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a b s t r a c t 

In this paper, we present three distributed algorithms to solve a class of Generalized Nash Equilibrium 

(GNE) seeking problems in strongly monotone games. The first one (SD-GENO) is based on synchronous 

updates of the agents, while the second and the third (AD-GEED and AD-GENO) represent asynchronous 

solutions that are robust to communication delays. AD-GENO can be seen as a refinement of AD-GEED, 

since it only requires node auxiliary variables, enhancing the scalability of the algorithm. Our main contri- 

bution is to prove convergence to a v-GNE variational -GNE (vGNE) of the game via an operator-theoretic 

approach. Finally, we apply the algorithms to network Cournot games and show how different activation 

sequences and delays affect conver gence. We also com pare the proposed algorithms to a state-of-the-art 

algorithm solving a similar problem, and observe that AD-GENO outperforms it. 

© 2020 The Authors. Published by Elsevier Ltd on behalf of European Control Association. 
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. Introduction 

In modern society, multi-agent network systems arise in sev-

ral areas, leading to increasing research activities. When self-

nterested agents interact between each other, one of the best

athematical tools to study the emerging collective behavior is

oncooperative game theory over networks. In fact, networked

ames emerges in several application domains, such as smart grids

8,12] , social networks [10,19,20] and distributed robotics [6] . In

 game setup, the players (or agents) aim at minimizing a local

nd private cost function which represents their individual interest,

nd, at the same time, satisfy local and global constraints, limiting

he possible decisions (or strategies/actions). The cost function and

onstraints of a single player are influenced by the behavior of a

raction of the others, called “neighbors”. Thus, each decision is in-

uenced by some local information, which is typically exchanged

ith the neighbors. One popular notion of solution for these games

s the GNE, where no player benefits from unilaterally changing its

trategy, see [16] . 

In [3,20,30] , the authors focused on developing synchronous

nd distributed equilibrium seeking algorithms for noncoopera-
∗ Corresponding author. 
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ive games, namely, the case in which all the agents update their

trategies at the same time. Even though this assumption is quite

ommon, it may lead to sever limitations in the case of agents with

eterogeneous computational capabilities in the game. For exam-

le, consider an allocation game between several processors, as in

31] , and assume that they are of two types: high and low perfor-

ances. A synchronous update scheme implies that all the players

ust complete their current update, before a new one can start.

hus, the low performance processors create a bottleneck in the

verall performance. To overcome this problem, we focus on de-

eloping asynchronous update rules. In fact, it is known that asyn-

hronicity can speed up the convergence, facilitate the insertion

f new agents in the network and even increase robustness w.r.t.

ommunication faults, see [5] and references therein. 

Among the very first works on asynchronous distributed opti-

ization, the one of Bertsekas and Tsitsiklis in [4] stands out. From

here onward, several authors elaborated on these ideas and pro-

uced novel results for convex optimization [11,23,27] . In [31] , Yi

nd Pavel developed an asynchronous algorithm to solve noncoop-

rative generalized games subject to equality coupling constraints.

his result was enabled by the framework (ARock), recently intro-

uced by Peng et al. in [26] , that provides a wide range of asyn-

hronous variations of the classical fixed point iterative algorithms.

In this paper, we propose an asynchronous algorithm robust

o delayed information to solve noncooperative games subject to
Association. This is an open access article under the CC BY license. 
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affine coupling constraints. This work generalizes and extends the

current literature on the topic in the following ways. 

• We tackle the case of a game subject to inequality coupling

constraint (rather than only equality constraint). This drasti-

cally broaden the type of problems that can be solved by the

proposed approach. For example in signal processing [29] and

smart grids [12] inequality constraints arise naturally. This ex-

tension cannot be achieved via an extension of the results cur-

rently available due to the different control structure consid-

ered. 
• The algorithms that we develop rely on node variables only,

rather than edge variables as in [31] . This, apparently subtle dif-

ference, leads to a solution that adopts (almost always) a lower

number of variables. So, it is lighter from a computational point

of view, requires less memory and involves lighter communica-

tion between agents. All these features make the proposed so-

lution achieve overall better performances than [31] . 

We conclude the paper comparing the proposed algorithms to

that in [31] , for the case of a Cournot game, showing that our al-

gorithms achieve faster convergence. A preliminary and partial ver-

sion of these results were presented in [7] . 

2. Notation 

2.1. Basic notation 

The set of real, positive, and non-negative numbers are de-

noted by R , R > 0 , R ≥0 , respectively; R := R ∪ {∞} . The set of natu-

ral numbers is N . For a square matrix A ∈ R 

n ×n , its transpose is A 

� ,
[ A ] i is the i th row of the matrix and [ A ] ij represents the element

in i th row and j th column. A �0 ( A 	0) stands for a positive definite

(semidefinite) matrix. A �B is the Kronecker product of the matri-

ces A and B . The identity matrix is denoted by I n ∈ R 

n ×n . 0 (resp. 1 )

is the vector/matrix with only 0 (resp. 1) elements. For x 1 , . . . , x N ∈
R 

n , the collective vector is denoted by x := col ((x i ) i ∈ (1 , ... ,N) ) :=
[ x � 

1 
, . . . , x � 

N 
] � . diag ((A i ) i ∈ (1 , ... ,N) ) describes a block-diagonal matrix

with A 1 , . . . , A N on the main diagonal. 

2.2. Operator-theoretic notation 

The identity operator is denoted by Id( · ). The set valued map-

ping N C : R 

n ⇒ R 

n denotes the normal cone to the set C ⊆ R 

n , that

is N C (x ) = { u ∈ R 

n | sup 〈C − x, u 〉 ≤ 0 } if x ∈ C and ∅ otherwise. The

graph of a set valued mapping A : X ⇒ Y is gra (A ) := { (x, u ) ∈
X × Y | u ∈ A (x ) } . The projection operator over a closed set S ⊆ R 

n

is proj S (x ) : R 

n → S and it is defined as proj S (x ) := argmin y ∈ S ‖ y −
x ‖ 2 . A set valued mapping F : R 

n ⇒ R 

n is � -Lipschitz continuous

with � > 0, if ‖ u − v ‖ ≤ � ‖ x − y ‖ for all (x, u ) , (y, v ) ∈ gra (F ) ; F is

(strictly) monotone if for all (x, u ) , (y, v ) ∈ gra (F ) 〈 u − v , x − y 〉 ≥
(> )0 holds true, and maximally monotone if it does not exist

a monotone operator with a graph that strictly contains gra (F ) .

Moreover, it is α-strongly monotone if for all (x, u ) , (y, v ) ∈ gra (F )

it holds 〈 x − y, u − v 〉 ≥ α‖ x − y ‖ 2 . The operator F is η-averaged

( η-AVG) with η ∈ (0, 1) if ‖F(x ) − F(y ) ‖ 2 ≤ ‖ x − y ‖ 2 − 1 −η
η ‖ ( Id −

F )(x ) − ( Id − F )(y ) ‖ 2 for all x, y ∈ R 

n ; F is β-cocoercive if βF is
1 
2 -averaged, i.e. firmly nonexpansive (FNE). The resolvent of an op-

erator A : R 

n ⇒ R 

n is J A := ( Id + A ) −1 . 

3. Problem formulation 

3.1. Mathematical formulation 

We consider a noncooperative game � between N agents (or

players) subject to affine coupling constraints. We define the game
s the triplet � := ( X , { f i } i ∈{ 1 ... N} , G) , where its elements are re-

pectively: the collective feasible decision set, the players’ local

ost functions and the graph describing the communication net-

ork. In the following subsections, each one of them is introduced.

.1.1. Feasible strategy set 

Every agent i ∈ N := { 1 , . . . , N} has a local decision variable (or

trategy) x i belonging to its private decision set �i ⊂ R 

n i , namely

he set of all those strategies that satisfy the local constraints

f player i . The collective vector of all the strategies, or strat-

gy profile of the game, is denoted as x := col (x 1 , . . . , x N ) ∈ R 

n ,

here n := 

∑ 

i ∈N n i . Then, all the decision variables of all the play-

rs other than i are represented via the compact notation x −i :=
ol (x 1 , . . . , x i −1 , x i +1 , . . . , x N ) . We assume that the agents are sub-

ect to m affine coupling constraints described by the affine func-

ion x �→ A x + b, where A ∈ R 

m ×n and b ∈ R 

m . Thus, the collective

easible decision set can be written as 

 := � ∩ { x ∈ R 

n | A x ≤ b } , (1)

here � = 

∏ 

i ∈N �i ⊂ R 

n , is the Cartesian product of the local con-

traints sets �i ’s. Accordingly, the set of all the feasible strategies

f each agent i ∈ N reads as 

 i ( x −i ) := 

{ 

y ∈ �i | A i y − b i ≤
∑ 

j∈N\{ i } 

(
b j − A j x j 

)} 

, 

here A = [ A 1 , . . . , A N ] , A i ∈ R 

m ×n i and 

∑ N 
j=1 b j = b. The choice of

ffine coupling constraints is widely spread in the literature of

oncooperative games, see e.g., [10,24,30] . Moreover, in [20] , Re-

ark 3, it is highlighted that separable and convex coupling con-

traints can always be rewritten in an affine form. Finally, we in-

roduce some blanket assumptions on this set of feasible strategy,

tandard in the literature [9,10,16,30,31] . 

tanding Assumption 1 (Convex constraint sets) . For each player

 ∈ N , the set �i is convex, nonempty and compact. The collective

easible set X satisfies Slater’s constraint qualification. 

.1.2. Cost functions 

Each player i ∈ N has a local cost function f i (x i , x −i ) : �i ×
−i → R , where �−i := 

∏ 

j∈N\{ i } � j . The coupling between the

layers appears not only in the constraints but also in the cost

unction, due to the dependency on both x i and x −i . Next, we as-

ume some properties for these functions that are extensively used

n the literature [16,30] . 

tanding Assumption 2 (Convex and differentiable cost func-

ions) . For all i ∈ N , the cost function f i (x i , x −i ) is continuously

ifferentiable and convex in x i . 

.1.3. Communication network 

The communication between agents is described by an undi-

ected and connected graph G = (N , E ) where E ⊆ N × N is the set

f edges. Given two agents i, j ∈ N , the couple ( i , j ) belongs to E,

f agent i shares information with agent j and vice versa. Then we

ay that j is a neighbour of i , i.e., j ∈ N i where N i is the neighbour-

ood of i . The number of edges in the graph is denoted by E := |E| .
o define the incidence matrix V ∈ R 

E×N associated to G, let us la-

el the edges as e l , for l ∈ { 1 , . . . , E} . We define the entry [ V ] li := 1

resp. −1 ) if e l = (i, ·) (resp. e l = (·, i ) ) and 0 otherwise. The deci-

ion of which of the two agents composing an edge is the sink and

hich the source is arbitrary. By construction, V 1 N = 0 N . Then, we

efine E out 
i 

(resp. E in 
i 

) as the set of all the indexes l of the edges

 l that start from (resp. end in) node i , and hence E i = E out 
i 

∪ E in 
i 

.

he node Laplacian L ∈ R 

N×N of an undirected graph is a symmetric

atrix defined by L := V 

� V . Another important property of L , used

n the remainder, is L 1 = 0 . 
N N 
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.2. Generalized Nash equilibrium 

In summary, the considered generalized game is described by

he following set of inter-dependent optimization problems: 

 i ∈ N : 

{ 

argmin 

y ∈ R n i 
f i (y, x −i ) 

s.t. y ∈ X i ( x −i ) . 
(2)

The most popular equilibrium concept considered for nonco-

perative games with coupling constraints is the generalized Nash

quilibrium , thus the configuration in which all the relations in

2) simultaneously hold. 

efinition 1 (Generalized Nash Equilibrium) . A collective strategy

 

∗ ∈ X is a generalized Nash equilibrium (GNE) if, for each player

 , it holds 

f i (x ∗i , x 
∗
−i ) ≤ inf 

{
f i (y, x ∗−i ) | y ∈ X i ( x 

∗
−i ) 

}
. 

In this work, we focus on a subset of GNE, the so called varia-

ional GNE (vGNE), a class of equilibria that is considered in many

ther works throughout the literature – see [3,16,21,22] . The name

f these equilibria derives from the fact that they can be formu-

ated as the solutions to a variational inequality (VI). An impor-

ant property of these equilibria is that each agent faces the same

enalty to fulfill the coupling constraints, which is particularly use-

ul to represent a “fair” competition between agents [16] . Varia-

ional GNE can be seen as a particular case of the concept of nor-

alized equilibrium points , firstly introduced by Rosen in [28] and

urther studied in [10,25] . 

To properly characterize this set, we define the pseudo-gradient

apping (or game mapping) of (2) , as 

 ( x ) = col ( (∇ x i f i (x i , x −i )) i ∈N ) . (3)

he pseudo-gradient gathers in a collective vector form the gra-

ients of the cost functions each w.r.t. the local decision vari-

ble. Next, we introduce some standard technical assumptions, e.g.,

2,13] . 

tanding Assumption 3. The mapping F in (3) is α-strongly mono-

one and � -Lipschitz continuous, for some α, � > 0. 

When Standing assumption 2 holds true, the mapping F is sin-

le valued and the set of vGNE of the game in (2) corresponds to

he solution to VI( F , X ), namely the problem of finding a vector

 

∗ ∈ X such that 

 F ( x ∗) , x − x ∗〉 ≥ 0 , ∀ x ∈ X . (4)

he continuity of F ( Assumption 2 ) and compactness of X 

 Assumption 1 ) imply the existence of a solution to VI( F , X ), while

he strong monotonicity ( Assumption 3 ) entails uniqueness, see

15] , Th. 2.3.3. 

Next, let us define the KKT conditions associated to the game

n (2) . The strong duality of the problem ( Assumptions 1 and 2 )

mplies that, if x ∗ is a GNE of (2) , then there exist N dual variables
∗
i 

∈ R 

m 

≥0 
, for all i ∈ N , such that the following inclusions are sat-

sfied: 

 i ∈ N : 

{
0 ∈ ∇ x i f i (x ∗

i 
, x ∗−i 

) + A 

� 
i 
λ∗

i 
+ N �i 

(x ∗
i 
) , 

0 ∈ b − A x ∗ + N R 
m 
≥0 

(λ∗
i 
) . 

(5)

nstead of looking for the solution of the general case where
∗
1 
, . . . , λ∗

N 
may be different, we examine the special case when

∗ := λ∗
1 = · · · = λ∗

N , namely 

 i ∈ N : 

{
0 ∈ ∇ x i f i (x ∗

i 
, x ∗−i 

) + A 

� 
i 
λ∗ + N �i 

(x ∗
i 
) , 

0 ∈ b − A x ∗ + N R 
m 
≥0 

(λ∗) . (6)

t follows from [17] , Th. 3.1(ii), that the KKT inclusions in (6) cor-

espond to the solution set to VI( F , X ). Thus, every solution x ∗ to
I( F , X ) is also a GNE of the game in (2) , [17 , Th. 3.1(i)]. Since the

olution set to VI( F , X ) is a singleton, we conclude that there exists

 unique vGNE of the game (2) . 

. Synchronous distributed GNE seeking algorithm 

We first introduce the synchronous counterpart of AD-GENO,

.e., the Synchronous Distributed GNE Seeking Algorithm with Node

ariables (SD-GENO). The derivation of the algorithm is based on

n operator splitting approach to solve the KKT system in (6) . A

imilar approach was also adopted in [3,30] in the contest of GNE

nding problems. 

.1. Algorithm design 

The KKT conditions of each agent i in (5) are satisfied by

 couple ( x i , λi ), where the dual variables λi may be differ-

nt among the players. If we enforce the consensus among

he dual variables, then the unique solution of the inclusions

s the vGNE of the game. This is achieved by exploiting the

act that ker (V ) = span ( 1 ) and introducing the auxiliary vari-

bles σl , l ∈ { 1 , . . . , E} , one for every edge in the graph. Us-

ng the notations λ := col ((λi ) i ∈N ) ∈ R 

mN , 
 := diag ((A i ) i ∈N ) ∈
 

mN×n , b̄ := col ((b i ) i ∈N ) ∈ R 

mN , σ := col ((σl ) l∈{ 1 ... E} ) ∈ R 

mE , V :=
 � I m 

∈ R 

mE×mN and L := L � I m 

∈ R 

mE×mN , we cast the augmented

ersion of the inclusions in (5) by 

0 ∈ F ( x ) + 
� λ + N �( x ) 

0 ∈ b̄ − 
x + N 

R 
mN 
≥0 

( λ) + Lλ + ρV 

� σ
0 = −ρV λ, 

(7) 

here ρ ∈ R > 0 . In (7) , the term L λ accelerates the convergence of

he dual variables to consensus. 

A solution � = col ( x ∗, σ∗, λ∗
) of the above inclusions can be

quivalently recast as a zero of the sum of two mappings A and B
efined as 

A : � �→ 

[ 

0 0 
� 

0 0 −ρV 

−
 ρV 

� 0 

] 

� + 

[ 

N �( x ) 
0 

N 

R 
mN 
≥0 

( λ) 

] 

B : � �→ 

[ 

F ( x ) 
0 

b̄ + Lλ

] 

. 

(8) 

n fact, � 

∗ ∈ zer (A + B) if and only if ϖ∗ satisfies (7) . 

Next, we show that the zeros of A + B characterize the vGNE of

he original game. 

roposition 1. Let A and B be as in (8) . Then the following hold: 

i) zer (A + B) � = ∅ , 

ii) if col ( x ∗, σ∗, λ∗
) ∈ zer (A + B) then ( x ∗, λ∗) satisfies the KKT con-

ditions in (5) , with λ∗
1 = · · · = λ∗

N , hence x ∗ is the unique vGNE of

the game in (2) . 

The proof is attained by exploiting the property that ker (V ) =
er (L ) , for the graph described in Section 3.1.3 . The steps are sim-

lar to those in [30 , Th. 2]. We omit them here for brevity reasons.

Several researchers have analyzed the problem of finding a zero

f the sum of two monotone operators. The so called splitting

ethods represent one of the most popular approach developed to

ttain an iterative algorithm to solve this class of problem - see

14] , [1 , Ch. 26]. 

emma 1. The mappings A and B in (8) are maximally monotone.

oreover, B is χ-cocoercive, where χ := min 

{
α
� 2 

, λmax (L ) −1 
}

. 

The properties of the operators proved above drive us to select

he preconditioned forward-backward splitting (PFB) to derive a dis-

ributed and iterative algorithm seeking zer (A + B) . This approach

as previously adopted by other researchers, e.g., [30] . 
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The PFB splitting operator reads as 

T := J �−1 A ◦ ( Id − �−1 B) . (9)

The so-called preconditioning matrix � is defined by 

� := 

[ 

τ−1 0 −
� 

0 δ−1 I mM 

ρV 

−
 ρV 

� ε 

−1 

] 

(10)

where δ ∈ R > 0 , ε = diag ((ε i ) i ∈N ) � I m 

with εi > 0, for all i ∈ N and

τ is defined in a similar way. 

The update rule of the algorithm is obtained by including a re-

laxation step, i.e., 

˜ � (k ) = T � (k ) 

� (k + 1) = � (k ) + η( ˜ � (k ) − � (k )) . (11)

It comes from (9) that fix (T ) = zer (A + B) , in fact � ∈
fix (T ) ⇔ � ∈ T � ⇔ 0 ∈ �−1 (A + B) � ⇔ � ∈ zer (A + B) , see

[1 , Th. 26.14]. 

In the remainder of this section, we provide the complete

derivation of SD-GENO, obtained directly from (11) . In the fol-

lowing, we denote ϖ := ϖ( k ), � 

+ := � (k + 1) and ˜ � := ˜ � (k ) to

simplify the notation. Consider ˜ � = T � . From (9) it holds that

˜ � = J �−1 A ◦ ( Id − �−1 B) � ⇔ �(� − ˜ � ) ∈ A ˜ � + B� , thus 

0 ∈ A ˜ � + B� + �( ˜ � − � ) . (12)

The update rule of each components of ϖ is attained by analyz-

ing the row blocks of (12) . The first reads as 0 ∈ F ( x ) + N �( ̃ x ) +
τ−1 ( ̃ x − x ) + 
� λ. By solving this inclusion by ˜ x , we attain the up-

date rule for the primal variables: 

˜ x = J N � ◦
(
x − τ(F ( x ) + 
� λ) 

)
. (13)

Similarly, from the second row block of (12) , we attain the update

for ˜ σ, i.e., 

˜ σ = σ + δρV λ. (14)

Finally, the third row block of (12) is 0 ∈ b̄ + Lλ + N 

R 
mN 
≥0 

( ̃  λ) +

(2 ̃ x − x ) + ρV 

� (2 ̃  σ − σ) + ε −1 ( ̃  λ − λ) , from which we obtain 

˜ λ = J N 
R 

mN 
≥0 

◦
(
λ + ε (
(2 ̃

 x − x ) − b̄ − ρV 

� (2 ̃

 σ − σ) − Lλ) 
)

(14) = proj 
R 

mN 
≥0 

(
λ + ε (
(2 ̃

 x − x ) − b̄ 

−ρV 

� σ − (2 δρ2 + 1) Lλ) 
)
. (15)

Note that, the update of ˜ λ depends only on the aggregate in-

formation V 

� σ . We can exploit this feature to replace the edge

auxiliary variables σ l ’s, with a single variable for each agent i de-

fined by z i := 

(
[ V � ] i � I m 

)
σ ∈ R 

mN . Recalling that V 

� V = L � I m 

=:

L , we compute the update rule of these new variables and replace

(14) by 

˜ z = V 

� σ + δρV 

� V λ = z + δρL λ. (16)

Consequently, (15) is modified accordingly as 

˜ λ = proj 
R 

mN 
≥0 

(
λ + ε (
(2 ̃

 x − x ) − b̄ 

− ρz − (2 δρ2 + 1) Lλ) 
)
. (17)

To ensure that this change of variables does not affect the equilib-

rium of the game, we introduce the following result proving that

an equilibrium point of the new set of equations is indeed a vGNE

of (2) . 

Theorem 1. If col( x ∗, z ∗, λ∗) is a solution to the Eqs. (13) , (16) , (17) ,

with 1 � z ∗ = 0 , then x ∗ is a vGNE of the game in (2) . 

Remark 1. In [31] , the algorithm SYDNEY achieves convergence to

the vGNE of the game (2) , when this is subject to equality coupling
onstraints only. This solution relies on edge auxiliary variables to

nforce the consensus of the λi ’s. Therefore, the number of vari-

bles that each agent has to store is O(N) . 

The change of “variables”, from σ to z , is convenient when the

dges outnumber the nodes, which is almost always the case. In

act, a lower number of variables leads to an overall increment in

he algorithmic efficiency and to a fixed memory requirement for

ach player that does not increase with N . Furthermore, if SYDNEY

n [31] is modified to address inequality constraints, it would re-

uire an additional round of communication between the agents,

aking it more demanding and slower than SD-GENO. 

.2. Synchronous, distributed algorithm with node variables 

SD-GENO) 

The complete formulation of the algorithm is obtained by gath-

ring together all the update rules introduced in the previous sec-

ion, i.e., (13), (16), (17) and adding a relaxation step. The algorithm

n compact form is expressed as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜ x = proj �
(
x − τ(F ( x ) + 
� λ) 

)
˜ z = z + ρδL λ
˜ λ = proj 

R 
mN 
≥0 

(
λ + ε (
(2 ̃

 x − x ) − b̄ 

−ρz − (2 δρ2 + 1) Lλ) 
)

x + = x + η( ̃ x − x ) 
z + = z + η( ̃ z − z ) 

λ+ = λ + η( ̃  λ − λ) , 

(18)

hile the local updates and the initial condition of SD-GENO are

rovided in Algorithm 1 . It is composed of two main phases:

Algorithm 1: SD-GENO. 

Input: k = 0 , for all i ∈ N , x i (0) ∈ R 

n i , λi (0) ∈ R 

m , z i (0) = 0 m 

. 

Choose δ, ε i , τi satisfying (19), while η ∈ (0 , 1) and 

ρ ∈ (0 , 1] . 

Iteration k : 

Communication: each i ∈ N gathers λ j (k ) from the 

neighbors and updates the disagreement vector 

d i (k ) := 

∑ 

j∈N i (λi − λ j ) 

Local update, for i ∈ N do 

˜ x i = proj �i 

(
x i − τi (∇ i f i (x i , x −i ) + A 

� 
i 
λi ) 

)
˜ z i = z i + ρ δ d i (k ) 
˜ λi = proj 

R 
m 
≥0 

(
λi + ε i ( A i (2 ̃ x i − x i ) − b i 

−ρz i − (2 δρ2 + 1) d i (k ) 
))

x + 
i 

= x i + η( ̃  x i − x i ) 

z + 
i 

= z i + η( ̃ z i − z i ) 

λ+ 
i 

= λi + η( ̃ λi − λi ) 

k ← k + 1 

he communication with the neighbors and the local update. First,

ach agent gathers the information about the strategies and the

ual variables of the neighbors. Next, the local update is per-

ormed, based on a gradient descent and dual ascend structure.

t is worth noticing that only one round of communication is re-

uired at each iteration of SD-GENO. 

The convergence of SD-GENO to the vGNE of the game in (2) is

roven in the following theorem. 

heorem 2. Set the step sizes εi , δ, τ i , for all i ∈ N , and ϑ ∈ R such

hat 

i ≤ (‖ A i ‖ + ϑ) −1 (19a)

≤ (2 ρ + ϑ) −1 (19b)
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 i ≤ (ρ|N i | + ‖ A i ‖ + ϑ) −1 , (19c)

 > 

1 

2 χ
(19d) 

with χ as in Lemma 1 and η ∈ 

(
0 , 4 χϑ−1 

2 χϑ 

)
. Then, the sequence

( x (k )) k ∈ N generated by SD-GENO ( Algorithm 1 ) converges to the vGNE

f the game in (2) . 

. Asynchronous distributed algorithm with edge variables 

AD-GEED) 

In the case of heterogeneous agents with very different up-

ate rates, SD-GENO can converge slowly, due to its synchronous

tructure. To overcome this limitation, we introduce here the Asyn-

hronous Distributed GNE Seeking Algorithm with Edge variables (AD-

EED). It uses edge auxiliary variables { σl } l∈{ 1 ... E} and an asyn-

hronous update to compute the vGNE of the game in (2) . As dis-

ussed in the previous section, the use of edge-based auxiliary

ariables may lead to a limited scalability of the final algorithm.

n Section 6 , we use AD-GEED as a starting point to develop an al-

orithm relying on node variables only. From a technical point of

iew, the asynchronicity is achieved by exploiting an asynchronous

ramework for fixed-point iterations, the so called “ARock” frame-

ork, developed in [26] . 

.1. Algorithm design 

The update rule in the asynchronous case, is similar to that

n (11) , with the main difference that, at each iteration, only one

gent i ∈ N updates its strategy x i , dual variable λi and local auxil-

ary variables { σl } l∈E out 
i 

. To mathematically formulate this concept,

e introduce N diagonal matrices H i , where [ H i ] jj is 1 if the j -th

lement of col( x , σ , λ) is an element of col (x i , { σl } l∈E out 
i 

, λi ) and

 otherwise. The matrix H i triggers the update of those elements

n ϖ that are associated to agent i . We assume that the choice of

hich agent performs the update during the iteration k is ruled by

n i.i.d. random variable ζ ( k ), taking values in H := { H i } i ∈N . Given

 discrete probability distribution (p 1 , . . . , p N ) , let P [ ζ (k ) = H i ] =
p i , for all i ∈ N . Therefore, the update rule in the asynchronous

ase is cast as 

 (k + 1) = � (k ) + ηζ (k )(T � (k ) − � (k )) . (20)

An illustrative example is now provided to clarify how to con-

truct the set H . 

xample 1. Consider a game with N = 3 , E = 2 , m = 1 , n i = 1 , i =
 , 2 , 3 and ϖ is the collective vector of all the strategies and aux-

liary variables in the game. The communication network is de-

cribed by the undirected graph G, where the arrows describe the

onvention adopted for the edges. 

In this case, H is a set of three 8 × 8 matrices, namely 

 1 := diag ((1 , 0 , 0 , 1 , 0 , 1 , 0 , 0)) 

 2 := diag ((0 , 1 , 0 , 0 , 1 , 0 , 1 , 0)) 

 3 := diag ((0 , 0 , 1 , 0 , 0 , 0 , 0 , 1)) . 
f during iteration k agent 2 is updating, (20) turns into 

 (k + 1) = � (k ) + ηH 2 (T � (k ) − � (k )) . (21)

o, the only elements of ϖ that change are ( x 2 , σ 2 , λ2 ), precisely

he variables associated to agent 2. 

We assume that each agent i is equipped with public and pri-

ate memory, the former is used by the neighbors to write their

trategies (and dual/auxiliary variables) when they complete an

pdate. The latter instead is used by i to store a copy of the

ublic memory, when it is performing a local update. This mem-

ry is not accessible to the neighbors, so it ensures the consis-

ency of the local updates, refer also to [26] . If an agent j ∈ N i 

oncludes its update while agent i is still computing its future

trategy during iteration k , then the value of the strategy of j ,

hich agent i is using, becomes outdated. We denote the vec-

or of possibly outdated strategy used for the update during it-

ration k as ˆ � (k ) . All the variables updated by an agent i , i.e.,

 i , λi and { σl } l∈E out 
i 

, share the same delay ϕ i (k ) ∈ N , since they

re written at the same moment in the neighbors’ public mem-

ries of its neighbors. Technically, the components of ˆ � (k ) associ-

ted to agent j � = i used during the k -th iteration by agent i for the

pdate are col (x j (k − ϕ j (k )) , { σ� (k − ϕ j (k )) } 
� ∈E out 

j 

, λ j (k − ϕ j (k ))) ,

ence ˆ � j (k ) = � j (k − ϕ j (k )) . 

According to this, the final formulation of the update rule

20) becomes 

 (k + 1) = � (k ) + ηζ (k )(T − Id ) ˆ � (k ) . (22)

The only assumption that we impose over the delay, is bound-

dness, as formalized next. 

ssumption 4 (Bounded maximum delay) . The delays are

niformly upper bounded, i.e. there exists ϕ̄ > 0 such that

up k ∈ N ≥0 
max i ∈N { ϕ i (k ) } ≤ ϕ̄ < + ∞ . 

The local update rules of AD-GEED are presented in

lgorithm 2 and they are achieved via steps similar to those in-

roduced in Section 4.1 for SD-GENO. To ease the notation, for each

gent j ∈ N , we define ˆ x j := x j (k + ϕ j (k )) , ˆ λ j := λ j (k − ϕ j (k ))

nd ˆ σl := σl (k − ϕ j (k )) , for all l ∈ E out 
j 

, and furthermore

ˆ  := col (( ̂  x j ) j∈N ) , ˆ λ := col (( ̂ λ j ) j∈N ) , ˆ σ := col (( ̂  σ j ) j∈N ) . Notice

hat each agent has always access to the most recent value of its

ariables, i.e., ϕ i (k ) = 0 for every agent i ∈ N . 

The following convergence theorem is achived by exploiting the

esults in [26] for a Krasnosel’ski ̆ı asynchronous iteration. 

heorem 3. For every i ∈ N , choose εi , δ, τ i as in (19) , and

et η ∈ 

(
0 , 

cNp min 
2 ̄ϕ 

√ 

p min +1 

(
2 − 1 

2 χϑ 

)] 
and c ∈ (0, 1) . Then, the sequence

( x (k )) k ∈ N generated by AD-GEED ( Algorithm 2 ) converges to the vGNE

f the game in (2) almost surely. 

emark 2. If the probability distribution is uniform, i.e., p min = 

1 
N ,

nd we choose ϑ = 

1 
χ , then the bounds on the relaxation step sim-

lify as η ∈ 

(
0 , 3 2 

c 
√ 

N 

2 ̄ϕ + √ 

N 

] 
. Moreover, if there is no delay, so ϕ̄ = 0 ,

r the number of agents is very high, the bounds may be chosen

ndependently from the number of players, e.g., as η ∈ (0, 1]. 

The structure of AD-GEED is similar to that of ADAGNES in [31 ,

lgorithm 1], where edge auxiliary variables are used to achieve

onsensus over the dual variables. However, unlike ADAGNES, our

lgorithm can handle inequality coupling constraints. Moreover, it

as better performances, in terms of convergence time, according

o our numerical experience, see Figure 3 . 
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Algorithm 2: AD-GEED. 

Input: k = 0 , x 0 ∈ R 

n , λ0 ∈ R 

mN , σ0 = 0 mM 

, chose δ, ε i , τi 

satisfying ( ?? ) and η ∈ (0 , 1) . 

Iteration k : Select the agent i k with probability 

P [ ζ (k ) = H i k 
] = p i k 

Reading: Agent i k copies in its private memory the current 

values of the public memory, i.e. ˆ x j , ˆ λ j , ∀ j ∈ N i k 
and ˆ σl , 

∀ l ∈ E in 
i k 

and l ∈ E out 
j 

. 

Update: 

˜ x i k = proj �i k 

(
x i k − τi k 

(∇ i k 
f i k (x i k , ̂  x −i k 

) + A 

� 
i k 
λi k 

)
˜ σl = σl + δρ([ V ] l � I m 

) ̂  λ , ∀ l ∈ E out 
i k 

˜ λi k 
= proj 

R 
m 
≥0 

(
λi k 

+ ε i k 

(
A i k 

(2 ̃ x i k − x i k ) − b i k − ρ([ V � ] i k � I m 

) ̂  σ −

(2 δρ2 + 1) 
∑ 

j∈N i k 
(λi − ˆ λ j ) 

))

x + 
i k 

= x i k + η( ̃  x i k − x i k ) 

σ+ 
l 

= σl + η( ̃  σl − σl ) , ∀ l ∈ E out 
i k 

λ+ 
i 

= λi k 
+ η( ̃ λi k 

− λi k 
) 

Writing: in the public memories of each j ∈ N i k 

(x i k , λi k 
) ← (x + 

i k 
, λ+ 

i k 
) 

{ σl } l∈E out 
i k 

← { σ+ 
l 

} l∈E out 
i k 

k ← k + 1 
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6. Asynchronous, distributed algorithm with node variables 

(AD-GENO) 

This section presents the main result of the paper, namely, we

use AD-GEED as a backbone to design an algorithm converging in

the same number of iteration, but relying on node auxiliary vari-

ables only, and therefore intrinsically lighter from a computational

point of view. We name it Asynchronous Distributed GNE Seeking Al-

gorithm with Node variables (AD-GENO). It is based on an idea akin

to the one used to develop SD-GENO. In fact, the local update of λi 

in AD-GEED requires only the aggregate quantity ([ V 

� ] i �I m 

) σ . We

introduce a variable z i to capture the variation of this aggregate

quantity and show that it does not affect the dynamics of the pair

( x i , λi ), thus preserving the convergence proved in Theorem 3 . Un-

like the synchronous case, we cannot directly define z = V 

� σ, due

to the different update frequencies of { σl } l∈E i and z i that would af-

fect the dynamics of λ. This mismatch is clarified via the following

example. 

Example 2. Consider the communication network in

Example 1 and assume that in the first three time instances,

agent 2 updates twice and then 3 updates once, i.e., i 0 = i 1 = 2

and i 2 = 3 . For k = 1 , according to Algorithm 2 it holds 

σ2 (2) = σ2 (1) + ηρδ(λ2 (1) − λ3 (0)) 

λ2 (2) ∝ ρ(σ2 (1) − σ1 (0)) , (23)

where ∝ is used to describe dependency. Next, for k = 2 only λ3 is

updated, then 

λ3 (3) ∝ −ρσ2 (2) . (24)

If we substitute the edge variables σ 1 , σ 2 with z i = [ V � ] i σ for i =
1 , 2 , 3 , and apply the same activation sequence, it leads to 
 3 (3) = z 3 (0) + ηρδ(λ3 (0) − λ2 (2)) 

λ3 (3) ∝ ρz 3 (0) . (25)

rom the comparison of (24) and (25) , it is clear that the value of

3 (3) would be different in the two cases. This is explained by the

act that σ 2 is updated twice, while z 3 only once. 

To bridge the gap between σ and z , we introduce an extra vari-

ble μi ∈ R 

m for each node i . The role of μi is to store the changes

f the neighbors dual variable λj , during the time between the last

pdate of i and the next one. 

In Algorithm 3 we present the local update rules of AD-GENO.

Algorithm 3: AD-GENO. 

Input: k = 0 , x (0) ∈ R 

n , λ(0) ∈ R 

mN , z (0) = 0 mN . For every 

i ∈ N , choose δ, ε i , τi satisfying (19), η ∈ (0 , 1) and set 

μi = 0 m 

. 

Iteration k : Select the agent i k with probability 

P [ ζ (k ) = H i k 
] = p i k 

Reading: Agent i k copies its public memory in the private 

one, i.e., the values ˆ x j , ˆ λ j , ∀ j ∈ N i k 
, and μi k 

. 

Reset the public values of μi k 
to 0 m 

. 

Update: 

˜ x i k = proj �i k 

(
x i k − τi k 

(∇ i k 
f i k (x i k , ̂  x −i k 

) + A 

� 
i k 
λi k 

) 
)

˜ z i k = z i k + δημi k 
˜ λi k 

= proj 
R 

m 
≥0 

(
λi k 

+ ε i k (A i k 
(2 ̃ x i k − x i k ) − b i k −

ρ ˜ z i k +(2 δρ2 − 1) 
∑ 

j∈N i k \{ i k } 
(λi k 

− ˆ λ j ) 
)

x + 
i k 

= x i k + η( ̃  x i k − x i k ) 

z + 
i k 

= ˜ z i k + ηδρ
∑ 

l∈E out 
i k 

([ V ] l � I m 

) ̂  λ

λ+ 
i k 

= λi k 
+ η( ̃ λi k 

− λi k 
) 

Writing: in the public memory of each j ∈ N i k 

(x i k , λi k 
) ← (x + 

i k 
, λ+ 

i k 
) 

μ j ← μ j + ̂

 λ j − λi k 

k ← k + 1 

he convergence of AD-GENO is proven by the following theorem.

ssentially, we show that introducing z and μ does not affect the

ynamics of ( x , λ). 

heorem 4. For every i ∈ N choose εi , δ, τ i as in (19) . Let η ∈
0 , 

cNp min 
2 ̄ϕ 

√ 

p min +1 

(
2 − 1 

2 χϑ 

)] 
with p min := min { p i } i ∈N and c ∈ (0, 1) .

hen, the sequence ( x (k )) k ∈ N generated by AD-GENO ( Algorithm 3 )

onverges to the vGNE of the game in (2) almost surely. 

emark 3. Only one extra scalar variable μi is used for every

gent i ∈ N , and hence the benefits of adopting only node vari-

bles, discussed in Remark 1 , hold also in this asynchronous

ounterpart. Furthermore, the number of required communication

ounds between agents does not increase, since the variable μi is

pdated by the neighbors of agent i during their writing phase. 

. Simulations 

We conclude by proposing two sets of simulations to validate

he theoretical results in the previous sections. First, we apply AD-

ENO on a network Cournot game and study how delays and dif-

erent activation sequences affect the convergence. Then, we com-

are the total computation time required by AD-GENO, AD-GEED
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Fig. 1. (a) Action of players { 1 , . . . , 8 } over the three markets A , B , C , D , (b) Com- 

munication network arising from the competition over the markets. 

a  

g

7

 

a  

c  

[  

o  

t  

r  

fi  

t  

t  

s  

fi  

b  

m  

E  

v  

T  

d  

 

o  

T  

P  

n  

T  

d  

a

 

c

 

 

 

 

 

 

 

m  

u  

s  

n  

t  

w

7

 

t  

Fig. 2. (a) Normalized distance from the vGNE, (b) Norm of the disagreement be- 

tween the dual variables, (c) Constraints violation. 

Fig. 3. Comparison of the computation time of ADAGNES vs AD-GENO (orange dia- 

mond) and AD-GEED vs AD-GENO (blue dots), w.r.t. the variation of the communi- 

cation network connectivity. 
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1 The computation is performed on a single computer, thus the considered time 

is due to the local updates only and not the communications between the agents. 
nd ADAGNES (in [31 , Algorithm 1]), over different communication

raphs. 

.1. AD-GENO convergence 

In a network Cournot game, N firms compete over m markets

nd the coupling constraints arise from the maximum markets

apacities. We consider a smilar formulation to that proposed in

30] . Here, we considered N = 8 firms, with the possibility to act

ver m = 3 markets, i.e., x i ∈ R 

3 , for all i ∈ N . The local produc-

ion is bounded in 0 ≤ x i ≤ x i , where each component of x i ∈ R 

3 is

andomly drawn from [10,45]. In Fig. 1 a, the interaction of each

rm with the markets is shown, where an edge is drawn be-

ween a firm and a market if one of former’s strategies is applied

o the latter. Two firms are neighbors if they compete over the

ame market, therefore the communication network between the

rms is the one in Fig. 1 b. The coupling constraints are defined

y Ax ≤ b , where A := [ A 1 , . . . , A N ] ∈ R 

3 ×24 while b ∈ R 

3 . The ele-

ent [ A i ] jk is nonzero, if [ x i ] k > 0 and it is applied to market j .

ach nonzero element in A is randomly chosen from [0.6,1], this

alue can be seen as the efficiency of a strategy on a market.

he components of b ∈ R 

3 are the capacities of the markets, ran-

omly drawn from [20,100]. The local cost function is defined as

f i (x i , x −i ) := c i ( x ) − P ( A x ) � A i x i ; c i ( x ) and it describes the cost of

pting for a certain strategy, while P ( Ax ) is the reward attained.

he price is assumed linear in its argument P (z) = P̄ − Dz, where

 ̄∈ R 

3 and D ∈ R 

3 ×3 is a diagonal matrix, their non zero compo-

ents are randomly chosen from [250,500] and [1,5] respectively.

he function c i ( x ) = x � 
i 

Q i x i + q � 
i 

x i is quadratic, where Q i ∈ R 

4 ×4 is

iagonal and q i ∈ R 

4 . Their values are randomly chosen from [1,8]

nd [1,4], respectively. 

In order to explore different setups we simulate three different

ases: 

(A) The communication is delay free, i.e., ϕ̄ = 0 , and the activa-

tion sequence is alphabetic, and hence P [ ζ (k ) = H i ] = 

1 
N , for

every i ∈ N . 

(B) The activation sequence is still alphabetic, but the communi-

cation may be delayed of 3 time instants at most, i.e., ϕ̄ = 3 .

(C) The communication has no delay, but the probability of up-

date is different between agents, half of them have p i = 

1 
6 ,

while the rest p i = 

1 
12 . 

The outcome of these scenarios are presented in Fig. 2 . The

ain difference from case (A) can be noticed if there is a non-

niform update probability, i.e., case (C). In fact, we notice that a

kewer probability implies slower converge. From simulations, we

oticed that the convergence of the dual variables is often the bot-

leneck to high convergence performances. In all our algorithms,

e mitigated this effect by an appropriate tuning of ρ . 

.2. Comparison between algorithms 

Next, we compare the performance of AD-GENO with respect

o AD-GEED and ADAGNES, from a computational time point of
iew. For the comparison with ADAGNES, we consider a modified

ersion of the Nash–Cournot game presented in Section 7.1 with

oupling equality constraints, i.e., only A x = b. Here, we consider

 = 40 firms, each with at most n i = 2 products. To provide an ex-

ensive comparison, we considered many instances of this game

arying the communication between agents, from a complete to a

parse graph. The other quantities in the games are chosen as in

he previous section. We compared the algorithms over 160 differ-

nt graphs. The computational time required to obtain convergence

s compared in the three cases. 1 
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The results of the simulations are presented in Fig. 3 . As ex-

pected AD-GENO always outperforms AD-GEED, since it achieves

the same dynamics of ( x , λ) with fewer auxiliary variables. As ex-

pected, the gap between the two algorithms shrinks for a sparse

graph while it increases for a dense one, from ∼ 3% to ∼ 20%. A

similar behavior arises when AD-GENO is compared to ADAGNES,

due to the increment of auxiliary variables for highly connected

graphs. In particular, the advantage in using AD-GENO starts from

∼ 20% when the graph has an average degree of 3 and becomes

∼ 60% when the graph is complete. 

8. Conclusion 

The AD-GENO algorithm developed in this work solves GNE

seeking problems in strongly monotone games via an asyn-

chronous update scheme. It adopts node variables only, and en-

sures resilience to delayed information. In our numerical experi-

ence, AD-GENO outperforms the available solutions in the litera-

ture, both in terms of computational time and number of variables

required. 

Unfortunately, the “ARock” framework does not ensure robust-

ness to lossy communication. This is currently an open problem

that is left to future research. Another interesting topic is the gen-

eralization of the algorithm to the case of time-varying commu-

nication networks, as the independence from the edge variables

makes the structure of AD-GENO more suitable to address this

problem. 
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Appendix A. Proofs of Section 4 

A1. Proof of Lemma 1 

The proof follows similar steps to that of [31 , Lem. 5], hence we

omit it. 

A2. Proof of Theorem 1 

Consider the equilibrium point col( x ∗, λ∗, z ∗) with z ∗ = V 

� σ∗
.

Then, (16) at the equilibrium reduces to 0 = −ρL λ∗
, and thus

λ∗ = λ∗
� 1 . Moreover, manipulating (17) and evaluating it in the

equilibrium lead to 

0 ∈ N 

R 
mN 
≥0 

( λ∗
) + ̄b − 
x ∗ + ρz ∗ + (2 ρδ + 1) L λ∗

. (A.1)

Recalling that L λ∗ = 0 and multiplying both sides of (A.1) by

( 1 � �I m 

) leads to 

0 ∈ ( 1 

� 
� I m 

)(N 

R 
mN 
≥0 

( λ∗
) + ̄b − 
x ∗ + ρz ∗) . (A.2)

Using the fact that 
∑ 

i ∈N N 

R 
m 
≥0 

(λ∗) = N ∩ i ∈N R m ≥0 
(λ∗) = N 

R 
m 
≥0 

(λ∗) and

the assumption 1 � z ∗ = 0 , (A.2) becomes 

0 ∈ N R 
m 
≥0 

(λ∗) + ̄b − A x ∗ . (A.3)
inally, (15) evaluated in the equilibrium is 

 ∈ F ( x ∗) + N �( x ∗) + 
� λ∗
, (A.4)

r equivalently 

 ∈ ∇ f i (x ∗i , x 
∗
−i ) + N �i 

(x ∗i ) + A 

� 
i λ

∗ , ∀ i ∈ N . (A.5)

nclusions (A.5) and (A.3) are the KKT conditions in (6) , and hence

rom [17 , Th. 3.1] we conclude that col( x ∗, λ∗, z ∗) is a vGNE of the

ame. 

3. Proof of Theorem 2 

From [18 , Th. 2], the choice of ϑ, εi , δ and τ i in (19) implies

hat � − ϑ I � 0 . Then, from [31 , Lem. 2], �−1 B and �−1 A are re-

pectively χϑ-cocoercive and maximally monotone in the � in-

uced norm. Furthermore, it also shows that ( Id − �−1 B) is 1 
2 χϑ 

-

VG and J �−1 A := ( Id + �−1 A ) is FNE. Applying [1 , Prop. 4.44], we

onclude that T is 2 χϑ 
4 χϑ−1 

-AVG. So, the iteration in (11) converges

o ϖ∗ ∈ fix( T ) if η ∈ 

(
0 , 4 χϑ−1 

2 χϑ 

)
, [1 , Th. 5.14]. The above argument

stablishes that lim k → + ∞ 

σk = σ∗, and hence lim k → + ∞ 

V 

� σk =
 

� σ∗ =: z ∗. So, z converges and consequently we conclude that

lgorithm 1 converges to col( x ∗, λ∗, z ∗). The choice of z 0 = 0 , im-

lies that 1 � z k = 0 , for all k ∈ N since its values will be in the

ange of L . Finally, applying Theorem 1 we prove that the equi-

ibrium is the vGNE of the original game. 

ppendix B. Proof of Theorem 3 

Since T is 2 χϑ 
4 χϑ−1 

-AVG, then it can be rewritten as T = (1 −
2 χϑ 

4 χϑ−1 
) Id + 

2 χϑ 
4 χϑ−1 

P, where P is nonexpansive, [1 , Prop. 4.35]. The

roof can be completed following similar steps to the ones in [31 ,

h. 2]. 

ppendix C. Proof of Theorem 4 

If we show that the modified update of λ, with z instead of σ , is

quivalent to the one in Algorithm 2 , we can infer the convergence

rom Theorem 3 . 

We prove by induction that, given an agent i , the update of λi 

t time k in Algorithms 2 and 3 are equivalent. Note that the two

pdate rules are equivalent if it holds that 

˜ 
 i (k ) = ([ V 

� ] i � I m 

) ̂  σ(k ) , (C.1)

or every k > 0 and i ∈ N . 

Base case: Iteration k is the first in which agent i updates

ts variables. If k = 0 , then in AD-GENO μi = 0 m 

for every i and

ˆ (0) = 0 mM 

in AD-GEED, hence (C.1) is trivially verified. 

If instead k > 0, it holds that z i (k ) = z i (0) = 0 m 

, while ˆ σ(k ) � =
 mM 

, since the neighbors of i can update more than once before

he first update of i (as shown in Example 2 ). We define for each

j ∈ N i the set S j (k ) , a t ∈ N where t < k belongs to S j (k ) if, at the

teration t , the agent j completes an update. The maximum time

n S j (k ) is denoted as m j (k ) := max {S j (k ) } and Š j (k ) := S j (k ) \
 j (k ) . From this definitions, we obtain that 

([ V 

� ] i � I m 

) ̂  σ(k ) = 

∑ 

l∈E out 
i 

σl (0) −
∑ 

d∈E in 
i 

σd (m j (k )) , (C.2)

here j is the element of e d different from i . Furthermore, from

he update rule of σ in Algorithm 2 , we derive 

https://doi.org/10.13039/501100000781
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d (m j (k )) = σd 

(
max { ̌S j (k ) } )

+ ηδρ
(
λ j 

(
max { ̌S j (k ) } ) − λi (0) 

)
= ηδρ

∑ 

h ∈ ̌S j (k ) 

(
λ j (h ) − λi (0) 

)
(C.3) 

ubstituting (C.3) into (C.2) leads to 

([ V 

� ] i � I m 

) ̂  σ(k ) = ρηδ

( ∑ 

j∈N i \{ i } 

∣∣Š j (k ) 
∣∣λi (0) 

−
∑ 

j∈N i \{ i } 

∑ 

h ∈ ̌S j (k ) 

λ j (h ) 

) 

. (C.4) 

rom the definition given in Algorithm 3 of μi , we attain that

([ V � ] i � I m 

) ̂  σ(k ) = ηδμi = ˜ z i (k ) , therefore (C.1) hold. 

Induction step: Suppose that (C.1) holds for some k̄ > 0 that cor-

esponds to the latest iteration in which agent i performed the up-

ate, i.e. z i ( ̄k ) � = 0 . 

Consider the next iteration k in which agent i updates, k > k̄ .

ere, S j (k ) is defined as above, but for time indexes ( ̄k , k ] . Follow-

ng similar reasoning in the previous case, we obtain 

([ V 

� ] i � I m 

) ̂  σ(k ) = ([ V 

� ] i � I m 

) ̂  σ( ̄k ) 

+ ηδρ
∑ 

l∈E out 
i 

([ V ] l � I m 

) ̂  λ( ̄k ) 

+ ηδρ

( ∑ 

j∈N i \{ i } 

∣∣Š j (k ) 
∣∣λi (0) 

−
∑ 

j∈N i \{ i } 

∑ 

h ∈ ̌S j (k ) 

λ j (h ) 

) 

(C.5) 

here we used the fact that l ∈ E out 
i 

is updated at the same time

f i . Furthermore, from the induction assumption, 

([ V 

� ] i � I m 

) ̂  σ(k ) = z i ( ̄k ) + ηδρ

( ∑ 

j∈N i \{ i } 

∣∣Š j (k ) 
∣∣λi (0) 

−
∑ 

j∈N i \{ i } 

∑ 

h ∈ ̌S j (k ) 

λ j (h ) 

) 

= z i ( ̄k ) + ηδρμi = 

˜ z i (k ) , (C.6) 

here the last step holds because in the reading phase of

lgorithm 3 , we reset to zero the values of μi , every time that i

tarts an update. Therefore, (C.1) holds for k . 

Finally, the convergence of ( x (k )) k ∈ N to the vGNE of the game

2) follows from Theorem 3 . 
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