
29 https://www.knmi.nl/kennis-en-datacentrum/achtergrond/code-rood-voor-zeer-zware-windstoten-

op-18-januari-2018 
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We manually labeled the tweets collected between 05-12-2017 and 06-01-2018 as traffic 

event-related or not traffic event-related, as depicted in Figure 4-4. The quantitative results 

belonging to this set can be found in Table 4-4. This data clearly shows how small the 

percentage of TE tweets is that we have to work with, as TE tweets on average only account 

for 6.71% of all the collected tweets per day. 

 

 

 

 

 

 

 

Twitter Data Collection over 05-12-2017 – 06-01-2018 
Metric # of NTE related tweets # of TE related tweets Total # of tweets 

Mean per day 839 54 893 

Median per day 782 41 840 

Std. Dev. Per day 349 56 403 

Min. per day 457 8 470 

Max. per day 2509 308 2817 

Total 27,683 1769 29,452 
Table 4-4: Twitter Data Collection Metrics 05-12-2017 to 06-01-2018 

 

Figure 4-4: Tweets collected with the Twitter data collection approach, labeled traffic event-related (TE) or non-traffic event-related 
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4.1.3 Waze Data Collection 

The Waze data collection module was written in the Java30 (v.1.8.0) language. We set up an 

asynchronous crawling approach which allowed us to send multiple calls to the Waze server 

(web-based live map) at the same time. A call consists of the following structure:  

 

https://www.waze.com/row-rtserver/web/TGeoRSS?left=" + bbox[0] + "&right=" + bbox[2] + 

"&bottom=" + bbox[1] + "&top=" + bbox[3] 

 

Here the left, right, bottom, and top values represent the four corners of the provided 

bounding box.  

By specifying a geo bounding box all Waze live map data within that region can be extracted, 

up to a limit of 200 “alerts” (traffic events) and 100 “jams” (extension of specific types of traffic 

events). We start our approach by making a call to the Waze server by providing the following 

bounding box representing the Netherlands: 

 

left   = "3.31497114423"; 

right   = "7.09205325687"; 

top   = "53.5104033474"; 

bottom  = "50.803721015"; 

 

Because of this limitation, the initial bounding box covering the Netherlands is automatically 

split into four smaller bounding boxes until we collect less than 200 alerts and less than 100 

jams. This way we ensured that all Waze data in the Netherlands was collected. As this 

bounding box also intersects Germany and Belgium an additional filter is applied on the data 

to ensure the “country” field of a Waze report equals the Netherlands. As the Waze Live Map 

is updated every two minutes, our method downloads the JSON files in two-minute intervals, 

and stores them in a MongoDB31 document database.   

 

We collected Waze data over a period from 05-12-2017 to 06-02-2018, resulting in 479,703 

unique Waze alerts. Figure 4-5 shows how the Waze alerts are distributed over the period 

from 06-12-2017 to 05-02-2018 (the data from 05-12 and 06-02 has been left out as it 

contained only part of the day). We only focus on Waze alerts, as jams do not provide any 

significant new information. Additionally, we only focus on the first appearance of unique 

Waze alerts, and neglect any appearances of the same alert thereafter. This because, Waze 

alerts (from here on out referred to as Waze event reports) can have variable lifespans, e.g., 

an event report with the category “accident” can remain active for 30 minutes while an event 

report with the category “road closed” can remain active for multiple days. Furthermore, 

when looking at the distribution of the Waze event reports in Figure 4-5, it is clearly visible 

how the number of reports significantly decreases during the weekends (e.g., 13-01/14-01 and 

20-01/21-01). Also, a significant decrease in reports is noticeable in the period from 23-12-

2017 to 06-02-2018, most likely due to the Christmas break32. The quantitative results 

belonging to this set can be found in Table 4-5. 

  

                                                
30 http://www.oracle.com/technetwork/java/javase/overview/index.html 
31 https://www.mongodb.com/ 
32 https://www.rijksoverheid.nl/onderwerpen/schoolvakanties/vraag-en-antwoord/wanneer-zijn-de-

schoolvakanties-in-2017-2018 
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Metric Number of Waze Event Reports 

Mean of Waze event reports per day 7482 

Median of Waze event reports per day 8362 

Std. Dev. of Waze event reports per day 4905 

Min. of Waze event reports per day 1179 

Max. of Waze event reports per day 17,189 

Total Number of Waze event reports over 62 days 463,891 
Table 4-5: Waze Event Report Metrics 06-12-17 to 05-02-18 

Even though Waze is a community-based platform based on data from real people, there is 

nothing that prevents so-called non-real road-users from posting Waze event reports. As our 

main focus lies on geosocial data from real road-users, we analyzed the top users of our 

dataset, as shown in Table 4-6. Notice how 29.29% of the Waze event reports are posted by 

anonymous (N/A) users, followed by the user “Wegstatus.nl”, with 12.54%. Even though other 

users also show high activity rates compared to the mean overall Waze event reports, we 

could not find any indication that these were non-real road-users. The user “Wegstatus.nl” 

however matches the website of the same name33, which is a website that uses multiple data 

sources (e.g., NDW34, NBd35, LiveP2000.nl36, and Buienradar37) to inform users on traffic 

situations. Therefore, we decided not to include Waze event reports from this user. 

  

                                                
33 https://wegstatus.nl 
34 www.ndw.nu 
35 https://www.bewegwijzeringsdienst.nl/ 
36 http://livep2000.nl/ 
37 https://www.buienradar.nl/ 
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User Number of 

Waze 

Event 

Reports 

Percentage 

of Total 

Number of 

Waze Event 

Reports 

Metric Number of Waze 

Event Reports 

N/A 140315 29.29% Mean per User 13.67 

Wegstatus.nl 60089 12.54% Median per User 3 

Rho65536 3363 0.70% Std dev per User 815.59 

RiCo4Cool 1056 0.22% Min per User 1 

marcogpw 795 0.17% Max per User 140315 

martiensch 582 0.12% 

DengKao 562 0.12% 

RunningJohnny 549 0.11% 

choco-nl 515 0.11% 

ArTsLeOpS 428 0.09% 

Table 4-6: Waze User Metrics 06-12-17 to 05-02-18 

As Waze users are able to link their Twitter account to their Waze account, we decided to 

also collect all Dutch Waze related data on Twitter. Automated Waze tweets contain either 

information on traffic events posted by the user or a summary of the car ride of the user. Data 

was collected over the same period as the Waze collection. As previously stated in Section 

3.1.2, we collect Waze data from Twitter based on the format of Traffic Event tweets: 

 

Traffic Event:  “Hielp chauffeurs in de omgeving door het melden van wegwerkzaamheden 
op de N209 - Nieuwe Hoefweg, Bleiswijk via @waze - social navigation.”  

 

This way we were able to collect 266 tweets from 66 unique Waze users that have their 

Twitter account linked to their Waze account, over the period from 21-12-2017 to 06-02-2018. 

We compared the creation date (rounded to seconds) of each of the collected tweets with the 

creation date of Waze event reports in that same period. This because Waze automatically 

almost instantly posts a tweet based on the Waze event report created by the user. However, 

as there can be multiple Waze event reports with the same date, a second comparison is 

performed based on the equality of the Twitter username, Twitter screen name or street 

name in the tweet text, with the Waze user or Waze street name. This resulted in a match 

for 45 tweets from 16 unique Waze users, meaning only 0.016% of the Waze event reports in 

that period could be linked to a tweet. Which means that we were able to link 0.055% of the 

Waze users in that period to their Twitter account.  A selection of the results is shown in 

Table 4-7. 
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Figure 4-6: Total Number of Waze Event Reports by Category over 24 Hours 

 

 

Now that we have gained an insight into the Waze event report distribution per day, we 

examine the distribution of Waze event reports and their categories over a 24-hour period. 

This could give us valuable insights into the relation of Waze alerts and traffic patterns that 

are bounded to dayparts, as well as the difference in distribution to our other geosocial data 

sources. This is useful, as it shows how Waze can mitigate the weaknesses of and/or support 

the reports of other geosocial data sources. Figure 4-6 depicts the average distribution of the 

main categories of Waze event reports of the entire data set plotted on a 24-hour scale. Notice 

how the number of Waze event reports reduces in the nighttime hours. The HAZARD 

category is the dominant category over the entire day. Whereas the JAM category clearly has 

its peaks during the rush hour periods. Events with the category ACCIDENT, POLICE, and 

ROAD_CLOSED, show a more consistent pattern between 6 am and 23 pm. 

 

Next, we look at how Waze event reports are distributed by category and subcategory per 

day. Table 4-8 on the next page, shows how Waze event reports are dominated by the JAM 
category (63.42%), and HAZARD category (29.44%). Also, note how the 

HAZARD_ON_SHOULDER_CAR_STOPPED category is highly representative in the 

HAZARD category, accounting for 68.27% of the HAZARD typed event reports. Another 

remarkable finding is that the bulk of ROAD_CLOSED typed event reports are of the 

category ROAD_CLOSED_EVENT, describing road closures for special events such as sport 

matches.  

 

Twitter Name Twitter Screen 

Name 

Twitter Text Waze 

Name 

Waze 

Street 

Waze Date 

Edwin edwin21 Hielp chauffeurs in de omgeving door het 

melden van een file op de A12 - E35 via 

@waze - social navigation. 

https://t.co/2gAdTug3ej 

edwin21 A12 - E35 21-12-17 6:53 

Mike van 

Vessem 

mikevanvessem Hielp chauffeurs in de omgeving door het 

melden van wegwerkzaamheden op de N209 

- Nieuwe Hoefweg, Bleiswijk via @waze - 

social navigation... 

Mike-vv N209 - 

Nieuwe 

Hoefweg 

21-12-17 

11:48 

Arjan Vogelaar ArjanVogelaar Hielp chauffeurs in de omgeving door het 

melden van een stilstaand voertuig op de 

vluchtstrook op de A4 via @waze - social 

navigation. ht... 

ArjanVogela

ar 

A4 29-12-17 5:42 

Table 4-7: Example of Twitter Accounts linked to Waze Accounts 
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Main Category Subcategory Mean Median Std dev Min Max Total Percentage 

ACCIDENT ACCIDENT_MAJOR 21.29 19 11.12 3 65 1320 17.11% 

 ACCIDENT_MINOR 70.95 75 44.52 9 162 4399 57.03% 

 N/A 32.18 31 16.39 8 92 1995 25.86% 

ACCIDENT 

Total  124.42 133 69.41 28 303 7714 1.90% 

HAZARD HAZARD_ON_ROAD 3.45 3 2.66 0 12 214 0.18% 

 HAZARD_ON_ROAD_CAR_STOPPED 150.26 165.5 72.60 28 309 9316 7.80% 

 HAZARD_ON_ROAD_CONSTRUCTION 160.87 171 94.18 30 347 9974 8.35% 

 HAZARD_ON_ROAD_ICE 34.03 1.5 121.51 0 727 2110 1.77% 

 HAZARD_ON_ROAD_LANE_CLOSED 0.06 0 0.25 0 1 4 0.00% 

 HAZARD_ON_ROAD_OBJECT 43.03 35.5 55.68 7 453 2668 2.23% 

 HAZARD_ON_ROAD_POT_HOLE 30.11 30 12.67 4 60 1867 1.56% 

 HAZARD_ON_ROAD_ROAD_KILL 5.69 5.5 2.68 1 13 353 0.30% 

 HAZARD_ON_ROAD_TRAFFIC_LIGHT_FAULT 4.24 3 4.87 0 31 263 0.22% 

 HAZARD_ON_SHOULDER 14.32 7 16.90 0 65 888 0.74% 

 HAZARD_ON_SHOULDER_ANIMALS 4.18 4 2.35 0 13 259 0.22% 

 HAZARD_ON_SHOULDER_CAR_STOPPED 1314.84 1471 480.91 478 2218 81520 68.27% 

 HAZARD_ON_SHOULDER_MISSING_SIGN 7.87 7 5.21 1 31 488 0.41% 

 HAZARD_WEATHER 2.77 1 4.45 0 24 172 0.14% 

 HAZARD_WEATHER_FLOOD 5.31 2 7.59 0 33 329 0.28% 

 HAZARD_WEATHER_FOG 89.85 2 276.16 0 1419 5571 4.67% 

 HAZARD_WEATHER_HAIL 23.56 1 69.63 0 468 1461 1.22% 

 HAZARD_WEATHER_HEAVY_SNOW 0.19 0 0.62 0 3 12 0.01% 

 HAZARD_WEATHER_MONSOON 0.02 0 0.13 0 1 1 0.00% 

 N/A 31.26 27.5 19.49 8 150 1938 1.62% 

HAZARD Total  1925.94 2048 819.63 655 3628 119408 29.44% 

JAM JAM_HEAVY_TRAFFIC 1998.69 1809 1795.72 67 6196 123919 48.17% 

 JAM_MODERATE_TRAFFIC 1002.98 1021 823.91 29 2554 62185 24.17% 

 JAM_STAND_STILL_TRAFFIC 866.76 785.5 777.28 32 2915 53739 20.89% 

 N/A 281.06 241 223.81 25 789 17426 6.77% 

JAM Total  4149.50 3856.5 3602.06 185 12444 257269 63.42% 

POLICE N/A 57.06 58 17.33 20 102 3538 28.61% 

 POLICE_HIDING 48.32 50 17.68 16 89 2996 24.22% 

 POLICE_VISIBLE 94.10 90.5 33.77 38 161 5834 47.17% 

POLICE Total  199.48 199 64.51 77 317 12368 3.05% 

ROAD_CLOSED N/A 1.27 1 1.50 0 7 79 0.89% 

 ROAD_CLOSED_CONSTRUCTION 4.40 4 3.33 0 14 273 3.07% 

 ROAD_CLOSED_EVENT 137.58 110 188.14 13 1458 8530 95.77% 

 ROAD_CLOSED_HAZARD 0.40 0 0.79 0 4 25 0.28% 

ROAD_CLOSED 

Total  143.66 117 189.28 13 1464 8907 2.20% 

Table 4-8: Waze Event Report Distribution by Category per Day 
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Next, we take a look at what additional information Waze could offer us to help towards the 

description of traffic events. We found that only 0.06% of all Waze event reports contained 

one or multiple images. Additionally, only 2.37% of all Waze event reports contained an 

additional user created description, mostly consisting of concise keywords. Examples of such 

descriptions are: werkzaamheden (EN: roadworks), renovatie en restauratie (EN: renovation 

and restauration), water en zand op de weg (EN: water and sand on the road), ongeval (EN: 

accident), gladheid (EN: slipperiness), zwaan op de middenberm (EN: swan on traffic 

separator), weg dicht vallende taken (EN: road closed falling branches).  

 

4.1.4 TomTom Data Collection 

The TomTom data collection module was written in the Java (v.1.8.0) language. We set up a 

crawling approach which allowed us to send calls to the TomTom Traffic Incident API every 

2 minutes. The TomTom Traffic Incident API is updated every 2 minutes, with the latest 

information about traffic jams and traffic related incidents. A call is structured as follows:  

 

minX    = "3.31497114423"; 

maxX    = "7.09205325687"; 

maxY    = "53.5104033474"; 

minY    = "50.803721015"; 

baseURL   = "https://api.tomtom.com/traffic/services/"; 

versionNum   = "4"; 

style    = "s3"; 

zoom    = "11"; 

trafficModelID   = "-1"; 

format    = "json"; 

key    = "?key=zhW9XMcRTCCJuAjfflYGFZwPOWXVsnrs"; 

language   = "&language=en"; 

projection   = "&projection=EPSG4326"; 

geometries   = "&geometries=original"; 

expandCluster   = "&expandCluster=true"; 

originalPos   = "&originalPosition=true"; 

 

request    = baseURL + versionNum + "/incidentDetails/" + style + "/" + minY + "," + minX 

+ "," + maxY + "," + maxX + "/" + zoom + "/" + trafficModelID + "/" + format + key + language + projection 

+ geometries + expandCluster + originalPos; 

 

As the used bounding box also intersects Germany and Belgium an additional filter is applied 

to the data. Unlike Waze event reports, the TomTom event reports do not include a “country” 

tag, therefore the “ID” tag (e.g., “europe_HD_NL_TTL116755785625744”, or 

“europe_HD_BE_TTL116755785625745”) is used by applying a filter on the “NL” part. The 

retrieved reports have been stored in a MongoDB document database.   

 

We collected TomTom data over a period from 05-12-2017 to 14-02-2018, resulting in 90,008 

unique TomTom event reports. However, due to some technical issues regarding the TomTom 

Traffic Incident API, there were some days that we were not able to receive TomTom event 

reports for the complete day or did not receive any reports at all. We therefore only look at 

the days where we were able to collect TomTom data for the entirety of the day. This, in order 

to prevent making an incorrect analysis due to the skewness in our data set. Figure 4-7 shows 

how the TomTom event reports are distributed over the period from 06-12-2017 to 14-02-
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2018. Note, that just as with the Waze event reports, we only focus on the first appearance 

of unique TomTom event reports, and neglect any appearances of the same report thereafter. 

When looking at the distribution of the TomTom even reports, it is clearly visible how the 

number of reports significantly decreases during the weekends (e.g., 13-01/14-01 and 20-

01/21-01). Additionally, one clear outlier is visible on the 10th of December, possibly caused 

due to extremely bad weather conditions on that day38. Table 4-9 shows the additional metrics 

for the TomTom event report collection. 

 

 

Figure 4-7: TomTom Event Report Collection 06-12-17 to 14-02-18 

 

Metric Number of TomTom Event Reports 

Mean of TomTom Event Reports per day 2544 

Median of TomTom Event Reports per day 2071 

Std. Dev. of TomTom Event Reports per day 2529 

Min. of TomTom Event Reports per day 166 

Max. of TomTom Event Reports per day 13,249 

Total Number TomTom Event Reports over 29 days 73,764 
Table 4-9: TomTom Event Report Collection Metrics 06-12-17 to 14-02-18 

  

                                                
38 http://www.knmi.nl/kennis-en-datacentrum/achtergrond/Code-oranje-voor-zware-sneeuw-op-10-

december-2017 
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Main Category 
Subcategory 

(Description) 
Mean Median 

Std. 

Dev. 
Min Max Total Percentage 

Accident accident 17.83 14 11.79 0 43 517 65.03% 

 incident 1.97 1 2.79 0 14 57 7.17% 

 
accident involving heavy 

lorry 
1.34 1 2.22 0 11 39 4.91% 

 overturned heavy lorry 0.93 0 4.74 0 26 27 3.40% 

 accident. stationary traffic 0.79 0 1.13 0 5 23 2.89% 

 incident. stationary traffic 0.38 0 0.67 0 2 11 1.38% 

 vehicle fire 0.38 0 0.93 0 4 11 1.38% 

 accident. queuing traffic 0.34 0 0.66 0 2 10 1.26% 

 
accident involving heavy 

lorry. stationary traffic 
0.28 0 0.74 0 3 8 1.01% 

 accident. slow traffic 0.24 0 0.57 0 2 7 0.88% 

Accident Total  27.41 24 19.96 4 96 795 1.08% 

Dangerous 

Conditions 
obstruction on the road 7.66 8 4.30 1 18 222 30.88% 

 broken down heavy lorry 4.86 4 4.38 0 16 141 19.61% 

 broken down vehicle 4.79 4 3.51 0 15 139 19.33% 

 rescue and recovery work 2.59 1 2.95 0 12 75 10.43% 

 emergency vehicle 1.14 0 2.16 0 7 33 4.59% 

 spillage on the road 0.83 1 0.95 0 3 24 3.34% 

 clearance work 0.72 0 1.20 0 4 21 2.92% 

 fallen trees 0.45 0 2.19 0 12 13 1.81% 

 people on roadway 0.45 0 0.72 0 3 13 1.81% 

 animals on the road 0.28 0 0.45 0 1 8 1.11% 

Dangerous 

Conditions Total 
 24.79 25 13.81 2 53 719 0.97% 

Rain heavy rain 83.69 0 205.11 0 994 2427 99.84% 

 
heavy rain. obstruction on 

the road 0.10 0 0.55 0 3 3 0.12% 

 
emergency vehicle. heavy 

rain 0.03 0 0.18 0 1 1 0.04% 

Rain Total  83.83 0 205.73 0 998 2431 3.30% 

Ice sleet 120.52 0 444.10 0 2374 3495 36.22% 

 snow on the road 113.07 0 457.97 0 2501 3279 33.98% 

 heavy snowfall 97.93 0 518.20 0 2840 2840 29.43% 

 snow on the road. sleet 0.38 0 1.65 0 9 11 0.11% 

 
snow on the road. heavy 

rain 0.24 0 1.28 0 7 7 0.07% 

 sleet. snow on the road 0.17 0 0.75 0 4 5 0.05% 

 
heavy snowfall. snow on the 

road 0.14 0 0.73 0 4 4 0.04% 

 
snow on the road. heavy 

snowfall 0.10 0 0.55 0 3 3 0.03% 

 
heavy rain. snow on the 

road 0.07 0 0.25 0 1 2 0.02% 

 sleet. heavy rain 0.07 0 0.36 0 2 2 0.02% 
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Ice Total  332.76 0 1414.12 0 7742 9650 13.08% 

Jam stationary traffic 858.34 773 541.15 98 2301 24892 41.37% 

 slow traffic 648.21 539 714.43 17 3537 18798 31.24% 

 queuing traffic 521.79 506 321.83 32 1316 15132 25.15% 

 
snow on the road. slow 

traffic 
6.41 0 30.28 0 166 186 0.31% 

 slow traffic. queuing traffic 4.83 4 4.68 0 17 140 0.23% 

 
slow traffic. snow on the 

road 
3.76 0 17.18 0 94 109 0.18% 

 
slow traffic. stationary 

traffic 
3.31 2 3.78 0 14 96 0.16% 

 
queuing traffic. stationary 

traffic 
3.10 2 3.58 0 14 90 0.15% 

 queuing traffic. slow traffic 2.34 2 2.37 0 8 68 0.11% 

 heavy rain. slow traffic 2.14 0 6.46 0 34 62 0.10% 

Jam Total  2074.79 1910 1418.82 156 5171 60169 81.57% 

Table 4-10: TomTom Event Report Distribution by Category per Day 

 

Table 4-10, shows how TomTom event reports are distributed by category and subcategory 

per day. The official TomTom documentation does not use the terms category and 

subcategory. However, the reports contain an “icon category id”, which we use as a main 

category indicator. Additionally, reports contain a “description” and “cause” tag, which are 

part of a set of 443 incident categories (note that these can be used interchangeably as 

“description” and “cause”), as explained in Section 3.1.3. We found that 100% of the TomTom 

event reports contain a “description”, whereas only 7.58% of the TomTom event reports 

contain a “cause”. We, therefore, decided to use the description as a subcategory, as is shown 

in Table 4-10. This table contains the main categories, with the corresponding top 10 

subcategories (note that the Rain category only contained 3 subcategories). Notice how the 

Jam category is predominant over the other categories accounting for 81.57% of the TomTom 

event reports. When looking at each category separately it stands out that the most occurring 

subcategories have very general descriptions, e.g., accident (65.03%), obstruction on the road 

(30.88%), sleet (36.22%), and stationary traffic (41.37%).  

 

Now that we have gained an insight into the TomTom event report distribution per day, we 

examine the distribution of TomTom event reports and their main categories over a 24-hour 

period. This could give us valuable insights into the relation of TomTom event reports that 

are bounded to dayparts, as well as the difference in distribution to our other geosocial data 

sources. Figure 4-8 depicts the average distribution of the main categories of TomTom event 

reports of the entire data set plotted on a 24-hour scale. Notice how the number of all TomTom 

event reports, except for those with the category Ice and Jam reduce in the nighttime hours. 

The jam category is the dominant category over the entire day, with peaks during the rush 

hour periods. Events with the Accident and Dangerous Conditions category, show a more 

consistent pattern between 6 am and 20 pm. 
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Figure 4-8: Total Number of TomTom Event Reports by Category over 24 Hours 
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4.2 Rule-based Traffic Domain Annotator 

In order to extract relevant traffic domain information from the collected tweet text data, we 

created a rule-based traffic domain annotator written in the Python3 (v. 3.6.1) language. We 

used the Python library Pyparsing39 (v. 2.1.4) as an alternative approach to creating and 

executing simple grammars. With the help of this annotator, we annotated our entire tweet 

collection including TE and NTE tweets. Before annotating the entire tweet set, we ran 

multiple tests on a random sample of 100 tweets of our manually annotated TE tweet set. 

This way we were able to debug and improve our methods for annotating tweet tokens into 

27 unique traffic related categories. Next, we evaluated the annotator based on a randomly 

selected sample of 200 annotated traffic event-related tweets, not including the tweets used 

for testing. During the evaluation, we noticed that two tweets were not located in the 

Netherlands (one in Belgium, and one in South-Africa) and were therefore removed from this 

analysis. The annotator was able to annotate a total of 1641 token sets, from which 91.77% 

proved to be annotated with the correct category, whereas 6.09% was categorized incorrectly 

and 2.13% proved to be too ambiguous to the evaluator to make a clear judgement on. Table 

4-11, gives a complete overview of the statistics on the correctness of the evaluation.  

 

 

 

However, as the data is imbalanced, only taking into account these numbers could be 

misleading. Therefore, we additionally want to get a clear view of the way the annotator 

categorizes tweets by category. Table 4-12 is a confusion matrix displaying the results of the 

annotator evaluation. The true positives on the diagonal are highlighted in green. The 

average precision over all categories is 0.970, the average recall is 0.828, the average f1-score 

is 0.874, and the average accuracy is 0.964. The confusion matrix further shows how the 

categories event_hazard_object (0.444), event_hazard_roadwork (0.375), 

event_hazard_violation (0.462) and event_traffic_jam (0.803) negatively deviate from the 

average f1-score.  

  

 

 

                                                
39 http://pyparsing.wikispaces.com/ 

Metric Number of 

Incorrectly 

Categorized 

Token Sets 

Number of 

Unsurely 

Categorized 

Token Sets 

Number of 

Correctly 

Categorized 

Token Sets 

Total 

Number of 

Categorized 

Token Sets 

Mean per Tweet 1.32 1.17 7.64 8.33 

Median per Tweet 1 1 7 8 

Std. Dev. Per Tweet 0.65 0.37 3.41 3.53 

Min. Per Tweet 1 1 1 2 

Max. per Tweet 4 2 21 21 

Total over all Tweets 100 35 1506 1641 

Percentage over all 

Tweets 6.09% 2.13% 91.77% 100.00% 

Table 4-11: Rule-based Traffic Domain Annotator Evaluation Metrics 



87 
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advice 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

event_accident 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44

event_closure 0 0 25 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28

event_enforcement 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

event_hazard_animal 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

event_hazard_object 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 7

event_hazard_road_condition 0 0 0 0 0 0 22 0 0 0 0 0 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 31

event_hazard_roadworks 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 8 0 0 0 1 0 0 1 0 0 0 0 0 0 0 13

event_hazard_stopped_vehicle 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7

event_hazard_trafficlight 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9

event_hazard_trafficsign 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

event_hazard_violation 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10

event_hazard_weather 0 0 0 0 0 0 0 0 0 0 0 0 52 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 55

event_trafficjam 0 0 0 0 0 0 0 0 0 0 0 0 0 55 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 76

media_attachment 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71

n/a 0 2 1 0 0 0 1 0 0 0 0 0 1 6 0 683 7 0 0 0 0 0 1 1 0 0 0 0 0 1 704

place_location 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 174 1 0 0 0 0 0 0 0 0 0 0 0 0 188

place_location_combination 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 62 0 0 0 0 0 0 0 0 0 0 0 0 69

place_mile_marker 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 0 0 0 0 0 0 0 9

place_road_direction 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 19 0 0 0 0 0 0 0 0 0 0 21

place_road_infrastructure 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 0 19 0 0 0 0 0 0 0 0 0 25

place_road_lane 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 27 0 0 0 0 0 0 0 0 29

place_road_section 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 26 0 0 0 0 0 0 0 27

roaduser_casualty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 10

roaduser_emergency_service 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 21 0 0 0 0 0 23

roaduser_person 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 16 0 0 0 0 18

roaduser_traffic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 4

roaduser_transport 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 11

roaduser_vehicle 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 52 0 55

timex 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 73 78

Total Predicted Category 6 40 26 6 1 2 23 3 5 7 3 3 57 61 71 785 183 65 8 20 19 27 29 12 21 16 4 11 52 75 1641

Precision 1.000 0.950 0.962 1.000 1.000 1.000 0.957 1.000 1.000 1.000 1.000 1.000 0.912 0.902 1.000 0.870 0.951 0.954 1.000 0.950 1.000 1.000 0.897 0.833 1.000 1.000 1.000 1.000 1.000 0.973 0.970

Recall 0.857 0.864 0.893 0.857 1.000 0.286 0.710 0.231 0.714 0.778 0.750 0.300 0.945 0.724 1.000 0.970 0.926 0.899 0.889 0.905 0.760 0.931 0.963 1.000 0.913 0.889 1.000 1.000 0.945 0.936 0.828

F1-Score 0.923 0.905 0.926 0.923 1.000 0.444 0.815 0.375 0.833 0.875 0.857 0.462 0.929 0.803 1.000 0.917 0.938 0.925 0.941 0.927 0.864 0.964 0.929 0.909 0.955 0.941 1.000 1.000 0.972 0.954 0.874
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Table 4-12: Rule-based Traffic Domain Annotator Confusion Matrix 
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After evaluating the annotator, we first used it to annotate the tweet set from 05-12-2017 to 

06-01-2018, as this set was going to be used to train our traffic event classifier. Table 4-13, 

shows how the annotator annotated the TE tweets over this period per day with unique 

categories. Note how the event categories event_accident, event_closure, event_weather and 

event_trafficjam have a significantly higher rate of appearance than the other event 

categories. Besides, keep in mind that a tweet can have multiple event categories of different 

types, that is why the n/a category has such a high percentage of 99.35% as a tweet almost 

always contains a token set that cannot be annotated.  

 

Category Mean Median Std dev Min Max Total Percentage 

advice 2.12 2 2.21 0 9 70 3.79% 

event_accident 9.18 7 5.66 2 21 303 16.40% 

event_closure 8.82 9 6.57 0 33 291 15.76% 

event_enforcement 0.64 0 0.73 0 2 21 1.14% 

event_hazard_animal 0.79 0 1.01 0 3 26 1.41% 

event_hazard_object 0.91 1 1.08 0 4 30 1.62% 

event_hazard_road_condition 5.27 2 8.07 0 35 174 9.42% 

event_hazard_roadwork 3.91 3 3.28 0 13 129 6.98% 

event_hazard_stopped_vehicle 2.24 1 1.94 0 6 74 4.01% 

event_hazard_trafficlight 1.58 1 1.46 0 5 52 2.82% 

event_hazard_trafficsign 0.91 1 1.22 0 4 30 1.62% 

event_hazard_violation 0.70 0 1.06 0 5 23 1.25% 

event_hazard_weather 8.67 2 18.70 0 93 286 15.48% 

event_trafficjam 12.30 10 14.85 1 84 406 21.98% 

media_attachment 23.55 19 24.81 3 126 777 42.07% 

n/a 55.61 41 58.06 10 320 1835 99.35% 

place_infrastructure_type 4.00 3 4.64 0 25 132 7.15% 

place_location 38.88 27 44.27 6 245 1283 69.46% 

place_location_combination 18.94 11 17.59 3 93 625 33.84% 

place_mile_marker 7.00 6 4.79 0 20 231 12.51% 

place_road_direction 6.27 4 8.07 0 43 207 11.21% 

place_road_lane 10.36 7 9.12 1 49 342 18.52% 

place_road_section 6.64 5 8.02 0 41 219 11.86% 

roaduser_casualty 1.79 2 1.07 0 4 59 3.19% 

roaduser_emergency_service 5.30 5 2.80 1 14 175 9.47% 

roaduser_general 3.70 2 5.11 0 26 122 6.61% 

roaduser_traffic 2.58 2 2.45 0 11 85 4.60% 

roaduser_transport 3.67 3 4.73 0 26 121 6.55% 

roaduser_vehicle 13.21 8 14.60 1 76 436 23.61% 

timex 16.33 12 19.29 3 107 539 29.18% 
Table 4-13: Annotated Twitter Collection Metrics by Category from 05-12-17 to 06-12-18 

Additionally, just as with Waze and TomTom event reports, we examined the distribution of 

tweet event reports and their main traffic event categories over a 24-hour period. Figure 4-9 

depicts the average distribution of the main categories of tweet event reports of the entire 

data set plotted on a 24-hour scale. A clear decrease in all traffic events in noticeable during 

the nighttime hours. Additionally, an increase in events is visible during the rush hour 

periods, especially for event_trafficjam typed events.  
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Figure 4-9: Total Number of Tweet Event Reports by Event Category over 24 Hours 
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4.3 Traffic Event Classification 

Supervised binary classification was applied in order to predict if a tweet is either traffic 

event-related or non-traffic event-related. This classifier was written in the Python3 (v. 3.6.1) 

language. We used the Python library Scikit-learn40 (v. 0.19.1), which provided us with the 

tools for the data analysis. Additionally, we used the Python library Imbalanced-learn41 (v. 

0.3.2), which provided us with under- and over-sampling methods. We used our manually 

labeled tweet collection set as described in Section 4.1.2, for training and validation purposes. 

The tweet collection thus consists of 29,452 tweets, from which 27,683 labeled as NTE and 

1769 labeled as TE. In order to perform machine learning on tweet text documents, the text 

content had to be turned into numerical feature vectors. Therefore, we tokenized this tweet 

set with a special Dutch-based tokenizer designed for Twitter text named Ucto42. 

Additionally, we filtered out stopwords based on a Dutch stopword list43. We did not apply 

the pre-processing technique of lemmatization as stated in our experiment design, as the 

Frog NLP lemmatizer44 proved to be too time- as well as computationally expensive for this 

study. Subsequently, we engineered a number of features based on the tweet text documents, 

namely: n-grams, tf-idf, and syntactic features. We did not use PoS tagging as stated in our 

experiment design, as one again the Frog NLP PoS tagger proved too time- as well as 

computationally expensive for this study. Subsequently, the entire tokenized tweet set was 

annotated by our rule-based traffic domain annotator (note that we did not filter on stopwords 

during this process). Based on these tokenized tweet text documents we engineered n-gram 

and tf-idf features.  

 

After defining all our features we were able to train a classifier to predict the category of a 

tweet. We started out with a Multinomial Naïve Bayes typed classifier, which is a variant 

often used for text classification purposes. We then applied a stratified 10-fold cross 

validation method on the data in order to evaluate the different combinations of features and 

to estimate how accurately the model performs in practice. Table 4-14, shows the result with 

the best performance based on a combination of average f1-score (0.94), accuracy (0.935) and 

AUC ROC score (0.873), after evaluating with different feature combinations and 

parameters. Note however the extreme differences in precision and recall between non-traffic 

event-related (0) and traffic event-related (1) tweets. One possible explanation for this 

discrepancy is the imbalance of the two datasets. Therefore, we repeated the experiment and 

tried to compensate for this imbalance by resampling the dataset with over- and under-

sampling techniques. In Table 4-15, it can be seen that with a random over sampling 

technique the precision for detecting traffic event-related tweets is reduced with 10 

percentage points while the recall is increased with 25 percentage points. Table 4-16, shows 

the result when applying a random under sampling technique. Although, here the recall is 

increased to 0.86 for TE tweets, the precision is even further decreased to 0.27.  

  

  

                                                
40 http://scikit-learn.org/stable/index.html 
41 https://github.com/Toblerity/Shapely 
42 https://github.com/proycon/python-ucto 
43 https://github.com/stopwords-iso/stopwords-nl 
44 https://languagemachines.github.io/frog/ 
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Grid Search 

Classifier MultinomialNB  

Features Tweet Text Character N-gram n-gram = (1, 4) 

 Tweet Text Annotated Word N-gram n-gram = (1, 4) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.97 0.96 0.96 27600 Actual: 0 26616 1067 

1 0.46 0.52 0.49 1769 Actual: 1 846 923 

Avg/total 0.94 0.94 0.94 29452 

Metrics 

Accuracy 0.935 

AUC_ROC 0.873 
Table 4-14: MultinomialNB based Classification Metrics 

 

Grid Search 

Resampled RandomOverSampler  

Classifier MultinomialNB  

Features Tweet Text Character N-gram n-gram = (1, 5) 

 Tweet Text Annotated tf-idf n-gram = (1, 3) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.98 0.91 0.95 27683 Actual: 0 25246 2437 

1 0.36 0.77 0.49 1769 Actual: 1 400 1369 

Avg/total 0.95 0.90 0.92 29452 

Metrics 

Accuracy 0.904 

AUC_ROC 0.921 
Table 4-15: MultinomialNB Oversampled based Classification Metrics 

 

Grid Search 

Resampled RandomUnderSampler  

Classifier MultinomialNB  

Features Tweet Text Character N-gram n-gram = (1, 5) 

 Tweet Text Word N-gram  n-gram = (1, 3) 

 Tweet Text Annotated tf-idf n-gram = (1, 3) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.99 0.85 0.91 27683 Actual: 0 23529 4154 

1 0.27 0.86 0.41 1769 Actual: 1 255 1514 

Avg/total 0.95 0.85 0.88 29452 

Metrics 

Accuracy 0.850 

AUC_ROC 0.911 
Table 4-16: MultinomialNB Undersampled based Classification Metrics  
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Besides a Naïve Bayes typed classifier, a Support Vector Machine typed classifier was used. 

Table 4-17, shows the results with the best performance with the original unbalanced 

dataset. Note how by changing the classifier type, a different feature set with different 

parameters becomes more effective compared to the best set with a Naïve Bayes typed 

classifier. An improvement in average f1-score (0.95), accuracy (0.956) and AUC ROC score 

(0.940) can be observed, compared to all results where a Naïve Bayes typed classifier was 

used. Additionally, we applied over- and under-sampling techniques as the results in Table 

4-18 and Table 4-19 show. Table 4-18, shows a slight improvement in recall score for TE 

tweets (0.61) but at the cost of a slight decrease in precision (0.62). However, the overall AUC 

ROC did improve when using random oversampling. When applying a random under-

sampling method, as shown in Table 4-19, the precision for TE tweets decreases drastically 

to 0.31, while the recall improves to a score of 0.88. Also, the average f1-score (0.90), and 

accuracy (0.874) are impaired. 
 

Grid Search 

Classifier LinearSVM  

Features Tweet Text Character N-gram n-gram = (1, 6) 

 Tweet Text Annotated Word N-gram n-gram = (1, 3) 

 Tweet Text Annotated tf-idf n-gram = (1, 3) 

 Tweet Text Word N-gram  n-gram = (1, 2) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.97 0.98 0.98 27683 Actual: 0 27124 559 

1 0.65 0.58 0.61 1769 Actual: 1 746 1023 

Avg/total 0.95 0.96 0.95 29452 

Metrics 

Accuracy 0.956 

AUC_ROC 0.940 
Table 4-17: LinearSVM based Classification Metrics 

 

Grid Search 

Resampled RandomOverSampler  

Classifier LinearSVM  

Features Tweet Text Annotated tf-idf n-gram = (1, 3) 

 Tweet Text tf-idf n-gram = (1, 3) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.97 0.98 0.98 27683 Actual: 0 27034 667 

1 0.62 0.61 0.61 1769 Actual: 1 696 1073 

Avg/total 0.95 0.95 0.95 29452 

Metrics 

Accuracy 0.954 

AUC_ROC 0.955 
Table 4-18: LinearSVM Oversampled based Classification Metrics 
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Grid Search 

Resampled RandomUnderSampler  

Classifier LinearSVM  

Features Tweet Text Annotated Word N-gram n-gram = (1, 1) 

 Tweet Text tf-idf n-gram = (1, 1) 

Cross Validation 10-fold  

Classification Report Confusion Matrix 

 Precision Recall F1-score Support  Predicted: 0 Predicted: 1 

0 0.99 0.87 0.93 27600 Actual: 0 24179 3504 

1 0.31 0.88 0.45 1769 Actual: 1 217 1552 

Avg/total 0.95 0.87 0.90 29452 

Metrics 

Accuracy 0.874 

AUC_ROC 0.942 
Table 4-19: LinearSVM Undersampled based Classification Metrics 

 

Before making a decision on the choice of which traffic event classifier to use from here on 

out, it is important to reconsider what the most important aspect of the classifier should be 

in our situation. On the one hand, one could say that it is important to have both an as high 

as possible precision and recall value for detecting traffic event-related tweets. This because 

our main goal is to detect as many true positive instances of traffic event-related tweets as 

possible, but to reduce the number of false negatives as they contaminate our set. On the 

other hand, one could say that we want an as high as possible recall value for detecting traffic 

event-related tweets, even if this comes at the cost of a lower precision value. This because 

traffic event-related tweets get clustered with Waze and TomTom event reports later on in 

the pipeline anyway. One could count on false negative tweets to get exposed in that stage as 

they most likely will not meet the requirements for getting clustered.  

 

We decided to go with the most reliable option by choosing the classifier with the best 

combination of precision and recall values for detecting traffic event-related tweets. This 

classifier is based on Linear SVM with a random over sampler and performs best based on 

the combination of average f1-score of 0.95, accuracy of 0.954 and AUC ROC of 0.955, as can 

be found in Table 4-18. We persisted this model with pickle, a Python module that enables 

objects to be serialized to files on disk and deserialized back into the program at runtime. 

This model was then applied to the second half of the Twitter data set ranging from 07-01-

2018 to 17-02-2018. A visual overview of the distribution of tweets classified as TE or NTE 

can be found in Figure 4-10. Note how the daily distribution of TE/NTE tweets is similar to 

the graph displayed in Figure 4-4. This is also reflected in the quantitative results as shown 

in Table 4-20, e.g., the manually labeled mean of TE related tweets per day is 56/892 (6.3%) 

compared to 48/857 (5.6%) as calculated by our classifier.  
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Classified Twitter Data Collection over 07-01-2018 – 17-02-2018 
Metric # of NTE related tweets # of TE related tweets Total # of tweets 

Mean per day 810 48 857 

Median per day 791 41 837 

Std. Dev. Per day 245 53 297 

Min. per day 553 9 562 

Max. per day 2243 361 2604 

Total 32,399 1875 2604 
Table 4-20: Classified Twitter Data Collection Metrics 07-01-2018 to 17-02-2018 
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Figure 4-10: Tweets collected with the Twitter data collection approach, classified as TE or NTE by our trained Linear SVM based 

classifier 
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4.4 Geocoding 

A geocoding method was created that uses spatial indicators in tweets, as annotated by our 

rule-based traffic domain annotator. The method links these spatial indicators to a 

geographic location and uses an intersection technique to find a list of the most relevant 

locations in a tweet. This geocoding module was written in the Python3 (v. 3.6.1) language. 

We used a Python library Googlemaps45 (v. 2.5.1), which allowed us to use the Google 

Directions API and Google Places API in Python. Additionally, we used the Python library 

Shapely46 (v. 1.6) to manipulate and analyze geometric objects. We already gave a 

comprehensive overview of our geocoding approach in Section 3.6.1, however we will shortly 

discuss some additional interesting details/restrictions that came to light during the 

implementation. In all cases a suitable solution was applied, unless otherwise stated. 

 

1. Google Places API, used to link a token with a place_location category to a geographical 

location:  

a. Tokens appended with a “#” deliver different results than tokens without. 

b. The API returns two geometry-related results for a queried place. The first one, 

called “location” provides the latitude and longitude of the place, while the second 

one “viewport” provides the preferred viewport on the map when viewing this 

place. We use this viewport to create a bounding box, as this better represents the 

location than a single coordinate.  

c. In some random cases, the API includes a shape of the entire Netherlands in its 

results, while querying for a single small place within the Netherlands.  

d. The API can only return up to 60 results for a single query, e.g., the query 

“McDonald’s” only returns 60 locations for a McDonald’s in the Netherlands, even 

though there are 245 establishments in the Netherlands. For this limitation no 

suitable solution was found.  

e. The API has a default limit of 1,000 free requests per 24 hour period, calculated 

as the sum of client-side and server-side requests. In order to overcome this 

limitation we increased this limit free of charge up to 150,000 requests per 24 hour 

period, by enabling billing by verifying our identity with a credit card.  

2. Google Places API, used to link a token with a place_location_combination category to a 

geographical location: 

a. The API enables to query for places that are in the vicinity of other places by using 

the following format: “placeA near placeB”. This way a more precise location can 

be gathered, however the API returns different results when switching the tokens, 

in other words “placeB near placeA” returns a different result. Additionally, the 

API provides a Dutch alternative to the keyword “near”, namely “in de buurt van”, 

however again this provides different results than when using the English version 

“near”. We made the decision to keep the order of the tokens in the way they 

appear in the tweet, and use the Dutch keyword “in de buurt van”. This because 

we want to stay as close as possible to the place intended by the writer of the tweet, 

and as the tweets are Dutch it seemed logical to use the Dutch version of the API. 

                                                
45 https://github.com/googlemaps/google-maps-services-python 
46 https://github.com/Toblerity/Shapely 
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3. Road database, used to link a token with a place road_mile_marker category to a 

geographical location: 

a. As our road database is based on data from Rijkswaterstaat Ministry of 

Infrastructure and Water Management, dating back to November 2015, there 

could be some instances where roads have been updated. Also, only A- and N-roads 

are included, causing us to miss out on so called S-, E- and r-roads. In these cases 

the tokens are used to query the Google Places API. 

b. Tweets do not always contain an existing mile marker number, however in 

combination with a road number it could still be useful. Therefore, we round mile 

marker numbers to one decimal and query the database for the closest related 

number.  

4. Google Directions API, used to link a token with a place_road_section or 

place_road_direction to a geographical location: 

a. This API contains a parameter “mode” that specifies the mode of transport to use 

when calculating directions. As we are first and foremost interested in traffic 

events on roads that allow motorized vehicles we set this parameter to “driving”.  

b. This API contains a parameter “alternatives” which specifies that the service may 

provide more than one route alternative in the response. We set this parameter to 

“true” as we want to retrieve as many as possible routes between two locations as 

possible, so that we do not miss out on road locations.  

c. This API needs an “origin” token as start location and a “destination” as end 

location. However, the response could be different depending on the order of 

tokens. For example, Delft  Rotterdam gives different results than Rotterdam  

Delft. We made the decision to keep the order of the tokens in the way they appear 

in the tweet, as we want to stay as close as possible to the place intended by the 

writer of the tweet. 

With the help of our annotator we annotated the TE tweets, which provided us with the 

needed place related categorized tokens for each tweet. We then ran multiple tests on a on a 

random sample of 100 tweets, in order to debug and improve our geocoding methods. Next, 

we evaluated the geocoding module based on a randomly selected sample of 100 geocoded 

traffic event-related tweets from the period 05-12-2017 to 06-01-2018, which were not 

included in the test set. As place mentions in tweets are highly ambiguous, a geocoded 

location cannot be either correct or incorrect. Therefore, each tweet got evaluated on how well 

the geocoded locations suit the contents of the tweet. For this, a custom category ranking 

system was used as previously described in Section 3.6.2. 

 

Table 4-21 on the next page, shows how the 100 tweets have been evaluated into the four 

different categories. It shows that the majority (49%) of the tweets can be geocoded to a 

location that covers all place indicators in the tweet and includes no irrelevant locations. 

Additionally, 37% of the geocoded tweets include all relevant place indicators, however also 

a number of irrelevant place indicators. The remaining 14% of the tweets either is geocoded 

to a part of relevant indicators or to no relevant indicators at all. We also computed the 

distribution of the geocoding methods for each category, and the existence of a cross 

intersection between the derived sub locations in a tweet (Cross Intersection/ No Cross 

Intersection). Besides, we looked at the influence of the number of place-related token sets in 

a tweet. Note that this number is significantly higher in categories B, C and D compared to 

category A.  
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Category Distribution 

of 

Geocoding 

Methods 

>= 1 

Token 

>= 2 

Tokens 

>= 3 

Tokens 

>= 4 

Tokens 

5 Tokens 

A 
      

Cross Intersection 9.00% 9 9 0 0 0 

Place 

Direction/Section 

1.00% 1 0 0 0 0 

Place Location 9.00% 9 0 0 0 0 

Place Location 

Combination 

11.00% 11 0 0 0 0 

No Cross 

Intersection 

3.00% 3 3 1 0 0 

Place Road Mile 

Marker 

16.00% 16 0 0 0 0 

Total A 49.00% 49 12 1 0 0 

B 
      

Cross Intersection 6.00% 6 6 5 2 0 

Place Location 5.00% 5 0 0 0 0 

Place Location 

Combination 

1.00% 1 0 0 0 0 

No Cross 

Intersection 

20.00% 20 20 10 3 2 

Place Road Mile 

Marker 

5.00% 5 0 0 0 0 

Total B 37.00% 37 26 15 5 2 

C 
      

Cross Intersection 1.00% 1 1 1 0 0 

Place 

Direction/Section 

1.00% 1 0 0 0 0 

Place Location 2.00% 2 0 0 0 0 

No Cross 

Intersection 

3.00% 3 3 2 0 0 

Total C 7.00% 7 4 3 0 0 

D 
      

Cross Intersection 3.00% 3 3 1 0 0 

Place Location 1.00% 1 0 0 0 0 

No Cross 

Intersection 

3.00% 3 3 1 0 0 

Total D 7.00% 7 6 2 0 0 

End Total 100.00% 100 48 21 5 2 

Table 4-21: Geocoding Evaluation Metrics 
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4.5 Traffic Event Description 

A traffic event description module was developed to cluster related information from traffic 

event reports (TE tweets, Waze and TomTom events) and DiTTLab traffic data. This traffic 

event description module was written in the Python3 (v. 3.6.1) language. We already gave a 

comprehensive overview of our traffic event description approach in Section 3.7, however we 

will shortly discuss some additional interesting details regarding the used sources and 

clustering techniques. 

 

The clustering of traffic event reports is based on a rule-based approach, in which a rule 

specifies the categorical, spatial and temporal extent, used to assert if the new traffic event 

report should be part of an existing traffic event cluster. Traffic event reports are matched 

on category, based on the 13 event categories described in Section 3.3.1. In the previous 

sections we showed how a tweet gets collected, categorized as TE or NTE, its tokens 

annotated to a variety of categories by our annotator, and finally geocoded. Therefore a tweet 

is already matched to zero or more of the 13 event categories. However, Waze and TomTom 

event reports use their own category definitions as explained in Sections 3.1.2, and 3.1.3. 

Hence, we created a traffic event rule collection containing each of the 13 event categories, 

matched to its corresponding TomTom and Waze categories, as the two examples show in 

Table 4-22 and Table 4-23. 

 

Category Event_accident 

TomTom Category Icon ID 1 

TomTom Categories Secondary accident 

 Chemical spillage accident 

 Fuel spillage accident 

 Accident clearance 

 Multi-vehicle accident 

 Serious accident 

 (…17 more…) 

Waze Categories ACCIDENT 

 ACCIDENT_MINOR 

 ACCIDENT_MAJOR 
Table 4-22: Traffic Event Rule Collection - Event_accident 

Category Event_hazard_trafficlight 

TomTom Category Icon ID 3 

TomTom Categories Traffic lights not working 

 Traffic lights working incorrectly 

 Temporary traffic lights working incorrectly 

Waze Categories HAZARD_ON_ROAD_BROKEN_TRAFFIC_LIGHT 
Table 4-23: Traffic Event Rule Collection - Event_hazard_trafficlight 

Next, we take a closer look at how traffic event reports are clustered together based on 

locational features. Tweets were geocoded to a geoshape, however, Waze and TomTom only 

contain a single geopoint as location. We therefore, drew a radius of 100 meters around Waze 

and TomTom locations, in the same way as with tweets. Next, we intersected traffic event 

reports based on their geoshape and an additional radius. This was done because of the 

possible delay existing between the traffic event location and the location of the creation of 

the traffic event report. We have chosen to have this radius customizable for each traffic 
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event category. For example, a traffic event with the category Event_hazard_violation would 

only be relevant within a radius of 100 meters if it was about a reckless driver. While a traffic 

event with the category Event_traffic_jam would be relevant within a radius of 1 kilometer 

if it was about a heavy traffic jam. For the evaluation of our traffic event description method, 

we used a radius of 150 meters for each of the different categories.  

 

Besides categorical and spatial features, traffic event reports were clustered together based 

on a temporal feature. For this, the creation dates of each traffic event report were used. A 

timespan calculated in minutes from the creation time of the traffic event report, was used 

to represent the temporal extent of a traffic event. We used a timespan, because the time 

extracted from a traffic event description does not necessarily represent the exact time a 

traffic event took place. We have chosen to have this timespan customizable for each traffic 

event category. For example, a traffic event with the category Event_hazard_violation would 

only be relevant for a couple of minutes for a specific location if it was about a reckless driver. 

While, a traffic event with the category Event_trafficjam could be relevant for an hour for the 

same location if it was about a heavy traffic jam. For the evaluation of our traffic event 

description method, we used a time span of 15 minutes for each of the different categories.  

 

Note, that when a traffic event report does not match a previous traffic event report on either 

its category, location, or timespan it is not discarded. This event report is just seen as the 

starting point of a new traffic event cluster, and therefore regarded as unrelated to the 

previous event cluster. An example of an traffic event cluster can be found in Table 4-24. 

 

Key Value Type 
_id 5afc2974e8b2900e404e9ce6 ObjectId 

mainReportID europe_HD_NL_TTL116026360217778 String 

mainReportType { 13 fields } Object 

mainReportCategory [ 1 elements] Array 

0 Event_trafficjam String 

mainReportLocation { 2 fields } Object 

mainReportLocationArea 0.13419460479408543 Double 

mainReportDate 2017-12-06T16:13:18.246Z Date 

subClusters [ 1 elements ] Array 

0 { 3 fields } Object 

subReportsCategory Event_trafficjam String 

subReportsIntersectedLocation { 2 fields } Object 

subReportsIntersectedLocationArea 0.0 Double 

subReportsMainReportRelevance 0.0 Double 

subReports [ 5 elements ] Array 

0 { 10 fields } Object 

subReportID alert-907664744/9d48c9bc-3c49-3a94-901a-7c29e92bcf82 String 

subReportType { 16 fields } Object 

subReportLocation { 2 fields } Object 

subReportLocationArea 0.02377992076632436 Double 

subReportIntersectedLocation { 2 fields } Object 

subReportIntersectedLocationArea 0.05402956385563263 Double 

subReportDate 2017-12-06T16:14:45.686Z Date 

subReportRelevanceSub 0.36332033860283597 Double 

mainReportRelevanceSub 0.4026209841933523 Double 

subReportRelevanceTotal 0.01635243657126755 Double 

1 { 10 fields } Object 

2 { 10 fields } Object 

Table 4-24: Traffic Event Cluster (some keys have been collapsed, for readability purposes) 
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4.5.1 Traffic Event Description Evaluation 

We applied our traffic event description method on the collected Twitter, Waze, TomTom and 

DiTTLab data over the period from 05-12-2017 to 06-01-2018. This provided us with a total 

of 210,614 unique clusters, consisting of 33,528 TomTom, 1411 tweet, and 175,675 Waze main 

event reports. Of these 1411 tweet reports, 540 did not contain a traffic event category (N/A). 
This does not mean that the tweet is not traffic event-related, it just could not get assigned 

to a traffic event-related category by our annotator, and to a location by our geocoder. 

Therefore, due to our strict linking based on category, location and time, the tweet report 

could not be linked to another event report. The same applies for 2425 Waze event reports 

that could not be linked based on category as they contained an abstract HAZARD category 

without any subcategories, or contained the category CHIT CHAT, which also could not be 

linked to any of our traffic event categories specified in our traffic event rule collection. Table 

4-25, shows how subreports were linked to their related main reports, and by what type of 

event category. Keep in mind, that a main report can have multiple categories, therefore the 

end totals deviate from the number of unique main cluster reports. When taking a closer look 

at each main report type, it becomes visible that TomTom event reports are most likely to be 

linked to another TomTom event report. Whereas tweet reports are more likely to link to a 

Waze report, and Waze reports to other Waze reports. However, even more noticeable are the 

number of cases a category from a main event report cannot be linked to a related traffic 

event report: TomTom event reports (41.57%), tweet event reports (85.30%), and Waze event 

reports (81.89%). As stated in Section 4.1.1, due to some technical issues there were some 

days that we were not able to collect tweet, TomTom, and Waze event reports for the complete 

day or did not receive any reports at all. We compensate for this issue by filtering out those 

days no data was available, the results are shown in Table 4-26. Note how the linkage results 

for tweet event reports with TomTom reports improve (1.84%  6.42%), as well as the results 

for Waze event reports with TomTom reports (5.74%  20.34%).  

 

Additionally, we applied our traffic event description method on the collected Twitter, Waze, 

TomTom and DiTTLab data over the period from 07-12-2017 to 17-02-2018. We specifically 

split the sets over two periods, as the first time period contains our manually annotated tweet 

reports and the second period the tweet reports classified by our machine learning based 

classifier. This way we are able to clearly show the difference between the two. Over the 

second period we obtained 260,656 unique clusters, consisting of 58,673 TomTom, 1517 tweet, 

and 200,466 Waze main event reports. Of the 1517 tweet reports, 646 did not contain a traffic 

event category (N/A). The same applies for 1803 Waze and 12 TomTom event reports. Table 

4-25, shows how subreports were linked to their related main reports, and by what type of 

event category. Again, we also compensate the data for dates no data could be collected, which 

is shown in Table 4-26. When comparing the compensated data from period 1 to period 2, 

some categories show significant differences. For example, the percentage of linked TomTom 

event reports to Waze reports increases from 7.52% to 23.48% while the linkage towards 

TomTom event reports reduces from 52.04% to 20.88%.  
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Number of Linked Subreports 

Main Reports waze_report tweet_report tomtom_report N/A End Total 

TomTom Event Report P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

event_accident 7.03% 6.38% 2.34% 3.38% 37.50% 46.15% 53.13% 44.09% 128 533 

event_closure 3.23% 9.36% 0.00% 2.25% 61.29% 39.70% 35.48% 48.69% 31 267 

event_hazard_animal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 4 5 

event_hazard_object 4.00% 1.69% 0.00% 0.00% 12.00% 14.35% 84.00% 83.97% 50 237 

event_hazard_road_condition 0.00% 0.00% 6.67% 0.00% 40.00% 42.86% 53.33% 57.14% 15 7 

event_hazard_roadwork 11.81% 15.10% 0.37% 1.01% 42.07% 36.91% 45.76% 46.98% 271 298 

event_hazard_traffic_light 0.00% 6.29% 0.00% 0.63% 0.00% 47.17% 0.00% 45.91% 0 159 

event_hazard_stopped_vehicle 15.94% 0.00% 0.00% 0.00% 47.83% 0.00% 36.23% 100.00% 69 2 

event_hazard_violation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 2 12 

event_hazard_weather 1.13% 1.58% 1.48% 0.20% 84.02% 72.80% 13.37% 25.42% 11613 1011 

event_trafficjam 12.09% 20.64% 0.65% 0.50% 30.57% 20.15% 56.69% 58.72% 21345 56130 

Total TomTom Event Report 8.25% 19.98% 0.94% 0.53% 49.24% 21.51% 41.57% 57.98% 33528 58661 

Tweet Event Report           

event_accident 6.79% 3.77% 6.17% 5.02% 1.23% 5.86% 85.80% 85.36% 162 239 

event_closure 3.61% 3.85% 4.64% 7.14% 1.55% 1.10% 90.21% 87.91% 194 182 

event_enforcement 7.69% 0.00% 7.69% 0.00% 0.00% 0.00% 84.62% 100.00% 13 22 

event_hazard_animal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 17 11 

event_hazard_object 5.56% 11.54% 0.00% 0.00% 0.00% 0.00% 94.44% 88.46% 18 26 

event_hazard_road_condition 4.90% 5.56% 3.92% 3.70% 0.98% 0.00% 90.20% 90.74% 102 54 

event_hazard_stopped_vehicle 2.94% 2.22% 2.94% 0.00% 2.94% 4.44% 91.18% 93.33% 34 45 

event_hazard_violation 0.00% 0.00% 0.00% 5.88% 0.00% 0.00% 100.00% 94.12% 10 17 

event_hazard_weather 
12.43% 2.25% 7.34% 22.47% 3.39% 0.00% 76.84% 75.28% 177 89 

event_trafficjam 13.89% 14.52% 4.17% 2.15% 2.08% 11.29% 79.86% 72.04% 144 186 

Total Tweet Event Report 7.81% 5.97% 5.05% 5.97% 1.84% 4.48% 85.30% 83.58% 871 871 

Waze Event Report           

event_accident 5.14% 6.40% 0.71% 0.73% 1.23% 3.68% 92.92% 89.20% 3501 4000 

event_closure 0.00% 0.00% 0.34% 0.59% 0.00% 0.08% 99.66% 99.33% 2365 2388 

event_enforcement 4.10% 5.57% 0.02% 0.00% 0.00% 0.00% 95.88% 94.43% 5295 6908 

event_hazard_animal 1.34% 0.00% 0.00% 0.00% 0.00% 0.00% 98.66% 100.00% 299 326 

event_hazard_object 0.69% 1.51% 0.09% 0.26% 0.43% 1.84% 98.80% 96.39% 1166 1525 

event_hazard_road_condition 6.25% 3.43% 1.27% 0.00% 0.00% 0.00% 92.48% 96.57% 1184 991 

event_hazard_roadwork 0.00% 0.00% 0.02% 0.00% 0.04% 0.19% 99.94% 99.81% 4802 5371 

event_hazard_stopped_vehicle 3.47% 5.01% 0.04% 0.04% 0.04% 0.13% 96.45% 94.82% 44246 45373 

event_hazard_traffic_sign 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 220 279 

event_hazard_weather 3.78% 3.59% 1.76% 0.26% 5.36% 0.45% 89.10% 95.70% 6479 2674 

event_trafficjam 

17.28% 19.02% 1.02% 1.02% 9.18% 18.55% 72.52% 61.41% 

10383

6 

12882

8 

Total Waze Event Report 11.65% 13.88% 0.72% 0.70% 5.74% 12.16% 81.89% 73.26% 173250 198663 

Table 4-25: Subreports linked to Main Reports by Category, where P1 equals the period from 05-12-2017 to 06-01-2018 and P2 equals the period 

from 07-01-2018 to 17-02-2018 
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Table 4-26: Subreports linked to Main Reports by Category where P1 equals the period from 05-12-2017 to 06-01-

2018 and P2 equals the period from 07-01-2018 to 17-02-2018 (only including the dates where data could be 

collected for all sources) 

 
Number of Linked Subreports 

Main Reports waze_report tweet_report tomtom_report N/A End Total 

TomTom Event Report P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

event_accident 6.93% 7.32% 2.97% 3.10% 34.65% 47.01% 55.45% 42.57% 101 451 

event_closure 3.23% 10.30% 0.00% 2.58% 61.29% 39.06% 35.48% 48.07% 31 233 

event_hazard_animal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 2 4 

event_hazard_object 2.44% 2.15% 0.00% 0.00% 7.32% 13.98% 90.24% 83.87% 41 186 

event_hazard_road_condition 0.00% 0.00% 6.67% 0.00% 40.00% 0.00% 53.33% 100.00% 15 3 

event_hazard_roadwork 10.04% 16.30% 0.40% 1.11% 43.78% 32.96% 45.78% 49.63% 249 270 

event_hazard_traffic_light 0.00% 7.69% 0.00% 0.77% 0.00% 46.92% 0.00% 44.62% 0 130 

event_hazard_stopped_vehicle 10.71% 0.00% 0.00% 0.00% 53.57% 0.00% 35.71% 100.00% 56 2 

event_hazard_violation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 2 9 

event_hazard_weather 1.13% 1.88% 1.49% 0.23% 84.33% 72.22% 13.05% 25.67% 11176 853 

event_trafficjam 11.57% 24.31% 0.68% 0.55% 31.80% 19.44% 55.95% 55.70% 17548 44836 

Total TomTom Event Report 7.52% 23.48% 1.00% 0.58% 52.04% 20.88% 39.44% 55.06% 29221 46977 

Tweet Event Report           

event_accident 0.00% 6.38% 6.06% 5.67% 3.03% 7.80% 90.91% 80.14% 33 141 

event_closure 0.00% 5.30% 2.63% 9.85% 7.89% 0.76% 89.47% 84.09% 38 132 

event_enforcement 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 2 14 

event_hazard_animal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 3 6 

event_hazard_object 0.00% 7.69% 0.00% 0.00% 0.00% 0.00% 100.00% 92.31% 3 13 

event_hazard_road_condition 9.09% 7.41% 13.64% 7.41% 4.55% 0.00% 72.73% 85.19% 22 27 

event_hazard_stopped_vehicle 0.00% 0.00% 0.00% 0.00% 16.67% 11.76% 83.33% 88.24% 6 17 

event_hazard_violation 0.00% 0.00% 0.00% 10.00% 0.00% 0.00% 100.00% 90.00% 2 10 

event_hazard_weather 
12.70% 2.53% 9.52% 25.32% 4.76% 0.00% 73.02% 72.15% 63 79 

event_trafficjam 13.33% 15.96% 6.67% 2.13% 20.00% 17.02% 60.00% 64.89% 15 94 

Total Tweet Event Report 6.42% 6.75% 6.95% 8.63% 6.42% 5.63% 80.21% 78.99% 187 533 

Waze Event Report           

event_accident 4.85% 6.51% 1.02% 0.82% 3.95% 5.01% 90.18% 87.66% 886 2917 

event_closure 0.00% 0.00% 0.16% 0.74% 0.00% 0.11% 99.84% 99.15% 632 1759 

event_enforcement 5.23% 5.75% 0.00% 0.00% 0.00% 0.00% 94.77% 94.25% 918 4766 

event_hazard_animal 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 45 219 

event_hazard_object 0.44% 1.83% 0.00% 0.33% 2.20% 2.16% 97.36% 95.67% 227 1202 

event_hazard_road_condition 16.67% 3.68% 2.00% 0.00% 0.00% 0.00% 81.33% 96.32% 150 679 

event_hazard_roadwork 0.00% 0.00% 0.00% 0.00% 0.10% 0.27% 99.90% 99.73% 1002 3737 

event_hazard_stopped_vehicle 3.52% 5.28% 0.05% 0.05% 0.21% 0.19% 96.22% 94.48% 8105 31619 

event_hazard_traffic_sign 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 30 195 

event_hazard_weather 3.80% 3.62% 2.74% 0.28% 18.83% 0.49% 74.64% 95.61% 1790 2458 

event_trafficjam 16.44% 19.11% 1.50% 1.23% 29.54% 24.44% 52.52% 55.22% 26170 92117 

Total Waze Event Report 11.94% 14.03% 1.15% 0.84% 20.34% 16.07% 66.57% 69.06% 48846 141668 
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In Section 3.7, a method for computing the relevance of a traffic event reports was explained. 

In short, this included that the relevance of a traffic event report is computed as follows: we 

divide the area of the intersection of the locations from all traffic event reports by the area of 

a traffic event report location. In other words, in order to compute the relevance of a subreport 

to its “subReportIntersectedLocation”, which is the intersection between a subreport and the 

main report, we have to divide the intersection of the subreport with its main report by the 

subreport resulting in the “subReportRelevanceSub”. The same way we can calculate the 

relevance of the main report towards that intersection by dividing the intersection of the 

subreport and the main report by the main report resulting in the 

“mainReportRelevanceSub”. However, if there is more than one subreport of the same event 

category linked to a main report, then we can also calculate the relevance of the subreport to 

all subreports with the same category by intersecting all subreports and diving it by the 

subreport, which we call “subReportRelevanceTotal”. In the same way we can compute the 

relevance of a cluster of subreports related to one category towards the main report, resulting 

in the “subReportsMainReportRelevance”. For further information regarding the 

terminology, please refer back to Table 4-24. Now that we have further explained our 

definition of relevance, we can take a look at the distribution of the “subReportRelevanceSub” 

and “mainReportRelevanceSub” as illustrated in Figure 4-11. Note how a subreport is often 

only for a small percentage (0-10%) relevant towards a subcluster intersection, while a main 

report is often relevant for a large percentage (90-100%) towards a subcluster. When looking 

at the relevance of subreports towards a main reports, as depicted in Figure 4-12, we see that 

the majority of the subreports have less than 20% relevance towards the main report. 

 

 

 

 

 

  

Figure 4-11: Distribution of Report Relevance towards Subreport Intersection 
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Next, we linked all traffic event report clusters that consisted of more than one traffic event 

report where possible to the DiTTLab data. As previously explained in Section 3.7, for 

DiTTLab data to be related to a traffic event, its motorway geolines have to intersect the 

location of the traffic event. If this is the case, the traffic data for the intersected segment 

plus two 100m road segments before and after the segment, are linked to the event. 

Additionally, we extend the time interval as defined in the traffic event cluster rule (traffic 

event category, radius/dilation, timespan), with an additional 15 minutes before the event 

start. Our initial linking is done based on a direct intersection without the two additional 

100m road segments. Another requirement that we added is that the 

“subReportsIntersectedLocationArea” must be greater than 0 km2 and smaller than 20 km2. 

This way, over the period from 05-12-2017 to 06-01-2018, we were able to link 24,072 out of 

the 51,111 subcluster locations (47.10%). When we compensate the data for dates no data 

could be collected we were able to link 15,128 out of the 31,089 subcluster locations (48,66%). 

Table 4-27, provides an overview of the categories by report type that have been linked to 

DiTTLab data. 

 

  

Figure 4-12: Subreport Relevance towards Main Report Intersection 
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Table 4-27: Traffic Event Clusters linked to DiTTLab data 

 

 

 

 

 

 Number of Linked DiTTLab Data by Report 

Subcluster Categories by Report waze_report tweet_report tomtom_report End Total 

TomTom Event Report Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered Unfiltered Filtered 

event_accident 13.64% 18.75% 6.82% 9.38% 79.55% 71.88% 44 32 

event_closure 5.26% 5.26% 0.00% 0.00% 94.74% 94.74% 19 19 

event_hazard_object 25.00% 25.00% 0.00% 0.00% 75.00% 75.00% 8 4 

event_hazard_road_condition 0.00% 0.00% 33.33% 33.33% 66.67% 66.67% 3 3 

event_hazard_roadwork 9.52% 6.78% 1.59% 1.69% 88.89% 91.53% 63 59 

event_hazard_stopped_vehicle 12.12% 6.67% 0.00% 0.00% 87.88% 93.33% 33 30 

event_hazard_weather 1.13% 1.15% 2.28% 2.25% 96.59% 96.60% 3902 3823 

event_trafficjam 21.52% 19.62% 2.07% 2.10% 76.42% 78.28% 3388 2946 

Total TomTom Event Report 10.62% 9.20% 2.20% 2.21% 87.18% 88.59% 7460 6916 

Tweet Event Report         

event_accident 47.06% 0.00% 41.18% 66.67% 11.76% 33.33% 17 5 

event_closure 30.00% 0.00% 50.00% 0.00% 20.00% 100.00% 10 2 

event_enforcement 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 0 

event_hazard_object 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1 0 

event_hazard_road_condition 57.14% 40.00% 28.57% 40.00% 14.29% 20.00% 7 5 

event_hazard_stopped_vehicle 33.33% 0.00% 33.33% 0.00% 33.33% 100.00% 3 1 

event_hazard_weather 41.67% 50.00% 33.33% 50.00% 25.00% 0.00% 12 4 

event_trafficjam 62.50% 25.00% 12.50% 25.00% 25.00% 50.00% 8 4 

Total Tweet Event Report 47.46% 26.32% 33.90% 36.84% 18.64% 36.84% 59 19 

Waze Event Report         

event_accident 66.29% 40.30% 9.14% 7.46% 24.57% 52.24% 175 67 

event_closure 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 3 0 

event_enforcement 98.46% 100.00% 1.54% 100.00% 0.00% 0.00% 65 8 

event_hazard_animal 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2 0 

event_hazard_object 66.67% 20.00% 0.00% 0.00% 33.33% 80.00% 12 5 

event_hazard_road_condition 62.50% 83.33% 37.50% 16.67% 0.00% 0.00% 32 12 

event_hazard_stopped_vehicle 97.51% 91.80% 0.86% 1.23% 1.63% 6.97% 1163 244 

event_hazard_weather 21.62% 12.35% 20.74% 12.65% 57.64% 75.00% 458 340 

event_trafficjam 49.77% 24.16% 5.07% 3.86% 45.15% 71.98% 14643 7517 

Total Waze Event Report 52.75% 25.97% 5.32% 4.19% 41.94% 69.84% 16553 8193 
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4.5.2 Traffic Event Description Insights 

In Table 4-26, in the previous section we could see that for period 1, 44.82% of the traffic 

event clusters consists of more than one event report. For period 2, this percentage comes 

down to 34.39%. But what insights can be gained from these clusters that contained more 

than one event report? First, we look at how tweet event reports contribute to Waze and 

TomTom event reports. Table 4-26, shows that in period 1 only 1.00% of the tweets get linked 

to a TomTom main report, and 0.58% in period 2. In the case of Waze event reports, these 

numbers come down to 1.15% and 0.84%. Additionally, this table shows that tweet reports 

contribute mostly in accident, weather, and traffic jam categories. Second, we look at how 

Waze event reports contribute towards tweet and TomTom event reports. Table 4-26 shows 

that in period 1 7.52% of the clusters with a TomTom event as main report contain a Waze 

report, and 23.48% in period 2. Waze reports seem to contribute most towards TomTom 

events in the categories accident, roadwork, and traffic jams. For clusters with a tweet as 

main report the percentage of linked Waze reports sits on 6.42% for period 1 and 6.75% for 

period 2. In this case, Waze reports clearly contribute most in the traffic jam category. These 

numbers are lower than one would expect based on the fact that Waze is a social platform 

specifically specialized in traffic event reporting. Third, we look into the clustering of 

TomTom event reports towards Waze and tweet event reports. Table 4-26 shows that 20.34% 

of the clusters with a Waze event as main report, contain a TomTom report in period 1, 

compared with 16.07% in period 2. Moreover, this table shows that 6.42% of the clusters with 

a tweet event as main report, contain a TomTom report in period 1, compared with 5.63% in 

period 2. We see that a relatively high percentage of TomTom events cluster with Waze event 

reports, however, this is mostly based on the weather and traffic jam categories. Besides 

linking to traffic events from other data sources, traffic events can also form a cluster with 

events from the same data source. These percentages are significantly higher than the 

previously found percentages. 52.04% of TomTom subreports cluster with a TomTom main 

report in period 1, and 20.88% in period 2. 6.95% in period 1 for tweet subreports with tweet 

main reports, and 8.63% in period 2. And 11.94% for Waze subreports with Waze main 

reports in period 1, compared to 14.03% in period 2.  

 

We showed what the effect of clustering event reports is on each event report type and their 

event categories. In Figure 4-6, Figure 4-8 and Figure 4-9, we also showed the average 

category distribution over the period of a day. This gives a clear view of the weaknesses and 

strengths of the different geosocial sources given their abilities to describe event categories 

around the day. We have also discussed the strengths and weaknesses of each of the geosocial 

sources given the type of information they provide. Tweet reports are able to provide a lot of 

context as they contain more elaborate descriptions and often contain some sort of media. 

However, this comes at the cost of precision regarding their categorical, locational and 

temporal descriptiveness. This is where Waze and TomTom events contribute most, as they 

contain exact categorical, locational and temporal features. However, their ability to provide 

context is mostly limited to predefined categorical descriptions. 
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Beside coverage of time and type of information, there is one last type of coverage that we 

have not yet discussed, which regards the coverage of space. In order to show the distribution 

of the different geosocial sources and their event categories we used our SocialTerraffic 

application to map the event reports. We selected the date 15-01-2018, as this date contains 

an average representation of Waze, TomTom, and tweet event reports. We decided to take a 

closer look at one very common category namely event traffic jam and one less common 

category namely event accident. This in order to clearly show the different coverage of space 

between geosocial sources and categories. Figure 4-15, depicts the mapping of 218 Waze event 

reports of the accident category. Note how the reports appear more frequently around the 

larger cities (e.g., Amsterdam, Rotterdam) and motorways (e.g., A2, A20). Figure 4-14, depicts 

the mapping of 34 TomTom event reports of the accident category. This number is 

significantly less than the number of Waze reports, however, a single TomTom report covers 

a larger location compared to a single Waze report. Figure 4-13, depicts the mapping of 12 

tweet event reports of the accident category. Analyzing tweet reports based on location is less 

reliable, as their geolocation is derived from the tweet text. However, it again seems that the 

reports appear more often around the larger cities and motorways. Next, we look at the 

clustered events based on the event reports. Figure 4-18, shows 208 events based on a main 

report, i.e., event reports that could not be clustered to other event reports by our algorithm. 

Figure 4-16, depicts the locations of 29 events based on a main report and a single subreport. 

This can occur when only one other event report is clustered towards the main report. 

However, this also occurs when multiple subreports are clustered to the main report, but not 

all subreports intersect with each other. Figure 4-17, contains the locations of 27 events based 

on a main report and multiple subreports, i.e., the main report was clustered with multiple 

subreports and these subreports all intersect with each other. It becomes clear that many 

events are dropped due to the clustering process, while the event locations tend to move even 

closer to the larger cities and motorways.  

 

Next, we look at the events of the traffic jam category. As the amount of reports on traffic 

jams is significantly higher than reports on accidents, the timeframe was reduced to the 

morning rush hour period, ranging from 06:30 to 09:30 on 15-01-2018. Figure 4-21 depicts 

the locations of 4045 Waze event reports and confirms our previous findings concerning the 

concentration of report locations. The same is true for the 1107 TomTom event reports 

depicted in Figure 4-20. The reports clearly concentrate around the motorways and larger 

cities, whereas the provinces such as Zeeland, Friesland, Groningen, and Drenthe are only 

sparsely covered. Additionally, again the number of tweets is significantly lower with 9 event 

reports, yet concentrated around the same locations as the reports from TomTom and Waze, 

as shown in Figure 4-19. When clustering the event reports as shown in Figure 4-23, Figure 

4-22, and Figure 4-24, the clustering process causes many events to get dropped and event 

locations to concentrate towards the motorways and large cities as seen before.  
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Figure 4-14: TomTom Event Accident (34 event reports) Figure 4-15: Waze Event Accident (218 event reports) Figure 4-13: Tweet Event Accident (12 event reports) 

Figure 4-18: Accident Events (208) based on 

a single main report 
Figure 4-17: Accident Events (27) based on a 

single main- and multiple subreports 

Figure 4-16: Accident Events (29) based on 

a single main- and subreport 



109 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-20: TomTom Event Traffic Jam (1107 event reports)  Figure 4-19: Tweet Event Traffic Jam (9 event reports) Figure 4-21: Waze Event Traffic Jam (4045 event reports) 

Figure 4-22: Traffic Jam Events (2081) based 

on a single main- and subreport 

Figure 4-24: Traffic Jam Events (1685) based 

on a single main- and multiple subreports 

Figure 4-23: Traffic Jam Events (2257) 

based on a single main report 
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4.6 SocialTerraffic System 

In order to create the web-based interactive map application SocialTerraffic, a number of 

tools were used. First, Node.js47 (v. 7.1.0) an asynchronous event-driven JavaScript runtime 

environment was used to write our application. Second, we used Express48 (v. 4.13.1), a 

Node.js web application framework which includes a set of features to develop the web 

application. Third, we used the MongoDB Node.js Driver (v. 3.1) to let our application 

communicate with our database. Last, a number of open-source JavaScript libraries of which 

we listed the most important ones: 

 Leaflet49 (v. 1.0.3), for creating interactive maps.   

 Jquery50 (v. 3.3.1), for HTML document traversal and Ajax.  

 Vis51 (v. 3.12.0), for creating interactive timelines. 

 Moment52 (v. 2.22.2), for parsing, validating, manipulating and displaying date 

objects. 

 Plotly53 (v. 1.0.6), for creating charts. 

 

Figure 4-25, depicts the start screen of the application containing the following four main 

sections:  

1. The map of the Netherlands which is prominently centered in the middle. 

2. The control panel on the left side, which allows for switching between map styles, 

traffic event categories, and showing additional event reports. 

3. The menu sidebar on the right side, used for exploring traffic events, requesting traffic 

event information, and displaying traffic data based graphs.  

4. The timeline on the bottom, displaying the number of active events by time and 

category. 

                                                
47 https://nodejs.org/en/ 
48 https://expressjs.com/ 
49 https://leafletjs.com/ 
50 https://jquery.com/ 
51 http://visjs.org/ 
52 https://momentjs.com/ 
53 https://plot.ly/javascript/ 

Figure 4-25: SocialTerrafic Application Start Screen 
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By clicking on the search icon in the menu sidebar, 

the sidebar will unfold the Event Explorer submenu, 

as illustrated in Figure 4-26. In this menu, a user is 

able to select one of three event levels. The first 

event level contains only events based on a main 

report. The second event level contains events based 

on a main report and a single subreport. The third 

event level contains events based on a main report 

and multiple subreports. The second selection a user 

has to make is based on which report types he wants 

have included in the traffic events. A user is able to 

select and combine tweet, Waze, and TomTom 

reports. The third selection is based on the event 

category of the traffic event. A user can choose one 

or multiple categories from a predefined list of 13 

different event categories. Lastly, the user has to 

select a date range for the traffic events. By pressing the submit button, a query is generated 

based on the selection and the data is retrieved from the database. As an example, we 

searched for events based on a main report and multiple subreports, all report types, all event 

categories, for the period of 08-12-2017 06:30 to 08-12-2017 09:30. Figure 4-27, shows the 

result of this query. Notice how the event location shapes are drawn on the map based on 

their geographic data structure (GeoJSON), each with its own distinctive category color. The 

control panel on the left, as well as the timeline on the bottom, get automatically updated 

with the related event types painted in the same color.  

  

Figure 4-26: SocialTerraffic Menu Sidebar - Traffic Event 

Explorer 

Figure 4-27: SocialTerraffic screen after submitting query 
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After the event data is loaded into the application a user might want to filter out traffic events 

based on their category. The control panel on the left side enables a user to do this by simply 

unchecking an event box. This hides the events on the map and as well on the timeline. Figure 

4-28 shows what it looks like when we uncheck the Event Traffic Jam box.  

Figure 4-28: SocialTerraffic screen after unchecking the Event Traffic Jam box 

Another special thing to mention is the clustering of events on the timeline. As many events 

can happen within the same small time frame, drawing each single event would overfill and 

reduce the responsiveness of the timeline. Therefore we implemented a clustering approach 

which clusters the events by time unit (day, hour, minute etc.) depending on the zoom level 

of the timeline. When the user zooms in on the timeline the elements get split. For example, 

Figure 4-28 shows a timeline where one item contains 7 accident events; Figure 4-29 shows 

that when zoomed in, the item splits into 7 separate items.  

 

Besides providing a high-level overview of the traffic events, a user can get detailed 

information for each event. When a user either clicks on the event location on the map or on 

an event on the timeline, the menu sidebar unfolds the Traffic Event Info submenu. This 

submenu contains the event category, date range, annotated traffic domain categories (only 

applies if the cluster contains tweet reports), media, relevance percentage of the main report 

towards the event location, relevance of the subreports towards the event location, and the 

properties of each report that is part of the event cluster. Figure 4-29 depicts this screen after 

a user selects a traffic event. The Traffic Event Info submenu is visible at the right side (only 

the top half is shown, the bottom half is shown in Figure 4-30). Note that the related event 

item on the timeline automatically gets highlighted, and the control panel gets two additional 

filter boxes named Mainreport and Subreport. By checking these boxes the locations of the 

event reports the intersected location of the selected traffic event is based upon are drawn on 

the map, as shown in Figure 4-30. Keep in mind that the shown subreport relevance of 4% 

towards the event location is based on the locations that were dilated with 150 meters, as 

explained in Section 4.5. The event report locations on the map are the original not yet dilated 

locations, and therefore do not visually match the relevance percentages.  
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Figure 4-29: SocialTerraffic screen after selecting a traffic event on the map or timeline 

 

 
Figure 4-30: SocialTerraffic screen after checking the Mainreport and Subreport boxes 
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Our application would not be complete without providing the option to see how the collected 

geosocial data enriches the traffic data. Therefore, when a user clicks on the chart icon on the 

menu sidebar it unfolds the DiTTLab Traffic Data submenu. In this menu, the user can select 

a time range, based on this time range and the location of the traffic event a query is 

generated that retrieves the DiTTLab speed and flow data for that location and time period. 

This traffic data gets charted in a similar way as is done within the DiTTLab NDW app54. 

This means that we create a heat map with the time on the x-axis, the distance on the y-axis, 

and speed/flow on the z-axis. Let us take a look at a new example to illustrate this feature. 

Figure 4-31, shows a detected traffic event with an accident category attached to it. It consists 

of a main report (TomTom) and one subreport (tweet). Also, notice how the system detects 

three traffic events of the traffic jam category around the same location and time period as 

the accident based traffic event.  

 

Next, we open the DiTTLab Traffic Data submenu and select a time range starting an hour 

before the start of the event and ending an hour after the event. By selecting a larger time 

range a better overview can be gained of the speed/flow changes before and after the event. 

Additionally, we have to take into account that the accident described in the event could have 

happened in the period before the event was registered by geosocial data. The chart in Figure 

4-32 shows how the traffic speed on the left side of the road remains constant and has normal 

values between 100 and 120 km/h. The same can be said for the traffic flow, as shown in 

Figure 4-33. However, when looking at the graph in Figure 4-34, the traffic speed is reduced 

by half between 14:10 and 14:50. This time period corresponds to the time period of the event 

the system registered. Additionally, the chart in Figure 4-35 shows that the traffic flow is 

also reduced by half in the same period. This shows how the event found by clustering 

geosocial data can help to enrich and explain anomalies found in traffic data.  

                                                
54 http://dittlab-apps.tudelft.nl:8080/app-ndw/ 

Figure 4-31: SocialTerraffic screen with the focus on a traffic event of the accident category 
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Figure 4-32: DiTTlab Traffic Data submenu, speed heat map for the left side of the 

road 

Figure 4-33: DiTTlab Traffic Data submenu, flow heat map for the left side of the 

road 

Figure 4-34: DiTTlab Traffic Data submenu, speed heat map for the right side of 

the road 
Figure 4-35: DiTTlab Traffic Data submenu, flow heat map for the right side of the 

road 
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5 Discussion 

In this chapter, we discuss the results obtained in 4 regarding the design and implementation 

that lead towards the answering of our research questions. 

 

5.1 Data Collection 

As a starting point of our pipeline, we implemented a data collection approach to collect 

relevant tweets, Waze and TomTom reports. The main goal that we aimed to achieve when 

collecting traffic event-related tweets was to optimize the recall and precision as much as 

possible. This in order to mitigate the possible bias formed due to a limited keyword selection 

approach. By applying a custom keyword selection and filter process we were able to increase 

the collection of real road-user traffic event-related tweets by 80.54%, while reducing the 

number of non-real road-user traffic event-related tweets with 48.19%, relative to our initial 

set. Our proposed data collection approach provides an alternative to the limited keyword 

approach as seen in related work, e.g., from Wanichayapong et al. (2011), D'Andrea et al. 

(2015), and Nguyen et al. (2016). Besides, we have taken a different approach compared to 

all other related work by focusing only on the collection of tweets by so called real road-users. 

Whereas, the datasets in related work include a mixture of traffic event-related geosocial 

posts from real road-users, news agencies, bots, and emergency agencies. This affects the 

results, as traffic event-related geosocial posts from news agencies, bots and emergency 

agencies contain a different syntax than geosocial posts from real road-users. With the help 

of this keyword selection approach Twitter data has been collected over a period ranging from 

05-12-2017 to 17-02-2018. The amount of the on average 873 collected tweets per day proved 

very sparse. Especially considering that on average only 6.71% of these tweets are deemed 

traffic event-related. We consider two possible causes for this limited amount of collected 

traffic event-related tweets. One the one hand, we have to consider that the number of traffic 

event-related tweets posted by real road-users is limited by default; as it is forbidden by law 

to use your phone while driving in the Netherlands. A user is only legally allowed to use its 

phone while inside a vehicle when the vehicle is stationary, e.g., in a traffic jam, in front of a 

traffic light or on a parking, or when the user is a passenger. Additionally, the rise of other 

social platforms could have caused a reduction in the amount of traffic event-related 

information that users post on Twitter. On the other hand, we have to take into account some 

possible limitations and weaknesses regarding our tweet collection approach. First, we 

applied the keyword selection approach on a limited time period of three days. This could 

have caused a bias towards our keyword set due to the found types of traffic events in that 

timespan. In other words, there is a possibility that we missed out on some relevant keywords 

or included keywords that only prove relevant for that limited time period. Second, we used 

a keyword filter based on the Dutch language, therefore capturing also Belgium or in 

exceptional cases even South African tweets. Third, bot accounts are filtered both manually 

and on “terms”, therefore newly created bot accounts that do not contain these “terms” are 

still included. 

 

Next, we have extended upon related work by collecting data from two additional geosocial 

data sources: Waze and TomTom. We collected data from Waze over a period ranging from 

06-12-2017 to 05-02-2018, resulting in an average amount of 7482 Waze event reports per 

day. Compared to tweets, Waze event reports are specialized towards the categorization of 
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traffic events based on a specified event category. This means that they are more limited in 

their descriptiveness of traffic events compared to tweets. We found that only 0.06% of all 

Waze event reports contained one or multiple images, and 2.37% of all Waze event reports 

contained a user created description. Additionally, we want to state that our Waze collection 

approach was based on a live map feed and not an official API. Waze changed their policies 

in February 2018, causing the feed to no longer work. No alternatives have been presented 

by Waze to this time. Waze does, however, have a collaboration program called the Connected 

Citizens Program55, which could present an alternative way for Waze data collection. Note 

that application attempts for this program, during this thesis, were turned down by Waze, 

causing us to create our own Waze collection approach.  

 

Furthermore, TomTom data was collected over the period from 05-12-2017 to 14-02-2018. 

Leaving out the days we were not able to collect TomTom data, an average of 2543 TomTom 

event reports was collected per day. Compared to tweets and Waze event reports, TomTom 

reports contain only descriptions and causes selected from a fixed set of categories. However, 

as compensation, this set is more extensive than the category set that Waze provides. One of 

the weaknesses in our TomTom event collection approach, is that due to some technical issues 

regarding the TomTom Traffic Incident API there were some days that we were not able to 

receive TomTom event reports for the complete day or did not receive any reports at all. In 

this research we have tried to account for this problem were possible. Additionally, we cannot 

say with absolute certainty that all data from TomTom is real road-user based, which 

therefore could have caused some bias in some of the experiments.  

 

Overall we can say that all three data sources combined contain enough descriptive 

possibilities to provide a complete picture of a traffic event. However, we find that in the case 

of Twitter data the collected amounts are too sparse to be of any contribution towards the 

descriptiveness of traffic events on its own. In most cases, related work showed that Twitter 

data on its own is suitable to describe traffic events, however as stated before these works do 

not distinguish real road-users from other users. Therefore, we cannot make a one to one 

comparison, based on the collected data, to these works. 

 

5.2 Rule-based Traffic Domain Annotator 

In order to extract relevant traffic domain information from the collected tweet text data, we 

created a rule-based traffic domain annotator. An evaluation on this annotator provided us 

with an average accuracy of 0.964 over 30 distinct categories, an average precision of 0.970, 

an average recall of 0.828, resulting in an average f1-score of 0.874. We want to note however, 

that due to the unbalanced frequency of the categories this score is not entirely 

representative.  

 

No related work has been found that contains such an extensive annotator that is able to 

categorize tweets by traffic events, so no comparison could be made. There are, however, some 

downsides to an annotator that has to be able to differentiate that many categories. First, 

this annotator is only able to map token sets based on predefined grammatical rule 

structures. This causes limitations regarding complex sentences that have related words 

located far from each other in a sentence. Additionally, the annotator cannot account for all 

                                                
55 https://www.waze.com/ccp 
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possible spelling variations of words within tweets. Moreover, the Dutch language is known 

for its many word compounds, especially compared to English, which also causes problems 

for the annotator. Second, ambiguity of words is a hard problem to deal with for an annotator. 

However, our annotator is able to catch a great number of these cases by defining 

grammatical rule structures. Third, there is a special case of ambiguity regarding place 

indicators. As we use a library composed of place terms from GeoNames and OpenStreetMap, 

which contain a great number of ambiguous terms that could either be a location or a common 

word used in the Dutch language. Having to deal with that many downsides towards the use 

of a rule-based annotator, begs the question why we did not apply a machine learning 

approach to classify the tweets to traffic event categories. The first counterargument for such 

an approach would be that we are not only interested to which traffic event categories a tweet 

belongs, but also in the tweet text itself that indicates that category. Second, as shown before, 

the number of collected tweets is too sparse to be able to train a classifier that is able to 

classify tweets into such a wide range of categories as our annotator currently does. With the 

help this annotator we have been able to annotate our tweet set and provide traffic event-

related categories to them. 

 

5.3 Traffic Event Classification 

In order to automatically detect if a tweet is traffic event-related or not, a supervised binary 

classification approach was applied. Based on an evaluation of multiple classifier and feature 

combinations a classifier has been chosen based on the best combination of precision (0.62) 

and recall (0.61) values for detecting traffic event-related tweets. This classifier is based on 

Linear SVM with a random over-sampler and also performs best based on the combination 

of an average f1-score of 0.95, accuracy of 0.954 and AUC ROC of 0.955. Due to time 

constraints, we limited our experiment to only two different classification algorithms based 

on Naïve Bayes and Support Vector Machine algorithms which according to previous works 

and theory should perform best for text-based documents such as tweets. Also, for this reason, 

we did not include pre-processing techniques such as lemmatization and features such as 

part of speech tagging. Therefore, other classification algorithms with different feature sets 

could provide better results than presented in this study. As our precision, recall, and f1-

scores greatly differ based on the detection of traffic event or non-traffic event-related tweets, 

we compare the weakest values (traffic event-related) to related work. Machine learning 

classifier results presented in related work seem to outperform the results in our work 

significantly, e.g., in the work by D'Andrea et al. (2015), a precision of 0.953, recall of 0.965 

and f1-score of 0.958 are achieved. However, we again want to strongly emphasize that we 

specifically manually annotated traffic event-related tweets from real road-users as traffic 

event-related and annotated traffic event-related tweets from other users as non-traffic 

event-related. This means that classification of traffic event-related tweets in our case is 

much more difficult, as traffic event-related tweets from news agencies, bots, and emergency 

agencies contain a much more structured syntax than tweets from real road-users. Hence, 

the better results in previous related work. All in all, the results of the classifier evaluation 

can be seen as somewhat disappointing, especially when considering that the amount of 

traffic event-related tweets per day by itself is already very sparse. 
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5.4 Geocoding 

In order to assign geographic locations to tweets, a geocoding method was developed that 

uses spatial indicators in tweets, annotated by our rule-based traffic domain annotator, to 

derive locations. Based on an evaluation of this method, we were able to determine that the 

majority (49%) of the tweets can be geocoded to a location that covers all place indicators in 

the tweet and include no irrelevant locations. Additionally, 37% of the geocoded tweets 

include all relevant place indicators, however also a number of irrelevant place indicators. 

The remaining 14% of the tweets either is geocoded to a part of relevant indicators or to no 

relevant indicators at all. What also came forward from these results, is that the more token 

sets categorized as place indicators a tweet contains, the more difficult it becomes for our 

geocoding method to correctly assign all locations to a tweet. This is most likely caused due 

to the fact that a tweet can refer to multiple unrelated locations. In our approach, as 

thoroughly explained in Section 3.6.1, we opted to first and foremost tackle the challenges 

spatial indicators bring with them such as issues regarding: contradictions, confirmations, 

scaling and ambiguity. A model was therefore designed that computes the intersections of a 

multitude of spatial indicators in a tweet.  

 

Compared to geocoding methods in related work we see that most work relies either on the 

device location automatically added when posting a tweet, or on a simplified geolocation 

method that links a tweet to a single geopoint. The geocoder presented in the work by Gu et 

al. (2016) comes closest to our geocoding approach, as it extracts road names, intersection 

names, highway exit numbers and highway mile markers to compute a single geolocation. 

With this method they were able to geocode 64.0% of tweets by influential users, and 4.9% of 

tweets created by individual users. Compared to these results our geocoding method performs 

significantly better. 

 

5.5 Traffic Event Description 

A traffic event description module was developed to cluster related information from traffic 

event reports (TE tweets, Waze and TomTom events) and DiTTLab traffic data. This 

clustering is performed based on a rule-based matching approach in which a rule specifies 

the categorical, spatial and temporal extent used to assert if the new traffic event report 

should be part of an existing traffic event cluster. In the evaluation of this approach, we used 

13 unique event categories, a radius of 150 meters, and a timespan of 15 minutes. We applied 

this description method over the collected Twitter, Waze, TomTom and DiTTLab data over 

the period from 05-12-2017 to 06-01-2018, and the period from 07-01-2018 to 17-02-2018. 

Afterwards, we removed the clusters over periods where data was missing due to technical 

issues. We found that for the first period 44.82% of the traffic event clusters consists out of 

more than one event report, and for the second period 34.39%. One explanation for this could 

be that our rule-based matching approach is too strict, regarding the spatial radius and 

temporal timespan. Another explanation only related to tweets relies on the matching on 

dates that is performed based on the creation date of traffic events. Where the creation date 

of a Waze and TomTom report event is highly likely to be very closely related to the datetime 

of the actual event occurred, this does not necessarily have to be the case for tweet reports. 

Tweets can also refer to past and future events, as well as refer to longer timespans. 

Additionally, tweets can be created at any location and refer to any location, whereas Waze 

and TomTom reports can only refer to the location at which they were created. Besides, our 
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traffic event description evaluation was performed based on a rule with a radius of 150 meters 

and a timespan of 15 minutes for all 13 event categories. Results could improve when rules 

with customized values are specified for each event category by a traffic domain expert. 

Furthermore, we evaluated how many clusters could be linked to DiTTLab traffic data. We 

were able to link 15,128 out of the 31,089 subcluster locations (48,66%). This amount is very 

reasonable taking into account that we only have DiTTLab traffic data available for 

motorways in the Netherlands. Lastly, we looked at the spatial coverage of traffic events, by 

analyzing the spatial properties of traffic jams with the categories accident/ traffic jam. This 

analysis showed that event locations appear more often around larger cities and motorways. 

An explanation for this could be that the larger amount of road traffic in these regions reflects 

on the amount of geosocial reports. 

 

5.6 SocialTerraffic System 

A web-based interactive map application named SocialTerraffic was developed, to provide a 

way to present the collected and processed data, by our pipeline, to the end user. In Section 

3.8.2, we specified a list of five must have and one should have requirements for the 

application. The first requirement stated that a user must be able to view the locations of 

traffic events on an interactive map. We met this requirement, as in our application a user 

can create and send a query based on event level, report type, category, and date range, to 

the database. The database returns the clustered traffic events and maps their location 

shapes on an interactive map. The second requirement stated that a user must get an 

overview of all traffic domain categories and their count, and a description for a specific traffic 

event. This requirement has also been met, as we implemented a timeline that shows the 

categories, for the queried events, with their count over time. Additionally, when a user clicks 

on an even location on the map or timeline a traffic event info submenu appears that shows 

event related information. The third requirement described that a user must be able to filter 

traffic events based on event category, time range and location. We met this requirement by 

implementing a control panel that allows for quick switching between and filtering out traffic 

event categories. The developed timeline can be zoomed in/out on to focus on events within a 

specific time frame. Similarly, the map can be zoomed in/out on to focus on events within a 

specific location. The fourth requirement stated that a user must be able to view the traffic 

event reports that are linked to a traffic event. This requirement was also met, as we included 

the information of all reports that a traffic event cluster consists out of. This information is 

put in a related reports section, represented as an accordion (collapsible content), in the 

traffic event info submenu. The fifth requirement denoted that a user must be able to view 

DiTTLab traffic data that is linked to a traffic event. The sixth requirement stated that a 

user should be able to view automatically generated graphs by selecting a traffic domain 

category and timespan for a specific location. We met both requirements by implementing a 

DiTTlab traffic data submenu. This menu becomes active after a user has selected a traffic 

event, and enables the user to generate speed/flow charts based on DiTTLab traffic data and 

a specified time range.  

 

We were able to partly compare our application to related work from Daly et al. (2013), Dokter 

(2015), Nguyen et al. (2016). From all reviewed related work, these works were the only ones 

with some form of custom application that was comparable to ours. Daly et al. (2013), 

developed a web client named Dub-STAR, where traffic congestions are drawn on a map and 

related detected events are linked to these congestions. Users are able to filter the events 
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based on a list of specific event types. Dokter (2015), developed a CouchApp based web-

interface that links tweets to traffic events. These events were mapped, and the tweets were 

used to provide descriptive information. Nguyen et al. (2016), created an interface in which 

geo-located traffic event-related tweets are mapped on a 3D Bing map in a real-time fashion. 

A timeline is included to filter events based on a date range. Based on applications developed 

in related work we can say that our application contains all features presented in these 

works. Moreover, our application contains a lot of features unseen in previous work and in 

addition contains an intuitive graphical user interface. 
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6 Conclusions 

In this chapter, an answer to the main research question: “To what extent can geosocial data 
enrich traffic data to improve the detection, categorization, and description of non-recurrent 
traffic events?”, is provided. Additionally, an outlook for future work is provided. 

 

6.1 Conclusion 

In this work, we described to what extent geosocial data is able to enrich traffic data, by 

creating a pipeline that is able to collect, detect, categorize, and cluster social and traffic data 

in order to provide a description of non-recurrent traffic events. In order to answer our main 

research question we divided it into five separate research sub-questions. 

 

RQ1: What is the current state of the art regarding non-recurrent traffic event detection, 
categorization, and description by using traffic data and geosocial data, individually or 
combined? 
 

We presented, discussed and compared related work on traffic event detection, 

categorization, and description divided by traffic-, social-, and the combination of traffic and 

geosocial data sources. We discovered that in studies related to only traffic data, traffic event 

detection proved to be the only focus point. In these studies, traffic event detection is based 

on algorithms that depend on data from roadway-based sensors. Weaknesses of this approach 

are related to the quality of measurements which depend on the density of the road sensor 

network, and the fact that algorithms are road-type dependent. Studies related to only 

geosocial data contained traffic event detection, categorization, and description approaches. 

We found that weaknesses of these approaches are based on the use of only one type of data 

source, biased data collection approaches, non-existing categorization approaches and limited 

geocoding techniques. Lastly, we found that studies related to the combination of traffic data 

and geosocial data are limited in amount and distinguish themselves mostly in their traffic 

event description approach. However, a weakness of this approach in these works is, that a 

mandatory combination of traffic data anomalies and geosocial data is enforced which could 

lead to a loss of important semantic data. 

 
RQ2: How can non-recurrent traffic event-related geosocial posts be detected?  

 
We developed a Twitter, Waze and TomTom data collection approach. Waze and TomTom 

event reports are by default traffic event-related and are thus automatically detected at this 

stage. In order to detect traffic event-related tweets out of our collected tweet set, multiple 

traffic event classifiers have been trained based on a supervised binary classification 

approach. Based on a comparison of the evaluated classifiers a traffic event classifier has 

been created that yields a good performance for detecting non-traffic event-related tweets 

and a sufficient performance for detecting traffic event-related tweets. 

 
  



123 

 

RQ3: How can detected non-recurrent traffic event-related geosocial posts be categorized by 
event type? 
 

In order to categorize tweets on multiple traffic event-related event types, a rule-based traffic 

domain annotator has been created. This annotator is able to categorize the token sets of a 

tweet into 27 unique traffic related categories, from which 13 traffic event-related. 

Additionally, we were able to categorize Waze and TomTom event reports into one of these 

same 13 traffic event categories. 

 
RQ4: How can categorized geosocial posts be used to describe non-recurrent traffic events? 

 
We created a traffic event description method based on a rule-based approach, in which a 

rule specifies the categorical, spatial and temporal extent, used to assert if the new traffic 

event report should be part of an existing traffic event cluster. Traffic event reports are 

matched on a category based on 13 unique traffic event categories. Each traffic event category 

forms its own rule defining a radius and time range suited for that category. As tweets do not 

contain a geolocation from themselves, a custom geolocation approach has been developed to 

assign a location to a tweet. This method uses spatial indicators in tweets, as annotated by 

our rule-based traffic domain annotator. The method links these spatial indicators to a 

geographic location and uses an intersection technique to find a list of most relevant locations 

in a tweet. The evaluation of this method provided good results and allowed us to cluster 

tweets to the other data. The evaluation of the cluster approach showed that many event 

reports get lost as they cannot be clustered together with other event reports. Out of the 

clusters that could be created almost half could also be linked to DiTTLab traffic data.  

 

RQ5: How to develop a software system that is able to perform the detection, categorization, 
and description of non-recurrent traffic events?  
 

With the parts developed in the answering of RQs 2 to 4, a pipeline was developed that is 

able to perform the detection, categorization and description of traffic events, and store this 

data in a database. To present the collected and processed data to the user a web-based 

interactive map application was developed named SocialTerraffic. This application enables 

the user to view the traffic events and their descriptions on an interactive map. Besides, with 

this application a user is able to filter traffic events based on event category, date range and 

location. Additionally, the application is able to generate speed/flow charts based on traffic 

data related to a traffic event.  

 

All in all, this work shows that geosocial data is able to enrich traffic data to improve the 

detection, categorization, and description of non-recurrent traffic events.  
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6.2 Future Work 

This work contains many opportunities for feature research to reduce some of the threats to 

the validity of and to extend upon our work. First, there could be made improvements to our 

keyword selection approach in order to determine the cause of the limited amount of traffic 

event-related tweets collected in this study. Second, our approach could be extended by using 

more data sources that provide real road-user data. Any text-based source could be usable as 

our traffic domain annotator and geolocation method are not Twitter bound. Third, the traffic 

domain annotator could be enriched with more advanced grammatical rule structures, to 

reduce the ambiguity problems. Fourth, traffic event classification is performed based on only 

two different classifier algorithms. By comparing the achieved results in this work with 

classifiers based on other classifier algorithms, overall results could improve. Also, pre-

processing elements and features that were not implemented because of time constraints 

could be included in feature work. Fifth, in this work a tweet can be assigned to multiple 

event categories as well as multiple locations. However, it is assumed that all locations refer 

to all event categories, whereas there could exist multiple location-category couples within a 

tweet. It would be interesting to make a distinction between these two in feature work. Sixth, 

due to time constraints, we did not implement a temporal linking approach based on the text 

of a tweet. Such temporal linking approach could be useful, as the creation date of a tweet is 

not necessarily a reflection of the time a traffic event described in that tweet occurred. For 

example, an event could have happened in the past, is still ongoing, or could happen in the 

future. In this work, we already have created an annotator that is able to extract temporal 

expressions from tweet text. As future work, one could combine these temporal expressions 

with the creation date of a tweet to calculate the most probable datetime range for the traffic 

events in a tweet. In order to achieve this, one would need to create a parser that is able to 

parse human readable temporal expressions to machine-readable dates. With this approach 

another challenge arises, as tweets can then be linked to a datetime range instead of a single 

datetime. As Waze and TomTom event reports always contain a single datetime this could 

cause matching problems and the traffic event description method has to be adapted to deal 

with this mismatch problem. Seventh, our current version of the pipeline used for the 

SocialTerraffic application is not able to process data in real time. With some adaptions a 

real time version of SocialTerraffic could be developed. Lastly, in our SocialTerraffic 

application we already showed how traffic data can be linked to traffic events and used to 

create speed/flow heat maps. Therefore, it would be interesting to integrate SocialTerraffic 

into the application from DiTTLab.  
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Appendix A: Source Code Repository 

 

The source code for the SocialTerraffic System, the pipeline and all other code used for 

analysis purposes, is available on the following GitHub repository:  

 

https://github.com/BdeBock/SocialTerraffic 

However, please note that this repository is private and an invite is needed to access it. 
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Appendix B: Rule-based Traffic Domain 

Annotator Grammar 

Please note that the rules in this appendix provide a simplified overview of the actual 

implementation, and that the dictionaries are only defined once in order of their appearance.  

 

1. No Applicable Category (N/A) 
Goal: annotate tokens that are not matched by other categories 

 

2. Media Attachment 
Goal: annotate indicators of date and time. 

Rules:  

 R1: Combination of (https://t.co/ + Word(Alpha token + Number token)) 

Examples: 

 E1: #A16 Li 16,9 https://t.co/ovmSUIHLMv 

 

3. Temporal (Timex) 
Goal: annotate indicators of date and time. 

Dictionary:  

 Timex: gistermiddag rond 12:00 uur, 10 minuten geleden, daarnet. 

Rules:  

 R1: Timex token 

Examples: 

 E1: Daarnet langs een kopstaartbotsing gereden richting Middelburg. 

 

4. Advice 
Goal: annotates announcements or guidance related to traffic.  

Dictionary:  

 Advices:  e.g., pas je snelheid aan, gevaarlijke situatie 

 Advice activities:  e.g., omrijden, keer om, wijk uit 

Rules:  

 R1: Advices token | Advice activities 

Examples: 

 E1: Pas je snelheid aan er heeft net een ongeluk plaatsgevonden op de A10  

 

5. Road user transport 
Goal: annotate indicators of groups of traffic.  

Dictionary:  

 Traffic:  e.g., bestemmingsverkeer, vrachtverkeer, colonne. 

Rules:  

 R1: Traffic token 

Examples: 

 E1: Veel vakantieverkeer richting Amsterdam vandaag. 
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6. Road User Casualty  
Goal: annotate injured road users. 

Dictionary:  

 Traffic road users:  e.g., automobilist, inzittende, tegenligger. 

 General road users:  e.g., man, personen, volwassenen. 

 Casualties:  e.g., slachtoffer, doden. 

 Injuries:   e.g., gewonden, verongelukt, letsel. 

 Injury adjectives :  e.g., ernstig, eenzijdig, lichte. 

 Quantifiers:   e.g., twee, alle, meerdere. 

Rules:  

 R1: Optional(Quantifiers token) + Optional(Traffic road users token | General road 

users token | Casualties token) + Optional(Injury adjectives token) + Injuries token 

 R2: Optional(Quantifiers token) + Optional(OneOrMore(Injury adjectives token)) + 

(Traffic road users token | General road users token | Casualties token) 

 R3: Optional(Quantifiers token) + Casualties token 

Examples: 

 E1: Meerdere inzittenden ernstig gewond bij kettingbotsing op de A10. 

 E2: Tweetal ernstig gewonde voetgangers. 

 E3: Er is een slachtoffer gevallen bij een ongeluk op de A5. 

 

7. Road User Traffic 
Goal: annotate road user persons. 

Dictionary:  

 Traffic road users:  e.g., automobilist, inzittende, tegenligger. 

Rules:  

 R1: Optional(Quantifiers token) + Traffic road users token 

Examples: 

 E1: Meerdere automobilisten betrokken bij ongeval. 

 

8. Road User General 
Goal: annotate general persons. 

Dictionary:  

 General road users:  e.g., automobilist, inzittende, tegenligger. 

Rules:  

 R1: Optional(Quantifiers token) + General road users token 

Examples: 

 E1: Meerdere automobilisten betrokken bij ongeval. 
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9. Road User Vehicle 
Goal: annotate vehicle names and their brands. 

Dictionary:  

 Vehicle names:   e.g., auto, vrachtwagen, caravan. 

 Vehicle brands:   e.g., Nissan, Volvo, Hobby. 

 Vehicle colors:  e.g., red, blue, grey. 

Rules:  

 R1: Optional (Quantifiers token | Vehicle colors token) (Vehicle names token | 

Vehicle brands token). 

Examples: 

 E1: Een rode Auto met caravan achterop #busje geklapt.  

 

10. Road User Emergency service 
Goal: annotate road user emergency services and their status. 

Dictionary:  

 Road user emergency services:   e.g., ambulance, anwb, politie. 

 Road user emergency service status:  e.g., aanrijdend, ter plaatse, op locatie. 

Rules:  

 R1: Optional(Quantifiers token) + Road user emergency services token + 

Optional(zijnLit) + Optional(Road user emergency service status token) 

Examples: 

 E1: Ongeval bij knooppunt Amstel politie is ter plaatse. 

 

11. Place Location 
Goal: annotate exact locations on road infrastructure, amenities, buildings, etc. A location 

must contain a geopoint, geoline, or geoshape. 

Dictionary:  

 Places: Combination of buildings, amenities, places, etc., e.g., Zeeland, TU Delft, de 

Kuip 

 Road numbers: e.g., A10, N12, s101. 

 Infrastructures (suffix based): Combination of a custom word + infrastructure suffix, 

e.g., Lndbergstraat, Wstrschldetunnel, Leidddseplein 

Rules:  

 R1: (Places token | Infrastructures token | Road numbers token) 

Examples: 

 E1: Ongeluk met twee auto’s #A10. 

 

12. Place Location Combination  
Goal: annotate combinations of areas that have unique physical and human characteristics, 

and locations. 

Dictionary:  

 Mile markers: Combinations of road number, marker, and road side tokens, e.g., hmp 

10.2, hectometerpaaltje 13.1 

 Road lanes: e.g., linker rijbaan, spitsstrook, greppel 

 Infrastructure types: refer to rule 16. Place Infrastructure Type 

 Infrastructure suffix: Lndbergstraat, Wstrschldetunnel, Leidddseplein 
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Rules:  

 R1: Optional(tennoordenvanLit | tenwestenvanLit | tenzuidenvanLit | 

tenoostenvanLit | thvLit | opzijvanLit | nabijLit | bijLit | vlakLit | naastLit |opLit 

| inLit | linksrechtsvanLit) + Optional(~(Places token) + deLit) + (Road numbers 

token | Infrastructure suffix token | Mile marker token | Places token 

|Infrastructure types token) + Optional(deLit) + (Road numbers token | 

Infrastructure suffix token | Mile marker token | Places token | Infrastructure types 

token) 

 R2: R1 + (thvLit | opzijvanLit | nabijLit | bijLit | vlakLit | naastLit |opLit | inLit 

| linksrechtsvanLit) + Optional(~(Road numbers token | Infrastructure types token 

| Infrastructure suffix token | Mile marker token | Amenities token | Buildings 

token | Places token | Leisure token) + Optional(~(Places token) + deLit) + Road 

numbers token | Infrastructure types token | Infrastructure suffix token | Mile 

marker token | Places token) 

 R3: Optional(tennoordenvanLit | tenwestenvanLit | tenzuidenvanLit | 

tenoostenvanLit | thvLit | opzijvanLit | nabijLit | bijLit | vlakLit | naastLit |opLit 

| inLit | linksrechtsvanLit) + Optional(~(Places token) + deLit) + (Road numbers 

token | Infrastructure suffix token | Mile marker token| Places token) + (thvLit | 

opzijvanLit | nabijLit | bijLit | vlakLit | naastLit |opLit | inLit | linksrechtsvanLit) 

+ (Road numbers token | Infrastructure suffix token | Mile marker token| Places 

token) 

Examples: 

 E1: Ten noorden van de A10 is een ongeluk gebeurd. 

 E2: Autobotsing bij de McDonald’s in Amsterdam. 

 E3: Op de A10 staat een auto stil #Vlissingen. 

 

13. Place Road Section 
Goal: annotate places that make a reference to a location 

Dictionary:  

 Directions:   e.g., ->, =&gt; , in Noordelijke richting 

Rules:  

 R1: tssnLit + Optional(deLit) + (Road numbers token | Infrastructure suffix token | 

Mile marker token | Infrastructure types token | Places token) + enLit + 

Optional(deLit) + (Road numbers token | Infrastructure suffix token | Mile marker 

token | Infrastructure types token |Places token) 

 R2: Optional(vanafLit | vanLit | vanuitLit) + Optional(deLit) + (Road numbers token 

| Infrastructure suffix token | Mile marker token | Infrastructure types token | 

Places token) + Optional(deLit) + (totLit | totAanLit | naarLit | Directions token) + 

Optional(deLit) + (Road numbers token | Infrastructure suffix token | Mile marker 

token | Infrastructure types token| Places token) 

 

Examples: 

 E1: Tussen hmp 21.2 en 56.3 staat een file. 

 E2: File vanaf knooppunt Amstel tot aan hmp 13.5 
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14. Place Road Direction 
Goal: annotate a specific road direction 

Dictionary:  

 Countries:   e.g. Belgie, Duitsland 

Rules:  

 R1: (Directions token | naarLit) + Optional(~(Places token | Countries token | Road 

numbers token | Infrastructure suffix token | Mile marker token) + Arbitrary token) 

+ (Places token | Countries token | Road numbers token | Infrastructure suffix token 

| Mile marker token) 

 R2: (inLit | vanuitLit) + Directions token 

Examples: 

 E1: In de richting van Amsterdam staat het vast. 

 E2: Vanuit tegenovergestelde rijrichting rijden ambulances aan. 

 

15. Place Road Mile Marker 
Goal: annotate a specific road direction 

Dictionary: 

 Road markers:  e.g., hectometerpaal, htm, paaltje 

 Road side:  e.g., links, li, re 

Rules:  

 R1: Road numbers token + (((Optional(Road marker token) + Float number token + 

Optional(Road side token)) | (Road side token + Optional(Optional(Road marker 

token) + Float number token)))) 

 R2: Float number token + (Road numbers token + Optional(Road side token) | Road 

side token + Optional(Road numbers token)) 

 R3: (Road side token | linksrechtsVanLit) + ((Optional(Road marker token) + Float 

number token + Optional(Road numbers token)) 

 R4: Road marker token + Float number token + Optional(Road side token | Road 

numbers token) 

Examples: 

 E1: A10 10.2 li 

 E2: 12.3 A5 re  

 E3: links van hmp 12.3 

 E4: Bij hectometer 12.3 op de A10 staat een auto stil. 

 

16. Place Infrastructure Type  
Goal: annotate various types of road infrastructures. 

Dictionary:  

 Infrastructures: e.g., knooppunt, knp, tunnel 

 Roads:  e.g., autobaan, ringweg, parallelweg  

Rules:  

 R1: (Infrastructure token | Road token) 

Examples: 

 E2: Knooppunt Amstel staat weer vast. 
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17. Place Road Lane  
Goal: extract a specific lane of a road.  

Rules:  

 R1: Optional(opLit | opzijvanLit | naastLit | linksrechtsvanLit) + Optional(deLit) + 

Road lane token  

Examples:  

 E1: Olie op de vluchtstrook nabij Utrecht.  

 

18. Event Accident 
Goal: annotate traffic collisions (including consequences) between vehicles and other vehicles, 

pedestrians, animals, road debris, or other stationary obstructions.  

Dictionary:  

 Vehicle status:  e.g., brand, problemen, slip 

 Accident types:   e.g., autobrand, aanrijding, frontale botsing  

 Accident types adjectives:  e.g., dodelijk, ernstige, levensgevaarlijke 

 Accident adjectives:   e.g., gekantelde, geschaarde, vastgelopen 

 Accident verbs:   e.g., omgevallen, gekanteld, van de weg geraakt 

 Objects:   e.g., boom, obstakel, punaises 

 Traffic lights:   e.g., stoplicht, lantaarnpaal 

 Traffic signs:    e.g., bewegwijzering, matrixbord, wegmarkering 

 Animals:   e.g., zwaan, hert, wild 

Rules:  

 R1: Optional(Quantifiers token) + Accident adjectives token + Optional(Vehicle colors 

token) + (Vehicle names token | Vehicle brands token) 

 R2: Optional(Quantifiers token) + Optional(Vehicle colors token) + (Vehicle names 

token | Vehicle brands token) + Accident verbs token 

 R3: Optional(vanwegeLit | ivmLit | doorLit | alsgevolgvanLit | metalsgevolgLit | 

naLit | bijLit) + Optional(Accident type adjective token) + Accident type token + 

Optional(metLit | tegenLit | opLit | tussenLit) + Optional(Quantifiers token) + 

Optional(Accident type adjective token) + (Road user persons token | Road user 

persons token | Road user emergency services token | Vehicle names token | Vehicle 

brands token | Objects token | Traffic lights token | Traffic signs token | Animals 

token) + Optional(enLit +  (Road user persons token | Road user persons token | Road 

user emergency services token | Vehicle names token | Vehicle brands token | 

Objects token | Traffic lights token | Traffic signs token | Animals token)) 

 R4: Optional(Quantifiers token) + Optional(Vehicle colors token) + (Vehicle names 

token | Vehicle brands token) + Optional(~(Vehicle status token) + SM token) + 

Optional(inLit | tegenLit) + Optional(~(Vehicle status token) + SM token) + Vehicle 

status token 

 R5: Optional(Accident type adjectives token) + Accident token 

Examples: 

 E1: Twee geschaarde zwarte auto’s op de A10. 

 E2: Mercedes van de weg geraakt bij knooppunt Amstel. 

 E3: Vanwege ernstig ongeluk met overstekend hert. 

 E4: Auto half in de berm gelukkig geen gewonden. 

 E5: Rij net langs een zorgelijke aanrijding bij hmp 12.6. 
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19. Event Traffic jam 
Goal: annotate indicators of a traffic jam  

Dictionary:  

 Flows:   e.g., doorstromen, langzaam rijden, verkeersopstopping 

 Intensities:  e.g., drukte, spits, verkeersintensiteit 

 Intensity adjectives:  e.g., erg, enorme, korte 

 Durations:  e.g., min, minuten, uren 

 Distances:  e.g., m, km, kilometer 

Rules:  

 R1: Optional(Intensity adjectives token) + (Flows token | Intensities token) + (vanLit 

| voorLit) + Optional(~Quantifiers token + SM token) + Optional(Quantifiers token) 

+ (Distances token | Durations token) 

 R2: Optional(Quantifiers token) + Distances token + Flows token 

 R3: Optional(Quantifiers token) + Durations token +  Optional(~(Flows token) + 

Arbitrary token) + Flows token 

 R4: Optional(Intensity adjectives token) +  (Flows token | Intensities token) 

Examples: 

 E1: Korte file van 10 minuten voor de Kuip. 

 E2: Kilometer stapvoets rijdend richting Amsterdam. 

 E3: 10 min wachten vanwege ongeluk voor ons. 

 E4: Mega paasdrukte op de A10. 

 

20. Event Closure 
Goal: annotate indicators of road/lane closures 

Dictionary:  

 Closures:  e.g., afsluiting, afkruizing, wegversperring 

 Closure status:   e.g., afgesloten, dicht, geblokkeerd 

 Closure adjective:  e.g., dichte, afgebakende, versperde 

 Closure signs:  e.g., ❌, rood kruis 

Rules:  

 R1: Optional(Quantifiers token) + Optional(deLit) + (Road lanes token | 

Infrastructures token | Roads token) + Optional(~Closure status token + Arbitrary 

token) + Closure status token 

 R2: Optional(Quantifiers token) + Closure adjective token + (Road lanes token | 

Infrastructures token | Roads token) 

 R3: Optional(inLit | vanuitLit) + Directions token + (R1 | R2) 

 R4: (R1 | R2) + Optional(inLit | vanuitLit) + Directions 

 R3: (Closures token | Closure signs token| Closure status token) 

Examples: 

 E1: Meerdere rijbanen zijn afgesloten 

 E2: Afgebakende vluchtstrook richting knooppunt Amstel. 

 E3: In westelijke richting rijbaan afgesloten. 

 E4: Rijbanen gesloten in beide richtingen. 

 E5: Doorgaand rijverkeer gestremd tot 21:00 vanavond.  
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21. Event Enforcement 
Goal: annotate indicators of activities held by traffic enfocement agencies 

Dictionary:  

 Monitoring:  e.g., alcoholcontrole, snelheidscontrole, flitser  

Rules:  

 R1: Monitoring token 

Examples: 

 E1: Alcoholcontrole op de A2 richting Den Bosch. 

 

22. Event Hazard Violation 
Goal: annotate indicators of law violating activities 

Dictionary:  

 Violations:  e.g., bumperkleven, spookrijden, afsnijden 

 Speeds verbs:  e.g., scheuren, racen, rijden, scheurt 

 Speed limits:  e.g., adviessnelheid, snelheidslimiet 

 Speed adjectives: e.g., hoge, maximum 

 Speed adverbs:  e.g., te hard, te snel 

Rules:  

 R1: Speed adverbs token + Speed verbs token 

 R2: Speed verbs token + Speed adverbs token 

 R3: Optional(Speed verbs token) + Speed adverbs token + Optional(Speed verbs token) 

+ danLit + Optional(~(Speed limits token) + Arbitrary token) + Speed limits token 

 R4: (Violations token | Speed adverbs token) 

Examples: 

 E1: Auto kwam hard aanrijdend en botste met voorligger. 

 E2: Zie auto’s weer veel te hard rijden op de A10. 

 E3: Meerdere auto’s rijden harder dan is toegestaan op de A58. 

 E4: Auto achter me loopt weer lekker te bumperkleven. 

 

23. Event Hazard Traffic Sign 
Goal: annotate indicators of broken or unreadable, or missing traffic signs.  

Dictionary:  

 Traffic signs:   e.g., bewegwijzering, matrixbord, wegmarkering 

 Traffic sign defects: e.g., geen zicht op, onduidelijk, missend 

Rules:  

 R1: Optional(Quantifiers token) + Traffic signs token + Optional(~(Traffic sign defects 

token) + SM token) + Traffic sign defects token 

 R2: Optional(Quantifiers token) + Traffic sign defects token + Optional(~(Traffic sign 

token) + SM token) + Traffic sign token 

 R3: Optional(Quantifiers token) + Optional(Traffic sign defects token) + 

Optional(erLit) + Optional(deLit) + Traffic signs token + (opLit | nabijLit | langsLit 

| bijLit | vlakLit | naastLit | bovenLit | inLit | halverwegeLit | overLit) + 

Optional(deLit) + (Road lanes token | Infrastructures token | Roads token) 

 R4: Optional(Quantifiers token) + Traffic signs token + Optional(Traffic sign defects 

token) + (opLit | nabijLit | langsLit | bijLit | vlakLit | naastLit | bovenLit | inLit 

| halverwegeLit | overLit) + Optional(deLit) + (Road lanes token | Infrastructures 

token | Roads token) 
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Examples: 

 E1: Verkeersbord niet duidelijk 

 E2: Onduidelijk verkeersbord 

 E3: Defect matrixbord boven de rechter rijbaan 

 E4: Matrixbord defect boven de rechter rijbaan 

 

24. Event Hazard Traffic Light 
Goal: annotate indicators of malfunctioning or broken traffic lights  

Dictionary:  

 Traffic lights:  e.g., stoplicht, verlichting, lantaarnpaal 

 Traffic light defects: e.g., defect, brandt niet, op hol 

Rules:  

 R1: Optional(Quantifiers token) + Traffic lights token + Optional(~(Traffic light 

defects token) + Arbitrary token) + Traffic light defects token 

 R2: Optional(Quantifiers token) + Traffic light defects token + Optional(~(Traffic 

lights token) + Arbitrary token) + Traffic light token 

 R3: Optional(Quantifiers token) + Traffic lights token + Optional(~(Traffic light 

defects token) + Arbitrary token) + Traffic light defects token + (opLit | nabijLit | 

langsLit | bijLit | vlakLit | naastLit | bovenLit | inLit | halverwegeLit | overLit) + 

Optional(deLit) + (Road lanes token | Infrastructures token | Roads token) 

 R4: Optional(Quantifiers token) + Traffic light defects token + Optional(~(Traffic light 

token) + Arbitrary token) + Traffic light token + (opLit | nabijLit | langsLit | bijLit 

| vlakLit | naastLit | bovenLit | inLit | halverwegeLit | overLit) + Optional(deLit) 

+  (Road lanes token | Infrastructures token | Roads token) 

Examples: 

 E1: Stoplicht op hol  

 E2: Defect verkeerslicht 

 E3: Lantaarnpalen branden niet langs de rechter baan A10 

 E4: Defecte straatverlichting nabij uitvoegstrook richting Middelburg A58. 

 

25. Event Hazard Weather 
Goal: annotate indicators of bad weather conditions. 

Dictionary:  

 Weather types:   e.g., bliksem, hagel, mistbank, windhozen 

 Weather vision: e.g., beperkt zicht, slecht zicht 

 Weather adjectives: e.g., beperkt, felle, laagstaande 

Rules:  

 R1: Optional(vanwegeLit | metLit | doorLit | tijdensLit) + Optional(deLit) + 

Optional(Weather adjectives token) + (Weather types token | Weather vision token) 

 R2: Optional(vanwegeLit | metLit | doorLit | tijdensLit) + Optional(deLit) + 

Optional(Weather adjectives token) + (weerLit) 

 R3: R1 + (opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | bovenLit |inLit | 

overLit) + Optional(deLit) +  (Road lanes token | Infrastructures token | Roads token) 

 R4: (Weather types token | Weather vision token) + (opLit | nabijLit | langsLit | 

bijLit | vlakLit| naastLit | bovenLit |inLit | overLit)  + Optional(deLit) +  (Road 

lanes token | Infrastructures token | Roads token) 

 

Examples: 
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 E1: Harde windstoten zorgen voor gevaarlijke situaties op de A5. 

 E2: Belabberd weer in Zeeland verstoort het verkeer op de A58. 

 E3: Vanwege heftige ijzel op de vluchtstrook is deze afgesloten. 

 E3: Ijs op de rechter baan richting knooppunt Amstel. 

 

26. Event Hazard Stopped Vehicle 
Goal: annotate indicators of stopped vehicles due to breakdown.   

Dictionary:  

 Stopped car verbs: e.g., stopt, staat stil, tot stilstand 

 Stopped car causes: e.g., klapband, motorpech, lege tank 

Rules:  

 R0: Optional(Vehicle color token) + (Vehicle token | Vehicle brand token) 

 R1: Optional(Quantifiers token) + R0 + metLit + Stopped car causes token+  

Optional((opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | inLit) + 

Optional(deLit) + (Road lanes token | Infrastructures token | Roads token))  

 R2: Optional(Quantifiers token) +  Stopped car verbs token + R0 + (vanwegeLit | 

ivmLit | doorLit | tgvLit | alsgevolgvanLit | metalsgevolgLit | naLit | metLit) + 

Stopped car causes token + Optional((opLit | nabijLit | langsLit | bijLit | vlakLit| 

naastLit | inLit) + Optional((opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit 

| inLit) + Optional(deLit) + (Road lanes token | Infrastructures token | Roads token))  

 R3: Optional(Quantifiers token) + R0 + Stopped car verbs + (vanwegeLit | ivmLit | 

doorLit | tgvLit | alsgevolgvanLit | metalsgevolgLit | naLit | metLit) + Stopped car 

causes token + Optional((opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | 

inLit) + Optional(deLit) + (Road lanes token | Infrastructures token | Roads token) 

 R4: Stopped car causes token 

Examples: 

 E1: Meerdere auto’s met pech. 

 E2: Stilstaande auto met rookontwikkeling op de vluchtstrook.  

 E3: Auto staat stil door klapband. 

 E4: Pechgevalletje op de A10 richting Amsterdam. 
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27. Event Hazard Roadwork 
Goal: annotate indicators of unplanned roadwork activities.   

Dictionary:  

 Roadwork:  e.g., opruimingswerkzaamheden, spoedreparatie, onderzoek 

Rules:  

 R1: Optional(vanwegeLit | ivmLit | doorLit | tgvLit | alsgevolgvanLit 

|alsgevolgvanLit | metalsgevolgvanLit | naLit) + Optional(~Roadwork token + 

Arbitrary token) + Roadwork token + Optional(aanLit | vanLit | opLit | nabijLit | 

langsLit | bijLit | vlakLit| naastLit) + Optional(~(Vehicle names token | Vehicle 

brands token | Road lanes token | Infrastructures token) + Arbitrary token) + 

(Vehicles names token | Vehicle brands token | Objects token |Road lanes token | 

Infrastructures token | Roads token) 

 R2: Roadwork token + Optional(aanLit | vanLit) + Optional(~(Vehicles names token 

| Vehicle brands token | Objects token |Road lanes token | Infrastructures token) + 

Arbitrary token) + (Vehicles names token | Vehicle brands token | Objects token 

|Road lanes token | Infrastructures token | Roads token) 

 R3: Roadwork token 

Examples: 
 E1: Vanwege spoedreparatie aan het wegdek 

 E2: Opruimingswerkzaamheden van brokstukken. 

 E3: Spoedreparatie knooppunt Amstel hou rekening met je snelheid.  

 

28. Event Hazard Object 
Goal: annotate indicators of foreign objects and road debris that could cause dangerous 

situations. 

Dictionary:  

 Object adjectives: e.g., loshangend, kapotte, omgewaaide 

Rules:  

 R1: Optional(Quantifiers token) + Object adjectives token + Optional(erLit) + 

Optional(deLit) + Objects token 

 R2: Optional(Quantifiers token) + Objects token + Object adjectives token 

 R3: Optional(Quantifiers token) + Optional(Object adjectives token) + Optional(erLit) 

+ Optional(deLit) + Objects token + (opLit | nabijLit | langsLit | bijLit | vlakLit| 

naastLit | bovenLit | inLit | halverwegeLit | overLit) + Optional(deLit) +  (Road 

lanes token | Infrastructures token | Roads token)) 

 R4: Optional(Quantifiers token) + Objects token + Optional(Object adjectives token) 

+ (opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | bovenLit | inLit | 

halverwegeLit | overLit) + Optional(deLit) +  (Road lanes token | Infrastructures 

token | Roads token)) 

Examples: 

 E1: Gevaarlijke restanten worden momenteel opgeruimd bij afslag Delft. 

 E2: Boom omgevallen pas op afslag Goes #A58 

 E3: Honderden punaises op het wegdek richting knooppunt Amstel. 

 E4: Boom omgewaaid op de rechterbaan A10. 
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29. Event Hazard Animal 
Goal: annotate indicators animals or roadkill on the road. 

Dictionary:  

 Animal adjectives: e.g., overreden, loslopend, overstekende 

Rules:  

 R1: Optional(Quantifiers token) + Animals adjectives token + Optional(~(Animals 

token) + Arbitrary token) + Animals token  

 R2: Optional(Quantifiers token) + Animals token + Animals adjectives token 

 R3: Optional(Quantifiers token) + Animals adjectives token + Optional(Animals 

token) + (opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | inLit | 

halverwegeLit) + Optional(deLit) +  (Road lanes token | Infrastructures token | 

Roads token) 

 R4: Optional(Quantifiers token) + Animals token + Optional(Animals adjectives 

token) +  (opLit | nabijLit | langsLit | bijLit | vlakLit| naastLit | inLit | 

halverwegeLit) + Optional(deLit) + (Road lanes token | Infrastructures token | Roads 

token) 

 

Examples: 

 E1: Er ligt een aangereden gans. 

 E2: Gans aangereden richting Amsterdam. 

 E3: Meerdere aangereden ganzen op de vluchtstrook. 

 E4: Hond loslopend op in de berm. 

 

30. Event Hazard Roadcondition 
Goal: annotate indicators of a road condition hazard event. 

Dictionary:  

 Road conditions:   e.g., spoorvorming, aquaplaning, staand water 

 Road condition adjectives:  e.g., beschadigd, gaten, gevaarlijk 

Rules:  

 R1: Road condition adjectives token + Optional(inLit | opLit) + Optional(deLit) + 

(Road lanes token | Infrastructures token | Roads token) 

 R2: Optional(deLit) + (Road lanes token | Infrastructures token | Roads token) + 

Optional(metLit) + Optional(~(Road conditions) + Adjective token) + (Road conditions 

token | Road condition adjectives token) 

Examples: 

 E1: Gat in wegdek #A5 li 13.24 afrit Middelburg 

 E2: Vluchtstrook met veel staand water thv hmp 12.3 

 

 


