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Abstract: Development of laser scanning has offered great opportunity to capture three-dimensional 
(3D) topographic information of objects’ surfaces in a highly accurately and efficiently. Particularly, 
a terrestrial laser scanner is able to acquire millions of points within a second at millimetre accuracy. 
This technology has been widely used in many civil engineering applications, including surveying, 
construction management, and infrastructure inspection. Traditionally, tank inspection was carried out 
on-site by physical inspectors with suitable measurement equipment (e.g. tapes, staffs and a total 
station). This approach, albeit the most common one, has many downsides: subjective results, slow 
and expensive procedure, requirement of experienced and trained inspectors and close service of the 
tank. Additionally, all results are stored as hard copies, which lead to difficulties in tracking damage 
development and management. To mitigate these disadvantages, this paper proposes a method for (i) 
automatically extracting a point cloud of a tank wall from a massive data points, and (ii) evaluating 
the tank wall through its deformation. 
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1 Introduction 

Recent development of laser scanning technology allows to capture three-dimensional (3D) topographic data of 
visible surfaces of objects in details with high accuracy in short time. This has enabled various applications of 
laser scanning data in civil engineering for example building reconstruction (Truong-Hong et al., 2012), 
construction management (Bosché et al., 2015), infrastructure monitoring and inspection (Truong-Hong & Laefer, 
2015). Particularly, terrestrial laser scanning data associated existing methods have been widely used in identifying 
damage of structures’ surfaces (Laefer et al., 2014). The highly accurate, dense point cloud can be rich information 
to automatically inspect damage of a tank associated with its components. That can be an alternative solution to 
replace this current method, which relies on manual measurements, for example using tapes, or on low sampling 
data from a total station. However, automatic extracting and detecting damage of the tank are still a challenge task 
because point clouds corresponding to individual components of the tank have to extracted from a massive point 
clouds of the complex structure including the tank components associated with other facilities. Thus, this paper 
proposes a RANSAC-based method empowered by voxelization to efficiently extract the point cloud of the tank 
wall and subsequently assess damage of the tank through its deformation. 

2 Related works 

The critical issue in automatic determination of deformation of a tank wall is to extract a point cloud of the tank 
wall from massive data points of a complex structure consisting of the tank wall and its components (e.g. floor, 
floating roof, roof, columns, girders, so on), objects surrounding the tank and other facilities (e.g. stair, pipes). In 
practice, the tank walls mostly appear as a vertical cylinder and are subjected to the surface’s damage/deformation 
after a certain service time. Therefore, this section is focused to survey existing methods for extracting the cylinder 
from the point cloud. 

Most of methods for extracting point cloud representing to a cylinder were based on classification or 
segmentation of raw point clouds to determine descriptive parameters of the cylinder, which can be Random 
Sample Consensus (RANSAC) based- and Hough Transform (HT) based-methods (Nurunnabi et al., 2019). In 
among of RANSAC based methods, it can highlight the algorithm developed by Schnabel et al. (2007) widely 
popular use in extracting the point cloud of the cylinder. The method estimated a direction of the cylinder’s axis 
as a cross-product of normal vectors of data points, while the center and a radius of the cylinder were determined 
from the best fit circle of the points on the plane perpendicular to the cylinder’s direction. One advantage of the 
proposed method was a sampling strategy allowing to handle a massive data. However, the method was also 
required users to tune input parameters (e.g. the minimum points of the estimated cylinder - min_ptc, the maximum 
distance from the point to the estimated cylinder - εmax, and a deviation of points’ normal vectors to the cylinder’s 
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normal at the points - α) to obtain the best cylinder. Similarly, Tran et al. (2015) proposed an iterative algorithm 
to estimate the cylinder’s parameters from a random points associated with their normal vectors, and for each 
iteration inlier points were remained for a next iteration.  

On another hand, Rabbani and Van Den Heuvel (Rabbani & Van Den Heuvel, 2005) proposed a sequential 
generalized HT to extract a point cloud of a cylinder. The HT was first applied to a Gaussian image of the normal 
vectors of the points to estimate the direction of a cylinder’s axis and the points within the highest cell for voting 
the direction were then used in a second step.  Second, the points were then projected onto the orthogonal plane of 
the cylinder’s direction and the HT was used to estimate the center and radius of the cylinder from these projected 
points. Additionally, Figueiredo et al. (2019) improved HT methods for cylinder detection by introducing a new 
randomized sampling scheme to create non-uniform orientation Hough accumulators and efficient Hough voting 
scheme allowing to incorporate curvature information of each cell in the orientation Hough accumulators in the 
voting scheme. The authors addressed the proposed method can reduce space and executing time. 

Although both RANSAC-based and HT-based methods were successful in extracting the cylinder from point 
clouds, these methods are still problematic with a large data set (Maalek et al., 2019), for example the point cloud 
of a storage tank is up to hundreds of million points, because these methods are quired normal vectors of the input 
data. Moreover, it is also difficult to tune many input parameters to obtain the best model, particularly for the tank 
wall subjected to deformation (including global and local deformations). As such, this paper proposed a RANSAC-
based voxelization method to extract the tank wall, in which the method does not required to compute normal 
vectors of all data points. 

3 Proposed method 

A goal of the proposed method is to automatically extract the point cloud of a tank wall from entire scanning point 
clouds, which consist of the points of the tank associated with its components (e.g. a floor, floating roof, roof, 
girders, columns and rafters), other facilities (e.g. stair, pipes), and other objects (e.g. ground objects) surrounding 
the tank. Subsequently, the tank wall was evaluated through deformation computed from the data points of the 
tank wall. In practice, the most tank walls appear as a perfectly vertical cylinder, but during service and/or errors 
from data acquisition the shape of the tank wall may be an inclined and/or imperfect cylinder. In addition, to 
identify surface damage, the tank was often scanned with a high resolution resulting the point cloud of the tank up 
to hundreds of million points. To solve these problems, the proposed method involves 4 main steps (Fig. 1) to 
extract the point cloud of the tank wall. In Step 1, an input point cloud was decomposed into an octree 
representation and the voxels contain candidate points of the tank wall were extracted based on a deviation angle 
between the normal vectors of the voxels and a unit vector of the oz axis in Step 2. Subsequently, in Step 3, the 
RANSAC-based voxelization method was proposed to estimate a fitting cylinder of the tank wall, which can allow 
to easily to retrieve the points of the tank wall. Finally, Step 4 computes deformation of the tank wall based on its 
fit cylinder (known as the vertical fit and the best fit cylinders), which is to determine if the tank deformation is 
exceeded a limitation.  

 
Figure 1. Proposed workflow to determine deformation of the tank wall  

In practice, during capturing a storage tank, the point cloud involves not only the tank’s components but also 
other facilities and environmental objects. An input data points, P = (pi = {xi, yi, zi} ∈ R3, i = [1, N]) may consist 
of hundreds of million points. To reduce intensive computation, in Step 1, an octree representation (Fig. 2a) was 
employed to recursively subdivide an initial enclosing bounding box of an input point cloud P into the smaller 

https://www.sciencedirect.com/topics/computer-science/sampling-scheme
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voxels until a terminal condition is reach. In this study, the maximum size of the voxels (vsize) on leaf nodes of the 
octree was used, which is 0.5m, although several other terminal conditions have been used, for example, a 
maximum depth or the maximum number of points within the voxel. Each voxel is defined as classification, 
address and geometry.  The voxels are classified as “full” if the voxel contains the number of points equal or larger 
than a predefined threshold, which is empirically selected as 10 points; otherwise, the voxels were classified as 
“empty”. Similar Truong-Hong et al. (Truong-Hong & Laefer, 2014), an address of the voxel is to indicate the 
relationship between the voxel to its parent voxel and its sibling voxels (Fig. 2a). Moreover, the voxel’s geometry 
is defined as x-, y-, z- coordinates of two opposite corners of the voxel. A subdivision process is only carried out 
on the full voxels. Fig. 2b & c show the full voxels generated from the point cloud of the exterior tank.  

   
a) Octree structure b) Input data points c) Octree with a depth by 4 

Figure 2. Octree representation 

Next, Step 2 is to compute features of the full voxels on leaf nodes of the octree representation to provide 
information for estimating parameters of a cylinder of a tank wall. First, a normal vector of each full voxel (vi ∈ 
V, i = [1, Nv]) is computed, which was defined as the normal vector of a local planar surface at the center of the 
points within the voxel. As such, from the voxel center (p0i) computed the points (Pv) within the voxel (Eq. 1), the 
k-nearest number (kNN) of neighbor points (PkNN) is extracted and the normal vector (ni = {nxi, nyi, nzi}) of the 
plane through PkNN is an eigenvector corresponding to the smallest eigenvalue computed from a covariance matrix 
(Eq. 2) by using a robust principal component analysis rPCA (Laefer & Truong-Hong, 2017). In this study, kNN 
by 25 points is empirically used. Notably, for searching the neighbor points, only the points within the voxel are 
used, which implied |PkNN| ≤ | Pv |. Moreover, after estimating the normal vector ni, the new center of the voxel is 
also updated based on the kNN points (Eq. 1). 

𝑝𝑝0𝑖𝑖 = 1
|𝑃𝑃𝑣𝑣|

∑ 𝑝𝑝𝑗𝑗𝑝𝑝𝑗𝑗∈𝑃𝑃𝑣𝑣          (1) 

𝐶𝐶𝑘𝑘𝑘𝑘𝑘𝑘 =
∑ 𝑤𝑤(𝑝𝑝𝑗𝑗)(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘0𝑖𝑖)(𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑘𝑘𝑘𝑘𝑘𝑘0𝑖𝑖)𝑡𝑡𝑝𝑝𝑗𝑗∈𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘

∑ 𝑤𝑤(𝑝𝑝𝑖𝑖)𝑝𝑝𝑖𝑖∈𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘
      (2) 

𝑤𝑤(𝑝𝑝𝑗𝑗) = 𝑒𝑒𝑒𝑒𝑒𝑒(
−𝑑𝑑𝑝𝑝𝑝𝑝

2

𝑑𝑑0
2 )         (3) 

where p0i is a center of the voxel vi computed from the Pv, |  | is the cardinal of the Pv, CkNN is a covariance 
matrix computed from PkNN, in which pkNN0i is the centroid of the PkNN computed from Equation 1, w(pj) is the 
weight of each point pj ∈ PkNN, dpj is the distance between point pj to a plane through PkNN, and d0 is set equal to 
1/5Σdpj. 

By observing the tank configuration, the tank wall is mostly vertical, which is implied if a voxel contains the 
points of the tank wall, its normal vector is nearly perpendicular to a unit vector n0z = {0, 0, 1} of the oz axis. As 
such, the voxels containing candidate points of the tank wall are filtered based on a deviation angle between the 
normal vector of the voxel and n0z, which is given in Eq. 4. Resulted filtering irrelevant voxels is shown in Fig. 3.  

Vc = (vi ∈ V, i = [1, Nc] | ∠ni, noz ≥ αth)        (4) 

where αth is the angle threshold, which is set 45 degrees. This threshold is selected based on an observation 
that if the voxels containing the points of both the tank wall and a floor/ground or a roof, the deviation angle may 
be approximately 45 degrees.  

Next, Step 3 is to estimate a cylinder’s parameters representing to the tank wall based on the normal vector 
and center of the voxels Vc. The cylinder can describe by the cylinder’s direction tc = {tx, ty, tz}, a point cc = {xc, 
yc, zc} along the tc, a radius (rc). In theory, if there are three points (p1, p2, p3) and their normal vectors (n1, n2, n3) 
on the cylinder, the direction tc is a cross-product of a pair of the normal vectors, for example, tc = n1xn2. Moreover, 
when projected these points on an orthogonal plane of the tc, these projected points locate on a circle. As such, the 
fitting circle through three projected points can give the center cc and the radius rc of the cylinder. Thus, the 
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cylinder’s parameters were determined based on voxels as following. First, the subset voxels, Vs = (vi = {pkNN0i, 
ni}, i = [1, Ns] | Vs ⊂ Vc }) were randomly extracted from the Vc. The rPCA (Laefer & Truong-Hong, 2017) was 
employed to estimate the normal vector of the fitting surface through the normal vectors ns of the Vs, which is the 
direction tc of the cylinder’s axis. The voxel vsi can be considered as an outlier voxel if the angle between its normal 
vector nsi and the tc is larger than a predefined angle threshold (αnt), in which the αnt by 85 degrees was empirically 
adopted. The process is iteratively removed the outlier voxels until the angle of the tc from two consecutive 
iterations is less than a predefined angle by 1 degree (Fig. 4a and b). 

    
a) Full voxels before 

filtering (17367 voxels) 
b) Full voxels after 

filtering (13037 voxels) 
c) Point cloud of a tank 

wall 
d) Roundness 

Figure 3. Extracting the voxels possessed candidate points and resulted point clouds of the tank wall 

    
a) A normal vector space at 

the first iteration 
b) A normal vector space at 

the last iteration 
c) A fitting circle at the 

first iteration 
d) A fitting circle at the 

last iteration 
Figure 4. Interaction process to estimate the direction, centre and radius of the cylinder 

Second, the centers of the inlier voxels (Vinlier,s ⊂ Vs) are projected onto the best fit surface along the tc. The 
best fit circle (Cs) through the projected points was iteratively generated by using a least squares method, in which 
the radius and the centroid of Cs are respectively the radius (rc) and center cc = (xc, yc, zc) of the cylinder. Notably, 
any projected point having the fitting error larger than a maximum distance (εmax) from the points to the detected 
cylinder is eliminated and the convergence is obtained when no the projected point to be eliminated (Fig. 4 c and 
d).  Finally, the number of the points within the εmax of the fitting cylinder Ctw are used as a score to determine the 
best fit cylinder having the largest number of points, which is given in Eq. 5.  

Ptw = (pi |pi ∈ P Λ εpi  ≤ εmax)         (5) 

where d(pi, Ctw) is the distance from the point to the Ctw(cc, rc, tc), which is expressed in Eq. 6. 

εpi  = d(pi, Ctw) = |d(pi, Lc) - rc|         (6) 

where Lc(cc, tc) is the line through the center of the fitting cylinder Ctw with the direction axis tc.  

In Step 4, two critical types of the tank’s deformations need to report: (i) best fit vertical deformation and 
roundness. The best fit vertical deformation measures as a distance from the points to the tank wall assumed as the 
perfectly vertical cylinder (Ctwv), which can be expressed in Eq.7. The Ctwv can be defined as a fitting the circle 
C(xc, yc, zc, rc) through projection of all points of the tank wall on a horizontal plane for example the xy plane.  
Moreover, the roundness is defined that the distance from the point to the tank wall assumed as a perfect cylinder 
(Ctw), which is computed based Eq. 6. Notably, the fitting cylinder here can be an inclined cylinder. Fig. 3d 
illustrates the roundness. 

εbest_fit_vert_def = d(pi, Ctwv) = |d(pi, C) - rc|        (7) 

4 Experimental tests 

An aim of the experiment is to evaluate the proposed method in extracting and assessing of the tank wall from a 
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massive point cloud acquired from a terrestrial laser scanner. Two tanks are selected to test performance of the 
proposed methods, and results of the tank wall extraction also compare to ones from RANSAC method proposed 
by Schnabel et al. (2007) plugged in CloudCompare V2.7.0 (CloudCompare). Tank 1 is Tank 67 with a diameter 
of 18.288m and height of 12.50m, located at Regina, Canada while Tank 2 is Tank 2490 with a diameter of 
21.336m and height of 14.63m, located at Houston, US. Both Tanks were captured by Faro Focus X130 with the 
sampling step by 6.136mm at a measurement range by 10m. After registering the point clouds from different 
scanning stations, the point clouds are down-sampled with a minimum distance between two adjacent points no 
more 5mm. The data sets with x-, y-, and z-coordinates are respectively 33,692,139 points and 22,447,931 points 
for the Tank 1 and 2 as input data. The proposed method is implemented in Matlab programming language and 
the tests are processed on Dell Precision Workstation with a main system configuration: Intel(R) Xeon(R) W-2123 
CPU @ 3.6GHz with 32GB RAM.  

Input parameters consisting of the voxel size, vsize = 0.5m, kNN = 25 points, αth = 45 degrees, αnt = 85 degrees, 
and εmax = 0.05m are used for both Tanks. Moreover, input parameters for the RANSAC method proposed by 
Schnabel et al. (2007) are the min_ptc = 10% of size of an input data, the εmax = 0.05m, and α = 10 degrees. 
Resulted extraction of data points and deformation of both Tanks are showed in Fig. 5 and 6. A visualization 
evaluation is showed that the proposed method can extract proper point clouds of the tanks and is comparable with 
the Schnabel ‘s method. The difference of a tank’s diameter from the inventory and ones from the proposed method 
are respectively 0.026m for Tank 1 (18.288m vs. 18.262m) and 0.008m for Tank 2 (21.336m vs. 21.344m). 
Notably, errors here include errors from a damage of the tank wall, data acquisition and registration and the 
proposed method.  

     
a) Input data points 

of Tank 1 
b) Resulted points 

of the tank wall 
c) Points of tank wall 

from RANSAC(*) 
d) Best fit vertical 

deformation 
e) Roundness 

(*) Two cylinders were extracted from the point cloud by the RANSAC method (Schnabel et al. ,2007) 

Figure 5. Resulted extraction of a point cloud of Tank 1 from the proposed method and RANSAC proposed 
Schnabel et al. (2007) and deformation of the tank from the proposed method 

     
a) Input data points 

of Tank 2 
b) Resulted points 

of the tank wall 
c) Points of tank 

wall from RANSAC 
d) Best fit  

vertical deformation 
e) Roundness 

Figure 6. Resulted extraction of a point cloud of Tank 2 from the proposed method and RANSAC proposed 
Schnabel et al. (2007) and deformation of the tank from the proposed method 

As the tank wall is assumed as a perfect cylinder when implementing the method to extract the tank wall point 
cloud, resulted point clouds of adjacent objects of the tank wall are also included, for example, the points of 
safeguard and ground (Fig. 5b and c, and Fig. 6b and c). This issue can be solved when an additional localized 
filtering is implemented. Moreover, the proposed method may be under-extraction of the tank wall’s points when 
the wall is subjected to deformation larger than the than a maximum distance (εmax).  

The executing time from the proposed method are 697.5s for Tank 1 and 504.4s for Tank 2. Comparatively, 
ones from the RANSAC method proposed by Schnabel et al. (2007) are respectively 514.8s and 335.0s. However, 
it is noticed that the RANSAC method was implemented in C++ programming language. Moreover, in the 
proposed method, only the maximum distance εmax affects to the results while in the RANSAC method (Schnabel 
et al., 2007) 3 input parameters (min_ptc, εmax, α) are required to obtain the best result. Finally, by using the 
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RANSAC method (Schnabel et al., 2007) for this application, multiple cylinders can be obtained, and additional 
filtering is needed to determine the correct cylinder of the tank wall, for example, there are 2 cylinders extracted 
for Tank 1 (Fig. 5c). 

5 Conclusions 

This paper presents a new, efficient RANSAC-based voxelization method to extract a cylinder representing to a 
wall of a storage tank from a massive data point cloud. The input data points are decomposed by an octree 
representation and the voxels containing candidate points of the tank wall are extracted by examining normal 
vectors of the voxels, which are computed from the kNN points of the voxel center. Next the RANSAC paradigm 
is applied on a subset voxel to estimate the direction axis, center, radius of the cylinder. In this step, an outlier 
removal process is applied to eliminate the outlier voxels. The proposed method is tested on two Tanks scanned 
from outside and inside of the tanks. The experimental tests show the points of the tank walls are successfully 
extracted and comparable with the popular RANSAC method. The results also show that diameters of the extracted 
cylinders differ from ones derived from an inventory about 0.026m (Tank 1) and 0.008m (Tank 2). Moreover, the 
executing time is respectively 697.5s and 504.4s for the data set of 33,692,139 points and 22,447,931 points. 
However, the point cloud of the tank wall still contains data points of other objects closed to the tank wall, which 
can be removed by implementing a local outlier filter. Finally, as the tank is often subjected to deformation, 
selecting an appropriate maximum distance is still difficulty.  
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