
 
 

Delft University of Technology

Improving the Representation of Long-Term Storage Variations With Conceptual
Hydrological Models in Data-Scarce Regions

Hulsman, Petra; Hrachowitz, Markus; Savenije, Hubert H.G.

DOI
10.1029/2020WR028837
Publication date
2021
Document Version
Final published version
Published in
Water Resources Research

Citation (APA)
Hulsman, P., Hrachowitz, M., & Savenije, H. H. G. (2021). Improving the Representation of Long-Term
Storage Variations With Conceptual Hydrological Models in Data-Scarce Regions. Water Resources
Research, 57(4), Article e2020WR028837. https://doi.org/10.1029/2020WR028837

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1029/2020WR028837
https://doi.org/10.1029/2020WR028837


1.  Introduction
Long-term and thus low-frequency total water storage variations have been observed in many regions 
world-wide (Long et al., 2017; Scanlon et al., 2018). This includes long-term increasing or decreasing storage 
trends and multi-annual variabilities over ≥10 years. For example, decreasing storage trends were observed 
in Australia during the Millennium Drought in 1997–2010 (e.g., Chen et al., 2016; Leblanc et al., 2009; Zhao 
et al., 2017a), whereas both, increasing and decreasing long-term trends as well as multi-annual variabilities 
were observed in the United States (Boutt, 2017; Long et al., 2013), the La Plata basin in South America 
(Chen et al., 2010), China (Sun et al., 2018; Z. Zhang, Chao, et al., 2015), and different African river basins 
(Awange et al., 2016; Bonsor et al., 2018; Werth et al., 2017) which were attributed to rainfall variabilities, 
glacier melting, droughts or human activities such as groundwater abstractions and land cover changes. 

Abstract  In the Luangwa basin in Zambia, long-term total water storage variations were observed 
with Gravity Recovery and Climate Experiment, but not reproduced by a standard conceptual hydrological 
model that encapsulates our current understanding of the dominant regional hydrological processes. 
The objective of this study was to identify potential processes underlying these low-frequency variations 
through combined data analysis and model hypothesis testing. First, we analyzed the effect of data 
uncertainty by contrasting observed storage variations with multi-annual estimates of precipitation 
and evaporation from multiple data sources. Second, we analyzed four different combinations of model 
forcing and evaluated their skill to reproduce the observed long-term storage variations. Third, we 
formulated alternative model hypotheses for groundwater export to potentially explain low-frequency 
storage variations. Overall, the results suggest that the initial model's inability to reproduce the observed 
low-frequency storage variations was partly due to the forcing data used and partly due to the missing 
representation of regional groundwater export. More specifically, the choice of data source affected the 
model's ability to reproduce annual maximum storage fluctuations, whereas the annual minima improved 
by adapting the model structure to allow for groundwater export from a deeper groundwater layer. This 
suggests that, in contrast to previous research, conceptual models can reproduce long-term storage 
fluctuations if a suitable model structure is used. Overall, the results highlight the value of alternative 
data sources and iterative testing of model structural hypotheses to improve runoff predictions in a poorly 
gauged basin leading to enhanced understanding of its hydrological processes.

Plain Language Summary  According to satellite observations, the total amount of water 
stored on and below the land surface varied over the years in the Zambian Luangwa river basin. However, 
this variation was not well reproduced by existing rainfall-runoff models, resulting in inaccurate 
predictions of runoff and water availability. The goal of this study was to identify processes causing long-
term fluctuations in the total water storage by using alternative data sources and by adjusting the model 
structure. First, we analyzed whether similar long-term fluctuations existed in the climate using different 
satellite products. Second, we tested whether these fluctuations could be better represented using different 
data sources. Third, we tested whether they could be caused by inter-basin groundwater flow. We indeed 
showed that long-term storage fluctuations were better represented by alternative data sources and by 
incorporating groundwater loss from the basin, leading to more reliable runoff predictions in the poorly 
gauged Luangwa basin.
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These studies relied on satellite-based Gravity Recovery and Climate Experiment (GRACE) data, with the 
exception of Boutt (2017) who used in situ data.

However, many hydrological models fail to reproduce such observed long-term storage variations (Fowler 
et al., 2020; Scanlon et al., 2018; Winsemius et al., 2006). As highlighted by previous studies, these observed 
long-term storage trends and variations can be a result of climate variability, land-cover change, other hu-
man interventions or any combination thereof, while the inability of models to reproduce these variations 
can be a result of model structural deficiencies, poor parameterization, data errors, unsuitable parame-
ter values or any combination thereof (Fowler et al., 2018; Grigg & Hughes, 2018; Jing et al., 2019; Saft 
et al., 2016). For example, Bouaziz et al. (2020) showed that although a suite of different conceptual models 
could similarly well reproduce stream flow over almost two decades, they considerably varied in their skill 
to reproduce observed storage variations, which was attributed to deficiencies of different model architec-
tures. With a few notable exceptions (e.g., Bouaziz et al., 2018; Goswami et al., 2007; Hrachowitz et al., 2014; 
Le Moine et al., 2007; Perrin et al., 2003; Samaniego et al., 2011), processes that could potentially allow long-
term memory effects, such as groundwater export (Fowler et al., 2020; Istanbulluoglu et al., 2012), remain 
mostly unaccounted for in standard formulations of conceptual rainfall-runoff models (Bergström, 1992; 
Burnash et al., 1973; Euser et al., 2015; Fenicia et al., 2014; Liang et al., 1994; Willems, 2014). This leads to 
the situation that these models cannot sufficiently well capture long and slow processes dominating long-
term storage variations, as convincingly demonstrated by Fowler et al. (2020). Their study, which focused on 
the Millennium Drought in Australia, illustrated that modeled annual minimum storage remained rather 
constant instead of showing a decreasing trend. The reason for this was that the modeled storage converged 
to or even reached zero toward the end of each dry season and hence could not decrease any further. Such 
an omission of processes that allow to account for long-term memory processes in rainfall-runoff models 
results in biased modeled discharge and impedes accurate estimations of water availability which is particu-
larly crucial during extreme dry conditions (Saft et al., 2016).

In many river basins, detecting long-term storage variations and identifying their drivers is challenged by 
limited availability of high-quality ground observations. That is why in this context satellite observations 
may play an important role. For example, satellite-based GRACE observations describe variations in the 
Earths' gravity field which can be used to detect regional mass changes that are dominated by variations in 
the terrestrial water storage after removing atmospheric effects. In other words, GRACE observations, which 
are available on monthly timescale, provide valuable information on total water storage changes (Landerer 
& Swenson,  2012; Swenson,  2012). For example, GRACE observations have been used for groundwater 
monitoring (Tangdamrongsub et al., 2018; J. Zhang et al., 2020), or drought analysis (Chao et al., 2016; Huls-
man et al., 2021; Leblanc et al., 2009; van Dijk et al., 2013; Zhao et al., 2017b; D. Zhang, Zhang, et al., 2015).

While several previous studies focused on identifying long-term storage variations from (satellite-based) 
observations and potential drivers for these variations as well as on quantifying differences between obser-
vations and model results (e.g., Fowler et al., 2020; Jing et al., 2019; Joodaki et al., 2014; Leblanc et al., 2009; 
Meng et al.,  2019; Scanlon et al.,  2018), only very few studies attempted to modify a hydrological mod-
el to allow for meaningful representations of long-term storage variations. In one exception, Grigg and 
Hughes (2018) modified the GR4J rainfall-runoff model (Perrin et al., 2003) to mimic long-term catchment 
memory effects. This was done by introducing a threshold in the storage reservoir such that percolation 
from this reservoir stopped when the storage was lower than the threshold while evaporation losses con-
tinued. Some other studies highlighted the value of incorporating groundwater import or export in hydro-
logical models (e.g., Bouaziz et al., 2018; Hrachowitz et al., 2014; Le Moine et al., 2007). For example, Le 
Moine et al. (2007) analyzed 1040 French catchments and concluded inter-basin groundwater flow should 
be incorporated explicitly in hydrological models instead of correcting the rainfall or potential evaporation 
to close the water balance. Bouaziz et al. (2018) illustrated inter-catchment groundwater flow reached on 
average 10% of the precipitation in the Meuse river basin and should be accounted for in models to prevent 
overestimating the actual evaporation. However, these studies did not analyze the effect of such a process 
on the long-term variability in the total water storage. Other studies corrected for poor representations of 
long-term storage trends by assimilating total water storage anomaly observations according to GRACE into 
hydrological models (Khaki et al., 2018; Schumacher et al., 2018).
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In this study, long-term storage variations were observed in the Luangwa river basin, but not reproduced 
by a distributed implementation of a conceptual model. This model was used in several previous studies to 
assess the potential of satellite-based altimetry, evaporation and total water storage anomaly observations 
for stepwise model development and spatial-temporal model calibration (Hulsman, Savenije, et al., 2020; 
Hulsman, Winsemius, et al., 2020). In these studies, the model successfully reproduced the dynamics of 
multiple hydrological variables in the Luangwa basin. The objective of this paper was to identify potential 
and so far overlooked processes underlying these low-frequency variations in a combined data analysis and 
model hypothesis testing approach (Clark et al., 2011). In the spirit of Nearing et al. (2016) and Addor and 
Melsen (2019), we here more specifically tested the hypotheses that the frequently reported inability of con-
ceptual hydrological models to reproduce observed long-term, low-frequency water storage variations is a 
result of the combined effects of (1) model forcing data that are incongruent with data of storage variations 
and (2) oversimplified representation of processes associated with basin-scale groundwater dynamics in 
such models and that (3) a careful choice of the data source and adaptation of groundwater-related model 
processes can significantly improve the representation of long-term storage variations in conceptual models.

2.  Site Description
The Luangwa River is a 770 km long, mostly unregulated tributary of the Zambezi in Zambia (Figure 1). 
Its 159,000 km2 large basin area is poorly gauged and mostly covered with deciduous forests, shrubs and 
savanna. The elevation varies from 400 m up to 1,850 m between the low-lying areas around the river and 
the highlands. In this semi-arid area, there is a distinct wet season from October to April with heavy rains 
up to 100 mm month−1. Nevertheless, the mean annual potential evaporation (1,555 mm yr−1) exceeds the 
mean annual precipitation (970 mm yr−1) (Hulsman, Winsemius, et al., 2020; The World Bank, 2010). The 
lithology is governed by intergranular/fractured siliciclastic sedimentary rocks in the center of the basin 
and weathered/fractured metamorphic rocks closer to the basin borders (Hartmann & Moosdorf, 2012; IG-
RAC & UNESCO-IHP, 2015; Ó Dochartaigh, 2019).

3.  Data Availability
In this study, hydro-meteorological data as shown in Table 1 were used. This included two satellite-based 
precipitation products (CHIRPS and TRMM) and five actual evaporation products (WaPOR, SEBS, SSEBop, 
GLEAM and MOD16). Land-cover changes were assessed using NDVI (Normalized Difference Vegetation 
Index). Temperature data from the CRU data set (Climatic Research Unit) Version 4.01 was used to estimate 
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Figure 1.  Map of the Luangwa River Basin in Zambia with (a) the elevation and (b) the main landscape types.
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the daily potential evaporation with the Hargreaves (Hargreaves & Allen, 2003; Hargreaves & Samani, 1985) 
and Thornthwaite (Maes et al., 2019) methods. For this purpose, monthly temperature observations were 
interpolated to daily timescale using in situ observations at two locations (28° 30' E, 14° 24' S and 32° 35' E, 
13° 33' S).

Processed GRACE observations generated by Centre for Space Research (CSR), GeoForschungsZentrum 
Potsdam (GFZ), and Jet Propulsion Laboratory (JPL) were obtained from the GRACE Tellus website (https://
grace.jpl.nasa.gov/). This study used the average of these three sources which previously processed the raw 
data to remove atmospheric mass changes, systematic errors and noise, and to subtract the 2004–2009 time-
mean baseline (Landerer & Swenson, 2012; Swenson & Wahr, 2006; Wahr et al., 1998). As a result, total 
water storage anomalies were available in equivalent water thickness. Total water storage anomaly observa-
tions include all terrestrial water storage components, hence water stored in the surface water bodies, soil 
moisture and groundwater.

Altimetry data were extracted from the DAHITI website (https://dahiti.dgfi.tum.de/en/, Schwatke 
et al., 2015) for the Cahora Bassa reservoir, Kariba reservoir and Lake Malawi (Figure 1). In situ daily dis-
charge data was available from the Great East Road Bridge gauging station at the basin outlet (30° 13' E, 14° 
58' S; Figure 1) and was obtained from the Zambian Water Resources Management Authority (WARMA) in 
the time period 2002 to 2016 with a temporal coverage of 18%.

For the following data analysis, gridded observations were averaged for the entire basin, whereas for use 
in the distributed hydrological model, gridded observations were rescaled to the model resolution of 0.25° 
by (a) taking the arithmetic mean of all cells located within a model cell if the resolution was smaller, or 
(b) dividing each cell into multiple cells if the resolution was larger. For the hydrological model, gridded 
observations were used for the topography to classify the landscape into hydrological response units (see 
Section 4.2.1), climate (precipitation and temperature) to force the model, and total water storage anomalies 
to calibrate and evaluate the model.
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Time 
period

Temporal 
resolution

Spatial 
resolution

Product 
name

Long-term 
annual mean Source/reference

Digital elevation 
map

n/a n/a 0.02° GMTED n/a GMTED2010 (Danielson & Gesch, 2011)

Precipitation 1998–2016 Daily 0.05° CHIRPS 1,127 mm yr−1 Version 2 (Funk et al., 2014)

1998–2016 Daily 0.25° TRMM 1,029 mm yr−1 Version 3B42 (Huffman et al., 1995, 2007, 2014)

Evaporation 2009–2016 10 days 250 m WaPOR 882 mm yr−1 Version 1.1 (FAO, 2018; FAO & IHE Delft, 2019)

2002–2013 Monthly 0.05° SEBS 657 mm yr−1 (Su, 2002)

2003–2016 Monthly 0.01° SSEBop 837 mm yr−1 Version 4 (Allen et al., 2007; Bastiaanssen et al., 1998; 
Senay et al., 2007)

2003–2016 Monthly 0.25° GLEAM 751 mm yr−1 Version 3.3b (Martens et al., 2017; Miralles et al., 2011)

2002–2016 8 days 500 m MOD16 793 mm yr−1 MOD16A2 Version 6 (Running et al., 2017)

NDVI 2002–2016 8 days 30 m NA 0.12 Derived from Landsat 7

Temperature 2002–2016 Monthly 0.5° CRU 22° Time-series (TS) data version 4.01 (University of East 
Anglia Climatic Research Unit et al., 2017)

Total water Storage 2002–2016 Monthly 1° GRACE 8.8 mm Pre-processed by CSR & GFZ (Version RL05.
DSTvSCS1409), and JPL (Version RL05_1.

DSTvSCS1411) https://grace.jpl.nasa.gov/ (Landerer & 
Swenson, 2012; Swenson, 2012; Swenson & Wahr, 2006)

Altimetry 2002–2016 10 or 35 days n/a DAHITI n/a (Schwatke et al., 2015)

Discharge 2002–2016 Daily n/a n/a 138 mm yr−1 WARMA

Table 1 
Data Used in This Study

https://grace.jpl.nasa.gov/
https://grace.jpl.nasa.gov/
https://dahiti.dgfi.tum.de/en/
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4.  Approach
This study consisted of three steps. In the first step, we analyzed the effect of the choice of the data source 
used to explain observed total water storage variations to understand whether any of the data contain, in 
principle, sufficient information to at least broadly reflect the dynamics of storage variations. This was nec-
essary to rule out that the model's inability to reproduce long-term storage variations is merely an artifact of 
unsuitable data. Thus, we investigated whether periods of high water storage anomalies roughly coincide 
with periods of high precipitation anomalies and/or low evaporation anomalies and vice versa. To do so, 
we contrasted long-term estimates of variables such as precipitation, potential and actual evaporation from 
multiple data sources with the observed water storage variations. This allowed a preliminary assessment 
of which data sources are more consistent with the observed low-frequency storage variations than others. 
Based on that, we then analyzed, in a second step, four different combinations of data sources, that is, 
precipitation and potential evaporation, as input for a distributed implementation of a process-based hydro-
logical model and evaluated their respective effects to reproduce the observed long-term storage variations 
with the model. In a third step, we then iteratively formulated and tested several alternative model hypoth-
eses, incorporating alternative and/or additional process representations, such as regional groundwater ex-
port, for their importance to meaningfully reproduce long-memory effects.

In general, long-term total water storage variations are a result of changes in precipitation, evaporation, dis-
charge or any combination thereof (Equation 1). While climate variability can cause long-term variations in 
precipitation and atmospheric water demand (i.e., potential evaporation), land-cover changes can affect the 
partitioning between evaporative fluxes and streamflow (Gallart & Llorens, 2003; Hrachowitz et al., 2020; Li 
et al., 2017; Nijzink et al., 2016; Oguntunde et al., 2006; Saft et al., 2016; Warburton et al., 2012). In addition, 
long-term storage variations can be a result of slow inter-basin groundwater exchange (Bouaziz et al., 2018; 
Nelson & Mayo, 2014; Pellicer-Martínez & Martínez-Paz, 2014).

  
d
d
S P E Q
t

� (1)

where S is total water storage, P precipitation, E evaporation, and Q discharge.

4.1.  Data Analysis

Long-term, basin-averaged satellite observations of precipitation from the CHIRPS and TRMM data prod-
ucts, actual evaporation from the WaPOR, SEBS, SSEBop, GLEAM and MOD16 products, potential evapora-
tion according to the Hargreaves (Hargreaves & Allen, 2003; Hargreaves & Samani, 1985) and Thornthwaite 
(Maes et al., 2019) methods, respectively, as well as land-cover based on NDVI (Table 1) were contrasted 
with and compared to the water storage variations estimated by GRACE. For each of these data sources, the 
temporal variability was visualized on monthly and/or annual timescale.

To assess the potential role of regional groundwater import to or export from the basin, the water balance 
was estimated using long-term average annual precipitation, evaporation, and discharge from the different 
satellite products. Assuming negligible long-term storage changes and data uncertainties, surpluses or defi-

cits in the long-term water balance, hence if  P E Q  ≠ 0, can then be largely attributed to groundwater 
import/export. In case of groundwater export, the average annual loss term can then be estimated according 
to (e.g., Bouaziz et al., 2018):

  LQ P E Q� (2)

where LQ  is annual mean groundwater export (mm yr−1), P annual mean precipitation (mm yr−1), E annual 
mean evaporation (mm yr−1), and Q annual mean discharge (mm yr−1).
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4.2.  Hydrological Models

4.2.1.  Benchmark Model (Model A0)

The process-based distributed hydrological model used in this study for the Luangwa basin was step-
wise developed and refined in previous studies (Hulsman, Savenije, et  al.,  2020; Hulsman, Winsemius, 
et al., 2020) following the FLEX-Topo modeling concept (Savenije, 2010). Each 0.25° × 0.25° model cell 
had the same model structure and parameter set, but was forced differently using spatially distributed pre-
cipitation and potential evaporation data (e.g., Euser et al., 2015). In addition, each cell was further discre-
tized into functionally distinct landscape classes, that is, hydrological response units (HRUs) based on the 
topography (Nijzink et al., 2016). All HRUs within a cell were connected through a common groundwater 
component (Figure 2a). This groundwater reservoir was lumped over the entire basin assuming a homoge-
neous groundwater system (Hulsman, Savenije, et al., 2020). The HRUs were classified based on the local 
slope and “Height-above-the-nearest-drainage” (HAND; Rennó et al., 2008) into sloped areas (slope ≥ 4%), 
flat areas (slope < 4%, HAND ≥ 11 m), and wetland areas (slope < 4%, HAND < 11 m). As a result, 68% 
of the basin was classified as flat, 28% as sloped, and 8% as wetlands (Figure 1b). This FLEX-Topo mode-
ling concept was previously successfully applied in many different environments (Gao et al., 2014; Gharari 
et al., 2014; Hulsman, Winsemius, et al., 2020; Nijzink et al., 2016).

As illustrated in Figure 2a, the hydrological model consisted of multiple storage components represent-
ing the interception storage, unsaturated root-zone storage, as well as fast and slow responding storages. 
Each storage component was schematized as reservoir with corresponding water balance and constitu-
tive equations as shown in Table 3. As the dominant processes and thus the associated model structures 
of the three individual HRUs were very similar to each other, the major differences between the HRUs 
were accounted for by different parameter values. Model process constraints were applied as shown in 
Table 4 to allow partly overlapping prior parameter distributions with relationships consistent with our 
physical understanding of the system (Gharari et al., 2014; Hrachowitz et al., 2014), and to limit equifinality 
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Figure 2.  Schematization of the model structure applied to each grid cell for Models A0–A5. For Models A1–A5 (b–f), only the groundwater module is shown 
for brevity and clarity of the presentation, as the rest of the model structure remained the same. Abbreviations: precipitation (P), effective precipitation (Pe), 
potential evaporation (Ep), interception evaporation (Ei), plant transpiration (Et), infiltration into the unsaturated zone (Ru), drainage to fast runoff component 
(Rf), delayed fast runoff (Rfl), groundwater recharge (Rr), groundwater upwelling (RGW), fast runoff (Qf), groundwater recharge into Deeper Groundwater 
reservoir (Rs), shallow groundwater flow (Qss), groundwater loss (QL) and deep groundwater flow (Qsd).
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(Beven, 2006). For example, in the Luangwa basin, higher interception 
evaporation and larger root-zone storage capacities were expected in the 
densely vegetated, forest dominated sloped areas compared to the flat, 
grass- and shrub-land dominated areas and wetlands. Processes unique 
to a single HRU were incorporated by adjusting the model structure 
where necessary. In sloped and flat areas for example, the groundwater 
system was recharged by downward infiltration whereas in wetlands up-
welling groundwater sustained the shallow groundwater tables and the 
unsaturated zone soil moisture content under the assumption that water 
is pushed upwards from the upland groundwater system into the wet-
lands due to the groundwater head difference between the uplands and 
wetlands (Hulsman, Savenije, et al., 2020).

After having calculated the runoff for each grid cell, the total flow at the outlet was estimated by applying a 
simple routing scheme based on the flow distance to the outlet and a constant, calibrated flow velocity. The 
modeled total water storage anomaly was then calculated for each grid cell by taking the sum of all storage 
components, hence Stot = Si,tot + Su,tot + Sf,tot + Ssu + Ssd (see Table 3 for an explanation of the abbreviations), 
and subtracting the 2004–2009 time-mean baseline similar to GRACE. The storages Si,tot, Su,tot and Sf,tot are 
weighted averages from the storages Si,HRU, Su,HRU and Sf,HRU, respectively, in each HRU in a grid cell. This 
model consisted of 17 calibration parameters with uniform prior distributions and process constraints as 
summarized in Table 4 (Gharari et al., 2014). Parameter ranges were based on previous studies (e.g., Gao 
et al., 2014; Gharari et al., 2014; Wang-Erlandsson et al., 2016), their most extreme values (for example the 
splitter W) or selected based on trial and error such that different internal processes occur without intro-
ducing too much flexibility. In this benchmark model, the precipitation product CHIRPS was used and 
potential evaporation was estimated with the Hargreaves method (see Table 2).

4.2.2.  First Model Adaptation: Alternative Forcing Data (Models B0–D0)

As first model adaptation, the forcing data were changed to assess the role of data uncertainty for the 
model's ability to reproduce the observed long-term storage variations and to test whether some combina-
tions of data sources allow model results to be more consistent with the observed storage variations than 
others. Starting with Model A0 as benchmark, different combinations of precipitation products, that is, 
CHIRPS and TRMM, on the one hand and methods to estimate potential evaporation, that is, Hargreaves 
and Thornthwaite, on the other hand were tested in Models B0–D0 (Table 2).

4.2.3.  Second Model Adaptation: Alternative Model Structure (Model A1–A5)

As second model adaptation, the model structure was changed to allow for additional alternative process 
formulations, representing deep groundwater flow or inter-basin groundwater export/import and to test 
their potential as relevant drivers for the observed long-term storage variations. In this study, a distinction 
was made between shallow groundwater flow (Qss), deep groundwater flow (Qsd), and groundwater loss 
(QL). While the shallow and deep groundwater flow reached the river, the groundwater loss (QL) leaked out 
of the Luangwa basin and potentially reached the Zambezi river further downstream. Based on benchmark 
Model A0, CHIRPS precipitation data and the Hargreaves method to estimate potential evaporation were 
used in these five model adaptations A1–A5.

More specifically, with Model A1, it was tested whether only groundwater export, hence groundwater leak-
ing out of the Luangwa basin, was a dominant driver for the long-term storage variations. In this model, 
a groundwater loss (QL; Equation 36), which did not reach the river upstream of the gauging station, was 
introduced (Figures 2b and 3). In the spirit of model parsimony, QL was assumed to be constant, and thus 
independent of the water content in the Upper Groundwater reservoir to limit the number of calibration 
parameters in the absence of more detailed information. Thus, the Upper Groundwater reservoir (Ssu) was 
formulated as a deficit store that can become negative and that loses water at a constant rate QL, expressed 
as a free calibration parameter. Note that, the shallow groundwater flow Qss only occurred when this stor-
age was positive (if Ssu > 0, Equation 27). Such a formulation allowed groundwater to keep on draining, 
and thus groundwater levels falling, even if discharge in the river ceased during dry periods (e.g., Bouaziz 
et al., 2018; Hrachowitz et al., 2014).
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Precipitation product Potential evaporation method

Model A0 CHIRPS Hargreaves

Model B0 CHIRPS Thornthwaite

Model C0 TRMM Hargreaves

Model D0 TRMM Thornthwaite

Table 2 
Overview of Model Combinations



Water Resources Research

With Model A2, it was tested whether constant groundwater export from a second, Deeper Groundwater 
reservoir can explain the observed long-term storage variations. In this model, groundwater seeped from the 
Upper Groundwater reservoir into a Deeper Groundwater reservoir as fraction of the water content in the 
Upper Groundwater reservoir (Rs, Equation 29, Figures 2c and 3). From this Deeper Groundwater reservoir, 
constant groundwater loss (QL) subsequently leaked out of the basin equivalent to Model A1.

With Model A3, it was tested whether constant groundwater export from the Deeper Groundwater reservoir 
recharged only during wet seasons, was the main driver for long-term storage variations. In this model, 
groundwater only seeped into the Deeper Groundwater reservoir when the groundwater level in the Upper 
Groundwater reservoir exceeded a reference level (Ss,ref2, Equation 30, Figures 2d and 3). From there con-
stant groundwater loss (QL) then leaked out of the basin equivalent to Models A1 and A2.

With Model A4, it was tested whether temporally variable groundwater export from the Deeper Ground-
water reservoir recharged only during wet seasons, was the main driver for long-term storage variations. In 
this model, the groundwater loss (QL, Figures 2e and 3) was a function of the water content in the Deeper 
Groundwater reservoir (Equation 34). As in Models A1–A3, this groundwater loss (QL) did not reach the 
river.

With Model A5, it was tested whether temporally variable groundwater flow from the Deeper Groundwater 
reservoir recharged only during wet seasons, was the main driver for long-term storage variations. In this 
model, the groundwater drained from the Deeper reservoir into the river as Qsd, thereby contributing to 
the total river flow (Equation 38, Figures 2f and 3). Hence, only in Model A5 the additional contributions 
from a deep groundwater storage reached the gauged river system whereas in Models A1–A4 groundwater 
exclusively leaked out of the basin.

Figure 3 gives an overview of all alternative model hypotheses tested in this study. The relevant model equa-
tions are given in Table 3 and the corresponding prior parameter distributions in Table 4.
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Figure 3.  Overview hydrological models.
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Table 3 
Equations Applied in the Hydrological Model
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4.2.4.  Third Model Adaptation: Alternative Forcing Data and Model Structure

As third model adaptation, the forcing and the model structure were changed simultaneously. For this pur-
pose, the best performing model based on the results of the first model adaptation, that is, changing the forc-
ing data (Models A0–D0) and the second model adaptation, that is, changing the model structure (Models 
A0–A5) were combined. For example, if Models D0 and A4 performed best, respectively, then the combined 
Model D4 using the forcing data applied in Model D0 and the model structure of Model A4 was tested. 
To ensure a robust representation of both, discharge and total water storage anomalies, the above model 
selection was based on the combined performance metrics for both variables. We explicitly acknowledge 
the possibility of this not being the combination that most reliably reflects real world processes. However, 
exhaustively testing all possible combinations goes beyond our computational capacity.

4.3.  Model Performance Metrics

The model performance was evaluated with respect to discharge and basin-average total water storage 
anomalies. With respect to discharge, eight hydrological signatures were evaluated simultaneously using 
the Nash-Sutcliffe efficiency (ENS,θ, Equation 39 in Table 5 or relative error (ER,θ, Equation 40), depending 
on the signature. The individual performance metrics included the Nash-Sutcliffe efficiency of the daily 
flow time-series (ENS,Q) and its logarithm (ENS,logQ), of the flow duration curve (ENS,FDC) and its logarithm 
(ENS,logFDC), and of the autocorrelation function of the daily flows (ENS,AC). In addition, the relative error of 
the mean seasonal runoff coefficients during dry and wet periods (ER,RCdry, ER,RCwet), and the rising limb 
density of the hydrograph (ER,RLD) (Euser et al., 2013) were used. These signatures were combined, assum-
ing equals weights, using the Euclidian distance (DE,Q, Equation 41) with DE,Q = 1 corresponding to the 
“perfect” model.

The model performance with respect to the basin-average total water storage anomalies was evaluated with 
the Euclidian distance (DE,S, Equation 41) of the Nash-Sutcliffe efficiencies on monthly (ENS,S,monthly) and an-
nual (ENS,S,annual) timescale. On annual timescale, the Nash-Sutcliffe efficiency was calculated for the annual 
minima and maxima separately which were then averaged to obtain ENS,S,annual. The annual time-series were 
normalized by dividing it with the maximum range in the observed annual minima or maxima total water 
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Table 3 
Continued

Reservoir system Water balance equations Eq. Process functions Eq.
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Notes. Fluxes (mm d−1): precipitation (P), effective precipitation (Pe), potential evaporation (Ep), interception evaporation (Ei), plant transpiration (Et), 
infiltration into the unsaturated zone (Ru), drainage to fast runoff component (Rf), delayed fast runoff (Rfl), groundwater recharge (Rr for each relevant HRU and 
Rr,tot combining all relevant HRUs), groundwater upwelling (RGW for each relevant HRU and RGW,tot combining all relevant HRUs), fast runoff (Qf), groundwater 
recharge into Deeper Groundwater reservoir (Rs), shallow groundwater flow (Qss), deep groundwater flow (Qsd), groundwater loss (QL), total runoff (Qm). 
Storages (mm): storage in interception reservoir (Si), storage in unsaturated root zone (Su), storage in upper/deeper groundwater reservoir (Ssu, Ssd), storage in 
fast reservoir (Sf). Calibration parameters (shown in bold): interception capacity (Imax) (mm), maximum upwelling groundwater (Cmax) (mm d−1), maximum 
root zone storage capacity (Sumax) (mm), splitter (W) (−), shape parameter (β) (−), transpiration coefficient (Ce) (−), time lag (Tlag) (d), reservoir timescales (d) 
of fast (Kf) and slow (Ks, Ksd) reservoirs, reference groundwater level (Ss,ref1, Ss,ref2) (mm), groundwater splitter (Ws) (−). Remaining parameters: areal weights 
for each grid cell (pHRU) (−), time step (Δt) (d). The equations were applied to each hydrological response unit (HRU) and each model (A0–A5) unless indicated 
differently.
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storage anomalies, respectively. With this performance measure for the total water storage anomalies, more 
emphasis could be given to annual variations rather than to seasonal variations only.

The combined model performance with respect to discharge and total water storage anomalies (DE,QS) was 
calculated with the Euclidian distance (Equation 41) using DE,Q for the discharge and DE,S for the total water 
storage anomalies. This performance measure was used to select the best performing models representing 
both the discharge and the total storage as good as possible.

4.4.  Parameter Selection Procedure

Each hydrological model (A0–D0 and A1–A5) was calibrated by running the model with 105 random pa-
rameter sets generated with a Monte-Carlo sampling strategy with uniform prior parameter distributions. 
Then, following two different strategies, the optimal parameter set was selected according to the model per-
formance metrics as previously described with respect to (1) discharge (DE,Q) and (2) discharge combined 
with total water storage anomalies (DE,QS). The 5% best-performing parameter sets with respect to DE,Q or 
DE,QS were considered as feasible. The feasible parameter sets were used to evaluate the model performance 
with respect to discharge (DE,Q), total water storage anomalies (DE,S) and both simultaneously (DE,QS). The 
model was run for the time period 1995–2016 and calibrated/evaluated for the time period 2002–2016 using 
the first 7 years as warm-up period. The entire time period (2002–2016) was used to estimate the model 
performance with respect to discharge and total water storage anomalies to capture the long-term variability 
in an efficient way.
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Landscape class Parameter min Max Unit Constraint Comment

Entire basin Ce 0 1 – – All models

Ks 90 110 d – All models

Ssref,1 1 50 mm – All models

QL 0 0.5 mm – Models A1, A2, A3

Ksd 100 2500 d – Models A4, A5

Ssref,2 1 50 mm – Models A3, A4, A5

Ws 0 1 – – Model A2

Flat Imax 0 5 mm – All models

Su,max 10 800 mm – All models

Kf 10 12 d – All models

W 0.01 1 – – All models

Sloped Imax 0 5 mm max,sloped max,flatI I All models

Sumax 10 800 mm umax,sloped umax,flatS S All models

β 0 2 – – All models

Tlag 1 5 d – All models

Kf 10 12 d – All models

W 0.01 1 – Wsloped > Wflat –

Wetland Imax 0 5 mm max,wetland max, slopedI I All models

Sumax 10 400 mm umax,wetland umax, slopedS S All models

Kf 10 12 d – All models

Cmax 0.01 5 mm – All models

River profile v 0.01 5 m s−1 – All models

Table 4 
Model Parameters and Prior Distributions



Water Resources Research

In addition, the predictive strength of the benchmark Model A0 and the best performing model hypoth-
esis (i.e., third model adaptation; Section 4.2.4) were compared by calibrating both models with respect 
to discharge and total water storage anomalies simultaneously (DE,QS) for the time period 2002–2012, and 
post-calibration evaluating the models with respect to total water storage anomalies for the time period 
2012–2016. Due to the limited data availability in 2012–2016, the model could not be evaluated with respect 
to discharge.

5.  Results
5.1.  Data Analysis

5.1.1.  GRACE Total Water Storage Anomalies

In the Luangwa basin, the total water storage anomalies varied both seasonally and in the long-term (for 
example Figure 4a). The seasonal variation, hence the difference between the annual maximum and min-
imum, remained rather similar throughout the years (on average 225 mm). However, the annual minima, 
mean, and maxima changed over the years indicating relatively dry conditions in the Luangwa basin for 
example during the 2005–2007 period and wetter conditions in the 2009–2011 period. The annual minima 
varied between −164 mm in 2016 and −67 mm in 2009, while the annual maxima varied between 75 mm 
in 2016 and 183 mm in 2010. Similarly, the annual mean varied over the years between −46 mm in 2006 
and 48 mm in 2010. This study focused on annual minima/maxima separately instead of the annual mean 
to distinguish processes dominant in wet seasons influencing the annual maxima and dry seasons affecting 
the annual minima.

One possibility is that these variations were a result of uncertainties in GRACE observations as the Luangwa 
basin is relatively small (150,000 km2) relative to the resolution of GRACE. Previous studies estimated er-
rors in GRACE observations to be about 20 mm for areas of around 63,000 km2 (Landerer & Swenson, 2012; 
Vishwakarma et al., 2018). But similar long-term variations were also observed for the entire Zambezi basin 
(Figure 4b), which is considerably larger (1,390,000 km2) and where the maximum variation (194 mm) was 
an order of magnitude larger than the average uncertainty error of 20 mm.

In addition, long-term variations in large open water bodies could influence the GRACE signal. In this 
study, multiple open water bodies were within a radius of 300 km of the Luangwa Basin (Figure 1a) which 
typically is the distance used for data smoothing when processing GRACE data (Blazquez et al., 2018; Lan-
derer & Swenson, 2012). The area of these open water bodies was 2% of the Luangwa basin for the Cahora 
Bassa reservoir, 4% for the Kariba reservoir, and 20% for Lake Malawi. As no long-term variations were 
observed in the altimetry observations for the Cahora Bassa reservoir (Figure S1 in the Supplementary Ma-
terial) and since this reservoir had a small area compared to the Luangwa basin, the effect of this reservoir 
was assumed to be negligible. For the Kariba reservoir (Figure 4c) and Lake Malawi (Figure 4f), long-term 
variations were observed in the altimetry data, but with a low temporal correlation with the total water stor-
age anomalies as shown in Figure S2 in the Supplementary Material. For the Zambezi basin where similar 
long-term storage variations were observed (Figure 4b), these three open water bodies covered together 2.7% 
of the basin. This was considered to be too small to have a significant effect.

Furthermore, GRACE observations used in this study were an average of products generated by CSR, GFZ, 
and JPL as explained in Section 3. The individual products showed similar long-term and seasonal patterns 
for the 2002–2015 time-period as shown in Figure S3a in the Supplementary Material. The standard devia-
tion between the three solutions reached up to 11.7 mm for the annual minima and 19.1 mm for the annual 
maxima which is significantly smaller compared to the multi-annual variations. In 2016, the standard de-
viation increased to 73 mm for the annual maximum when considering the mascon (mass concentration 
block) solution according to JPL too. That is why it is plausible to assume that these long-term storage 
variations were not dominated by uncertainties in the GRACE observations for the 2002–2015 time-period.

5.1.2.  Precipitation

Alternatively, long-term variations in the total water storage can be caused by changes in precipitation. In 
the Luangwa basin, the annual observed precipitation volumes varied over the years, depending on the data 
source, from 920 to 1,337 mm (CHIRPS) and from 858 to 1,213 mm (TRMM), as shown in Figures 4a and 4d. 
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In general, precipitation anomalies preceded storage variations by roughly 1–3 years. According to CHIRPS 
(Figure 4a), the rainfall volumes peaked in 2006 and 2009 with a significant decrease in 2008–2009 and 
2014. While the increased rainfall volumes in 2006 and 2009 could explain the increased total water storage 
anomalies between 2008 and 2010, the significantly decreased rainfall volumes in 2008–2009 did not cor-
respond to the long-term total water storage pattern. The correlation between the annual rainfall volumes 
according to CHIRPS and the annual maximum total water storage anomalies showed a R2 = 0.10 without 
taking any time shift into account and reached up to R2 = 0.29 with a two-year time shift.

According to TRMM, the annual rainfall volumes decreased in 2004–2005 which could explain the de-
creased total water storage anomalies in 2006. This was followed by several wet years with a maximum 
rainfall volume of 1,213 mm in 2006 which could explain the increased total water storage starting in 2007. 
The annual rainfall volumes decreased significantly in 2014–2015 as low as 858 mm which corresponded to 
the decreased total water storage in 2016. The correlation between the annual rainfall volumes according to 
TRMM and the annual maximum total water storage anomalies reached R2 = 0.28 without taking any time 
shift into account and reached up to R2 = 0.34 with a two-year time shift.

This difference between CHIRPS and TRMM illustrated the high sensitivity of the annual rainfall volumes 
to the underlying processing techniques (Cohen Liechti et al., 2012; Le Coz & van de Giesen, 2019; Mazzo-
leni et al., 2019; Thiemig et al., 2012). Strikingly, for the entire Zambezi river basin the annual variability 
in the precipitation according to both CHIRPS and TRMM show a similar pattern compared to each other 
and to the storage variations. The annual rainfall volumes decreased in 2004 followed by low total water 
storages in 2006, after which both the rainfall and total water storage anomalies increased with a maximum 
in 2009 (CHIRPS), 2007 (TRMM), and 2010 (GRACE). These observations suggest that long-term variations 
in precipitation alone already contain considerable information to potentially explain much of the observed 
long-term storage variations.

5.1.3.  Potential and Actual Evaporation

The two different methods to estimate potential evaporation and its variations over the study time peri-
od, gave dramatically different results. While the Hargreaves method suggested a long-term mean annual 
EP = 1,565 mm yr−1 (Figure 5a), Thornthwaite estimated long-term mean EP = 1,904 mm yr−1 (Figure 5b). 
Major long-term variations in EP were only observed for estimates based on the Thornthwaite method (Fig-
ure 5b), but with a different pattern compared to the total water storage anomalies resulting in weak corre-
lations with respect to the annual minimum (R2 = 0.03) and maximum variations (R2 = 0.34). In contrast, 
no discernible long-term fluctuations were observed when applying the Hargreaves method (R2 = 0.00 and 
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Figure 4.  Basin-average total water storage anomalies according to GRACE (black) and annual rainfall (dark blue) according to CHIRPS (a and b) and TRMM 
(d and e) for the Luangwa (a and d) and Zambezi (b and e) river basin, or altimetry observations (light blue) at (c) Kariba reservoir and (f) Lake Malawi.
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R2 = 0.12 with respect to the annual minima and maxima, respectively). As the potential evaporation did 
change over the years according to the Thornthwaite method, it is possible this was one of the reasons why 
the modeled total water storage anomalies did not capture any long-term variations when using the Har-
greaves method for the potential evaporation.

Analysis of the actual evaporation did not reveal any systematic long-term patterns that could clearly ex-
plain observed variations in the total water storage for most of the satellite products used in this study (Fig-
ure S4 in the Supplementary Material). In general, the magnitudes and long-term fluctuations varied for 
each satellite product as a result of different underlying assumptions and input data which could influence 
whether or not long-term fluctuations are visible. This resulted in a range of R2 = 0.00–0.13 with respect 
to the annual maxima and R2 = 0.02–0.17 with respect to the annual minima for all satellite products used 
in this study except for SSEBop which showed the highest R2 = 0.37 (Figure 5c and Figure S4 in the Sup-
plementary Material). Note, that the observed annual minimum storage increase of 67 mm over 3 years 
(2006–2009), which in fact is an accumulated difference arising from the combined history of inputs and 
outputs over that period, can result from a mean daily deviation of only 0.06 mm d−1 in evaporation, which 
is by far within the uncertainty range of many satellite-based evaporation products (Long et al., 2014; Wes-
terhoff, 2015). Hence, evaporation can potentially be one of the drivers for the observed long-term storage 
fluctuations, but additional in-depth analyses is necessary to substantiate this hypothesis which was outside 
the scope of this study due to the limited ground observations available.

Overall, long-term variations in potential and actual evaporation, according to most satellite products used 
here, exhibited only very limited direct correspondence with water storage variations, which was likely a 
consequence of the subtle and spatially varying interactions between water supply and atmospheric water 
demand in this largely water limited environment. Thus, while actual evaporation is largely controlled by 
water supply in hillslope regions, it is to a higher degree dominated by variations in atmospheric water 
demand in wetland areas, where sufficient water supply is sustained by shallow groundwater throughout 
most of the year. On the basin average, these processes can, to some degree, cancel each other out and thus 
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Figure 5.  Basin-average total water storage anomalies according to GRACE (black) with respect to the annual minima/
maxima combined with basin-average (a) monthly potential evaporation according to Hargreaves (light green) and (b) 
Thornthwaite (light green), (c) monthly actual evaporation according to SSEBop (dark green), and (d) NDVI (brown) 
including the annual minima/maxima of the respective variables.
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prevent the development of a clear long-term signal. Based on the above analysis, it therefore remains diffi-
cult to meaningfully assess the uncertainty of the different analyzed evaporation products.

5.1.4.  Land-Cover

Affecting the magnitudes of transpiration, land-cover changes could also be one of the drivers for the ob-
served annual storage variations. In the Luangwa basin, deforestation, forest recovery, and agricultural ex-
pansion have occurred in the past (Handavu et al., 2019; Phiri et al., 2019a, 2019b). However, inspections 
of NDVI time-series (Figure 5) did not reveal any significant long-term variations directly corresponding 
with water storage variations over the 2002–2016 period. NDVI showed some fluctuations, including a con-
siderable decrease after 2010, which, however, did not directly correspond with the observed water storage 
variations. This resulted in low correlations between the annual minimum/maximum total water storage 
anomalies and NDVI (R2 = 0.01 and R2 = 0.06, respectively). It was therefore assumed that land use change 
did not play a major role for the observed long-term storage variations.

5.1.5.  Overall Water Balance

Another potential reason for the observed long-term storage variations can be regional, inter-basin ground-
water exchange. For example, groundwater may leak out of the Luangwa basin below the river, thus never 
contributing to the (river) flow at the basin outlet, and into the Zambezi river basin further downstream 
eventually draining into that river or potentially even directly into the sea. Given the available observations, 
this would result in a water balance surplus for the Luangwa basin. Depending on the rainfall and evapo-
ration products used, the water balance surplus in the Luangwa basin for the study period ranged between 
9 and 332 mm yr−1 (Table 1). This suggested that even in the likely presence of data uncertainty, ground-
water export may occur at least to some degree in the study region. Assuming an inter-basin export of 
QL  = 332 mm yr−1, discharge would be considerably overestimated as compared to actual discharge observa-
tions (Figure 6). To remain within the ranges spanned by multiple analytical solutions for water partitioning 
in the Budyko space (dark gray area in Figure 6; Gerrits et al., 2009), groundwater export should not exceed 
QL  = 143 mm yr−1, which corresponds to a mean daily flow of QL  = 0.39 mm d−1 or ∼13% of the annual rain-
fall. Therefore, based on the water balance, a plausible range of groundwater export of QL  = 0.02–0.39 mm 
d−1 is in the following assumed for the study basin.

5.2.  Hydrological Models

5.2.1.  Benchmark Model (Model A0)

Following the first calibration strategy, that is, calibrating with respect to discharge, the benchmark Model 
A0 captured the discharge well (Figures 7a and 7b) with an optimum model performance of DE,Q,opt = 0.85 
(Table 6, Figure 8a). The modeled flow dynamics such as the timings of the wet and dry season were broadly 
consistent with the observations (Figure 7a), but the high flows were slightly underestimated and low flows 
somewhat overestimated (Figure 7b). In contrast, and in spite of its general ability to reproduce discharge, 
the model could only poorly reproduce the time-series of monthly and annual total water storage anomalies 
with DE,S = −14 (Table 6, Figure 8a). On the monthly timescale, the general seasonal storage fluctuations 
were modeled well with respect to the timings of the wet and dry season (Figure S7a in the Supplementary 
Material). However, the annual storage maxima were significantly overestimated, and the annual minima 
underestimated (Figure 7c). In addition, the modeled total water storage anomalies did not reflect any fluc-
tuations in the annual minima in contrast to the observations (Figure 7e, R2 = 0.07), whereas the modeled 
annual maxima varied throughout the years, but with a different pattern compared to the observations 
(Figure 7d, R2 = 0.20). As a result, the overall model performance with respect to discharge and total water 
storage anomalies DE,QS = −9.6 remained poor.

Following the second calibration strategy, that is, calibration with respect to discharge and total water 
storage anomalies simultaneously, the ability of the model to reproduce flow decreased significantly to 
DE,Q = −0.23 (Table 6, Figure 8b). While the general flow dynamics were modeled well (Figure S8a in the 
Supplementary Material), the flows were systematically overestimated (Figure 9a). In contrast, the mod-
eled monthly and annual total water storage anomaly time-series improved (DE,S = −0.11). The modeled 
total water storage anomalies mimicked the seasonal variations in the observation better (Figure S9a in 
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the Supplementary Material), but with slight differences in the storage 
decrease during the dry seasons. The magnitudes of the annual maxi-
ma and minima corresponded better with the observations (Figure 9b) 
and the fluctuations in the annual maxima improved slightly (Figure 9c, 
R2 = 0.31). However, the modeled storage did not reflect any fluctuations 
in the annual minima (Figure 9d, R2 = 0.06). Hence, the overall mod-
el performance DE,QS = −0.17 improved, but remained poor. Even when 
calibrating with respect to total water storage anomalies only, the annual 
minima did not reflect any fluctuations (Figure S10 in the Supplementary 
Material, R2 = 0.08).

As a result, this benchmark Model A0 reproduced the flows well only 
with calibration strategy 1, while the seasonal fluctuations in the total 
water storage were better reproduced with calibration strategy 2. How-
ever, the long-term variations in the total water storage anomalies with 
respect to the annual maxima were poorly modeled and with respect to 
the annual minima completely missed for both calibration strategies.

5.2.2.  First Model Adaptation: Alternative Forcing Data (Models 
B0–D0)

Following the first calibration strategy, Models B0–D0, using different 
combinations of input data sources, represented the discharge in general 
well with DE,Q = 0.85–0.92 (Table 6, Figure 8a). All models reproduced 
the overall flow dynamics and magnitudes well (Figures S5 and S6a in 
the Supplementary Material), especially Models C0 (DE,Q  =  0.91) and 
D0 (DE,Q = 0.92). The monthly and annual total water storage anoma-
lies remained poorly modeled for all models with DE,S = −3.4 to −0.48 
(Table 6, Figure 8a). On monthly timescale, the general seasonal fluctu-
ations were modeled well with slight differences mostly in the storage 
decrease during dry seasons (Figure S7 in the Supplementary Material). 
The magnitudes of the modeled annual minima corresponded well with 
the observation for all models, but the annual maxima were overestimat-
ed for Models B0 and C0, whereas this improved the most for Model D0 
(Figure S6b in the Supplementary Material). In addition, the annual min-

imum storage did not exhibit any of the observed long-term variations in any of the models (R2 = 0.02–0.10, 
Figures S6c–S6d in the Supplementary Material), whereas the fluctuations in the annual maxima improved 
the most for Model D0 (R2 = 0.35). As a result, the overall model performance with respect to discharge 
and total water storage anomalies improved the most for Model D0 with DE,QS = −0.05 (Table 6, Figure 8a) 
which remained poor.

Following the second calibration strategy, the modeled flow improved for all Models B0–D0 to DE,Q = 0.32–
0.83 compared to the benchmark Model A0 (Table 6, Figure 8b). The general flow dynamics were repre-
sented well for all models (Figure S8 in the Supplementary Material), but the flow magnitudes were only 
captured well for Models C0 and D0 (Figure 9a). While Models A0 and B0 significantly overestimated the 
flows continuously, Model C0 only slightly overestimated the flows and Model D0 only slightly underesti-
mated the medium to low flows (Figure 9a). As a result, Model D0 had the highest model performance with 
respect to discharge with DE,Q = 0.83 (Table 6, Figure 8b). Also the modeled monthly and annual total water 
storage anomalies improved for Models B0–D0 with DE,S = 0.00–0.34 compared to the benchmark Model A0 
(Table 6, Figure 8b). On monthly timescale, the general seasonal variations were captured well for all mod-
els, but with slight differences in the storage decrease during dry seasons (Figure S9 in the Supplementary 
Material). The magnitudes of the annual minima and maxima corresponded well with the observations for 
all models (Figure 9b), whereas the fluctuations in the annual maxima only improved for Model D0 with 
R2 = 0.39 (Figure 9c). On the other hand, the annual minima remained close to constant for all models 
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Figure 6.  Runoff coefficient (Q/P) as a function of the dryness index 
(Ep/P) where Q is discharge, P precipitation, and Ep potential evaporation. 
The blue dashed line indicates the energy limit and the blue horizontal 
dash-dotted line the water limit. The gray area indicates envelope of 
analytical solutions according to Schreiber (1904), Ol'dekop (1911), 
Turc (1953), Pike (1964), and Budyko (1974). The dryness index  
was estimated using CHIRPS or TRMM for the precipitation and  
the Hargreaves method (EP  = 1,565 mm yr−1) or Thornthwaite  
(EP  = 1,904 mm yr−1) for the potential evaporation. The runoff coefficient 
was estimated with the same precipitation products and (1) recorded 
discharge without groundwater exchange (red stars), (2) estimated 
discharge including groundwater exchange (Q Q P E  L , Equation 2 
using the same precipitation products and SEBS (red dots), GLEAM (blue 
dots), MOD16 (brown dots), SSEBop (green dots), and WaPOR (orange 
dots) for the evaporation resulting in Q

L
 = 9–332 mm y−1 depending 

on the chosen satellite products, and (3) sum of recorded discharge and 
maximum groundwater export (Q

L
 = 332 mm yr−1, blue stars). To remain 

within the Budyko space (dark gray area), the groundwater exchange 
should range between QL  = 9–143 mm yr−1 depending on the satellite 
products used. See Table 1 for the corresponding long-term values of the 
individual fluxes.
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(R2 = 0.00–0.03; Figure 9d). The overall model performance with respect to discharge and total water stor-
age anomalies improved the most for Model D0 with DE,QS = 0.52 (Table 6, Figure 8b).

As a result, the ability of the model to reproduce long-term variations of the total water storage during the 
wet seasons, that is, the annual maxima, was considerably influenced by the choice of precipitation data 
source and the method to estimate potential evaporation. In contrast, the modeled dry season storage, that 
is, annual minima, did not reflect the observed pattern for any combination of data sources but remained 
rather stable. Overall, the combination of TRMM with the Thornthwaite method (Model D0) here produced 
model results that were most consistent simultaneously with observed discharge and the observed total 
water storage variations. This suggests that the choice of data source can already explain a significant part 
of the inability of the model to reproduce long-term water storage variations.
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Table 5 
Overview of Equations Used to Calculate the Model Performance

Figure 7.  Range of model solutions for Model A0 for calibration strategy 1 with respect to (a) hydrograph, (b) flow duration curve, (c) total water storage 
anomaly time-series, (d) annual maximum total water storage anomalies, and (e) annual minimum total water storage anomalies. In (a–c), the black line 
indicates the recorded data, the colored line the solution with the highest calibration objective function with respect to discharge (DE,Q) and the shaded area 
the envelope of the solutions retained as feasible. In (d and e), the recorded data are plotted on the horizontal axis and on the vertical axis the model solution 
with the highest calibration objective function with respect to discharge (DE,Q). The red line indicates the 1:1 line and R2 is the correlation with respect to a fitted 
regression line.
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5.2.3.  Second Model Adaptation: Alternative Model Structure (Model A1–A5)

Following the first calibration strategy, all Models A1–A5 reproduced the discharge well with DE,Q = 0.82–
0.87 (Table  6, Figure  8a). All models captured the general flow dynamics and magnitudes (Figures  S11 
and S12a in the Supplementary Material). The monthly and annual total water storage anomaly time-series 
was modeled very poorly for all models (DE,S = −1,066 to −9.8, Table 6, Figure 8a). While Models A1 and A5 
consistently over- or underestimated the storage with little resemblance in the fluctuations of the annual 
maxima (R2 = 0.19–0.22) and minima (R2 = 0.08–0.16), Models A2 and A3 substantially overestimated the 
long-term variations (R2 = 0.00–0.11, Figures S12 and S13 in the Supplementary Material). Also in Model 
A4, the storage was over- or underestimated, but the long-term variations improved with respect to the 
annual maxima (R2 = 0.56) and minima (R2 = 0.27). As a result, the overall model performance with re-
spect to discharge and total water storage anomalies simultaneously improved the most for Model A4 with 
DE,QS = 0.32 (Table 6, Figure 8a).

Following the second calibration strategy, the modeled discharge improved considerably for Models A3 
(DE,Q = 0.28) and A4 (DE,Q = 0.54) compared to the benchmark Model A0, but was poorly represented for the 
remaining models with DE,Q = −0.31 to −0.20 (Table 6, Figure 8b). The general flow dynamics were repro-
duced well for Models A1–A4 (Figure S14 in the Supplementary Material), albeit with slight differences in 
the timing of the wet season and dry season recession, whereas Model A5 poorly represented the recession 
during dry seasons. In addition, the flows were significantly over- or underestimated with Models A1–A3 
and A5 (Figure 10a), whereas Model A4 only slightly overestimated the high flows and underestimated the 
low flows. The monthly variations in the total water storage anomalies were captured well for all models 
with some differences in the storage decrease during dry seasons especially for Model A2 (Figure S15 in the 
Supplementary Material). While the magnitudes of the annual maxima and minima were captured well for 
all models (Figure 10b), the annual fluctuations improved the most Model A5 with respect to the annual 
maxima (R2 = 0.51, Figure 10c) and for Models A2 and A5 with respect to the annual minima (R2 = 0.23, 
Figure  10d). When considering both the monthly and annual fluctuations and magnitudes, Models A4 
(DE,S = 0.16) and A5 (DE,S = 0.23) improved the most (Table 6, Figure 8b).

As a result, the model's ability to reproduce the long-term total water storage variations during dry and wet 
seasons, that is, annual minima and maxima, was significantly influenced by the model structure. The mod-
eled annual and monthly total water storage anomalies improved the most for Models A4 and A5 (Table 6, 
Figure 8b) where a Deeper Groundwater reservoir was incorporated with groundwater loss and/or flow as 
function of the water content in the Deeper Groundwater reservoir. However, Model A5 only poorly cap-
tured the discharge (DE,Q = −0.31, Figure 10a). Therefore, when considering the overall model performance 
with respect to discharge and total water storage anomalies simultaneously (DE,QS), Model A4 performed 
the best with DE,QS = 0.32 (Table 6, Figure 8b). This model captured the flows well as also the monthly and 
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Strategy 1: Discharge calibration (DE) Strategy 2: Multi-variable calibration (DE,QS)

DE,Q (DE,Q,5/95%) DE,S (DE,S,5/95%) DE,QS (DE,QS,5/95%) DE,Q (DE,Q,5/95%) DE,S (DE,S,5/95%) DE,QS (DE,QS,5/95%)

Model A0 0.85 (0.70–0.81) −14 (−18 to −5.5) −9.6 (−12 to −3.6) −0.23 (−0.71 to −0.06) −0.11 (−0.80 to −0.10) −0.17 (−0.52 to −0.31)

Model B0 0.85 (0.72–0.81) −3.4 (−9.2 to −1.7) −2.1 (−6.2 to −0.94) 0.32 (−0.14–0.49) 0.00 (−0.65 to −0.09) 0.14 (−0.25–0.01)

Model C0 0.91 (0.80–0.88) −0.85 (−4.5 to −0.34) −0.31 (−2.9–0.05) 0.64 (0.26–0.72) 0.22 (−0.13–0.19) 0.39 (0.16–0.31)

Model D0 0.92 (0.84–0.90) −0.48 (−2.2–0.21) −0.05 (−1.3–0.43) 0.83 (0.56–0.88) 0.34 (0.09–0.28) 0.52 (0.34–0.46)

Model A1 0.84 (−0.13–0.71) −15 (−15 to −0.87) −11 (−10 to −0.51) −0.20 (−1.1–0.07) 0.05 (−1.4 to −0.15) −0.08 (−0.90 to −0.35)

Model A2 0.82 (−5.1–0.51) −1,066 (−813 to −3.4) −753 (−575 to −3.3) −0.24 (−11 to −1.0) −0.47 (−7.5 to −0.68) −0.36 (−7.6 to −3.3)

Model A3 0.87 (0.73–0.83) −425 (−1,133 to −11) −300 (−801 to −7.2) 0.28 (−1.2–0.49) −0.45 (−3.9 to −0.66) −0.14 (−2.6 to −0.53)

Model A4 0.87 (0.73–0.83) −9.8 (−27 to −3.6) −6.7 (−19 to −2.3) 0.54 (−0.42–0.50) 0.16 (−0.64–0.11) 0.32 (−0.31–0.12)

Model A5 0.84 (0.68–0.79) −13 (−18 to −5.3) −9.0 (−12 to −3.5) −0.31 (−0.72–0.03) 0.23 (−0.73–0.08) −0.07 (−0.46 to −0.20)

Model D4 0.93 (0.85–0.91) 0.31 (−6.9–0.29) 0.51 (−4.6–0.49) 0.85 (0.61–0.89) 0.50 (0.11–0.37) 0.63 (0.35–0.53)

Table 6 
Model Performance With Respect to Discharge (DE), Total Water Storage Anomalies (DE,S) and Both Combined (DE,QS) Including Their 5/95% Percentile Ranges of 
the Feasible Parameter Sets for Models A0–D4
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annual total water storage anomaly magnitudes and fluctuations, albeit with a slight overestimation of 
the annual minima and maxima in 2004–2006 (Figure 10b). These results provide evidence that the model 
hypotheses A0–A3 as well as A5 generate hydrological response patterns that are less consistent with the 
available data than those of Model A4. It is thus not implausible to reject hypotheses A0–A3 and A5 and to 
assume that long-term storage fluctuations are potentially the result of groundwater export according to the 
loss rate QL from the Deeper Groundwater reservoir (Model A4).

5.2.4.  Third Model Adaptation: Alternative Forcing Data and Model Structure

According to the first model adaptation (comparing Models A0–D0), Model D0 performed the best us-
ing precipitation data from TRMM and estimating the potential evaporation with the Thornthwaite meth-
od. According to the second model adaptation (comparing Models A0–A5), Model A4 performed the best 
featuring a Deeper Groundwater reservoir which was only recharged during the wet season and from 
where groundwater leaked out of the basin (Figures 2 and 3). In this section, both models D0 and A4 were 
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Figure 8.  Model performance for Models A0–D4 with respect to discharge (DE,Q), total water storage anomalies (DE,S) and both combined (DE,QS). The model is 
calibrated with respect to (a) discharge or (b) both variables simultaneously. The dots represent the model performance using the “optimal” parameter set and 
the boxplot the range of the best 5% solutions according to DE,Q or DE,QS. A red arrow was added if all solutions are below zero.
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combined into Model D4 where we used TRMM as data source for precipitation, the Thornthwaite method 
to estimate potential evaporation and the model structure associated with Model A4.

Following the first calibration strategy, this model reproduced the discharge well (Figure S16a in the Supple-
mentary Material) with DE,Q = 0.93 which was better than all other alternative model hypotheses (Table 6, 
Figure 8a). Both, the general flow dynamics and magnitudes were captured well with this model (Figures S16a 
and S16b in the Supplementary Material). The monthly and annual total water storage anomalies improved 
significantly to DE,S = 0.31 (Table 6, Figure 8a). The modeled monthly storage variations were broadly consistent 
with the observation (Figure S17 in the Supplementary Material), albeit with differences in the decrease during 
dry seasons and with high parameter uncertainty. The magnitudes of the annual minimum and maximum stor-
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Figure 9.  Range of model solutions for Models A0–D0 for calibration strategy 2 with respect to (a) flow duration curve, (b) total water storage anomaly 
time-series, (c) annual maximum total water storage anomalies, (d) annual minimum total water storage anomalies. In (a and b), the black line indicates the 
recorded data, the colored line the solution with the highest calibration objective function with respect to discharge and total water storage anomalies (DE,QS) 
and the shaded area the envelope of the solutions retained as feasible. In (c and d), the recorded data are plotted on the horizontal axis and on the vertical axis 
the model solution with the highest calibration objective function with respect to discharge and total water storage anomalies (DE,QS). The red line indicates the 
1:1 line and R2 is the correlation with respect to a fitted regression line.
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age were modeled well for the time period 2010–2016, whereas before 2010 the storage was overestimated (Fig-
ure S16c in the Supplementary Material). Also the fluctuations in the annual maximum storage were modeled 
well with R2 = 0.48 (Figure S16d in the Supplementary Material), but the annual minima remained to be poorly 
captured (R2 = 0.19, Figure S16e in the Supplementary Material). The overall model performance increased to 
DE,QS = 0.51 which was better than all other alternative model hypotheses (Table 6, Figure 8a).

Following the second calibration strategy, the discharge was modeled well (Figure 11a), albeit with a slight 
decrease in the model performance (DE,Q = 0.85) compared to the first calibration strategy (Table 6, Fig-
ure 8b). While the flow dynamics were captured well (Figure 11a), low flows were slightly underestimated 
(Figure 11b). The monthly and annual total water storage anomaly time-series improved considerably to 
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Figure 10.  Range of model solutions for Models A1–A5 for calibration strategy 2 with respect to (a) flow duration curve, (b) total water storage anomaly time-
series, (c) annual maximum total water storage anomalies, and (d) annual minimum total water storage anomalies. In (a and b), the black line indicates the 
recorded data, the colored line the solution with the highest calibration objective function with respect to discharge and total water storage anomalies (DE,QS) 
and the shaded area the envelope of the solutions retained as feasible. In (c and d), the recorded data are plotted on the horizontal axis and on the vertical axis 
the model solution with the highest calibration objective function with respect to discharge and total water storage anomalies (DE,QS). The red line indicates the 
1:1 line and R2 is the correlation with respect to a fitted regression line.
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DE,S = 0.50 (Table 6, Figure 8b). With this model and this calibration strategy, the monthly variations were 
captured well (Figure S18 in the Supplementary Material), as also magnitudes and fluctuations in the an-
nual maxima (R2 = 0.57, Figures 11c and 11d) and minima (R2 = 0.41, Figures 11c and 11e). The overall 
model performance increased to DE,QS = 0.63 which was better than all other alternative model hypotheses 
(Table 6, Figure 8b).

In a last step, the predictive strength of Model D4 was compared to that of the benchmark Model A0. For 
this purpose, both models were calibrated with respect to discharge and total water storage anomalies si-
multaneously (calibration strategy 2) for the time period 2002–2012, and post-calibration evaluated due to 
the lack of flow data only with respect to total water storage anomalies for the time period 2012–2016 (see 
Section 4.4). While the general flow dynamics were modeled well for both models (Figure S19 in the Sup-
plementary Material), the magnitudes improved significantly for Model D4 as the flows were only slightly 
underestimated during medium flows (Figure 12a). For the calibration period, the modeled flow improved 
from DE,Q = −0.13 for Model A0 to DE,Q = 0.51 for Model D4 (Table 7). Also the monthly and annual total 
water storage anomaly time-series improved for Model D4 to DE,S = 0.63. On monthly timescale, Model D4 
captured the seasonal variations better with considerable improvements in the storage decrease during dry 
seasons (Figure S20 in the Supplementary Material). While the magnitudes of the annual minima/maxi-
ma were captured well for both models (Figure 12b), long-term fluctuations improved for Model D4 with 
respect to the annual maxima (R2 = 0.57, Figure 12c) and minima (R2 = 0.44, Figure 12d). In both cases, 
R2 was calculated for the calibration time-period 2002–2012 since merely four to five points were availa-
ble during the evaluation time-period 2012–2016. With Model D4, the annual minimum and maximum 
storage increased before 2010 after which it decreased similar to the observations and in contrast to the 
benchmark Model A0. However, the annual minimum/maximum storage were frequently overestimated 
except in 2002–2004 when it was underestimated. During the evaluation time-period 2012–2016, the model 
performance with respect to the monthly and annual total water storage anomalies improved to DE,S = −1.0 
(Table 7) which remained negative due to the low model performance metrics with respect to the annual 
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Figure 11.  Range of model solutions for Model D4 for calibration strategy 2 with respect to (a) hydrograph, (b) flow duration curve, (c) total water storage 
anomaly time-series, (d) annual maximum total water storage anomalies, and (e) annual minimum total water storage anomalies. In (a–c), the black line 
indicates the recorded data, the colored line the solution with the highest calibration objective function with respect to discharge and total water storage 
anomalies (DE,QS) and the shaded area the envelope of the solutions retained as feasible. In (d and e), the recorded data are plotted on the horizontal axis and on 
the vertical axis the model solution with the highest calibration objective function with respect to discharge and total water storage anomalies (DE,QS). The red 
line indicates the 1:1 line and R2 is the correlation with respect to a fitted regression line.
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minima/maxima (ENS,S,annual, Section 4.3). In this short time-period, the difference between the observed 
time-series and its mean was significantly lower compared to a longer time-period such as 2002–2012 re-
sulting in a low denominator and hence a low Nash-Sutcliffe efficiency (Equation 39).

Overall, the results suggest that the model's ability to simultaneously reproduce both the observed discharge 
and long-term and seasonal total water storage variations was considerably influenced by both, the choice of 
forcing data and model structure, respectively. Overall, the combination of TRMM data for precipitation, the 
Thornthwaite method for potential evaporation and the model structure associated with Model A4 here pro-
duced model results most consistent with the observed total water storage anomalies and discharge time-se-
ries. This Model D4 allowed for a better representation of the discharge and better prediction of the total water 
storage anomalies with respect to the seasonal and long-term fluctuations. The forcing data mostly controlled 
the model's ability to mimic annual storage maxima, whereas the annual storage minima improved the most 
when incorporating groundwater loss from the Deeper Groundwater reservoir (Model A4 and D4).

6.  Discussion
In this study, we identified plausible drivers for the observed long-term total water storage variations in 
the Luangwa Basin. The results indicated modeled annual maximum storage fluctuations were to a large 
extent controlled by the choice of forcing data, whereas modeled annual minima were influenced by pro-
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Figure 12.  Range of model solutions for Models A0 and D4 for calibration strategy 2 with respect to (a) flow duration curve, (b) total water storage anomaly 
time-series, (c) annual maximum total water storage anomalies, and (d) annual minimum total water storage anomalies. In (a and b), the black line indicates 
the recorded data, the colored line the solution with the highest calibration objective function with respect to discharge and total water storage anomalies 
(DE,QS) and the shaded area the envelope of the solutions retained as feasible. The white area was used for calibration (2002–2012) and the gray area for 
evaluation (2012–2016). In (c and d), the recorded data are plotted on the horizontal axis and on the vertical axis the model solution with the highest calibration 
objective function with respect to discharge and total water storage anomalies (DE,QS). The darker dots correspond to the 2002–2012 time-period and was used 
to calculate R2, whereas the lighter stars correspond to the 2012–2016 time-period. The red line indicates the 1:1 line and R2 is the correlation with respect to a 
fitted regression line.

2002–2012 2012–2016

DE,QS (DE,QS,5/95%) DE,Q (DE,Q,5/95%) DE,S (DE,S,5/95%) DE,S (DE,S,5/95%)

Model A0 −0.29 (−0.71 to −0.10) −0.13 (−0.76 to −0.11) −0.21 (−0.51 to −0.33) −2.7 (−6.2 to −0.70)

Model D4 0.83 (0.62–0.89) 0.51 (0.08–0.37) 0.63 (0.33–0.53) −1.0 (−3.3–0.43)

Table 7 
Model Performance With Respect to Total Water Storage Anomalies and Discharge (DE,QS), and Total Water Storage 
Anomalies (DE,S) Including Their 5/95% Percentile Ranges of the Feasible Parameter Sets for Models A0 and D4 
Calibrated With Respect to DE,QS for the Time Period 2002–2012
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cesses generating long-term memory effects which are missing in the original benchmark Model A0 and 
in many other common hydrological models (cf. Fowler et al., 2020). More specifically, the representation 
of monthly and annual total water storage fluctuations improved when using TRMM precipitation data, 
the Thornthwaite method to estimate potential evaporation and allowing for groundwater export via a loss 
from a deeper groundwater layer (Model D4). In 2005–2007, most models poorly reproduced the annual 
maximum/minimum total water storage anomalies. This could be further improved in future studies by 
testing alternative forcing data sources, model formulations for groundwater loss and calibration strategies. 
Depending on the model, the modeled total water storage anomalies improved considerably when calibrat-
ing only with respect to this variable, but at the cost of decreased discharge performances (Figure S21 in the 
Supplementary Material).

The results demonstrated that models that can adequately reproduce discharge do not necessarily repro-
duce storage well which was also observed by Bouaziz et al. (2020). In this study, the benchmark Model A0 
reproduced the general dynamics and magnitudes of the discharge well but did not reproduce the observed 
storage magnitudes nor the long-term storage fluctuations. Incorporating the total water storage anomalies 
in the calibration procedure only improved the modeled storage magnitudes, but not the long-term fluctu-
ations. While alternative forcing data sources improved the representation of the annual maximum storage 
fluctuations, the storage conditions during dry seasons, that is, annual minima, remained poorly represent-
ed (Models A0–D0) and only improved after modifying the model structure (Model D4). These results sug-
gested that groundwater loss from the Luangwa basin played an important role to explain long-term annual 
storage variations. The average groundwater loss/flow reached up to 0.68 mm d−1 for Models A1–A5 and 
D4 when considering the optimal and feasible parameter sets. However, in many commonly used hydrolog-
ical models such processes allowing long-term memory effects are missing (e.g., Bergström, 1992; Fenicia 
et al., 2014; Liang et al., 1994) resulting in biased predictions of discharge and storage which is especially 
crucial during extreme dry conditions (Fowler et al., 2020; Saft et al., 2016).

Furthermore, this study showed that simple process formulations allowing for long-term memory effects 
can be readily incorporated in conceptual hydrological models. In this study, several model hypotheses were 
tested to assess which processes most likely dominated long-term memory effects in the Luangwa basin 
(Models A1–A5). The results suggested long-term storage variations were a result of groundwater loss from 
a deeper groundwater layer which was only recharged during wet seasons (Model D4). With this model, the 
storage prediction substantially improved compared to the benchmark Model A0, yet remained at a modest 
level (DE,S < 0, Table 7) most likely due to the chosen model performance metric and the limited number 
of data points for the evaluation when considering annual minima/maxima for the time-period 2012–2016 
as explained in Section 5.2.4. In addition, the above model modifications also improved the model's skill to 
reproduce observed discharge time-series such that the general dynamics and magnitudes were represent-
ed better with Model D4 (Figure 11) compared to the benchmark Model A0 (Figure 7). Overall, the results 
suggest that the model hypotheses A0–D0 as well as A1–A5 can be rejected in favor of hypothesis D4. This 
underlines the crucial role of model hypothesis testing for improving the simultaneous representation of 
multiple variables in models and thereby providing evidence that the process representation in D4 is likely a 
more consistent representation of real-world processes than the other hypotheses tested here (Beven, 2018; 
Clark et al., 2011).

Previous studies highlighted the inability of many conceptual models to reproduce long-term storage var-
iations and attributed this to data errors, poor parameterization, model structural deficiencies or a com-
bination thereof (Fowler et al.,  2018; Jing et al.,  2019; Saft et al.,  2016; Scanlon et al.,  2018; Winsemius 
et al., 2006). Fowler et al. (2020) recently demonstrated that commonly used conceptual hydrological mod-
els cannot reproduce long-term storage variations as they lack long-term memory processes and hence 
should not be used for discharge predictions in for example drying climates. However, here we could show 
that following a careful, iterative data and model selection procedure, the representation of long-term stor-
age variations in a conceptual model can be considerably improved. This further implies that although 
many typical implementations of hydrological models indeed cannot reproduce long-term storage changes, 
in particular with respect to annual fluctuations in dry season conditions, that is, annual minima, as shown 
by Fowler et al. (2020) and here with Models A0 – D0, this inability is not an inherent property of concep-
tual models per se. Instead, our results provide evidence that this inability can, at least to some degree, be 
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overcome when adopting a systematic procedure to test alternative model hypotheses and thus to improve 
the representation of real-world processes (here: Models A1–A5).

The (satellite) observations used in this study are prone to data uncertainties. Uncertainties in GRACE ob-
servations are a result of data (post-) processing which includes data smoothening with a radius of 300 km 
(Landerer & Swenson, 2012). This results in signal leakage between neighboring cells of 1° and in grid cells 
which are not completely independent from each other. In addition, data gaps occur in GRACE observa-
tions due to instrument issues, calibration campaigns and battery management activities every 6 months 
since 2011 (Figure S3b in the Supplementary Material). Uncertainties in precipitation data can be consider-
able, in particular for extreme events on small scale or in mountainous regions (Beck et al., 2020; Hrachow-
itz & Weiler, 2011; Kimani et al., 2017; Le Coz & van de Giesen, 2019). As shown in Figure 4 for CHIRPS 
and TRMM, different methods and input data underlying satellite-based precipitation products affect the 
long-term patterns and hence the modeled long-term total water storage variations. In addition, bias errors 
in the precipitation affect the estimated long-term average groundwater export based on the water balance 
(Liu et al., 2020). Similarly, satellite-based evaporation data are a result of models with uncertainties in the 
input data, parameterization or model conceptualization (K. Zhang et al., 2016). This affects the monthly 
values and the long-term patterns as shown in Figure S4 in the Supplementary Material. In Section 5.1.3, it 
was illustrated that daily deviations within the uncertainty range of many evaporation satellite products can 
result in a considerable storage change of over multiple years. In addition, uncertainties in the evaporation 
affect the long-term water balance closure and hence also the estimated long-term groundwater export/im-
port. Uncertainties in the potential evaporation are a result of the underlying equations and input data. This 
study compared the Hargreaves and Thornthwaite methods which both use temperature data to estimate 
potential evaporation but with different equations (Hargreaves & Allen, 2003; Hargreaves & Samani, 1985; 
Maes et al., 2019). This resulted in different monthly values and long-term variations as shown in Figure 5. 
Uncertainties in the potential evaporation affect the modeled actual evaporation especially during wet sea-
sons when the total evaporation is limited by the energy, whereas during dry seasons the total evaporation 
is limited by the water availability. Discharge uncertainties are a result of rating curve uncertainties (Do-
meneghetti et al., 2012; McMillan & Westerberg, 2015; Westerberg et al., 2011) and limited data availability. 
Due to the limited data availability in this study, it was not possible to validate these observations with field 
measurements to estimate the magnitude of the uncertainties.

According to the International Groundwater Resources Assessment Centre (IGRAC), there are two aquifers 
which are shared by the Luangwa basin and neighboring basins (Figure S22 in the Supplementary Materi-
al). These aquifers are located in the South upstream of the gauge station and in the East at the border with 
Malawi and mostly consist of alluvial sediments/sands and fractured crystalline - metamorphic basement 
rocks, respectively (IGRAC & UNESCO-IHP, 2015; TWAP, 2015a, 2015b). Both aquifers were identified in 
previous studies as part of an effort to identify transboundary aquifers world-wide to support transboundary 
aquifer management activities. Additional studies are needed to characterize these aquifers more detailed 
and to analyze whether there are additional aquifers shared by Luangwa and surrounding river basins 
within Zambia. According to Fraser et al. (2020), who identified transboundary aquifers in Malawi based on 
lithology, hydrogeology, groundwater levels and literature, water flows from Zambia to Malawi in the aqui-
fer at the eastern border of the Luangwa basin. This supports our findings with respect to the significance 
of potential groundwater leakage in the Luangwa basin.

In addition, Tóth (1963) illustrated groundwater flow occurs on local or regional scale depending on the 
topography such that local groundwater flow generally occurs in regions with large local relief and shallow 
aquifers, whereas regional groundwater flow generally occurs in regions with large regional relief and deep 
aquifers. In the Luangwa river basin, elevation differences are less pronounced near the eastern and south-
ern border compared to the North and West (Figure S23 in the Supplementary Material) which supports 
the possibility of regional groundwater flow in the East and South. Schaller and Fan (2009) illustrated re-
gional groundwater flow often occur in arid regions as the groundwater level often remains below the local 
topography. This further supports the possibility of regional groundwater flow in the semi-arid Luangwa 
basin. According to Condon et al. (2020), conceptual hydrological models typically focus on the shallow 
groundwater system assuming the deep groundwater system is negligible even though deep flow paths 
can be relevant depending on the river basin and research question. This results in for example open water 
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balances and flawed conceptual models (Condon et al., 2020). Our study illustrated that the addition of a 
Deeper Groundwater Reservoir with groundwater loss has the potential to substantially improve the mod-
eled discharge and long-term total water storage anomalies in conceptual hydrological models.

For future studies, it will be interesting to explore the effects of evaporation on long-term storage fluctu-
ations in a more detailed analysis. Our results suggest that long-term fluctuations in the potential evap-
oration can occur depending on the chosen estimation method (Hobbins et al., 2008; Huang et al., 2015; 
Roderick & Farquhar, 2005; Xu et al., 2018). It would therefore be interesting to look into alternative, po-
tentially more accurate estimation methods. In addition, long-term fluctuations in the actual evaporation 
were observed depending on the satellite product due to the different underlying assumptions and input 
data (Bai et al., 2019; Feng et al., 2019; Goroshi et al., 2017; Wang et al., 2018). As shown in a previous study 
by Hulsman, Savenije, et al. (2020) and in Figure S24 in the Supplementary Material, the basin-averaged 
evaporation was modeled well and incorporating this flux in the calibration procedure did not improve the 
modeled long-term storage variabilities. That is why, more in-depth analyses on the occurrence of long-term 
variations in the actual and potential evaporation, their main drivers and their effect on long-term storage 
fluctuations testing different model hypotheses is recommended. This was outside the scope of this study 
due to the limited data availability.

Furthermore, the calibration approach used in this study allowed to analyze the influence of different mod-
el adjustments on the behavioral parameter sets. We assumed that if a model adjustment is relevant, a clear 
improvement in the distribution of performances for the parameter sets retained as feasible should be visi-
ble. Other calibration schemes are recommended when attempting to identify the mathematically optimal 
parameter set. However, a solution that may mathematically be the best fit, is unlikely the most plausible 
representation of the real-world system given the many sources of uncertainty in the modeling process 
especially in data scarce regions (e.g., Beven, 2006). Sensitivity analysis of the parameters related to the 
groundwater loss indicated that these parameters influenced the modeled total water storage significantly 
with some exceptions, whereas the impact on the discharge was mostly limited (Figure S25). We recom-
mend using additional information sources to constrain these parameters, which was outside the scope of 
this study due to limited data availability. As this study focused on a necessarily limited number of model 
hypotheses, it should be noted that additional alternative model hypotheses clearly may lead to similar 
model improvements. This also includes alternative hypotheses with respect to the conceptualization of 
the groundwater system (e.g., de Graaf et al., 2015; Reinecke et al., 2019; Stoelzle et al., 2015). The results 
of our study therefore need to be understood in that context. Model hypothesis D4 allowed the rejection of 
all other hypotheses tested here, yet it may in the future be rejected itself in favor of another hypothesis.

7.  Conclusion
In the Luangwa basin, long-term total water storage variations were observed with GRACE, but not repro-
duced by a previously developed process-based hydrological model that encapsulates our current under-
standing of the dominant regional hydrological processes. The objective of this paper was to identify so far 
overlooked processes underlying these low-frequency variations in a combined data analysis and model 
hypothesis testing approach. The data analysis results revealed different long-term patterns in the precipi-
tation, potential and actual evaporation depending on the satellite product which could partly explain the 
observed long-term storage variations. The results of the model hypotheses testing suggest that the initial 
model's inability to reproduce the observed low-frequency storage variations was a combined effect of the 
data source used to run the model and the missing representation of regional groundwater export. More 
specifically, it was shown that a different choice of the model input data source produced model results that 
are more consistent with observed fluctuations in long-term annual maximum total water storage anom-
alies. In contrast, the incorporation of a process representing regional groundwater export from a deep 
groundwater layer significantly improved the model's ability to reproduce the observed long-term variations 
in the annual minimum storage. The results highlighted the combined value of alternative data sources 
and iterative hypothesis testing to improve our understanding of hydrological processes, their quantitative 
description in models and eventually toward more reliable predictions of hydrological models.
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Data Availability Statement
Discharge data for the study region were made available by WARMA (Water Resources Management Au-
thority in Zambia) and can be accessed upon request at WARMA. Satellite observations were obtained from 
publicly available online databases as described in Section 3 and Table 1.
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