
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

Design of an Unsupervised
Machine Learning Approach
to Fault Detection for
CubeSat AOCS
Applied to LUMIO: Lunar Meteoroid Impact Observer

Master Thesis
Kasper De Smaele

Design of an
Unsupervised Machine
Learning Approach to
Fault Detection for
CubeSat AOCS

Applied to LUMIO: Lunar Meteoroid Impact
Observer

by

Kasper De Smaele

Student Number 4482433

to obtain the degree of Master of Science in Aerospace Engineering

at the Delft University of Technology,

to be defended publicly on Friday May 12, 2023 at 10:00 AM.

Supervisor: Dr. Angelo Cervone
Duration: October, 2022 - April, 2023
Faculty: Aerospace Engineering, Delft
Department: Space Systems Engineering

Thesis committee: Dr. A. Cervone, TU Delft, Astrodynamics & Space Missions
Dr. S.M. Cazaux TU Delft, Astrodynamics & Space Missions
Dr. S. Speretta TU Delft, Space Systems Engineering

Cover: Rendering of LUMIO Spacecraft observing the Lunar sur-
face - courtesy of ESA (Modified)

Preface

This thesis is the final part of my now complete education as an Aerospace Engineer at TU
Delft. After graduating from the BSc program in 2018, I set out to explore what it was like
working as an engineer in the aerospace industry as well as in a global corporate environ-
ment. However, the urge to come back and complete the master program kept growing. After
the past two challenging years with a steep academic and personal learning curve, an intern-
ship, a thesis, and so many interesting people and projects I can honestly say I do not regret
the decision at all.

This thesis project is the result of 9 months of reviewing literature, speaking to experts, trying,
failing, and trying again. I want to thank my supervisor, Dr. Angelo Cervone, for the opportu-
nity, the guidance, and the belief during this project. From Deimos, I would also like to thank
Giovanni Bay and Paulo Rosa for their support and insights on LUMIO provided in the early
stages of this project.

I have endured a lot of hardship and adversity during the past two years, and would like to
thank those who stood by me, believed in me, and encouraged me. I want to say thank you
to all the people who supported me in one way or another in the past two years.

Specifically, to my Dad, who continues to believe in me and always encourages me to follow
my dreams and have fun in life, a big thank you. The lessons you provide are invaluable. To
Bart, Els, and Billie, thank you for the encouragement and always being willing and happy
to help, and for treating me as one of your own. To my grandmother, Francine, thank you
for continuing to push me to finish my education, and for providing the support when needed.
”Aim high, the arrow drops as it flies” is a saying that is engraved in my mind and guides me.
I also want to thank Pieter, without whom this whole adventure would have been significantly
harder. Last but absolutely not least, to Emma, I don’t know how I would have gotten to where
I am today without you. As far as words can describe gratitude, thank you for literally being
there all the time, laughing at my (sometimes low quality) jokes, for understanding the stress
and late nights that come with a thesis, and for making the future look incredibly bright.

Kasper De Smaele
Delft, May 2023

i

Abstract

CubeSats suffer from low reliability and have little to no Fault Detection, Isolation and Recov-
ery mechanisms onboard. Advanced CubeSat missions such as the Lunar Meteroid Impact
Observer (LUMIO), will use more complex attitude determination and control systems, increas-
ing the need for advanced fault detection. Traditionally this requires model-based fault detec-
tion methods which are complicated, computation heavy, and highly sensitive to disturbances.
Machine learning has proven proficient at fault detection in several non-space related applica-
tions, but training data including spacecraft faults is not available. In this research an especially
lightweight unsupervised learning method for fault detection is designed for the LUMIO attitude
determination and control components. The result is a system capable of detecting artificially
induced bias, calibration error, and drifting measurement faults on the scale of 0.1 mrad/s
in the IMU, with no false alarms being raised. The method was tested on simulated LUMIO
telemetry from the IMU and reaction wheels as well as on real spacecraft telemetry from the
OPS-SAT sun sensor, star tracker, reaction wheels and IMU. In both cases, excellent fault
detection and false alarm performance was observed indicating the potential of this method
for application in CubeSat AOCS fault detection and isolation.

ii

Executive Summary

This thesis describes the design of a novel model-based fault detection method, focussed on
the AOCS systems of CubeSats. Specifically, it is applied to deep space CubeSats as these
missions exhibit more complex architectures and a much lower risk tolerance compared to
traditional CubeSats. In this thesis, the Lunar Meteroid Impact Observer (LUMIO) mission is
used as a case study. Based on a failure analysis and trade study for the LUMIO AOCS, an
unsupervised machine learning method for fault detection is designed in this thesis.

Literature Gap and Research Question
Based on a literature review performed on deep space CubeSats, spacecraft Fault Detection,
Isolation and Recovery (FDIR), and the Lunar Meteroid Impact Observer (LUMIO) mission
a gap was identified in the research. CubeSats have revolutionised access to space, with
their low cost, a vast body of knowledge and experience, and off-the-shelf components read-
ily available. In recent years, the CubeSat platform has been making its next steps in space
exploration, venturing to the Moon, Mars and even asteroids.

However, the reliability of the platform is still very poor: 20% of CubeSat missions are dead-on-
arrival, with as much as 40% of missions failing within the first 100 days in orbit. Additionally,
this reliability decreases further as the mission profile becomes less typical, such as with deep
space missions. Despite these statistics, the CubeSat platform typically incorporates only
very basic FDIR mechanisms. This can be attributed to a lack of expertise, resources, and
the general difficulty in designing a validated onboard FDIR system, or simply because the
cost does not match the benefit in the case of low-cost missions. The deep space CubeSat
missions however will need this type of fault detection system considering their more complex
architecture, and the reduced risk tolerance compared to Earth orbiting missions.

Creating such an advanced yet accessible FDIR system which can operate on deep space
CubeSats is a vast task, so as a starting point in this thesis the case study of LUMIO is used.
Specifically, one of the most complex and critical subsystems is focused on: the Attitude and
Orbit Control System (AOCS). The research objective is formulated as:

To contribute to the improvement of deep space CubeSat reliability and failure robust-
ness by designing a model-based Fault Detection approach for LUMIO’s AOCS.

This leads to the research questions:

1. RQ1: What are the most critical failure modes of the LUMIO AOCS subsystem which
can be detected, isolated and recovered?

2. RQ2: How can the most critical faults be detected (and isolated) using a model-based
method?

3. RQ3: How accurate is the proposed method at detecting faults in the LUMIO AOCS
system?

iii

iv

Fault Analysis
In order to design a fault detection system, one needs to understand the faults which are most
likely to be encountered and their effects. For that reason a Fault Tree Analysis (FTA) is per-
formed for the LUMIO AOCS system, complemented by a Failure Mode Effects and Criticality
Analysis (FMECA). These two analysis resulted in the criticality matrix shown in Table 1, which
uncovered 53 feasible failures in the LUMIO AOCS of which 20 critical failure scenarios. Of
these critical faults, 10 are related to incorrect or unavailable sensor data. Therefore, it is
imperative that such faults are detected swiftly and accurately.

Probability (PN)
1 2 3 4Severity SN
Extremely Remote Remote Occasional Probable

Catastrophic 4

Critical 3

STR.03 STR.04 STR.08
RW.03 RW.04 RW.05
RW.06 RW.07 RW.08
IMU.01 IMU.02 IMU.03
IMU.04 IMU.05 RCS.01
MT.01 MT.07 MT.08
AOCS.01

STR.01 STR.10 RW.01
STR.05 STR.11 RW.02
STR.09 STR.12 IMU.06
IMU.07 IMU.08 RCS.02
RCS.03 MT.02 MT.06
OBC.01

RCS.04
MT.04

Major 2 STR.06 SADA.01
STR.02 RW.09 MT.03
SADA.02 SADA.03
SADA.04

RCS.05
MT.05

Negligible 1 SS.01 SS.02 SS.03 STR.07 SS.04 SS.05

Table 1: Criticality Matrix for LUMIO AOCS (fault IDs refer to the FMECA IDs in Appendix B)

Based on the aforementioned analysis, a set of 35 FDIR requirements for LUMIO were gen-
erated. This requirements set served as the basis for a trade study of possible model-based
fault detectionmethods, of which themost feasible were traded. Following concept exploration,
weight and criteria setting, scoring, and a sensitivity analysis, the neural network approach to
fault detection was selected as the winner.

Spacecraft Telemetry and Fault Simulation
In order to train a neural network, qualitative spacecraft AOCS telemetry is needed as well
as fault data. These are not readily available however, and are simulated for this thesis. The
LUMIO IMU and ReactionWheel (RW) telemetry is simulated by the design team at Politecnico
di Milano for the four different operational scenarios shown in Figure 1 and Figure 2:

• Slew: 30 minute simulation of LUMIO slewing from Moon pointing to Earth pointing and
then back to Moon acquisition. (Figure 1a)

• Detumbling - high velocity: simulation of detumbling from high initial angular rates (up
to 0.15 rad/s on each axis) within 30 minutes. (Figure 1b)

• Detumbling - low velocity: simulation of detumbling from low initial angular rates (up
to 0.03 rad/s on each axis) within 30 minutes. (Figure 1c)

• Lunar Tracking: the spacecraft holds the camera pointing steadily at the moon for a
period of 7 days (Figure 2a and Figure 2b)

v

(a) Simulated LUMIO IMU Output: Slew
manoeuvre, Moon-Earth-Moon within 30 minutes

(b) Simulated LUMIO IMU Output: high velocity
detumbling

(c) Simulated LUMIO IMU Output: low velocity
detumbling

Figure 1: Slew and Detumbling simulated IMU Data (source: Politecnico di Milano)

(a) Simulated LUMIO IMU rate measurement
during 15 days of lunar tracking

(b) Simulated LUMIO Reaction Wheel momentum
loading [Nms] during 15 days of lunar tracking

Figure 2: Simulated Lunar Tracking IMU and reaction wheel data (source: Politecnico di Milano)

Fault Engineering
A range of credible faults collected from literature are artificially introduced in the LUMIO
telemetry. These faults are shown in Figure 3 for the LUMIO IMU data. These include both
directly detectable fault features (step bias, outliers, erratic behaviour) as well as faults which
require model-based approaches (bias, drift, calibration error) to detect. The faults, their po-
tential sources, and the magnitude of the artificially introduced fault are shown in Table 2 and
Table 3 for non-model based and model-based detectable faults respectively.

vi

(a) Step bias fault (b) Erratic behaviour fault (c) Outlier fault

(d) Bias fault (e) Drift fault (f) Calibration fault

Figure 3: Examples of faults introduced into the LUMIO IMU Readings

Fault Type Potential root causes Quantification Reasoning
Step Bias Single Event Upset (SEU), ground

loops, software bug
+0.002 rad/s LUMIO pointing re-

quirements
Erratic Be-
haviour

EM interference (external, internal), AD-
C/connector hardware fault, ground
loops, thermal noise

0.01 rad/s
STD

Standard devia-
tion nominal noise

Outlier SEU, processing/ sampling error Spike +0.1
rad/s

+1 Order of Magni-
tude

Table 2: List of directly detectable IMU faults, sources, and quantification for LUMIO

Fault Type Potential root causes Quantification Reasoning
Bias Damage, ground loops, software bug +0.01 rad/s STIM Specifica-

tions
Signal drift Temperature effects, ageing, interfer-

ence, stress, calibration issues
0.0005 rad/s2 LUMIO pointing re-

quirements
Loss of ac-
curacy

Calibration error, temperature effects x1.75 LUMIO pointing re-
quirements

Table 3: List of model-based detection IMU faults, sources and quantification for LUMIO

Since the LUMIO data is simulated, real satellite telemetry is also sourced from ESA’s OPS-
SAT in order to validate the fault detection method. This data includes the downlinked data
from the IMU, Reaction Wheel, Sun Sensor, and Star Tracker.

Design of Neural Network Based Detection Method
After an exploration of neural network based fault detection concepts, the unsupervised learn-
ing approach using an autoencoder is chosen. The unsupervised learning approach is very
applicable in this case as labelled fault data is not available, and overrepresentation (very little
fault data compared to nominal data) is a very real problem in anomaly detection networks. The

vii

fault detection method is schematically shown in Figure 4. The autoencoder network learns
to accurately reconstruct nominal telemetry. When faced with faulty spacecraft telemetry, it is
unable to reconstruct this data accurately and the reconstruction error will increase indicating
the presence of a fault. The threshold is chosen such that false alarms are minimised while
still detecting all faults.

Figure 4: Fault detection process using autoencoder and reconstruction of signature matrices

The network was designed as a lightweight, simple architecture network which is able to run
onboard CubeSats without consuming excessive resources. Following tuning of the network
hyperparameters, the final design is shown in Table 4.

Parameter Value
Number of encoding layers 2
Number of decoding layers 2
Neurons in encoding layer 1 260
Neurons in encoding layer 2 64
Activation function ReLu
Activation function output Sigmoid
Neurons in latent space 12
Neurons in decoding layer 1 64
Neurons in decoding layer 2 260
Dropout (all layers) 0.1
Number of training epochs 10
Batch size 75
Optimiser function ADAM
Loss function MSLE

Table 4: Autoencoder hyperparameters

Signature Matrix Method
To perform model-based fault detection, the signals are not directly fed into the proposed
network but rather correlated first through a signature matrix. This signature matrix forms an
image which correlates the rate measurements of the IMU with the momentum loading of the
reaction wheels. The seven LUMIO measurements (3x IMU, 4x RW) form the 7x7 signature
matrix shown as a heatmap in Figure 5. In this matrix every elementmij at row i, column j, is
the dot product of the two corresponding telemetry streams.

viii

Figure 5: LUMIO Normalised Signature Matrix example with telemetry locations

The reconstruction of the matrix using the autoencoder network can be seen in Figure 6. Here,
Figure 6c is generated from the same telemetry as the matrix shown in Figure 6a, but with a
drift fault introduced. A non-nominal pattern is introduced by the fault in the upper left corner,
and from Figure 6d it can be seen that the reconstruction is far from successful (4 orders of
magnitude larger) compared to the reconstruction of the fault-free matrix seen in Figure 6b.

(a) IMU and Reaction Wheel
telemetry signature matrix under

nominal conditions

(b) Autoencoder reconstructed
nominal signature matrix.
ϵrec = 2.13x10−5 (MSLE)

(c) Signature matrix with induced drift
fault in LUMIO IMU telemetry

(d) Autoencoder reconstructed fault
signature matrix ϵrec = 0.611 (MSLE)

Figure 6: Autoencoder reconstruction of nominal and faulty signature matrices (LUMIO, 7x7 matrices)

ix

Results
Using the simulated telemetry and the engineered faults for LUMIO, the fault detection network
was tested. It was found that all model-based faults were accurately detected. The signature
matrix of each fault can be seen in Figure 7 and the reconstructions of these signature matrices
can be seen in Figure 8. It can be seen that especially bias and drift faults are easily detected.
The detection results per model-based fault are shown in Table 5.

Fault
Type

ID Measurement Size Detection
LUMIO

Detection
OPS-SAT

Bias

1 Angular rate x-axis

0.01 rad/s

✓ ✓
2 Angular rate y-axis ✓ ✓
3 Angular rate z-axis ✓ ✓
4 Angular rate x-axis + z-axis ✓ ✓

Drift

5 Angular rate x-axis

0.0005 rad/s2
✓ ✓

6 Angular rate y-axis ✓ ✓
7 Angular rate z-axis ✓ ✓
8 Angular rate x-axis + z-axis ✓ ✓

Loss of
Accuracy

9 Angular rate x-axis

x1.75

✓ ✓
10 Angular rate y-axis ✓ ✓
11 Angular rate z-axis ✓ ✓
12 Angular rate x-axis + z-axis ✓ ✓

Table 5: Detection results IMU faults using signature matrices for LUMIO (IMU + RW, 7x7 matrices) and
OPS-SAT (11x11 matrices)

Figure 7: Signature matrices of bias, drift, and loss of accuracy faults introduced in LUMIO IMU signals

x

Figure 8: Signature matrices of Figure 7 reconstructed by autoencoder including MSLE reconstruction error.
Detection threshold τ = 3.93x10−4

On the other hand, no false alarms were raised when the network was faced with a stream of
700 seconds of nominal telemetry, provided that the detection threshold is tuned accurately.
This threshold is set by taking the standard deviation σ of the set of reconstruction errors of
fault-free signals, and setting the threshold at a certain amount of standard deviations from
the mean of this set of nominal values. As can be seen in Figure 9, at 1 standard deviation
there are some risks of false alarms: a false alarm is triggered when the threshold is exceed
three times in a row.However, a 10σ detection threshold provides the required fault detection
performance while avoiding all risks of false alarms.

(a) False alarms with 1 σ detection threshold (b) False alarms with 10 σ detection threshold

Figure 9: LUMIO False Alarm Rate in 700 seconds of nominal telemetry

OPS-SAT Fault Detection
As a final step, this system was tested on the real, processed, satellite telemetry from OPS-
SAT. The results are shown under the ’OPS-SAT’ column in Table 5, and the reconstruction

xi

errors are found in Figure 10. This graph indicates that although the reconstruction errors
are lower in absolute value than with LUMIO, they still exceed the detection threshold by at
least one order of magnitude in the worst case. This indicates that even when faced with noisy,
variable, real spacecraft telemetry the network exhibits good fault detection performance while
maintaining no false alarms.

Figure 10: Fault detection results OPS-SAT Data

Computational Performance
A quantitative and qualitative estimation of the impact of using this network on onboard com-
putational resources was made. Comparison to the current state of the art neural networks
which have been flown on smallsats today show that this network is tens of thousands times
lighter in the number of neurons compared to the heavy payload processing networks. Es-
timations based on the LUMIO OBC also showed that the network requires around 0.2% of
the available computing power if run every 10 seconds. These two assessment indicate that
the computational power required to run it will not be an issue for implementation onboard
CubeSats.

xii

Conclusion & Recommendations
In conclusion, it was found that a neural network based approach could be a promising model-
based fault detection method, which is also accessible to CubeSat developers and able to
be run on onboard hardware. The designed network is easily able to detect faults based on
the reconstruction error of the signature matrices. When faced with a fault, the reconstruction
error increases by two to four orders of magnitude, raising an alarm. Even those subtle faults
such as drifts or small biases in the order of a few milliradians, which amount to at most 6
degrees of pointing offset for LUMIO, are detected in all signals of the IMU. It was found that
the detection threshold can be tuned such that the system fault detection rate is 100% for the
engineered fault set, while no false alarms are triggered.

When testing the method on real spacecraft telemetry coming from ESA’s OPS-SAT, which
includes telemetry from the sun senors, IMU, reaction wheels, and star trackers. The fault
detection accuracy was again 100% for the engineered fault set while not triggering any false
alarms. Therefore it is considered a highly promising method for fault detection (and possibly
isolation) in CubeSats and other missions.

Based on this simple case study, further work recommended is focused on four areas:

• Improve data quality: using real, unprocessed spacecraft telemetry and real fault data
would drastically improve the performance of the network.

• Improve network capabilities: the fault patterns in the signature matrices could be
used to perform fault isolation. This requires real fault data or fault simulation on flight
hardware.

• Improve efficiency: fine-tune network size and architecture for increased performance
with reduced impact on computational resources.

• Create proper validation setup: in-flight testing on missions such as OPS-SAT would
be preferable but are risky due to the purposeful introduction of faults in the system.
Testing the system in a flatsat setup (spacecraft is electronically fully integrated) would
be the next best option.

Contents

Preface i

Abstract ii

Executive Summary iii

List of Symbols xvi

List of Figures xvii

List of Tables xviii

List of Abbreviations xx

1 Introduction 1
1.1 Literature Gap . 1
1.2 Research Question and Objective . 2
1.3 LUMIO Case Study . 3
1.4 Thesis Outline . 3

2 Literature Study 4
2.1 Deep Space CubeSats . 4
2.2 LUMIO . 4

2.2.1 Scientific Objectives . 5
2.2.2 Mission Profile . 6
2.2.3 Mission Phases . 6
2.2.4 Architecture . 7

2.3 FDIR . 10
2.3.1 Traditional Spacecraft FDIR . 10
2.3.2 Overview of Model Based Methods . 11
2.3.3 FDIR in Deep Space CubeSats . 13

3 LUMIO Fault Analysis 15
3.1 LUMIO Fault Tree Analysis . 15

3.1.1 The FTA Methodology . 15
3.1.2 LUMIO FTA . 16
3.1.3 FTA Results . 18

3.2 FMECA . 19
3.2.1 Scope of the FMECA . 20
3.2.2 FMECA Results . 20
3.2.3 Fault Register . 23

3.3 FDIR Requirements . 23
3.3.1 General Requirements . 24
3.3.2 Functional Requirements . 24
3.3.3 Performance Requirements . 25

3.4 Trade Study . 25
3.4.1 Design Options . 26
3.4.2 Trade Criteria and Weights . 26

xiii

Contents xiv

3.4.3 Trade Off Results . 28
3.5 Alternate Scoring and Critical Review . 28

4 Fault Data Simulation 29
4.1 Fault Definition and Simulation Method . 29

4.1.1 Directly Detectable Faults (Non Model Based) 30
4.1.2 Faults Requiring Cross Checks (Model Based) 31
4.1.3 Other fault types . 32

4.2 LUMIO AOCS Telemetry Simulation . 33
4.2.1 GAFE Simulator . 33
4.2.2 Simulated LUMIO Telemetry: Politecnico di Milano 35

4.3 Real Satellite Telemetry: OPS-SAT . 36

5 Design of Fault Detection Method 38
5.1 Introduction to Neural Networks . 38

5.1.1 Weights and Bias . 39
5.1.2 Activation Function . 39
5.1.3 Loss Function . 40
5.1.4 Autoencoder Explained . 41
5.1.5 Effectiveness Metrics for Neural Networks 42

5.2 Exploration of Fault Detection Methods Using Neural Networks 43
5.2.1 Signal Level Fault Detection . 43
5.2.2 Neural Network Based Nonlinear Regression and Residual Generation 43
5.2.3 Neural Network Based Fault Classification 44
5.2.4 Time Series Correlation . 44
5.2.5 Other Methods . 44
5.2.6 Challenges in Neural Network Based FD 45
5.2.7 Selection of Unsupervised Learning for this Thesis 45

5.3 Training Data . 46
5.3.1 Data Structure . 46
5.3.2 Normalisation . 46
5.3.3 Reserving Validation Data . 48

5.4 Design of the Autoencoder Network . 49
5.4.1 Design Philosophy . 49
5.4.2 Detection Mechanism . 49
5.4.3 Network Hyperparameter Tuning . 50
5.4.4 Final Network Architecture . 54

6 Results 55
6.1 Detection of Signal Level Faults in LUMIO IMU 55

6.1.1 False Alarm Rate . 56
6.2 Model-Based Fault Detection in LUMIO Data 57

6.2.1 Signature Matrix Method . 58
6.2.2 Fault Detection Results LUMIO Data . 60
6.2.3 False Alarm Rate . 62

6.3 Model Based Fault Detection in OPS-SAT Telemetry 63
6.3.1 Fault Detection Results OPS-SAT . 63
6.3.2 False Alarm Rate . 66

6.4 Analysis of Results . 67
6.4.1 Limitations . 67

6.5 Computational Resources . 67
6.5.1 Comparison to State of the Art . 68

Contents xv

6.5.2 Estimation of Number of Operations . 68
6.6 A Note on Verification and Validation Activities 68

7 Conclusion 70
7.1 Conclusion . 70
7.2 Answers to Research Questions . 71
7.3 Recommendations . 72

7.3.1 Improvement of Training and Fault Data 72
7.3.2 Improvement of Network Capabilities 72
7.3.3 Optimisation . 73
7.3.4 Validation Activities . 73

References 74

A LUMIO Fault Trees 79

B LUMIO AOCS FMECA 90

C Critical Faults Register 100

D LUMIO FDIR Requirements Analysis 103
D.1 Relevant Mission and System Requirements 103
D.2 Relevant AOCS Requirements . 103
D.3 Relevant Autonomy Requirements . 104
D.4 FDIR Requirements . 104

D.4.1 General Requirements . 104
D.4.2 Functional Requirements . 104
D.4.3 Performance Requirements . 109
D.4.4 Interface Requirements . 109

E Trade Off 111
E.1 Concept Exploration . 111
E.2 Methods to Determine Weights . 113

E.2.1 Scoring . 113
E.2.2 Ranking . 113
E.2.3 Analytical Hierarchy Process . 114

E.3 Comparison to classical ranking . 115
E.4 Comparison to Pugh Matrix Scoring Method . 116

F LUMIO and OPS-SAT Faulty Signals 117
F.1 LUMIO IMU Faults . 117
F.2 OPS-SAT IMU Faults . 119

G OPS-SAT Telemetry 122
G.1 Quaternion Data . 122
G.2 Reaction Wheel Data . 124
G.3 IMU Data . 125
G.4 Sun Angle Telemetry . 127

List of Symbols

CN Criticality Number [-]
F1 F1-score [-]
Isp,vac Vacuum Specific Impulse [s]
nth Detection threshold tuning factor [-]
PN Probability Number [-]
RE Earth Radii [km]
SN Severity Number [-]
∆V Change in orbital velocity [m/s]
X⃗t

j
Time series [-]

ϵrec Reconstruction error [-]
µϵ Mean reconstruction error [-]
σϵ Standard deviation of reconstruction errors [-]
τ Anomaly detection threshold [-]

xvi

List of Figures

2.1 LUMIO operative phases. Source: Cervone et al. [4] 6
2.2 LUMIO Phase A AOCS Architecture . 8
2.3 The LUMIO Spacecraft rendered in the Phase A design configuration. Source:

Cervone et al. [4] . 9
2.4 Nonlinear System Fault Diagnosis Methods. Source: Sanchuan Xu [70] 12

3.1 Demonstration of the Fault Tree Analysis methodology. Source: Bidner [2] . . . 16
3.2 Fault Tree for LUMIO IMU Fault . 18
3.3 LUMIO FDIR Design Option Tree (green/bold are those concepts selected for

trade off) . 26

4.1 Fault examples - directly detectable faults . 31
4.2 Fault examples - model based detectable faults 33
4.3 GAFE Simulated IMU Faults: following boot up (60s) and detumbling (600s) a

noise fault occurs at t = 1200s and random walk fault at t = 4000s 34
4.4 Slew and Detumbling simulated IMU Data (source: Politecnico di Milano) . . . 35
4.5 Simulated Lunar Tracking IMU and reaction wheel data (source: Politecnico di

Milano) . 36
4.6 OPS SAT IMU telemetry downlinked during a 39 minute communication window

(window 2) on 29 November 2022 . 37

5.1 Simple neural network layout with two hidden layers 38
5.2 Basic workings of a single neuron in a neural network explained 39
5.3 ReLU (left) and PReLU (right) activation functions. Source: He et al. [27] . . . 40
5.4 Sigmoid Activation Function. Source: Martin Thoma [61] 40
5.5 Generic autoencoder network with 2 encoding layers, 2 decoding layers 2 and

a latent representation layer . 41
5.6 An example of noisy handwriting of numbers reconstructed by an autoencoder.

Source: Prashanth Venkataraman [63] . 42
5.7 Conversion from LUMIO AOCS Telemetry stream to data frames for training

and testing . 46
5.8 Normalisation methods performance comparison 48
5.9 Fault detection process using autoencoder and reconstruction of signature ma-

trices . 49
5.10 Autoencoder loss and validated loss evolution over the training epochs 51
5.11 Layer size tuning for autoencoder network . 51
5.12 Batch size tuning process . 52
5.13 Loss function selection . 53
5.14 Latent representation size tuning . 54

6.1 Fault locations in LUMIO IMU slew data. At each location, a step, noise and
outlier fault are inserted once. 55

6.2 Slew manoeuvre reconstruction errors LUMIO IMU (S = step, N = noise, O =
outlier) . 56

xvii

List of Figures xviii

6.3 False Alarm Rate Assessment for signal processing - 1σ threshold 57
6.4 LUMIO Normalised Signature Matrix example with telemetry locations 59
6.5 Autoencoder reconstruction process demonstrated for nominal signal 59
6.6 Autoencoder reconstruction of nominal and faulty signature matrices (LUMIO,

7x7 matrices) . 60
6.7 Signaturematrices of bias, drift, and loss of accuracy faults introduced in LUMIO

IMU signals . 61
6.8 Signature matrices of Figure 6.7 reconstructed by autoencoder including MSLE

reconstruction error . 61
6.9 Reconstruction errors for LUMIO faults compared to detection threshold 62
6.10 LUMIO False Alarm Rate in 700 seconds of nominal telemetry 63
6.11 OPS-SAT Signature Matrix . 63
6.12 Signature matrices of bias, drift, and loss of accuracy faults introduced in OPS-

SAT signals . 64
6.13 Signature matrices of Figure 6.12 reconstructed by autoencoder, including re-

construction error ϵrec . 64
6.14 Fault detection results OPS-SAT Data . 66
6.15 OPS-SAT False Alarm Rate in 30 minutes of nominal telemetry 66

List of Tables

2.1 A summary of launched deep space CubeSat missions. All missions are of form
factor 6U unless mentioned otherwise. 5

2.2 LUMIO Phase A ADCS sensors and actuators selection [4] 8

3.1 LUMIO FTA Feared Events List (Phases: 1 Parking, 2 Transfer, 3 Operations,
4 Disposal) . 17

3.2 FMECA Probability Number quantified as defined in the ECSS-Q-ST-30-02C
standard [14] . 19

3.3 Failure mode severity levels as defined in the ECSS-Q-ST-30-02C standard
[14], with additions from the US Nuclear Regulatory Commission Fault Tree
Handbook [9] . 19

3.4 Criticality Matrix. Source: ECSS [14] . 20
3.5 Example of FMECA Item - IMU.08 IMU Measurement Drift 21
3.6 Criticality Matrix for LUMIOAOCS (fault IDs refer to the FMECA IDs in Appendix B) 22
3.7 Critical Fault F26 as an example from the critical fault register in Appendix C . 23
3.8 LUMIO FDIR General Requirements most relevant to this thesis 24
3.9 FDIR Functional Requirements LUMIO most relevant to this thesis 25
3.10 FDIR Performance Requirements LUMIO . 25
3.11 Criteria weights determined using AHP . 27
3.12 Trade Off with weights determined through AHP 27
3.13 Results of the trade study using alternate ranking and scoring mechanisms . . 28

4.1 List of directly detectable IMU faults, sources, and quantification for LUMIO . . 31
4.2 List of IMU faults not directly detectable, sources and quantification for LUMIO 32
4.3 OPS-SAT AOCS telemetry package content used in this thesis 37

5.1 Binary Classifier Network outcomes . 42
5.2 Autoencoder hyperparameters . 54

6.1 Example LUMIO signature matrix (lunar tracking, 50 second frame taken at
t= 5000s): each number represents the dot product of the telemetry stream
corresponding to its row and column respectively 58

6.2 Detection results IMU faults using signature matrices for LUMIO (IMU + RW,
7x7 matrices) . 62

6.3 Detection results IMU faults using signature matrices for OPS-SAT (extended
telemetry, 11x11 matrices) . 65

xix

List of Abbreviations

ADCS Attitude Determination and Control System.
AHP Analytical Hierarchy Process.
ANN Artificial Neural Networks.
AOCS Attitude and Orbit Control System.

CE Cross-Entropy.
CMG Control Moment Gyroscope.
CNN Convolutional Neural Network.
COTS Commerical Off-The-Shelf.
CPL Cognitive Programming Language.
CRC Cyclic Redundancy Check.

DBN Dynamic Bayesian Network.
DOT Design Option Tree.
DTE Direct-to-Earth.

ECSS European Cooperation for Space Standardization.
EMC Electromagnetic Compatibility.
EPS Electrical Power System.
ESA European Space Agency.

FAR False Alarm Rate.
FDIR Fault Detection, Isolation and Recovery.
FDR Fault Detection Rate.
FMECA Failure Mode Effects and Criticality Analysis.
FTA Fault Tree Analysis.

GAFE Generic AOCS/GNC Techniques & Design Framework for FDIR.
GCR Galactic Cosmic Rays.

HIM Halo Injection Manoeuvre.

IMU Inertial Measurement Unit.
ISL Inter-Satellite Link.

KLD Kullback-Leibler Divergence.

LEO Low Earth Orbit.
LEOP Launch and Early Orbit Phase.
LUMIO Lunar Meteroid Impact Observer.

MAE Mean Absolute Error.

xx

List of Abbreviations xxi

MAPE Mean Absolute Percentage Error.
MSE Mean Squared Error.
MSLE Mean Squared Logarithmic Error.

NEO Near Earth Objects.

OBC Onboard Computer.
OBPDP Onboard Payload Data Processing.

RAMS Reliability, Availability, Maintainability, Safety.
RCS Reaction Control System.
RCT Reaction Control Thruster.
ReLU Rectified Linear Unit.

SADA Solar Array Drive Assembly.
SEB Single Event Burnout.
SEGR Single Event Gate Rupture.
SEU Single Event Upset.
SMIM Stable Manifold Injection Manoeuvre.
SVM Support Vector Machines.

TCM Trajectory Correction Manoeuvre.
TID Total Ionising Dose.
TLI Trans Lunar Injection.
TT&C Telemetry, Tracking & Command.

1
Introduction

The CubeSat platform has revolutionised access to space for commercial and academic de-
velopers in recent years. Low costs, many off the shelf components and publicly available
information on designing, building, testing and operating CubeSats have all contributed to the
form factor becoming a widely accepted solution for simple, Earth orbiting missions. However,
the platform suffers from low reliability and high dead-on-arrival rates making them less suit-
able for deep space missions. Nevertheless, NASA’s MarCO mission and Italy’s LICIACube
have demonstrated a successful implementations of the CubeSat in space missions beyond
Earth orbit, which in turn increased interest in the use of these versatile platforms in such ap-
plications. To help achieve this expansion of what is possible with CubeSats, the reliability
problem should be solved in part by implementing more accurate, efficient and accessible so-
lutions to CubeSat Fault Detection, Isolation and Recovery.

This thesis is concerned with the development of a novel model-based fault detection method
using neural networks for the Attitude Determination and Control Systems of the Lunar Microm-
eteoroid Impact Observer mission. This introduction includes the gap in the body of scientific
knowledge which was identified in section 1.1, followed by a definition of the thesis research
objective and question in section 1.2. The LUMIO case study is introduced in section 1.3 and
finally the outline of this thesis is presented in section 1.4.

1.1. Literature Gap
The literature review preceding this thesis coveredmany pieces of academic work ranging from
satellite FDIR to the LUMIO mission specific design and the deep space CubeSat missions
landscape. Note that in this thesis the term ’deep space mission’ is used to broadly describe
those missions which do not orbit the Earth. This is because a mission then encounters a very
different radiative, thermal, aerodynamic, gravitational, magnetic, and dynamic environment.
These changes compared to Earth orbiting missions impact the requirements, design, cost,
and risk tolerance of the mission. Note that the definition of deep space can differ in literature.

A key gap identified in academic work is the successful application of machine learning tech-
niques for spacecraft fault detection. While machine learning has advanced rapidly in recent
years, and found applications in many fields such as image recognition or language process-
ing, it seems spacecraft designers are still reluctant to apply such methods to their systems
outside of payload data processing. This is for a few key reasons:

1

1.2. Research Question and Objective 2

• Insufficient (labelled) data available for training
• No flight heritage (which forms a vicious cycle)
• Onboard computational resources required to train and run
• Difficult to perform verification and validation due to non-deterministic behaviour

Research into machine learning applications show that neural networks can be succesfully
applied in the field of anomaly detection. The potential benefits are numerous: networks can
recognise patterns which cannot be seen with traditional analytical, statistical, or numerical
methods thus detecting faults more accurately and rapidly while increasing spacecraft reliabil-
ity and availability. The machine learning methods can make FDIR more accessible as it does
not require expert knowledge of a subsystem or highly accurate models of nonlinear dynamics.
It can therefore reduce the failure rate of these low cost missions developed by educational
and commercial institutions with little to no prior experience. Once developed. machine learn-
ing methods can be easily transfered and scaled to other mission types. Therefore, the gap
identified in literature is the design of a model-based FDIR method for deep space CubeSats
which uses machine learning.

1.2. Research Question and Objective
Based on the aforementioned gap in literature, a research objective and the corresponding
research questions are formulated. The research objective is a clear formulation of what is
expected to be achieved by the end of this thesis. Based on the literature study and the dis-
cussions held with the LUMIO project team, the main research objectives is:

To contribute to the improvement of deep space CubeSat reliability and failure robust-
ness by designing a model-based Fault Detection approach for LUMIO’s AOCS.

This leads to the research questions:

1. RQ1: What are the most critical failure modes of the LUMIO AOCS subsystem which
can be detected, isolated and recovered?

• RQ1.1: What are all the feasible failure modes of the LUMIO AOCS subsystem?
• RQ1.2: Which critical failure modes in other subsystems would lead to a malfunc-
tioning in the AOCS subsystem?

• RQ1.3: Which AOCS failure modes are most critical?
• RQ1.4: Which AOCS failure modes can be reasonably detected, isolated and po-
tentially recovered?

2. RQ2: How can the most critical faults be detected (and isolated) using a model-based
method?

• RQ2.1: Which model-based methods and models are available and what are their
characteristics?

• RQ2.2: Which method(s) and models are most suitable for the detection of the
faults leading to failure modes identified in RQ1.3?

3. RQ3: How accurate is the proposed method at detecting faults in the LUMIO AOCS
system?

• RQ3.1: Which representative data is available for testing the fault detection accu-
racy of the method?

• RQ3.2: How will the fault detection performance of the method be evaluated?

1.3. LUMIO Case Study 3

1.3. LUMIO Case Study
As CubeSats are deemed less reliable compared to their bigger counterparts, they were ini-
tially not considered for deep space missions. This is especially true considering the CubeSat
reliability was shown to be even lower than average for less ’typical’ mission profiles. This is
certainly not desirable for pioneering CubeSats with the aim of travelling beyond Earth orbit.
This inherent lack of reliability could be exacerbated for deep space missions due to the com-
paratively more hazardous environment with increased radiation levels, or the small body of
knowledge and experience for these mission types. This raises concerns for the reliability of
CubeSats beyond Earth orbit.

To contribute to this area, a case study was chosen in order to add realism to the development
of a novel FDIR method and take into account real-life constraints of a spacecraft: Lunar
Meteroid Impact Observer (LUMIO) is a 12U deep space CubeSat perfectly suited to this role.
It is pioneering new technologies and architectures, and faces operational challenges different
to LEO missions. Designing an advanced fault detection system for this spacecraft aims to
lay the groundwork for improving CubeSat reliability using new techniques such as machine
learning. It is especially applicable to those CubeSats being used to explore space beyond
the Earth. A preliminary FDIR design for LUMIO was already created in prior work, but a
gap was left in detecting complex AOCS faults as this required advanced models of LUMIO
dynamics and expert knowledge of spacecraft attitude determination and control theory. By
using the LUMIO case study, this thesis hopes to contribute to the project while demonstrating
neural networks are an effective way to detect faults in nonlinear dynamic systems such as
the LUMIO AOCS.

1.4. Thesis Outline
The approach taken in this research is reflected in the structure of the thesis: first the outcomes
of the literature study relevant to this thesis are summarised in chapter 2. This includes a re-
view of deep space CubeSat missions recently launched or soon-to-be launched, a summary
of the LUMIO mission and a short overview of the Fault Detection, Isolation and Recovery
body of knowledge.

Next, the LUMIO mission is analysed and the fault analysis is performed on the AOCS system
in chapter 3. This involves a Fault Tree Analysis, a Failure Mechanics, Effects and Criticality
Analysis and the generation of basic FDIR requirements and constraints for the design of a
fault detection system. Based on the available model-based fault detection design options
a trade study is performed in order to confirm the suitability of the neural network based ap-
proach for this application compared to other methods.

In chapter 4 the collection of data for training and testing the network from various sources is
described, including (simulated) spacecraft telemetry. This chapter also discusses the typical
faults to be expected and their potential sources, as well as the simulation of these faults in
the telemetry.

The fault detection mechanism and the network itself are designed in chapter 5, where the
hyperparameters are discussed and tuned. In chapter 6 the performance of the system is
characterised through tests on LUMIO data using the signature matrix method, and a more
realistic and extended test is performed on the OPS-SAT data using more telemetry from the
AOCS system. Finally, the conclusion and recommendations follow in chapter 7.

2
Literature Study

In preparation of the thesis work, a literature study was performed. A short summary of the
relevant topics and findings following this study are presented in this chapter, starting with
the assessment of the current deep space CubeSat field in section 2.1. In section 2.2 the
findings on the LUMIO mission profile and spacecraft architecture are presented, and finally
the relevant information on spacecraft FDIR and the model-based FDIR methods are shown
in section 2.3.

2.1. Deep Space CubeSats
Increasing interest has been shown in using the CubeSat platform for deep space applica-
tions. In Table 2.1 an overview of recent CubeSat missions flown to cislunar and deep space
is displayed. Most of these have been launched as secondary mission with NASA’s Artemis-I
mission on November 16 2022. Prior to Artemis-I only two successfully completed deep space
applications of the CubeSat were found in available public sources, as well as two currently
ongoing missions. This shows the platform has only very recently gained credibility in this field.
LICIACube, the companion mission for NASA’s Double Asteroid Redirection Test (DART) com-
pleted its mission in 2022 [12], and the duo of MarCO CubeSats served succesfully as relay
spacecraft around Mars for the Insight Lander [7]. The CAPSTONE mission was launched
in June 2022 and is currently conducting its mission around the Moon [68]. Following the
Artemis-I mission, one other CubeSat mission was launched and is currently exploring the
Lunar poles: Lunar Flashlight [8].

It can also be seen from Table 2.1 that most missions are developed by agencies and educa-
tional institutions, and so far there has been little interest from commercial/amateur CubeSat
developers in these missions. All but one (CAPSTONE) mission have chosen a 6U form factor
meaning that the 12U format, which is also the chosen form factor for LUMIO, has very little
flight heritage in this mission type.

2.2. LUMIO
LUMIO, the case study in this thesis, is a 12U CubeSat conceived by a team of academic and
industrial partners participating in ESA’s SYSNOVA competition, focusing on Lunar CubeSats
for Exploration. The concept won the competition and went through two design phases in
collaboration with ESA. At the time of writing it is undergoing its Phase B design (preliminary
definition) phase of the ESA project lifecycle, however this thesis will use the completed Phase
A design described by Cervone et al. [4] as a baseline.

4

2.2. LUMIO 5

Mission
Name

Developer Launch Mission Lifetime Mass

MarCO (2
spacecraft)

NASA May
2018

Data relay for Insight Mars
lander [7]

1 year
(cruise
mostly)

13.5 kg
(each)

LICIACube Italian
Space
Agency

Nov
2021

Post impact observation
for DART [12]

15 month
cruise + 6
month ops

14 kg

CAPSTONE
(12U)

NASA Jun
2022

Demonstrate new naviga-
tion and lunar orbit [68]

10 months
(4 transfer)

25 kg

Lunar Ice-
Cube

Morehead
University

Nov
2022

Detect water in lunar exo-
sphere and surface [38]

<2 years 14 kg

LUNAH-
MAP

Arizona
State

Nov
2022

Investigate hydrogen in
moon’s shadowy regions
[25]

2 months 14 kg

LUNIR Lockheed
Martin

Nov
2022

Characterise lunar sur-
face composition

Unknown 14 kg

OMOTEN-
ASHI

JAXA Nov
2022

Demonstrator for semi-
hard lunar landing [26]

Order of
days

12.6 kg

NEA Scout NASA Nov
2022

Demonstrator for solar sail
+ image NEA [40]

2.5 years 12 kg

EQUULEUS JAXA, Uni-
versity of
Tokyo

Nov
2022

Observe Earth plasmas-
phere [18]

1+ year 11 kg

Biosentinel NASA Nov
2022

Characterise radiation ef-
fects on DNA repair [49]

18 months 13 kg

CUSP NASA Nov
2022

Measure space weather
[23]

3 months 14 kg

Team Miles Miles
Space &
Fluid

Nov
2022

Test long range radio com-
munications for CubeSats

No target
(distance
defined)

14 kg

ARGOMOON Argotec,
ISA

Nov
2022

Record images of the
ICPS in operation [11]

190 days 14 kg

Lunar
Flashlight

NASA
(JPL)

Dec
2022

Ice and volatiles mapping
in lunar poles [8]

60 days 14 kg

Table 2.1: A summary of launched deep space CubeSat missions. All missions are of form factor 6U unless
mentioned otherwise.

2.2.1. Scientific Objectives
A Near Earth Objects (NEO) is defined by NASA as an object with perihelion of less than
1.3 AU [42] and can form a significant threat to both Earth and space assets. Therefore, the
monitoring of these objects is important for planetary defence in the first place, but also to
protect spacecraft, space stations and potential future extraterrestrial bases. While observa-
tions of larger objects is possible from Earth, smaller objects in the sub-meter range are very
difficult to monitor. Their impact however can still be catastrophic. On top of this, scientists
are attempting to model micrometeroid (diameter of 10µm to 2mm) flux in the Earth-Moon sys-
tem in order to test various hypothesis about the spatial distribution of impacts on the moon [4].

These tiny particles cannot be observed directly, but rather through secondary phenomena

2.2. LUMIO 6

Figure 2.1: LUMIO operative phases. Source: Cervone et al. [4]

such as their impacts on the lunar surface. Despite the small scale of the particles, the high
velocity impact releases a large amount of energy, which is partially released in the form of a
flash. This flash can be observed by simply observing the Moon in the visible spectrum when
the surface is not overly illuminated. However due to the tidal locking effect, Earth-based ob-
servations will only ever cover a single hemisphere of the Moon, with the other half (the ”far
side” or ”dark side”) not being visible. This establishes the need for a space-based mission
which is able to observe impact flashes on the far side: LUMIO.

The LUMIO science goal is phrased as ”Advance the understanding of how meteoroids evolve
in the cislunar space by observing the flashes produced by their impacts with the Lunar sur-
face.” [4] This leads to the science question ”What are the spatial and temporal characteristics
of meteoroids impacting the Lunar surface?” [4]

2.2.2. Mission Profile
In order to answer the research question, visual observations of the entire lunar far side are
required. Therefore the design study chose to place LUMIO in a halo orbit around the Earth-
Moon L2 equilibrium point, around 60,000 km from the surface, for a nominal 1-year mission.
This orbit is considered to be very stable whichmeans little station keeping is required. Another
benefit of this orbit is that the spacecraft is never eclipsed by the moon, which eases commu-
nication and navigation systems design. The environment itself is not considered particularly
hazardous to the spacecraft, with the main risks coming from solar particles and Galactic Cos-
mic Rays (GCR).

2.2.3. Mission Phases
In order to reach the desired final orbit and perform its scientific mission, LUMIO will go through
a number of phases from launch to disposal. These five phases are discussed below and
shown in Figure 2.1.

Phase 0: Launch, LEOP and Trans-lunar Injection
While no launch provider has been selected, two main launch opportunities have been identi-
fied: Commercial Lunar Payload Services (CLPS) and Artemis-II. Both are moon-bound, but
the Artemis-II mission injects LUMIO into a trans-Lunar orbit which is less suitable for the trans-

2.2. LUMIO 7

fer compared to the CLPS injection into selenocentric parking orbit. Therefore, the∆V budget
for the mission was generated based on the Artemis-II launch, and an optimised transfer strat-
egy was designed to bring LUMIO into the desired operational orbit. This thesis will assume
this case as the baseline.

During initial stage of themission,the launch, Launch and Early Orbit Phase (LEOP), and Trans
Lunar Injection (TLI), the spacecraft is stowed inside the CubeSat dispenser. Here, the ”kill
switches” are pressed such that no power is supplied to the spacecraft and it is inactive while
inside the transfer stage. This is to limit the risk to the primary mission and other CubeSat
missions, in case a malfunction causes an unexpected event such as a sudden propellant or
electrical discharge.

Phase 1: Parking
Once the spacecraft is released from the dispenser, the onboard systems are switched on,
detumbling occurs and the solar arrays are deployed. Following this all systems are com-
missioned. Depending on the chosen launcher, the spacecraft is now in a trans-Lunar orbit
(Artemis-II) or a lunar parking orbit (CLPS).

Phase 2: Transfer
Although the transfer strategy is different depending on which mission LUMIO is launched,
there are a few main components to the transfer: Stable Manifold Injection Manoeuvre (SMIM)
to approach the halo orbit, Trajectory Correction Manoeuvre (TCM) manoeuvres on the ap-
proach to L2, and finally a Halo Injection Manoeuvre (HIM). Notable is that for the Artemis-II
case, the SMIM is much more demanding and therefor the total∆V budget is larger compared
to the CLPS launch: 201.8 m/s versus 119.5 m/s including margins. The mission is therefore
designed assuming the worst case of an Artemis-II launch.

Phase 3: Operations
After successful completion of the transfer and injection into the L2 halo orbit, the operations
can start. The primary mission, which observes the lunar far side for impact flashes, can only
take place when the illumination of the disk is less than 50%, or around half of a lunar cycle
(14.765 days). Therefore the operations are divided into a science cycle and navigation and
engineering cycle:

1. Science Cycle: when less than 50% of the lunar surface is illuminated (14.765 days,
around half of the lunar cycle), impact flashes can be observed and the spacecraft will
be continuously performing its scientific mission.

2. Navigation and Engineering Cycle: For the remaining part of the Moon’s revolution
around the Earth when the far side is illuminated too much for observations, the space-
craft will perform experiments such as autonomous optical navigation and ISL commu-
nication, as well as perform station keeping and wheel desaturation manoeuvres.

Phase 4: Disposal
After the nominal mission duration of 1 year, barring any extensions, the spacecraft is removed
from the L2 halo orbit and placed into a disposal orbit and the systems are decommissioned.

2.2.4. Architecture
The spacecraft itself has gone through initial conceptual designs and passed through a Phase
0 design study at ESA’s CDF. Currently there is a completed Phase A design, and the phase B
design is ongoing at the time of writing. While the choice of components may still be subject to
change, the top-level system architecture is assumed to be definitive. This is important as the

2.2. LUMIO 8

overall spacecraft architecture is very relevant to the Fault Detection, Isolation and Recovery
(FDIR) design of the spacecraft. Therefore a short description of LUMIO’s subsystems will be
given in this section, based on the latest status described by Cervone et al. [4].

Payload
The LUMIO CAM is the payload observing micrometeroid impacts on the moon. It consists of
two CCD201 detectors each containing 1024x1024 pixels. The observations occur both in the
visible and near infrared spectrum, which is made possible by the beam splitting optics which
divide the signal into two channels. This LUMIO CAM data will also be used to demonstrate
optical navigation (line of sight navigation), although this is experimental and the baseline
navigation system uses radiometric ranging and tracking [5].

Attitude and Orbit Control System
The LUMIO AOCS system, which is the focus of this thesis, relies on sun sensors, star trackers
and an IMU for attitude determination. The attitude control occurs through the four reaction
wheels. Since the CubeSat operates in the Lunar environment it does not include the typical
CubeSat magnetorquer actuators. A Reaction Control System (RCS) is also present for desat-
uration (see Propulsion System). The full AOCS component list can be seen in Table 2.2. The
architecture of the LUMIO AOCS can be seen in Figure 2.2. Note that the AOCS processor is
shown here as a dedicated processor because it is run on the redundant processing unit, but
could also be run on the OBC in case one of the onboard processors fails [4].

Figure 2.2: LUMIO Phase A AOCS Architecture

Sensors
Type Number Supplier
Fine Sun Sensors 6 Lens R&D, MAUS
Star Tracker 2 Sodern, Auriga
IMU 1 ISISpace, SCG

Actuators
Type Number Supplier
Reaction Wheels 4 Astrofein, RW25 SW50

Table 2.2: LUMIO Phase A ADCS sensors and actuators selection [4]

2.2. LUMIO 9

Propulsion System
Following the initial design iterations, the propulsion system of the LUMIO mission now refers
to two separate systems. The first is the so-called ”main propulsion system” which will per-
form the orbital transfer from parking orbit to the final operational orbit and which will deliver
the majority of the required∆V for the mission. The second part of the system is the Reaction
Control System (RCS) which performs the de-tumbling and the wheel desaturation [6].

Selection of the main propulsion system has not been finalised in the Phase A design: there
are still two options to be considered in the Phase B study [4]: NanoAvionics EPSS and Brad-
ford ECAPS HPGP, each of them slightly modified. Both are European mono-propellant units.

For the RCS system there are also two options remaining for further research in Phase B.
These are the GomSpace 6DOF cold gas system and the (customised) Aurora Propulsion
Technologies ARM water resistojet. The GomSpace option offers either six Reaction Control
Thruster (RCT) with 1 mN or 10 mN thrust, a vacuum specific impulse Isp,vac = 50s and a wet
mass of 802g [24]. The Aurora ARM resistojet also uses six thrusters with a thrust in the range
of 0.6 to 4 mN, a wet mass around 1kg, and an Isp,vac = 100s [60].

Communication System
Communication between LUMIO and ground will use a direct-to-Earth approach while demon-
strating a potential Inter-Satellite Link (ISL) during its mission. The communication system
therefore consists of two COTS components: for the ISL radio the (customised) Syrlinks
EWC31 ([58]) operating in the S-Band is chosen, while for the DTE link the C-DST radio
operating in the X-Band and produced by IMT ([28]) is selected.

Data Handling System
LUMIO has three processing units: one ’main’ Onboard Computer (OBC) which controls the
spacecraft, an Onboard Payload Data Processing (OBPDP) unit which processes and analy-
ses payload data for transmission to ground. The third unit is a redundant unit which runs the
AOCS algorithm, although this is not necessarily in need of a dedicated processor. The units
are the IOBC of ISISpace [30] and the UniBap iX5.

Electrical Power System
The LUMIO Electrical Power System (EPS) in phase A is the ISISpaceModular EPS [31] which
covers power conditioning, storage and distribution. This includes four battery packs of 45 Wh
each. Power generation occurs using two solar arrays each mounted on a Solar Array Drive
Assembly (SADA) which allows LUMIO to maintain precise lunar pointing during the science
cycle while still generating power by tracking the Sun.

A rendered image of LUMIO in the Phase A design is shown in Figure 2.3.

Figure 2.3: The LUMIO Spacecraft rendered in the Phase A design configuration. Source: Cervone et al. [4]

2.3. FDIR 10

2.3. FDIR
In this section, a short review is performed of the state of industry practices in the field of Fault
Detection, Isolation and Recovery (FDIR), and the state of the art. The most commonly used
methods for (autonomous) fault detection are discussed, and those methods deemed most
promising for future applications are summarised.

A note on terminology: faults, failures, detection and diagnosis
It should be noted that in this thesis, the terms fault and failure are often used. They are not
interchangeable. Wander & Forstner [65] define a fault as ”an undesired deviation of at least
one characteristic property of a system variable from an acceptable/nominal behaviour that
leads to degraded overall system performance, malfunctions or failure of the system”. Their
definition of a failure is ”a total cessation of a function via subsystem or the total system”.
From this one can induce that a fault is a cause for a failure, whereas when a system performs
in a fashion that is not acceptable (often due to a fault) it is labelled a failure.

As an example: a fault in the IMU could be a gyroscope with a drifting signal (due to radi-
ation effects) which produces an erroneous spacecraft rate measurement. This fault, if left
undetected and untreated could lead to an attitude determination and control failure. The
spacecraft attitude can no longer be accurately measured, and therefore the desired attitude
can no longer be achieved either. In the worst case, this failure can become a mission failure
if power generation cannot occur due to the inability to point the solar panels, or if communi-
cation is inhibited by the antenna pointing away from the ground stations.

Also used repetitively are the terms fault diagnosis, fault isolation, and fault detection. They
are often used in the same context, but are focused on different goals. In this thesis, Fault
Detection (FD) is used when it concerns detecting that a fault has occurred, without specifically
understanding which fault this is. Fault Isolation relates to classifying which fault has occurred
and identifying the root cause, and the combination of Fault Detection and Isolation (FDI) is
also referred to as fault diagnosis in literature. Fault recovery is only concerned with recovering
the system after a fault has occurred, whether or not this fault has been isolated or not: FDR
and FDIR can both occur.

2.3.1. Traditional Spacecraft FDIR
Since the dawn of spaceflight, FDIR has been a consideration in the design of reliable and
available missions. Tipaldi and Bruenjes [62] state that goal of FDIR is in the first place to
prevent mission loss, but also to prevent service loss as much as possible. It is considered a
system-level discipline, and helps achieve a space mission Reliability, Availability, Maintain-
ability, Safety (RAMS) objectives. These are defined by the European Cooperation for Space
Standardization (ECSS) as follows [15]:

• Reliability: ”the ability of an item to perform a required function under given conditions
for a given time interval”

• Availability: ”ability of an item to be in a state to perform a required function under
given conditions at a given instant of time or over a given time interval, assuming that
the required external resources are provided”

• Maintainability: ”ease of performing maintenance on a product”
• Safety: ”state where an acceptable level of risk is not exceeded”

The sources of the faults which the FDIR system has to deal with are categorised into three
areas by Tipaldi et al. [62]:

2.3. FDIR 11

• One or more failed components
• Incorrect control actions
• External disturbances

Furthermore, the types of failures that are considered in scope of the FDIR system are defined
in the recently released SAVOIR FDIR Handbook [56] as:

• Hardware failures (random part failure, wear out, single event radiation induced failure,
accumulated radiation induced failure)

• Software errors
• Operation errors (including human errors)

The most rudimentary approach to fault management was put in place in the 1960s: given
a set of conditions which are fulfilled, the onboard computer performs a predefined set of ac-
tions to resolve the issue. If the issue is not solved after all programmed actions are taken,
the spacecraft enters a Safe Mode and awaits human intervention [74].

Due to limited computational power on older space-grade processors, a large part of the on-
board FDIR was done through hardware redundancy and hardware voting logic: the design
included physical redundant components for the critical hardware components. This way fault
detection through comparison was carried out. The added volume, mass, complexity and cost
were traded against a higher robustness against failure and higher availability of the mission.

2.3.2. Overview of Model Based Methods
Most missions are not monitored 24/7 from the ground and some faults require rapid detec-
tion, isolation and a response to protect the spacecraft, hence a certain level of autonomy is
required in the FDIR system.

The selection of a fault detection and isolation method typically depends on the mission objec-
tive, scale and complexity. Large communication satellites which require high availability might
carry redundant hardware, or even be made fully redundant such as with the ’half satellite’ con-
cept once used by Thales Alenia Space. [43] However, this is expensive, adds complexity to
the system and is not considered suitable for small, low cost missions such as CubeSats.
Therefore smarter fault detection methods are employed: model-based fault detection and
isolation.

The family of model-based methods for autonomous fault detection are based on many differ-
ent principles such as simple signal analysis, analytical methods or knowledge based meth-
ods. The most interesting methods for consideration in this research are those used for fault
diagnosis in non-linear systems. Here, many specific methods exist, as shown in (the non
exhaustive) Figure 2.4 by Sanchuan Xu in ’A Survey of Knowledge-Based Intelligent Fault
Diagnosis Techniques’ [70]. A short summary of these methods is given below.

2.3. FDIR 12

Figure 2.4: Nonlinear System Fault Diagnosis Methods. Source: Sanchuan Xu [70]

Signal Based Methods
Signal based methods, as the name implies, analyse the characteristics of a signal directly
in order to detect and isolate faults. They have been used for decades and are simple, cost
efficient and reliable. They are also able to detect and isolate faults at a very low level, which
is useful in avoiding fault propagation due to erroneous sensor readings entering control loops.
Their main drawback however is their limited use in dynamic systems, as the applicability is
mostly in steady state conditions [45].

Signal processing methods can be as simple as fixed limit checking or magnitude checking of
the signal, but also includes more dynamic methods such as variable limit checking, root mean
square (RMS), Fourier transform, delta operator, principal component analysis and Kullback
Principal [70]. They can be divided into three main categories according to Yin et al [71]:

• Statistical Methods
• Time Domain Methods
• Frequency Domain Methods

Analytical Methods
To counter the aforementioned issues of signal processing methods such as steady state ap-
plicability or limitations of analysing a single signal, the analytical methods can be used. These
methods typically rely on obtaining an analytical or numerical model of the system in which
faults should be detected. They are cost efficient and versatile, while also much more appli-
cable in dynamic and non-linear systems. However a key issue with these methods is the
need for highly reliable and accurate mathematical models, which lead to a large amount of
computational resources required and some issues with numerical convergence [70]. Access
to these models is typically limited and the expertise required to implement them is not always
available to smallsat developers.

Within this set of analytical model-based FDIR methods, the most commonly used is the parity
space method [62]. This method relies on generating an estimated system output based on

2.3. FDIR 13

an observed system input, and then comparing the estimated output to the observed output,
which leads to the residual and potential fautl detection. This generated residual can then
be checked for fault features to perform isolation, given that the features and corresponding
faults are known to the system. Typically a residual should be 0 or under a certain threshold to
account for noise. Based on the comparison of multiple residuals a fault can be detected and
isolated, even in the presence of noise, uncertainties and disturbances [70]. This method is
widely used in spacecraft FDI and is considered a mature field according to Wander & Förstner
[66].

Another analytical method is the state observer which is similar to the parity space method in
that it uses an analytical model to estimate variables. However, the state observer approach
uses the system output to estimate the system internal state, which it then compares to the
observed system state [70]. It is known to be applied where the expected system states are
well-defined and where mostly linear behaviour can be expected [48].

The third analytical method is parameter estimation, where values in a mathematical system
model are estimated using different approaches such as least-squares estimation, maximum
likelihood estimation and Bayesian estimation [71]. This method suffers from noise sensitivity
however and requires high accuracy models [62].

Knowledge Based
Knowledge based systems use experience and expert knowledge to detect and isolate faults.
These methods are very useful where one cannot describe the system with an analytical
model [70]. They are also considered cost efficient, and highly accurate for classifying dis-
crete events. However, they are computation heavy and until recently some knowledge based
methods such as neural networks were considered very hard to fully verify and validate. In Jan-
uary 2021, ESA and the German Research Center for Artificial Intelligence (DFKI) established
ESA_Lab@DFKI 1 demonstrating an increased willingness to incorporate these methods in
space missions.

Typical knowledge based methods used in fault detection and isolation include Artificial Neural
Networks (ANN), Fuzzy Logic, Expert Systems, Support Vector Machines (SVM), Cognitive
Automation, and Dempster Shafer Evidence Theory. These methods all rely on expert knowl-
edge or available data to train the systems on. In the case of spacecraft FDI, typically one
uses operational data including faults from similar missions to train the systems, or simulated
data based on knowledge about fault characteristics. The survey conducted by Tipaldi and
Bruenjes [62] notes that these methods show a lot of potential for future missions, specifically
the cognitive automation, SVMs and ANNs.

2.3.3. FDIR in Deep Space CubeSats
CubeSats are considered highly unreliable compared to their larger, more expensive counter-
parts. Langer and Bouwmeester [35] showed that dead-on-arrival and infant mortality effects
dominate the reduced reliability: an overall CubeSat reliability following successful deploy-
ment of 75.62% to 87.09% is estimated with 95% confidence. That reliability drops to 58.94%
to 73.24% (95% confidence) after 100 days in orbit. The research also showed that CubeSats
in Low Earth Orbit (LEO) are less susceptible to wear out than geostationary satellites. This
could be traced back to environmental reasons or to a lack of experience in developing these
kinds of missions. In both cases, it does not bode well for deep space CubeSat reliability,

1https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/
Artificial_intelligence_in_space#

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space#
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/Artificial_intelligence_in_space#

2.3. FDIR 14

which face harsh radiation environments as well as mission profiles and requirements which
are not typical for Earth-orbiting CubeSats. Adding to this, deep space CubeSats are expected
to be much more reliable due to the often unique launch opportunities they are given, meaning
that a failed CubeSat cannot easily be replaced.

Current State of Practice
This implies the need for a capable FDIR system, where nowadays CubeSats perform little to
no FDIR onboard [52]. The current practice for health management in Earth-orbiting CubeSat
missions includes simple mechanisms such as [62]:

• Watchdog timers: requires a response from the OBC within a set time, otherwise it will
assume it has encountered an issue and will reset it externally

• Health monitoring: sensors (voltage, temperature...) are used to ensure certain param-
eters do not exceed predefined limits, allowing for preventive actions to be taken before
permanent damage is caused to the spacecraft

• Information error detection: methods such as the Cyclic Redundancy Check (CRC)
are used to detect bit flips in memory or communication, typically caused by charged
particles (SEU)

While the aforementioned ideas provide a basic level of protection against events processor
malfunctioning, temperature anomalies, EPS faults, or charged particles strikes in the mem-
ory, they are not able to detect more complex faults with disastrous consequences such as
inaccurate attitude readings or actuator faults. These complex issues require a model-based
analysis of data in order to allow detection and isolation.

Model Based FDIR in CubeSats
While model-based FDIR could be advantageous to all CubeSat missions, the cost and effort
associated with it as well as the added complexity in the design process leads to the belief that
it will be most suitable for these deep space missions. As far as can be deduced from litera-
ture, only one succesfully flown spacecraft with onboard model-based fault detection remains
to date: the Remote Agent Experiment on NASA’s Deep Space 1 spacecraft [1]. While the
experiment was considered successful, the modelling complexities and spacecraft constraints
were considered too substantial at the time.

Another attempt was made at onboard model-based fault detection with the launch of 6U
exoplanet hunting CubeSat ASTERIA (Arcsecond Space Telescope Enabling Research In As-
trophysics) by JPL. The model-based fault detection experiment was planned to be performed
onboard near the end of the mission [52]. The CubeSat, launched from the International
Space Station and operational in LEO, used the popular Commerical Off-The-Shelf (COTS)
Blue Canyon Technologies XACT attitude control system. A test was planned to demonstrate
its model-based FDIR system with a number of seeded faults at the end of its mission. Given
the risk to the mission, the demonstration could only be performed after completion of the pri-
mary and three extended missions of ASTERIA. However, perhaps slightly ironically, contact
with the mission was lost during one of its three extensions and the fault detection experiment
was not conducted. The cause of the mission failure is not known at this time, but it empha-
sises the need and value of more advanced CubeSat fault management systems.

Additionally, the relatively simple CubeSat architecture allows for the demonstration of promis-
ing, more advanced FDIR methods which may not have been implemented on large scale
missions due to the lack of flight heritage or validation such as artificial intelligence methods.

3
LUMIO Fault Analysis

In order to detect and isolate faults in the spacecraft AOCS system, the design team should
try to understand where potential faults could originate and what their effects are on the space-
craft as much as possible. The ECSS standards for Space Product Assurance [14] and the
SAVOIR FDIR Handbook [56] provide guidelines in using the Fault Tree Analysis (FTA) and
Failure Mode Effects and Criticality Analysis (FMECA) as a structured approach. In this chap-
ter, the results of the LUMIO AOCS Fault Tree Analysis and FMECA are discussed. The
outcomes of this analysis will serve as a starting point for the design of a model based fault
detection system.

First the FTA is performed in section 3.1, followed by the FMECA in section 3.2. Then the
requirements and constraints for the LUMIO FDIR system are explored in section 3.3. The
trade study for model based fault detection concepts is presented in section 3.4, which is then
critically reviewed in section 3.5.

3.1. LUMIO Fault Tree Analysis
As a starting point in identifying the critical and feasible fault scenarios for LUMIO, a Fault
Tree Analysis (FTA) is generated. This FTA will focus on the AOCS system of LUMIO, while
taking into account critical dependencies on other subsystems such as the power (EPS) and
communications (TT&C) modules. The FTA will be performed separately for all operating
phases of LUMIO, as the environment, risks and goals are different across the four phases.

3.1.1. The FTA Methodology
The FTA is a deductive analysis where a top level failure is identified for a system, based on
which basic faults are then generated which would lead to this top level failure. It is described in
a tree formwith logic gates, as shown in Figure 3.1. Although a virtually infinite number of basic
faults could lead to a top level event occurring, not all should be included in the FTA. The events
which should be included are credible faults within the system boundaries [9]. The SAVOIR
FDIR Handbook [56] dictates that the spacecraft FTA only concerns itself with hardware errors
(random, wear out and radiation induced), software errors, and operational errors (human or
other). Faults such as early life failures, vibration/Electromagnetic Compatibility (EMC)/space
debris induced failures and outgassing effects are considered out of scope by the SAVOIR
handbook and thus also in this thesis.

15

3.1. LUMIO Fault Tree Analysis 16

(a) Generic example of a Fault Tree Analysis (b) Fault Tree Gate Symbols

Figure 3.1: Demonstration of the Fault Tree Analysis methodology. Source: Bidner [2]

3.1.2. LUMIO FTA
The FTAs for LUMIO were developed based on a number of feared top level events per mis-
sion phase. These are shown in Table 3.1 and are assigned an identifier according to the
logic: ”Subsystem.Error.” For example, AOCS.NAV refers to a feared event in the AOCS sys-
tem where there are no or inaccurate navigation services. The subsystems and functions
considered are Attitude and Orbit Control System (AOCS), Telemetry, Tracking & Command
(TT&C), Electrical Power System (EPS), payload Camera (CAM), and Deployment (DEP).

These feared events were defined based on the Generic AOCS/GNC Techniques & Design
Framework for FDIR (GAFE) credible failure lists [39], taking into account the guidelines set
out by the SAVOIR FDIR Handbook [56] which limits the credible top-level events to hardware,
software and operation errors as described in section 2.3. From there, the top-level functions
to be performed by the LUMIO AOCS in each phase were determined: for phase 1 (parking
and detumbling) the key AOCS function is clearly detumbling, and therefore a major feared
event for this phase is DEP.DET ’detumbling not performed’, as shown in Table 3.1. Perform-
ing this function requires attitude determination and control, and electrical power, which traces
back to ’generic’ fault trees which apply to the all mission phases: AOCS.NAC ’no attitude con-
trol’ and EPS.NPA ’no power available’.

Using a similar reasoning, the top level feared events for the other phases, shown in Ta-
ble 3.1, were determined. As phase 2 (transfer) and 4 (disposal) consist of manoeuvres, the
feared events mainly relate to failure to perform such manoeuvre (AOCS.TNP ’transfer not per-
formed’). The feared events for phase 3 (operations) are focused on something going wrong
in obtaining or processing the desired scientific output, or succesfully relaying it to ground
(CAM.NSI ’no scientific imaging’, CAM.NSP ’no scientific product’, and AOCS.SK ’unable to
keep station’).

Aside from the phase-specific feared events, some feared events are always relevant: lack
of navigation, communication, and collision avoidance are required at all times. Arguably the
spacecraft can detumble without ground communication and navigation but this does not al-
low transitioning to the next phase and is therefore also considered a feared event during the
phase.

3.1. LUMIO Fault Tree Analysis 17

Feared Event Phase
ID Name Description 1 2 3 4
AOCS.
NAV

No or inaccurate
navigation

Navigation is required for all phases
to ensure correct manoeuvre and val-
idation of experiments

AOCS.
NAC

No attitude control Full 3 DOF attitude control is critical
in ensuring solar array and antenna
pointing during all phases

TTC.
DTE

No communica-
tion with ground

Ground communication is mission
critical during all phases

EPS.
NPA

No power onboard Power should be available at all times
to operate any subsystem

DEP.
DET

Detumbling not
performed

Detumbling following release from the
launcher is critical to establish ground
contact and generate power

AOCS.
DES

Reaction wheels
not (fully) desatu-
rated

Reaction wheels should be desatu-
rated such that sufficient momentum
capacity is available for next transfer-
s/pointing manoeuvres

AOCS.
TNP

Transfer manoeu-
vre not correctly
performed

The accurate execution of the trans-
fer manoeuvre is necessary to put LU-
MIO in the required orbit for science
and operations

CAM.
NSI

No imaging of im-
pact flashes

No imaging leads to mission failure

CAM.
NSP

No scientific prod-
uct to ground

No scientific products lead to mission
failure

AOCS.
SK

Spacecraft unable
to keep station

The operational orbit cannot be main-
tained

AOCS.
COL

Collision with
other space-
craft/object

Collision leads to mission loss

Table 3.1: LUMIO FTA Feared Events List (Phases: 1 Parking, 2 Transfer, 3 Operations, 4 Disposal)

3.1. LUMIO Fault Tree Analysis 18

3.1.3. FTA Results
For each top level event shown, a fault tree structure was created. Due to the number of fault
trees they will not all be displayed here, but the full set can be found for the different feared
events and mission phases in Appendix A. For clarity, a single example FTA will be shown and
discussed in this section. The Inertial Measurement Unit Fault (AOCS.IMU) tree was chosen,
shown in Figure 3.2, due to its relevance to the work performed later in this thesis. As can be
seen here, the top level event identified is an IMU fault, meaning no angular rate readings are
available to the AOCS system. This IMU fault top level event is one of the basic events in the
No Attitude Control (AOCS.NAC) tree, which is a feared event in all mission phases.

The top-level IMU fault is caused by one of two causes: either the lack of IMU data being sup-
plied, or the wrong data being supplied. The lack of data was deemed to be possible through a
self-test failure, communication failure, out of range temperatures (which invalidates the read-
ing externally, i.e. different to self-testing), and a complete unit shutdown. The erroneous data
can be caused by erratic behaviour in the gyroscope signals, stale data, or drifting/biased/un-
calibrated measurements. The circles underneath these events means they are considered
basic events and no further root cause is investigated. The causes for these basic events
are many and unpredictable, and could relate to software bugs, Single Event Upset (SEU),
radiation lifetime effects (Total Ionising Dose (TID)), wear-out, or hardware failures.

Figure 3.2: Fault Tree for LUMIO IMU Fault

The results of the full FTA are used to complement the FMECA in the next section. However,
from the fault trees alone some conclusions can be drawn, discussed below.

High Interdependency Between Subsystems
Although not surprising, the FTA shows a very high degree of connection between subsystems,
as well as a lot of dependencies. The AOCS system depends in a very large part on the
proper functioning of the EPS and Onboard Computer (OBC), and in a lesser part on the
Telemetry, Tracking & Command (TT&C) and thermal control subsystems. Therefore, a lot
of major faults in these systems can easily propagate and manifest themselves in the AOCS
system. It emphasises the need for a reliable integrated FDIR system for the entire spacecraft.

Little Single Point Failures
It is also clear from the FTA that the LUMIO phase A design has already actively considered
and incorporated some measures to reduce the likelihood of these undesirable events. This
is likely in part thanks to the previous work done by the LUMIO team in phase 0 and the work
performed by Gelmi [22]. Most fault trees do not lead to a single point failure, and where it

3.2. FMECA 19

does they are often due to unlikely external factors (excessive environmental disturbances) or
they are acceptable risks on tried & tested units such as the Main Thrusters (MT).

Critical Sensor Fault Effects
Sensors provide a myriad of data to the AOCS algorithm, which is used to accurately control
the spacecraft. The FTA analysis shows the detrimental effect sensor faults can have if left
undetected and untreated. The additional challenge is that certain faults in sensors are incred-
ibly difficult to detect without having multiple identical units to compare the sensor output to
(n-modular voting). In CubeSats, which lack these multiple redundant units due to mass, vol-
ume or cost considerations, these faults are especially likely to propagate and cause high level
undesirable effects. Knowing that the measured data is accurate and reliable and invalidating
the data when it is not is a key step in improving the reliability of the spacecraft.

3.2. FMECA
The Failure Mode Effects and Criticality Analysis (FMECA) is an inductive fault analysis tool
in which a specific failure mode of a unit is hypothesised, and then its effect on the overall
system are analysed [14]. This analysis also describes the criticality of a failure mode, which
is defined through the Criticality Number (CN):

CN = PN × SN (3.1)

Here the Probability Number (PN) and Severity Number (SN) are assigned to each failure
mode by the analyst and/or experts and range from 1 (extremely remote likelihood or minor
mission degradation) to 4 (probable event or catastrophic effects). These criteria for each level
of probability or severity is quantified by the ECSS standard [14]. The definition of the PN is
shown in Table 3.2 and the SN definition is shown in Table 3.3, with the sublevels of the SN2
being added from the US Nuclear Regulatory Commission Fault Tree Handbook [9].

Level Limits PN
Probable P>0.1 4
Occasional 0.001 <P <0.1 3
Remote 1E-5 <P <0.001 2
Extremely remote P <1E-5 1

Table 3.2: FMECA Probability Number quantified as defined in the ECSS-Q-ST-30-02C standard [14]

Severity category Severity
level

Dependability effects

Catastrophic 1 Failure propagation
Critical 2 Loss of Mission

2a A second fault causes transition to FDIR level 3 (system
control SW affected)

2b A second fault causes transition to FDIR level 4 (safe
mode requried)

2c A fault where the effects depend upon the situation at
hand (e.g. fault in a non-active, redundant unit)

Major 3 Major mission degradation
Minor 4 Minor mission degradation

Table 3.3: Failure mode severity levels as defined in the ECSS-Q-ST-30-02C standard [14], with additions from
the US Nuclear Regulatory Commission Fault Tree Handbook [9]

3.2. FMECA 20

In the case of LUMIO this FMECA analysis was performed for the Phase 0 design in the
thesis of Gelmi [22]. Based on this work, the Phase A FMECA is performed in this thesis for
the AOCS only, as that is the focus of this research. The resulting full FMECA is too extensive
to be discussed here and can be found in Appendix B for reference. A single example FMECA
item will be discussed in the following section.

3.2.1. Scope of the FMECA
The FMECA could theoretically be expanded to an infinite number of scenarios which lead to
failures. However, in this thesis the focus is on the LUMIO AOCS and its units, and the credible
failures (hardware, software, operational) mentioned before. The FMECA is performed for
each failure scenario in each LUMIO mission phase, although often times the phases are
grouped into the dynamic phases (2 transfer, 4 disposal) and the static phases (1 parking, 3
operations) as they exhibit similar failure effects and mechanics. For example, a main thruster
failure leads to the same effects (inability to perform manoeuvre) in both phase 2 and 4, and
is of much higher severity in these phases compared to a similar failure occurring in phase
1 or 3 assuming it can be recovered or compensated. It should be noted that SN and PN
scores are assigned qualitatively in this analysis due to the scope of this thesis as well as the
lack of available quantitative data relating to probabilities or impact. It is recommended that in
more advanced design stages, these scores are revised by the LUMIO system engineers and
AOCS experts.

3.2.2. FMECA Results
In total 53 failures were considered across 9 different units of LUMIO: star trackers, reaction
wheels, IMU, sun sensor, main thrusters, reaction control thrusters, AOCS processor, OBC,
and Solar Array Drive Assembly (SADA). For each unit some credible faults were analysed per
mission phase. The failure effect on the unit, subsystem and system were analysed and the
detection method as well as compensation method (if available) were documented for each
failure mechanic. Based on this, the severity and probability were assigned and the criticality
was calculated. This criticality will serve as the selection criteria for critical items, i.a.w. the
Criticality Matrix in Table 3.4. Here, the criticality number determines if the item is critical or
not, with scores of 6 or higher being considered critical (orange/dark area) as well as those
items with the lowest probability but a severity number of 4 (catastrophic).

PNSeverity SN 1 2 3 4
Catastrophic 4 4 8 12 16
Critical 3 3 6 9 12
Major 2 2 4 6 8
Negligible 1 1 2 3 4

Table 3.4: Criticality Matrix. Source: ECSS [14]

Example FMECA Item
For clarification, a single example item of the FMECA is shown and discussed in Table 3.5: the
IMU.08 ’drift in measurements’ fault. This fault was previously seen in the fault tree example
in Figure 3.2 as one of the events leading to no IMU reading being available. The assumed
failure in the FMECA is a drift in the rate measurements in the order of 1 degree per hour,
based on the credible IMU faults listed in the GAFE methodology document [44]. It can be
seen that the failure leads to inaccurate relative attitude measurements, but that the end effect
is different for each mission phase. For phase 3 (operations) the inaccurate pointing will lead
to a scientific product of lower quality, or the inability to continue the experiment as the LUMIO-

3.2. FMECA 21

CAM is not pointed correctly. For phase 1 (parking) the effect is that detumbling cannot be
performed accurately and the spacecraft will remain in a tumbling state, leading to potential
mission loss due to no communication and deployment. Whether or not the mission is fully
lost depends on the severity and direction of the tumble and the ability to recover the IMU.
For phases 2 (transfer) and 4 (disposal) the risk is that with inaccurate IMU measurements
the pointing accuracy is reduced and the manoeuvres are performed inaccurately. Depending
on how the star tracker and sun sensors are able to correct this error, the inaccurate transfer
could lead to mission loss.

ID Block Function Assumed
Failure

Phase Failure
Effect

Detection Compen-
sation

SN PN CN

IMU
08 IMU

Measure
angular
rate
around
3 axes

Drift in
mea-
sure-
ments (1
deg/hour
or 0.01G
/hour)

3 Inaccurate
relative
attitude
measure-
ment -
>Reduced
pointing
accuracy
->Lower
quality
or no
science

Cross
check
angular
rates
with star
tracker
data,
check
accelera-
tion with
position,
velocity,
time

Power
cycle
IMU

2 2 4

1 Inaccurate
relative
attitude
measure-
ment
->Risk of
detum-
bling not
being
per-
formed -
>Mission
loss

3 2 6

2, 4 Inaccurate
relative
attitude
measure-
ment -
>Reduced
pointing
ac-
curacy -
>Inaccurate
transfer
per-
formed

3 2 6

Table 3.5: Example of FMECA Item - IMU.08 IMU Measurement Drift

3.2. FMECA 22

The- traditional detection method is determined to be through comparison (cross check) of the
IMU rates with other available rates such as from the star tracker depending on the accuracy
required. Compensation can occur through power cycling of the IMU, which may include re-
calibration depending on the component specifications. The scores are assigned based on
the failure effect, and the probability of the failure occurring is designated as ’remote’, which is
a score of 2. This shows that the failure is not critical during the science phase, but is critical
during the parking and transfer phases as well as the disposal phase. It is therefore important
that this failure can be detected and compensated accurately.

Critical FMECA Items
The results of the FMECA is a list of 20 critical faults out of the 53 analysed, according to the
criteria defined by the ECSS standard as shown in Table 3.4. Eighteen of these faults have
a CN of 6, meaning they are considered highly critical but only just. A small lowering of the
severity or likelihood would bring them to an acceptable level of criticality. The two items with
a CN of 9 are the RCS and main thruster valves being stuck in the open position (FMECA
ID RCS.04 and MT.04 respectively). Their relatively high likelihood over repeated operation
in space combined with their severe consequence means they are highly critical. In order to
reduce their criticality, the probability should be lowered by ensuring the use of systems with
long-standing flight heritage in comparable missions, and testing the thrusters in representa-
tive vacuum conditions at low temperatures for different firing profiles. The severity of these
two failures could be reduced by means of a redundant thruster branch which can be isolated
from the faulty thruster branch. However, in a CubeSat the latter option is likely not possible
due to mass and volume constraints.

The criticality of all 53 analysed FMECA items is shown in Table 3.6. It can be seen here that
the majority of critical faults are critical due to their high severity, not due to their excessive
probability. Also notable is that there are no faults with the highest severity or probability. This
reflects the previous design and analysis work done in the LUMIO CDF and Phase 0 designs
as well as the FMECA by Gelmi [22]. As can be seen from the large number of items with a SN
of 3 and PN of 1, the faults with a critical severity have been made of extremely low probability
in prior work through the introduction of redundancy or the adoption of flight-proven systems.

PN
1 2 3 4Severity SN
Extremely Remote Remote Occasional Probable

Catastrophic 4

Critical 3

STR.03 STR.04 STR.08
RW.03 RW.04 RW.05
RW.06 RW.07 RW.08
IMU.01 IMU.02 IMU.03
IMU.04 IMU.05 RCS.01
MT.01 MT.07 MT.08
AOCS.01

STR.01 STR.10 RW.01
STR.05 STR.11 RW.02
STR.09 STR.12 IMU.06
IMU.07 IMU.08 RCS.02
RCS.03 MT.02 MT.06
OBC.01

RCS.04
MT.04

Major 2 STR.06 SADA.01
STR.02 RW.09 MT.03
SADA.02 SADA.03
SADA.04

RCS.05
MT.05

Negligible 1 SS.01 SS.02 SS.03 STR.07 SS.04 SS.05

Table 3.6: Criticality Matrix for LUMIO AOCS (fault IDs refer to the FMECA IDs in Appendix B)

3.3. FDIR Requirements 23

3.2.3. Fault Register
The identified critical faults are summarised in a Fault Register, which is included in Appendix C.
This Fault Register also indicates what the possible detection method would be in this case.
Only two of the twenty faults can be detected through ’simply’ cross checking variables and
system states (e.g. power or communication status). Detection of twelve of the critical faults
relies on some form of model-based fault detection, requiring complex nonlinear dynamic mod-
els of the spacecraft, as well as thermodynamic models of the propellant tank and spacecraft.
Finally the five other critical faults are presumed be detectable through signal processing, by
measuring running average, variance and other signal characteristics. The faults are also
assigned codes within the Fault Register which will help isolate specific faults and instigate
appropriate recovery actions in the system.

Continuing the same example from the FTA shown in Figure 3.2 and the FMECA item shown
in Table 3.5, the corresponding critical fault in the fault register can be seen in Table 3.7.

ID Block FMECA
ID

Fault
Name

Symptoms ’Simple’
Cross
Check
Detec-
tion

Signal
Detec-
tion

Model-
Based
Detec-
tion

F26 IMU IMU.08 IMU
reading
inaccu-
rate (drift,
bias..)

IMU readings do
not match abso-
lute attitude read-
ings and actuator
inputs

Table 3.7: Critical Fault F26 as an example from the critical fault register in Appendix C

The main area of application for the model-based fault detection methods is in the sensor
reading faults. Uncalibrated sensors, drifting signals, biases, steps, outliers and noisy sen-
sors require more intelligent detection methods. This is due to the fact that, as a first step,
sensor data is assumed to be truthful and used for fault detection in the rest of the system.
However, when the sensors themselves start to provide inaccurate data there is no way to
know unless there are one or more duplicate measurements available. In the fault register,
half of the critical faults (10 out of 20) are related to the incorrect or unavailable sensor data,
all of which are critical to the LUMIO mission. This shows there is a need for an accurate,
efficient and accessible model-based fault detection method for advanced CubeSat mission
such as LUMIO.

3.3. FDIR Requirements
Having detailed the system architecture and potential faults as well as their effects, a set of pre-
liminary FDIR constraints can be generated, which can be translated into a set of requirements.
These requirements will ensure the chosen FDIR methods can be applied to the CubeSat plat-
form, and will guide the trade study and its criteria in the next section of this chapter.

The LUMIO mission design is guided by a set of mission requirements, described in the Mis-
sion Requirements Document (MRD) [19] as well as a set of system requirements which are
described in the SystemRequirements Document (SRD) [20]. From these requirements, those
deemed especially relevant to the FDIR system were selected to form a basis for the FDIR
system requirements. These FDIR requirements and constraints will determine the trade cri-
teria in the next section, the full requirements set can be found in Appendix D.

3.3. FDIR Requirements 24

Based on LUMIO requirements, 35 FDIR requirements were identified across four categories:

• GEN - General
• FUN - Functional: what should the FDIR be capable of doing?
• PER - Performance: how well should FDIR functions be accomplished under certain
conditions?

• INT - Interface: how should the FDIR interact with other systems and functions?

Due to the scope of this thesis, only a few of the most relevant requirements out of the 35
FDIR requirements will be discussed here, a full overview can be found in Appendix D.

3.3.1. General Requirements
The general FDIR requirements, categorised by the ’GEN’ identifier, most relevant to this the-
sis are shown in Table 3.8. The most important limitations to the system are that the FDIR
system should be computationally lightweight such that no additional processors are required,
that the system complexity is not increased through introduction of new hardware or resource
requirements, and that verification is required before integration in the spacecraft. The FDIR
system shall also make use of the onboard telemetry in order to accurately detect faults. This
is especially relevant to the AOCS system, where valuable information can be gathered from
cross-checking telemetry between units.

ID Description Rationale Verification
GEN-
010

The FDIR system shall not
require any additional pro-
cessors in the spacecraft

The FDIR system should not re-
quire any additional hardware (sen-
sors, processors, actuators) to be im-
plemented, and should consist of only
software which can be run on any of
the LUMIO processors.

Inspection

GEN-
020

The FDIR system shall be
verified before integration
into the spacecraft

The FDIR system must be tested in
order to ensure correct functioning be-
fore implementation on LUMIO hard-
ware

Demonstration

GEN-
030

The FDIR system shall not
increase LUMIO system
complexity

The FDIR system should not make
the CubeSat satellite architecture
more complex by requiring additional
hardware (sensors, actuators, pro-
cessors), power, or propellant

Analysis

GEN-
070

The FDIR system shall be
able to access the house-
keeping telemetry onboard
for fault detection and isola-
tion

All housekeeping data onboard
should be accessible for the FDIR
system to ensure maximal coverage
in fault detection and isolation

Demonstration

Table 3.8: LUMIO FDIR General Requirements most relevant to this thesis

3.3.2. Functional Requirements
The functional requirement most relevant to this thesis is shown in Table 3.9. FUN-010 dictates
the possible fault sources which are in scope for a fault detection and isolation system. This
is important as in the verification activities, representative faults are simulated based on the
expected fault types and their features.

3.4. Trade Study 25

ID Description Rationale Verification
FUN-
010

The FDIR system shall de-
tect and isolate hardware
faults caused by: random
faults, wear out, radiation

As defined by the SAVOIR FDIR HB-
003 Iss2 rev0 to be in scope of the
FDIR system

Analysis

Table 3.9: FDIR Functional Requirements LUMIO most relevant to this thesis

3.3.3. Performance Requirements
The four most relevant performance requirements are shown in Table 3.10. It can be seen here
that the key performance drivers are focused on accurate fault detection, as well as avoidance
of false alarms. It should also be noted that the FDIR system has a limited available onboard
storage and working memory to perform its tasks, again emphasising the need for a highly
lightweight system. Due to the early stage of the mission design the exact numbers are not
yet determined, hence the ’TBD’. For the fault detection rate and the false alarm rate also no
exact numbers are assigned yet as these will depend on the threshold selection and tuning
during the design process. In general, missed fault detections should be avoided at all costs,
while minimising the false alarms triggered in the system.

ID Description Rationale Verification
PER-
010

The FDIR system shall re-
quire at most TBD GB of on-
board RAM

The FDIR system should not limit the
computational resources available for
nominal operations

Demonstration

PER-
020

The FDIR system shall be
storeable in at most TBD
GB of onboard non-volatile
memory

The memory available onboard is re-
quired for payload and housekeeping
data storage

Inspection

PER-
030

The FDIR system shall
catch faults with a fault
detection rate (FDR) of TBD
%

The FDIR should be able to catch as
many faults as possible

Analysis

PER-
040

The FDIR system shall have
a false alarm rate (FAR) as
low as possible, and of no
more than TBD % based on
test data.

The FDIR should avoid unnecessary
interruption of nominal, fault-free op-
erations.

Analysis

Table 3.10: FDIR Performance Requirements LUMIO

3.4. Trade Study
In chapter 1 the research question focuses on novel model-based fault detection methods,
and the literature study performed into available model based FDIR methods [10] provides
plenty of design options. The task at hand is to determine which of the model based meth-
ods is most suitable for development of a novel fault detection method. To do this, the space
systems engineering process for a trade off [47] is followed, with a design option tree (DOT),
elimination of infeasible concepts and selection of the winning concept in a trade off using
criteria based on the requirements outlined in the previous section. The weights for the cri-
teria are determined through Analytical Hierarchy Process (AHP), and scoring is performed
using the classical trade off method. Confirmation is given by using a different system to assign
weights, as well as by comparison to the results of the trade off using a Pugh Matrix for scoring.

3.4. Trade Study 26

For brevity, only the DOT and outcome of the trade off will be discussed in this section. The
full concept exploration and criteria determination process is described in Appendix E.

3.4.1. Design Options
The first step in selecting the appropriate method(s) for FDIR onboard LUMIO is to gain a solid
understanding of the available options and their characteristics. A detailed summary of these
methods was reviewed in the literature study [10], and some methods are shortly discussed
in chapter 2. A more complete Design Option Tree (DOT) is shown in Figure 3.3, with the con-
cepts which are considered feasible and included in the trade study indicated in green/bold.
The options are discussed one by one in Appendix E along with a short motivation as to why
they are considered feasible or infeasible and included in the trade off, or not.

In general, concept feasibility is linked to general characteristics of each design option and
if they meet the previously discussed requirements. For example: hardware redundancy re-
quires additional hardware, which already violates GEN-030 which states no additional hard-
ware shall be introduced for FDIR purposes. Most concepts were eliminated due to the clear
violation of FDIR requirements, or due to the limited applicability in CubeSat missions: expert
systems are an example of this. The need for experts and the lack highly specific nature of
the system is contradictory to the nature of the CubeSat platform.

Figure 3.3: LUMIO FDIR Design Option Tree (green/bold are those concepts selected for trade off)

3.4.2. Trade Criteria and Weights
To perform an informed trade study, the criteria for the trade off should be well defined, mutually
exclusive and based on the requirements defined in this chapter. Additionally, these criteria
should be weighted such that their influence in the chosen solution reflects their importance in
the design. Determination of these weights can be influenced by the subjectivity of the analyst,
and therefore it is critical that the process is transparent and the reasoning documented.
The chosen criteria to trade of the FDIR method, with traceability to the relevant requirements
are summarised below. The detailed traceability to the requirements and the rationale for
selecting criteria can be found in Appendix E.

• Fault detection accuracy
• System complexity

3.4. Trade Study 27

• Model complexity
• Verification and validation feasibility
• Required computational resources
• Software based (killer)
• Thesis feasibility (killer)

It should be noted that aside from the five criteria identified from requirements, two killer re-
quirements are taken into account. The first, software-based, is a reflection of the GEN-030
requirement which states no additional hardware can be introduced. This killer requirements
ensures no design options are selected based on hardware voting or similar systems. The
second, ’thesis feasibility’, does not come from the FDIR constraints but rather from the lim-
ited scope and timeframe of this thesis. This is to ensure the chosen design option can be
developed within the required timeframe and using the available resources and expertise.

The Analytical Hierarchy Process (AHP) was used to determine the weights described in Ta-
ble 3.11. As can be seen the fault detection accuracy and verification and validation feasibility
are considered most driving in selection of the system. The full ranking and AHP process is
described in Appendix E.

Criteria Weight (AHP)
V&V feasibility 1.300
Fault detection accuracy 1.387
System complexity 0.607
Model complexity 0.410
Computational resources 1.000

Table 3.11: Criteria weights determined using AHP

Criteria Weight Signal
pro-
cess-
ing

Parity
Space

Cognitive
Automa-
tion

Neural
Net-
works

Support
Vector
Machine

Dynamic
Bayesian
Network

Verification &
validation feasi-
bility

1.300 100 110 90 90 90 80

Fault detection
accuracy

1.387 80 90 110 110 100 100

System com-
plexity

0.607 110 90 90 100 100 90

Model complex-
ity

0.410 120 90 110 110 100 80

Computational
resources

1.000 110 90 80 120 90 100

Results 0.99 0.96 0.96 1.05 0.92 0.91
Killer Req Thesis 1 1 0 1 1 0

Software 1 1 1 1 1 1
Final
Score

0.99 0.96 0.00 1.05 0.92 0.00

Table 3.12: Trade Off with weights determined through AHP

3.5. Alternate Scoring and Critical Review 28

3.4.3. Trade Off Results
The classical trade off method relies on scoring each design option for each criterion. The
scoring scale can be chosen rather arbitrarily as the results are normalised. In this case, scor-
ing is done with a baseline score of 100 points for an acceptable solution, with solutions which
underperform on a criterion receiving point deductions in steps of 10, and solutions which
outperform the criterion receiving point awards in steps of 10. The results are summed and
normalised, and the killer requirements are taken into account before achieving the final score,
as seen in Table 3.12.

The results of the trade off show a single winner: neural networks. However, three other
alternatives are too close to provide a conclusive result. Therefore to confirm or reject this
outcome, this outcome is compared to that of a trade off with a different scoring system first,
and following that a different weight designation system.

3.5. Alternate Scoring and Critical Review
The outcome of any trade off should be reviewed critically to ensure the chosen solution(s) are
actually those that best meet the requirements. In this case there are a few close matches,
which indicates that they may all form roughly equivalent solutions depending on the scoring
or weights. Therefore the determination of these two factors which significantly influence the
outcome will be performed using alternate methods in order to confirm or reject the trade off
results. Another trade off is performed with the weights being changed from the AHP deter-
mined ones to a simple ranking system. A third trade is performed using the AHP determined
weights but the scoring uses a Pugh matrix. The full outcomes of these methods can be found
in Appendix E. The result of both ranking system and the Pugh matrix are shown in Table 3.13,
both continue to confirm the Neural Network based methods as the winner.

Signal
Process-
ing

Parity
Space

Cognitive
Automa-
tion

Neural Net-
works

Support
Vector
Machine

Dynamic
Bayesian
Network

Alternate
Ranking

0.99 0.97 0 1.04 0.91 0

Alternate
Scoring

0.93 -0.11 0 4.704 1.387 0

Table 3.13: Results of the trade study using alternate ranking and scoring mechanisms

This outcome supports the conclusion that neural network based approaches are most suit-
able in this specific case, but the other two candidates (SVM, Signal Processing) should not
be completely ruled out just based on this study. In fact, for larger, more risk-averse space-
craft cognitive automation methods are considered more promising by some researchers [62].
However, based on the trade off in this chapter, this thesis will focus on developing a neural
network based approach to fault detection in the LUMIO AOCS system. This is mainly thanks
to its relative low computational requirements (relative to the other methods) in combination
with the high fault detection accuracy characteristics and low model complexity.

4
Fault Data Simulation

In order to train, test and verify any neural network for fault detection, nominal and faulty data
is required. The best case would be to have labelled sets of real spacecraft data with real
anomalies. However, these are not readily available. Therefore other sources of training and
testing data are investigated and discussed in this chapter, and the fault simulation method
and characteristics is discussed for the LUMIO test case.

This chapter will start by summarising the faults which can be encountered in AOCS telemetry,
and defining a suitable method of simulating these faults in section 4.1. Following this, sources
of LUMIO AOCS telemetry for testing and training purposes will be investigated and a final
source will be selected in section 4.2. Finally section 4.3 will describe the datasets obtained
for validation using real spacecraft data from OPS-SAT.

4.1. Fault Definition and Simulation Method
In order to design and test a neural network based method for fault detection, a baseline def-
inition should be set stating which faults should be detected. This is challenging since it is
unknown exactly which faults can occur and how they will manifest. However, literature such
as the NASA Fault Management Handbook [41] and the ’Fault Tolerant Flight Control and
Guidance Systems’ book by Guillaume J.J. Ducard [13] give some insight into typical faults
one can expect in spaceflight as well as guidance systems actuators and sensors. From a
fault detection perspective in sensor data, two broad classes of faults can be distinguished:
those directly detectable without context: step faults, erratic behaviour, outliers; and the class
of faults which require additional information to detect: sensor drift, constant bias, loss of ac-
curacy. This section will discuss these faults, their potential sources, and quantify them for
simulation in the context of the LUMIO.

The IMU will be the test case under consideration in this thesis due to its critical nature in
the AOCS system, and the option to validate IMU signals compared to other AOCS telemetry
such as absolute attitude data from star trackers and sun sensors. It also correlates directly to
system inputs from actuators such as reaction wheels, or RCS thrusters. Based on the initial
AOCS simulations performed by the prime contractor for LUMIO, Politecnico di Milano, the
STIM 210 IMU [67] produced by Safran is considered the Phase B LUMIO IMU. Note that this
is different from the Phase A ISISpace IMU because the simulated data is only available for
the STIM 210 IMU, and not the Phase A IMU. The faults will be quantified based on the STIM
210 specifications. It should be noted that this IMU does have self diagnostics software built
in, but these checks are limited to (as taken from the STIM 210 datasheet [67]):

29

4.1. Fault Definition and Simulation Method 30

• Check of internal references
• Check of gyros (error and overload)
• Check of internal temperatures
• Check of RAM and flash
• Check of supply voltage

There is no checking of the actual measurement content and especially no cross checking
between measured quantities of the gyros compared to absolute attitude and actuator input.

4.1.1. Directly Detectable Faults (Non Model Based)
The directly detectable faults are those which become visible in the telemetry without needing
context or models for detection. These faults are listed in Table 4.1, a visual example of the
three faults is shown in Figure 4.1. The faults are quantified by setting the minimum detectable
magnitude of the fault, based on the LUMIO pointing requirements.

Step Faults
The step bias as shown in Figure 4.1a is defined as a sudden constant offset in the signal,
potentially caused by SEUs, ground loops, or software bugs. It is quantified based on LUMIO
pointing requirements. LUMIO requires a pointing accuracy of 0.1 degree (0.0017 rad) and a
pointing stabilisation of 79.9 arcsec/s (0,000387 rad/s) during lunar tracking [50]. Therefore,
a step bias of 0.002 rad/s was deemed an acceptable fault size for detection. At this step bias
size, integration errors will lead to violation of the pointing accuracy within seconds, by which
time the fault is detected.

Erratic Behaviour
The erratic behaviour fault shown in Figure 4.1b is a (sudden) increase in signal noise. This
can be the result of temperature effects such as thermal noise, but also thermal gradients and
large variations in temperature such as those encountered in deep space. Other sources in-
clude environmentally induced electromagnetic interference (EMI), such as by radiation, or by
internal electronics. Sensitive electronics can experience interference from onboard electronic
units or even the electromagnetic fields of wires in the spacecraft amplifying each other [3]. An-
other source of this fault could be the ageing hardware, or a fault in a physical connector or
analogue to digital converters due to shock and vibrations during launch and deployment. The
fault is quantified by the standard deviation σsignal of the signal, and is set to 0.01 rad/s based
on the standard deviation of the nominal noise during the slew manoeuvre of 0.004 rad/s. The
fault is simulated by sampling a Gaussian distribution for simplicity, although Markov noise
could be used (such as in the GAFE simulator, see subsection 4.2.1) in the future to simulate
more realistic, non-Gaussian noise.

Outliers
The outlier fault seen in Figure 4.1c is where a single datapoint deviates significantly from
the rest of the signal. This fault can be the result of a charged particle striking the spacecraft
(Single Event Upset (SEU)) or a sampling error in the sensor and processing units themselves.
The quantification is difficult as outliers may present in different magnitudes. Therefore, it was
assumed the outliers which should be detected shall be at least one Order of Magnitude (OoM)
larger than the step bias faults, to account for noise and highly dynamic situations. This leads
to outliers of 0.1 rad/s in the defined faults for this thesis.

4.1. Fault Definition and Simulation Method 31

Fault
Type

FMECA
ID

Potential root causes Quantification Reasoning

Step
Bias

IMU.06 SEU, ground loops, software bug +0.002 rad/s LUMIO
pointing
require-
ments [50]

Erratic
Be-
haviour

IMU.08 EM interference (external, inter-
nal), ADC/connector hardware fault,
ground loops, thermal noise

0.01 rad/s
STD

Standard
deviation
nominal
noise

Outlier IMU.06 SEU, processing/ sampling error Spike +0.1
rad/s

+1 OoM

Table 4.1: List of directly detectable IMU faults, sources, and quantification for LUMIO

(a) Example of a step bias in the IMU x-axis angular rate
reading

(b) Example of erratic behaviour in the IMU x-axis
angular rate reading

(c) Example of an outlier (’spike fault’) in the IMU x-axis
angular rate reading

Figure 4.1: Fault examples - directly detectable faults

4.1.2. Faults Requiring Cross Checks (Model Based)
The second class of faults in AOCS telemetry are those which do not have distinguishable
features in the signal as those shown in Figure 4.1. They exhibit the behaviour of the system
under nominal conditions, but require a model based approach (or voting mechanisms) in
order to detect them. These are summarised in Table 4.2 and shown in Figure 4.2.

4.1. Fault Definition and Simulation Method 32

Constant Bias
The first is a constant bias in the signal, seen in Figure 4.2a. This is a constant offset in the
signal, present from the start of monitoring such that the ’step’ feature is not seen such as in
Figure 4.1a. It can occur due to a number of reasons, including ground loops, a software bug,
or damage to the unit amongst other things. The quantification for the LUMIO test case is
set at a bias of 0.01 rad/s. This magnitude implies that if detection occurs within 10 seconds
a maximum error of 0.1 radians or 5.6 degrees is introduced in the real spacecraft attitude
compared to the desired attitude.

Signal Drift
The second is the drifting signal fault, shown in Figure 4.2b. This is the case where the mea-
sured value slowly deviates from the true value in a continuous manner. Real-life sources of
this effect could be temperature effects and large temperature gradients, ageing, interference
from other electronics in the spacecraft and calibration issues. This fault in the example of
LUMIO is set to a drift of 0.0005 rad/s/s which equates to an error of 0.005 rad/s after 10 sec-
onds, and a worst case accumulated pointing error of 0.0275 rad or 1.58 degrees at this point
which is deemed acceptable.

Loss of Accuracy
The final fault type considered in this thesis is the loss of accuracy of the sensor seen in
Figure 4.2c, in which the error between the measured value and the real value is dependent
on the magnitude of this value. The larger the measured quantity, the larger the error. This
can occur when sensor calibration is not performed or incorrectly performed. This fault was
simulated using a scaling factor of 1.75, which means at the higher velocity slew rates of 0.02
rad/s seen in the LUMIO data (see subsection 4.2.2), this fault would induce a worst case error
of 0.015 rad/s in the signal. This means a worst case offset of slightly less than 1 degrees after
10 seconds, indicating the scaling factor of 1.75 is an acceptable lower bound for this error.

Fault
Type

FMECA
ID

Potential root causes Quantification Reasoning

Bias IMU.06 Damage, ground loops, software bug +0.01 rad/s STIM
Specifica-
tions

Signal
drift

IMU.06 Temperature effects, ageing, interfer-
ence, stress, calibration issues

0.0005
rad/s2

LUMIO
pointing
require-
ments

Loss of
accuracy

IMU.06 Calibration error, temperature effects x1.75 LUMIO
pointing
require-
ments

Table 4.2: List of IMU faults not directly detectable, sources and quantification for LUMIO

4.1.3. Other fault types
As mentioned before, it is not possible to determine every type of fault one will encounter be-
forehand, therefore in this thesis the most obvious and likely have been discussed. However,
there are fault features which can be conceived which have not been discussed and which
will not be treated in this thesis. This includes any imaginable combination of the above faults,
such as a drifting signal which increases in noise or a biased signal which is also uncalibrated.

4.2. LUMIO AOCS Telemetry Simulation 33

(a) Example of a constant bias in the IMU x-axis angular
rate reading

(b) Example of a drift in the IMU x-axis angular rate
reading

(c) Example of a loss of accuracy (calibration) in the IMU
x-axis angular rate reading

Figure 4.2: Fault examples - model based detectable faults

Finally, for any of the aforementioned faults it can occur that these repeat intermittently. The
pattern in the signal could for example not be just one step, but multiple steps. Erratic be-
haviour may cut in or out at times with low or high frequency. All these fault types could also
be investigated, but it is hypothesised that if the fault detection mechanism can catch these
subtle faults, these more obvious combined or period faults can also be easily detected.

4.2. LUMIO AOCS Telemetry Simulation
In order to design and test a fault detection method for the LUMIO AOCS, (simulated) space-
craft telemetry is needed. Two sources were investigated: the GAFE simulator and the sim-
ulation data obtained from the AOCS design team at Politecnico di Milano. These are both
discussed in this section.

4.2.1. GAFE Simulator
Generic AOCS/GNC Techniques & Design Framework for FDIR (GAFE) is a powerful MATLAB
tool developed jointly by ESA, Airbus, Astos, and IFR in order to support AOCS FDIR design
specifically. [39] It is a highly advanced tool with incredible potential for simulating spacecraft
AOCS nominal and faulty behaviour. Based on other simulators such as the Matlab CubeSat
simulator or basic analytic models for spacecraft, this simulator can be considered as state of
the art for AOCS FDIR design. Therefore, it was considered an excellent source of data for
network training in this thesis as well.

4.2. LUMIO AOCS Telemetry Simulation 34

Figure 4.3: GAFE Simulated IMU Faults: following boot up (60s) and detumbling (600s) a noise fault occurs at
t = 1200s and random walk fault at t = 4000s

Tool Content
The simulator is extensive and includes realistic models of AOCS actuators and sensors, in-
cluding but not limited to: reaction wheels, magnetorquers, thrusters, sun sensors, star track-
ers and Inertial Measurement Unit (IMU)s. The parameters of these units can be modified
in order to set physical parameters (mass, volume, inertia), signal parameters (noise levels,
sampling rates) as well as digital parameters (resolution, errors). Also incorporated in the tool
are detailed models in order to model disturbances such as the aerodynamic drag, magnetic
field interactions, gravitational effects from Earth, Sun and Moon, and solar radiation effects.

The AOCS system in GAFE is brought together through a predefined AOCS algorithm which
takes the input data from sensors, and depending on the defined scenario controls the space-
craft accordingly. The FDIR system in the simulator watches over the units and controls a
health manager which tells the AOCS algorithm which units are available and valid.

Fault Introduction
The tool allows for multiple highly realistic faults to be introduced at given times in different
units. The generic fault types included are:

• Fixed Bias
• Random Walk (drift)
• Stale Data
• No Signal
• Non-Gaussian noise (erratic behaviour)

Unit-specific faults can be introduced, such as an increase in reaction wheel friction or tem-
perature. An example of an IMU fault simulated using GAFE is shown in Figure 4.3.

Usage of GAFE for this Thesis
Although this simulator seems to be the perfect candidate for use in this thesis, no accurate
fault data could be generated. This is in part due to the non user-friendly interface, with a

4.2. LUMIO AOCS Telemetry Simulation 35

large number of MATLAB scripts needing to be adjusted before the simulator works and with
duplicate variables making it difficult to set specific conditions and perform verification. The
simulator also did not show predictable, consistent or reproducible behaviour when the LUMIO
spacecraft parameters were introduced, which due to lack of understanding of the underlying
models could not be resolved. After extensive testing and consultation with experts, it was
decided this simulator would not be used for the purpose of this thesis. However, in later
stages and after further work by the developers, this tool is a very promising source of training
data in the absence of real spacecraft telemetry.

4.2.2. Simulated LUMIO Telemetry: Politecnico di Milano
The LUMIO project is currently undergoing its Phase B study with Politecnico di Milano as
prime contractor on the project. Some initial AOCS simulations of LUMIO were obtained which
include IMU rate measurements and Reaction Wheel momentum loading data for 4 different
scenarios:

• Slew: 30 minute simulation of LUMIO slewing from Moon pointing to Earth pointing and
then back to Moon acquisition. (Figure 4.4a)

• Detumbling - high velocity: simulation of detumbling from high initial angular rates (up
to 0.15 rad/s on each axis) within 30 minutes. (Figure 4.4b)

• Detumbling - low velocity: simulation of detumbling from low initial angular rates (up
to 0.03 rad/s on each axis) within 30 minutes. (Figure 4.4c)

• Lunar Tracking: the spacecraft holds the camera pointing steadily at the moon for a
period of 7 days (Figure 4.5a and Figure 4.5b)

(a) Simulated LUMIO IMU Output: Slew manoeuvre,
Moon-Earth-Moon within 30 minutes

(b) Simulated LUMIO IMU Output: high velocity
detumbling

(c) Simulated LUMIO IMU Output: low velocity
detumbling

Figure 4.4: Slew and Detumbling simulated IMU Data (source: Politecnico di Milano)

4.3. Real Satellite Telemetry: OPS-SAT 36

The IMU data for slew and detumbling scenarios is plotted in Figure 4.4. The measurements
are taken in the instrument relative reference frame of the spacecraft. This data is modelled
based on real component performance, in this case the STIM210 IMU, and is sampled at a rate
of 10Hz (reduced down to an assumed 1Hz by the AOCS algorithm). The simulation assumes
a constant bias of 0.005 rad/s on the IMU data under nominal operating conditions, which
is why the rate does not converge to 0 rad/s in all scenarios. The Lunar Tracking IMU and
corresponding Reaction Wheel (RW) data are shown in Figure 4.5. Due to the early stage of
the project, the RW data corresponding to the simulated IMU measurements is only available
for the tracking scenario, not for the slew and detumbling scenario.

(a) Simulated LUMIO IMU rate measurement during 15 days
of lunar tracking

(b) Simulated LUMIO Reaction Wheel momentum loading
[Nms] during 15 days of lunar tracking

Figure 4.5: Simulated Lunar Tracking IMU and reaction wheel data (source: Politecnico di Milano)

4.3. Real Satellite Telemetry: OPS-SAT
As a final potential source of data, access was requested and granted to the telemetry of ESA’s
OPS-SAT. The OPS-SAT mission is based on a 3U CubeSat design and is a demonstrator
satellite for testing ground control software under real flight conditions. The project is lead by
ESA ESOC, and allows for rapid and flexible testing of new mission operations concepts [16].
Experimenters can request access to the reprogrammable spacecraft and are allowed to test
concepts with no prior flight heritage and minimal preload testing. While for this thesis no in-
flight testing is performed, the downlinked telemetry of the spacecraft functioning is valuable to
test fault detection concepts on real flight data. As an example, a downlinked telemetry frame
containing the three angular rates measured by the IMU is shown in Figure 4.6. The duration
of these passes in view of a ground station is typically just under an hour.

For verification purposes, three windows were arbitrarily selected from recent telemetry, based
on the fact that for these windows all AOCS data was available and complete. The windows
are all taken on November 29 of 2022, at the following times:

• Window 1: 07:29:13 - 08:07:40
• Window 2: 10:38:07 - 11:17:03
• Window 3: 20:25:47 - 21:04:47

Each telemetry frame includes the data shown in Table 4.3. Before using the datasets, some
processing of the data was required. Some series were missing certain datapoints compared
to others, so comparison of the timestamps allowed to identify these. The missing datapoints
were then artificially created and linear interpolation performed in order to fill the gaps. This is
not thought to influence the quality or integrity of telemetry as there was never more than one

4.3. Real Satellite Telemetry: OPS-SAT 37

missing datapoint sequentially: every artificial datapoint was always based on two neighbour-
ing real points. There were also at most three missing datapoints per window, out of over 180
measurements.

Figure 4.6: OPS SAT IMU telemetry downlinked during a 39 minute communication window (window 2) on 29
November 2022

Unit Parameter Unit
IMU Angular rate x-axis rad/s
IMU Angular rate y-axis rad/s
IMU Angular rate z-axis rad/s
RW Wheel speed x-axis RPM
RW Wheel speed y-axis RPM
RW Wheel speed z-axis RPM
STR Quaternion 1 (Q1) [-]
STR Quaternion 2 (Q2) [-]
STR Quaternion 3 (Q3) [-]
STR Quaternion 4 (Q4) [-]
SS Sun Angle Degrees

Table 4.3: OPS-SAT AOCS telemetry package content used in this thesis

5
Design of Fault Detection Method

In this chapter a fault detection neural network will be designed. Starting in section 5.1, the
neural network concept and workings are introduced, as well as some typical metrics used. In
section 5.2 different methods for fault detection using neural networks and their advantages
and drawbacks are explored. Here, the challenges faced in using neural network based fault
detection are also highlighted, and amotivated is given for the unsupervised learning approach
used in this thesis. The training data structure and preprocessing steps are presented in
section 5.3, after which the design process of the network itself is described in section 5.4. This
includes the design philosophy, choices made and the tuning of the network hyperparameters.

5.1. Introduction to Neural Networks
While the full mathematical definition of a neural network will not be discussed here, a short
description of the inner workings and commonly used terminology will be given. A neural net-
work, as shown in Figure 5.1, consists entirely of neurons, with each neuron being part of
a layer. In this example, the network has two (numerical) inputs, which form the input layer.
The output layer of the network consists of four neurons. When the network is trained, each
neuron is updated with weights and a bias, such that when the network receives the inputs it
produces the desired outputs.

Figure 5.1: Simple neural network layout with two hidden layers

38

5.1. Introduction to Neural Networks 39

An example of a single neuron which is connected to three neurons of the previous layer is
shown in Figure 5.2. It can be seen that the neuron takes a number of inputs, which can be
the network input vector or the output from a previous hidden layer, and multiplies each input
with a specific weight. The summation of these weights, together with a bias introduced in the
neuron, are fed through an (often nonlinear) activation function which produces the output of
the neuron. This output may be fed into the next layer of neurons or it may be the network
output. The most important aspects of this process are shortly detailed below.

Figure 5.2: Basic workings of a single neuron in a neural network explained

5.1.1. Weights and Bias
The weights of a neuron are initialised stochastically at the start of the training process. They
are then updated as training continues in order to produce a better output. Every neuron has
their specific weights for every specific input. This means that a network with 2 layers of 8
neurons and an input of size 4 will have 4 x 8 x 8 = 256 unique weights. It can be seen that
even for such a small network, the number of combinations of weights is endless. Therefore
the process of setting these weights to produce the desired output is critical in setting up a
useful network. For that reason an optimiser function is used during the training process. The
optimiser function adjusts the weights and biases of the network based on the calculated gra-
dients of the loss function (the loss function measures the difference between desired and
actual output). The goal of the optimiser is to find the optimal set of weights and biases that
will result in the lowest loss. The network is always trained in such a way that loss is minized
as much as possible, whichever way loss is defined.

After summation of the input products, a bias is introduced for each neuron to help deal with
inputs which are very small or contain a lot of zeroes (for example, dark images have a lot of
pixels which are zeros). The bias is set for every single neuron and is also updated through
the training process in a similar way to the weights.

5.1.2. Activation Function
The result of the input summation and the bias is then passed through activation function ψ()
in order to introduce nonlinearity. Without this function the summations of the inputs multiplied
by the weights would lead to a linear relationship between the input and output. To allow the
network to learn nonlinear behaviour, the nonlinear activation function is introduced. While
there are many activation functions, two of the most popular for classification problems are
used and discussed in this thesis: the Rectified Linear Unit (ReLU) and the Sigmoid function.

5.1. Introduction to Neural Networks 40

The ReLU, and its variation the Parametric ReLU (PReLU) are shown in Figure 5.3. It can
be seen that the ReLU is a piece-wise function, which is linear for positive inputs and zero
for negative inputs. A variant, which helps prevent the ’dying ReLU’ problem (negative inputs
lead to dead neurons which only output zero) is the PReLU. It has a learning parameter ’a’
which can be tuned in the training process.

Figure 5.3: ReLU (left) and PReLU (right) activation functions. Source: He et al. [27]

The other nonlinear activation function used in this thesis is the Sigmoid function, shown in
Figure 5.4. It can be seen here that this is a nonlinear function which translates its input to
a range from 0 to 1 with a clear tendency to favour the extremes of this range as the input
is further away from zero. This is highly useful for binary classification, where the output is
expected to be close to zero or one, symbolising true or false or a similar classification.

Figure 5.4: Sigmoid Activation Function. Source: Martin Thoma [61]

5.1.3. Loss Function
As mentioned before, the loss function is used to compare how well the neural network per-
forms during training and help improve it. The neural network uses the loss function as its
measure of how well it is learning certain patterns. Depending on the application of the net-
work, a different function is chosen. Regressive loss functions are commonly used for con-
tinuous prediction (as is the case in this thesis) and include the Mean Absolute Error (MAE),
Mean Squared Error (MSE), Mean Squared Logarithmic Error (MSLE), and Mean Absolute
Percentage Error (MAPE). On the other hand, probabilistic loss functions are commonly used
for prediction of probability distributions (e.g. evaluating a network for predicting the likeli-
hood that a picture contains humans). This class of loss functions measure the difference
between probability distributions, and include categorical cross entropy, binary cross entropy,
and Kullback-Leibler Divergence.

5.1. Introduction to Neural Networks 41

It is essentially the way a network training process can understand how it is performing and
how it should adapt its weights and biases in order to improve its performance. The loss curve
is an important indicator in training as loss convergence indicates some form of learning is
occurring [33]. Next to the loss, the validated loss is the loss calculated using unseen data,
hence the 5% reserved data discussed in the previous section. This measure shows that the
network learns to generalise well and does not just overfit to the training data.

5.1.4. Autoencoder Explained
For this thesis, an autoencoder network is used, which is a type of neural network that is used
for unsupervised learning. This means that it is trained on data without any labels or annota-
tions. This is especially beneficial for anomaly detection, since labelled data is not available
in general and even if a labelled dataset were available the overrepresentation problem de-
scribed previously in this chapter would prove challenging.

The idea behind an autoencoder is to encode input data into a lower-dimensional representa-
tion, the so-called latent space or latent representation, fromwhich the network can reconstruct
(’decode’) the original data. During training, the network attempts to minimise the difference
between the original input and the reconstructed output, calculated as the reconstruction error
ϵrec. This forces the network to learn a compressed and optimised representation of the input
data. Once trained, the autoencoder can be used to reconstruct new data points which are
similar to the training data, but which it has not previously seen.

Figure 5.5: Generic autoencoder network with 2 encoding layers, 2 decoding layers 2 and a latent
representation layer

Autoencoders have many applications, such as image and speech recognition, data compres-
sion, and anomaly detection. For clarity, an example of an autoencoder application is shown
in Figure 5.6. Here the input is noisy handwriting pictures of numbers, which the autoencoder
has learned to reconstruct. The output is the image reconstructed, but focusing only on the
key features which were stored in its latent space. Thanks to this ’compressed’ representation
the image has been denoised, and is now suitable for processing.

5.1. Introduction to Neural Networks 42

Figure 5.6: An example of noisy handwriting of numbers reconstructed by an autoencoder. Source: Prashanth
Venkataraman [63]

5.1.5. Effectiveness Metrics for Neural Networks
In order to measure efficacy of a binary classifier networks and compare the results between
different networks on a fair basis, a few standard metrics are first introduced which are com-
monly used in literature. These metrics are especially useful for binary classifier networks,
since the performance not only depends on being able to classify something accurately (True
Positive TP and True Negative TN), but also on avoiding inaccurate classifications (False Posi-
tive FP and False Negative FN). The definitions of these classifications are shown in Table 5.1.
The performance metrics used in this thesis are shortly discussed below.

Network Predicted
Fault No Fault

Fault True Positive False NegativeActual No Fault False Positive True Negative

Table 5.1: Binary Classifier Network outcomes

The first is recall, indicating how well the network can predict true positives (detect faults that
are actually faults):

recall =
TP

TP + FN
(5.1)

The second metric is the precision score, or the measure of how many of the classified posi-
tives (predicted faults) were true positives (actual faults):

precision =
TP

TP + FP
(5.2)

These two metrics are often combined into an f-score or F1 score [73] which gives an overall
indication of how well the network can classify its inputs.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(5.3)

Aside from the general neural network metrics, some FDIR metrics are also commonly used:
fault detection performance is oftentimes measured using the Fault Detection Rate (FDR).
From the definition below, it can be seen that this is exactly the recall from Equation 5.1.

FDR =
TP

TP + FN
= recall (5.4)

The opposite measure is the False Alarm Rate (FAR), which determines how easily the system
classifies a non-faulty situation as faulty. It is defined as:

5.2. Exploration of Fault Detection Methods Using Neural Networks 43

FAR =
FP

TN + FP
(5.5)

The aforementioned metrics will be used where relevant in the design and testing of the fault
detection network described in the next chapters.

5.2. Exploration of Fault DetectionMethodsUsingNeural Networks
While artificial intelligence in general, and neural networks specifically have been a hot topic in
research, the term itself covers a broad range of concepts and applications. A simple percep-
tron (a form of binary classifier) neural network was first proposed in 1943 already byMcculloch
and Pitts [64], whereas today neural networks exist in many forms and shapes each suited to
their own applications.

There are multiple possible areas of application for neural networks in fault detection. Each
application has their inherent challenges and benefits, as well as their degree of maturity.
These design options are shortly discussed in this section. This includes some examples of
supervised learning which uses labelled training data, as well as unsupervised learning which
does not require labelled data.

5.2.1. Signal Level Fault Detection
In a spacecraft, it is desirable to detect and isolate a fault at the lowest level possible to avoid
fault propagation and chain failures. To this end, signal processing is often applied to detect
anomalies in a processed or unprocessed output signal of a unit, such as the reaction wheel
tachometer, IMU gyroscopes or star tracker quaternions [71]. However, when looking at the
different types of sensor faults described in chapter 4, this form of failure detection is only able
to capture the class of ’directly detectable faults’ such as frozen measurements, spikes, steps
and erratic behaviour. The faults requiring cross checks such as a constant bias in the signal,
a drift or loss of accuracy are not directly visible in the signal and require other measurements
to compare to in cross checks.

Such a signal fault feature detection system in the form of a neural network is proposed by
Ince et al. [29] for application to an electric motor. The raw data of a motor current signal is
fed straight into a 1D Convolutional Neural Network (CNN) and feature extraction and fault
classification happens immediately, showing an energy efficient method to perform real-time
FDI. It is highly accurate with a recall of 97.8% and 97.0% precision, or an F1 score of 97.4%
[29]. The main drawback here of course, is that this requires labelled training data from such
a motor, which in turn requires the definition of fault types. If the system encounters a fault
which was not included in training data because it was not expected or less likely, it will not be
able to classify it. in the case of Ince et al. the data was obtained through (destructive) testing
of the system, something which is not desirable for SmallSat developers with limited budget.

5.2.2. Neural Network Based Nonlinear Regression and Residual Generation
In smaller and modern spacecraft, hardware redundancy is often replaced with analytical re-
dundancy [53]: instead of comparing identical measurements from different units to detect
faults, one can estimate the measurement based on other available parameters and compare
it directly to the real measurement to detect a fault. These model based FDIR methods re-
quire complex numerical models of the system to estimate outputs, inputs or system states:
the so-called analytical methods. They also rely heavily on system observability and highly
accurate model in order to be effective. These methods are computationally heavy and suffer
from convergence problems [71]. The universal approximation theorem, proven by Hornik et

5.2. Exploration of Fault Detection Methods Using Neural Networks 44

al. in 1989 [34] states that a feed-forward neural network with a single hidden layer containing
a finite number of neurons can approximate any continuous function to an arbitrary degree of
accuracy, given enough neurons. This implies that any of these complex numerical models
could simply be replaced with a regressive neural network, tailored to suit the desired degree
of accuracy. The residual generation process is then the same, allowing for a sufficiently large
deviation of a residual to indicate the presence of a fault.

The presumed benefit of using such a regression network is to generate residuals at either
lower computational cost, higher accuracy, the absence of convergence problems, or a com-
bination of the aforementioned factors. The benefit depends on the design criteria, as a highly
accurate network would likely be more computationally expensive than a numerical model of
the same accuracy. It would however be highly accurate at detecting and isolating faults and
not suffer from convergence issues, so it is up to the designer of the system to decide.

A recent example of such system is proposed by Yuandong et al. [72] in the form of a dis-
turbance observer for Control Moment Gyroscope (CMG) to help detect and isolate faults. In
these designs, the neural network does not directly perform fault diagnosis, but provides esti-
mations on external disturbances to the FDIR system which leads to improved fault detection
and isolation. The outcome of the paper showed the proposed scheme lead to amore accurate
attitude tracking of the spacecraft, while reducing energy consumption of the algorithm.

5.2.3. Neural Network Based Fault Classification
A third potential application of neural networks would be in classifying faults in system states.
A classification network could take as input the system variables such as states, operational
modes, and system inputs and outputs to determine the presence of a fault. However, this
is not considered beneficial in the instance of a CubeSat, as a simple truth table could cover
this and be fully deterministic. A short example: if the spacecraft is in detumbling mode, the
reaction wheel is in the ’ON’ mode, and the communication status is ’OFF’ for this reaction
wheel, then this is an indication of a communication fault. A neural network to identify this kind
of scenario is deemed overkill. The possibility of an integrated network which can perform
system-level FDIR for more complex missions could be promising here, but no such system
was found for spacecraft or similar systems in literature.

5.2.4. Time Series Correlation
An application which is able to detect more fault types than the signal processing methods has
recently been proposed by Xiang et al. [69] This idea tries to relate behaviour in multiple time
series to a certain set of predefined fault profiles on which it has been trained, i.e. supervised
learning. A similar idea but with unsupervised learning is proposed by Zhang et al. [73] using
the concept of signature matrices and convolution to correlate time series in a system and
recognise behaviour that is anomalous over time. It should be noted that the work of Zhang
et al. uses an autoencoder and achieves a recall score of 85% and a precision of 95%. In
the work of Zhang et al, the F1 score can be calculated as 89.7%, which is acceptable when it
comes to classifiers but inferior to the performance of the simple supervised learning approach
used in the signal level fault detection concept by Ince et al [29], which showed an F1 score
of 97.4%. The key benefit of the method introduced by Zhang et al is that it can deal with
unpredictable or unexpected faults, unlike the signal level method.

5.2.5. Other Methods
There are other methods available, specifically related to certain fields of research such as
genetics or natural language processing which will not be discussed here. There are also other,

5.2. Exploration of Fault Detection Methods Using Neural Networks 45

more advanced neural network types recently developed such as the Spiking Neural Network
which will not be considered in this thesis due to the complexity of the process. When it
comes to the domain of spacecraft dynamics, navigation and control, a comprehensive review
of available methods using neural networks is given by Silvestrini and Lavagna [54].

5.2.6. Challenges in Neural Network Based FD
Overrepresentation Problem
When it comes to creating an accurate neural network for fault diagnosis, one of the key chal-
lenges is to ensure it can generalise well based on the training data [54]. Typical satellite
telemetry data will not contain a fault or anomaly the majority of the time if reliable units are
used and the system is designed well. This implies that if the network never recognises an
anomaly it is still close to 100% accurate, yet completely useless. To solve this issue, many so-
lutions have been proposed and applied in the field. Some of the recently proposed solutions
to the problem are:

• Unsupervised learning approaches using only nominal data: in order to recognise non-
nominal behaviour, a neural network is trained to recognise nominal behaviour and thus
reject non-nominal behaviour [54].

• Undersampling nominal data: in the case of supervised learning, one can undersample
the nominal data (make it a smaller proportion of total dataset) in order to force the
network to account for faulty situations more. The risk here is that useful training data is
discarded [21].

• Oversampling faulty data: the same concept can be applied to the faulty data, making
the faults a larger part of the training dataset. The risk here is that by copying training
data, overfitting becomes more likely and generalisation is not achieved [21].

Data Labelling and Feature Engineering Challenge
Another challenge encountered is that in supervised learning systems, the data needs to be
labelled by experts or features need to be engineered such that the network can recognise
those features. In the first case, there is a need for expert knowledge of the features, in this
case the fault features. Given the limited applications of large (12U) CubeSats in deep space,
and the lack of operational data, features can be hard to generate. Therefore the system does
not know what it is looking for.

This is especially true for classifier systems which aim to recognise and classify a fault, mean-
ing the faults need to be known beforehand. As stated in the SAVOIR FDIR Handbook: ”while
the number of intended behaviours of a system under design is finite, the number of unin-
tended behaviours is potentially infinite and managing this problem space is challenging by
definition” [56].

5.2.7. Selection of Unsupervised Learning for this Thesis
Based on the literature review performed prior to this thesis, it is concluded that while a lot of
research has been performed into fault detection using supervised methods such as the works
referenced in the previous sections, very little research focusing on unsupervised learning was
found in the domain of fault detection. No research at all was found to focus on unsupervised
learning for spacecraft fault detection. This is counter-intuitive considering the lack of labelled
spacecraft data available, and the unpredictable nature of faults in space systems. This un-
supervised learning is likely a promising method for performing intelligent fault detection and
will be further investigated in this thesis.

5.3. Training Data 46

5.3. Training Data
As a first step in building a fault detection neural network, qualitative training data from the
LUMIO AOCS is required. This is sourced from Politecnico di Milano as described in chapter 4.
Given these datastreams, they need to be processed before they can be used for training and
testing a neural network. In this section, the process of transforming raw datastreams to
normalised dataframes is described.

5.3.1. Data Structure
In order to use the LUMIO AOCS signals, the ’continuous’ stream of telemetry coming from
the IMU and Reaction Wheels needs to be prepared. The input vector of the network needs to
be of fixed length, which is set to be 100 measurements. This is chosen assuming an AOCS
algorithm sample rate of 2 Hz, which equates to 50 seconds of measurements. This is deemed
long enough to notice faults within an acceptable timeframe (as soon as a few seconds) while
still preserving the correlation with prior nominal data, and without requiring a massively de-
manding network. The design can easily be adapted accommodate larger or smaller input
vectors as required, and the re-tuning of the network is straightforward.

The data is then stored per telemetry stream in a file containing frames. Each file represents
one stream (e.g. RW 1 momentum) and contains n-100 frames where n is the number of
datapoints in the telemetry stream. The process and structure is shown in Figure 5.7. The
choice to update each frame by one datapoint at a time is in order to simulate the fault detection
network receiving subsequent frames, with a refresh rate of 2 Hz. This way, faults can be
detected in a matter of seconds. If the final implementation of the fault detection network
receives telemetry at a lower refresh rate (the frames differ by multiple datapoints, or show no
overlap at all) then the network will still be able to detect anomalous behaviour.

Figure 5.7: Conversion from LUMIO AOCS Telemetry stream to data frames for training and testing

5.3.2. Normalisation
With this time series split into manageable chunks of 100 data points, the next step is to nor-
malise the data. Nola and Sevilla [55] already proved in 1997 that normalising data improves
neural network performance significantly by a factor five to ten (estimation error reduction),
and reduces computational resources required to run it by one order of magnitude. The latter
is especially important for running these networks onboard small spacecraft with limited com-
puting power. Another reason is that neural networks can presume that larger values carry
more importance, depending on the loss function used. Therefore the normalisation is an ef-

5.3. Training Data 47

fective way of reducing this bias in the network and allowing the training process to generalise
behaviour better. Although many normalisation methods exist, only those methods commonly
used in statistics methods are compared.

Rescaling Methods
There are many normalisation methods available for use in machine learning. Rescaling, com-
monly referred to as min-max scaling, is the process of rescaling the data to a specific range
of values. This is typically in the range of 0 to 1 or -1 to 1. Min max scaling of dataset x to
form normalised dataset x′ is calculated as follows for every normalised datapoint x′i :

x′i =
xi − xmin

xmax − xmin
(5.6)

Here, xmin is the dataset minimum value, and xmax is the dataset maximum value. It can be
seen that this method would be sensitive to a dataset with very far outliers.

Z-Score Normalisation
Z-Score Normalisation, also referred to as Standardisation, is the process of changing the
dataset such that the mean becomes zero and the standard deviation σ is one. The formula
for every datapoint x′ to be normalised is then:

x′ =
x− µ

σ
(5.7)

Where the mean and standard deviation are represented by µ and σ respectively. This nor-
malisation tends to work well for datasets with a Gaussian distribution. It is less sensitive to
outliers compared to rescaling, but can alter the shape of the distribution of the dataset.

Mean Normalisation
Mean normalisation also subtracts the mean from every datapoint in a set, but divides not by
the standard deviation but by the feature range:

x′ =
x− µ

xmax − xmin
(5.8)

The effect is again that the dataset has a zero mean, but that now the distribution shape is
preserved. This also means the it is more sensitive to the outliers which affects the mean
strongly.

Robust Scaling
Finally robust scaling subtracts the median and scales the data to the interquartile range in-
stead of the full range. As the name suggests, this method offers more robustness to outlier
as it typically uses the first and third quartile (25-75%) as the scaling range, and subtracts the
median rather than the mean. The scaled data x′ is then calculated as:

x′ =
x−median(x)

Q3(x)−Q1(x)
(5.9)

Here Q1(x) and Q3(x) represent the first and third quartiles respectively. Robust scaling can
be applied where many outliers are present in a dataset, offsetting the mean.

5.3. Training Data 48

Performance Comparison
In order to determine the most suitable method out of the four aforementioned scaling meth-
ods, a proof of concept test was run using a sample of the available data and some arbitrarily
introduced faults as described in chapter 4 in order to assess and compare preliminary perfor-
mance of each method. The results of this test are shown in Figure 5.8. The main measure
for accuracy here is the F1 score, although it is desirable to pick high fault detection rate over
low false alarm rate since the impact of missed detections poses a higher threat than a false
alarm. From the graph it is clear that in this application mean normalisation outperforms the
other methods with an F1 Score of 0.73, whereas the other networks show F1 scores in the
range of 0.3 and 0.5. Notable is that rescaling offers a slightly better fault detection perfor-
mance, but at a cost of the false alarm rate increasing tenfold. This indicates the network
is not able to reconstruct nominal data very well using the rescaling method. Therefore the
rescaling method is discarded and the mean normalisation will be used in further training and
development. Note that these scores are based on a rough test and purely used for compar-
ison of the normalisation methods. They do not indicate the real fault detection performance
of this method.

Figure 5.8: Normalisation methods performance comparison

5.3.3. Reserving Validation Data
The final step in preprocessing the data is to split the dataset into two: a training set and
a validation set. The validation set is the ’unseen’ data which the network should be able to
reconstruct without having trained on it. It is one of the measures to ensure overfitting does not
occur. When splitting this dataset, often times it is done by randomly selecting a percentage
of the data. In order to ensure reproducible outputs, a built-in Keras function ’train_test_split’
was used which allows the setting of a random state such that the ’random’ selection of data is
the same every time new tests are run. As a standard practice in this thesis, 5% of the training
dataset is reserved for validation.

5.4. Design of the Autoencoder Network 49

5.4. Design of the Autoencoder Network
Having defined the input data format and size, and the goal of the network (accurately recon-
struct inputs) the network can be designed and tuned to improve performance.

5.4.1. Design Philosophy
As previously mentioned, unsupervised learning allows for a network to learn from nominal
behaviour or patterns in order to detect anomalies in data. The autoencoder network is very
proficient at this. The autoencoder learns to reconstruct its input accurately by first encoding
the input into a latent representation which is smaller than the input vector, and then decoding
the original input from this latent representation. For this thesis, considering the relatively small
input vectors (100 datapoints) and lightweight network requirements, a simple autoencoder
consisting of two encoding and two decoding layers will be designed. A schematic of the
design is shown in Figure 5.5.

5.4.2. Detection Mechanism
The process for fault detection is illustrated in Figure 5.9. The autoencoder is trained on a nom-
inal dataset, such as spacecraft telemetry under nominal conditions, and it is able to accurately
reconstruct this type of data. However, when faulty signals come in which the autoencoder
has not learnt to reconstruct accurately, the reconstruction error increases significantly and a
fault is detected [73].

Figure 5.9: Fault detection process using autoencoder and reconstruction of signature matrices

The reconstruction errors therefore serves as anomaly score. An appropriate threshold should
be selected for detecting these anomalies, which attempt to balance a low False Alarm Rate
(FAR) and high Fault Detection Rate (FDR). The standard deviation of the nominal data’s re-
construction errors can be used to set the threshold for anomaly detection. The reconstruction
errors are calculated using a statistical error metric such as the Mean Squared Logarithmic
Error (other metrics can be used and are investigated in subsection 5.4.3). The reconstruction
error for the i-th signal is calculated as:

ϵrec,i =
1

w

w∑
k=1

(log(xk + 1)− log(x′k + 1))2 (5.10)

Where ϵ is the reconstruction error, w is the time series length, xk is the k-th element of the
input vector and x′k is the k-th element of the reconstructed vector where 0 ≤ k ≤ w. The fault

5.4. Design of the Autoencoder Network 50

detection threshold is then determined by averaging the reconstruction errors for all nominal
data, and nth times the standard deviation of this set of errors is added to the average error to
obtain the threshold. Here, nth is a tuning factor which is determined after training such that
FDR and FAR are optimised. The detection threshold τ for the entire system is then found as:

τ = µϵ + σϵ × nth (5.11)

Where µϵ is the average reconstruction error of all nominal signals and σϵ is the standard
deviation of all reconstruction errors of the nominal signals.

5.4.3. Network Hyperparameter Tuning
As the design of an autoencoder network is highly dependent on the shape and features of
the input data, which it needs to represent in its latent space, there is no deterministic method
of designing the network. Therefore, a first design is chosen to be a lightweight architecture
with the capability of representing nonlinearities. Two encoding layers and two decoding lay-
ers each using the previously described ReLu activation function (Figure 5.3) are chosen and
the basic autoencoder architecture is shown in Figure 5.5. The output activation function is
then chosen as the Sigmoid function (Figure 5.4), which introduces nonlinearity in the network.

In the eyes of a machine learning expert, this network architecture could be considered quite
simplistic compared to the typical spacecraft image processing autoencoders such as the one
presented by Mohbat et al [32], which include convolution, pooling, and other advanced fea-
tures. The main reason for this comparative simplicity is the input size of the fault detection
network is about four orders of magnitude smaller compared to the typical remote sensing
image (11x11 versus 1024x1024). It is also not required here that the input is reconstructed
to perfection, the reconstruction error should just be minimised for training such that faulty
signals generate a reconstruction error beyond the detection threshold. This is in line with the
requirements presented in section 3.3 such that the detection system is simple and does not
consume excessive onboard resources.

In an to attempt to achieve an optimal design, several of the network hyperparameters are
tuned based on the produced reconstruction error. The hyperparameters of a network refer to
those variables which describe the design of the network. This also includes the network archi-
tecture: number of layers, neurons, training epochs, batch size, optimiser functions, learning
rates... There is no deterministic method in determining these parameters from the start, but
rather experience and intuition along with rules-of-thumb provide a starting point from which
these hyperparameters must then be further tuned to enhance performance [46]. The network
will be initialised with a set of hyperparameters based on initial testing, and are then tuned to
optimise performance. It is noted that for each application, tuning these parameters is required
as performance may change with input size, dataset size and characteristics of the data.

Epoch Tuning
One keymetric is the number of epochs a network is trained for. An epoch is counted everytime
the dataset is completely fed through the network. At the end of an epoch, the loss (difference
between desired and actual output, calculated as the MSLE) is plotted in order to see the
improvement compared to the previous epoch, shown in Figure 5.10. In order to ensure the
network is able to generalise and reconstruct unseen signals, the 5% of data reserved for
validation is also tested which results in the validated loss shown in the plot. It can be seen
that the loss and validated loss converge rapidly within a few epochs, indicating the network
is learning in around 10 epochs. More epochs could lead to overfitting and therefore the 10
epochs will be maintained.

5.4. Design of the Autoencoder Network 51

Figure 5.10: Autoencoder loss and validated loss evolution over the training epochs

Layer Size Tuning
By design choice, due to the lightweight requirements, two layers of neurons are used for both
encoding and decoding. The number of neurons present in each layer will play an important
role in network performance as well as computational efficiency. The autoencoder is designed
as being symmetrical for simplicity, meaning the outer encoding and decoding layers have the
same size, as do the inner encoding/decoding layers. The tuning occurred by trialling multiple
configurations, with the outside layer size ranging from 80 (just below input size) to 300 neu-
rons, and the inner layer ranging from 40 (over 2x the latent space size) to 140 neurons.

The upper limits of the layer size were chosen based on achieving a network with little need for
computational resources. A neuron performs a singlemultiplication per input, and the additions
per neuron equals the number of inputs plus one (the bias term), so the number of operations
for a single pass through the encoder can be calculated. Every arithmetic operation takes
one instruction on the processor in the case of the ARM9 processor, upon which the LUMIO
processor is based [4]. The clock speed of this OBC is 400 MHz. In order to realistically run
the fault detection every 10 seconds for example, one could state that this algorithm shall take
up no more than 10% of resources in this timeframe, although preferably much less.

Figure 5.11: Layer size tuning for autoencoder network

5.4. Design of the Autoencoder Network 52

The maximum operations are then set to 50 million, which implies a maximum allowable layer
size of 300 neurons in the outer layer and 140 in the inner layer. The minimum sizes are
determined by the fact that the reconstruction error is seen to spike once the input layer size
drops below the input size.

The results are shown in Figure 5.11. It can be seen that a network with a larger outer layer
improves performance more than larger inner layer networks. A minimum reconstruction error
was found at 260 neurons in the outer layer and 64 neurons in the inner layer.

Batch Size Tuning
Batch size refers to the amount of datapoints a network is fed at one time during a training
epoch before updating the neuron weights. Large batch sizes can significantly reduce training
time but may reduce accuracy [54]. Smaller batch sizes on the other hand are computationally
more expensive and take exponentially longer to train but can improve results. A first, coarse,
tuning of the batch size ranging from 1000 to 10,000 in steps of 1000 is shown in Figure 5.12a.
It can be seen here that indeed the reconstruction error seems to decrease along with the
batch size.

A more detailed finetuning is then performed of smaller batch sizes in the lower batch size
region was run, the results are shown in Figure 5.12b. Tuning was performed for batch sizes
ranging from 25 to 200 in steps of 25, with the resulting error being the average of training
the network twice. This is done to account for the stochastic network initialisation, which
can give slightly different results every time it is trained. From this finetuning it can be seen
that the error continues to decrease significantly as the batch size decreases. The gains
decrease as the batch size becomes smaller however, and are even seen to slightly increase
for size 50. For this reason, it was chosen to set the batch size to 75 which allows for highly
accurate reconstruction, yet trains 3x faster than the slightly more accurate 25 batch size
training process. Smaller batch sizes could be further investigated but given the size of the
dataset (120,000 datapoints) this is not considered feasible for training.

(a) Network reconstruction error vs batch size (b) Batch size finetuning

Figure 5.12: Batch size tuning process

Loss Function
As described before, the loss function is the measure the network uses to determine if it is
improving performance during training. In this case, where a numerical input of 100 points
needs to be replicated as close as possible to the input dataset, it is logical to use an evaluation
metric for a regressionmodel. However some probabilistic measures used inmachine learning
classification problems will be investigated as well for completeness. The aforementioned
methods, 4 regressive and 2 probabilistic, are defined as:

5.4. Design of the Autoencoder Network 53

• Mean Squared Error (MSE) determines the average squared difference between the
reconstructed and original signals.

• Mean Absolute Error (MAE) determines the average absolute difference between recon-
structed and original signals.

• Mean Squared Logarithmic Error (MSLE) determines the average squared logarithmic
difference between reconstructed and original signals.

• Mean Absolute Percentage Error (MAPE) determines the average percentage difference
between reconstructed and original signals.

• Cross-Entropy (CE) determines the difference between probability distributions in clas-
sification problems. Categorical CE is typically used for multi-class classification, and
Binary CE is typically used for binary classification problems, as is the case here.

• Kullback-Leibler Divergence (KLD) also measures probability distribution differences
similar to the cross entropy metric, but also measures information loss. It is not par-
ticularly suitable to the reconstruction problem but is included for completeness.

The difference in performance between these methods is shown in Figure 5.13. For this ap-
plication the MSLE loss function was used as it showed the best performance by far. This is
not surprising, as the goal is to encourage accurate reconstruction of as many of the points
of the signal as possible. The MAE and MSE also show good performance, yet one order
of magnitude worse than the MSLE function. This is likely due to the logarithmic term in the
MSLE metric which works very well in penalising small errors in the reconstruction.

Figure 5.13: Loss function selection

Therefore, when assessing reconstruction error ϵrec between an original signal and the recon-
structed signal, the MSLE will be used as shown in Equation 5.10.

Latent Representation Size Tuning
An autoencoder learns to reconstruct inputs based on the latent representation. Therefore the
size of this representation is extremely influential in the performance of the network. As the
input vector is 100 datapoints and the network should learn to recognise few key features out
of the 100 points, it was chosen to tune the latent representation between 4 and 20 neurons.
The lower limit of 4 was chosen as it is unlikely the network will be able to capture any features
with less neurons. The upper limit of 20 is chosen since the second layer contains 64 neurons,
and the reduction in information from 64 to 20 is roughly a factor three. Any more neurons
in the latent space will likely not be able to capture more features from the second hidden layer.

5.4. Design of the Autoencoder Network 54

The results of the tuning are shown in Figure 5.14. The error rapidly decreases with increasing
latent space size up until around 12 neurons, after which the gain becomes relatively small.
Therefore the latent representation size is set to 12 neurons.

Figure 5.14: Latent representation size tuning

Optimiser
The optimiser function, which helps the network converge on an optimum, is the ADAM func-
tion. ADAM combines the advantage of the Adaptive Gradient Algorithm (AdaGrad) and the
Root Mean Square Propagation (RMSProp) which have often been used in machine learning
[33]. It is an improvement on the classical stochastic gradient descent process used before,
and is widely considered the best optimiser function for most applications [51].

5.4.4. Final Network Architecture
Following the tuning of the hyperparameters mentioned before, the final network architecture
is now designed and is summarised in Table 5.2. Aside from the tuned parameters, some
design choices were made. Each layer has a dropout of 10%, meaning during training this
amount of neurons in each layer are disregarded. This is often used to prevent overfitting and
mutually dependent neurons, and is a standard practice in machine learning [57].

Parameter Value
Number of encoding layers 2
Number of decoding layers 2
Neurons in encoding layer 1 260
Neurons in encoding layer 2 64
Activation function ReLu
Activation function output Sigmoid
Neurons in latent space 12
Neurons in decoding layer 1 64
Neurons in decoding layer 2 260
Dropout (all layers) 0.1
Number of training epochs 10
Batch size 75
Optimiser function ADAM
Loss function MSLE

Table 5.2: Autoencoder hyperparameters

6
Results

Having designed the network and tuned the hyperparameters, the fault detection capabilities
are tested and discussed in this chapter. In section 6.1 the detection results of single signal
level faults in LUMIO are presented, followed by the detection results of model-based faults
in LUMIO in section 6.2. This is then validated using real satellite telemetry from OPS-SAT
in section 6.3. The results are analysed and discussed shortly in section 6.4. Finally a short
discussion about the computational performance of the network is found in section 6.5.

6.1. Detection of Signal Level Faults in LUMIO IMU
As a first test for this network, the signal level faults discussed in chapter 4 (step, noise and
outliers) are introduced into the LUMIO IMU data. Although, as mentioned before, these fault
types do not typically require advanced model-based detection methods, the supposed benefit
of using the autoencoder fault detection system would be that a single network could replace
a large number of different statistical, frequency, and time domain related measures which are
often used to detect such faults. It would then provide a uniform ’black box’ approach to AOCS
fault detection, simplifying the FDIR design as well.

Figure 6.1: Fault locations in LUMIO IMU slew data. At each location, a step, noise and outlier fault are inserted
once.

The step, noise, and outlier faults are introduced in the LUMIO IMU data at five strategically
chosen locations across the data for slewing manoeuvres and tracking, shown in Figure 6.1.

55

6.1. Detection of Signal Level Faults in LUMIO IMU 56

The locations are chosen to ensure enough representative scenarios of all kinds are included.
This includes highly dynamic scenarios with higher magnitudes and steeper gradients such
as the slewing in Fault 4, Fault 5, and Fault 7 as well as more stable or even flat scenarios
such as Fault 6 and Fault 8. At each location, each signal level fault type will be introduced
separately and tested on the trained autoencoder network. This means in total 15 test faults
will be fed into the network.

The results of this test are the reconstruction errors for each of these faulty signals shown in
Figure 6.2. It can be seen that this type of network is not at all performant in detecting outliers
in data: only two out of the five outlier faults were detected, and they only just reach the de-
tection threshold. This is not surprising, considering a faulty signal with a single outlier is very
similar to a nominal signal being fed into the network. Therefore the network is easily able
to reconstruct this signal accurately and the reconstruction error will be very low, as only the
outlier is inducing a (comparatively) small error.

The detection of erratic signal behaviour and step faults provesmuch better and all faults of this
type were detected. Contrary to the outlier faults, here the error is much more persistent and
therefore the reconstruction error will typically be higher compared to a nominal signal. The
network has not learnt to reconstruct these signals, which leads to the network reconstructing
a nominal signal from a faulty signal or a non-nominal signal from a faulty signal. Both will
lead to a high reconstruction error, indicating the presence of a fault.

Figure 6.2: Slew manoeuvre reconstruction errors LUMIO IMU (S = step, N = noise, O = outlier)

6.1.1. False Alarm Rate
While Fault Detection Rate (FDR) is an important metric in assessing the performance of a
fault detection system, one should avoid the false detection of faults in nominal situations (false
positives) as well. False alarms risk initiating unnecessary recovery actions, may lead to the
removal of healthy units from operation or may even trigger a safe mode where none is re-
quired. This reduces availability of the mission, which is highly undesirable for high autonomy
spacecraft such as LUMIO which see little and irregular ground contact.

The metric to asses false alarm performance is the False Alarm Rate (FAR), which measures
the amount of false positives (fault when there is none) out of a set of negative samples (nom-
inal case). This set is a randomly chosen sequence of 1500 seconds which is fed into the
network. Based on the work of Gelmi [22] regarding the LUMIO FDIR design, in order to trig-
ger a false alarm one has to report a fault three times in a row when there is none present.

6.2. Model-Based Fault Detection in LUMIO Data 57

Therefore a single false positive is acceptable as it would not trigger recovery actions, given
the next two results are also not false positives.

As displayed in Figure 6.3, out of the 1500 seconds, 6 false positives (0.4%) were triggered
based on a 1σ detection threshold. This is acceptable and would not trigger any recovery
actions. However, some of these reconstruction errors are very large even through the signal
is nominal. Therefore ideally the detection threshold should be raised to avoid false alarms.
Yet, as is shown in Figure 6.2 some of the lower reconstruction errors for faulty signals (N8)
are in the same range (0.04) as those of nominal signals. This means that increasing the
threshold means risking even more missed detections, but decreasing the threshold leads to
a high false alarm rate. Both are undesirable and further confirm this method is not suitable
for detecting such faults.

Figure 6.3: False Alarm Rate Assessment for signal processing - 1σ threshold

It should be noted that other methods exist to detect these faults such as running variance, run-
ning mean, derivative spikes and so on. Therefore this application of feeding signals straight
into the network as-is will not be further explored and is not considered a good implementation
of the autoencoder network in spacecraft fault detection.

6.2. Model-Based Fault Detection in LUMIO Data
A more promising application is using the autoencoder to capture more complex faults (drift,
bias, loss of accuracy). As a specific example, fault F26 from the LUMIO fault register in Ap-
pendix C ”IMU reading inaccurate (drift, bias..)” will be used here. Such fault cannot be caught
from signal analysis alone as it does not have distinct features such as a step or an outlier spike.
Therefore it is in need of comparison to other measurements. Currently, this is done through
n-modular voting in larger spacecraft, and not performed at all in smaller spacecraft, or per-
haps using a simple version of a model-based approach. The model based approach relies on
complex numerical dynamic models of the spacecraft as well as a highly accurate state space
representation. These methods are not immediately accessible to CubeSat developers and
suffer from convergence issues [71]. These methods are also not very transferable between
spacecraft as they are highly dependent on spacecraft architecture, physical characteristics,
the environment it operates in, and the mission profile. Therefore in this section a solution is
proposed, inspired by the work done by Zhang et al. [73] which uses signature matrices for
fault detection in power plants.

6.2. Model-Based Fault Detection in LUMIO Data 58

6.2.1. Signature Matrix Method
The signature matrix as used in this thesis is a method to correlate telemetry time series to
each other and form an abstract image of the entire AOCS system dynamics. From this image,
the hypothesis is that an autoencoder network can learn what patterns constitute nominal be-
haviour and then detect anomalous behaviour. Please note that it is not to be confused with
time series signatures from the theory of controlled differential equations, often used in ma-
chine learning applications for character recognition and language processing.

In time series data of the LUMIO AOCS, the signature matrix forms an image which correlates
the rate measurements of the IMU with the momentum loading of the reaction wheels. These
seven measurements form a 7x7 matrix, where every element of the signature matrix at po-
sition i, j is signature mij , which is the dot product of two time series Xt

i and Xt
j over a time

period t:

mij = X⃗t
i · X⃗t

j (6.1)

The result of this operation is a 7x7 matrix, with an example shown in Table 6.1. As this large
matrix of numbers is not very meaningful, the signature matrix will henceforth be represented
as a heatmap, with colour scales indicating the magnitude of each cell. Such an example of
a heatmap signature matrix for LUMIO IMU and Reaction Wheel is shown in Figure 6.4 along
with the row and column corresponding to each of the time series. The heatmap representa-
tion is used in order to make the content of the matrix easier to interpret, rather than a 7x7
matrix of numbers. For clarification an example is given: in the matrix seen in Figure 6.4 it
can be seen that element (4,5) represents the dot product of the RW1 and RW2 time series re-
spectively, with the normalised outcome of this product being close to 0.75 (see colour scale).

IMU-x IMU-y IMU-z RW1 RW2 RW3 RW4
IMU-x 2.224228

E-08
2.224291
E-08

2.224204
E-08

1.270449
E-08

1.376678
E-08

-3.179112
E-09

-6.829204
E-09

IMU-y 2.224291
E-08

2.224367
E-08

2.224262
E-08

1.461977
E-08

1.645449
E-08

-3.827202
E-09

-8.248626
E-09

IMU-z 2.224204
E-08

2.224262
E-08

2.224181
E-08

1.195889
E-08

1.272047
E-08

-2.926812
E-09

-6.276636
E-09

RW1 1.270449
E-08

1.461977
E-08

1.195889
E-08

2.971280
E-05

4.169551
E-05

-1.005408
E-05

-2.201994
E-05

RW2 1.376678
E-08

1.645449
E-08

1.272047
E-08

4.169551
E-05

5.851193
E-05

-1.410892
E-05

-3.090079
E-05

RW3 -3.179112
E-09

-3.827202
E-09

-2.926812
E-09

-1.005408
E-05

-1.410892
E-05

3.402138
E-06

7.451123
E-06

RW4 -6.829204
E-09

-8.248626
E-09

-6.276636
E-09

-2.201994
E-05

-3.090079
E-05

7.451123
E-06

1.631933
E-05

Table 6.1: Example LUMIO signature matrix (lunar tracking, 50 second frame taken at t= 5000s): each number
represents the dot product of the telemetry stream corresponding to its row and column respectively

6.2. Model-Based Fault Detection in LUMIO Data 59

Figure 6.4: LUMIO Normalised Signature Matrix example with telemetry locations

This matrix can be used for fault detection by generating these signature matrices for all train-
ing data and training the autoencoder to accurately reconstruct them. This reconstruction
process is visually demonstrated in Figure 6.5. The matrix is first normalised, as shown in
Figure 6.5b to better express all the features in the matrix. Then the autoencoder reconstructs
this matrix, shown in Figure 6.5c. It can be seen that visually, they are similar and the autoen-
coder managed to reconstruct the main features of the original matrix. This is also reflected
in the reconstruction error ϵrec of 2.13x10−5 (MSLE).

(a) Fault-free telemetry signature
matrix LUMIO at arbitrarily chosen

time

(b) Preprocessed (normalised)
nominal signature matrix ready for

processing by autoencoder

(c) Autoencoder reconstructed
nominal signature matrix.
ϵrec = 2.13x10−5 (MSLE)

Figure 6.5: Autoencoder reconstruction process demonstrated for nominal signal

The network is proficient at reconstructing a signature matrix of the AOCS system in nominal
conditions, such as another example signature matrix shown in Figure 6.6a. When a fault (in
this example a drift in the measured angular rate of the x-axis and z-axis) is introduced into the
exact same timeframe, as seen in Figure 6.6c, one can see the matrix changes significantly.
The autoencoder is able to reconstruct nominal condition signature matrices accurately, as
shown in Figure 6.6b, but cannot accurately do so for signature matrices where a fault is
present, shown in Figure 6.6d: the reconstruction error is 4 orders of magnitude larger.

6.2. Model-Based Fault Detection in LUMIO Data 60

(a) IMU and Reaction Wheel
telemetry signature matrix under

nominal conditions

(b) Autoencoder reconstructed
nominal signature matrix.
ϵrec = 2.11x10−5 (MSLE)

(c) Signature matrix with induced drift
fault in LUMIO IMU telemetry

(d) Autoencoder reconstructed fault
signature matrix ϵrec = 0.611 (MSLE)

Figure 6.6: Autoencoder reconstruction of nominal and faulty signature matrices (LUMIO, 7x7 matrices)

It can also be hypothesised that using these signature matrices and real fault data, patterns
can be extracted from the matrices for fault isolation. To do this, one needs to know the
signature of a specific fault. Due to the lack of available real-life fault data this is however a
recommendation for future work and not performed in this thesis.

6.2.2. Fault Detection Results LUMIO Data
As a first step, this method is tested using the available LUMIO data from the three IMU chan-
nels and the four reaction wheel momentum loading datapoints. In the nominal LUMIO teleme-
try, a range of faults is introduced (one by one) as can be seen in Figure 6.7. It is clear that
every type of fault introduced in the telemetry generates a specific pattern that is recognisably
different from the nominal signature matrix shown in Figure 6.5a. The network then learns to
reconstruct the nominal behaviour signature matrices in the training process, after which the
detection threshold for anomalies is set using the 1σ approach outlined in section 5.4.

When reconstructing the signature matrices, it can be seen in Figure 6.8 that the reconstruc-
tions do not resemble the original matrices from Figure 6.7 at all. Not only visually, but also
when calculating the reconstruction error ϵrec. The anomaly detection results are shown in Ta-
ble 6.2. The reconstruction error for each fault and the threshold are visualised in Figure 6.9.
Here it is seen that especially those simulated fault situations which manifest in multiple symp-
toms (fault 4, 8 and 12) show especially good detection performance compared to the single
fault situations. This indicates the system is not easily confused by multiple symptoms pre-
senting and can detect these situations without ever having encountered them before.

6.2. Model-Based Fault Detection in LUMIO Data 61

Figure 6.7: Signature matrices of bias, drift, and loss of accuracy faults introduced in LUMIO IMU signals

Figure 6.8: Signature matrices of Figure 6.7 reconstructed by autoencoder including MSLE reconstruction error

As single faults, the drift and bias faults are most easily detected when looking at the recon-
struction error, the loss of accuracy faults are the hardest to detect using this method. This is
not surprising when looking at the faulty signals and the subtle differences between the faulty

6.2. Model-Based Fault Detection in LUMIO Data 62

and nominal case in the loss of accuracy signals, as shown in Figure 4.2 of chapter 4. How-
ever, the error is still two orders of magnitude above detection threshold, meaning even at the
subtle level of the loss of accuracy fault the detection is accurate.

Fault Type ID Measurement Size Detection

Bias

1 Angular rate x-axis

0.01 rad/s

✓
2 Angular rate y-axis ✓
3 Angular rate z-axis ✓
4 Angular rate x-axis + z-axis ✓

Drift

5 Angular rate x-axis

0.0005 rad/s2
✓

6 Angular rate y-axis ✓
7 Angular rate z-axis ✓
8 Angular rate x-axis + z-axis ✓

Loss of Accuracy

9 Angular rate x-axis

x1.75

✓
10 Angular rate y-axis ✓
11 Angular rate z-axis ✓
12 Angular rate x-axis + z-axis ✓

Table 6.2: Detection results IMU faults using signature matrices for LUMIO (IMU + RW, 7x7 matrices)

Figure 6.9: Reconstruction errors for LUMIO faults compared to detection threshold

6.2.3. False Alarm Rate
The results of 700 seconds worth of nominal telemetry being fed in the network are shown in
Figure 6.10a. It can be seen that on 21 of the 700 instances (3%) a fault is falsely reported,
but none occur in sequence of three in a row thus not triggering a false alarm.

Note that using the faults defined in Table 6.2, the fault detection rate is 100%, meaning the
threshold could be increased to reduce false positive detection while still remaining accurate
in true positive detection. The reconstruction errors for nominal telemetry are two to four or-
ders of magnitude above the detection threshold: the lowest reconstruction error is 0.0264 for
Fault 11, still an order of magnitude larger than the highest false alarm reconstruction error
which is around 0.0015. Then, if the threshold is increased from 1σ to 10σ, the false alarms
are avoided altogether as shown in Figure 6.10b while all faults are still detected.

6.3. Model Based Fault Detection in OPS-SAT Telemetry 63

(a) False alarms with 1 σ detection threshold (b) False alarms with 10 σ detection threshold

Figure 6.10: LUMIO False Alarm Rate in 700 seconds of nominal telemetry

6.3. Model Based Fault Detection in OPS-SAT Telemetry
Although the previously described results are promising for highly accurate model-based fault
detection, the LUMIO data is simulated and only represents a few operational scenarios. It
cannot be considered as an accurate replacement for real satellite telemetry. As a next step
in testing this fault detection method, the telemetry from ESA’s OPS-SAT was used. Although
the faults are still introduced artificially, the underlying data is now real AOCS telemetry from
an orbiting CubeSat. The dataset and fault engineering performed is described in section 4.3,
a detailed image of each fault can be found in Appendix F. The signature matrix and the
corresponding telemetry locations in the matrix for OPS-SAT is shown in Figure 6.11.

Figure 6.11: OPS-SAT Signature Matrix

6.3.1. Fault Detection Results OPS-SAT
In order to test detection capabilities of the signature matrix method for the model-based faults,
the faults are introduced and the signature matrices generated, shown in Figure 6.12. The
reconstruction errors for each of the faults as well as the detection threshold can be seen
in Figure 6.14. The reconstructed matrices as well as the reconstruction errors are seen in
Figure 6.13, and the results are shown in Table 6.3. It can be seen that the system performs
as expected in detecting all of these faults, far above the detection threshold.

6.3. Model Based Fault Detection in OPS-SAT Telemetry 64

Figure 6.12: Signature matrices of bias, drift, and loss of accuracy faults introduced in OPS-SAT signals

Figure 6.13: Signature matrices of Figure 6.12 reconstructed by autoencoder, including reconstruction error ϵrec

6.3. Model Based Fault Detection in OPS-SAT Telemetry 65

Fault Type ID Measurement Size Detection

Bias

1 Angular rate x-axis

0.01 rad/s

✓
2 Angular rate y-axis ✓
3 Angular rate z-axis ✓
4 Angular rate x-axis + z-axis ✓

Drift

5 Angular rate x-axis

0.0005 rad/s2
✓

6 Angular rate y-axis ✓
7 Angular rate z-axis ✓
8 Angular rate x-axis + z-axis ✓

Loss of Accuracy

9 Angular rate x-axis

x1.75

✓
10 Angular rate y-axis ✓
11 Angular rate z-axis ✓
12 Angular rate x-axis + z-axis ✓

Table 6.3: Detection results IMU faults using signature matrices for OPS-SAT (extended telemetry, 11x11
matrices)

Noticeable is that the detection is still easily performed: all faulty signals show a reconstruction
error of at least one order of magnitudemore than the detection threshold. However, compared
to the LUMIO results the errors are much more close to the threshold. It is assumed that this
can be attributed to three separate causes:

• Same network, more input: the network was not tuned to suit the OPS-SAT data in-
puts, which have a size of 121 elements whereas the LUMIO signatures were of size 49.
Therefore, it makes sense that the reconstruction accuracy of nominal signals is worse,
hence a higher reconstruction threshold.

• Reconstruction errors are less sensitive to anomalies: The increase in matrix size
means the reconstruction error is influenced less easily if only a part of the matrix is
reconstructed inaccurately. If 10 of the 49 values in the matrix were inaccurately recon-
structed before, this will influence the calculation of the MSLE. However, if those same
10 points are reconstructed inaccurately out of 121 values, the MSLE will change by a
smaller amount.

• Different operational scenarios: as the OPS-SAT data is taken from a more dynamic
scenario, it is hypothesised that this is the cause for different fault types being detected
better or worse. For example, the drift fault is consistently detected better than other
faults in the OPS-SAT data, whereas this was the case for the bias fault in the LUMIO
data. It could be that this is because in the more stable, steady LUMIO data a bias
causes a much more explicit pattern in the signature matrix compared to the same bias
fault in the OPS-SAT data.

However, it should be noted that despite the aforementioned issues, the system is shown to be
robust and works even for an input double the size of the originally intended signature matrix.

6.3. Model Based Fault Detection in OPS-SAT Telemetry 66

Figure 6.14: Fault detection results OPS-SAT Data

6.3.2. False Alarm Rate
Just as with LUMIO, the false alarm rate is also tested with OPS-SAT. Again a series of teleme-
try is fed through the network, with a false alarm being present if a fault is detected 3 times
in a row. Given the reconstruction errors for faulty signals are now only one to two orders of
magnitude higher than the nominal telemetry, the tuning of the threshold is a bit more sen-
sitive. The initial 1σ approach shown in Figure 6.15a does not detect three false alarms in
a row but still does have some single and double false positives. As a proof of concept a
5σ threshold is shown in Figure 6.15b which manages to remove any false alarm detection
while still accurately detecting all faults. In practice, the value of the tuning factor nth will have
to be determined through trial and error, and may vary from 1σ to any number of standard
deviations.

(a) False alarms with 1 σ detection threshold (b) False alarms with 5 σ detection threshold

Figure 6.15: OPS-SAT False Alarm Rate in 30 minutes of nominal telemetry

6.4. Analysis of Results 67

6.4. Analysis of Results
As was discussed in section 6.1, the devised method of using an encoding-decoding neural
network for fault detection in single signals is not considered a good use. The fault detection
performance depends on how the fault manifests in the telemetry, and it is mostly unable to
detect outliers. The false alarm rate is acceptable given a 1σ threshold, but reconstruction
errors for nominal signals can be high and lead to further false alarm triggering. It is clear that
this method is not suited to single signal fault detection.

When it comes to model-based fault detection in the LUMIO AOCS data, the results are much
more promising. It can be seen from Figure 6.6 that the signature matrix indeed contains pat-
terns which relate to nominal or non-nominal behaviour, and that the autoencoder can learn to
reconstruct the key features of the nominal patterns easily. When trained on nominal matrices
and then fed faulty signals, the reconstruction error immediately increases by a factor two to
four orders of magnitude thus leading to highly accurate detection despite very subtle faults
being presented. False alarms are absent at no cost to fault detection performance when se-
lecting an appropriate threshold, which in the case of LUMIO was around 10σ.

As the data used for LUMIO is simulated, some real spacecraft telemetry from the OPS-SAT
AOCS system is used as well. This showed that the method is effective even with 11 noisy
telemetry streams from 4 different units (IMU, reaction wheels, star tracker and sun sensor)
being used. The same kind of detection accuracy and false alarm rates were found as with
LUMIO. Given the more complex dataset and less datapoints available the reconstruction
error was not as high as with LUMIO for faulty situations, but still still strongly exceeding the
detection threshold of 1σ and 5σ. It is able to detect all types of model-based faults in the data
without raising false alarms and initiating unwarranted recovery actions.

6.4.1. Limitations
In order to fully understand these results, it is important to recognise the limitations of the pro-
posed method as well. The accuracy of the fault detection approach depends on the quality
of the training data, and if this data is fully representative of all viable mission scenarios. If not,
a nominal operation could trigger high reconstruction errors and raise a false alarm. In the
case of the IMU, this invalidates the rate reading, likely at a dynamic phase where accurate
angular rates are critical for the AOCS to perform its task. This could be a risk to the mission,
and needs to be addressed when training the network.

Another key limitation is that faults may express at different rates and scales, therefore the
proposed approach of taking the past 50 seconds of telemetry may be too small to reveal
gradually increasing faults, or may be too large to catch very short or intermittent faults. A
potential solution is to generate a signature matrix of a small timeframe (e.g. 5s), a medium
timeframe (e.g. 50s) and a large timeframe (e.g. 300s) in order to detect different types of
faults.

6.5. Computational Resources
Onboard a spacecraft, resources are limited. This applies to the processing units as well, who
deal with limited power, limited computational processing power, limited memory and finite
amounts of time to run certain algorithms. A concern with model-based FDIR algorithms is
their large and complex models which consume a lot of these resources, and can suffer from
numerical convergence issues. Although neural networks do not suffer from the same con-
vergence issues, it is true in general that computational power is a limiting factor for space
applications [54]. Therefore, this thesis has considered this constraint from the start and de-

6.6. A Note on Verification and Validation Activities 68

signed a simple, lightweight network.

It would be highly desirable to asses the viability of running such a neural network on a space-
craft processor and accurately predict the resource consumption (power, time, FLOPS). How-
ever, testing algorithms on the flight hardware is the only certain way to come up with a these
numbers. Therefore, a qualitative estimation is performed instead, by comparison to the cur-
rent state of the art. Following this a rough quantitative estimation of the number of operations
is performed.

6.5.1. Comparison to State of the Art
The LUMIO processing unit in phase A is determined to be the ISISpace IOBC, and the payload
data processor is the UNiBap iX5 [4]. These processors can be considered representative for
use in CubeSat architectures, and have been applied in multiple missions. Ubotica, an Irish
company specialising in AI and edge computing in spacecraft, has proven flight heritage using
a processor with similar capabilities running a neural network (MobileNetV2) consisting of mil-
lions of neurons [36]. The system proposed in this thesis consists of only 660 neurons in the
current architecture. Other than the network, the preprocessing work is relatively light, taking
a 7x7 or 11x11 input image and normalising this. Although this is no full proof that the network
can be run, it is reason to believe the resources required to run it are very small compared to
the advanced networks which have been flown, or for example a high-accuracy AOCS model
or parameter estimation algorithm.

On top of this, with more attention being paid to AI in space applications (such as with Ubot-
ica) the hardware is becoming increasingly tailored for running these networks efficiently and
quickly [54]. Therefore it is believed that the computational resources will not be a problem for
this fault detection mechanism.

6.5.2. Estimation of Number of Operations
As a confirmation, a rough estimation was made of the computational resources required. The
number of operations required to run a single pass of a network can be calculated assuming
each neuron performs one multiplication for every input (weight x input), and a total number
of additions which is one greater than the number of inputs (sum of weighted inputs + bias).
Knowing this and the layer topology, an estimated 8.08x106 operations are required to run a
single pass excluding preprocessing.

The LUMIO OBC is based on the ARM9 Processor [30], with a clock speed of 400 MHz and
one instruction required to perform addition or multiplication. This implies that the network
(excluding preprocessing and other activities) would take 2% of the processor resources if
run every second. However, depending on the needs the algorithm could be run once every
10 seconds which requires only 0.2% of the computing power. This shows that the designed
network is sufficiently lightweight that it will not impact computing requirements or scheduling
of other tasks in the processor.

6.6. A Note on Verification and Validation Activities
Machine learning based methods are notoriously hard to perform verification and validation
activities on [54]. They may be prone to bias and overfitting without this being noticeable when
testing with the training data. It is difficult to predict how the network will perform when faced
with real, unseen, satellite data, and even then there may be some special cases in which the
network shows undesired behaviour.

6.6. A Note on Verification and Validation Activities 69

In this thesis, verification was performed using the simulated LUMIO data and the OPS-SAT
telemetry. However, this is not sufficiently thorough for application in space. Due to the lacking
data and the limited timeframe available for this thesis further verification data is not sought
but should be pursued in the future.

Validation of such systems require a real, integrated, CubeSat AOCS system in a represen-
tative environment. Flatsat testing, where the systems are integrated electronically but not
necessarily mechanically, could be a good starting point for this type of testing. However,
the only way to perform real validation would be on a demonstrator as the complex relations
between the AOCS sensors and actuators as well as the spacecraft dynamics are near impos-
sible to accurately simulate on ground. On top of this, faults are needed to test the system.
These faults can come from many sources and are unpredictable. A representative set of test
faults which cover as many root causes as possible can be thought of by experts, but there
will never be 100% certainty that all bases are covered. It is one of the key challenges in FDIR,
and it is a challenge that is not inherent to the designed autoencoder but to all FDIR systems.

7
Conclusion

7.1. Conclusion
As a starting point of this thesis, the research objective was defined as:

To contribute to the improvement of deep space CubeSat reliability and failure robust-
ness by designing a model-based FDIR approach for LUMIO’s AOCS subsystem.

A Fault Tree Analysis and FMECA on the Phase A design of the LUMIO spacecraft AOCS
revealed 53 faults of which 20 critical faults which could put the mission at risk. Of these 20,
half cannot be detected using basic fault detection mechanisms such as signal processing,
but rather requires a model-based approach. A trade study of these model-based methods
revealed a neural network based approach could be suitable for performing this task, given
its high accuracy and low complexity compared to intricate nonlinear dynamics models. Ad-
ditionally, it was found that neural network based applications have not been implemented in
many missions due to their lack of flight heritage and the difficulty in verifying and validating
them. A CubeSat is a highly suitable platform for demonstrating such methods and removing
these barriers, laying the groundwork for potential application of neural network based fault
detection in other mission types.

A lightweight autoencoder network was designed and tuned for reconstructing its inputs with-
out supervision. It was found that when training such autoencoder on nominal LUMIO teleme-
try from IMU and reaction wheels using signature matrices, it can detect faults easily based
on the reconstruction error. Even those subtle faults such as drifts or small biases in the order
of milliradians, which induce up to 6 degrees of pointing offset, are detected in all signals of
the LUMIO IMU. It was found that the detection threshold can be tuned such that the system
fault detection rate is 100% for the engineered fault set, while no false alarms are triggered.

The concept was tested on real spacecraft telemetry coming from ESA’s OPS-SAT, which
includes telemetry from the sun senors, IMU, reaction wheels, and star trackers. The fault
detection accuracy was again 100% for the engineered fault set while not triggering any false
alarms. The reconstruction errors were 1-2 orders of magnitude closer to the threshold com-
pared to the LUMIO errors, due to the larger input vector (11x11 compared to 7x7). The
autoencoder based fault detection method is therefore considered a highly promising method
for fault detection (and possibly isolation) in CubeSats and other missions, replacing complex,
inaccessible, and sometimes unreliable nonlinear numerical dynamic models.

70

7.2. Answers to Research Questions 71

7.2. Answers to Research Questions
At the start of this thesis, three key research questions were asked which have been answered.

RQ1: What are the most critical failure modes of the LUMIO AOCS subsystem which
can be detected, isolated and recovered?

The LUMIO AOCS system Fault Tree Analysis and Failure Mechanics, Effects and Criticality
Analysis have revealed a number of failure modes with causes both internal and external to
the subsystem. It was found that in going from the Phase 0 design to the Phase A design
most critical faults were already mitigated. However, some are left such as AOCS unit faults
during critical phases of the missions (detumbling, transfer). It was found that any inaccurate
sensor reading which was not detected as faulty could risk the entire mission at any of these
stages by providing incorrect information to the AOCS algorithm. This includes the angular
rate readings from the gyroscopes, tachometer reading from each reaction wheel, sun angle
readings from the sun sensors and quaternions supplied by the star tracker. Recovery options
are limited to power cycling (IMU, reaction wheel tachometer) or switching to a redundant unit
where possible (star tracker, sun sensor).

RQ2: How can the most critical faults be detected and isolated using model- based
methods?

There are many model based fault detection methods available, each relying on different prin-
ciples. Based on a concept exploration and trade study performed the outcome was that
neural network based methods are considered promising and versatile option for detecting
these faults. Given the lack of available fault data from spacecraft, it was decided that an un-
supervised learning approach should be adopted in the form of a self-reconstructing encoder-
decoder. This autoencoder learns to reconstruct nominal spacecraft data signatures in an
accurate manner (low reconstruction error). When faced with faulty spacecraft data the au-
toencoder is not able to accurately reconstruct it and the reconstruction error increases by
several orders of magnitude, indicating a fault is present in the system. This method uses the
correlations within the data by processing it into a signature matrix first, where every element
is the dot product of two telemetry streams.

It is hypothesised that these signature matrices can likely be used for fault isolation as each
fault will present with a unique pattern. This was however not further investigated in this thesis.

RQ3: How accurate is the proposed method at detecting faults in the LUMIO AOCS sys-
tem?

When tested on simple fault features in simulated LUMIO IMU and reaction wheel signals the
system was able to detect steps of 0.002 rad/s and erratic behaviour with a standard deviation
starting from 0.01 rad/s. However, the system was relatively inaccurate in detecting outliers of
0.1 rad/s and was not considered a good use for this application as simple signal processing
methods can also detect these faults.

The signature matrix method performed much better: it was able to accurately detect all bias,
drift and loss of accuracy faults introduced in the angular rate measurements. These faults
were sized based on LUMIO pointing requirements and the early detection by the autoencoder
assures the fault never leads to more than 6 degrees pointing offset from the desired attitude
at the time of detection. It was found that since the reconstruction error for faulty signals is at

7.3. Recommendations 72

least two orders of magnitude larger than the nominal signals, the anomaly detection thresh-
old can be tuned to avoid false alarms alltogether, making this system a highly reliable and
accurate fault detection mechanism.

Since the LUMIO data was simulated, the system was tested on an extended telemetry set
of OPS-SAT, an ESA built mission for demonstration of ground control software and missions
operations concepts. When constructing signature matrices from OPS-SAT star tracker, IMU,
reaction wheel and sun sensor data the fault detection performance was still 100% accurate
using the same faults as with LUMIO. The false alarm rate could also be reduced by tuning the
detection threshold, showing the autoencoder’s promise in replacing complex, inaccessible
and computationally expensive model-based fault detection methods for systemwith nonlinear
dynamics.

7.3. Recommendations
Based on the outcomes of this thesis, a multitude of recommendations for future work can be
made. These will be divided into four main focus areas: improvement of training and fault data,
improvement of network capabilities, optimisation of performance for real-time fault detection,
and validation activities.

7.3.1. Improvement of Training and Fault Data
A neural network’s performance is highly dependent on the quality and diversity of data avail-
able for training. In this thesis, this was a significant challenge, as raw CubeSat AOCS data
including real-life faults are not readily available. Therefore simulated data or downlinked
telemetry from another satellite (OPS-SAT) were used. However, the main idea behind the
designed network is that if real CubeSat data becomes available from deep space CubeSats
flying today, the network can be trained on this and validation can be performed while also
improving performance.

On the other hand, real spacecraft faults are unpredictable and cannot be modelled. If a fault
occurs onboard a spacecraft with FDIR systems, it is detected and potentially recovered. This
data would be very interesting to use in testing the network better and validating that it can
indeed catch real spacecraft fault occurrences. For that reason, a recommendation is that in
the long term operators of CubeSat platforms which are commercial or educational missions
share all available telemetry that is not related to their specific mission and confidential or
privileged.

7.3.2. Improvement of Network Capabilities
The network is now capable of detecting when a fault occurs which, using simple signal pro-
cessing, would not have been detected. It was also shown that if a single fault manifests in
multiple symptoms, this network still recognises the fault. However the second step in the
FDIR process, fault isolation, is not yet performed. It is hypothesised that given the signature
matrices one can use the signature matrix in a faulty case to isolate which unit or telemetry
stream the fault is coming from. Based on this, different neural network based approaches
could also be used to isolate the exact fault: some faults have a very specific signature in their
measurements and should readily be recognised. Given these two steps together (advanced
detection and isolation), the recovery process can be initiated with very high certainty that the
correct fault has been identified and the appropriate recovery action can be taken.

The detection method could also be extended to detect mismatches in actuator output and
commands. The signature matrix could include the commanded torques from reaction wheels

7.3. Recommendations 73

or desired pointing angles from the AOCS algorithm. If a discrepancy is present due to an
offset or fault in the actuator, the system could potentially capture this as well which allows for
rapid detection and protection of the actuators before critical damage is done to it.

Another promising application of this method is to use it in detecting faults which present in
multiple symptoms. In prior work, and in general in FDIR, the assumption is made that at any
given time only one fault occurs simultaneously. This makes sense considering the extremely
small probability of these faults occurring, let alone within similar timeframes. However, a
single fault can manifest in multiple symptoms. The method for detection proposed in this
thesis is highly suited to detecting these faults, and the signature matrix can be used to couple
them to their root cause if labelled datasets are available.

7.3.3. Optimisation
Finally, as with many neural networks, optimisation of a number of factors is still possible.
For example, a detailed study into possible network architectures and hyperparameters is re-
quired, and a number of techniques such as convolution and pooling can be applied to further
improve the autoencoder performance. Another recommendation is to quantify and optimise
the power use and computational resources required to run this algorithm, as spacecraft on-
board resources are typically limited and it is desirable to be able to run the FDIR system at
any time without impacting other onboard services.

7.3.4. Validation Activities
The validation of a machine learning system such as the one designed in this thesis is difficult
as the behaviour is not deterministic. Therefore the key recommendation is to obtain real data
from integrated flatsat testing (all components are electronically integrated and communicate)
as well as obtaining real fault data such that representative tests can be conducted. Real
validation will only come from testing the system onboard a spacecraft in a representative
environment, i.e. orbit. The recommendation is to further test the system using real telemetry
from CubeSats where available, and then demonstrate the fault detection mechanism on a
demonstrator such as the OPS-SAT platform. Testing will consists of first allowing the system
to demonstrate it does not raise false alarms in nominal cases (assuming no faults occur during
this test) and then artificially feeding a fault into the telemetry.

References

[1] Douglas Bernard et al. “Design of the Remote Agent experiment for spacecraft auton-
omy”. In: IEEE Aerospace Conference Proceedings, Apr. 1998. DOI: 10.1109/AERO.
1998.687914.

[2] Felix Bidner. Fault Tree Analysis of the HERMES CubeSat. Tech. rep. Mar. 2010.
[3] Xu Botao et al. “Electromagnetic Isolation and Electrical Protection in Spacecraft Gen-

eral Assembly”. In: MATEC Web of Conferences 173 (Jan. 2018). DOI: 10.1051/matec
conf/201817301037.

[4] Angelo Cervone et al. “LUMIO: ACubeSat for observing and characterizingmicro-meteoroid
impacts on the Lunar far side”. In: Acta Astronautica 195 (June 2022), pp. 309–317. DOI:
10.1016/j.actaastro.2022.03.032.

[5] Angelo Cervone et al. “Phase A Design of the LUMIO Spacecraft: a CubeSat for Ob-
serving and Characterizing Micro-Meteoroid Impacts on the Lunar Far Side”. In: 71st
International Astronautical Congress Proceedings, Oct. 2020.

[6] Angelo Cervone et al. “Selection of the propulsion system for the LUMIO mission”. In:
72nd International Astronautical Congress, Oct. 2021.

[7] Nacer Chahat, Emmanuel Decrossas, and M. Michael Kobayashi. “Mars Cube One”. In:
CubeSat Antenna Design. Ed. by Nacer Chahat. 1st ed. Wiley, Dec. 2020, pp. 35–89.
DOI: 10.1002/9781119692720.ch2.

[8] Barbara A. Cohen et al. “Lunar Flashlight: Illuminating the Lunar South Pole”. In: IEEE
Aerospace and Electronic Systems Magazine 35.3 (2020), pp. 46–52. DOI: 10.1109/
MAES.2019.2950746.

[9] US Nuclear Regulatory Commission. NUREG-0492, ”Fault Tree Handbook”. 1981.
[10] Kasper De Smaele. Deep Space CubeSat Fault Detection Isolation and Recovery - Lit-

erature Study in preparation of Master Thesis. 2022.
[11] Valerio Di Tana et al. “ArgoMoon: There is a Nano-Eyewitness on the SLS”. In: IEEE

Aerospace and Electronic Systems Magazine 34.4 (Apr. 2019), pp. 30–36. DOI: 10 .
1109/MAES.2019.2911138.

[12] E. Dotto et al. “LICIACube - The Light Italian Cubesat for Imaging of Asteroids In support
of the NASADARTmission towards asteroid (65803) Didymos”. In: Planetary and Space
Science 199 (May 2021). DOI: 10.1016/j.pss.2021.105185.

[13] Guillaume J.J. Ducard. Fault-tolerant Flight Control andGuidance Systems. Advances in
Industrial Control. London: Springer London, 2009. DOI: 10.1007/978-1-84882-561-1.

[14] European Cooperation for Space Standardization. ECSS-Q-ST-30-02C6 Space Product
Assurance - Failure Modes, Effects and Criticality Analysis. Mar. 2009.

[15] EuropeanCooperation for Space Standardization.ECSS-S-ST-00-01CGlossary of Terms.
Oct. 2012.

[16] David Evans and Alexander Lange. “OPS-SAT: Operational Concept for ESA’s First
Mission Dedicated to Operational Technology”. In: SpaceOps Conference Proceedings,
May 2016. DOI: 10.2514/6.2016-2354.

74

https://doi.org/10.1109/AERO.1998.687914
https://doi.org/10.1109/AERO.1998.687914
https://doi.org/10.1051/matecconf/201817301037
https://doi.org/10.1051/matecconf/201817301037
https://doi.org/10.1016/j.actaastro.2022.03.032
https://doi.org/10.1002/9781119692720.ch2
https://doi.org/10.1109/MAES.2019.2950746
https://doi.org/10.1109/MAES.2019.2950746
https://doi.org/10.1109/MAES.2019.2911138
https://doi.org/10.1109/MAES.2019.2911138
https://doi.org/10.1016/j.pss.2021.105185
https://doi.org/10.1007/978-1-84882-561-1
https://doi.org/10.2514/6.2016-2354

References 75

[17] Yerui Fan et al. “A Bearing Fault Diagnosis Using a Support Vector Machine Optimised
by the Self-Regulating Particle Swarm”. In: Shock and Vibration vol. 2020 (Mar. 2020),
pp. 1–11. DOI: 10.1155/2020/9096852.

[18] Ryu Funase et al. “Mission to Earth–Moon Lagrange Point by a 6U CubeSat: EQU-
ULEUS”. In: IEEEAerospace and Electronic SystemsMagazine 35.3 (Mar. 2020), pp. 30–
44. DOI: 10.1109/MAES.2019.2955577.

[19] G. Merisio, C. Giordano, V. Franzese, F. Topputo. LUMIO Phase A Mission Require-
ments Document Issue 1 Rev7. Tech. rep. Mar. 2021.

[20] G. Merisio, C. Giordano, V. Franzese, K. Woroniak, E. Bertels, A. Cervone, S. Speretta.
LUMIO Phase A System Requirements Document Issue 1 Rev3. Tech. rep. Feb. 2021.

[21] Vaishali Ganganwar. “An overview of classification algorithms for imbalanced datasets”.
In: International Journal of Emerging Technology and Advanced Engineering 2 (Apr.
2012), pp. 42–47.

[22] Samuele Gelmi. Fault Detection Isolation and Recovery for LUMIO mission. Delft Uni-
versity of Technology MSc. Thesis. 2019.

[23] Don E George. “The CuSP Interplanetary CubeSat Mission.” In: 13th Annual Cube-
Sat Developers Workshop, 2016. DOI: 10 . 13140 / RG . 2 . 1 . 2995 . 2406. (Visited on
09/15/2022).

[24] GomSpace. NanoProp 6DOF Flyer. URL: https://gomspace.com/shop/subsystem
s/attitude- orbit- control- systems/nanoprop- 6u- propulsion.aspx (visited on
05/08/2022).

[25] Craig Hardgrove et al. “The Lunar Polar Hydrogen Mapper CubeSat Mission”. In: IEEE
Aerospace and Electronic Systems Magazine 35.3 (Mar. 2020), pp. 54–69. DOI: 10 .
1109/MAES.2019.2950747.

[26] Tatsuaki Hashimoto et al. “Nano Semihard Moon Lander: OMOTENASHI”. en. In: IEEE
Aerospace and Electronic Systems Magazine 34.9 (Sept. 2019), pp. 20–30. DOI: 10.
1109/MAES.2019.2923311.

[27] Kaiming He et al. Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. 2015. arXiv: 1502.01852.

[28] IMT. C-DST X-Band Transponder Specifications. URL: https://www.imtsrl.it/prod
ucts/x-band-transponder (visited on 06/08/2022).

[29] Turker Ince et al. “Real-Time Motor Fault Detection by 1D Convolutional Neural Net-
works”. In: IEEE Transactions on Industrial Electronics 63 (Nov. 2016). DOI: 10.1109/
TIE.2016.2582729.

[30] ISISpace. ISIS On Board Computer Specifications. URL: https://www.isispace.nl/
product/on-board-computer/ (visited on 06/08/2022).

[31] ISISpace. Modular Electrical Power System Specifications. URL: https://www.isispa
ce.nl/product/modular-electrical-power-system/ (visited on 06/08/2022).

[32] Numan Khurshid et al. “A Residual-Dyad Encoder Discriminator Network for Remote
Sensing Image Matching”. In: IEEE Transactions on Geoscience and Remote Sensing
(2019), pp. 1–14. DOI: 10.1109/TGRS.2019.2951820.

[33] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. In:
International Conference on Learning Representations Proceedings (2015). eprint: 1412.
6980.

[34] Halber White Kurt Hornik Maxwell Stinchcombe. “Multilayer Feedforward Networks are
Universal Approximators”. In: Neural Networks 2 (1989), pp. 359–366.

https://doi.org/10.1155/2020/9096852
https://doi.org/10.1109/MAES.2019.2955577
https://doi.org/10.13140/RG.2.1.2995.2406
https://gomspace.com/shop/subsystems/attitude-orbit-control-systems/nanoprop-6u-propulsion.aspx
https://gomspace.com/shop/subsystems/attitude-orbit-control-systems/nanoprop-6u-propulsion.aspx
https://doi.org/10.1109/MAES.2019.2950747
https://doi.org/10.1109/MAES.2019.2950747
https://doi.org/10.1109/MAES.2019.2923311
https://doi.org/10.1109/MAES.2019.2923311
https://arxiv.org/abs/1502.01852
https://www.imtsrl.it/products/x-band-transponder
https://www.imtsrl.it/products/x-band-transponder
https://doi.org/10.1109/TIE.2016.2582729
https://doi.org/10.1109/TIE.2016.2582729
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/on-board-computer/
https://www.isispace.nl/product/modular-electrical-power-system/
https://www.isispace.nl/product/modular-electrical-power-system/
https://doi.org/10.1109/TGRS.2019.2951820
1412.6980
1412.6980

References 76

[35] Martin Langer and Jasper Bouwmeester. “Reliability of CubeSats – Statistical Data, De-
velopers’ Beliefs and the Way Forward”. In: Proceedings of the AIAA/USU Conference
on Small Satellites (2016). SSC16-X-2.

[36] Vasileios Leon et al. “Towards Employing FPGA and ASIP Acceleration to Enable On-
board AI/ML in Space Applications”. In: 30th International Conference on Very Large
Scale Integration (2022), pp. 1–4. DOI: 10.1109/VLSI-SoC54400.2022.9939566.

[37] Uri Lerner et al. “Bayesian Fault Detection and Diagnosis in Dynamic Systems”. In:
Proceedings of the Seventeenth National Conference on Artificial Intelligence (2000),
pp. 531–537.

[38] Benjamin K. Malphrus et al. “The Lunar IceCube EM-1 Mission: Prospecting the Moon
for Water Ice”. In: IEEE Aerospace and Electronic Systems Magazine 34.4 (Apr. 2019),
pp. 6–14. DOI: 10.1109/MAES.2019.2909384.

[39] Marc Hirth, Haifeng Su, Domenico Reggio, Patrick Bergner. Generic AOCS/GNC Tech-
niques & Design Framework for FDIR - User Manual. Tech. rep. Aug. 2018.

[40] Leslie McNutt et al. “Near-Earth Asteroid (NEA) Scout”. In: AIAA SPACE 2014 Confer-
ence and Exposition. American Institute of Aeronautics and Astronautics, Aug. 2014.
DOI: 10.2514/6.2014-4435.

[41] NASA. Fault Management Handbook - Draft 2. NASA-HDNK-1002. Apr. 2012.
[42] NASA Center for Near Earth Object Studies. NEO Basics. URL: https://cneos.jpl.

nasa.gov/about/neo_groups.html (visited on 04/08/2022).
[43] Xavier Olive. “FDI(R) for satellites: How to deal with high availability and robustness

in the space domain?” In: International Journal of Applied Mathematics and Computer
Science 22.1 (Mar. 2012), pp. 99–107. DOI: 10.2478/v10006-012-0007-8.

[44] Patrick Bergner, Andre Posch, Domenico Reggio. Generic AOCS/GNC Techniques &
Design Framework for FDIR - GAFE Methodology. Tech. rep. June 2018.

[45] R. J. Patton and J. Chen. “Review of parity space approaches to fault diagnosis for
aerospace systems”. In: Journal of Guidance, Control, and Dynamics 17.2 (Mar. 1994),
pp. 278–285. DOI: 10.2514/3.21194.

[46] Philipp Probst, Anne-Laure Boulesteix, and Bernd Bischl. “Tunability: Importance of Hy-
perparameters of Machine Learning Algorithms”. In: Journal of Machine Learning Re-
search 20 (2019), pp. 1–32.

[47] Prof. Dr. Eberhard Gill. AE4S12 Space Systems Engineering Lecture Slides. Tech. rep.
Sept. 2021.

[48] Hu Qinglei, Zhang Xinxin, and Niu Guanglin. “Observer-based fault tolerant control and
experiment verification for rigid spacecraft”. In: Aerospace Science and Technology 92
(Sept. 2019), pp. 373–386. DOI: 10.1016/j.ast.2019.06.013.

[49] Antonio J. Ricco et al. “BioSentinel: A 6U Nanosatellite for Deep-Space Biological Sci-
ence”. In: IEEE Aerospace and Electronic Systems Magazine 35.3 (Mar. 2020), pp. 6–
18. DOI: 10.1109/MAES.2019.2953760.

[50] A Romero-Calvo, J D Biggs, and F Topputo. “Attitude Control for the LUMIO CubeSat
in Deep Space”. In: 70th International Astronautical Congress Proceedings (2019).

[51] Sebastian Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv:
1609.04747 [cs.LG].

https://doi.org/10.1109/VLSI-SoC54400.2022.9939566
https://doi.org/10.1109/MAES.2019.2909384
https://doi.org/10.2514/6.2014-4435
https://cneos.jpl.nasa.gov/about/neo_groups.html
https://cneos.jpl.nasa.gov/about/neo_groups.html
https://doi.org/10.2478/v10006-012-0007-8
https://doi.org/10.2514/3.21194
https://doi.org/10.1016/j.ast.2019.06.013
https://doi.org/10.1109/MAES.2019.2953760
https://arxiv.org/abs/1609.04747

References 77

[52] Maurice Prather Ryan Mackey; Allen Nikora; Cornelia Altenbuchner; Robert Bocchino;
Michael Sievers; Lorraine Fesq; Ksenia O. Kolcio Matthew J. Litke. “On-Board Model
Based Fault Diagnosis for CubeSat Attitude Control Subsystem: Flight Data Results”.
In: Mar. 2021. DOI: 10.1109/AERO50100.2021.9438342.

[53] Javier SANZ LOBO et al. “Design of a Model-Based Failure Detection Isolation and Re-
covery System for Cubesats”. In: 8th European Conference for Aeronautics and Space
Sciences. Madrid, Spain, 1-4 july 2019, 2019. DOI: 10.13009/EUCASS2019-702.

[54] Stefano Silvestrini and Michèle Lavagna. “Deep Learning and Artificial Neural Networks
for Spacecraft Dynamics, Navigation and Control”. In: Drones 6.10 (Sept. 2022), p. 270.
DOI: 10.3390/drones6100270.

[55] J. Sola and J. Sevilla. “Importance of input data normalization for the application of neural
networks to complex industrial problems”. In: IEEE Transactions on Nuclear Science
44.3 (June 1997), pp. 1464–1468. DOI: 10.1109/23.589532.

[56] Spave Avionics Open Interface Architecture. “SAVOIR FDIR Handbook”. en. In: Euro-
pean Space Software Repository 2 (Nov. 2019).

[57] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting”. In: Journal of Machine Learning Research 15 (June 2014), pp. 1929–1958.

[58] Syrlinks. S-Band Transponder EWC31 Specifications. URL: https://www.syrlinks.
com/en/space/nano-satellite/s-band-transponder-ewc31 (visited on 06/08/2022).

[59] Hamed Taherdoost. “Decision Making Using the Analytic Hierarchy Process (AHP); A
Step by Step Approach”. In: International Journal of Economics and Management Sys-
tems 2 (2017).

[60] Aurora Propulsion Technologies. ARM A0 Flyer. URL: https://aurorapt.fi/thruste
rs/#ARM (visited on 05/08/2022).

[61] Martin Thoma. Sigmoid Function. 2014. URL: https://upload.wikimedia.org/wikip
edia/commons/5/53/Sigmoid-function-2.svg.

[62] Massimo Tipaldi and Bernhard Bruenjes. “Spacecraft health monitoring and manage-
ment systems”. In: 2014 IEEE Metrology for Aerospace (MetroAeroSpace). Benevento,
Italy: IEEE, May 2014, pp. 68–72. DOI: 10.1109/MetroAeroSpace.2014.6865896.

[63] Prashanth Venkataraman. ImageDenoising UsingConvolutional Autoencoder. July 2022.
arXiv: 2207.11771.

[64] W. Pitts W. Mcculloch. “A Logical Calculus of Ideas Immanent in Nervous Activity”. In:
Bulletin of Mathematical Biophysics 5 (1943), pp. 115–133. DOI: 10.1007/BF02478259..

[65] AWander andR Förstner. “Innovative Fault Detection, Isolation andRecovery Strategies
On-Board Spacecraft: State of the Art and Research Challenges”. In: Control and Fault-
Tolerant Systems (SysTol), 2013 Conference, 2012, p. 9. DOI: 10.1109/SysTol.2013.
6693950.

[66] Alexandra Wander and Roger Forstner. “Innovative fault detection, isolation and re-
covery on-board spacecraft: Study and implementation using cognitive automation”. In:
2013, pp. 336–341. DOI: 10.1109/SysTol.2013.6693950.

[67] Safran Group Website. STIM210 Multi Axis Gyro Module - Datasheet TS1545 rev.22.
URL: https://sensonor.azurewebsites.net/media/vxudyo3g/ts1545-r22-datash
eet-stim210.pdf (visited on 03/21/2023).

[68] Austin Williams and Rebecca Rogers. “Leaving No CAPSTONE Unturned: How a Cube-
Sat Pathfinder Will Enable the Lunar Gateway Ecosystem”. In: 34th Small Satellite Con-
ference Proceedings, 2020.

https://doi.org/10.1109/AERO50100.2021.9438342
https://doi.org/10.13009/EUCASS2019-702
https://doi.org/10.3390/drones6100270
https://doi.org/10.1109/23.589532
https://www.syrlinks.com/en/space/nano-satellite/s-band-transponder-ewc31
https://www.syrlinks.com/en/space/nano-satellite/s-band-transponder-ewc31
https://aurorapt.fi/thrusters/#ARM
https://aurorapt.fi/thrusters/#ARM
https://upload.wikimedia.org/wikipedia/commons/5/53/Sigmoid-function-2.svg
https://upload.wikimedia.org/wikipedia/commons/5/53/Sigmoid-function-2.svg
https://doi.org/10.1109/MetroAeroSpace.2014.6865896
https://arxiv.org/abs/2207.11771
https://doi.org/10.1007/BF02478259.
https://doi.org/10.1109/SysTol.2013.6693950
https://doi.org/10.1109/SysTol.2013.6693950
https://doi.org/10.1109/SysTol.2013.6693950
https://sensonor.azurewebsites.net/media/vxudyo3g/ts1545-r22-datasheet-stim210.pdf
https://sensonor.azurewebsites.net/media/vxudyo3g/ts1545-r22-datasheet-stim210.pdf

References 78

[69] Gang Xiang et al. “Intelligent Fault Diagnosis for Inertial Measurement Unit through
Deep Residual Convolutional Neural Network and Short-Time Fourier Transform”. In:
Machines 10 (Sept. 2022), p. 851. DOI: https://doi.org/10.3390/machines1010085
1.

[70] Sanchuan Xu. “A Survey of Knowledge-Based Intelligent Fault Diagnosis Techniques”.
In: Journal of Physics: Conference Series 1187.3 (2019). DOI: 10.1088/1742-6596/
1187/3/032006.

[71] Shen Yin et al. “A Review on Recent Development of Spacecraft Attitude Fault Toler-
ant Control System”. In: IEEE Transactions on Industrial Electronics 63.5 (May 2016),
pp. 3311–3320. DOI: 10.1109/TIE.2016.2530789.

[72] Xiaodong Shao Yuandong LI Qinglei HU. “Neural network-based fault diagnosis for
spacecraft with single-gimbal control moment gyros”. In:Chinese Journal of Aeronautics
35 (7 2022), pp. 261–273.

[73] Chuxu Zhang et al. “A Deep Neural Network for Unsupervised Anomaly Detection and
Diagnosis in Multivariate Time Series Data”. In: Proceedings of the AAAI Conference on
Artificial Intelligence (July 2019). DOI: 10.1609/aaai.v33i01.33011409.

[74] Ali Zolghadri. “Advanced model-based FDIR techniques for aerospace systems: To-
day challenges and opportunities”. In: Progress in Aerospace Sciences 53 (Aug. 2012),
pp. 18–29. DOI: 10.1016/j.paerosci.2012.02.004.

https://doi.org/https://doi.org/10.3390/machines10100851
https://doi.org/https://doi.org/10.3390/machines10100851
https://doi.org/10.1088/1742-6596/1187/3/032006
https://doi.org/10.1088/1742-6596/1187/3/032006
https://doi.org/10.1109/TIE.2016.2530789
https://doi.org/10.1609/aaai.v33i01.33011409
https://doi.org/10.1016/j.paerosci.2012.02.004

A
LUMIO Fault Trees

79

80

81

82

83

84

85

86

87

88

89

B
LUMIO AOCS FMECA

90

91

92

93

94

95

96

97

98

99

C
Critical Faults Register

100

101

ID Block FMECA
ID

Fault Name Symptoms ’Simple’
Cross
Check
Detec-
tion

Signal
Detec-
tion

Model-
Based
Detec-
tion

F1 Star
Tracker

STR.01 Self test fail-
ure

Validity flag 0

F5 Star
Tracker

STR.05 Erroneous
bright object
(persistent)

Low confidence in-
dex even when ori-
ented away from
bright object

Check
confi-
dence
index

Check
orienta-
tion of
tracker
w.r.t
known
bright
objects
(ephemeris
based?)

F8 Star
Tracker

STR.09
+
STR.12

Erroneous
data (SEU)
or biased
measurement

Quaternion data
from this STR
does not match
data from IMU and
redundant STR (if
available)

F9 Star
Tracker

STR.10 Stale unit
data

Timestamp of data
does not change

F10 Star
Tracker

STR.11 Erratic star
tracker data

Increased vari-
ance in data

F11 Reaction
Wheel

RW.01 No tachome-
ter reading

Signal from
tachometer not
present or NaN

F12 Reaction
Wheel

RW.02 Tachometer
reading inac-
curate (bias,
drift..)

Data does not
match spacecraft
dynamics

F24 IMU IMU.06 Excessive
noise in IMU
signal

Increased vari-
ance in data

F25 IMU IMU.07 Stale IMU
data

Timestamp of data
does not change

F26 IMU IMU.08 IMU reading
inaccurate
(drift, bias..)

IMU readings do
not match abso-
lute attitude read-
ings and actuator
inputs

F33 Reaction
Control
Sys-
tem

RCS.02 No thrust
when com-
manded due
to vapor lock

Thruster valve
open, propellant
available, IMU
does not reflect
any acceleration

Valve vs
propel-
lant state

IMU data
vs thrust
com-
manded

F34 Reaction
Control
Sys-
tem

RCS.03 Thruster unit
failure

Thruster unre-
sponsive when
commanded, ex-
pected thrust input
missing

thruster
opera-
tional
state,
power
state

IMU vs
com-
manded
thrust

102

ID Block FMECA
ID

Fault Name Symptoms ’Simple’
Cross
Check
Detec-
tion

Signal
Detec-
tion

Residual
Detec-
tion

F35 Reaction
Control
Sys-
tem

RCS.04 Thruster
valve stuck
open

Valve sensor set
to open, thrust
input on system
when not com-
manded (IMU)

Valve
signal
process-
ing (if
sensor
present
for valve
state)

IMU
angular
rates vs
expected
system
input

F36 Reaction
Control
Sys-
tem

RCS.05 Thruster
valve stuck
closed

Sufficient power
applied to valve
and valve state
does not change
OR torque is not
imparted upon
spacecraft as
expected

Valve
state vs
power
applied

Command
vs IMU
data

F38 Main
Thruster

MT.02 No propellant No pressure in
tank, thruster not
outputting thrust
when opened
(IMU)

Tank
pressure

IMU vs
com-
manded
thrust

F40 Main
Thruster

MT.04 Thruster
valve stuck
open

Valve sensor set
to open, thrust
input on system
when not com-
manded (IMU)

Valve
signal
process-
ing (if
sensor
present
for valve
state)

IMU vs
com-
manded
thrust

F41 Main
Thruster

MT.05 Thruster
valve stuck
closed

Sufficient power
applied to valve
and valve state
does not change
OR delta V is not
imparted upon
spacecraft as
expected

Valve
state vs
power
applied

IMU vs
com-
manded
thrust

F42 Main
Thruster

MT.06 Catalyst
heater failure

Temperature inMT
is not increasing
during heating, cir-
cuit does not con-
sume power

Power
status
vs com-
mand for
heating

Temperature
sensor
vs power

F43 OBC OBC.01 Unexpected
shutdown

General shutdown
of spacecraft on-
board services

No ser-
vices
available,
OBC
unre-
sponsive

D
LUMIO FDIR Requirements Analysis

D.1. Relevant Mission and System Requirements
From the LUMIO SRD, two key system requirements were highlighted as being specifically
relevant to the FDIR design:

SYS.030: Availability without ground contact
The system shall be able to continue scientific operations (TBC) and keep the satellite in a
thermally and power safe condition for 10 (TBC) days without ground contact

Relevance: It is partially the task of the FDIR system to ensure the spacecraft can identify,
isolate and recover from a failure if it occurs, while also ensuring the FDIR does not trigger an
unnecessary safe mode during those 10 days.

SYS.170: Immunity to destructive radiation events
All subsystems shall be immune to destructive events (SEL, SEB, SEGR) with LETth > 37.5
MeV*cm2/mg

Relevance: For the design of the FDIR system, it can be assumed that events of these na-
ture will not occur under the mentioned LET threshold. This severely reduces the likelihood of
certain faults caused by radiation such as Single Event Burnout (SEB) and Single Event Gate
Rupture (SEGR) in the AOCS hardware.

D.2. Relevant AOCS Requirements
The AOCS system requirements are also relevant to the AOCS FDIR, and one specific re-
quirement was deemed especially important for the FDIR system and LUMIO in general:

ADC.020: ADCS Capabilities in Safe Mode
The ADCS is required to manoeuvre the solar arrays to Safe Mode. The slew manoeuvre shall
be completed in less than 30 min. The pointing accuracy of the solar arrays to the Sun in Safe
Mode is required to be less than 15 deg half angle cone.

Relevance: The FDIR has to ensure this capability is available in safe mode, even if a fault in
the AOCS triggered the safe mode.

103

D.3. Relevant Autonomy Requirements 104

D.3. Relevant Autonomy Requirements
As a functional and advanced FDIR system ties into a properly functioning autonomous system,
there are multiple autonomy requirements which are considered relevant to the FDIR design.
These are listed in Table D.1.

D.4. FDIR Requirements
Based on the aforementioned analysis of the LUMIO requirements, and the basic guidelines
for FDIR requirements in the SAVOIR FDIR Handbook [56] a set of preliminary constraints,
’FDIR Requirements’, are devised. The requirements are classified into four groups with an
identifier for each group:

• GEN - General
• FUN - Functional: what should the FDIR be capable of doing?
• PER - Performance: how well should the FDIR accomplish its functions under certain
conditions?

• INT - Interface: how should the FDIR interact with other systems and functions?

D.4.1. General Requirements
The general FDIR requirements are noted in Table D.2.

D.4.2. Functional Requirements
The generated set of functional FDIR requirements are noted in Table D.3 and Table D.4.

D.4. FDIR Requirements 105

ID Requirement Relevance
AUT.030 The LUMIO mission shall have F2 auton-

omy level according to ECSS standard def-
inition (ECSS-E-ST-70-11C31).

The F2 autonomy level requires for a
failed function to be restored within a
mission specified interval of time by
the FDIR system. This is driving for
the FDIR design.

AUT.060 The spacecraft shall execute an au-
tonomous detumbling after orbit injection
achieving within 20 minutes.

This requires the FDIR to deal with
potential AOCS faults during detum-
bling and restore the AOCS functions
such that autonomous detumbling is
achieved in the timeframe.

AUT.070 The spacecraft shall perform autonomous
station keeping about the operative orbit.

This requires the FDIR to deal with po-
tential AOCS faults during operations
in order to restore the station keeping
ability autonomously.

AUT.090 For all mission phases, the spacecraft
shall have the autonomous capability to
maintain the required attitude and to per-
form attitude manoeuvres during lack of
contact with ground segment of at least 10
days.

FDIR must deal with potential AOCS
faults without ground intervention in
all mission phases and restore the
system to a operational state which al-
lows for safe operations for at least 10
days.

AUT.100 The AOCS subsystem shall be able to
maintain during Safe Mode the solar ar-
rays pointing to the the Sun.

The FDIR system must be designed
such that in case of reasonably ex-
pectable faults, the sun-pointing abil-
ity of the spacecraft is available.

AUT.101 The AOCS subsystem shall be able to use
during Safe Mode the onboard resources:
Sun Sensors, IMU, SADA, OBDH, TT&C,
heaters, RW

The FDIR can be designed knowing
that in safe mode these should be
available.

AUT.102 The AOCS subsystem shall be able to en-
sure power generation

Even in case of an AOCS fault, the
FDIR system should be able to re-
store operations of the AOCS and,
failing that, ensure power generation
by sun pointing.

AUT.103 The AOCS subsystem shall be able to
maintain during safe mode communica-
tion with the ground segment

FDIR must ensure that TTC and
AOCS faults which trigger a safe
mode can be isolated and/or recov-
ered such that ground contact is main-
tained.

AUT.110 The spacecraft shall implement failure
detection, isolation and recovery mecha-
nisms in order to meet the required on-
board autonomy levels

The basic requirement which calls for
a sophisticated FDIR system on LU-
MIO

Table D.1: Relevant LUMIO Autonomy Requirements [20]

D.4. FDIR Requirements 106

ID Description Rationale Verification
GEN-
010

The FDIR system shall not re-
quire any additional processors
in the spacecraft

The FDIR system should not re-
quire any additional hardware (sen-
sors, processors, actuators) to be im-
plemented, and should consist of only
software which can be run on any of
the LUMIO processors.

Inspection

GEN-
020

The FDIR system shall be ver-
ified before integration into the
spacecraft

The FDIR system must be tested in
order to ensure correct functioning be-
fore implementation on LUMIO hard-
ware

Demonstration

GEN-
030

The FDIR system shall not in-
crease LUMIO system complex-
ity

The FDIR system should not make
the CubeSat satellite architecture
more complex by requiring additional
hardware (sensors, actuators, pro-
cessors), power, or propellant

Analysis

GEN-
040

The FDIR system development
shall not require the develop-
ment of spacecraft/AOCS mod-
els

The development, verification
and validation of model is a time-
consuming activity and several
verified models are available in
literature

Inspection

GEN-
050

The FDIR should be fully recon-
figurable by ground commands.

Limits, checks, recovery actions, and
anything else related to the FDIR sys-
tem should be able to be modified in-
flight by ground crews at any phase

Demonstration

GEN-
060

Fault management shall be han-
dled in a hierarchical manner
such that resolution is sought on
the lowest possible level.

Standard FDIR approach, if a failure
is not resolved on one level the next
level is triggered until ground is the in-
stance handling the fault.

Test

GEN-
070

The FDIR system shall use the
available housekeeping teleme-
try onboard for fault detection
and isolation

All housekeeping data onboard
should be accessible for the FDIR
system to ensure maximal coverage
in fault detection and isolation

Demonstration

Table D.2: LUMIO FDIR General Requirements

D.4. FDIR Requirements 107

ID Description Rationale Verification
FUN-010 The FDIR system shall detect

and isolate hardware faults
caused by: random faults, wear
out, radiation

As defined by the SAVOIR FDIR HB-
003 Iss2 rev0 to be in scope of the
FDIR system

Analysis: not
all faults can
be tested
but a rep-
resentative
set can be
used to test
and analyse
FDIR system
performance

FUN-020 [deleted]
FUN-030 The FDIR system shall detect

and isolate single-error faults
caused by operator errors.

Test

FUN-040 The FDIR system shall be able
to function with the spacecraft in
any operational configuration

The FDIR system should still accu-
rately detect faults after units have
been reconfigured or removed from
the system.

Test: verify
the FDIR
system func-
tions for each
operational
mode, and for
each of the
major config-
urations

FUN-050 The FDIR system shall be able
to independently reconfigure the
spacecraft from a configuration
with a fault to a fault-free oper-
ational configuration when such
configuration is available

Basic definition of FDIR Test: intro-
duce a fault
in the system
that requires
reconfigu-
ration and
verify that
the FDIR au-
tonomously
recovers the
fault

FUN-051 The maximum duration of an on-
board reconfiguration shall be
deterministic

To ensure reconfiguration can hap-
pen within a specified timeframe

Test

FUN-052 All onboard reconfigurations
shall end with an unambiguously
known and observable state of
all involved elements

To ensure operations can continue
autonomously after reconfiguration
with all units in the intended state

Test

FUN-060 The FDIR system shall report
any fault detections, isolation
and recovery actions through
telemetry to the ground segment

To track and understand FDIR actions Demonstration:
verify that
when a fault
is introduced
and detected,
the FDIR sys-
tem reports
the detection
of that fault

Table D.3: FDIR Functional Requirements LUMIO (continued on next page)

D.4. FDIR Requirements 108

ID Description Rationale Verification
FUN-070 The FDIR system shall trigger a

Safe Mode when a mission criti-
cal fault is identified

To ensure the safety of the system in
case the FDIR system is not able to
autonomously resolve the issue.

Analysis:
demonstrate
safe mode
activation for
a range of the
most likely
critical faults

FUN-071 Safe mode shall be defined as
a condition in which an uninter-
rupted power supply is available,
a thermally safe attitude is main-
tained and communications with
the ground are guaranteed

Definition of safe mode Analysis

FUN-072 Recovery from safe mode shall
only be possible by command
from ground

To ensure the situation allows for exit
of safe mode

Demonstration

FUN-073 The spacecraft state variables
shall be properly re-initialised for
execution of the safe mode

To ensure no residual values from
previous modes endanger safe mode
transition or recovery

Test

FUN-074 The transition to safe mode,
once started, shall not be inter-
ruptibe

GAFE FDIR BP 403

FUN-080 The FDIR system shall catch
an in-scope onboard fault in
such a way that failure propaga-
tion to another unit/subsystem is
avoided, if feasible

To avoid failure propagation where
possible. Unfeasible scenarios are
those where the failure propagates
faster than the fastest possible detec-
tion rate.

Test: intro-
duce the
faults to be
detected and
confirm that
the FDIR
system de-
tects and
isolates the
fault before it
propagates
and causes
critical fail-
ures

FUN-090 The FDIR should be fully recon-
figurable by ground commands.

Limits, checks, actions should be able
to be modified in-flight by ground
crews at any phase

Test

FUN-100 The FDIR system shall not trig-
ger recovery sequences based
on a single reading

Multiple samples should always be
considered, and where possible re-
dundant readings should be com-
pared such that unnecessary recov-
ery procedure triggering is avoided

Demonstration

FUN-110 The FDIR system shall avoid
continuous reporting of the same
anomaly if the anomaly cannot
be fixed autonomously

To avoid an endless loop of detec-
tion, isolation and recovery, the sys-
tem shall remove faulty units from op-
eration if the fault keeps returning

Test

Table D.4: FDIR Functional Requirements LUMIO (continued)

D.4. FDIR Requirements 109

D.4.3. Performance Requirements
The FDIR performance requirements can be seen in Table D.5.

ID Description Rationale Verification
PER-010 The FDIR system shall require at

most TBD GB of onboard RAM
The FDIR system should not limit the
computational resources available for
nominal operations

Demonstration

PER-020 The FDIR system shall be store-
able in at most TBD GB of on-
board non-volatile memory

The memory available onboard is re-
quired for payload and housekeeping
data storage

Inspection

PER-030 The FDIR system shall catch
faults with a fault detection rate
(FDR) of TBD %

The FDIR should be able to catch as
many faults as possible

Analysis:
based on a
predefined
set of labelled
test data, the
FDIR sys-
tem should
achieve an
acceptable
FDR and FAR

PER-040 The FDIR system shall have a
false alarm rate (FAR) as low as
possible, and of no more than
TBD % based on test data.

The FDIR should avoid unnecessary
interruption of nominal, fault-free op-
erations.

PER-050 [deleted]
PER-060 The FDIR system shall be able

to recover L0 to L2 faults in TBD
seconds.

To restore nominal operations on-
board the spacecraft

Test: for each
of the recov-
ery actions, a
test shall be
run to verify
the timely ex-
ecution

Table D.5: FDIR Performance Requirements LUMIO

D.4.4. Interface Requirements
The interface requirements can be found in Table D.6.

D.4. FDIR Requirements 110

ID Description Rationale Verification
INT-010 The FDIR system shall be able

to access all onboard telemetry
required for fault detection

Telemetry is the basis of onboard fault
detection

Demonstration:
show that the
required
telemetry is
available to
the FDIR
system

INT-011 The FDIR system shall receive
data from any operational sensor

The FDIR uses measured quantity to
detect faults

INT-012 The FDIR system shall receive
any command sent by the OBC
to a subsystem

The FDIR system should know what
the desired states of systems are in
order to compare to the actual state.

INT-013 The FDIR system shall have ac-
cess to the relevant process out-
puts

This includes attitude vectors, calcu-
lated parameters, and others.

INT-020 The FDIR system shall be able
to command resets and ON/OFF
actions on all subsystems and
their components

Required in order to perform reconfig-
uration actions

Test: test
that the FDIR
system is
able to switch
ON/OFF
every com-
ponent and
subsystem in
scope of the
FDIR

INT-030 The FDIR system shall be able
to mark components as healthy
or failed.

If an unrecoverable fault occurs in a
unit, it should be removed from oper-
ation and not be included again

Test: test
that the FDIR
system can
remove a
failed compo-
nent from the
operations
and mark it as
failed in the
spacecraft
register

Table D.6: FDIR Interface Requirements LUMIO

E
Trade Off

E.1. Concept Exploration
Hardware Redundancy with voting
This concept is the most traditional method of fault detection, isolation and recovery: add extra
hardware to compare outputs and add redundancy to recover faults. This is however an ex-
pensive and complex concept which is often applied only for mission critical systems on large
missions such as interplanetary explorers, or those missions which require long lifetimes such
as geostationary communications satellites. For a CubeSat it is not considered feasible due
to limited budget, and volume andmass constraints. Therefore it will not be further considered.

Plausibility Testing
Plausibility testing checks if physical laws are upheld to detect faults. While relatively simple
and cost efficient, it has limited applicability in complex systems and cannot be used for isola-
tion of faults. It requires for a fault to lead to loss of plausibility, which may not always be the
case. It is therefore not considered a feasible option for this thesis.

Signal Processing
Signal processing will use the signals directly and analyse them using different methods de-
scribed in chapter 2 to detect known fault features. While it cannot detect all types of faults, it
has the advantage of detecting most faults at low level and avoiding fault propagation, while
also being very cost efficient. The main drawback is the limitation in dynamic systems, where
advanced detection methods are required. Nevertheless it is considered a viable option for
this thesis, with its simplicity being very complimentary to the CubeSat concept.

Parity Space
The parity space method uses algebraic representation of the system to generate models and
detect faults. This is a commonly used concept and, as long as a model is available, very
accurate. Its main drawback is the computational power required for real-time fault detection
as well as the complexity that goes along with developing the parity relations. It is however
definitely a feasible option for CubeSat FDIR.

Parameter Estimation
Parameter estimation is used to estimate values in a mathematical model, after which they
are compared to measured variables. This method is extensively sensitive to noise however
and require detailed model availability, which makes it unsuitable for AOCS telemetry which
can be noisy and include disturbances while being very complex to model. Therefore it is not

111

E.1. Concept Exploration 112

considered here.

Observer Based
The observer based methods use a state observer to estimate variables based on the out-
put, and it is quite similar to the parity space method. However, it is mainly used in cases
where expected system states are well-defined. It is also computationally heavy and real-time
computing can become very costly for complex systems such as the AOCS. Nonlinearity is
also a difficulty for this method, adding another challenge and more computational cost to this
method. For this reason, it is not considered further.

Cognitive Automation
As one of the knowledge based methods, it is more advanced and less used in practice.
Through a language called Cognitive Programming Language (CPL) it allows the analyst to
model the FDI system and automate it. It is considered highly accurate for large datasets, while
performing well in real-time applications. However, as with most knowledge based methods,
the performance is highly dependent on the quality of the data present. It will be further eval-
uated as a potential method for fault detection.

Neural Networks
Neural networks have been used in many applications in recent years, and have also been
suggested for use in fault detection and isolation. However, so far there is no evidence of a
neural network based FDI being used onboard CubeSats. This could be beneficial as it can
combine the detection and isolation of many types of faults (discrete, continuous) across many
functions and units without an accurate model. However, the data to train these networks will
need to be gathered and standardised. The fault data could be simulated however, leaving
this as an option for further investigation.

Support Vector Machines
Support Vector Machines (SVM)s is a type of supervised learning algorithm that can be used
for classification or regression tasks. Based on spacecraft parameters, one could classify
whether a system is functioning normally or experiencing a fault based on input features that
describe the system’s behaviour. They are especially robust and capable of handling nonlin-
ear relationships as well as high-dimensional data [17]. It is thus considered a feasible option
for implementation on CubeSats.

Dynamic Bayesian Network
The Dynamic Bayesian Network (DBN) is an extension of the Bayesian network, a probabilis-
tic graphical model used to represent and reason about the relationships between variables.
It can mix discrete and continuous variables, as well as handle simultaneous failures. How-
ever it is very complex and inference is difficult. [37] Therefor it is not considered feasible for
CubeSat implementation.

Expert System
With expert systems, one relies on the human expertise to perform the fault detection. There-
fore, experts are inherently required to develop this system, which is not suitable at all for
CubeSat development which should be accessible to non-experts. Additionally, it cannot be
easily adapted across different missions. These reasonsmean it will not be further considered.

Qualitative Trend Analysis
As a method which detects patterns, fault detection can be performed relatively accurately.

E.2. Methods to Determine Weights 113

However, once again data quality is a driver for performance and this method is oftentimes
not considered very precise and prone to incorrect classifications of data for various reasons.
The method will not be further considered here.

E.2. Methods to Determine Weights
As mentioned before the determination of the weights is tricky and should attempt to avoid as
much bias from the process as possible. There are numerous ways to select weights, in this
thesis three main methods will be used and compared:

1. Assigning a score on a scale of 1 to X (e.g rate each on a scale of 1 to 10)
2. Ranking the criteria, with the most important receiving the highest score (e.g. 1 to 5)
3. Analytical Hierarchy Process (AHP) (comparing the relative importance of each criteria

to obtain weights)

E.2.1. Scoring
With ’simple’ scoring, the designation of a weight is self explanatory, and for this trade a scale
of 1 to 5 was arbitrarily chosen as it is deemed to be granular enough.

Criteria Weight Driving Require-
ments

Rationale

Thesis feasibility KILLER MSc. Thesis The system should be designed within the time-
frame and scope of a Master thesis project

Software based KILLER GEN-010 The FDIR system should be implemented in
software onboard LUMIO

Verification &
validation feasi-
bility

5 GEN-020 The FDIR system should be verified and vali-
dated before operations using a suitable model
of the LUMIO satellite and AOCS system

Fault detection
accuracy

4 PER-030, PER-
040

The FDIR system should achieve at least a pre-
defined FDR and FAR rate

System com-
plexity / cost?

3 GEN-030 The FDIR system should limit additional sys-
tem complexity (e.g. hardware redundnacy)
and costs

Model complex-
ity

1 GEN-040 The models required for the FDIR system
(CubeSat, AOCS) and its validation should be
reasonably available and not require excessive
work in defining and verifying these models

Computational
resources

3 PER-010, PER-
020

The FDIR system should be able to run on-
board a CubeSat without limiting the resources
and power available to other onboard opera-
tions

E.2.2. Ranking
With ranking, the advantage is that one has to prioritise certain criteria over others. Therefor,
it cannot be that all characteristics are equally important. Since there are 5 criteria which are
not killer, the ranking is done from 1 to 5. The weights resulting from this method are shown
in Table E.1.

E.2. Methods to Determine Weights 114

Criteria Weight Rationale
Verification &
validation feasi-
bility

5 No matter how efficient or accurate the FDIR, if it cannot be vali-
dated it is not fit for use.

Fault detection
accuracy

4 The accuracy in detecting faults is one of the most important char-
acteristics of an FDIR system

System com-
plexity / cost?

2 System complexity should be minimised, but not at the expense
of accuracy or efficiency

Model complex-
ity

1 Model complexity should be minimised but is less important com-
pared to the operational and validation criteria

Computational
resources

3 Onboard computational resources are scarce and should be
treated as such

Table E.1: Criteria Weighting using ranking method

E.2.3. Analytical Hierarchy Process
Finally, the AHP method as described by Taherdoost [59] is used as a comparison. Here, all
criteria are listed as the first row and column of a matrix, as shown in Table E.2. The criteria
pair is rated based on how important the criteria in the row is compared to that in the column.
The matrix that results is then used to calculate the weights, which is the eigenvector of the
matrix. The consistency is then checked using the consistency ratio CR = CI/RI where RI is
the random consistency index (1.1159 for n=5 as seen in [59]) and CI is the consistency index

CI =
λmax − n

n− 1
(E.1)

Here n is the number of criteria (n=5) and λmax is the maximum eigenvalue of the matrix. The
comparison in this trade off yields a CR of 0.01, whereas valid results require a CR lower than
0.01, well below the proposed limit of 0.1 for a valid comparison [59].

Finding the eigenvector of the comparison matrix leads to the weights
w1 1.3
w2 1.387
w3 0.607
w4 0.41
w5 1

E.3. Comparison to classical ranking 115

AHP MATRIX Verification &
validation fea-
sibility

Fault detec-
tion accuracy

System com-
plexity / cost?

Model com-
plexity

Computational
resources

Verification &
validation feasi-
bility

1.0 1.1 2.0 2.5 1.5

Fault detection
accuracy

0.9 1.0 2.0 3.0 2.0

System com-
plexity / cost?

0.5 0.5 1.0 1.5 0.5

Model complex-
ity

0.4 0.3 0.7 1.0 0.3

Computational
resources

0.7 0.5 2.0 3.0 1.0

Table E.2: Pair-wise comparison of criteria

E.3. Comparison to classical ranking

Criteria Weight Signal
pro-
cess-
ing

Parity
Space

Cognitive
Au-
toma-
tion

Neural
Net-
works

Support
Vector
Ma-
chine

Dynamic
Bayesian
Net-
work

Verification &
validation fea-
sibility

5 100 110 90 90 80 80

Fault detec-
tion accuracy

4 80 90 110 110 100 100

System com-
plexity

2 110 90 90 100 100 90

Model com-
plexity

1 120 90 110 110 100 80

Computational
resources

3 110 90 80 120 90 100

Results 0.99 0.97 0.95 1.04 0.91 0.91
Thesis 1 1 0 1 1 0Killer Req Software 1 1 1 1 1 1
Final Score 0.99 0.97 0.00 1.04 0.91 0.00

Table E.3: Trade Off with alternative weighting method (ranking)

E.4. Comparison to Pugh Matrix Scoring Method 116

E.4. Comparison to Pugh Matrix Scoring Method

Criteria Weight Signal
pro-
cess-
ing

Parity
Space

Cognitive
Au-
toma-
tion

Neural
Net-
works

Support
Vector
Ma-
chine

Dynamic
Bayesian
Net-
work

Verification &
validation fea-
sibility

1.3 1 1 0 1 0 0

Fault detec-
tion accuracy

1.387 -1 0 1 1 1 -1

System com-
plexity

0.607 1 0 0 1 0 -1

Model com-
plexity

0.41 1 -1 0 1 0 -1

Computational
resources

1 0 -1 0 1 0 0

+ 3 1 1 5 1 0
0 1 2 4 0 4 2
- 1 2 0 0 0 3
Results 0.93 -0.11 1.387 4.704 1.387 -2.404
Thesis 1 1 0 1 1 0Killer Req Software 1 1 1 1 1 1
Final Score 0.93 -0.11 0 4.704 1.387 0

F
LUMIO and OPS-SAT Faulty Signals

Note: faults 4, 8 and 12 are combinations of the other faults and are not shown in a
single telemetry signal here for both LUMIO and OPS-SAT.

F.1. LUMIO IMU Faults

(a) Fault 1: signal bias in IMU x-axis measurement (b) Fault 2: signal bias in IMU y-axis measurement

(c) Fault 3: signal bias in IMU z-axis measurement

Figure F.1: LUMIO signals bias faults

117

F.1. LUMIO IMU Faults 118

(a) Fault 5: signal bias in IMU x-axis measurement (b) Fault 6: signal bias in IMU y-axis measurement

(c) Fault 7: signal bias in IMU z-axis measurement

Figure F.2: LUMIO signals drift faults

(a) Fault 9: signal bias in IMU x-axis measurement (b) Fault 10: signal bias in IMU y-axis measurement

(c) Fault 11: signal bias in IMU z-axis measurement

Figure F.3: LUMIO signals loss of accuracy (calibration) faults

F.2. OPS-SAT IMU Faults 119

F.2. OPS-SAT IMU Faults

Figure F.4: Fault 1: signal bias in IMU x-axis measurement

Figure F.5: Fault 2: signal bias in IMU y-axis measurement

Figure F.6: Fault 3: signal bias in IMU z-axis measurement

F.2. OPS-SAT IMU Faults 120

Figure F.7: Fault 5: signal drift in IMU x-axis measurement

Figure F.8: Fault 6: signal drift in IMU y-axis measurement

Figure F.9: Fault 7: signal drift in IMU z-axis measurement

F.2. OPS-SAT IMU Faults 121

Figure F.10: Fault 9: signal loss of accuracy in IMU x-axis measurement

Figure F.11: Fault 10: signal loss of accuracy in IMU y-axis measurement

Figure F.12: Fault 11: signal loss of accuracy in IMU z-axis measurement

G
OPS-SAT Telemetry

G.1. Quaternion Data

Figure G.1: Window 2 29/11/22 7:29 - 8:07 Quaternion Data

122

G.1. Quaternion Data 123

Figure G.2: Window 3 29/11/22 10:38 - 11:17 Quaternion Data

Figure G.3: Window 4 29/11/22 20:25 - 21:04 Quaternion Data

G.2. Reaction Wheel Data 124

G.2. Reaction Wheel Data

Figure G.4: Window 2 29/11/22 7:29 - 8:07 Reaction Wheel Data

Figure G.5: Window 3 29/11/22 10:38 - 11:17 Reaction Wheel Data

G.3. IMU Data 125

Figure G.6: Window 4 29/11/22 20:25 - 21:04 Reaction Wheel Data

G.3. IMU Data

Figure G.7: Window 2 29/11/22 7:29 - 8:07 IMU Data

G.3. IMU Data 126

Figure G.8: Window 3 29/11/22 10:38 - 11:17 IMU Data

Figure G.9: Window 4 29/11/22 20:25 - 21:04 IMU Data

G.4. Sun Angle Telemetry 127

G.4. Sun Angle Telemetry

Figure G.10: Window 2 29/11/22 7:29 - 8:07 Sun Angle Data

Figure G.11: Window 3 29/11/22 10:38 - 11:17 Sun Angle Data

G.4. Sun Angle Telemetry 128

Figure G.12: Window 4 29/11/22 20:25 - 21:04 Sun Angle Data

	Preface
	Abstract
	Executive Summary
	List of Symbols
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Literature Gap
	Research Question and Objective
	LUMIO Case Study
	Thesis Outline

	Literature Study
	Deep Space CubeSats
	LUMIO
	Scientific Objectives
	Mission Profile
	Mission Phases
	Architecture

	FDIR
	Traditional Spacecraft FDIR
	Overview of Model Based Methods
	FDIR in Deep Space CubeSats

	LUMIO Fault Analysis
	LUMIO Fault Tree Analysis
	The FTA Methodology
	LUMIO FTA
	FTA Results

	FMECA
	Scope of the FMECA
	FMECA Results
	Fault Register

	FDIR Requirements
	General Requirements
	Functional Requirements
	Performance Requirements

	Trade Study
	Design Options
	Trade Criteria and Weights
	Trade Off Results

	Alternate Scoring and Critical Review

	Fault Data Simulation
	Fault Definition and Simulation Method
	Directly Detectable Faults (Non Model Based)
	Faults Requiring Cross Checks (Model Based)
	Other fault types

	LUMIO AOCS Telemetry Simulation
	GAFE Simulator
	Simulated LUMIO Telemetry: Politecnico di Milano

	Real Satellite Telemetry: OPS-SAT

	Design of Fault Detection Method
	Introduction to Neural Networks
	Weights and Bias
	Activation Function
	Loss Function
	Autoencoder Explained
	Effectiveness Metrics for Neural Networks

	Exploration of Fault Detection Methods Using Neural Networks
	Signal Level Fault Detection
	Neural Network Based Nonlinear Regression and Residual Generation
	Neural Network Based Fault Classification
	Time Series Correlation
	Other Methods
	Challenges in Neural Network Based FD
	Selection of Unsupervised Learning for this Thesis

	Training Data
	Data Structure
	Normalisation
	Reserving Validation Data

	Design of the Autoencoder Network
	Design Philosophy
	Detection Mechanism
	Network Hyperparameter Tuning
	Final Network Architecture

	Results
	Detection of Signal Level Faults in LUMIO IMU
	False Alarm Rate

	Model-Based Fault Detection in LUMIO Data
	Signature Matrix Method
	Fault Detection Results LUMIO Data
	False Alarm Rate

	Model Based Fault Detection in OPS-SAT Telemetry
	Fault Detection Results OPS-SAT
	False Alarm Rate

	Analysis of Results
	Limitations

	Computational Resources
	Comparison to State of the Art
	Estimation of Number of Operations

	A Note on Verification and Validation Activities

	Conclusion
	Conclusion
	Answers to Research Questions
	Recommendations
	Improvement of Training and Fault Data
	Improvement of Network Capabilities
	Optimisation
	Validation Activities

	References
	LUMIO Fault Trees
	LUMIO AOCS FMECA
	Critical Faults Register
	LUMIO FDIR Requirements Analysis
	Relevant Mission and System Requirements
	Relevant AOCS Requirements
	Relevant Autonomy Requirements
	FDIR Requirements
	General Requirements
	Functional Requirements
	Performance Requirements
	Interface Requirements

	Trade Off
	Concept Exploration
	Methods to Determine Weights
	Scoring
	Ranking
	Analytical Hierarchy Process

	Comparison to classical ranking
	Comparison to Pugh Matrix Scoring Method

	LUMIO and OPS-SAT Faulty Signals
	LUMIO IMU Faults
	OPS-SAT IMU Faults

	OPS-SAT Telemetry
	Quaternion Data
	Reaction Wheel Data
	IMU Data
	Sun Angle Telemetry

