
Autonomous Navigation around
Asteroids using
Convolutional Neural Networks
Master Thesis
L.F.J. van der Heijden

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft

ii

Autonomous Navigation around
Asteroids using

Convolutional Neural Networks
Master Thesis

by

L.F.J. van der Heijden

in partial fulfilment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology
to be defended publicly on Thursday February 17, 2022 at 9:30 AM.

Student number: 4367286
Project duration: 1 June 2021 - 17 February 2022
Master Track: Space Flight
Master Profile: Space Exploration
Thesis committee: Dr. ir. Erwin Mooij Supervisor, TU Delft

Dr. ir. Svenja Woicke Supervisor, DLR
Dr. Daphne Stam TU Delft
Dr. ir. Erik-Jan van Kampen TU Delft

Cover image taken from the OSIRIS-REx mission available at
https://www.asteroidmission.org/galleries/spacecraft-imagery/

https://www.asteroidmission.org/galleries/spacecraft-imagery/

ii

Preface

This work marks the end of an exciting few months as well as the end of my studies at TU Delft. It has been a
pleasure to work on such a cutting-edge research field, combining machine learning with space exploration,
which in my opinion would allow mankind to venture even further into space, finding answers to the most
pressing questions. However, I was not alone in this endeavor and would therefore like to thank the people
that helped and supported me along the way.

First of all, I would like to thank my supervisor, dr. ir. Erwin Mooij, for his enthusiasm, support, and in-
terest in my work. I enjoyed our weekly discussions and your sharp insights, resulting in extra motivation to
strive for the best possible result and getting the most out of this research. Next to this, I also want to thank
dr. ir. Svenja Woicke of DLR for bi-weekly joining our discussions and providing valuable insights.

Finally, I would like to thank my family and friends for their unwavering support, offering the occasional
sympathetic ear and distraction when necessary.

L.F.J. van der Heijden
Delft, January 2022

iii

iv Preface

Abstract

Missions to small bodies are increasingly gaining interest as they might hold the secrets to our solar sys-
tem’s origin while some are also posing a threat to life on Earth. The small size and irregular shape result
in complex dynamics complicating the close-proximity operations. The majority of past and current mis-
sions relied on humans-in-the-loop for a variety of purposes, however, communication with Earth is costly
and due to the long round-trip time communication delays of up to 20 minutes can exist, excluding any
required computation time on Earth. Moreover, for landing on these small bodies stringent accuracy re-
quirements exist, whereas during these phases no communication with Earth is possible due to the involved
time-scales. Therefore, close-proximity operations would benefit from accurate autonomous vision-based
navigation. Currently used approaches either rely on detecting pre-defined landmarks on the target, detect-
ing features and matching them to a database, or tracking craters or unknown features across images (relative
navigation). However, these methods rely heavily on a-priori information, suffer from computationally in-
tensive matching steps, or depend on the accuracy of the initial state estimate. Machine learning has seen
great success in applications to terrestrial problems, and as of 2019 research into using Convolutional Neu-
ral Network (CNN)-based methods for pose estimation of uncooperative spacecraft has taken of through the
Spacecraft Pose Estimation Challenge (SPEC). Pose estimation refers to estimating the distance and orien-
tation of the target w.r.t. the camera, using a single 2D image. This work investigated the usage of a novel
CNN-based pipeline that can be used to autonomously navigate accurately around asteroids.

A top-down CNN-based feature detector is developed, consisting of an object and keypoint detection
network in sequence, which detects n pre-defined keypoints within the 2D image, which were designated on
the target’s 3D model using the 3D SIFT algorithm. These 2D detections alongside their 2D-3D correspon-
dences are sent to an Efficient Perspective-n-Point (EPnP) solver that solves the Perspective-n-Points (PnP)
problem. The CNN-based feature detector replaces traditional hand-engineered Image Processing (IP) al-
gorithms, as it is more robust to illumination conditions and image noise. Furthermore, the use of a CNN
facilitates an offline feature selection step and as such avoid the cumbersome and computationally intensive
2D-3D matching step of the detected 2D feature to their location on the 3D model, plaguing traditional ap-
proaches. The feature detector outputs heatmaps predictions around the pre-selected keypoints, allowing
for the extraction of statistical information (covariance matrix) regarding the uncertainty of the detection.
This enables the seamless integration of this developed pipeline within a navigation architecture. This pose
estimation pipeline can be used to navigate around the asteroid up until it covers the full field of view of the
camera, and it can be used to (re)-initialize the navigation filter for a relative navigation approach. The net-
works have been selected based on their applicability to embedded devices and this resulted in the use of the
SSD-MobileNetV2-FPN-Lite for the object detection network and the Lightweight Pose Network (LPN) model
for the keypoint detection network. This lightweight CNN-based pipeline has a fraction of the parameters
and Floating Point Operations (FLOPs) compared to state-of-the-art deep-learning networks and pipelines.

These networks have been trained and evaluated on synthetic datasets created in this work, consisting
of 32,352 images with a variety of poses for a distance of 4.5 km to 9 km from the asteroid, for different il-
lumination conditions, asteroid orientations, and image corruptions that emulate real sensor artefacts. The
pipeline could achieve a mean and median line-of-sight distance estimate of around 42 m and 30 m, respec-
tively, at a confidence level of 90% for the large relative range, while satisfying the accuracy requirement of
a maximum 10% knowledge error for 99.979% of the cases. The closer to the asteroid the more accurate the
performance with a median accuracy of around 22 m from a distance of 4.5 km. Furthermore, the pipeline
has been proven to be robust against illumination conditions, occlusions, textures, and image corruptions
mimicking effects of real sensors and the space environment. Demonstrating the efficacy of this CNN-based
approach for autonomous navigation around asteroids.

The results achieved in this work show that a CNN-based approach can achieve accurate results, while
adhering to lightweight principles required for incorporation on a spacecraft processor. However, future re-
search should focus on validating the performance of the synthetically trained CNN on-ground, using lab
generated real images. Bridging the domain gap and achieving robustness of the synthetically trained CNN
to real images is crucial in creating deep learning systems that can be deployed in safety-critical applications
and fly on an actual spacecraft.

v

vi Abstract

Contents

List of Abbreviations xi

List of Symbols xiv

I Introduction and background 1

1 Introduction 3
1.1 Problem and relevance . 3
1.2 Research trigger . 4
1.3 Research questions . 4
1.4 Report structure. 5

2 Heritage 7
2.1 Heritage. 7
2.2 Mission and system requirements . 13
2.3 Scope of the research . 14

II Theory 17

3 Reference frames 19
3.1 Reference frames . 19
3.2 State representation. 20

3.2.1 Coordinate systems . 20
3.2.2 Attitude kinematics . 21

3.3 Frame transformations . 23
3.3.1 Reference frame transformations . 24

4 Pose estimation framework 27
4.1 Camera model . 27
4.2 Perspective-n-Points (PnP) problem . 29
4.3 Pose solvers . 31

5 Machine learning 33
5.1 Deep Learning . 33
5.2 Neural Networks (NN) . 34
5.3 Convolutional Neural Networks (CNN) . 37
5.4 Lightweight networks . 40
5.5 General machine learning concepts. 42

III Algorithm Design & Methodology 45

6 Algorithm’s architecture overview 47
6.1 Architecture overview . 47
6.2 Software overview. 49

7 Dataset 51
7.1 Dataset generation overview . 51
7.2 Image generation pipeline . 52

7.2.1 Rendering software . 52
7.2.2 Target asteroid model . 52
7.2.3 Viewpoint sampling . 54
7.2.4 Rendering process . 59

vii

viii Contents

7.3 Dataset properties . 59

7.4 Annotations. 61

7.4.1 Pose . 62

7.4.2 Keypoint designation and annotation . 63

7.4.3 Bounding box . 66

7.5 Bridging the domain gap from synthetic to real images . 66

7.5.1 Bennu+ dataset . 69

7.6 Trajectory generation . 72

7.7 Dataset API . 73

8 Object detection network 75
8.1 Object detection . 75

8.2 Architecture selection . 75

8.3 SSD-MobileNetV2-FPN-Lite . 76

8.4 Implementation . 78

8.5 Configuration . 80

9 Keypoint detection network 87
9.1 Keypoint detection . 87

9.2 Architecture selection . 87

9.3 Lightweight Pose Network . 88

9.4 Implementation . 89

9.5 Configuration . 90

10 Verification 97
10.1 Dataset generation and annotation . 97

10.1.1 Camera pose generation . 97

10.1.2 Image rendering . 99

10.1.3 Dataset annotation . 100

10.2 Machine learning . 104

10.3 Pose estimation . 104

IV Results 107

11 Results and experiments 109
11.1 Object detection . 109

11.1.1 Accuracy assessment. 109

11.1.2 Robustness assessment . 112

11.1.3 Robustness to real images . 114

11.2 Keypoint detection . 115

11.2.1 Accuracy assessment. 117

11.2.2 Robustness assessment . 119

11.3 Pose estimation . 119

11.3.1 Accuracy assessment. 122

11.3.2 Outlier analysis . 125

11.3.3 Possible improvements . 128

11.4 Trajectory simulations . 130

11.5 Conclusions. 133

V Conclusion & Recommendations 135

12 Conclusions and recommendations 137
12.1 Conclusions. 137

12.2 Recommendations . 138

Contents ix

Bibliography 141

A Heatmap-derived covariance matrix 149

B Comparable deep-learning datasets 151

C Dataset annotations format 153

D Image corruptions specifications 163

x Contents

List of Abbreviations

ACT Advanced Concepts Team
AFC Asteroid Framing Camera
AIDA Asteroid Impact & Deflection Assessment
AKAZE Accelerated KAZE
API Application Programming Interface
ARRM Asteroid Redirect Robotic Mission
au astronomical unit
BGD Batch Gradient Descent
CCD Charge-coupled device
CEPPnP Covariant Efficient Procrustus Perspective-n-

Point
CNN Convolutional Neural Network
COCO Common Objects in Context
CoM Center of Mass
CPN Cascaded Pyramid Network
CPU Central Processing Unit
CRP Classical Rodrigues Parameter
CV Computer Vision
DANN Domain-Adversarial Neural Network
DART Double Asteroid Redirection Test
DCM Direction Cosine Matrix
DEM Digital Elevation Map
DL Deep Learning
DoF Degree-of-freedom
DoG Difference-of-Gaussian
DSN Deep Space Network
DTM Digital Terrain Map
EPnP Efficient Perspective-n-Point
ESA European Space Agency
ESTEC European Space Research and Technology Center
FLOPs Floating Point Operations
FOV Field of View
FPN Feature Pyramid Network
GC Global Context
GNC Guidance, Navigation, and Control
GPU Graphical Processing Unit
HIL Hardware-in-the-Loop
HRNet High Resolution Network
IMU Inertial Measurement Unit
IoU Intersection over Union
IP Image Processing
IQR Interquartile range
JAXA Japan Aerospace Exploration Agency
KD Keypoint Detection
KLT Kanade-Lucas-Tomasi
LHM Lu-Hager-Mjolsness
lidar Light detection and ranging
LPN Lightweight Pose Network
MAD Mean Average Deviation

xi

xii List of Symbols

MBGD Mini-Batch Gradient Descent
ML Machine Learning
MLPnP Maximum Likelihood Perspective-n-Point
MRP Modified Rodrigues Parameter
MSE Mean Squared Error
Mult-Adds Multiply-accumulate operation
NASA National Aeronautics and Space Administration
nD n Dimensional
NEAR Near Earth Asteroid Rendezvous
NED North-East-Down
NEO Near-Earth object
NFT Natural Feature Tracking
NMS Non-Maximum Suppression
NN Neural Network
NST Neural Style Transfer
OD Object Detection
OpenCV Open Source Computer Vision Library
ORGL Orbital Robotics & GNC Laboratory
OSIRIS-REx Origins, Spectral Interpretation, Resource Identifi-

cation, Security, Regolith Explorer
PnP Perspective-n-Points
PANGU Planet and Asteroid Natural Scene Generation

Utility
PCL Point Cloud Library
POSIT Pose from Orthography and Scaling with Iteration
RANSAC Random Sample Consensus
ReLu Rectified Linear Unit
ResNet Residual Network
RGB Red, Green, and Blue
RMS Root Mean Square
RMSE Root Mean Square Error
RoI Region of Interest
RPN Region Proposal Network
SGD Stochastic Gradient Descent
SIFT Scale-Invariant Feature Transform
SLAB Space Rendezvous Laboratory
SLAM Simultaneous Localization and Mapping
SNR Signal-to-Noise
SPC Stereophotoclinometry
SPEC Spacecraft Pose Estimation Challenge
SPEED Spacecraft Pose Estimation Dataset
SPN Spacecraft Pose Network
SSD Single Shot MultiBox Detector
SVM Support Vector Machine
TMT Target Marker Tracking
TRN Terrain Relative Navigation
TRON Testbed for Rendezvous and Optical Navigation
YOLO You Only Look Once

List of Symbols

Greek symbols

α Bearing angle around YB rad

α Learning rate -

β Bearing angle around XB rad

β Hyperparameter of the β-Soft-Argmax function -

β1 Hyperparameter controlling the momentum -

β2 Hyperparameter of RMS prop -

ε Variable to ensure numerical stability -

λ Regularization parameter -

Φ Principal rotation angle (Euler angle) rad

ψ Yaw angle rad

σ Standard deviation -

θ Pitch angle rad

ϕ Roll angle rad

Latin symbols

a Semi-major axis m

A[l] Activation matrix for layer l for all m training examples -

b[l] Bias matrix for layer l for all m training examples -

C Unit-axis transformation matrix -

CB ,A Transformation matrix from frame A to frame B -

cx x location of the camera’s principal point in the pixel reference frame px

cy y location of the camera’s principal point in the pixel reference frame px

du Horizontal pixel length m/px

d v Vertical pixel length m/px

e Eccentricity -

Epx Pixel error px

Et Translational error m

f Focal length m

f Size of the convolutional filter px

fx Scaled focal length in the x-direction px

fy Scaled focal length in the y-direction px

G 3D SIFT Gauss kernel function -

h Height of image px

Hk Heatmap -

i Inclination rad

xiii

xiv List of Symbols

J Cost function -

K Intrinsic camera parameters matrix -

L Loss function -

l l th layer of the neural network -

m Number of training examples -

N Number -

n Order of refinement of the icosphere -

n Input size of the image n ×n px

n[l] Number of neurons in the l th layer of the neural network -

nc Number of channels of the feature map -

Nu Number of horizontal pixels in the image px

Nv Number of vertical pixels in the image px

P 3D point cloud -

P Probability -

p Padding value -

P Pose matrix -

pc Class probability -

q Quaternion -

R Radius of the icosphere -

r Position vector m

s Stride of the convolutional filter px

sx Scaling factor: The size of one pixel in the x-direction 1/m

sy Scaling factor: The size of one pixel in the y-direction 1/m

t Translation vector m

th Log space representation of the offset of the height of the bounding box -

tw Log space representation of the offset of the width of the bounding box -

tx Representation of the offset of the x-coordinates of the center of the bounding box -

ty Representation of the offset of the y-coordinates of the center of the bounding box -

uk 2D x-coordinate of the k-th keypoint in the pixel reference frame px

vk 2D y-coordinate of the k-th keypoint in the pixel reference frame px

w Width of image px

W[l] Weight matrix for layer l for all m training examples -

X Input feature vector -

Xi X-axis in the i th reference frame -

xi Cartesian x coordinate in the ith reference frame m

y Ground-truth output -

ŷ Predicted output -

Yi Y-axis in the i th reference frame -

yi Cartesian y coordinate in the ith reference frame m

Z [l] Matrix containing the outputs of the neurons for layer l for all m training examples -

Zi Z-axis in the i th reference frame -

zi Cartesian z coordinate in the ith reference frame m

I
Introduction and background

1

1
Introduction

This chapter introduces the topic of this research project, where Section 1.1 identifies the framework around
which this project revolves. Section 1.2 discusses the developments that have led to this research after which
the research questions are formulated in Section 1.3. This chapter concludes with an overview of the structure
of the report in Section 1.4.

1.1. Problem and relevance
The Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) mis-
sion is the most recent example of the burgeoning scientific interest towards small-bodies (asteroids). This
increasing interest is caused not only because their composition might hold the secrets to our solar system’s
origins, but also from a planetary defense point of view as they may impact Earth and thereby threaten life on
the planet. As of recently, it became clear that the asteroid Bennu has a 1-in-2700 change of impacting Earth
in the late 22nd century. Myriad of past, current, and future missions have been designed to find answers and
solutions to these questions and problems. The recently launched Double Asteroid Redirection Test (DART)
mission and the currently designed HERA mission to the binary asteroid system Didymos serve as the latest
examples (Volpe et al., 2020).

However, the difficulty for asteroid exploration missions lies in the complex dynamics and that the exact
properties of the asteroid are unknown before arriving. Moreover, small asteroids lack an accurate ephemeris
and with current limitations in NASA’s Deep Space Network (DSN) communication and tracking system, there
is a 2-5 km uncertainty in the distance estimate between a spacecraft and a target (Schwartz et al., 2018).
Currently, missions to small bodies rely on humans-in-the-loop for a variety of purposes, ranging from state
estimation to the creation of a detailed shape model and determining the landmarks and landing sites on the
target.

However, communication with Earth is costly, especially when images need to be send back to Earth.
Moreover, due to the long round-trip time there can be communication delays up to 20 minutes, excluding
required computation time on Earth. This results in painstakingly slow and careful progress throughout the
mission phases and therefore autonomous navigation would be very beneficial, as it allows faster reactiv-
ity, which can maximize scientific return. Furthermore, it allows longer science operations, more accurate
instrument pointing, and flying closer to the surface of the asteroid (Gil-Fernandez et al., 2019). Moreover,
autonomous navigation can provide state estimates at a higher frequency than ground-based estimates.

Autonomous navigation is also a crucial technology for landing on asteroids and satisfying the stringent
requirements existing due to the small size of the asteroids. During this phase, communication with Earth is
impossible based on the landing-phase timescale with regards to the communication delay. The Guidance,
Navigation, and Control (GNC) system traditionally fused the input from several sensors, such as radars,
altimeters, and Inertial Measurement Units (IMUs). However, over the last decades vision-based naviga-
tion measurements have been found to improve the performance of autonomous navigation considerably
(Flandin et al., 2010; Gil-Fernandez and Ortega-Hernando, 2018). The usage of some form of autonomous
vision-based navigation during these close-proximity and touch-down operations has been used by past as-
teroid missions, such as OSIRIS-REx and Hayabusa2 (Lorenz et al., 2017; Ogawa et al., 2020)

Autonomous navigation would not only allow the spacecraft to adapt more rapidly to changing mission

3

4 1. Introduction

requirements or objectives, but also increases the amount of scientific work it could perform in a given period
of time. Vision-based navigation systems solely relying on a monocular camera are also becoming a more
attractive alternative to active sensors, such as lidar or stereo cameras, as they have lower mass, hardware
complexity, cost, and power consumption (Opromolla et al., 2017; Pasqualetto Cassinis et al., 2019; Sharma
et al., 2018). The HERA mission proposed by the European Space Agency (ESA) will be the first to use deep-
space CubeSats. Developing monocular vision-based autonomous navigation would be greatly beneficial for
these deep-space CubeSats, which have stringent requirements on the available resources. These techniques
would allow mankind to venture further into the solar system, visiting unknown environments, and safely
and more efficiently perform close-proximity operations, while keeping the mission costs relatively low.

1.2. Research trigger
Advancements within machine learning in recent years have seen a widespread adaptation of these tech-
niques to a variety of problems. These learning-based algorithms prove a good technique for automation as
once they are trained they can be deployed and act autonomously. Izzo et al. (2019a) identified deep learning
as the key technology for current and future research in field of spacecraft GNC. Machine learning techniques
have already been applied to preliminary spacecraft design, mission operations, designing optimal interplan-
etary trajectories, and for guidance and control software of landers (Cheng et al., 2019; Furfaro et al., 2018;
Izzo et al., 2019b).

Two major factors have limited the application of machine learning to spaceflight: 1) the unavailability
of publicly available large-scale datasets required for training these deep learning models (Izzo et al., 2019a)
and 2) the limited processing power available on-board spacecraft. As a result of the former, these models
are therefore trained on synthetic imagery and their robustness to realistic space images is difficult to pre-
dict. The high risk associated with a wrong decision, detection, or calculation has limited their adaptation to
safety-critical space applications.

However, there is a growing interest in applying machine learning to space-related problems and as of
2019, the research into applying Convolutional Neural Network (CNN)-based architectures to uncooperative
spacecraft pose estimation has taken off through the Spacecraft Pose Estimation Challenge (SPEC), which
was organized by the Space Rendezvous Laboratory (SLAB) at Stanford University in cooperation with ESA
(Sharma and D’Amico, 2019). CNN-based approaches have several advantages, and have been proven to
be more robust against illumination conditions and image noise compared to traditional Image Processing
(IP) algorithms. This is crucial for the usage in a vision-based navigation system (Pasqualetto Cassinis et al.,
2021a). Furthermore, as of 2021, the most recently announced SPEC 2021 tries to tackle the problem of val-
idating the performance and demonstrate the CNN-based architecture’s ability to fly in space through the
creation of a dataset called Spacecraft Pose Estimation Dataset (SPEED)+, consisting of real camera images
from a mock-up model using a robotic testbed (Park et al., 2021).

The radiation-filled space environment necessitates the use of radiation-hardened (rad-hard) computers
for space missions. However, the state-of-the-art rad-hard computers typically have inferior performance
compared to state-of-the-art terrestrial computers, i.e., the processing power is limited. This has made the
application of deep learning to space-borne problems challenging, as these networks typically have millions
of parameters requiring substantial memory size, and running these networks requires significant amount of
processing power.

However, Howard et al. (2017) was the first to develop a lightweight network called MobileNet that could
be used on mobile and embedded devices without compromising too much on accuracy. Currently, the trend
within machine learning is to optimize the speed/accuracy trade-off and more research into the development
of these lightweight networks is being performed. Furthermore, Manning et al. (2018) demonstrated that
such lightweight networks can be used on the space-grade embedded system of a CubeSat and achieve good
performance.

The aforementioned shows that machine learning architectures are a promising option for autonomous
navigation of spacecraft and at the moment of writing, to the author’s knowledge, no research regarding the
usage of machine learning for autonomous navigation around asteroids exists.

1.3. Research questions
The purpose of this study is to investigate if and how a learning-based algorithm can achieve accurate relative
navigation around an asteroid. This section discusses the research (sub-)questions that were formulated for
this work. The research question that is to be answered during this work is:

1.4. Report structure 5

How can accurate relative navigation be achieved in close-proximity operations around asteroids with limited
a-priori information using learning-based autonomous algorithms?

The definition of relative navigation intended here is that the spacecraft navigates relative to the asteroid
and thereby estimates the state of the spacecraft w.r.t. the asteroid. Furthermore, close-proximity operations
refers to the fact that the spacecraft can observe the asteroid and the scientific mission phases commence.
The a-priori knowledge refers to not relying on detailed information regarding the dynamics or other prop-
erties of the asteroid, such as the gravity field.

This research question was further divided into three subquestions:

1. How can a representative, realistic dataset of synthetic images of the asteroid suitable for training
and evaluating deep learning networks be created?

Due to the unavailability of large-scale datasets of asteroid images suitable for deep learning purposes,
the networks need to be trained and evaluated on synthetic image datasets that have to be created
within this work. Therefore, it should be researched how this can be performed in the best way.

2. How can the pose estimation pipeline be made robust against a variety of factors, such as illumina-
tion conditions and image corruptions, representative of the real space environment?

This research subquestion is two-fold, where firstly the CNN-based pipeline needs to be designed such
that it is able to work for a variety of scenarios representative of an actual space mission. This means
that the pipeline should work for a variety of camera viewpoints, distances, and illumination condi-
tions. Secondly, as the networks will be trained solely on synthetic images the CNNs need to demon-
strate robustness to the domain gap. This domain gap refers to the gap in performance of the syntheti-
cally trained CNN to real images and is caused by real images having a different statistical distribution
compared to synthetic images. Moreover, real images can contain noise and other image corruptions
that are not or cannot be accurately modeled in the synthetic images. Bridging this domain gap and
achieving robustness of the CNN trained on synthetic images is crucial in creating deep learning sys-
tems that can be deployed in safety-critical applications.

3. How can the pose estimation pipeline be improved compared to comparable pipelines currently re-
searched for satellites?

Current studies applying machine learning to the problem of pose estimation of uncooperative space-
craft rely on networks that have tens of millions of parameters and consequently require a lot of mem-
ory and computational effort, rendering them unsuitable for use on current spacecraft processors.
Therefore, it would be interesting to explore if accurate navigation could be achieved, while also op-
timizing the pipeline for usage on embedded devices.

1.4. Report structure
This section discusses the structure of the report and is intended to give an overview of the discussed top-
ics. The heritage of vision-based navigation around asteroids and the applicable research within machine
learning is discussed in Chapter 2. Moreover, Chapter 2 discusses the mission and system requirements and
outlines the scope of the research, diving into the assumptions and limitations. The theoretical basis to un-
derstand the subsequent algorithm development is discussed in Chapters 3 through 5. Chapter 3 discusses
the reference frames and their conversions, coordinate systems, and kinematic descriptors used throughout
this work. The pose estimation framework, outlining the camera model used for the dataset generation and
the PnP problem, is discussed in Chapter 4. Furthermore, within Chapter 5 the basic building blocks of ma-
chine learning are discussed, which serve as a solid basis for subsequent discussions in later chapters. This
chapter is less relevant for readers who are very familiar with CNNs and machine learning in general.

An overview of the different parts and software used in the pose estimation architecture is given in Chap-
ter 6, where also the selection of the pose solver is discussed. The creation of the synthetic datasets used in
this work is described in detail in Chapter 7. The selection, implementation, configuration, training, and eval-
uation procedures of the respective networks are discussed in Chapters 8 and 9, respectively. The verification
of the different parts of the pipeline is addressed in Chapter 10. Chapter 11 discusses the results achieved by
the CNN-based pose estimation pipeline on the datasets created in this work. Finally, Chapter 12 presents
the answers to the research questions and the main conclusions of this work alongside recommendations for
future research.

6 1. Introduction

2
Heritage

This chapter defines the scope of the research performed in this work. In Section 2.1, the heritage of vision-
based navigation methods with a focus on asteroid mission is discussed, as well as the applicable research
into machine learning. Based on the heritage, the mission and system requirements for the algorithm de-
veloped in this work are devised in Section 2.2. The section is concluded with the scope of the research in
Section 2.3, discussing the framework and the assumptions used in this work. This is intended to give the
reader a good overview of the purpose of this work and what can be expected for the analysis performed in
subsequent chapters.

2.1. Heritage
The development of autonomous vision-based navigation systems is a topical research subject not only for
space-borne problems, but also terrestrial applications. As touched upon in Section 1.1, autonomous navi-
gation is desired, because of the long round-trip time for communications, allowing for faster reactivity and
longer science operations among other advantages. An overview of different vision-based navigation tech-
niques are discussed in this section that have been applied to space missions after which their machine learn-
ing counterparts are discussed.

An asteroid mission can be categorized through its different mission phases. An initial global charac-
terization phase (preliminary survey) determines the physical and dynamical characteristics of the asteroid,
refining the mass, radius, and inertia using measurements as well as refining the rotational rate and spinning
axis. Furthermore, a 3D shape model of the asteroid is created using a technique called Stereophotoclinom-
etry (SPC), which uses high resolution images of the target. Subsequent phases focus on completing a wide
range of scientific objectives, such as identifying sample sites for sample collection. A brief overview of the
different approaches that have been designed and used to navigate around asteroids is given.

Navigation around asteroids
The Asteroid Redirect Robotic Mission (ARRM) was a proposed mission by the National Aeronautics and
Space Administration (NASA) to a Near-Earth object (NEO) that was discontinued in 2017. The spacecraft
was intended to navigate through the use of landmark navigation, which was first used extensively by the
Dawn spacecraft to the asteroids Vesta and Ceres (Mastrodemos et al., 2011). Landmark navigation uses des-
ignated landmarks on the surface of the target for navigation, where landmarks do not have to be specific
surface characteristics, such as craters or boulders, and as such, also does not depend on the presence of
these features.

Mastrodemos et al. (2011) developed the L-maps landmark navigation approach for the Dawn spacecraft.
The landmarks are defined as the center of a small Digital Terrain Map (DTM) of parts of the body, which are
created using SPC, making it an intrinsic part of the characterization and mapping phase as aforementioned.
The spacecraft is able to navigate by detecting and identifying the landmarks that are within the Field of View
(FOV) of the camera and then use the known location of the corresponding landmarks within a navigation
filter to estimate the position of the spacecraft w.r.t. the asteroid (Mastrodemos et al., 2011). The accuracy
of this method depends on the accuracy of the created DTM and shape model, which in turn depend on the
resolution with which the camera can model the surface. A similar approach was used by Razgus et al. (2017),

7

8 2. Heritage

Figure 2.1: Converged solution of the landmark identification and localization approach, where the blue el-
lipses represent the 6σmatching radius for each landmark and the red diamonds represent the Harris corners
detected in the real image (Rowell et al., 2015)

however, the landmarks were designated on the surface of the asteroid Itokawa by randomly placing points
on the triangular faces of the polyhedron 3D model.

Rowell et al. (2015) developed another landmark based approach that uses an Image Processing (IP) al-
gorithm to detect Harris corners on the asteroid surface as landmarks. A database of surface landmarks had
to be created online by applying the Harris corner detector to all the (simulated) images. The corresponding
3D locations of those 2D Harris corners were determined using the available 3D shape model of the aster-
oid, which is created during the initial characterization phase. This algorithm was developed as part of an
industrial assessment study for the Marco Polo-R mission intended to land a spacecraft on a small NEO and
retrieve a sample. The designed vision-based navigation system consisted of two parts, namely feature de-
tection and landmark recognition. The feature detection algorithm detected the Harris corners within the
current navigation image, whereas the landmark recognition relied on an initial state estimate of the space-
craft to project the landmark positions from the database on the current navigation image. The projected
landmark positions were compared with the extracted Harris corners within the current navigation image
and positive matches are based on the proximity to one another. The pose is refined by aligning the identi-
fied landmarks with the detected Harris corners, where the pose refers to the distance and orientation of the
camera w.r.t. the target. An example of a converged solution of the landmark navigation approach is shown
in Figure 2.1, i.e., where the detected Harris corners have been aligned with the identified landmarks. This
navigation system was used to initialize the navigation filter before the descent and landing phase, for which
relative navigation methods (feature tracking) were used. This method relies on the asteroid to be entirely
within the FOV. The downside of this approach is its reliance on an initial state estimate and the fact that
enough landmarks need to be within the field of view of the camera to allow for accurate estimation.

The Hayabusa mission to Itokawa, designed by the Japan Aerospace Exploration Agency (JAXA), was
launched in 2003 and the spacecraft was intended to navigate autonomously. A lidar was used to estimate the
distance, and the direction to the asteroid was found using a monocular camera. During the final descent for
sample collection, the system would navigate using Target Marker Tracking (TMT), where the target markers
are spherical retroflective artificial landmarks. However, part of the navigation system failed resulting in the
inability to point the lidar, and therefore a ground-based navigation system was developed, which relied on
humans-in-the-loop. An image of the asteroid was sent back every 10 minutes with an one-way communi-
cation delay of 20 minutes, resulting in the inability to act fast (Hashimoto et al., 2010). This same concept
of using artificial landmarks for the navigation was applied to the Hayabusa2 mission. These target markers
are tracked on the unknown natural terrain under unknown illumination conditions through the use of a ro-
bust IP algorithm. This circumvents the reliance on natural terrain features and their respective difficulties in
feature detection (Ogawa et al., 2020).

The HERA mission designed by ESA and scheduled to launch in 2024 is intended to investigate the effects
of the DART mission. The HERA mission will be the first mission to operate fully autonomously around

2.1. Heritage 9

Figure 2.2: Extracted features that have been tracked in subsequent images, which is illustrated by the feature
tracks indicating the movement of the features (Pellacani et al., 2019)

the asteroid, as it will fuse the data from several sensors and a monocular camera (Asteroid Framing Camera
(AFC)) to simultaneously create a model of the asteroid and navigate relative to that model (Volpe et al., 2020),
requiring the asteroid to be fully within the field of view of the camera during that phase.

The spacecraft uses two different techniques for state estimation based on the distance w.r.t. asteroid.
Up until the asteroid fully covers the field of view of the camera, centroiding techniques are used for state
estimation, whereas from closer distances unknown feature tracking will be used. Unknown feature tracking
refers to autonomously detecting features and tracking them across images using the Kanade-Lucas-Tomasi
(KLT) IP algorithm (Pellacani et al., 2019). These features do not represent terrain features, such as craters
or boulders, but are simply pixels that stand out from their surroundings. These extracted features receive a
feature descriptor (unique tag) that allows the tracking of the features through successive images. This allows
the calculation of the displacement of the feature and as such the displacement of the spacecraft within that
time period. Figure 2.2 demonstrates these feature tracks indicating the movement of the features.

Similar techniques have been researched for navigating around the Moon by Woicke (2019) and Magal-
hães Oliveira (2018). This method relies on the accuracy of the initial state estimate before the start of the
feature-tracking, as it can only determine the relative displacement. A shortcoming of this approach is that
the error is gradually accumulated, as the navigation filter integrates noisy sensor measurements. A solution
to this would be to periodically re-initialize the relative navigation with a new measurement of the instan-
taneous position and orientation of the camera, i.e., pose initialization, using a method similar to the afore-
mentioned landmark approach by Rowell et al. (2015). Furthermore, another limitation of the approach is
that when the relative velocity is too slow, the features have not moved relative to the previous frame due to
the velocity of the spacecraft, but merely due to the rotation of the asteroid. This can cause the relative track-
ing method to fail. The tracking of unknown features between frames is less challenging compared to recog-
nizing known landmarks within navigation images, as for the former the viewing conditions do not change a
lot between frames. Whereas, for landmark recognition algorithms, the viewing and illumination conditions,
and the features’ scale and orientation may change significantly between a first and later detection.

There are also some vision-based navigation techniques that rely on physical features, such as craters.
This was researched for navigation around the Moon by Maass et al. (2020), but was also used to navigate
around Eros in the Near Earth Asteroid Rendezvous (NEAR) mission (Cheng et al., 2002). The approach
can differ between detecting a crater and matching this to an existing database or by simply tracking the
crater across successive images similar to the unknown feature tracking approach. The downside of these
approaches is that they rely on the presence of these features on the asteroid and that such a database of
craters exists. Moreover, a computationally intensive matching step has to be performed.

The recent OSIRIS-REx mission, launched in 2019 and is expected to return back to Earth with a sample
of the asteroid Bennu in 2023, also relied on physical features for navigation. Natural terrain features, such as
boulders or craters unique to the surroundings and distinctly recognizable under the expected illumination

10 2. Heritage

Figure 2.3: Demonstrating the crater matching process between the craters detected by the CNN-based sys-
tem and the craters present in the database (Downes et al., 2020a)

conditions, were identified by experts on Earth (Lorenz et al., 2017). These manually selected features were
stored in a feature-catalog. The spacecraft navigated using Natural Feature Tracking (NFT), which relied on
initial estimates of the spacecraft pose, asteroid attitude, and the predicted location of the Sun to generate
the expected appearance for the feature based on the Digital Elevation Map (DEM). This expected appear-
ance is then matched to what the spacecraft actually captures through normalized cross correlation. The
performance of this navigation method relies on accuracy and resolution of the DTMs.

Machine learning
There is a growing interest into applying machine learning methods to space-related problems due to its
successes in solving terrestrial problems. The heritage of machine learning is discussed using approaches
that somewhat align with the navigation approaches mentioned previously.

The crater detection and matching approach has been tackled using machine learning models by Downes
et al. (2020a), Downes et al. (2020b), and Doppenberg (2021), which were applied to the Moon, for which
an extensive crater database exists. They used CNNs to detect craters on the lunar surface and match them
to known craters present in a database, from which the position of the spacecraft can be determined. This
method, however, relies on an initial state estimate to reduce the search-space for the matching step. This
crater detection and matching process is shown in Figure 2.3, where it can be seen that some database craters
have not been detected and matched by the system. However, for asteroid missions this is not practical, as
the surface of small asteroids might not be covered with craters nor does such a database exist. This approach
is therefore not considered further.

The research into unknown feature tracking using machine learning is in its infancy state with a detailed
overview of the different methods discussed in the survey of Chen et al. (2020). There are two major ap-
proaches that can be discerned, firstly the learning-based Simultaneous Localization and Mapping (SLAM)
approaches that mimic the proposed method for the HERA mission by Volpe et al. (2020), i.e., simultane-
ously creating the 3D model and navigating w.r.t. that model. Secondly, methods, such as SuperPoint created
by DeTone et al. (2018), that try to mimic hand-engineered feature extractors and trackers, such as Scale-
Invariant Feature Transform (SIFT) and Accelerated KAZE (AKAZE). However, as stated by Chen et al. (2020),
the existing models are not sophisticated enough to solve the respective problems, and the problem of local-
ization and mapping is very complex. Furthermore, the amount of research into this field is limited and to
the authors knowledge, at the moment of writing, no examples in literature exist related to space exploration.
The applications are currently restricted to certain scenarios, such as self-driving cars, and adapting these
networks to space-related problems is not trivial, especially within the framework of a MSc thesis. There-
fore, the learning-based unknown feature tracking approach is not considered further in this work and the
interested reader is referred to the work by Chen et al. (2020).

The landmark based navigation approaches discussed previously relied on the detection of pre-defined
landmarks for which the 3D location was known and the 2D-3D correspondence could be established. Sub-
sequently this was used to solve for the pose of the spacecraft w.r.t. the target. On a similar abstraction level,
this problem within machine learning is referred to as keypoint detection with the goal to estimate the pose of
the target. The pose refers to the distance and orientation of the camera w.r.t. the target. This is a challenging

2.1. Heritage 11

computer vision problem and the majority of research revolves around human pose estimation, detecting
joints, such as ankles, knees, and hips of person instances within images and subsequently estimate the pose
of that person using these detected keypoints.

The seminal work by Sharma (2019) proposed a CNN-based end-to-end architecture to tackle pose es-
timation of uncooperative spacecraft. Furthermore, through the SPEC organized by Stanford University in
cooperation with ESA, research into applying CNN-based architectures to uncooperative spacecraft pose es-
timation has increased, with the most recently announced SPEC 2021 as the newest stepping stone. Publicly
available datasets have been created for these challenges and are referred to as SPEED and SPEED+, respec-
tively (Park et al., 2021; Sharma and D’Amico, 2019).

The research can be divided into two major approaches: 1) end-to-end architectures (Alimo et al., 2020;
Sharma and D’Amico, 2019; Shi et al., 2018), and 2) feature-based architectures (Barad, 2020; Chen et al., 2019;
Park et al., 2019; Pasqualetto Cassinis et al., 2020).

The former referring to approaches in which a CNN replaces the entire pipeline and directly outputs the
pose from an input image, thereby learning the highly non-linear mapping function. Whereas, the latter
refers to replacing a hand-engineered IP algorithm with a CNN-based feature detector that extracts n pre-
defined features from the 2D image and these keypoints and their 2D-3D correspondence are then sent to a
pose solver, which solves the PnP problem. The disadvantage of end-to-end architectures is that the learning
problem is more complex and therefore more data is required to train the network. The advantage of decom-
posing the pose estimation problem into sub-tasks is that the complex problem is reduced to two simpler
problems, with a lot of data available for each of those tasks. Furthermore, it was demonstrated by Shalev-
Shwartz et al. (2017) that this decomposition results in better performance. This notion is reinforced by the
fact that the end-to-end architectures have been outperformed by the feature-based architectures on the SPEC
(Kisantal et al., 2020), with a four times smaller average position error and seven times smaller average orien-
tation error.

The accuracy of the feature-based pipeline is determined by the selection of the feature detector. The ma-
jority of hand-engineered IP algorithms rely on the image gradient to detect rich textured features on highly
visible parts of the target. These detected features are image-specific and this therefore does not allow for
an offline feature selection step (D’Amico et al., 2014), thereby requiring an online image-to-model mapping
step as was the case for the hand-engineered landmark navigation approach of Rowell et al. (2015). This
computationally intensive matching step required for hand-engineered computer vision techniques, such as
SIFT, makes them unsuitable for in-orbit applications (Sharma and D’Amico, 2016). One major advantage
of using a CNN-based feature detector compared to hand-engineered IP algorithms is that the keypoints can
be selected offline and as such their 2D-3D correspondence is known, thereby avoiding the cumbersome
and computationally intensive matching of the detected 2D features to their location on the 3D model using
methods such as Random Sample Consensus (RANSAC) (Park et al., 2019).

Furthermore, the keypoint-based CNNs output predicted detections for all the designated keypoints even
when they are occluded or not directly visible (e.g., on the back of the target) (Zhao et al., 2018). This is be-
cause the network learns the inherent spatial relationship between the different keypoints. This is a major
advantage compared to traditional methods, such as landmark navigation, which rely on the number of land-
marks in view to make an accurate prediction. A CNN-based feature detector is also proven to be more robust
against adverse illumination conditions and image noise compared to hand-engineered IP algorithms, which
is crucial for the usage in a vision-based navigation systems for space-borne problems (Pasqualetto Cassinis
et al., 2021a). Another advantage of using a CNN-based feature detection approach is that it does not rely on
an initial pose estimate and can be used for pose initialization, i.e., lost-in-space scenarios.

As aforementioned, the research into keypoint detection for uncooperative spacecraft is heavily based
on the problem of human pose estimation. The keypoints can have semantic meaning, referring to corners
of the spacecraft or the joints of humans, or they can simply represent pixels that stand out with respect to
their environment, which are referred to as interest points. Semantic keypoints can be manually selected
and designated through algorithms on the available 3D (wireframe) model (Barad, 2020; Chen et al., 2019),
whereas interest points can be designated on a 3D model using techniques, such as 3D SIFT (Zhao et al.,
2018). The difference between semantic and interest points is illustrated in Figure 2.4.

The feature-based method can be subdivided further in a top-down or bottom-up approach, where the
top-down approach refers to firstly detecting the different objects within the image after which the keypoints
are detected on each object. The bottom-up approach refers to firstly detecting all the keypoints on the differ-
ent objects of interest within an image after which the detections are associated with each respective object.
The top-down approach is more robust against blurry or occluded images and it has shown increased perfor-

12 2. Heritage

(a) Semantic keypoints designated
on the spacecraft’s 3D model pro-
jected to 2D (Barad, 2020)

(b) Interest points detected on an image
of the Lunar surface (Woicke, 2019)

(c) Interest points designated on the as-
teroid’s 3D model projected to 2D

Figure 2.4: Demonstrating the difference between semantic keypoints (a) and interest points (b,c)

mance over the bottom-up approach (Jin et al., 2017). The top-down approach is currently the state-of-the-
art method used within keypoint detection for human pose estimation, terrestrial objects, and uncooperative
spacecraft (Kisantal et al., 2020; Pasqualetto Cassinis et al., 2021a; Zhao et al., 2018).

The practical implementation of the top-down approach is the usage of an Object Detection (OD) network
in front of the Keypoint Detection (KD) network. This OD network detects the object within the image and re-
gresses the bounding box coordinates encompassing the object. This bounding box is used to crop the Region
of Interest (RoI) of the original image. This RoI image is then resized to match the input size of the keypoint
detection network. This top-down approach makes the CNN pipeline more robust to the scale of the object
within the image, allowing for more accurate keypoint detections by the KD network (Pasqualetto Cassinis
et al., 2021a).

Within keypoint detection two different approaches can be identified, the first approach directly outputs
the feature coordinates from the image and the second approach outputs a confidence map/heatmap that
provides pixel-wise pseudo-likelihoods that the keypoint location is found in that pixel. The direct coordinate
approach was pioneered by Toshev and Szegedy (2014) and was used to locate the joints of a body. Subse-
quent research by Tompson et al. (2014) was focused on outputting heat maps for the keypoint location. The
2D pixel coordinates of the keypoint location correspond to the heatmap’s peak intensity, where the shape
and the intensity characterize the confidence of the detection (Pavlakos et al., 2017). Research by Tompson
et al. (2014) and Szegedy et al. (2016) showed that the heatmap approach resulted in better performance
compared to the direct regression approach. The heatmap approach is currently the state-of-the-art within
keypoint detection architectures (Barad, 2020; Chen et al., 2019; Pasqualetto Cassinis et al., 2020; Sun et al.,
2019; Zhang et al., 2019). Another advantage of using a heatmap approach is that it increases the explainabil-
ity of the network, as the heatmap shows where the network focuses on for predictions in an image (Zhou
et al., 2016).

Furthermore, Pasqualetto Cassinis et al. (2020) demonstrated that statistical information can be derived
from the heatmap that allows to quantify the uncertainty of the detections through the form of a covariance
matrix. This statistical information can then be used by a pose solver that is able to take this into account,
such as the Covariant Efficient Procrustus Perspective-n-Point (CEPPnP) solver. Moreover, this can be used in
a navigation filter, thereby illustrating another advantage of using this heatmap based approach as opposed
to the direct regression approach.

These CNN-based feature extractors have to be trained on synthetic images due to the unavailability of
datasets consisting of real images of the target that are suitable for training these models. Pasqualetto Cassi-
nis et al. (2020) and Pasqualetto Cassinis et al. (2021b) used the Cinema4D rendering software to generate a
synthetic image deep-learning dataset of the Envisat spacecraft. Black et al. (2021) used Blender to create a
synthetic dataset of images of the Gygnus spacecraft for deep-learning purposes, demonstrating its suitability
for deep-learning dataset generation. Moreover, Blender has been used in other works revolving space ap-
plications, such as feature-based landing on the Moon (Magalhães Oliveira, 2018), feature-based navigation
around asteroids (Volpe et al., 2020), and uncooperative spacecraft pose estimation (Harvard et al., 2020).

2.2. Mission and system requirements 13

However, neural networks cannot generalize well to out-of-distribution examples (real images) with re-
spect to the training set (synthetic images), resulting in decreased performance of a synthetically trained
CNN to real space images. This problem is referred to as the domain gap and arises from real images hav-
ing different statistical distribution compared to synthetic images as well as containing noise or other image
corruptions that are not or cannot be properly modeled in synthetic data. This poses challenges for the ap-
plication of CNN-based methods to safety critical applications, such as spaceflight. Recent research by Park
et al. (2021) and Pasqualetto Cassinis et al. (2021b) focuses on bridging this domain gap and validate the
performance of these synthetically trained CNNs on lab-generated real images representative of the space
environment. The usage of heatmaps instead of keypoint regression was also found by Park et al. (2021) to be
more robust to the domain gap.

Conclusion
The methods designed and/or used to navigate around asteroids either navigated through the use of land-
mark navigation, detecting features and matching them to a database, or use hand-engineered IP algorithms
to track unknown features or physical features (craters) across images (relative navigation). The aforemen-
tioned methods suffer from computationally intensive matching steps, rely on a-priori information, or de-
pend on the accuracy of the initial state estimate.

Machine learning is a promising method that can resolve the issues plaguing traditional approaches.
Based on the heritage, the most promising approach to develop a learning-based navigation algorithm is
a top-down CNN-based feature detector, which replaces a hand-engineered IP algorithm and which will be
researched in this work. This consists of an object and keypoint detection network in sequence, which de-
tects n pre-defined keypoints within a 2D image that have been designated on the target’s 3D model. The
detections and their known 2D-3D correspondence are then used to estimate the distance to the asteroid by
solving the PnP problem. Furthermore, the CNN-based feature detector outputs heatmap predictions around
the pre-defined keypoints locations, which allows the quantification of the detection certainty through the
use of heatmap-derived covariance matrices. This allows for an easy incorporation of the developed feature
detection pipeline within a navigation architecture.

The usage of such a CNN-based pipeline allows the offline designation of keypoints on the 3D model, cir-
cumventing the use of a computationally intensive 2D-3D matching step, plaguing traditional approaches.
Furthermore, these architectures guarantee the predictions of all designated keypoints (even on the back of
the target) and are therefore not limited by the amount of landmarks/features within the field of view. More-
over, they have been proven to be more robust against against a variety of factors, such as image noise and
illumination conditions, compared to hand-engineered IP algorithms. In addition, this CNN-based pipeline
does not depend on an initial pose estimate and can provide an estimate of the instantaneous pose of the
target, i.e., pose initialization.

2.2. Mission and system requirements
This section formulates the mission and system requirements based on the heritage discussed in Section 2.1

Mission requirements:

• MR01: The navigation system shall be used to navigate around an asteroid

• MR02: The navigation system shall be able to provide a distance estimate up until the asteroid covers
the full field of view of the camera

These mission requirements are straightforward and summarize the main goal of the developed algo-
rithm. MR02 is discussed is in more detail in Section 2.3.

System requirements:

• SR01: The pose estimation pipeline shall rely on a monocular model-based feature detection approach

• SR02: The pose estimation pipeline shall use an object detection network in front of the CNN-based
feature detector

• SR03: The feature detector shall output a confidence map/heatmap that provides pixel-wise pseudo-
likelihoods that the keypoint location is found in that pixel

14 2. Heritage

• SR04: The pose estimation pipeline shall have an optimal architecture focused on less memory usage
and FLOPs that allows for future embedding in a spacecraft processing unit

• SR05: The pose estimation pipeline shall be trained on synthetic images

• SR06: The pose estimation pipeline shall have a relative line-of-sight distance to the center of mass
of the target with a knowledge error lower than 10% of real distance with 99.73% probability at 90%
confidence level.

The first three system requirements SR01 through SR03 are based on the heritage discussed in Section 2.1,
demonstrating the highest performance was achieved using such an architecture. Furthermore, SR03 allows
the system to be easily incorporated into several different navigation architectures, as the navigation filter can
use the statistical information derived from the detected features heatmap. The fourth system requirement
SR04 is mostly focused on designing an architecture that could be used on an actual spacecraft. As discussed
in Section 1.1, state-of-the-art neural networks generally have millions of parameters and require substantial
amount of computational power to produce outputs, whereas spacecraft processing power and memory is
limited. Therefore, care was taken to select networks based on an accuracy/speed trade-off, allowing such
a network to be incorporated on spacecraft hardware in the future, enhancing the contributions made by
this work. The fifth requirement SR05 is incorporated, as no deep-learning image datasets of asteroids exist
and therefore the system should not rely on the availability of real images, but instead be trained on synthetic
imagery rendered in a 3D rendering software. The last requirement SR06 sets an accuracy requirement for the
performance of the designed algorithm. This requirement is taken from a statement of work by ESA1 related
to this work, as to the best of the author’s knowledge no comparable literature regarding the application of
machine learning to navigate around asteroids exists.

2.3. Scope of the research
This section discusses the scope of the research that is performed in this work, specifying the target asteroid
and the purpose of the designed algorithm alongside the limitations and assumptions.

Target asteroid
More than 700,000 asteroids have been discovered, however, for only a small fraction of them a 3D shape
model exists. The majority of the shape models are created using lightcurve inversion techniques, but they
provide only an approximation of the asteroid’s shape, and small features, such as ridges or craters, cannot
be detected. A handful of asteroids have been observed by radar or visited by spacecraft. Very precise models
of these asteroids exists due to high-resolution photography and measurements. The most famous ones are
Eros, Itokawa, Vesta, Bennu, and Ryugu.

The target asteroid chosen for this work is Bennu, as a detailed 3D model is publicly available, as well
as a lot of literature surrounding the mission and the asteroid. Bennu is a sub-kilometer asteroid with a
mean radius of 245 m, and it orbits the Sun at about the same distance as the Earth (1 astronomical unit (au))
(Lauretta et al., 2019). It has a spinning top shape with a pronounced equatorial bulge, similar to the Didymos
asteroid, which is the target of the upcoming HERA mission designed by ESA. The Didymos asteroid has an
estimated radius of 390 m, however, no shape model of the Didymos asteroid is publicly available2. Therefore,
an asteroid that shares similarity with it (Bennu) would allow this work to contribute to the upcoming HERA
mission, demonstrating that such a technique could work.

Assumptions and limitations
The scope of the research is discussed to clearly identify what will and what will not be researched in this
work.

1. Known 3D model is assumed: The model-based approach requires the availability of a 3D model. This
is normally created during initial mission phases and is subsequently used to create gravitational mod-
els and to navigate around the asteroid (Lorenz et al., 2017; Mastrodemos et al., 2011; Rowell et al.,
2015).

1ESA, "Statement of Work: Artificial Intelligence for Terrain Relative Navigation in Unknown Environment (ATENA) - Reference: ESA-
TECSAG-SOW-018784", 2020

2https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/didymos/in-depth/, Date accessed: 31-01-
2022

https://solarsystem.nasa.gov/asteroids-comets-and-meteors/asteroids/didymos/in-depth/

2.3. Scope of the research 15

2. Navigation up until the asteroid fills the FOV of the camera, no landing is analyzed: The CNN-based
pipeline could be used for two applications: 1) to navigate around the asteroid at distances in which
the asteroid does not fully cover the FOV of the camera, and 2) to (re-)initialize an unknown feature
tracking approach that can navigate from distances closer to the asteroid. As aforementioned, these
feature tracking approaches rely on the accuracy of the initial estimate, as they can only perform rela-
tive tracking. By increasing the accuracy of the initial estimate, the overall accuracy of the navigation
system can be increased. This accuracy and precision is required for potential landing on asteroids.
However, the landing phase is not analyzed in this work. The assumption that the object should be
fully within the field of view of the camera is common and was used by Rowell et al. (2015) for landmark
navigation around asteroids. Furthermore, this is also common within the limited literature regarding
uncooperative spacecraft using CNN-based approaches.

3. Limited a-priori information: This is inherent to the learning-based algorithm that will be developed
in this work. Based on the detected features within an image and their 2D-3D correspondences, an
estimate of the pose of the spacecraft w.r.t. target is calculated, i.e., pose initialization. No initial pose
estimate is required for the algorithm to work as opposed to conventional approaches discussed in Sec-
tion 2.1. Furthermore, no information regarding the expected scale of the asteroid within the image or
the encountered illumination conditions is required. The network is trained to become robust against
these aspects. Furthermore, other aspects, such as information regarding the gravitational field, is also
not required.

4. Distance estimation only: The purpose of this work is to develop a machine learning algorithm that
accurately determines the distance w.r.t. the asteroid as discussed in Section 1.3. The PnP problem,
which will be elaborated upon in Section 4.2, is solved by pose solvers to output the pose. The pose
refers to the distance as well as the orientation of the camera reference frame w.r.t. the target’s reference
frame. However, this is less relevant for an asteroid mission as other instruments, such as star-trackers,
are used to accurately determine the orientation of the spacecraft. Therefore, the main focus of this
work will be on the distance estimation. However, if desired, the orientation prediction can also be
used and incorporated into a navigation filter, as the availability of more information could allow for
better conversion of that filter.

5. No incorporation into a navigation architecture: This algorithm will consist of a CNN-based feature
extractor pipeline, which can be incorporated into a navigation architecture, this could be a loosely
or tightly coupled architecture. However, this work will not develop this navigation architecture due
to time-limitations. Nonetheless, the statistical information that can be extracted from the heatmap
outputted by the feature detector allows for the fusion of the detections with different measurements
of other sensors within a navigation filter.

6. Synthetic images only: Due to the unavailability of large-scale datasets of asteroid images suitable for
deep-learning purposes, the networks shall be trained and evaluated on synthetic image datasets that
will be created in this work.

7. Motion asteroid around the Sun is not modeled: A fixed position of the asteroid w.r.t. the Sun is chosen,
meaning that the Sun-asteroid vector is fixed. However, different asteroid orientations and camera
positions result in a variety of illumination conditions. This does not compromise the validity of the
conclusions drawn regarding the performance of the algorithm.

8. An ideal camera is assumed: The camera is perfectly calibrated and the intrinsic camera parameters
are known. Moreover, no skewness and distortion are modeled, and the sensor is assumed to have
square pixels.

9. Focus is solely on the development of a navigation algorithm: This work will purely focus on devel-
oping a novel vision-based navigation method, therefore ideal control is assumed, i.e., actual attitude
is commanded attitude. Furthermore, it is assumed that the camera has no pointing errors.

10. No variable pointing of the camera: The camera direction is fixed w.r.t the spacecraft body frame (no
variable pointing possible) meaning that if the camera turns, the whole spacecraft turns with it. There-
fore, the camera frame can be used to describe the orientation of the spacecraft, removing the need
of using a separate spacecraft body-fixed reference frame for the development of the navigation algo-
rithm.

16 2. Heritage

11. The dynamics of the spacecraft and asteroid are not modeled: The training of the machine learning
algorithm does not rely on any dynamics, nor is it required for the generation of images. The networks
are trained by generating images from a variety of poses, asteroid orientations, and illumination con-
ditions. These asteroid orientations can be discretely changed and therefore the motion of the asteroid
around its own axis is not modeled.

Moreover, solving the PnP problem results in a distance and orientation estimate of the camera refer-
ence frame w.r.t. the target reference frame. This should then be transformed from the camera frame to
another frame, such as the NED reference frame, to describe the motion of the spacecraft around the
target. However, as the system will not be incorporated into a navigation architecture in this work, this
removes the need to describe the dynamics of the problem of a spacecraft orbiting an asteroid. These
reference frames and conversions are therefore not required.

12. Navigation only in the illuminated portion of the orbit: The vision-based navigation will use images
from the visible spectrum, i.e., no infrared, and will therefore only be used during the (partially) illumi-
nated portion of the orbit around Bennu

II
Theory

17

3
Reference frames

This chapter discusses the reference frames and kinematic descriptors used throughout this work. Section 3.1
introduces the reference frames and how they are defined. Section 3.2 discusses the kinematic descriptors
used to describe the state of the spacecraft, diving into position as well as attitude. The chapter is concluded
with the reference frame conversions in Section 3.3.

3.1. Reference frames
The translation and rotation of an object can only be described when a reference with respect to which the
object is moving is defined. This is the reason reference frames are needed. A reference frame is defined as A
set of coordinate axes in terms of which position or movement may be specified 1. A reference frame is attached
to a certain origin and its axes have a certain orientation. The reference frames used throughout this work are
right-handed and are either pseudo-inertial or non-inertial. The following reference frames are used:

1. World reference frame (W)
2. Asteroid reference frame (A)
3. Blender camera reference frame (B)
4. Camera reference frame (C)
5. Pixel reference frame (P)
6. Satellite-fixed reference frame (S)

World reference frame - W
The world reference frame is the reference frame that is used in Blender to place the object, camera, and light
source. This is a right-handed system where the axes are defined as follows, with the +ZW -axis pointing up
and the X and Y axes follow the right-handed triad.

Asteroid reference frame - A
The asteroid reference frame has its origin at the center of mass of the asteroid and the OX AYA-plane coin-
cides with the equatorial plane of the asteroid. The 3D model of the asteroid is loaded into Blender with +Z
as up and +Y as forward. This ensures that the axes of the asteroid correspond with the world axes at the
initial orientation. This definition of the initial orientation, i.e., what is the front, is also used in the keypoint
designation process. The axes are defined as follows:

• +ZA-axis is pointing upwards
• +YA-axis is pointing forward
• +X A-axis completes the right-handed system

Blender camera reference frame - B
The Blender camera reference frame is the camera frame that is used by Blender and it has its origin in the
center of projection (Section 4.1). The axes are defined as follows:

1https://www.thefreedictionary.com/Reference+frame+(physics) Date accessed: 16-12-2020

19

https://www.thefreedictionary.com/Reference+frame+(physics)

20 3. Reference frames

• +ZB -axis is pointing away from the image plane and is aligned with the optical axis
• +YB -axis is pointing up
• +XB -axis completes the right handed frame

Camera reference frame - C
The camera reference frame has its origin in the center of projection and the axes are defined according to
usual convention. The definitions are discussed in Section 4.1.

• +ZC -axis is pointing towards the image plane and is aligned with the optical axis
• +XC -axis is pointing towards the east
• +YC -axis completes the right handed frame

Pixel reference frame - P
The pixel reference frame is a 2D reference frame with its origin in the top left corner of the image plane, this
is discussed in more detail in Section 4.1. The pixel reference frame is used to represent the pixel location in
the image and the unit is the pixel index, counted row-wise and column-wise. The pixel reference frame is
also often referred to as the image reference frame. The axes are defined as follows.

• +XP -axis is parallel to XC

• +YP -axis is parallel to YC

Furthermore, the following notation is also used, XP = u and YP = v

Body-fixed reference frame - S
The body-fixed reference frame is used to specify the orientation of the camera w.r.t. the body axes. As dis-
cussed in Section 2.3, there is no need to have a body-fixed reference frame for the development of the algo-
rithm. However, this reference frame is needed to allow for the incorporation of the camera and the derived
navigation system within an actual system containing gyroscopes and other sensors. The origin of the body-
fixed reference frame is assumed to be at the center of mass of the spacecraft. A symmetric satellite is assumed
and the axes are defined following a commonly used convention:

• +XS -axis is in the symmetry plane of the spacecraft and is pointing forward
• +ZS -axis is pointing downwards
• +YS -axis completes the right handed frame, i.e., pointing to the right and perpendicular to the XS ZS

symmetry plane.

The camera is assumed to be mounted on the bottom of the spacecraft in the center pointing along the
+ZS -axes and the XC and YC axes are also aligned with the XS and YS axes.

3.2. State representation
Kinematics describes the motion of points, objects, and bodies irrespective of the forces that caused it to
move. There are two major types of kinematics, translational kinematics and attitude or rotational kine-
matics. The translational kinematics describe the 3-Degree-of-freedom (DoF) position and motion of point
masses, whereas the attitude/rotational kinematics describe the 3-DoF rotation and motion of bodies. Many
types of kinematic descriptors exist. The kinematic descriptors are called state variables and together they
determine the state of the vehicle or point mass. Numerous state representation methods exists and only the
ones that will be used are described in this section.

3.2.1. Coordinate systems
A coordinate system is necessary to represent the location of a point within a certain reference frame. The
purpose of the algorithm is to determine the distance of the camera reference frame w.r.t. the target asteroid
reference frame. The position will be expressed using Cartesian coordinates, as they are simple and easy to
interpret and are useful for numerical simulations.

A vector is represented using three coordinates (x, y, z), which together make up the vector from the origin
of the reference system to a point of interest. These scalar values (x, y, z) are multiplied with the unit vectors
of the reference frame and added together. This can be represented mathematically using the following equa-
tion, where it can be expressed in any arbitrary frame F .

3.2. State representation 21

r = rF = x X̂F + yŶF + z ẐF (3.1)

In vector form this is represented as follows:

r = rF =
x

y
z

 (3.2)

3.2.2. Attitude kinematics
The rotational parameters can be described in various ways, such as Direction Cosine Matrix (DCM), Eu-
ler angles, and attitude quaternions. There are several attitude descriptors that only need three variables to
describe the rotation, such as Euler angles, Classical Rodrigues Parameter (CRP), and Modified Rodrigues Pa-
rameter (MRP). However, when only using three parameters to describe the attitude, singularities can occur
and as such Euler angles are never more than 90◦ away from a singularity. CRPs and MRPs describe the at-
titude in such a way that in CRPs the singularity happens at ±180◦ and in MRPs the singularity happens at
±360◦. This allows for better tracking of the attitude without having to worry about singularities. However,
the main goal of this work is to develop a ML algorithm that can be incorporated in a navigation architec-
ture to provide state estimates. Therefore, no detailed analysis is performed on which parameters are best
suited to represent the attitude in a most optimal way. Furthermore, the spacecraft will not be rapidly rotat-
ing or tumbling, but will be pointing steadily towards the target. Therefore, there is no explicit need to use
these more advanced attitude descriptors. Attitude quaternions are therefore used to describe the orienta-
tion of the spacecraft, as they have no singularities and are often used to describe the attitude of spacecraft
(Pasqualetto Cassinis et al., 2020; Woicke, 2019).

Direction Cosine Matrix: The DCM is a transformation matrix that is used to transform coordinates from
reference frame FA to another reference frame FB . The DCM is part of the 3D rotation group, CB ,A ∈ SO(3) :={

C ∈R3×3,CCT = I ,det(C = 1)
}
. The transformation between the unit vectors of frame FA and frame FB is

given by the dot product, as the dot product between two unit vectors is simply equal to the angle, cosθ,
between the axes. The definition of the DCM matrix is shown below, where the notation for describing the
transformation from reference frame FA to another reference frame FB is defined as CB ,A (Wie, 1998).

CB ,A =
 b1 ·a1 b1 ·a2 b1 ·a3

b2 ·a1 b2 ·a2 b2 ·a3

b3 ·a1 b3 ·a2 b3 ·a3

=
 b1

b2

b3

 · (a1 a2 a3
)

(3.3)

Once the DCM is known, the transformation of vectors in the FA frame to the FB frame can be calculated
using: (Wie, 1998). b1

b2

b3

=
 C11 C12 C13

C21 C22 C23

C31 C32 C33

 a1

a2

a3

= CB ,A

 a1

a2

a3

 (3.4)

Euler Angles: Euler angles are the classical attitude angles and represent the roll angle ϕ, the pitch angle
θ, and the yaw angleψ. These three angles can represent the attitude of the spacecraft. Euler angles are based
on sequential rotations of the original and intermediate reference frames. Any orientation of two frames in
3D space can be described with at most three successive rotations around the given coordinate axes. This
therefore does not mean that three rotations are always necessary. This process is shown in Figure 3.1, where
a rotation from the I frame to the B frame consists of three successive rotations around the respective axes.
The Euler angles are defined as follows:

−π≤ϕ<π
−π

2 ≤ θ ≤ π
2

−π≤ψ<π
(3.5)

The DCM expressed in Euler angles is given in Equation (3.6). This DCM can be used to represent the
orientation of one reference frame FA to another FB in Euler angles, where use has been made of the 3-2-1
rotation sequence (yaw, pitch, roll), which is commonly used in aerospace.

22 3. Reference frames

Figure 3.1: Euler angles: successive rotations about the ZI axis, the y ′ axis and x ′′ axis (Gerth, 2014)

CB ,A =
 cosθcosψ cosθ sinψ −sinθ

sinϕsinθcosψ−cosϕsinψ sinϕsinθ sinψ+cosϕcosψ sinϕcosθ
cosϕsinθcosψ+ sinϕsinψ cosϕsinθ sinψ− sinϕcosψ cosϕcosθ

 (3.6)

Quaternions: Quaternions are a very popular set of attitude coordinates used in spaceflight as it results in
a linear kinematic relation. The quaternions are based on Euler’s eigenaxis theorem, which states that "A rigid
body or coordinate reference frame can be brought from an arbitary initial orientation to an arbitrary final
orientation by a single rigid rotation through a principal angleΦ about the principal axis ê, where the princi-
pal axis (Euler axis) is an axis that is fixed in both the initial and final orientation" (Schaub and Junkins, 2018).
The Euler eigenaxis rotation is shown in Figure 3.2. Compared to Euler angles, which are a combination of
rotations about different axes, the single rotation valueΦ gives better insight in the magnitude of the rotation,
as large Euler angle rotations could still result in a small attitude difference w.r.t. the initial orientation.

Figure 3.2: The Euler eigenaxis rotation where ē represent the Euler eigenaxis, ā the unit vectors of reference
frame FA and b̄ the unit vectors of reference frame FB , Φ represent the principal rotation angle (Euler angle)
(Schaub and Junkins, 2018)

Quaternions are a 4-dimensional hypercomplex number that consists of one real and three imaginary
numbers. The quaternions are defined with respect to the principal rotation components (Euler axis com-
ponents (e1,e2,e3)) and the principal rotation angle (Euler angle, Φ). They are shown in Equation (3.7) and

3.3. Frame transformations 23

depending on the convention q0 can also be named q4. q̄ = [
q1, q2, q3

]
is referred to as the vector part of the

quaternion, whereas q0 is the scalar part. Throughout this work the scalar-first notation (q0) is used.

q0 = cos(Φ/2)
q1 = e1 sin(Φ/2)
q2 = e2 sin(Φ/2)
q3 = e3 sin(Φ/2)

(3.7)

The unit quaternions are constrained by the relationship that the L2-norm is equal to 1, which is repre-

sented as follows:
∥∥q

∥∥
2 =

√
q2

0 +q2
1 +q2

2 +q2
3 = 1. The advantage of quaternions is that there are no singu-

larities present, since there are four coordinates to describe a 3-DoF attitude. However, quaternions have
discontinuities at 180°, which constrains the application of continuous attitude tracking. However, this is not
considered a problem for this work.

The quaternions describe a 3D unit sphere in 4D space, where a rotation from one attitude to another is
a trajectory on the surface of this 3D sphere. Furthermore, the orientation described by (q0,q) is the same as
the orientation described by (-q0,-q). A positive value of q0 describes the short rotation and a negative value
of q0 describes the long rotation. The quaternion parameterization is therefore not unique.

When two reference frames, FA and FB , are aligned, the quaternion representation would be (1,0,0,0), as
the principal rotation angle (Φ) is then zero. Furthermore, a pure rotation about one axis (e.g., a3 in Fig-
ure 3.2) would result in e1 and e2 being equal to zero, leaving only q3 and q0 as non-zero. For more detailed
information about quaternions and their algebra the reader is referred to established literature on the topic,
such as the book by Kuipers (2002).

The DCM describing the transformation from FA to FB can be obtained from the quaternion parameteri-
sation using: (Wie, 1998).

CB ,A =
 q2

0 +q2
1 −q2

2 −q2
3 2

(
q1q2 +q0q3

)
2
(
q1q3 −q0q2

)
2
(
q1q2 −q0q3

)
q2

0 −q2
1 +q2

2 −q2
3 2

(
q2q3 +q0q1

)
2
(
q1q3 +q0q2

)
2
(
q2q3 −q0q1

)
q2

0 −q2
1 −q2

2 +q2
3

 (3.8)

The inverse relationship, retrieving the unit quaternions representing the rotation from a DCM, can ro-
bustly be determined using Sheppard’s algorithm. Firstly, the largest value of the relations given in Equation
(3.9) is determined. This largest value is then used to calculate the remaining quaternions using the relations
given in Equation (3.10).

q2
0 = 1

4
(1+ trace([C])) q2

2 = 1

4
(1+2C22 − trace([C]))

q2
1 = 1

4
(1+2C11 − trace([C])) q2

3 = 1

4
(1+2C33 − trace([C]))

(3.9)

q0q1 = (C23 −C32)/4 q1q2 = (C12 +C21)/4
q0q2 = (C31 −C13)/4 q3q1 = (C31 +C13)/4
q0q3 = (C12 −C21)/4 q2q3 = (C23 +C32)/4

(3.10)

3.3. Frame transformations
The transformation of one frame w.r.t. another generally consists of a translation and a rotation. The trans-
lation is necessary when the origins of the two reference frames do not coincide. Firstly, the rotation of refer-
ence frames is discussed after which translation will be covered.

Rotational transformation
This subsection discusses the transformations between the reference frames that are used to present the
vector components in different reference frames. The transformations can also be combined to achieve the
desired transformation matrices. The transformation matrix that transforms the vector components from
frame FA to frame FB is given by CB ,A . The convention used for the transformation matrices is that the ref-
erence frames are being rotated instead of the vector itself. This interpretation is often used in aerospace
and the only implication is that the signs on the sin term would be reversed for the unit-axis transformation
matrices. The following unit-axis transformation matrices are used for the z, y, x axes respectively.

24 3. Reference frames

Cz (ψ) =
 cosψ sinψ 0

−sinψ cosψ 0
0 0 1

 (3.11)

Cy (θ) =
 cosθ 0 −sinθ

0 1 0
sinθ 0 cosθ

 (3.12)

Cx (ϕ) =
 1 0 0

0 cosϕ sinϕ
0 −sinϕ cosϕ

 (3.13)

The transformation matrix from the inertial frame I to the body frame B, as shown in Figure 3.1, is ob-
tained using the 3-2-1 sequence ϕz →ϕy →ϕx and is equal to the following.

CB ,I = Cx (ϕ)Cy (θ)Cz (ψ) (3.14)

Where CB ,I would be equal to Equation (3.6), the inverse transformation matrix CI ,B can be determined
as follows:

CI ,B = C−1
B ,I = CT

B ,I = Cz (−ψ)Cy (−θ)Cx (−ϕ) (3.15)

Once the transformation matrix is known, vectors presented in one frame of reference FA can be ex-
pressed in an other frame of reference FB using the transformation matrix CB ,A . This can mathematically
be expressed as follows:

rB = CB ,ArA (3.16)

The inverse can then also easily be determined using:

rA = CA,B rB = CT
B ,ArB (3.17)

Translational transformation
As mentioned before, when the origin of one reference frame does not coincide with the origin of the other
reference frame, a translation is necessary on top of the rotation. This is illustrated in Figure 3.3, where the
location of point P can be expressed in either the A frame using vA or in the B frame using vB . When point P
is defined in the A frame, it can be transformed to the B frame using the following equation:

vB = T+CB ,AvA (3.18)

Whereas, if point P is defined in the B frame, it can be transformed to the A frame using the following equation:

vA = CA,B vB −T (3.19)

3.3.1. Reference frame transformations
The reference frames and the transformations between them that will be used in this work are discussed be-
low. These transformations are necessary to transform the determined position and orientation of one frame
to the desired frame.

World reference frame (W) to asteroid reference frame (A)
The origin’s of the two frames align and the axes align in the initial orientation. The transformation is there-
fore only a function of a rotation around the world’s z-axis to arrive at the orientation of the asteroid.

CA,W = Cz (ψ) =
 cosψ sinψ 0

−sinψ cosψ 0
0 0 1

 (3.20)

World reference frame (W) to the Blender camera frame (B)
The orientation of the Blender camera (B) w.r.t. the world reference frame (W) is determined during the
dataset generation, which is elaborated upon in Subsection 7.2.3. This orientation is parameterized as a
quaternion, which can be transformed to the DCM using:

3.3. Frame transformations 25

Figure 3.3: The expression of a point from frame A to frame B, composed of a translation and a rotation (Mooij,
2019)

CB ,W =

(
q2

0 +q2
1 −q2

2 −q2
3

)
2
(
q1q2 +q0q3

)
2
(
q1q3 −q0q2

)
2
(
q1q2 −q0q3

) (
q2

0 −q2
1 +q2

2 −q2
3

)
2
(
q2q3 +q0q1

)
2
(
q1q3 +q0q2

)
2
(
q2q3 −q0q1

) (
q2

0 −q2
1 −q2

2 +q2
3

)
 (3.21)

Blender camera frame (B) to the camera reference frame (C)
The transformation between the Blender camera frame (B) and the camera reference frame (C) is fixed and is
given below.

CC ,B = Cx (−π) =
 1 0 0

0 cos(−π) sin(−π)
0 −sin(−π) cos(−π)

=
 1 0 0

0 −1 0
0 0 −1

 (3.22)

Camera reference frame (C) to pixel reference frame (P)
A point in the camera reference frame can be expressed in the pixel reference frame by making use of the
camera intrinsic parameters matrix K, rP = KrC , which is discussed in Section 4.1. The intrinsic camera
parameters used in this work are shown below and can also be found in Table 7.2.

K =
 fx 0 cx

0 fy cy

0 0 1

=
 4266.67 0 512

0 4266.67 512
0 0 1

 (3.23)

26 3. Reference frames

4
Pose estimation framework

This chapter discusses the pose estimation framework. As discussed in Chapter 2, a monocular vision-based
navigation algorithm is developed in this work. A model-based monocular pose estimation pipeline uses a
2D image as the input and produces an estimate of the pose of the target w.r.t. the camera. The pose refers
to the distance and orientation of the target w.r.t. the camera. Section 4.1 discusses the camera model that
was used to generate the image dataset and develop the vision-based algorithm. Furthermore, Section 4.2
discusses the PnP problem, which uses detected features from an IP algorithm to output an estimate of the
pose. Different dedicated pose solvers that are used to solve the PnP problem are discussed in Section 4.3.

4.1. Camera model
The camera is described using the pinhole camera model. This model is widely used in computer vision
and is simple to implement. Furthermore, this is used by the 3D rendering software employed in this work.
This simple model accounts for the focal length and pose of the camera, and is sufficient for the purpose
of relating a 2D point in the image plane to a 3D point in the camera frame, which is required in this work.
The virtual pinhole model is implemented, where the projection plane (image plane) is placed in front of the
center of projection. This makes it easier to analyze and it does not require inverting the image. The following
definitions are taken from Sturm (2014):

• The focal length f is the distance between the center of projection (optical center) and the image plane.
• The line passing through the center of projection and that is orthogonal to the image plane is called the

optical axis
• The intersection point of the optical axis and the image plane is the principal point.

The virtual pinhole camera model and the aforementioned definitions are shown in Figure 4.1. The focal
length influences the perspective projection, if the focal length f gets smaller, more points are projected on
the image plane, i.e., FOV increases. The opposite effect occurs if the focal length increases. The perspective
projection scales real world objects on the image plane in relation to the distance of the object to the camera.
This is different from orthographic projection, where the size of the object within the image does not change
with the distance of the object from the camera.

The 3D point P corresponds to the 2D point p in the image plane as shown in Figure 4.1. The coordi-
nates of point p in the image plane can be calculated using the coordinates of point P in the camera frame
(xC , yC , zC) and the focal length f , by the use of equivalent triangles. These are the perspective projection
equations and the coordinates of point p relative to the principal point are given below.

p =
(

f
xC

zC
, f

yC

zC

)
(4.1)

The projection of a point P is not unique, as any point on the line OP has the same projection p. The
focal length and the 3D coordinates are measured in meters or millimeters. However, the pixel coordinates
(u, v) are measured in pixel distances. Therefore, the scale factors sx and sy are introduced to convert the
coordinates to pixel distances. This results in the following, fx = sx f and fy = sy f , where the scaling factors

27

28 4. Pose estimation framework

Figure 4.1: The virtual pinhole camera model containing the camera reference frame and the pixel reference
frame and the other relevant definitions

are related to the dimensions of a pixel in geometric units, such as meters or millimeters. These scale factors
are identical when dealing with square pixels. The point P can be expressed in pixel coordinates, relative to
the principal point with the following matrix notation.

p =
[fx

zC 0 0

0
fy

zC 0

]xC

yC

zC

 (4.2)

This method of transforming 3D coordinates to image coordinates is not practical, as the transformation
matrix depends on the distance of the 3D point to the camera (zC). Therefore, homogeneous coordinates are
used to describe the transformation between the 3D points and the image coordinates with a unique matrix
that is independent of the distance of the 3D point to the camera.

Normally, an object’s position can be described in three-dimensional space using Euclidean geometry
with three coordinates (x, y, z). However, to describe those coordinates in image coordinates, projective ge-
ometry is used, which has an extra dimension (w). This four-dimensional space is called the projective space
and the coordinates in the projective space are called homogeneous coordinates. This extra dimension w ,
scales the x, y, z coordinates and therefore homogeneous coordinates can be viewed as scaled coordinates
that remove the dependency of the projection coordinates on the distance of the 3D object w.r.t. camera.

The concept of homogeneous coordinates is best explained through an analogy in 2D. Imagine a projector
at a distance (w) of 3 m away from a screen. There is a point present on that screen with the 2D coordinates
w.r.t. principal point of (12,15). The projective coordinate vector (x, y, w) would then be equal to (12,15,3).
When moving the projector closer to the image until w = 1, the projected image become three times smaller
and the coordinates of the point need to be scaled by the same amount, resulting in the new projective coordi-
nate vector (12

3 , 15
3 , 3

3) = (4,5,1). The 2D coordinates of the point w.r.t. the principal point are (4,5). Therefore,
homogeneous coordinates are coordinates that remove the dependency on the distance from the point to the
camera, by setting the distance w = 1, and scaling the x, y coordinates accordingly. This concept is similarly
applied to 3D. Rewriting Equation (4.2) to express p in homogeneous coordinates results in:

p =
 fx α 0 0

0 fy 0 0
0 0 1 0

xC

yC

zC

1

 (4.3)

As discussed in Section 2.3, an ideal model is assumed, i.e., no skew factor (α= 0), which can occur when

4.2. Perspective-n-Points (PnP) problem 29

the optical axis is not perfectly perpendicular to the image plane. Furthermore, no distortion is taken into
account.

Up until now the coordinates of p have been described w.r.t. the principal point. However, to express
the coordinates of p in the pixel reference frame (P), pP , these coordinates need to be offsetted with the
coordinates of the principal point (cx ,cy) presented in the pixel reference frame. Therefore, the coordinates
of point P can be presented in the pixel reference frame P as follows.

pP = (
u v 1

)T =
(
cx + f

xC

zC
,cy + f

yC

zC

)
(4.4)

This can be written in the following matrix notation, using homogeneous coordinates measured in pixel
coordinates.

 u
v
1

=
 fx 0 cx 0

0 fy cy 0
0 0 1 0

xC

yC

zC

1

 (4.5)

This transformation matrix between a point expressed in the camera frame and the pixel reference frame
is referred to as the camera intrinsic parameter matrix K. The camera intrinsic parameter matrix is impor-
tant in solving the PnP problem, which will be elaborated upon in Section 4.2. As addressed in Section 2.3,
the camera intrinsic parameters are assumed to be known. However, when using an actual camera, these
parameters are estimated through a calibration procedure.

4.2. Perspective-n-Points (PnP) problem
The goal of the Perspective-n-Points (PnP) problem is to determine the distance and orientation of the target
with respect to the camera, given the camera’s intrinsic parameters and the set of n 2D-3D correspondences
between the 3D body coordinates and the 2D projections. The 3D model of the target needs to be available
for the estimation. This approach is often used in computer vision problems and has also been applied to
estimate the pose of uncooperative spacecraft by Barad (2020), Chen et al. (2019), Park et al. (2019), and
Pasqualetto Cassinis et al. (2020).

The PnP problem can be mathematically described in the following way. Let rA = (
xi yi zi

)T
, where

i = 1,2, ... , n, where n represents the number of 3D landmarks/features/keypoints on the 3D model of the

asteroid defined in the asteroid reference frame (A). Furthermore, let pP
i = (

xi yi 1
)T

, where i = 1,2, ... , n,
represents the n corresponding 2D image points in the pixel reference frame (P). The pixel reference frame (P)
is related to the camera reference frame through the camera’s intrinsic parameters as discussed in Section 4.1.

The PnP problem consists of determining the position of the asteroid’s center of mass tC and the orienta-
tion of the asteroid with respect to the camera frame (C). This transformation matrix from the asteroid to the
camera frame is given by CC ,A . The PnP equations are given below and they relate the unknown pose to a de-
tected 2D feature p, using the position of that feature w.r.t. camera frame, rC . The PnP problem is graphically
shown in Figure 4.2.

rC = (
xC yC zC)T = tC +CC ,ArA (4.6)

p =
(

xC

zC
fx + cx ,

yC

zC
fy + cy

)
(4.7)

where fx and fy refer to the scaled focal lengths (fx = sx f , fy = sy f) in the respective principal directions and
(cx ,cy) refer to the coordinates of the principal point in the P frame as discussed in Section 4.1. A feature on
the 3D model can be expressed in the camera frame with Equation (4.6), and the corresponding 2D points p
in the pixel reference frame plane are obtained using Equation (4.7), relating 3D with 2D.

As was discussed in Section 3.1, +ZC is assumed to be aligned with the boresight of the camera (optical
axis) and +XC and +YC are aligned with the pixel reference frame axis XP and YP . Using this, Equations (4.6)
and (4.7) can be rewritten in homogeneous coordinates and matrix form resulting in Equation (4.8). The
K matrix represents the internal camera matrix also referred to as the camera intrinsic parameters matrix
as discussed in Section 4.1. The pose matrix P ∈ R3×4 contains the transformation matrix from the asteroid

30 4. Pose estimation framework

Figure 4.2: The geometric depiction of the PnP problem

reference frame (A) to the camera reference frame (C) CC ,A and the translation vector tC , which is the same
as rC

A/C .

 u
v
1

= [K][P]

xi

yi

zi

1

 (4.8)

Filling in the respective parameters for K and P results in:

 u
v
1

=
 fx 0 cx

0 fy cy

0 0 1

[
CC ,A | rC

A/C

]
xi

yi

zi

1

 (4.9)

The PnP problem as shown in Equation (4.9) contains six unknowns, namely the three attitude descrip-
tors and the three position coordinates. Equation (4.9) demonstrates that an important aspect of generating
accurate pose estimates is the capability of the IP algorithm to extract features from the 2D image. These 2D
feature coordinates (ui , vi) constrain the location of the 3D points as they have to lie on the perspective line
through the 2D points. Therefore, each 2D feature detection will result in two equations indicating that for
n = 3, the system is fully defined, i.e., six equations for six unknowns. However, the P3P problem generally
results in eight solutions of which four will be behind the image plane, leaving four actual solutions. These
four solutions are caused by the viewpoint ambiguity as shown in Figure 4.3. The fixed rigid triangle, defined
by the three 3D points, can be oriented in four different ways, such that the vertices all lie on the respective
perspective lines, indicating that they have the same 2D point locations in the image frame.

4.3. Pose solvers 31

Figure 4.3: The viewpoint ambiguity that exists for P3P where two of the four possible orientations are shown.
The different orientations of the three 3D point locations have the same 2D locations in the pixel reference
frame (P) (Barad, 2020)

This ambiguity is the result of the non-linear transformation between the Euclidian space and the homo-
geneous space. A unique solution is found when n = 6, however, with actual systems that are observing these
points in an image, there could still be problems due to noisy detections of the feature location. This could
result in solutions that are very close to the true solution in image coordinates, but very far from the actual
solution in the orientation of the object, these are referred to as near solutions. Furthermore, there could still
be problems with coplanarity and object symmetry. Generally, the more (accurate) detections that are used
in the estimation (n ≥ 6), the better the pose estimate. There is a lot of research into designing efficient and
accurate methods (pose solvers) to solve the PnP problem. An overview of the different techniques and pose
solvers is given in the subsequent Section 4.3.

4.3. Pose solvers
There are several PnP solvers and generally they can be divided into two different categories, namely based
on whether they use an iterative or non-iterative approach:

• Iterative approach: This approach tries to minimize the error-based objective function that is defined
in the image or object space, thereby solving Equations (4.6) and (4.7), while taking all the non-linear
constraints into account. This can be solved in an iterative manner, which would require an initial es-
timate and tends to be computationally expensive to achieve a desirable result. These methods, how-
ever, have a high accuracy when they converge. However, for some methods it is not guaranteed that
the obtained minimum for the error-based objective function is the global minimum and these iter-
ative methods tend to get stuck in local minima. The most commonly used iterative solvers are Pose
from Orthography and Scaling with Iteration (POSIT) (Dementhon and Davis, 1995), Coplanar POSIT
(Oberkampf et al., 1996), Lu-Hager-Mjolsness (LHM) (Lu et al., 2000).

• Non-iterative approach: This approach solves the PnP problem by using linear forms of Equations
(4.6) and (4.7). This results in a closed-form solution, thereby removing the need for an initial pose
estimate. The use of linear forms greatly improves the computational speed, however, the accuracy of
these methods are generally lower compared to the iterative approaches. The most commonly used
non-iterative approach is the EPnP solver created by Lepetit et al. (2009).

The EPnP solver has been proven to be robust to noise on the predicted 2D keypoint location, however,
as well as the other discussed solvers it does not take into account detection uncertainty. Ferraz et al. (2014)
proposed the CEPPnP solver, which takes the detection uncertainty into account in the form of a covariance
matrix. By quantifying the uncertainty belonging to a detection, the resulting solver knows which detections
it needs to rely on more heavily and which it should discard for the determination of the pose. This quantifi-
cation increases the accuracy of the resulting pose estimation.

Pasqualetto Cassinis et al. (2020) proposed a method that allows to quantify the detection uncertainty
by deriving a covariance matrix from the heatmap outputted by the keypoint detection network. This could
then subsequently be used by the CEPPnP solver. However, the implementation is not trivial as the network
outputs 68 keypoints per image (Section 7.4), resulting in over 300,000 heatmaps. Therefore, due to time-
limitations this method was not implemented in this work, but the basic concept of extracting the covariance
matrix from the detection heatmap is discussed in Appendix A, as this is discussed further in the recommen-
dations, Section 12.2.

32 4. Pose estimation framework

5
Machine learning

This chapter discusses the theoretical background behind the machine learning concepts used within this
work. Firstly, an introduction to deep learning is given in Section 5.1. Secondly, Section 5.2 discusses the
different facets of implementing a neural network to build a basic intuition regarding the concepts. The Con-
volutional Neural Networks, which are the state-of-the-art architecture for computer vision, are discussed
in Section 5.3. Section 5.4 discusses the building blocks underlying the current trend of optimizing the net-
works for usage on mobile and embedded devices. The chapter is concluded with general machine learning
concepts in Section 5.5 that are vital for understanding the discussions in later chapters.

5.1. Deep Learning
Within the last decade Deep Learning (DL) has taken off through the increase of available data caused by
the digitization of society. Traditional learning algorithms, such as logistic regression or Support Vector Ma-
chine (SVM), could not take advantage of the availability of more data and the performance of these methods
plateaued. However, neural networks and CNNs were able to harness this data and outperform the traditional
methods on challenging datasets, such as ImageNet, which consists of 14 million images containing a total of
20,000 categories (Deng et al., 2009).

Deep learning refers to networks that have three or more hidden layers. State-of-the-art deep learning
networks, such as ResNet (He et al., 2016), can have up to 100 hidden layers. Deep learning is not limited
to supervised learning, but can also be applied to unsupervised or reinforcement learning. However, the
focus in this work will be on a specific branch of supervised deep learning, namely computer vision, in which
convolutional neural networks are the state-of-the-art architecture.

Supervised learning is involved with finding the underlying function that maps x to y, using labeled train-
ing examples of x and y. This function is then used to predict y when presented with new data of x. Supervised
learning can be divided into classification problems and regression problems. Classification means that the
algorithm is for example trained to identify the type of animal present in the picture e.g., dog, cat, horse
and the output is a finite, discrete set of values, it is either classified as 1,2 ... n, depending on the number
of classes (animals). Regression means that the algorithm is, for example, trained to determine the price of
a house based on its square footage, the output is a continuous number. These different problems within
supervised learning require different algorithms.

There are two advantages of using deep representations. The first advantage is that the different layers
within a neural network can extract different levels of abstraction in a hierarchical order. This process is
graphically illustrated in Figure 5.1, where the first layers have a high resolution and detect more low-level
features, such as edges or lines, that do not really have semantic meaning. These low-level features are added
together to be able to learn more complex features, such as eyes, noses, and cheeks and eventually entire
faces. Therefore, the features detected by the deeper layers of the network have more semantic meaning.
The second advantage is that a small, but deeper network, which has more layers, but less hidden units, is
computationally more efficient in representing the same function compared to a large and shallow network.

33

34 5. Machine learning

Figure 5.1: Graphically showing the hierarchical process of deep learning in which the first layers extract
simple features, such as edges, whereas the later layers extract more complex and semantically strong features
such as eyes, noses, and cheeks and eventually an entire face. Adapted from Lee et al. (2011).

5.2. Neural Networks (NN)
A neural network is used to estimate a function that maps the input x to the output y and consists of an
input layer, one or more hidden layers, and an output layer. The input layer is a flattened (1D) array of the
input, where for an image each input feature x1, x2, ..., xn corresponds to a pixel. The basic architecture of a
(fully connected) neural network is graphically shown in Figure 5.2a. The size of an L-layer neural network,
is expressed using the number of hidden layers and the output layer. Whenever a neural networks contains
three or more hidden layers it is called a deep neural network. Each layer of the neural network consists of
neurons/nodes/units and for a fully connected layer each unit in a given layer is connected to units from the
previous layer, aside from the input layer. Neural networks are capable of estimating highly non-linear map-
pings from input to output. This capability was described by Cybenko (1989) and is called the universality
theorem. This theorem states that a neural network consisting of at least one hidden layer, with a sufficient,
but finite amount of units, is able to approximate any continuous non-linear function. The basic building
blocks of a neural network can be coarsely divided into two sections, namely forward propagation and back-
ward propagation, each of which will be discussed separately.

Forward propagation
The input x is transferred from the input layer to the output layer, which is called forward propagation. The
output of the neural network is thereby computed by passing the input data through several hidden layers.
Each node as shown in Figure 5.2b consists of tunable parameters w and b, weight and bias, respectively. Each
node performs two calculations in succession as graphically illustrated in Figure 5.2b. Firstly, it calculates z[l]

by multiplying the inputs of the neuron (x) with the weights and adding a bias as shown in Equation (5.2).

(a) The comprehensive network representation of a three-layer
Neural Network

(b) Schematically showing the two computations that
a node computes, firstly it computes z and then it
computes a

Figure 5.2: General architecture of a neural network and a schematic view of what each node computes

5.2. Neural Networks (NN) 35

Secondly, an activation function g (z) is used to scale the output from the neuron (z) to a desired output
range. These activation functions have to be non-linear, as the use of linear activation functions would result
in the layers becoming linear and thereby rendering the network unable to estimate non-linear functions.
The most commonly used activation function in deep learning is the Rectified Linear Unit (ReLu) function as
it was shown by Krizhevsky et al. (2012) that this activation function accelerated convergence of the network
by a factor of six. The ReLu activation function exists between

[
0 ∞]

. The function gives output z if z > 0
and zero otherwise.

x =

x1

x2

x3

x4

 (5.1)

z = wT x +b

a = g (z)
(5.2)

The forward propagation is explained using Figure 5.2a, where the 1D input vector is given in Equation
(5.1). Each neuron in layer l calculates Equation (5.2) based on the inputs to that neuron. For a single training
example this would result in the following for the first two layers.

z[1]
1 = w [1]T

1 x +b[1]
1

a[1]
1 = g [1](z[1]

1)
...

z[1]
4 = w [1]T

4 x +b[1]
4

a[1]
4 = g [1](z[1]

4)

z[2]
1 = w [2]T

1 a[1] +b[2]
1

a[2]
1 = g [2](z[2]

2)
...

z[2]
3 = w [2]T

3 a[1] +b[2]
3

a[2]
3 = g [2](z[2]

3)

(5.3)

The input to the second layer l = 2, is the activation of the first layer l = 1, meaning that for l > 1 the input
is given by a[l−1]. The parameters for each layer can be stacked together to form the following vectors for one
training example i shown for layer l = 1.

z[1] =

z[1]

1
z[1]

2
z[1]

3
z[1]

4

 a[1] =

a[1]

1
a[1]

2
a[1]

3
a[1]

4

 b[1] =

b[1]

1
b[1]

2
b[1]

3
b[1]

4

 W[1] =

· · ·w [1]T

1 · · ·
· · ·w [1]T

2 · · ·
· · ·w [1]T

3 · · ·
· · ·w [1]T

4 · · ·

 (5.4)

The general equation can be formulated as follows, where l refers to the current layer

z[l] = w [l]T a[l−1] +b[l]

a[l] = g [l](z[l])
(5.5)

However, this is for one training example only, for m training examples this would result in the following
equation, which is the general form of forward propagation for a neural network for m training examples.

Z [l] =W [l]T A[l−1] +b[l]

A[l] = g [l](Z [l])
(5.6)

where the respective matrices are given by Equation (5.7). The superscript i denotes the i th training example
while superscript [l] denotes the l th layer. Furthermore, n[l] refers to the number of neurons in layer l , m
refers to the total number of training examples and for the input layer n[0] = nx .

36 5. Machine learning

Z[l] =

z[l](1)

1 z[l](2)
1 · · · z[l](m)

1

z[l](1)
2

...
...

...
...

...

 ,Z[l] ∈Rn[l]×m A[l] =

a[l](1)

1 a[l](2)
1 · · · a[l](m)

1

a[l](1)
2

...
...

...
...

...

 ,A[l] ∈Rn[l]×m

X =

x(1)

1 x(2)
1 · · · x(m)

1

x(1)
2

...
...

x(1)
3

...
...

x(1)
4

...
...

 ,X ∈Rnx×m W[l] =

· · ·w [1]T

1 · · ·
· · ·w [1]T

2 · · ·
· · ·w [1]T

3 · · ·
· · ·w [1]T

4 · · ·

 ,W[l] ∈Rn[l]×n[l−1]

b[l]

· · ·b[1]

1 · · ·
· · ·b[1]

2 · · ·
· · ·b[1]

3 · · ·
· · ·b[1]

4 · · ·

 ,b[l] ∈Rn[l]×m

(5.7)

In conclusion, the forward propagation consists of feeding the training examples through the network
and multiplying it with the weight and biases for the respective layers to finally end up at the output layer.
The network’s weights and biases have to be initialized with small random values, as initializing with zero will
result in the symmetry problem meaning that every hidden unit will calculate exactly the same function re-
gardless of the duration of training, i.e., there is no point in having more than one hidden neuron. Depending
on the task the output layer could be used to output a probability or a number of coordinates. Fortunately,
when implementing neural networks these basic functions do not have to be programmed by hand and im-
plementations of these functions can be found in open-source machine learning platforms, such as Keras,
which is a part of TensorFlow1, and PyTorch2. The forward propagation is determined by the network’s archi-
tecture, which specifies the number of neurons and hidden layers.

Backpropagation
A cost function is required to be able to train the parameters w and b. For any given task, the goal of the
network would be that for m training examples, the predicted output ŷ (i) for training example i closely re-
sembles the actual (desired) output y (i), i.e., the goal when training a neural network is to minimize the error
between the predicted ŷ and the actual output y as listed below.

Given
{(

x(1), y (1)) , . . . ,
(
x(m), y (m))} , want ŷ (i) ≈ y (i) (5.8)

The loss function represents the accuracy of the prediction by comparing the predicted value with the true
value on example i and therefore serves as a measurement of the performance of the network. The loss func-
tion depends on the problem and the selection of an inappropriate loss function will affect the performance
of the algorithm.

The loss function (L
(
ŷ , y

)
) evaluates how well the network performs on a single training example i ,

whereas the cost function evaluates how well the network performs on the entire dataset, i.e., m examples.
The standard equation for a cost function is given by:

J (w,b) = 1

m

m∑
i=1

L (ŷ (i), y (i)) (5.9)

During training the neural network tries to find the weights and biases (w,b) that minimize the overall
cost function J (w,b). This is achieved using gradient descent, which iteratively moves in the direction of
the steepest descent, which is defined by the negative of the gradient. However, there is no guarantee that
the minimum obtained is the global minimum, as the majority of problems are not necessarily convex. The
process of gradient descent is graphically illustrated in Figure 5.3 for a single dimension of w , however, in
reality w,b ∈Rn . The gradient descent update law is given by:

1https://keras.io/about/, Date accessed: 13-1-2022
2https://pytorch.org/, Date accessed: 13-1-2022

https://keras.io/about/
https://pytorch.org/

5.3. Convolutional Neural Networks (CNN) 37

(a) The gradient descent (b) The effect of the learning rate and initialization point

Figure 5.3: The gradient descent method and the impact of the learning rate and initialization point on the
performance

w := w −α∂J (w,b)

∂w

b := b −α∂J (w,b)

∂b

(5.10)

This gradient descent update law depends on two parameters, namely the learning rateα and the gradient
of the loss function w.r.t. the respective parameter w or b. This learning rate α is one of the most important
hyperparameters (Section 5.5) and is dependent on the problem and has to be carefully selected. Having a
small learning rate results in slow convergence to the local minimum, while larger learning rates will result
in faster convergence, but it can also lead to unstable behavior, such as overshoot or erratic jumps in per-
formance. The learning rate can also be set to decay over time, where the assumption is that the network is
already close to the actual minimum and a smaller learning rate at that point would allow for better conver-
gence to the minimum instead of oscillating around it. This is illustratively shown in Figure 5.3b, where the
blue line represents a (too) large learning rate and the green line a good learning rate. Furthermore, the red
line illustrates the effect of the initialization point, resulting in ending up in a local minimum.

The gradient of the cost function ∂J (w,b)
∂w , ∂J (w,b)

∂b is calculated using backpropagation, which uses the chain
rule recursively to compute this gradient in a computationally efficient manner. The gradient shows how sen-
sitive the cost function is to each of the weights and biases of each layer. This allows the model to change those
weights and biases that will cause the most efficient/effective decrease to the cost function. These weights
and biases can then be updated to bring about this decrease of the cost function. Backpropagation starts
from the output layer and works back towards the input layer, computing the dependencies of each layer
on the output. The mathematics of backpropagation for neural networks are more involved than the for-
ward propagation and when implementing neural networks in the open-source machine learning platforms
TensorFlow (Keras) and PyTorch, only the forward propagation and cost function needs to be defined. This
entails specifying the number of neurons and layers and then backpropagation is automatically computed.

More advanced optimization methods compared to (normal) gradient descent are gradient descent with
momentum3, Root Mean Square (RMS) prop4 and Adam optimization (Kingma and Lei Ba, 2015). These
optimization methods rely on the same basic concept of gradient descent and the advanced additions result
in increased efficiency and better convergence. However, these optimization methods are not discussed in
detail within this section, but will be discussed in Chapter 8 and 9.

5.3. Convolutional Neural Networks (CNN)
CNNs are a special form of neural networks and are used for computer vision. The concepts of the aforemen-
tioned forward propagation and backpropagation also apply. The challenge of using regular neural networks
for computer vision problems is that the image size can be large, which results in an enormous input feature

3https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD, Date accessed: 29-11-2021
4https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop, Date accessed: 29-11-2021

https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/SGD
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/RMSprop

38 5. Machine learning

vector x and consequently huge computational costs. As an example, a Red, Green, and Blue (RGB) image of
1000×1000 px would result in a feature vector of around 3 million parameters and given a first layer with a
thousand hidden units, this would already result in having 3 billion parameters, adding more layers will only
compound to this: x ∈ R3M ,W[1] = (1000,3M). The solution is to make use of convolutions, which transform
the standard neural network into a CNN. CNNs are deep neural networks and have first been proposed to
tackle the problem of recognizing handwritten zip codes in 1989 (LeCun et al., 1989). The standard architec-
ture of the CNN was defined in the following years by LeCun and Bengio (1998). The seminal work of AlexNet
(Krizhevsky et al., 2012) has sparked the renewed interest in the usage of CNNs for computer vision. AlexNet
showed that CNNs were capable of greatly outperforming the state-of-the-art of image classifying algorithms
on the ImageNet classification benchmark (Deng et al., 2009). Since then, CNNs have been used extensively
for computer vision applications. A CNN consists of three types of layers:

1. Convolution layers
2. Pooling layers
3. Fully connected layers

The convolutional and pooling layers are used for feature extraction and are specific to CNNs. The last
layers are fully connected similar to traditional neural networks and are used to solve the classification or
regression problem using the extracted features. The convolutional and pooling layers are discussed in more
detail in this section.

Convolution
The convolutional layers are used to detect features through the use of a convolution operation, where an
input image is convolved with a filter/kernel. These filters contain weights and the convolutional operation
in 2D is mathematically represented by Equation (5.11) (Goodfellow et al., 2016). The filter size f is almost
always an odd number to avoid asymmetry. Moreover, the filter has a central position. In essence, at each
location the dot product between the element of the filter (weight w) and the input element x it overlaps is
determined. The total result is summed to arrive at the output value y for that location.

yi , j = (x ∗w)i , j =
∑

f

∑
f

x f , f ·ki− f , j− f (5.11)

where ∗ is the convolutional operator, i and j refer to the ’x’ location (width) and ’y’ location (height), re-
spectively, of the center location of the kernel. The kernel size is represented by f × f . The origin is in the top
left corner of the filter and counting starts from one. The convolutional operation is graphically illustrated in
Figure 5.4a. As can be observed in Figure 5.4a, when applying the convolutional operation the image shrinks,
which can result in a very small image when a lot of layers are used within a network. Secondly, because
the filter cannot be applied near the edges, valuable information from those regions is lost. Generally, when
using a 3× 3 filter, two pixels will be lost in the vertical and horizontal direction. This is because a pixel in
the top-left corner has no top and left neighbors and therefore the filter cannot be applied there, as the filter
should lie entirely within the image. The solution to this is padding, which adds p layers of pixels with value
zero around the input image as shown in Figure 5.4b. There are two convolutions, valid and same convo-
lutions, where valid convolutions refer to convolution without padding (Figure 5.4a) and same convolution
uses padding, such that the output size of the convolutional operation is the same as the input size of the
image (Figure 5.4b).

Furthermore, the stride s determines the step size that the filter takes as it ’slides’ across the image. A stride
s of 1 means that the filter moves one pixel to the right, which is the case in Figure 5.4a, whereas the bottom
image of Figure 5.4b has a stride s of 2. The filter size f , the stride s, and the padding p are hyperparameters
(Section 5.5) of the convolutional layer and influence the resulting output size as shown below, where n refers
to the input size.

(n ×n) ∗ (
f × f

) →
(

n +2p − f

s
+1

)
×

(
n +2p − f

s
+1

)
(5.12)

Each convolutional layer can have any number of randomly initialized filters. Different filters containing
different weights emphasize different features, e.g., horizontal lines, vertical lines, edges, corners, and more
abstract (unintuitive) features. Before the onset of CNNs the weights of these filters were hand-engineered to
emphasize the desired features, such as vertical lines. However, the CNN learns the features itself and learns

5.3. Convolutional Neural Networks (CNN) 39

(a) The convolutional operation using a filter size f = 3,
stride s = 1

(b) The same convolutional operation using a filter size
f = 3, padding p = 1 and stride s = 1 for the top image
and s = 2 for the bottom image

Figure 5.4: Graphically illustrating the convolutional operation

Figure 5.5: Graphically illustrating the 3D valid convolution operation for an example input size of 6×6×3

the best filters with the corresponding weights (feature extraction) to properly represent the data and perform
well on the designed task.

Convolutions over volumes
The input can have multiple channels and as such the filter also has to be 3D, meaning that the filter is a
cuboid that slides across the height, width, and depth of the input feature maps. The 3D convolution op-
eration is similar to the 2D convolution and is graphically shown in Figure 5.5, where the 3D convolution
operation produces a 2D feature map. As previously mentioned, multiple convolutional filters are used to
detect different features. The different 2D feature maps resulting from the 3D convolutional operations are
stacked together, resulting in 3D feature maps as shown in Figure 5.8. Therefore, for a given convolutional
layer l for an input image of n[l−1]

H ×n[l−1]
W ×n[l−1]

c , the filter size will be f [l] × f [l] ×n[l−1]
c , and the resulting

output size will be n[l]
H ×n[l]

W ×n[l]
c , where n[l−1]

H , n[l−1]
W , n[l−1]

c refer to height, width, and number of channels

of the input image to that convolutional layer l , respectively, and n[l]
H , n[l]

W , n[l]
c refer to the height and width

of the output 2D feature map and to the number of filters used, respectively. The number of filters used in a
convolutional layer is a hyperparameter (Section 5.5).

Advantages of convolutional layers
There are two advantages to the usage of convolutional layers:

• Parameter sharing: The different filters detect different features and thereby result in different feature
maps. However, a filter that detects vertical edges that is useful in one part of the image is also useful
in another part. This means that once the weights of the filter are determined, that same filter can be
applied to every part of the image. The total number of parameters for six filters of 3×3, with each filter
having nine weights and one bias term, would be only 60 parameters. Whereas, for traditional neural
networks each pixel has a certain weight associated with it, resulting in a weight matrix containing

40 5. Machine learning

millions of parameters for even very small images (e.g., 32×32×3)
• Sparsity of connections: Through the convolutional filter operation, the output value in the top-left

corner of the output feature map only depends on the f × f pixels in the top-left corner of the original
image as illustrated in Figure 5.4. It can be viewed as if only these 9 pixels are connected to the output.
This aspect not only decreases the size and thus the memory requirements of the model, but is also
reduces the computational effort required to determine the output.

Pooling layer
A pooling layer is used to decrease the size of the feature map and as such decreases the computational ef-
fort required to process the data while preserving the relevant information. The pooling operation works in a
similar fashion to convolution as it slides a filter of size f , with stride s, over the feature maps. The filter con-
tains a pooling function, which can be max or average pooling, with max pooling being the most commonly
used function. The intuition behind it is that a large number within the feature map indicates the presence
of a certain feature (e.g., vertical edge), therefore, if the feature is present in one of the quadrants it will be
preserved through the use of max pooling. The size and stride of the pooling filter are hyperparameters and
these are fixed and will not be learned through gradient descent. The concept of max pooling is graphically
shown in Figure 5.6, using a filter size f = 2 and stride s = 2.

5.4. Lightweight networks
The majority of state-of-the-art deep learning networks typically have millions of parameters and require sig-
nificant amounts of processing power. This places constraints on the required memory and computing power
of the processor to be able to run these networks. However, recently the trend is moving towards designing
so-called lightweight networks, which are networks that can be used on mobile and embedded devices. They
are characterized by a substantial decrease in computational cost as well as number of parameters compared
to traditional deep learning architectures. The building blocks of these lightweight networks will be discussed
as they are the basis of the networks discussed in Chapters 8 and 9.

Depth-wise separable convolution
The seminal work by Howard et al. (2017) created the MobileNet architecture, which introduced the concept
of depth-wise separable convolution, which replaces normal convolution thereby drastically reducing the
number of parameters in the network, resulting in sped-up performance and less necessary memory. The
concept of convolution was explained in Section 5.3 and the main concept is that the kernel/filter is applied
over all the channels (Figure 5.7 (a)), where the channel refers to the input’s depth. A RGB image has three
channels, one channel corresponding to each color. The depth-wise separable convolution on the other hand
consists of two steps, namely the depth-wise convolution and the point-wise convolution. Depth-wise con-
volution applies one filter per channel as graphically illustrated in Figure 5.7 (b) and Point-wise convolution
applies a 1×1 filter over all the channels as graphically shown in Figure 5.7 (c). This means that the number
of filters for depth-wise convolution is equal to the number of channels of the input nc , whereas the number
of filters of the point-wise convolution n

′
c determines the output size. This is also illustrated in Figure 5.8.

Depth-wise separable convolution reduces the computational effort by a factor of 8 to 9 compared to reg-
ular convolution, with only a minor decrease in accuracy (Howard et al., 2017). This is shown in Table 5.1,
which shows that by using depth-wise separable convolution compared to standard convolution the number
of parameters (memory usage) and FLOPs (computational effort) have been decreased by 86% and 88%, re-
spectively, at the cost of only a 1.1% decrease in performance. The chosen network architectures in Chapters
8 and 9 use depth-wise separable convolution.

12 3 18 9

55 96 8 0

70 90 2 89

35 112 17 5

96 18

112 89

Figure 5.6: Graphically illustrating the concept of 2×2 max pooling

5.4. Lightweight networks 41

Figure 5.7: Figure graphically showing the difference between standard convolution and depth-wise and
point-wise convolution (Park et al., 2019)

Table 5.1: Table showing the comparison between a MobileNet architecture that uses standard convolutions
(Conv MobileNet) and depth-wise separable convolution (MobileNet) on the ImageNet benchmark (Howard
et al., 2017)

Model ImageNet Accuracy [%] Parameters [Mn] FLOPs [Bn]
Conv MobileNet 71.7 29.3 4.9

MobileNet 70.6 4.2 0.6

Bottleneck blocks

The MobileNet architecture has been improved upon, resulting in the MobileNet-V2 architecture proposed
by Sandler et al. (2018), introducing two main changes compared to the initial architecture. The changes are
an addition of a residual connection (skip-layer) inspired by ResNet (He et al., 2016) and the addition of an
expansion layer before the depth-wise separable convolution. The name of the resulting lightweight block
is the (lightweight) bottleneck block, which is graphically illustrated in Figure 5.8. The residual connection
feeds information from the l th layer in the neural network directly to the l +2 layer, changing the resulting
output value of that layer to a[l+2] = g

(
z[l+2] +a[l]

)
. The general notion is that the deeper the network the

more complex the function it can represent, however, the training of these very deep networks is plagued by
vanishing and exploding gradients. The residual connections proposed by He et al. (2016) offer a solution to
this problem. The residual connection allows the layer to easily learn the identity function in comparison to
a normal neural network thereby guaranteeing that the addition of layers will not hurt the performance and
can potentially increase the performance.

The expansion layer uses point-wise convolution to increase the size of the representation by using more
filters, whereas the aforementioned approach of point-wise convolution is now dubbed projection as it projects
the output size back to smaller values. The advantage of adding the expansion layer is that the neural network
can learn more complex functions, because of the increased size of representation, whereas the advantage of
subsequently using projection is that you scale down the number of parameters that are transferred to the
next block. Thereby reducing the amount of memory needed to store the parameters. This bottleneck block
is considered a building block of lightweight networks and is used in a variety of other architectures as well as
the LPN network proposed by Zhang et al. (2019), which is discussed in Chapter 9.

42 5. Machine learning

Figure 5.8: The lightweight bottleneck block, which consists of four distinct parts, namely the residual con-
nection (green), the expansion layer followed by the depth-wise convolution and the projection layer

5.5. General machine learning concepts
This section briefly discusses several concepts and definitions that are often used when discussing machine
learning models. This serves to better understand the discussion in Chapters 8 and 9 regarding the networks.
The following concepts will be discussed:

• Hyperparameters
• Generalization
• Regularization
• Mini-batches
• Inference
• Transfer learning
• Network size and computational effort

Hyperparameters
Neural networks consists of parameters and hyperparameters, where the parameters are the learnable weights
and biases (w,b) and the hyperparameters refer to parameters that influence those weights and biases, such
as the learning rate α, the number of epochs (training steps), the number of layers, the number of filters
per layer, and the mini-batch size. These hyperparameters are not learned by the network and have to be
manually tuned to achieve the best possible performance of the network.

Generalization
As in line with non-machine learning models, the model is trained on certain data and then its performance
is tested on unseen data to evaluate how well the trained model generalizes. During training the goal is to
find a model that performs well on the training dataset (low bias), while also performing well on the valida-
tion dataset (low variance). This is relative to the best possible performance that a network can theoretically
achieve, Optimal Bayes error. A high training error (high bias) indicates underfitting, which means that the
function is too simple to explain the underlying patterns in the data, whereas overfitting means that the func-
tion is too complex and fits every data point in the training set very well. A large gap in performance of the
model on the training set and the validation set (high variance) could indicate overfitting. This can be de-
creased by using more training examples and using regularization techniques. The concepts of overfitting
and underfitting are strongly related to the capacity of the model, which refers to the ability to estimate com-
plex functions. The more neurons and layers a neural network has, the higher the capacity.

Regularization and data augmentation
There are techniques that can used to reduce overfitting and increase the generalization performance, i.e., re-
duce the generalization gap (reduce the variance). The variance can be reduced by using more training data

5.5. General machine learning concepts 43

or by applying regularization techniques. The most common regularization technique is L2-regularization
and this is also used in the chosen object detection network (Chapter 8). This approach adds a penalty term
that is scaled by the regularization parameter λ to the cost function J (w,b) as shown below, where m is the

number of training examples and w is the weight matrix. Because w is a matrix,
∥∥w [l]

∥∥2
2 represents the Frobe-

nius norm.

J (w,b) = 1

m

m∑
i=1

L (ŷ (i), y (i))+ λ

2m

L∑
l=1

∥∥∥w [l]
∥∥∥2

2
(5.13)

The intuition is that by having a large value for λ, the weights will be forced to be small (≈ 0) as otherwise
the value of the cost function increases. This results in the deactivation of a lot of units and thereby resulting
in a simpler model, and as such the likelihood of overfitting decreases. However, using a too simple model
could result in underfitting. The choice of λ is therefore crucial in determining the optimal model and pre-
venting over/underfitting (Goodfellow et al., 2016). Another method of regularization that is commonly used
is dropout regularization, which refers to randomly selecting certain neurons to be ignored during a forward
or backward pass. For each training step a different random set of neurons is ignored to avoid the network to
rely too much on certain weights. Furthermore, by ignoring certain nodes the network becomes smaller and
this moves the network away from overfitting.

Another important tool in reducing the variance is data augmentation, which refers to expanding the
dataset by creating modified copies of samples of the training set by flipping, random cropping, and rotating
the original images. These types of augmentations are called affine augmentation, whereas random bright-
ness or contrast changes applied to the images are referred to as pixel-level data augmentations. The larger
dataset in itself helps to improve the generalization performance, as the model has more information it can
learn from. Moreover, the model will also learn to become invariant to these induced brightness/contrast
changes or scaling and rotations. Examples of augmentations are given in Figure 7.19.

Mini-batches
The regular gradient descent, also referred to as Batch Gradient Descent (BGD), uses the complete training
set to compute the gradient of the loss function after which the weights and biases are updated and the pro-
cess starts again. As the entire dataset is used to update the model, this is an accurate, but time-consuming
method that takes a long time to converge and is not suitable for large datasets. The concept of using mini-
batches, also known as Mini-Batch Gradient Descent (MBGD), refers to randomly splitting up the training set
into smaller parts that are then used to compute the gradients of the loss function and consequently update
the weights and biases. The advantage of using MBGD is that progress can be made without having to pro-
cess the entire dataset, as it only processes n examples at a time. The process of the usage of mini-batches is
shortly discussed below, for k mini-batches: For k = 1, ...,k

1. Forward propagation on X {k} for k mini-batches.
2. Compute the cost function J (X {k},Y {k})
3. Backward propagation to compute the gradients dw,db and update the weights and biases

Running through all the mini-batches in the training set is called an epoch and networks are trained for mul-
tiple epochs. When the mini-batch size is equal to the number of training examples m, the method reduces
to BGD. When the mini-batch size is equal to one, the method reduces to Stochastic Gradient Descent (SGD),
meaning that every training example is its own mini-batch. However, in practice the mini-batch size lies
somewhere between these two extremes and generally the mini-batch size is a power of 2 for efficiency rea-
sons, e.g., 25 = 32. A larger mini-batch size generally result in more accurate movement towards the mini-
mum, albeit at a slower pace, as more data is processed before an update step is made. Selecting the ideal
mini-batch size for a given problem can be based on literature, similar problems, or through trial and error.
However, the upper limit of the mini-batch size is determined by the GPU memory.

The disadvantage of mini-batches is that they do not always exactly converge to the minimum and they
can oscillate around it, however, this can be ameliorated by using a smaller learning rate α or decaying learn-
ing rate over time.

The practical implication of using mini-batches is that the cost function data is more noisy, because some
mini-batches might be easier for the network to process than others, resulting in the value of the cost function
being different between batches. However, the trend of decreasing costs over the epochs remains the same.

44 5. Machine learning

Inference
After a machine learning model has been trained, it can be used for inference. Inference refers to the situation
in which the trained model is fed (new) data and creates actionable output. An example would be a trained
cat/dog classification model that is fed an image containing a cat and that it then outputs a probability that
the image contains a cat or a dog.

Transfer learning
The training of a CNN requires an extensive dataset of images and a lot of computational resources. However,
initializing the network with random weights and biases results in starting the training with a model that has
no knowledge whatsoever. The concept of transfer learning refers to the usage of the weights and biases of
a model trained to a certain dataset, i.e., pre-trained model, to initialize the actual network. This concept
relies on the fact that the earlier layers of the CNN detect low-level features, such as corners, edges, and lines,
whereas the later layers detect semantically stronger higher-level features, such as a wheel or face. These low-
level features are generic and relevant for any dataset and allow the network to leverage this knowledge for
the new dataset. The concept of transfer learning is synonymous to how humans learn, where the knowledge
gained by riding a bike can be used to ride a motorcycle.

The concept of transfer learning is almost always applied for computer vision problems (Barad, 2020;
Sharma, 2019; Sun et al., 2019; Xiao et al., 2018). Two types of transfer learning can be discerned, namely
finetuning and feature extraction. Finetuning refers to the process of using a pre-trained model’s weights and
biases to initialize the new model, and then retraining the entire network on the new task, i.e., updating all
of the model’s parameters. Whereas feature extraction, refers to the fact that the pre-trained model’s weights
and biases are used to initialize the new model and these values are then kept fixed and only the final layer’s
weight and biases are updated using the new dataset. By applying transfer learning the model has already
learned some aspects and this approach generally produces favorable results in terms of overall accuracy and
training time compared to a model that is trained from scratch, i.e., weights and biases randomly initialized5.
Moreover, it allows complex networks to be adapted to the new purpose while using relatively small datasets.

Network size and computational effort
There are a myriad of different CNNs that use different numbers of convolutional and pooling layers. The
performance of these networks on challenging datasets, such as COCO (Lin et al., 2014), are often published,
however, the size and the computational efficiency of the network is equally important.

Comparing the execution time does not give a good indication as running the network on high performing
GPU’s or slow CPU’s would give different results. Therefore, to accurately compare the efficiency of different
networks two parameters are used, namely the number of parameters and FLOPs, also known as Multiply-
accumulate operation (Mult-Adds)

• Number of parameters: This defines the size of the network and includes the parameters of the convo-
lutional layers and fully connected layers, as pooling layers have no learnable parameters. The number
of parameters can be viewed as a proxy for the amount of memory needed to run the model, i.e., the
weights and biases need to be stored on the device. The state-of-the-art image classifying CNNs typi-
cally have between five to a hundred million parameters.

• FLOPs or Mult-Adds: This parameter represents the computational efficiency of the network. It repre-
sents the total amount of floating point operations that are necessary to process the image through all
the layers of the network during a forward pass. The state-of-the-art CNNs typically have between one
to a hundred billion FLOPs, therefore FLOPs are measured in billions. The lower the FLOPs, the more
efficient the network.

5https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html Date accessed: 2-11-2021

https://pytorch.org/tutorials/beginner/finetuning_torchvision_models_tutorial.html

III
Algorithm Design & Methodology

45

6
Algorithm’s architecture overview

This chapter shows a top-level description of the pose estimation pipeline developed in this work. This serves
as an overview of how all the different parts fit in and which software is used and developed for each respective
part. The architecture and software overview are discussed in Sections 6.1 and 6.2, respectively.

6.1. Architecture overview
As discussed in Section 2.1, there is a variety of approaches that can and have been used to estimate the
pose of objects or humans. The approach used in this work is a model-dependent feature-based learning
approach, as this was identified as the most promising method in Section 2.1. This means that a CNN is
used to detect pre-defined keypoints on the 3D model within a 2D image after which the 2D-3D correspon-
dence can be used to estimate the distance to the asteroid by solving the PnP problem. The feature detecting
CNN replaces traditional hand-engineered IP algorithms. This feature-based approach followed by a separate
pose estimation step outperformed end-to-end CNN architectures in which a single CNN replaced the entire
pipeline and thereby learning the complex non-linear relation between the 2D image and the pose directly
(Sharma and D’Amico, 2019).

The advantage of using a CNN-based approach is that the keypoints can be selected offline and as such
their 2D-3D correspondence is known, avoiding the cumbersome and computationally intensive matching
of the detected 2D features to their location on the 3D model using methods such as RANSAC (Park et al.,
2019). Furthermore, the keypoint-based CNNs output predicted detections for all the designated keypoints,
even when they are occluded or not directly visible (e.g., on the back of the target) (Zhao et al., 2018). This
is because it learns the inherent spatial relationship between the different keypoints. A CNN-based feature
detector is also proven to be more robust against illumination conditions and image noise compared to tradi-
tional IP algorithms, which is crucial for the usage in a vision-based navigation system (Pasqualetto Cassinis
et al., 2021a).

Figure 6.1 illustrates the pose estimation framework and the facets of the CNN-based feature detector,
and how this would fit within a navigation framework. A top-down approach is used, which consists of an
object detection network in front of the keypoint detection network, making the CNN pipeline more robust
to the scale of the object within the image, allowing for accurate keypoint detections (Pasqualetto Cassinis
et al., 2021a). Moreover, it is the state-of-the-art approach used within keypoint detection for human pose
estimation, terrestrial objects, and uncooperative spacecraft (Kisantal et al., 2020; Pasqualetto Cassinis et al.,
2021a; Zhao et al., 2018).

This OD network detects the object within the image and regresses the bounding box coordinates encom-
passing the object. This bounding box is used to crop the RoI of the original image. This RoI image is resized
to match the input size of the keypoint detection network, which convolves the input image and outputs
heatmap predictions around the pre-selected keypoints. The 2D pixel coordinates of the keypoint location
correspond to the heatmap’s peak intensity, where the shape and the intensity characterize the confidence of
detecting the corresponding keypoint at that location (Pavlakos et al., 2017). This heatmap approach resulted
in better performance compared to the direct regression approach and it allows for the extraction of statis-
tical information (covariance matrix) regarding the detection uncertainty (Pasqualetto Cassinis et al., 2020).
However, this step is not performed within this work due to time-limitations, but the method is described

47

48 6. Algorithm’s architecture overview

Navigation framework

Object detection
network

Predicted
2D keypoint

locationsKeypoint
detection network

CNN-based feature detector

Bounding box
coordinates

PnP solver State estimator

Pose
estimate

Pose estimation framework

cropped
RoI-

Corres-
ponding

3D points

Figure 6.1: Schematically illustrating the different parts of the pose estimation framework that is designed
within this work and how this fits within a larger navigation framework

in Appendix A. These networks have to be trained using large-scale datasets and due to the unavailability
of datasets of actual space images of the target, synthetic images are to be used. The creation of this syn-
thetic dataset is explained in detail in Chapter 7. The selection, implementation, configuration, training, and
evaluation procedures of the respective networks are discussed in Chapters 8 and 9, respectively.

The detected 2D keypoints are then fed to the PnP solver alongside their corresponding 3D locations on
the target. The EPnP solver developed by Lepetit et al. (2009) is selected for use in this work, which is available
through the Open Source Computer Vision Library (OpenCV), allowing for ease of application. Therefore, no
separate chapter is required detailing the implementation. The basic workings are explained and the choice
is motivated within this section.

The EPnP solver is a non-iterative approach to solve the PnP problem. The main idea of the EPnP solver
is to rewrite the 3D points as a weighted sum of four different non-coplanar virtual control points, c j , where
j = 1,2,3,4, presented in the asteroid reference frame (Figure 4.2). These 3D points, r A

i , are expressed in
barycentric coordinates, αi j , of these virtual control points as shown below. The coordinates of these virtual
control points are arbitrary.

r A
i =

4∑
j=1

αi j c j (6.1)

This allows Equation (4.9) to be rewritten in terms of the vector x̂ containing the 12 unknown control point
coordinates in the camera frame, resulting in a linear system Mx̂ = 0 that is solved to find these unknowns.
Where matrix M ∈R2n×12 is a known matrix for n 2D-3D correspondences.

This method proved a significant improvement with regards to computational complexity, O(n), with little
to no loss of accuracy while being less sensitive to noisy 2D feature locations compared to other non-iterative
pose solvers. This makes it more suitable for application on an embedded device. Several other state-of-the-
art PnP solvers have O(n5) or O(n8) (Lepetit et al., 2009). The EPnP solver is applicable to non-coplanar as well
as coplanar 3D model points and it requires a minimum of four (n ≥ 4) 2D detections with their correspond-
ing 3D model points. However, under the influence of noisy 2D detections, n ≥ 6, is desired. Furthermore,
the EPnP solver achieves accuracies comparable to iterative approaches at a fraction of the computational
cost and without requiring an initial estimate (Lepetit et al., 2009). The EPnP solver has also been used by
Park et al. (2019) and Pasqualetto Cassinis et al. (2021a) for uncooperative spacecraft pose estimation and by
Magalhães Oliveira (2018) for feature-based navigation around the Moon.

This CNN-based pose estimation pipeline can be incorporated into either a tightly-coupled or loosely-
coupled approach, where the former refers to feeding the extracted keypoint directly to the navigation filter
as measurements and the latter refers to firstly calculating the pose using a PnP solver after which these pa-
rameters are fed to the navigation filter as pseudomeasurements. The CNN-based approach guarantees de-
tections of all pre-defined keypoints. Therefore, it overcomes challenges faced by traditional feature-tracking
approaches for which the number of detections can deviate, resulting in highly-variable measurements sent

6.2. Software overview 49

Table 6.1: An overview of the different parts of the algorithm architecture and the respective software used for
each part

Part Main functionality Software

Dataset creation
(Chapter 7)

1. Image rendering
Python, Blender (Python API),
Google Colab (Python)

2. Textured asteroid model creation Blender
3. Keypoint designation Point Cloud Library (PCL) (C++)
4. Dataset annotation Python
5. Corrupted images dataset creation Python

Object detection network
(Chapter 8)

Detecting the asteroid within the image
TensorFlow (Python),
Google Colab (Python)

Keypoint detection network
(Chapter 9)

Detecting the keypoints/features/landmarks
on the asteroid surface

PyTorch (Python),
Google Colab (Python)

EPnP
Output the pose estimate using the detected
2D points and their 2D-3D correspondences

OpenCV (Python)

to the filter. Moreover, a covariance matrix quantifying the uncertainty of the detections (measurements) de-
rived from the heatmaps can be used to improve the filters robustness. These two aspects would allow for the
incorporation of this pipeline in a tightly-coupled navigation architecture, which is normally preferred over a
loosely-coupled architecture, as it allows for better convergence and does not suffer from colored noise.

6.2. Software overview
The different components and their main top-level functionality alongside the software/language that is used
to perform that functionality are shown in Table 6.1. This serves as an overview and the respective parts and
their design choices will be discussed in more detail in Chapters 7 through 9.

The dataset was created using Blender1, which is a powerful open-source and free 3D modeling software,
which can be used to create 3D models and render images from 3D scenes through a Python API. Further-
more, the 3D SIFT algorithm used to designate the keypoints on the asteroid is available in the open-source
Point Cloud Library (PCL)2. This library contains a variety of algorithms suitable for point cloud processing
and analysis. As aforementioned, the EPnP solver is available through OpenCV3. This library contains more
than 2,500 optimized algorithms for computer vision applications and is extensively used in academia and
industry, by renowned companies, such as Google, Intel, and Microsoft.

The best practice within the computer vision community is to use an open-source implementation of a
network architecture that has been optimized for a given task, e.g., object detection or keypoint detection.
The advantage of this is that such a network is often faster and better compared to implementing it from
scratch based on some research paper. Furthermore, such a network has already been extensively verified.
Another advantage is that new applications generally tend to have limited datasets and by using an existing
architecture transfer learning can be applied, resulting in better performance regarding accuracy and com-
putational effort as discussed in Section 5.5

The object and keypoint detection networks, which will be discussed in detail in Chapters 8 and 9, are
implemented in TensorFlow4 and PyTorch5, respectively. These are open-source machine learning platforms
built and maintained by Google Brain and Meta AI Research, respectively, which use a Python API. They are
used by many around the world in academia and industry alike to create machine learning models.

The rendering of the images and the training and evaluation of the networks was performed using Google
Colaboratory (Colab)6, which allows to write and execute Python code in a browser and provides access to
powerful GPUs. The NVIDIA Tesla P100-PCIE-16GB GPU was used and the data is transferred between Google
Colab and the local machine through Google Drive.

1https://www.blender.org/, Date accessed: 17-01-2022
2https://pointclouds.org/, Date accessed: 7-10-2021
3https://opencv.org/, Date accessed: 7-10-2021
4https://www.tensorflow.org/, Date accessed: 22-01-2022
5https://pytorch.org/, Date accessed: 22-01-2022
6https://colab.research.google.com/notebooks/welcome.ipynb?hl=en, Date accessed: 21-01-2022

https://www.blender.org/
https://pointclouds.org/
https://opencv.org/
https://www.tensorflow.org/
https://pytorch.org/
https://colab.research.google.com/notebooks/welcome.ipynb?hl=en

50 6. Algorithm’s architecture overview

7
Dataset

This chapter discusses the dataset that has been generated within this work, going into detail regarding the
design choices and the processes applied in generating this deep-learning dataset. The creation of a realistic
asteroid dataset suitable for training machine learning models also allows for future training and testing of
deep learning-based navigation systems. Firstly, in Section 7.1 a top-level overview of the entire dataset gen-
eration and annotation process is given. The model-agnostic image generation pipeline developed within
this work will then be discussed in more detail in Section 7.2, touching on the rendering software used, the
created textured asteroid model, the camera viewpoints, and the rendering process. The properties of the
dataset created using the devised settings are summarized in Section 7.3. The annotation of the dataset,
involving matching the ground-truth information to the images is discussed in Section 7.4. The problem
of bridging the gap between synthetic and real images is addressed in Section 7.5 and a new dataset is in-
troduced that aims at tackling this problem. Section 7.6 discusses the three different image sequences that
are generated in addition to the two datasets. The section is concluded with a brief summary regarding the
dataset API created in this work in Section 7.7, allowing for ease of processing the Bennu datasets and to al-
low for the generation of other datasets through the created pipeline in this work. Furthermore, Appendix B
discusses two deep-learning datasets that exist for space-borne applications, namely the SPEED and Envisat
datasets, which are related to uncooperative spacecraft pose estimation. This is intended to give an overview
of what a deep-learning dataset suitable for space-borne applications entails.

7.1. Dataset generation overview
This section discusses the major steps of the dataset generation process and serves as a top-level overview,
where detailed information is provided in each respective (sub)section. The top-level overview is given in
Figure 7.1. As can be seen in Figure 7.1, the dataset generation can be subdivided into two major facets,
namely the image generation pipeline, which creates the rendered images using the desired settings, and the
annotation of the dataset. The model-agnostic image generation pipeline (Section 7.2) consists of three parts,
namely the viewpoint sampling, the creation of a textured 3D model, and the rendering of the images itself.
Once all the images of the dataset have been generated, the dataset can be annotated with the information
required for training the neural networks. The different parts and their main purpose are discussed below:

1. Creation of a textured 3D model (Subsection 7.2.2): This creates the textured 3D model by using a 3D
shape model of the asteroid Bennu and applying a realistic texture using Blender. This textured 3D
model is required for the image generation. This process is independent of the other parts and the
resulting textured 3D model is used within the rendering process.

2. Viewpoint sampling (Subsection 7.2.3): This creates the different camera poses, distance and orienta-
tion, w.r.t the target asteroid. This is used to place the camera within the 3D rendering software Blender
and as such create a diverse dataset consisting of a variety of viewpoints. The output of this process con-
sists of .csv files containing the camera pose w.r.t. the world reference frame (W), i.e.,

[
qW

B/W | rW
B/W

]
.

These camera poses are irrespective of the asteroid orientation.

3. Rendering (Subsection 7.2.4): The rendering step uses the camera poses determined in the viewpoint
sampling part and places the camera within Blender. Furthermore, it places the textured 3D asteroid

51

52 7. Dataset

Viewpoint sampling Rendering
7.2.3 7.2.4

Image generation pipeline 7.2

Annotating the
dataset

7.4

Dataset generation and annotation

Creating textured
3D model

7.2.2

Figure 7.1: Top level overview of the major parts that make up the dataset generation and annotation process,
where each (sub)section corresponding to each part is listed

model within the scene and renders the images using the camera poses, asteroid orientations, and
render settings. The output of this process is the rendered images that together make up the dataset.

4. Annotating the dataset (Section 7.4): The annotation step revolves around matching the correct infor-
mation with the correct image within the required format. This relies on the relevant information from
the image generation pipeline. The output of this process consists of .json and .csv files that contain
the bounding box, keypoints and camera poses corresponding to each image, which are used to train
the neural networks.

7.2. Image generation pipeline
This section discusses the image generation pipeline that was created in this work. This image generation
pipeline consists of various facets, as discussed in Section 7.1 and shown in Figure 7.1, which will be dis-
cussed separately in the respective subsections. These parts were implemented to create the realistic asteroid
dataset that was used for the training and evaluation of the machine learning models. The implementation
of this pipeline is agnostic to the target object and can therefore be used to generate deep-learning datasets
of several targets different from the one used in this work.

7.2.1. Rendering software
There are several rendering software that can be used for the creation of synthetic images, however, the ma-
jority of them are not open-source nor free. Specialized software, such as Planet and Asteroid Natural Scene
Generation Utility (PANGU)1 developed by ESA or SurRender developed by Airbus (Brochard et al., 2018), is
used to model surfaces of planetary bodies, such as the Moon and Mars, and to model asteroids. However,
these software are not open-source nor free and their efficacy in large-scale dataset generation for deep-
learning purposes has not been investigated. Therefore, these are not considered further.

As discussed in Section 2.1, Cinema4D and Blender have been used by Pasqualetto Cassinis et al. (2020)
and Black et al. (2021), respectively, to generate synthetic image deep-learning datasets of a target space-
craft, demonstrating the suitability of these rendering software for deep-learning dataset generation. How-
ever, the Cinema4D software is not free to use. Blender is open-source and free and has been used in other
works revolving space applications, such as feature-based landing on the Moon (Magalhães Oliveira, 2018),
feature-based navigation around asteroids (Volpe et al., 2020), and uncooperative spacecraft pose estimation
(Harvard et al., 2020). Therefore, the Blender software 2 was selected for the generation of images within this
work.

7.2.2. Target asteroid model
As discussed in Section 2.3, the target asteroid for this mission is Bennu, as the 3D model is publicly available
and a lot of literature surrounding the object is present. There are several different 3D models available of

1https://pangu.software, Date accessed: 17-01-2022
2https://www.blender.org/, Date accessed: 17-01-2022

https://pangu.software
https://www.blender.org/

7.2. Image generation pipeline 53

(a) Raw rocky texture (b) After the application of noise tex-
ture, and contrast and brightness
changes

(c) Final textured model after apply-
ing Hue saturation

Figure 7.2: Graphically illustrating the steps to arrive at the final textured asteroid model (c)

Bennu, as it is common for asteroid missions that the shape model becomes more refined while the mission
progresses. For the OSIRIS-REx mission the initial shape model was based on radar observations and it did
not contain the detailed surface topography. During the approach of the spacecraft towards the asteroid a
preliminary shape model was created using a compilation of images taken by the PolyCam camera. This 3D
model shows features as small as six meters. The highest resolution model was created after studying the
asteroid for three months at a close range. This 3D model shows features smaller than one meter. During
different mission phases, different 3D models are available. The most detailed shape model is used in this
work, however, any other model would result in the same process. The most detailed publicly available shape
model of Bennu has a 75-centimeter resolution (v20) 3, i.e., resolution of 75 cm per vertex. The dimensions of
the 3D model are given in km. However, this 3D model does not have any texture applied, which is required
for the image generation.

As of 26 June 2021, a normal albedo map of Bennu is publicly available4. A normal albedo map represents
the innate reflectance of the surface and has zero phase angle, i.e., it is an image texture without any shadows
or highlights. However, this albedo map only covers the region between ± 55° latitude. Moreover, the images
that were used in generating this albedo map may contain noise and other artifacts. Because of the incom-
pleteness of the albedo map it would be required to use the global basemap mosaic 5 for the higher latitudes.
However, this global basemap was designed to highlight the surface morphology and has a phase angle of
30°. It therefore has shadows and highlights baked into the image. When such an image is used as the image
texture, the object would then have two shadows, one caused by the synthetic light source and one that was
already baked into the image. Therefore, when synthetically rendering images an albedo texture map is vital
to avoid unrealistic synthetic images.

Consequently, to avoid unrealistic scenes, a texture was created and applied to the 3D model in Blender.
The 3D model is imported to Blender using the +Y-forward and +Z-up convention, which determines the
initial orientation of the asteroid, i.e., which side is illuminated. A rocky texture was downloaded from Poly-
Haven 6 and adjustments to this standard texture, shown in Figure 7.2a, were made in Blender to mimic an
actual surface of an asteroid. A noise texture is applied to randomize the rocky texture and mimic white and
dark spots randomly spread over the surface. Furthermore, contrast and brightness changes were applied.
These adjustments changed the rocky texture from Figure 7.2a to 7.2b. The final textured asteroid model
can be seen in Figure 7.2c and was achieved by applying Hue saturation to the texture of Figure 7.2b, which
changes the saturation and brightness 7. The specific settings can be found in the BennuTextured.blend
file that is made available on Github by the author 8.

3https://www.asteroidmission.org/updated-bennu-shape-model-3d-files/, Date accessed: 16-12-2020
4https :// astrogeology .usgs .gov / search / map / Bennu / OSIRIS -REx / OCAMS / Bennu _global _ShapeV20 _GndControl
_ROLOphase_ALBEDO_8bit_v6, Date accessed: 16-8-2021

5https://www.asteroidmission.org/bennu_global_mosaic/, Date accessed: 16-8-2021
6https://polyhaven.com/textures/rock/natural, Date accessed: 16-8-2021
7https://docs.blender.org/manual/en/latest/compositing/types/color/hue_saturation.html, Date accessed: 17-01-

2022
8https://github.com/lvanderheijden

https://www.asteroidmission.org/updated-bennu-shape-model-3d-files/
https://astrogeology.usgs.gov/search/map/Bennu/OSIRIS-REx/OCAMS/Bennu_global_ShapeV20_GndControl_ROLOphase_ALBEDO_8bit_v6
https://astrogeology.usgs.gov/search/map/Bennu/OSIRIS-REx/OCAMS/Bennu_global_ShapeV20_GndControl_ROLOphase_ALBEDO_8bit_v6
https://www.asteroidmission.org/bennu_global_mosaic/
https://polyhaven.com/textures/rock/natural
https://docs.blender.org/manual/en/latest/compositing/types/color/hue_saturation.html
https://github.com/lvanderheijden

54 7. Dataset

(a) A cropped real image of Bennu taken by the
OSIRIS-REx spacecraft

(b) A cropped synthetic image from the created
Bennu dataset that closely resembles the real
image’s pose

(c) A cropped real image of Bennu taken by the
OSIRIS-REx spacecraft

(d) A cropped synthetic image from the created
Bennu dataset that closely resembles the real
image’s pose

Figure 7.3: Comparison of real images taken by OSIRIS-REx and synthetic images generated within this work

The final textured asteroid model as seen in Figure 7.3b and 7.3d can be observed to differ from the ac-
tual texture of Bennu as seen in Figure 7.3a and 7.3c. However, this does not influence the machine learning
algorithm too much, as it can be made invariant to texture and illumination conditions, which will be elab-
orated upon in Section 7.5. Moreover, the advantage of using a created texture is that it is not limited by the
resolution of the available maps.

7.2.3. Viewpoint sampling
This subsection discusses the model-agnostic viewpoint sampling pipeline, which creates the different cam-
era poses, distance and orientation, w.r.t. a target. Therefore, the discussion throughout this subsection is
kept generic, whereas the specific settings used to generate the datasets created in this work are discussed in
Section 7.3. These camera poses are used to place the camera within Blender. This is an important step within
the image generation pipeline as shown in Figure 7.1, and is required before the images can be rendered.

The problem with real image datasets is that the images are often taken from canonical viewpoints, which
then results in these viewpoints being oversampled in the dataset, resulting in viewpoint bias (Movshovitz-
Attias et al., 2016). A canonical viewpoint refers to the seemingly ’best-view’ to allow for object identification,
whereas a non-canonical viewpoint represents the opposite. A canonical viewpoint for a car would be to
view it in a ’three-quarter’ fashion, whereas the non-canonical viewpoint would be to look at the bottom.
However, the advantage of creating a synthetic dataset is that a uniform sampling of different viewpoints can

7.2. Image generation pipeline 55

Generate the
icosphere

Calculate out-
of-plane
rotation
angles

Add
camera up
constraint

Post-
processing

Generate off-
nominal

pointing cases

Nominal
pose
(.csv)

Nominal
pose
(.csv)

BlenderPose

(.csv)

+

+1

2

3

5

4

Figure 7.4: An overview of the different facets of the viewpoints generation pipeline

be guaranteed, thereby mitigating the problem of viewpoint bias.
The approach used in both the SPEED dataset as well as the Envisat dataset (Appendix B) is that the

camera location is fixed and the target satellite is rotated and moved. The inverse of keeping the target satellite
fixed and rotating and moving the camera is the exact same thing in relative geometry, but the only thing
that changes are the illumination conditions, i.e., shadows and reflectance of the target. The camera fixed
approach is relatively simple to apply and works well for free-tumbling objects that can take on a range of
orientations.

However, the target in this work is an asteroid that rotates around its rotational axis in a predictable fash-
ion. Furthermore, the location of the Sun w.r.t. the asteroid is fixed for a certain point in its orbit. As a re-
sult, the camera fixed approach used by the aforementioned datasets cannot be used, as this would result
in unrealistic illumination conditions. Therefore, a new approach was devised to generate different camera
viewpoints (attitude and distances) of the target while attaining realistic illumination conditions.

The viewpoints for the coverage of the target are created following a method proposed by Hinterstoisser
et al. (2008) and used by Hinterstoisser et al. (2013) for the generation of templates that are used to estimate
the pose of the object. This method uses an icosahedron, which is the largest convex regular polyhedron
and has 12 vertices. The sampling is refined by recursively replacing each triangle with four almost equilat-
eral triangles. These vertices are then projected onto a sphere to form an icosphere, also called an geodesic
polyhedron. The target is placed at the origin of the icosphere and as such the vertex locations represent the
camera position w.r.t. the target. The pipeline that is used to generate the different camera viewpoints (posi-
tion and orientation) is shown in Figure 7.4. In what follows, the major steps of Figure 7.4 will be individually
discussed. These steps are performed for each discrete orientation of the asteroid w.r.t. to the starting posi-
tion, i.e., resulting in different sides being illuminated.

1. Generate the icosphere
This step generates the icosphere, based on the following parameters:

• R: Radius of the icosphere
• n: Refinement order (how many vertices)

The radius of the icosphere specifies the distance of the vertices with respect to the target’s origin (Center of
Mass (CoM)). This is therefore synonomous with the relative distance between the camera and the target. A
visual representation of the icosphere for two different orders is shown in Figure 7.5, where it can be seen that
a higher order results in a more dense coverage.

2. Generate nominal pose datafiles
This process is performed once for each selected order of refinement n and is done to calculate the nominal
pointing of the camera per vertex. This orientation is irrespective of the radius of the distance, since the vertex
locations are simply multiplied by a constant when increasing the radius. The calculation of the nominal

56 7. Dataset

XW

3210123

Y
W

3 2 10 1 2 3

Z
W

3
2
1

0
1
2
3

0x y

z

(a) The icosphere for n = 3, representing an angle of ≈ 8° be-
tween vertices

XW

3210123

Y
W

3 2 10 1 2 3

Z
W

3
2
1

0
1
2
3

0x y

z

(b) The icosphere for n = 4, representing an angle of ≈ 4° be-
tween vertices

Figure 7.5: Different icospheres for different orders of refinement n, using R = 3, where R can represent any
dimension (e.g., m, km)

pointing of the camera consists of two steps: 1) the calculation of the out-of-plane rotation angles and 2) the
addition of a camera up constraint as shown in Figure 7.4.

The vertices locations allow the calculation of the out-of-plane rotation angles, namely the roll ϕ and

pitch θ. An object reference frame is centered in the world origin
(
0 0 0

)T
and the axes are aligned with

the world’s axes, i.e., z pointing upwards, x pointing forward and y completing the right-handed system as
can be observed in Figure 7.5. The out-of-plane rotation angles can be calculated by aligning the normal
vector (z-vector) of the object reference frame with the normal vector (z-vector) of the reference frame going
through the vertex. The coordinates of the vertex expressed in the vertex reference frame (V) are always given

by
(
0 0 1

)T
, the vertex locations presented in the object reference frame can then be calculated using:

vO = Cx (ϕ)Cy (θ) =
 1 0 0

0 cosϕ sinϕ
0 −sinϕ cosϕ

 cosθ 0 −sinθ
0 1 0

sinθ 0 cosθ

0
0
1

=

 cosθ 0 −sinθ
sinϕsinθ cosϕ sinϕcosθ
cosϕsinθ −sinϕ cosϕcosθ

0
0
1

(7.1)

This can be simplified to the following relationship:

vO =
 −sinθ

sinϕcosθ
cosϕcosθ

 (7.2)

Equation (7.2) can be rewritten into the following form and using the known vertex location vO = (
x y z

)T
,

the out-of-plane rotation angles θ and ϕ can be calculated using:

θ = arcsin(−x) sinϕ= y
cosθ cosϕ= z

cosθ

ϕ= arctan2(sinϕ,cosϕ)
(7.3)

These angles represent the orientation of the vertex reference frame w.r.t. the object reference frame.
However, the yaw angle ψ is still arbitrary and it is desired that the yaw angle for each vertex location is such
that the camera is pointing up. This implies according to the Blender camera reference frame that the YB -axis
is pointing up. This was guaranteed by implementing a tracking constraint in Blender. This tracking con-
straint makes sure that the camera is pointing up and that the optical axis of the camera, −Z -axis, is pointing
towards the origin (center of mass) of the target asteroid reference frame A. Subsequently, the resulting final
orientation was transformed to unit quaternions and exported as a .csv file. The procedure has been verified

7.2. Image generation pipeline 57

XW

0.00.51.01.52.02.53.0

Y
W

3 2 10 1 2 3

Z
W

3
2
1

0
1
2
3

0
x y

z

Figure 7.6: The post-processed icosphere, where all datapoints with xW < 0 are removed, n = 3, using R = 3,
where R can represent any dimension (e.g., m, km)

using known rotations and their resulting vertex locations and then using those vertex locations to retrieve
the rotations. These nominal pose files for different orders of n could then be used in the dataset generation
pipeline (Figure 7.4).

3. Post processing
This step refers to the removal of certain irrelevant data points of the icosphere. Based on the position of the
Sun, only a certain part of the target is illuminated, whereas the other parts are in complete darkness. The
only relevant camera positions are those that look at the (partially) illuminated part of the asteroid, which
results in discarding about half of the sphere as can be observed in Figure 7.6.

4. Generate off-nominal pointing cases
It is assumed that the origin of the target asteroid reference frame, A, lies on the perspective line from the
origin of the Blender reference frame, B, towards the center of the asteroid in the pixel reference frame P
(Figure 4.2), i.e., the 2D centroid (P frame) of the asteroid lies on the same perspective line as the actual 3D
centroid (A frame) of the asteroid. Therefore, in the nominal pointing case the target (asteroid) is located in
the center of the image plane, such that the coordinates of the center of mass in the image reference frame
are pP = (Nu

2 , N v
2). However, the asteroid will not necessarily lie in the center of the image throughout the

actual mission and the deviation from the middle of the image can be set using the azimuth and elevation
angles (α,β), i.e., bearing angles. The camera’s position is fixed and only the orientation of the camera w.r.t.
the target is changed through the use of these bearing angles. This is visually illustrated in Figure 7.7, where
the Blender camera frame is rotated over the Y and X -axes, respectively. A positive rotation ofα and β results
in the camera’s −Z -axis (optical axis) pointing towards the top left corner of the ’old’ image plane. This results
in point p becoming the new principal point O and as such the asteroid has ’moved’ to the lower right corner
within the new image plane.

The values of α and β are randomly selected from the interval shown below. This interval allows the
asteroid to be randomly spread over the image, but still results in the majority of the asteroid to be fully in the
field of view.

{−5° <α< 5°
−5° <β< 5°

(7.4)

The function is implemented in Python and takes the following arguments as input.

• Minimal degree: This parameter specifies the minimal off-nominal pointing angle for α and β. This
was implemented to ensure that the off-nominal pointing case did not closely resemble the nominal

58 7. Dataset

(a) This shows the image plane of the nominal pointing case
where the asteroid is in the center of the image plane (O)

(b) This shows the situation in which the optical axis, −Z -
axis, points towards the point p, making it the new optical
point (O), moving the asteroid to the lower right corner

Figure 7.7: Graphically illustrating the off-nominal pointing implementation

pointing case. The practical result is that a square region, governed by the minimal degree, surrounding
the center is off-limits.

• N: The number of off-nominal cases that are to be generated per vertex

The transformation matrix that rotates the nominal-pointing Blender camera frame B to the off-nominal
pointing Blender camera frame B ′ is given by:

CB ′,B = Cx (β)Cy (α) =
 1 0 0

0 cosβ sinβ
0 −sinβ cosβ

 cosα 0 −sinα
0 1 0

sinα 0 cosα

=

 cosα 0 −sinα
sinαsinβ cosβ cosαsinβ
sinαcosβ −sinβ cosαcosβ

(7.5)

The position vector presented in B ′ reference frame can then be determined using the following, where
‖rB/A‖2 is the 2-norm of the rB/A vector. This vector only has a z-component as in the nominal pointing case
the −Z -axis (optical axis) points towards the center of mass of the target.

rB ′
B/A = CB ′,B rB

B/A =
 cosα 0 −sinα

sinαsinβ cosβ cosαsinβ
sinαcosβ −sinβ cosαcosβ

 0
0

‖rB/A‖2

 (7.6)

The B ′ reference frame is the final orientation of the Blender camera frame when bearing angles are ap-
plied and the ′ is only used to discern between the nominal pointing case and the off-nominal pointing case.
This position vector can then converted into the camera reference frame for the labeling of the dataset, which
is discussed in the annotations, Section 7.4.

5. Generate the Blender camera poses
For any given settings of the different parts, namely the radius of the icosphere R, the refinement order of the
icosphere n, the minimal degree of the off-nominal pointing, and the number of off-nominal pointing cases
per vertex N , the camera poses are calculated and the final results are exported as a .csv file. These poses
are used in Blender to place the camera and represent the position and orientation of the Blender camera
w.r.t the world frame,

[
CB ,W | rW

B/W

]
. However, the transformation matrix is converted to unit quaternions,

7.3. Dataset properties 59

[
qW

B/W | rW
B/W

]
, to store within the .csv file. These camera poses are irrespective to the asteroid’s orientation

w.r.t. the world axes.

7.2.4. Rendering process
After establishing the desired dataset properties and creating the datafiles containing the camera poses, the
images can be rendered in Blender. The rendering process is the next step in the image generation pipeline
as illustrated in Figure 7.1. The rendering of images occurs in batches and is done through Blender’s Python
API. Each batch consists of 1348 images that represent all camera viewpoints for that distance, nominal and
off-nominal pointing, for a certain asteroid orientation w.r.t. the world axes (Section 7.3). As discussed in
Section 6.2, the images have been rendered through Google Colaboratory (Colab) using the NVIDIA Tesla
P100-PCIE-16GB GPU. The rendering of a single batch takes about 2.5 hours using the specified GPU.

The rendering process for each distance and asteroid orientation (Equation (3.20)) combination is graph-
ically illustrated in Figure 7.8. There are two main scripts involved in the rendering process, the
pipelineLinux.py script sets the asteroid’s orientation w.r.t. the world axes (ψ), places the cameras ac-
cording to the datafiles (

[
qW

B/W | rW
B/W

]
), sets the illumination conditions, and renders the images according

to the desired settings. The BoundingBox.py script outputs the coordinates of the tightly fit bounding box
presented in the image reference frame (P) around the asteroid for every image. The following encoding
(xmi n , ymi n , w,h) is used, where xmi n and ymi n refer to the coordinates of the top left corner of the bounding
box and w and h refer to the width and height of the bounding box, respectively. This can be observed in
Figure 7.14. The BennuTextured.blend file contains the textured 3D model of Bennu and creates the 3D
environment, which is rendered.

BlenderPose
(.csv)

pipelineLinux.py

BoundingBox.py
BennuTextured.Blend

Orientation
Asteroid

BoundingBox
(.csv)Illumination

conditions

Figure 7.8: A visualization of the rendering process in Blender in which several inputs are given to the scripts
that operate within Blender through the use of a Python API

7.3. Dataset properties
This section discusses the properties that were selected in generating the dataset, these settings are also sum-
marized in Table 7.1.

Distances
The relative distance to the asteroid is a parameter that needs to be specified in the generation of the dataset.
As was discussed in Section 2.3, the asteroid is assumed to be fully in the field of view of the camera. The
distances can be selected arbitrarily within a certain range without influencing the resulting networks too
much, as the networks will not solve the pose from the image directly (end-to-end). The problem is divided
into sub-problems, i.e., first an object detection network and then a keypoint detection network. Therefore,
the data does not have to be that complex. The object detection network will detect the image and eventually
crop the image around the target, which will be fed to the keypoint detection networks.

60 7. Dataset

Table 7.1: The settings used for the generation of the dataset

Parameter Description Value(s)

R
The radius of icosphere, i.e.,
relative distance between camera and target

[4.5;6;7.5;9] km

n
Refinement order of the icosphere, i.e.,
the number and spacing of the vertices

3

min deg
The minimal value for the bearing angles,
α,β for the generation of
off-nominal pointing cases

1.0°

N
The number of off-nominal pointing cases
per vertex

3

ψ
The asteroid reference frame
orientation w.r.t world axes

0 + k ·60 for k = 1,2, ...,5

Therefore, based on the camera intrinsic parameters listed in Table 7.2 and based on the relevance for a
potential mission the distances are discretized in the range [4.5;9] km with 1.5 km intervals. As aforemen-
tioned, the distance range and interval can be selected arbitrarily due to the usage of an object detection
network. The 1.5 km interval allows to cover the large relative range without considerably increasing the size
of the dataset. At 3 km the entire asteroid is still in the field of view of the camera, but the bearing angles
change the position of the asteroid within the image, thereby cutting off a significant portions of the aster-
oid, rendering the images useless. For distances further away > 9 km, ground-based navigation or other
techniques can safely navigate the spacecraft and feature-based navigation can become complicated as the
asteroid only makes up around 15% of the pixels within the image for the camera settings used.

Camera viewpoints
For every selected distance R, the refinement order n = 3 was chosen to create a fine sampling of the vertices
with an angle of ≈ 8° between vertices. Furthermore, for every vertex the nominal pointing case is auto-
matically created. However, to expand the dataset and create more realistic conditions several off-nominal
pointing cases were generated. The minimal offset for the bearing angles α and β was set at 1°, min deg = 1°
and per vertex three randomly generated off-nominal cases were generated, N = 3. This resulted in a more
complete dataset covering a variety of different views of the target, for a total of 1348 viewpoints per distance
and asteroid orientation.

Asteroid orientations
As previously mentioned, the 3D model of Bennu is imported into Blender using the +Z up and +Y forward
convention. This aligns the asteroid reference frame with the world axes for this initial orientation. The as-
teroid orientation w.r.t. the world axes determines which side of the asteroid is illuminated. To capture the
asteroid from different sides and recreate a variety of relative geometries between the asteroid and the space-
craft, without considerably increasing the size of the dataset, the full circle of rotation is discretized into 60°
intervals.

Illumination conditions
As was discussed in Section 2.3, the position of the asteroid w.r.t the Sun is considered fixed and therefore the
asteroid-Sun vector is fixed. Furthermore, for simplicity the obliquity of the ecliptic is considered to be 0°.
The Sun can be used as the light source in Blender for which the strength in W /m2 and the angular diameter
as seen from Earth need to be specified. The strength of the Sun, however, does not relate to the actual W /m2

and is set at 10W /m2 to create a realistic scene. Furthermore, the angular diameter is set at 0.5° to mimic
the angular diameter of the Sun at 1 au. The Sun light source in Blender emits light of constant intensity in
a single direction from infinitely far away. Therefore, the location of the Sun light source in Blender does not
affect the rendered result, however, it is placed such that the phase angle is zero at the equator of the asteroid.
The trained machine learning networks can be made invariant to illumination conditions as will be discussed
in Section 7.5.

7.4. Annotations 61

Table 7.2: The intrinsic camera parameters used in generating the synthetic images

Parameter Description Value
Nu Number of horizontal pixels 1024
Nv Number of vertical pixels 1024
fx Horizontal focal length 0.15 m
fy Vertical focal length 0.15 m
du Horizontal pixel length 2.34375·10−7 m/px
d v Vertical pixel length 2.34375·10−7 m/px
FOV Field of View 13.686°

Camera settings
The images were rendered in Blender with the camera settings listed in Table 7.2. Navigation cameras often
have an image size of 1024×1024 px (Rowell et al., 2015) and the AFC used for the Dawn mission and proposed
for the HERA mission also uses this image size and focal length (Sierks et al., 2011)

General properties
Based on the aforementioned settings, which are listed in Table 7.1, for the four distances, 1348 camera view-
points per distance and asteroid orientation, and six asteroid orientations, the size of the dataset ends up
being 32,352 images. These images are randomly sampled and split into training, validation, and test sets in a
70/15/15 fashion, following conventions used for relatively small datasets (Pasqualetto Cassinis et al., 2021b).
The test data is needed to achieve an unbiased estimate of the performance, as during training the model is
fitted to the training data and evaluated on the validation data and as such also fitted to the validation data.
The validation and test set need to come from the same distribution.

The size of the dataset lies in between the two reference datasets discussed in Appendix B. The dataset
is relatively small for general deep-learning practices, however, this is possible because the networks that
are used in this work are open-source implementations that have been pre-trained on similar problems, i.e.,
object detection and keypoint detection. Moreover, due to the separation of the pose estimation problem into
three separate parts (OD, KD, and PnP) less data is required compared to training an end-to-end architecture.

7.4. Annotations
This section discusses the dataset annotations that are required to train and test the object and keypoint
detection networks. Furthermore, this is used to evaluate the performance of the entire pose estimation
pipeline, i.e., OD, KD, and PnP. The annotation process follows the image generation part as outlined in Fig-
ure 7.1. The required processing steps and resulting dataformats are discussed for three parts, namely the
pose, the keypoints, and the bounding box. An overview of the entire process is graphically illustrated in Fig-
ure 7.9.

3D keypoint
locations

(.ply)

Blender
Pose
(.csv)

Bounding
Box data

(.csv)

Pose projection
&

data manipulation

Keypoint
location
(.JSON)

Bounding
box

(.JSON)

image-plane (2D)
keypoint

coordinates

(relaxed) bounding
 box coordinates

Camera
intrinsic

parameters

Transformation to
the camera

reference frame

Camera
Pose

(.JSON)

Figure 7.9: A visualization of the steps taken to create the annotated data required for labeling the dataset

62 7. Dataset

 1

 2
 3 4 5 6

 7 8 9
 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

 58

 59 60
 61 62 63

 64
 65 66

 67

 68

 1

 2 3 4 5
 6 7 8 9 10

 11
 12

 13
 14 15

 16

 17

 18

 19 20
 21

 22 23 24 25
 26 27

 28 29
 30 31

 32
 33 34 35 36

 37 38 39

 40
 41

 42 43 44
 45

 46
 47

 48 49 50
 51 52 53 54 55

 56 57
 58

 59 60
 61

 62
 63 64

 65 66

 67

 68

Figure 7.10: Visualizations of the different annotations, where the relaxed bounding box is given in green, the
keypoints are shown with their corresponding number, and the axes represent the orientation of the asteroid
reference frame w.r.t. the camera, where red, green, and blue refer to the X ,Y , and Z -axis of the asteroid
reference frame, respectively

A datafile is created that contains all the annotations to allow for consistent analysis. This is stored in a
.json format, as this stores the data in an orderly fashion and it allows for easy retrieval of the data through
the use of Python dictionaries. An example format is shown in Code Listing C.1. These different annotations
are visualized in Figure 7.10.

7.4.1. Pose
During the dataset generation process the pose of the Blender camera (B) w.r.t the world axes (W) was used
to generate the images, CB ,W and rW

B/W . However, for the purpose of training the networks and evaluating
the performance of the subsequent PnP solver, the pose of the camera reference frame (C) w.r.t. the asteroid
reference frame (A) is required. Therefore, CC ,A and rC

A/C are required to set up the pose matrix P ∈ R3×4,[
CC ,A | rC

A/C

]
as shown in Equation (4.9). The transformation matrix CC ,A can be established from the

following:

• CA,W : The transformation matrix from the world reference frame to the asteroid reference frame
• CB ,W : The transformation matrix from the world reference frame to the Blender camera frame
• CC ,B : The transformation matrix from the Blender camera frame to the camera frame

The desired transformation matrix CC ,A can be calculated using the following, where CC ,B is constant and
can be found in Equation (3.22). Furthermore, CA,W and CB ,W can be found in Equations (3.20) and (3.21),
respectively. These two depend on the asteroid orientation and the pose of the camera corresponding to that
image.

CC ,A = CC ,B CB ,W CT
A,W (7.7)

The translational vector rC
A/C can be constructed using the following:

• rW
B/W : The position vector from the origin of the world frame to the origin of the Blender camera frame

presented in the world frame. However, only the orientation of the asteroid changes, i.e., the side that
is illuminated, but the origin remains aligned with the world origin. Therefore, rB/W = rB/A

• CC ,W = CC ,B CB ,W : The transformation matrix from the world frame to the camera frame.

• The origin of the Blender camera frame and the camera frame are the same and therefore rB/A = rC /A .

7.4. Annotations 63

Create
Gaussian

Scale space

Compute
DoGs

Find
keypoints

Remove low
contrast

keypoints

2D/3D SIFT

Figure 7.11: The steps of the 2D/3D SIFT algorithm

The final translational vector rC
A/C can henceforth be calculated as follows:

rC
A/C =−rC

C /A =−CC ,W rW
C /A (7.8)

The pose matrix is then calculated using:

P = [
CC ,A | rC

A/C

]
(7.9)

This pose is used to label the images and an example file format can be found in Code Listing C.1, where
CC ,A is transformed back to scalar-first unit quaternions using Sheppard’s algorithm, Equations (3.9) and
(3.10).

7.4.2. Keypoint designation and annotation
This subsection discusses the keypoint designation and annotation, where the designation refers to the fact
that a set of points on the target are selected as the keypoints.

Keypoint designation
The keypoints (interest points) were designated on the asteroid’s 3D model using the 3D SIFT algorithm,
which is an adaptation of the 2D SIFT algorithm for 3D point clouds (Scovanner et al., 2007). This algorithm is
implemented in C++9 in the open-source PCL10. The algorithm estimates SIFT points based on the z-gradient
of the 3D points. The designation of keypoints through the use of this algorithm has been successfully applied
by Zhao et al. (2018) to estimate the pose of general terrestrial objects. The advantage of designating surface
keypoints is that they are closely related with the models features.

By using a model-based approach, the minimum feature size on the asteroid surface is limited by the
point cloud’s resolution, which has a resolution of 75 cm. Because the feature is designated on the 3D model,
it does not rely on texture information and as such on the resolution of the camera and available maps. The
latter limits the landmark designation and extraction (Rowell et al., 2015) or unknown feature tracking ap-
proach (Pellacani et al., 2019), as it sets the minimum required scale for features on the surface to be resolved
by the camera.

The 3D SIFT algorithm is an adaptation of the 2D SIFT algorithm and is used for point clouds. The con-
cepts of the 2D SIFT algorithm apply and will be briefly discussed, as it is more intuitive, before diving into
the adaptation to the 3D point cloud. The steps of the algorithms are shown in Figure 7.11, these steps will be
discussed individually in what follows.

2D SIFT
The 2D SIFT algorithm has been created by Lowe (2004) and detects keypoints through the use of scale-spaces,
where the scale refers to the amount of Gaussian blur added to an image. Moreover, the algorithm applies
these different amount of blurs, scales, to different image sizes called octaves. The size of the image for the
k th octave decreases by half compared to the k −1 octave, where the image size of the first octave is equal to
the input size. The algorithm generates progressively blurred out images (scales) for each different octave.

The blurring is applied to the image by using a convolution of the Gaussian operator on the image, where
the standard deviation of the Gaussian distribution σ is a tunable parameter for the algorithm, which deter-
mines the amount of blur. The blur on the first image is equal to σ and subsequent images have a Gaussian
blur of k ·σ, where k is a constant. The Difference-of-Gaussian (DoG) is calculated, which highlights certain
parts in the images, which are useful for subsequent keypoint extraction. The process of calculating the DoG

9https://github.com/sjtuytc/betapose, Date accessed: 25-11-2021
10https://pointclouds.org/, Date accessed: 25-11-2021

https://github.com/sjtuytc/betapose
https://pointclouds.org/

64 7. Dataset

(a) A schematic representation of the calculation of the DoG (b) A schematic representation of
the extraction of keypoints by find-
ing the maxima/minima through
the comparison of a pixel (marked
by X) to the nearest pixels in the cur-
rent scale and the scale above and
below of the DoG

Figure 7.12: Graphically illustrating the basic building blocks of the 2D SIFT algorithm (Lowe, 2004)

is shown graphically in Figure 7.12a, where the DoG represents the difference between the different scales
within an octave.

The keypoints are located by finding the maxima/minima within the DoG images, comparing not only
with the nearest pixels in the current scale, but also in the scale above and below, graphically illustrated in
Figure 7.12b. Therefore, the upper and lowermost scales are not used as they only have one neighbor. These
keypoints are then refined by mathematically locating their subpixel location. The post-processing revolves
around removing keypoints that have low contrast, meaning that some keypoints might lie along an edge or
do not have enough contrast rendering them not useful as features. Therefore, a threshold is used.

3D SIFT
The scale-invariant 3D SIFT algorithm works in a similar way, however, instead of relying on the intensity of
a pixel now the principal curvature of a point within the 3D point cloud is used. The Gaussian scale-space
for the 3D point cloud is created by downsampling the point cloud (reducing the number of points) using
voxelgrid filters of different sizes and by applying a Gaussian blur filter.

A voxelgrid can be conceptualized as a set of minute 3D boxes that are placed over the point cloud. Then
all the points within each of these 3D boxes, voxels, will be replaced by their centroid, thereby reducing the
size of the point cloud and replacing the intensity of the points with the weighted average of them all. The
scale-space of the 3D SIFT is calculated using the following equation (Jiao et al., 2019), where ∗ represents the
convolutional operator, G(x, y, z,σ) represents the 3D-SIFT Gauss kernel function given in Equation (7.11),
and P (x, y, z) is the three-dimensional coordinate of the point cloud.

L(x, y, z,σ) =G(x, y, z,σ)∗P (x, y, z) (7.10)

G(x, y, z,σ) = 1

(
p

2πσ)3
e−(x2+y2+z2)/2σ2

(7.11)

Then the DoG for each different scale point cloud within an octave is created.

DOG
(
x, y, z,k iσ

)
= P (x, y, z)∗

(
G

(
x, y, z,k i+1σ

)
−G

(
x, y, z,k iσ

))
(7.12)

7.4. Annotations 65

Figure 7.13: Distribution of the keypoints (red) on the asteroid for two different orientations, where points on
the back are also visible for both orientations.

Similarly to the 2D SIFT algorithm, a point within the point cloud is designated as a keypoint, when it has
the maximum/minimum of the DoG values among its k nearest points within the same DoG as well as the
DoGs above and below. Finally, the keypoints in areas with low curvature values are rejected.

The 3D SIFT algorithm has been tuned to achieve the designation of 68 keypoints on the surface of the
asteroid. This number was the result of the used settings with the main goal of having a good distribution of
keypoints around the asteroid. The distribution can be seen in Figure 7.13 for two different asteroid orienta-
tions. The following settings of the algorithm were used to designate the keypoints on the 3D model.

• Standard deviation of the minimum scale: 0.001
• Number of octaves: 10
• Number of scales per octave: 5
• Minimum contrast: 0.00055

The designation of 68 keypoints also has the benefit that the network does not necessarily have to be able
to predict all of them perfectly within every image, as for the subsequent pose estimation only a minimum
of six points are required. The increase in training effort for 68 keypoints compared to a lower number is
minimal.

Keypoint annotation
These keypoints need to be annotated such that it can be used by the keypoint detection network. These
designated keypoints need to be transformed from the 3D model space to the 2D image space, to derive the
ground-truth locations of these keypoints. The designated 3D features can be transferred to a 2D location
based on the camera pose and intrinsic parameters. The theoretical accuracy that can be achieved by the
keypoint detection network is 100%, as the conversion to the 2D locations already takes into account these
effects, i.e., it represents the best achievable 2D location based on the 3D keypoints and camera parameters.
Given the ground-truth pose data (Equation (7.9)) and the camera intrinsic parameters (Table 7.2), the PnP
problem discussed in Section 4.2 is used to transform the 3D keypoints to 2D. The PnP equation is stated
again for convenience below, where the camera intrinsic parameters have been filled in:

 u
v
1

=
 4266.67 0 512

0 4266.67 512
0 0 1

[
CC ,A | rC

A/C

]
xi

yi

zi

1

 (7.13)

Equation (7.13) is solved for each keypoint and each image and the annotated keypoints are saved in the
COCO format (.json), which is used to train the keypoint detection network. This file format is standard for

66 7. Dataset

Figure 7.14: Visualization of the different bounding box encoding parameters

keypoint detection networks and therefore allows for easy adaptation. An example of this format is given in
Code Listing C.2.

7.4.3. Bounding box
The bounding box resulting from Blender is a tightly fitted one, however, Chen et al. (2019) demonstrated that
by relaxing the ground-truth bounding box coordinates by a small margin the object detection training was
improved. Furthermore, the Envisat dataset relaxed the bounding box coordinates by approximately 10% of
the original width and height. The bounding box coordinates from Blender are relaxed by 5% for the Bennu
datasets and the values are stored in the .csv format for the training of the object detection network, with the
following columns filename, width, height, class and (xmi n , ymi n , xmax , ymax), presented in the pixel reference
frame (Section 3.1). The width and height refers to the image size and the class to Bennu, and the bounding
box encoding has been converted to this representation, which can be observed in Figure 7.14. Furthermore,
the ground-truth bounding box coordinates (xmi n , ymi n , w,h) are also used in the COCO format Code List-
ing C.2, where as before xmi n and ymi n refer to the coordinates of the top left corner of the bounding box and
w and h refer to the width and height of the bounding box, respectively, as can be observed in Figure 7.14.

7.5. Bridging the domain gap from synthetic to real images
Before the CNN-based pipeline will be used in an actual space mission for vision-based navigation, its per-
formance needs to be validated in a highly representative space environment prior to mission deployment.
However, there does not exist any dataset consisting of real images of small-bodies with labeled poses that is
large enough for training CNNs. Therefore, the neural networks are trained exclusively on synthetic images.
Furthermore, target-specific images are not available prior to arriving at that small body.

These synthetic images are easily mass-produced using 3D rendering software and annotated with the
true poses, which has been performed in this work (Sections 7.2 to 7.4). However, CNNs trained solely on
synthetic images are prone to the domain gap, as the CNNs might overfit to the features that are specific
for the synthetic images. This domain gap refers to the gap in performance of the CNN on synthetic images
compared to real images, and is caused by real images having a different statistical distribution compared to
synthetic images. Moreover, real images can contain noise and other image corruptions that are not or cannot
be accurately modeled in the synthetic images. Actual space imagery, as shown in Figure 7.15, in particular
suffers from low signal-to-noise ratios, high contrast, and particular surface illumination conditions, i.e., over
and underexposed (Sharma, 2019)

This domain gap stems from the fact that neural networks cannot generalize to out-of-distribution exam-

11https://images.nasa.gov/, Date accessed: 25-01-2022

https://images.nasa.gov/

7.5. Bridging the domain gap from synthetic to real images 67

(a) Partial occlusion caused by shadowing and lack of
light diffusion due to the absence of an atmosphere.
Source: NASA11

(b) Overexposure due to direct sunlight. Source: NASA11

Figure 7.15: Images representing difficult illumination conditions, such as partial occlusion or overexposure
due to direct sunlight, causing high contrast.

ples with respect to the training data (synthetic images), resulting in deteriorated performance of the CNN
to actual space imagery. Bridging this domain gap and achieving robustness of the CNN trained on synthetic
images is crucial in creating deep learning systems that can be deployed in safety-critical applications. Arti-
facts from real images can be roughly divided into two parts, which are discussed below.

1. Image corruptions:
The image corruptions are artifacts from real sensors and the actual space environment. These artifacts
can arise from events, such as pluming and cosmic radiation, and due to miscalibration or other factors.
Common corruptions among others include hot/dead pixels, defocusing, Gaussian and shot noise.

2. Textures:
The textures in the real images can be different from the training examples, as the real sensors might
capture different textures or the actual surface properties are unknown, which is the case for missions
to small-bodies. Geirhos et al. (2018) have shown that contrary to former belief, CNNs rely more on the
object’s texture than on global shape, i.e., it is more biased towards texture than towards shape. This is
counter-intuitive for humans who would for example classify a cat with elephant texture as a cat and
not as an elephant. Therefore, this would result in inferior performance of the CNNs trained on local
textures that deviate from the real images.

There are two distinctly different approaches that can be used to improve the network robustness to real
images and thereby reducing the domain gap: 1) try and mimic the actual space environment as much as
possible within the synthetic images and 2) include real images during training. However, in actual missions
to small-bodies these are unavailable before arriving at the target and may not have accurate pose labels.
Consequently, it should be considered that only synthetic images are available for training. Resulting in only
being able to adapt the first approach.

Therefore, it is critical to mimic the actual space environment as much as possible within the synthetic
images. However, it is extremely difficult to exactly replicate the target object’s surface properties and il-
lumination conditions that will be encountered throughout the mission. As discussed in Subsection 7.2.1,
Pasqualetto Cassinis et al. (2020) and Pasqualetto Cassinis et al. (2021b) have created deep-learning datasets
for the Envisat spacecraft using Cinema4D and Black et al. (2021) have used Blender to render images of
the Cygnus spacecraft for training a CNN. However, Brochard et al. (2018) stated that these commercially
available rendering software lack the realism required for advanced image processing techniques for space
applications. Specialized software, such as ESA’s PANGU and Airbus’ SurRender (Brochard et al., 2018) are
available, however, as aforementioned, licenses are required to use these sofware. Furthermore, their efficacy
in generating realistic images for large-scale dataset generation for deep-learning purposes has not been in-
vestigated. Moreover, generating high photorealistic images through the use of such software might increase
the complexity of the development process and limit wide-scale adaptation, as care should be taken to ac-
curately model the sensor, surface properties (texture) of the target object, and specific optical properties.
Next to this, this detailed information of the target small-body is often unavailable before hand. Therefore,
it is deemed better to incorporate a training process that allows the CNN to close the domain gap without

68 7. Dataset

relying on too much a-priori information. The major advantage of using such a training process is that it al-
lows the network to become robust to a variety of augmentations, textures, and illumination conditions with
minimum effort, i.e., the exact properties of the target do not have to be modeled accurately.

Data augmentation has been an important tool for increasing the generalization performance of neural
networks. As discussed in Section 5.5, data augmentation is used to make the network invariant to the used
transform, which could be pixel-level augmentations, such as brightness changes, or affine transformations,
such as scale and rotation changes.

• Corruption robustness:
This revolves around augmenting the dataset with image corruptions commonly found in the real im-
ages to emulate certain effects. As listed in Appendix B, the SPEED dataset added Gaussian blur and
white noise to the images to mimic depth of field and shot noise. Hendrycks and Dietterich (2019)
created a new dataset based on the ImageNet dataset (Deng et al., 2009) to benchmark network’s ro-
bustness againts these common corruptions. They found that networks trained solely on uncorrupted
images did not generalize well to real images containing these corruptions. Therefore, neural nets that
are to be used for real-world applications should include images with these commonly found corrup-
tions in their training sets. Moreover, it will not only increase the robustness of the trained CNNs against
common image corruptions originating from real sensors or the space environment, but these corrup-
tions can also make the network more robust against different textures. Pasqualetto Cassinis et al.
(2021b) showed that a CNN trained on an augmented dataset consisting of pixel-level augmentations
was more robust against variations in illumination conditions and textures.

Furthermore, currently there is a growing interest in using algorithms during training to bridge the do-
main gap (intra-class variation), these can be grouped as follows (Jackson et al., 2019; Park et al., 2021).

1. Unsupervised domain adaptation:
This refers to using a Domain-Adversarial Neural Network (DANN), which combines a normal feature
extractor with unsupervised domain adaptation in an end-to-end training process. Annotated train-
ing examples from the source domain (synthetic imagery) and not labeled examples from the target
domain (real imagery) are used to train a domain-invariant feature extractor using adversarial training
(Ganin et al., 2016).

2. Domain randomization:
This refers to randomizing various parts of the input images where it is assumed that the target im-
age (real image) is simply also a randomized version of the input image. This approach was applied
to randomize the texture of the spacecraft object by Park et al. (2019) and Pasqualetto Cassinis et al.
(2021b) in an effort to make it more robust to texture differences. This texture randomization process
is based on Neural Style Transfer (NST) technique devised by Huang and Belongie (2017). NST refers
to using the style of one image and the content of another, to generate a target image of the content
in the style of the other. This technique has been proven to decrease the dependency of the network
on textures (Geirhos et al., 2018). Furthermore, it forces the network to rely more on shape instead of
texture (Geirhos et al., 2018). The underlying notion is that by using style augmentation, the network
will learn to be invariant against low-level features, such as texture and illumination, and as such do
not overfit to them. Therefore, the network will perform better on real images, which may have dif-
ferent properties than the synthetic training images (or different texture of the target body). Another
positive effect is that the networks show robustness to image distortions, such as contrast changes and
noise that were not present in the training set (Geirhos et al., 2018). An improvement to the work of
Huang and Belongie (2017) is proposed by Jackson et al. (2019) and employed by Park et al. (2021) for
the training of neural nets on the SPEED+ dataset.

Evaluating robustness
Once the networks are trained on the synthetic images the robustness to the real images, a different domain,
needs to be evaluated to validate the performance of the model for an actual space mission. The following
two methods can be used to do so and have been applied to validate the robustness of CNNs (Black et al.,
2021; Park et al., 2021; Pasqualetto Cassinis et al., 2021b).

1. The use of real images:
The usage of real images captured during previous missions, such as OSIRIS-REx, can be used to eval-
uate the robustness of the CNNs, however, the amount of available images, the diversity of poses, and

7.5. Bridging the domain gap from synthetic to real images 69

variability of environmental factors, such as illumination conditions is insufficient to be able to exten-
sively evaluate the neural network’s robustness. Moreover, these images are generally sensor-specific
and often lack detailed pose annotation resulting in the inability to accurately evaluate the perfor-
mance.

2. On-ground Hardware-in-the-Loop (HIL) set-ups:
The alternative approach to validate the networks performance would be to recreate and simulate the
space environment on-ground in laboratories, such as the Orbital Robotics & GNC Laboratory (ORGL)
at the European Space Research and Technology Center (ESTEC) and the Testbed for Rendezvous and
Optical Navigation (TRON) at DLR and SLAB. This approach has been applied by Park et al. (2021),
Sharma and D’Amico (2019), and Pasqualetto Cassinis et al. (2021b) to generate realistic imagery of
satellite mock-ups of the PRISMA and Envisat spacecraft, respectively, to train neural nets that tackle
the problem of pose estimation of uncooperative satellites. Moreover, it was used to verify the image
processing algorithm for the HERA mission by Volpe et al. (2020). However, these test-beds need to be
carefully calibrated to allow for accurate ground-truth annotation (Park et al., 2021; Pasqualetto Cassi-
nis et al., 2021b). These images were used to validate, on-ground, the robustness of the machine learn-
ing networks to the domain gap between "real" images and synthetic images.

Unfortunately, given the time-limit the creation of real images using a HIL-setup is not possible within
this work. Based on the aforementioned, properly validating the performance of the network on a domain
different from the training data (real images) is not possible. Therefore, more advanced techniques, such as
unsupervised domain adaptation and domain randomization, to bridge the domain gap will not be required.

However, the network’s robustness against image corruptions representative of real image artifacts can
be evaluated through the use of corrupted synthetic validation and test datasets, which should not have the
exact same distribution as the training set. This type of analysis has also been applied by Barad (2020) and
would serve as an initial evaluation of the robustness, which should be expanded upon in future research to
fully allow for validating the neural network to be able to fly in an actual mission. The details regarding the
creation of this dataset is discussed in the subsequent Subsection 7.5.1.

7.5.1. Bennu+ dataset
Based on the discussion in the previous section, a dataset will be created that includes image augmenta-
tions, called Bennu+. This will not only increase the robustness of the trained CNNs against common image
corruptions originating from real sensors or the space environment, but these corruptions can also make
the network more robust against different textures and illumination conditions (Pasqualetto Cassinis et al.,
2021b).

There are many different types of corruptions and the most common corruptions that can occur due to
the space environment are related to radiation effects, image saturation due to overexposure or underexpo-
sure, blurring effects due to motion, and pluming effects. Furthermore, there are also corruptions that are
inherent to real sensors, such as Gaussian and shot noise. The augmentations that are used in the creation of
the corrupted dataset try to mimic these aforementioned effects. These corruptions are based on Hendrycks
and Dietterich (2019) and are listed below and graphically shown in Figure 7.19.

• Gaussian blur: This augmentation mimics depth-of-field.
• Motion blur: Motion blur occurs when the camera moves quickly during the exposure time.
• Defocus blur: This augmentation mimics that the image is out of focus.
• Zoom blur: This augmentation mimics what a camera would capture when the spacecraft moves to-

wards the target along the camera’s optical axis with a significant velocity.
• Spatter: This augmentation emulates liquid condensation effects on the camera that can arise due to

pluming events.
• Gaussian noise: Gaussian noise is statistical noise that follows a normal distribution and occurs during

the creation of digital images. It can be caused by poor illumination and high internal temperatures in
the sensor.

• Impulse noise: Impulse noise is also referred to as salt and pepper noise and can be caused by radia-
tion. This results in some pixels being dead pixels (0) and some pixels being hot pixels (255). Thereby
rendering the information of that pixel useless.

• Shot noise: Shot noise is inherent to any Charge-coupled device (CCD) camera, which is commonly
used on spacecraft as well. This type of noise is associated with photons and the conversion of those
photons into electrons within the camera.

70 7. Dataset

(a) An image taken of Bennu by
the MapCam of the OSIRIS-REx
spacecraft. Source: NASA12

(b) An image taken of the Hubble space tele-
scope. Source: NASA13

(c) An image taken during the
Apollo mission. Source: NASA14

Figure 7.16: Real space images illustrating the lack of stars

• Speckle noise: This noise is similar to Gaussian noise, however, the noise is additive, meaning that the
noise is larger when the original pixel intensity is larger.

• Color jitter: This augmentation randomly changes the brightness, saturation, and contrast of the im-
ages and can therefore simulate a variety of optical conditions, such as adverse illumination conditions
(overexposure/underexposure).

• Random erase: This augmentation randomly selects a rectangular part of the image with a certain
aspect ratio and sets those pixels to zero to reduce the network’s reliance on certain features.

Background augmentation
Furthermore, apart from these image corruptions, another augmentation could be the inclusion of a back-
ground. A commonly used background augmentation for satellites would be the Earth, however, this is not
relevant for a mission to an asteroid. Another background augmentation that could come to mind would be
distant stars. However, in actual space imagery of the asteroid Bennu, the Moon, and of a satellite as shown
in Figure 7.16, no stars are present. This is because distant stars are extremely faint and due to the relatively
short exposure time used by the cameras, they are not captured within the image. Longer exposure times
allow to capture more light, resulting in the ability to detect faint stars. The brighter the object, the shorter
the required exposure time, however, the cameras used in space missions are optimized for the objects that
they encounter and want to study. The MapCam used to capture images of Bennu by OSIRIS-REx was de-
signed to map the surface of the dark asteroid and was consequently overwhelmed when making an image
of the bright Earth, resulting in the image artifacts seen in Figure 7.17a. Furthermore, the Hubble telescope
wants to study distant stars and galaxies as shown in Figure 7.17b and has dedicated camera parameters for
that purpose. Therefore, based on the camera properties used for asteroid missions a star-field background
augmentation is not considered further. However, the star-field shown in Figure 7.17b could be used as an
adversarial texture in future research.

Augmented dataset creation
The algorithms used to corrupt the images are taken from the software repository15 created by Barad (2020),
which is an adaptation of the repository16 created by Hendrycks and Dietterich (2019). Furthermore, the pro-
cedure proposed by Barad (2020) is adapted, as this allows for a hierarchical application of the corruptions,
resulting in realistic images.

Figure 7.18 illustrates the process of creating the augmented dataset. Firstly, a subset of images are ran-
domly selected with a probability P (C) to ensure that a minimal of x% of the images are clean. The remainder
of the images will be sent to the augmented images pipeline. Firstly, an image gets applied random erase with
a probability P (RE) after which color jitter is applied to this image with a probability of P (C J). Following
this, one of the blurs is randomly applied to this image with a probability of P (B) after which one of the noise

12https://www.asteroidmission.org/galleries/spacecraft-imagery/, Date accessed: 4-11-2021
13https://www.nasa.gov/mission_pages/hubble/multimedia/index.html, Date accessed: 4-11-2021
14https://moon.nasa.gov/resources/56/eagles-return/?category=images, Date accessed: 4-11-2021
15https://github.com/kuldeepbrd1/image-corruptions Date accessed: 4-11-2021
16https://github.com/hendrycks/robustness Date accessed: 4-11-2021

https://www.asteroidmission.org/galleries/spacecraft-imagery/
https://www.nasa.gov/mission_pages/hubble/multimedia/index.html
https://moon.nasa.gov/resources/56/eagles-return/?category=images
https://github.com/kuldeepbrd1/image-corruptions
https://github.com/hendrycks/robustness

7.5. Bridging the domain gap from synthetic to real images 71

(a) An image taken of Earth by the Map-
Cam of the OSIRIS-REx spacecraft show-
ing the image artefacts (top) due to the
brightness of the Earth. Source: NASA12

(b) An image taken of distant stars and galaxies by the
Hubble space telescope. Source: NASA 13

Figure 7.17: Demonstrating the effect of the designed purpose of the camera on what it captures

Augmentation
info

(.json)

Color
JitterConfiguration

file
(.json)

Augmented images creation

No
Color
Jitter

Blur

No
Blur

Noise Augmented
 images

No
Noise

Random
Erase

No
Random

Erase

Clean images
Clean

Augmented

Bennu Bennu+

Figure 7.18: A schematic overview of the creation of the augmented dataset

augmentations is randomly applied with a probability of P (N). The spatter augmentation is included in the
blurs. This results in an image being able to have up to four augmentations applied, however, never more than
one blur or noise effect. It could also happen that the image that is ran through the augmentation pipeline
remains clean, i.e., no augmentations applied.

This ordering of the different augmentations and the clustering of the different blurs and noises is per-
formed to create realistic augmented images. Firstly, random erase and color jitter are applied, as these are
general augmentations that are intended to make the network invariant to either certain missing informa-
tion (random erase) or illumination conditions (color jitter). The blurring and noise effects are real sensor
artifacts and would influence the pixels regardless of the brightness/contrast change that can arise due to
environmental effects (color jitter) or random erase.

Furthermore, as there are multiple corruptions of the same type, such as noise and blur, randomly assign-
ing the corruptions could result in images having multiple different types of noise and blur, thereby creating
images that are not representative of realistic corrupted imagery. The ordering and clustering of the different
types of noises and blurring results in images in which the effects are fairly randomized, while having realistic
and varying combinations of effects.

A corrupted training and validation set is created. The test set of the Bennu-clean dataset is used to eval-
uate the performance of the networks trained on the corrupted dataset Bennu+ to clean images, i.e., without
augmentations. The distribution of the number of corruptions applied to each image is listed in Table 7.3 and
the total number of corruptions per type are shown in Table 7.4.

72 7. Dataset

Table 7.3: Listing the distribution of the number of augmentations applied on the images within the Bennu+
dataset

Number of augmentations Train+ Val+ Test-clean
0 (clean) 8762 ≈ 39% 1819 ≈ 37% 4853
1 5614 ≈ 25% 1205 ≈ 25% -
2 5767 ≈ 25% 1296 ≈ 27% -
3 2271 ≈ 10% 492 ≈ 10% -
4 232 ≈ 1% 41 ≈ 1% -
Total 22646 100% 4853 100% 4853

Table 7.4: Listing the number of images per corruption type

Type of augmentation Train+ Val+ Test-clean
None (clean) 8762 1819 4853
Random erase 1902 339 -
Color jitter 7133 1699 -
Gaussian blur 1683 368 -
Motion blur 1728 398 -
Zoom blur 1732 414 -
Defocus blur 1776 425 -
Spatter 1801 434 -
Gaussian noise 1806 359 -
Impulse noise 1761 346 -
Speckle noise 1727 350 -
Shot noise 1840 305 -

The probabilities P applied for each case in Figure 7.18 are specified through a configuration file and can
be found in Appendix D. These were deemed sufficient in generating a proper corrupted dataset. The main
idea is to have a training and validation set with a slightly different distribution of corruptions to evaluate
robustness. Moreover, the augmentation applied to each image is unique to mimic real world corruptions,
which also show variation of the corruption values even at fixed levels of intensity. This also ensures that not
only the distribution of augmentations differs between the training and validation set, but also the corruption
value.

The validation set consists of synthetic images with a certain corruption distribution created in this work.
Therefore, tuning the probabilities of the augmentations for the training set, to improve performance on the
created validation set, is purely subjective to the distribution of that validation set. This tuning of augmenta-
tions is therefore not performed. However, when a more standard validation set consisting of real images was
to be used to evaluate robustness, then the distribution of augmentations of the synthetic training set can be
researched to find the one resulting in the best performance on the validation set.

The severity levels used in the generation of these different types of corruptions have been based on val-
ues used by Barad (2020) and Hendrycks and Dietterich (2019) and are representative of real camera/sensor
corruptions. These are detailed in Appendix D.

7.6. Trajectory generation
The performance of the algorithm can be tested on image sequences representative of three different trajec-
tories. The most important orbital elements of these trajectories are listed in Table 7.5, where a refers to the
semi-major axis, e to the eccentricity, and i to the inclination. These trajectories are selected to cover a variety
of scenarios, namely retrograde and prograde orbits and a polar orbit. The retrograde and prograde orbits are
w.r.t. the assumed rotation throughout this work (positive rotation around Z , with +Z up). Furthermore, one
orbit is at a distance of 8 km. This is used to evaluate whether the network is able to interpolate on data not
explicitly present in the dataset.

However, in this work the CNN-based feature extractor is not incorporated into a navigation architecture

7.7. Dataset API 73

Table 7.5: The three different trajectories and their most important aspects

Scenario Orbit a [km] e [-] i [deg] CoM pointing
1 Retrograde 6 0 0 Yes
2 Polar 7.5 0 88 Yes
3 Prograde 8 0 0 Yes

with a state estimator. Therefore, high realism taking into account the velocity of the spacecraft, the sampling
time between images, and the rotation of the asteroid is not required and is left to future research. These
image sequences are merely used to showcase the algorithms performance to sequences it could encounter
in an actual orbit. These trajectories alongside their ground-truth data have been rendered using Blender
and post-processed in the same way as the normal dataset. The scripts used to generate the trajectory will be
made available in the software repository17. The image sequences do not contain corruptions.

7.7. Dataset API
The synthetic dataset has been created using Blender and the data has been processed and annotated us-
ing Python. The scripts used to generate the dataset are made available on Github17 by the author . These
scripts are generic/modular and can be used to generate synthetic datasets suitable for deep-learning pur-
poses of other target bodies as well. The datasetGeneration.py script can be used to generate the datafiles,
which are used to place the camera in Blender. The Blender scripts are generic and can be used to gener-
ate synthetic datasets of other target bodies as well, as long as a textured 3D model is given. Furthermore,
an extensive utility file is created (dataset_utils.py) that allows a user among others to transfer the raw
datafiles from Blender (pose, bounding box) into the required format, partition the dataset into training, val-
idation, and test, annotate and visualize the data through the use of simple function calls. This utility file is
not exclusive to the Bennu dataset, but can be applied to any dataset that uses the same file formatting. The
dataset_processing.py script is used to process the raw-data originating from Blender into a fully anno-
tated dataset with exported files in their desired formats (e.g., COCO) and file locations. An example of this
file and the usage of functions is shown in Code Listing C.6.

17https://github.com/lvanderheijden

https://github.com/lvanderheijden

74 7. Dataset

(a) No augmentations (b) Gaussian blur (c) Motion blur

(d) Defocus blur (e) Zoom blur (f) Gaussian noise

(g) Impulse noise (h) Shot noise (i) Speckle noise

(j) Spatter (k) Color jitter (l) Random erase

Figure 7.19: The different image corruptions that have been incorporated into the augmented Bennu+
dataset. The severity for some augmentations have been increased for visibility

8
Object detection network

This chapter discusses the object detection network and the implementation. Firstly, an introduction to ob-
ject detection is given in Section 8.1, followed by the selection of the architecture that will be used in this work
in Section 8.2. The chosen network will then be discussed in more detail in Section 8.3. The implementation
of the network is discussed in Section 8.4, after which the configuration is elaborated upon in Section 8.5,
demonstrating the settings used to achieve the results on the datasets.

8.1. Object detection
The problem of object detection can be formulated as the detection and classification of objects within an
image. The network regresses the coordinates of the bounding box surrounding the target and classifies the
object present within that bounding box. The onset of deep learning has greatly improved the object detec-
tion pipelines, outperforming traditional hand-engineered methods. These hand-engineered methods had
to be manually tweaked, which becomes cumbersome when dealing with all kinds of variations of the ap-
pearance of the object due to scale, illumination, occlusion, and noise. Furthermore, the classification of
objects required much more information per class, resulting in extensive tweaking to achieve desirable per-
formance, and these methods tend to fail on noisy and occluded data. The object detection field is heavily
researched within machine learning and object detection networks are among the most complex machine
learning models.

8.2. Architecture selection
As discussed in Section 6.2, it is best practice to use an open-source implementation of a network architecture
that has been optimized for object detection. The most suitable network is selected based on the notion that
the architecture should have low memory usage and FLOPs allowing for future embedding in the spacecraft
processing unit as discussed in Section 2.3. This is to make the application of machine learning more realistic.
The research regarding object detection applies to a wide range of objects, but also focuses on detecting
person instances within images, however, the concept remains the same.

The selection of the CNN architecture determines the accuracy of the object detections. The state-of-the-
art object detection networks can generally be divided into two-stage detectors and single-stage detectors.
The two-stage detectors rely on region proposals to generate RoIs from feature maps after which these region
proposals are used to classify the object within the RoI and regress the bounding box coordinates. These
models achieve highly accurate detections, however, because of their two-stage approach they have a higher
inference time, i.e., they are slower. Examples of two-stage detectors are Faster R-CNN (Ren et al., 2016)
and Mask R-CNN (He et al., 2017). The single-stage detectors directly regress the bounding box coordinates
and output the probability that an object belongs to a certain class. These networks are highly efficient and
much faster than the two-stage detectors, however, they generally are less accurate. Examples of single-stage
detectors are the You Only Look Once (YOLO) type algorithms (Redmon and Farhadi, 2018; Redmon et al.,
2016) and Single Shot MultiBox Detector (SSD) (Liu et al., 2016).

Regardless of the approach, the object detection networks generally consist of two distinct parts, namely
a base network, which is also referred to as the backbone, which is used for generic feature extraction as dis-
cussed in Section 5.3. These backbone networks are often used for classification problems and have been

75

76 8. Object detection network

trained on enormous datasets, such as ImageNet (Deng et al., 2009). Commonly used backbone networks
are ResNets (He et al., 2016), VGG (Simonyan and Zisserman, 2014), Inception (Szegedy et al., 2017), and
MobileNets (Howard et al., 2017; Sandler et al., 2018). The second part is the detection head, which is used
to regress the bounding box coordinates and to classify the objects within the corresponding bounding box,
which follows the aforementioned one or two-stage approaches. Some recent object detection networks also
use an additional neck section, which serves as an intermediate layer between the backbone and the detec-
tion head. This layer combines feature maps from different layers (multiple scales), as different features can
be found in different scales (Figure 8.5).

The selection of a certain backbone, neck, and detection head is not trivial and therefore fixed combina-
tion object detection networks are used that have been proven to work effectively. The majority of the net-
works aim to maximize the performance on a certain performance metric, such as the accuracy on certain
challenging object detection datasets, such as Common Objects in Context (COCO) (Lin et al., 2014). How-
ever, for the actual application of machine learning to space missions not only the performance is important,
but also the computational effort and the required memory as outlined in the requirements. Huang et al.
(2017) performed an extensive speed/accuracy trade-off of different backbone and detection head combina-
tions. Furthermore, several other combinations have been tested on challenging datasets and implemented
within the TensorFlow Model Zoo1.

As was previously mentioned, the backbone usually consists of state-of-the-art image classifying CNNs,
such as ResNet (He et al., 2016) and VGG-16 (Simonyan and Zisserman, 2014). These networks consist of tens
or even hundreds of millions of parameters and use normal convolutions, which affects the memory usage
and execution time, limiting real-time applications on embedded systems. Howard et al. (2017) proposed
MobileNets, which were specifically designed for mobile and embedded vision applications. They focused
on less memory usage and lower latency by using less parameters (Section 5.4) while only resulting in a mi-
nor loss in the performance with respect to the much larger state-of-the-art CNNs (Sandler et al., 2018).
Soviany and Ionescu (2018) showed that for relatively easy images a single-shot detector, combining Mo-
bileNet with a SSD detector head, performs equally well compared to the more complex and slower Faster R-
CNN. The definition of easy images refers to single objects, no challenging background, or heavily occluded
objects in cluttered scenes. The datasets used within this work are considerably less challenging compared
to the datasets the existing object detection architectures have been trained and evaluated on (COCO). These
datasets contain a plethora of different object classes with images containing multiple objects and often in
heavily occluded scenes. The Bennu datasets consist of a single class object on a black background (under-
lid starfields) with little to no occlusion. Therefore, the most important consideration is the efficiency of the
network, as the reported accuracies are achieved on these much more challenging datasets. Based on the
aforementioned, the one-shot detector, SSD-MobileNet combination is adapted within this work due to its
computational efficiency. Furthermore, Park et al. (2019) and Barad (2020) used a single shot detector, YOLO
and SSD, respectively, with a MobileNet architecture as their backbone within their uncooperative spacecraft
pose detection pipelines.

This object detection architecture was improved upon by adding a Feature Pyramid Network (FPN) neck
to the SSD detection head making it a multiscale network, which is more robust to image corruptions as
proven by Hendrycks and Dietterich (2019). The final architecture therefore consists of the SSD detection
head with the FPN neck and the MobileNetV2 backbone, where all the convolutional layers of the different
parts have been replaced with depth-wise separable convolutions (Section 5.4) resulting in a highly optimized
network architecture at a minimal loss in accuracy. This architecture is referred to as SSD-FPN-MobileNetV2-
Lite, where the Lite refers to the depth-wise separable convolution layers. The basic network architecture is
available through the TensorFlow Model Zoo1 and is discussed in Section 8.3.

8.3. SSD-MobileNetV2-FPN-Lite
The SSD-MobileNetV2-FPN-Lite model consists of three distinct parts, the MobileNetV2 network as the
generic feature detector, the FPN as the neck, and the SSD network as the detection head. As discussed before,
each convolutional layer within the network has been replaced by depth-wise separable convolutional layers
resulting in a substantial decrease in the number of parameters and FLOPs, therefore referring to it as Lite.

The exact number of parameters and FLOPs for this model are not reported, nor does the software through
which it is available, TensorFlow Object Detection API (Section 8.4), at the moment of writing, enables the cal-

1https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md,
Date accessed: 31-12-2021

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

8.3. SSD-MobileNetV2-FPN-Lite 77

Table 8.1: The number of parameters and FLOPs for the SSD-MobileNetV2-Lite model (Sandler et al., 2018)

Network Input size (w ×h) [px] Parameters [Mn] FLOPs [Bn]
SSD-MobileNetV2-Lite 320×320 4.3 0.8

Figure 8.1: The architecture of the standard SSD detector with the original VGG-16 backbone (Liu et al., 2016)

culation of this. However, the parameters and FLOPs of a similar model, the SSD-MobileNetV2-Lite, with the
same input size, are summarized in Table 8.1. This gives an indication of the relative size and computational
efficiency. The addition of the FPN neck is not expected to increase these reported numbers too much, which
is reinforced by comparing the reported inference times of 19 ms and 22 ms1, respectively, for the model with
and without the FPN neck.

The building blocks and general workings of MobileNetV2 have been explained in Section 5.4, the FPN
and SSD are discussed in more detail in this section.

The original implementation of the SSD detector devised by Liu et al. (2016) adds multiple convolutional
layers to the backbone network to detect objects as shown in Figure 8.1. These convolutional layers reduce
the size of the image, i.e., decrease the resolution, from feature maps that have a size of 38×38 to feature maps
of 3×3, thereby allowing for the detections of objects across multiple scales. The feature maps can be viewed
as a grid that is placed over the image as shown in Figure 8.5, where the lower resolution feature maps are used
to detect larger objects. The SSD network relies on the use of default boxes with different scales and aspect
ratios called anchor boxes, which were first proposed by Ren et al. (2016) in Faster R-CNN. The aspect ratio
of these anchor boxes are pre-selected and it is recommended to use between four and six different aspect
ratios to be able to cover a variety of different object shapes. These anchor boxes are applied to each feature
cell and their position relative to the feature cell is fixed, where the feature map resolution determines the
scale of the anchor box as shown in Figure 8.5.

The network moves over every feature cell and outputs a probability score (pc) that the object’s midpoint
of a certain class is present within that feature cell, and it outputs the 4-vector encoded offset (t) relative to
the default anchor box (Equation (8.2)). Therefore, the total output for any given layer with a certain feature
map size m ×n is given below, where #A represent the number of default anchor boxes and c represents the
number of classes.

m ×n ×#A× (c +4) (8.1)

Whenever there are multiple layers (feature map sizes) used for detection this increases the output size
accordingly. The feature maps of different layers are combined to form the final predictions in a manner as
shown in Figure 8.2a.

The original implementation of the SSD does not use the low-level layers of the backbone network for
detections. It only starts from one of the last few convolutional layers of the backbone and the added new
layers to create the pyramidal feature hierarchy as shown in Figure 8.1. However, this misses the opportunity
to reuse the higher resolution maps of the feature hierarchy, which were proven to be important for detecting
small objects (Lin et al., 2017). The FPN neck is used to ameliorate this as it combines low-resolution se-
mantically strong features with high resolution semantically weak features through a top-down architecture
with lateral connections as shown in Figure 8.2b. The top-down architecture upsamples the low-resolution

78 8. Object detection network

(a) Pyramidal feature hierarchy (b) Feature Pyramid Network (FPN)

Figure 8.2: Different detection architectures where the thickness of the blue line represent semantically
stronger features (Lin et al., 2017)

semantically strong features to the required spatial size, whereas the lateral connection adds the same size
feature map from the bottom-up path. This results in having semantically strong features at all feature map
sizes, and results in more precise locations of those features, as only using the top-down approach would
result in semantically strong features, but the locations would be inaccurate, because of the several down-
and upsamplings of those features. The semantic meaning of the features is based on the notion that low
resolution layers have more semantic meaning, where low resolution refers to the layers towards the end of
the network. The initial layers have a high resolution and as such detect more low-level features, such as
edges or lines that do not really have semantic meaning. The number of convolutional layers to which the
FPN process is applied can be adjusted.

The combination of SSD with FPN allows the network to combine the predictions of all the anchor boxes
with the different aspect ratios from all the different locations of the different scale feature maps. This results
in a diverse set of predictions, which are capable of detecting a variety of object sizes and shapes.

8.4. Implementation
The SSD-MobileNetV2-Lite network is available on GitHub in the TensorFlow 2 Detection Model Zoo2. The
network has been created using TensorFlow, which is an open-source machine learning platform built and
maintained by Google Brain, which uses a Python API. The TensorFlow Object Detection API3 created by
Huang et al. (2017) is used, as it allows for a structured approach in adapting the object detection network to
detecting asteroids. This API allows a user to more easily create and adapt object detection pipelines using
existing networks, while also containing a variety of functions that are useful for the object detection training
and evaluation process. This API is maintained and constantly updated. Furthermore, it allows the adapta-
tion of certain parameters and settings of a given network, such as the input size, optimizer, learning rate,
and mini-batch size through the use of a configuration file, which is in the .config format. Within this work,
TensorFlow 2.5 has been used and the TensorFlow Object Detection API is compatable for any TensorFlow 2.x
version. Detailed information regarding the installation of both can be found in the documentation3.

As discussed in Section 6.2, the network is trained and evaluated using Google Colaboratory (Colab) and
the NVIDIA Tesla P100-PCIE-16GB GPU. The model architecture, which specifies the number of convolu-
tional and pooling layers and other specifications is fixed. This architecture did not have to be adjusted and
only the input to the network, such as the label map and the .TFRecord file, had to be created to fit the
Bennu datasets (Section 8.5). Furthermore, the configuration of the network specifying aspects, such as the
optimizer and learning rates, was adapted, which is discussed in detail in Section 8.5.

The training and validation have to be run in parallel, as the TensorFlow Object Detection API treats vali-
dation as an independent process. The dataset to use for each, can be specified in the configuration file (Code
Listing C.4) under train_input_reader and eval_input_reader, respectively. As illustrated in Figure 8.3a,
during training the model outputs a checkpoint file every 1000 steps of the current state of the model, which
contains that current model’s weights and biases. The validation pipeline will then wait for these checkpoint
files and uses them one by one to validate the performance of the model on the validation dataset using the

2https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md,
Date accessed: 11-10-21

3https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html, Date accessed: 25-11-
2021

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/install.html

8.4. Implementation 79

Model
configuration

(.config)

Label map
(.pbtxt) label_map.pbtxt

Validation

- COCO performance
metric evaluations
-Loss and learning rate

TensorBoard

train.record

pipeline.config Training

TensorFlow Object
Detection API

checkpoint
model (.pb)

Export trained
model

exporter_main_v2.py

Trained
model
(.pb)

Save the checkpoint
file

Training the model
model_main_tf2.py

checkpoint
model (.pb)

Train record
(.record)

Model
configuration

(.config)

Label map
(.pbtxt) label_map.pbtxt

val.record

pipeline.config

Validation
record

(.record)

- COCO performance
metric evaluations
-Loss

Validating the
model

model_main_tf2.py

TensorBoard

(a) The training process, demonstrating that training and validation are run in parallel

Label map
(.pbtxt)

Trained model
(.pb)

Predicted bounding
box coordinates

Predicted class

Predicted class
 probability

Running inference

Detections
data

(.json)

TensorFlow Object
Detection API

(b) Inference

Figure 8.3: Graphically illustrating the implementation of the training and inference process, showing the
inputs and outputs

COCO dataset performance metrics. The progress of training and the performance of the model on both the
training and validation set can be tracked through TensorBoard4, which is a graphical interface with which
performance metrics and other parameters can be easily visualized during training, validation, and testing.
This process is repeated for n steps or until the performance has saturated and the best model is then ex-
ported as the final trained model. This final trained model is then used for inference (testing) using Google
Colab or a local machine. Furthermore, the checkpoint files also allow the network to start (re)training from
such a checkpoint.

Running the model in inference is an independent process and requires the trained model. This then
makes predictions about the bounding box coordinates, class, and the confidence associated with that class,
which are used for evaluation. This process is graphically shown in Figure 8.3b. Furthermore, these predic-
tions are fed to the keypoint detection network. The object detection network is trained and optimized in
isolation and eventually incorporated into the pose estimation pipeline.

4https://www.tensorflow.org/tensorboard/get_started, Date accessed: 25-11-2021

https://www.tensorflow.org/tensorboard/get_started

80 8. Object detection network

Bounding
box
(.csv)

TFRecords
(.record)

Generate TFRecords
(generate_

tfrecords.py)

Data pre-processing

Figure 8.4: The pre-processing required for training the network

8.5. Configuration
The model architecture, which specifies the number of convolutional and pooling layers and other specifica-
tions, is fixed. However, certain hyperparameters need to be set, adapted, or tuned as well as training settings,
such as selecting the loss function and optimizer. These parameters and settings specify the configuration of
the network and the most important aspects will be discussed in more detail in this section. An example
configuration file is given in Code Listing C.4.

Input and output
The input to the object detection network is an image rescaled to size 320× 320 px, which is slightly larger
than the input size of the subsequent keypoint detection network to minimize loss of information. The input
size directly effects the computational demand of the network, therefore, the aforementioned image size is
used, which is in accordance with the specification of the model (Liu et al., 2016). The ground-truth anno-
tations as discussed in Subsection 7.4.3 are firstly transformed to a standard format containing the class and
the bounding box encoding

(
xmi n , ymi n , xmax , ymax

)
(Figure 7.14). During pre-processing this file format is

converted to .TFrecord as shown in Figure 8.4, which can be read by TensorFlow. Furthermore, a label map
is created (.pbtxt), which simply links the class label to an integer value. Within this work only one
object/class is detected, namely the asteroid. This label map is used by the TensorFlow Object Detection API
for training and detection.

As discussed in Section 8.3, the network moves over every feature cell and outputs a probability score
(pc) that the object’s midpoint of a certain class is present within that feature cell, and outputs the 4-vector
encoded offset (t) of the ground-truth bounding box relative to a default anchor box. The feature maps of
different layers are combined to form the final predictions. The final output of the network is transformed
to the following format for the bounding box encoding

(
xmi n , ymi n , xmax , ymax

)
alongside a classification

probability and the allocated class to the object within the bounding box.

Bounding box encoding
The 4-vector encoded offset (t) is associated with the default anchor boxes and as discussed in Section 8.3,
the default anchor boxes are applied to every feature cell within the feature map in a convolutional manner.
The position of each anchor box relative to the corresponding feature cell is fixed, where the anchor boxes
have a certain midpoint, aspect ratio, and scale. As aforementioned, at every feature cell, the network tries
to learn and predict the offset of the ground-truth bounding box relative to the default anchor box. Thereby,
learning a transformation that maps the default anchor box to the ground-truth box. The difference between
the actual and predicted offset of the ground-truth bounding box and the allocated anchor box is minimized
during training through the loss function. During training it needs to be established which default anchor
boxes correspond to the ground-truth bounding box to train the network accordingly. However, the matching
strategy of allocating a certain anchor box to the ground-truth box should be done carefully.

Whenever a default anchor box is selected that does not closely resemble the ground-truth box, the task
of transforming this anchor box to the desired ground-truth box does not make sense and would lead to
a highly inefficient learning problem. Therefore, care should be taken in allocating anchor boxes to the
ground-truth box for optimization. Girshick et al. (2016) propose a matching strategy in which the anchor
box with the highest Intersection over Union (IoU) (Figure 8.7) above a certain threshold (e.g., 0.5) is assigned

8.5. Configuration 81

Figure 8.5: The visualization of the matching of default anchor boxes in a specific feature cell to the ground-
truth bounding boxes on a 4×4 and 8×8 feature map (Liu et al., 2016)

to the ground-truth box. The rest of the anchor boxes are discarded. However, the learning problem can be
simplified and better performance can be achieved by allowing multiple anchor boxes to be assigned to the
ground-truth box, as long as they have an IoU value above a certain threshold (Liu et al., 2016). The network
can then learn to predict the offsets and scores for multiple overlapping anchor boxes. Therefore, it is pro-
posed to use this approach, which is in line with Liu et al. (2016). This concept of allocating anchor boxes to
the ground-truth box is graphically illustrated in Figure 8.5, where the blue and red anchor boxes refer to the
allocated boxes for the respective objects and the gray ones refer to negative matches. The majority of the
anchor boxes are negative matches as can also be observed in Figure 8.5. During inference the network will
output one final prediction using Non-Maximum Suppression (NMS), which is discussed in detail later.

The parameterization of the bounding-box offset used in R-CNN (Girshick et al., 2016) is proposed to
improve the efficiency of the offset optimization. This parameterization results in a standard regularized
least-squares problem, which can be efficiently solved. Furthermore, this parameterization of the offset re-
sults in a scale-invariant translation of the center of the anchor box and a log-space translation of the width
and height of the anchor box. This parameterization is also applied by Liu et al. (2016) and Ren et al. (2016),
and the 4-vector encoded box representation is given by:

tx = xG
c −x A

c

w A
ty =

yG
c − y A

c

h A
tw = log

(
wG

w A

)
th = log

(
hG

h A

)
(8.2)

The standard format for the ground-truth bounding boxes
(
xmi n , ymi n , xmax , ymax

)
, which can be ob-

served in Figure 7.14, is firstly transformed to a centroid representation
(
xG

c , yG
c , wG ,hG

)
to align with the an-

chor box representation
(
x A

c , y A
c , w A ,h A

)
, where the superscripts G and A are added for clarity representing

the ground-truth and anchor box respectively. The prediction of the offset by the network can be represented
by replacing t and G with t̂ and Ĝ respectively in Equation (8.2).

Anchor boxes
The dataset consists of images from a variety of different distances and viewpoints. Therefore, it is crucial
to have anchor boxes that can accurately detect the target at the different relative sizes within the image. As
was discussed in Section 8.3, the SSD detection head applies default anchor boxes over multiple scales, i.e.,
different feature map sizes. The anchor boxes have a certain aspect ratio and scale, where, when using the
FPN neck, the scale is specified in relation to the current layer’s stride length. The stride of the convolutional
operation influences the resulting size of the feature map as was discussed in Section 5.3. The influence of the
feature map resolution on the scale of the anchor box can be observed in Figure 8.5, where the 4×4 feature
map has anchor boxes that are much larger than the ones in the 8×8 feature map.

The anchor boxes have a certain aspect ratio (h
w) and they can be properly selected by analyzing the distri-

bution of aspect ratios of the bounding boxes present in the dataset. The width-to-height and height-to-width
distribution is shown in Figure 8.6. Based on this six different aspect ratios are selected to cover the entirety
of the dataset (0.7;0.8;0.9;1.0;1.1;1.2). The anchor boxes can be adjusted within the anchor_generator part

82 8. Object detection network

0.8 1.0 1.2 1.4 1.6
Width-to-height - wh

0

2500

5000

7500

10000

12500

15000

17500
Fr

eq
ue

nc
y

0.8 1.0 1.2
Height-to-width - hw

Figure 8.6: Distribution of the width-to-height and height-to-width ratios of the ground-truth bounding
boxes enclosing the asteroid within the images throughout the entire dataset

of the configuration file Code Listing C.4. Adding more aspect ratios would not necessarily result in better
performance, but would hurt the computational cost required. These anchor boxes are applied to four layers,
with different scales (resolutions) of the feature map (e.g., 16×16, 8×8, 3×3), i.e., at four different pyramid
levels. This process of anchor boxes at different resolutions can be observed in Figure 8.5.

Loss function
As previously mentioned, the object detection focuses on two tasks, namely classification and localization.
Therefore, there are two separate loss functions that together make up the multi-task loss L, whose equation
is given below, where N represents the number of matched anchor boxes and λ represents the weight of
importance given to either subtask, which is set equal to 1 (equal importance).

L = 1

N
(Lcl s +λLloc) (8.3)

The localization loss is calculated using Equations (8.4) and (8.5). The smooth L1 loss function is pro-
posed, as this is better suited against outliers and removes the need of careful tuning of the learning rates
to avoid exploding gradients (Girshick, 2015). As previously discussed, the network tries to predict the offset
t̂ = (

tx , ty , tw , th
)

of the ground truth bounding box relative to the default anchor box. The actual offset (t) is
known and the loss functions aims to minimize this difference between the actual and predicted offset.

Lloc
(
t̂,t

)= ∑
i∈{x,y,w,h}

smoothL1

(
t̂i − ti

)
(8.4)

smoothL1 (x) =
{

0.5x2 if |x| < 1

|x|−0.5 otherwise
(8.5)

The classification loss is calculated using Equations (8.6) and (8.7) and is used to penalize the wrong class
detection for a detected object. The object detection network normally deals with more than one class and
then the classification loss is much more important. In this work, however, the detector only has to discern
between the asteroid and the background, i.e., determining whether the cell within the feature map contains
the object or not. The use of the weighted sigmoid focal loss is proposed, as this has been shown to greatly
improve the performance of one-shot detectors. This has to do with the nature of one-shot detectors, as they
can evaluate up to 10,000 proposed locations, whereas only a fraction contain the actual object and the ma-
jority is simply background. This results in the class imbalance problem, resulting in inefficient training, as
the majority of those proposed locations are easily classified as background by the detector. Therefore, they

8.5. Configuration 83

Figure 8.7: Visualization of the IoU performance metric

do not offer any useful information for learning. Furthermore, as the majority of the examples are easy neg-
atives (detections with high probabilities), which have a near zero loss value, they can collectively dominate
the loss function, which results in gradients and weights that detiorate the performance of the model. The
weighted sigmoid focal loss function mitigates this by assigning more weight to hard or easily misclassified
examples, and reducing the weight of easy negatives. Thereby reducing the contribution of the easy negative
examples and increasing the importance of correcting the misclassified examples.

The balance factor α and the modulating parameter γ are tunable hyperparameters of the weighted sig-
moid focal loss function. The following values were usedα= 0.25 and γ= 2.0, which are in line with the values
found to achieve the highest performance (Lin et al., 2018). Furthermore, p̂c,i represents the class probability
predicted by the object detection network for the i th default anchor box.

Lcl s =
N∑
i
−α(

1− p̂c,i
)γ log

(
p̂c,i

)
(8.6)

p̂ =
{

p̂ if true class

1− p̂ if false class
(8.7)

Similarity and evaluation metric
The performance metric that is used for object detection is the Intersection over Union (IoU), which assesses
the accuracy of the bounding box detection within an image. The definition of this metric is given by:

IoU = size of intersection

size of union
= A∩B

A∪B
(8.8)

It evaluates the similarity between the ground-truth bounding box (A) and the predicted bounding box
(B). The detection is considered correct if the IoU has a value above a certain threshold, this threshold is
set at 0.5 to follow the convention, i.e., IoU ≥ 0.5. However, this requirement could be made more stringent
by increasing the value. The detected bounding box is considered perfect if the value of the IoU = 1. The
performance over the entirety of the respective dataset is calculated by using the mean and median of the
IoU over all the images. The IoU metric is graphically shown in Figure 8.7.

This metric is also used in determining the allocation of anchor boxes to the ground-truth box as men-
tioned when discussing the bounding box encoding. Three different example IoU detections are shown in
Figure 8.8 and as can be observed, the predicted boxes naturally have a slightly different aspect ratio than the
ground-truth bounding boxes, caused by the default anchor boxes. Detections with an IoU above 0.75 are
considered good and this is also a strict metric for the challenging COCO dataset (Lin et al., 2014).

The detection with the lowest IoU in Figure 8.8 shows a predicted bounding box that is less accurate/tight
than the ground-truth bounding box. However, it can be seen that it still accurately detects the asteroid within
the image and only preserves a bit more of the background within the image. However, the purpose of the
object detection network was to detect the object, crop the RoI, and then feed that cropped image to the
keypoint detection network. Therefore, the lowest IoU detection can still be considered good.

84 8. Object detection network

Ground truth
Predicted

(a) A detection with an IoU of 0.668

Ground truth
Predicted

(b) A detection with an IoU of 0.792

Ground truth
Predicted

(c) A detection with an IoU of 0.907

Figure 8.8: Examples of detections with different IoU values

Training
As discussed in Section 5.5 transfer learning is almost always applied for computer vision applications due to
its many benefits. The finetuning approach is used in this case and the object detection model is initialized
using the weights and biases of the model that has been trained on the COCO 2017 dataset, which contains
more than 200,000 images of 80 different object categories (Lin et al., 2014). This dataset is more challenging
than the Bennu asteroid datasets. The earlier layers of the network perform low-level feature extraction, such
as brightness changes, curves, and edges, which apply to the space problem as well. Therefore, the model has
already learned some aspects and this approach generally produces favorable results in terms of overall ac-
curacy and training time compared to a model that is trained from scratch, i.e., weights and biases randomly
initialized.

The training parameters can be adjusted within the train_config part of the configuration file as shown
in Code Listing C.4. The model is trained using mini-batches consisting of 32 images from the training dataset,
whereas the model is validated after completion of one epoch using the images in the validation dataset. This
mini-batch size was the default and found to work well for the Bennu datasets. The weight and biases of
the network are updated after each mini-batch by using the momentum optimizer with a cosine learning rate
decay. The momentum optimizer is faster than using a standard gradient descent.

For mini-batch k,
(
X {k},Y {k}

)
and epoch t , the following equations are used to update the weights and

biases. Where the small v and s refer to the value of Vd w ,Vdb ,Sd w ,Sdb of the previous mini-batch, i.e., k −1.

Vd w = (1−β)dw Vdb = (1−β)db (8.9)

w := w −αVd w b := w −αVdb (8.10)

The learning rateα and the momentum termβ are hyperparameters of the momentum optimizer and the
following value β= 0.9, is the default value that has been found to result in the best performance. The learn-
ing rate α is often problem specific and the approach proposed by Loshchilov and Hutter (2017) of using a
cosine learning rate decay with warmup is employed. This allows the learning rate to grow as well as decrease
throughout the training process. This approach has several advantages, which are enumerated below.

• The initial learning rate is small, which results in the gradients being small at the starting phase of
training. This behavior is desired as transfer learning is applied and therefore the weights and biases
of the pre-trained model should not drastically change with the first training steps. The model is fine-
tuned to the desired application using a custom dataset and it is not required to change the weights and
biases of the layers of the feature extractor, as they have learned low-level features that are applicable
to this problem as well

• The increase in the learning rate during the initial phase of training would help the model to avoid
getting stuck in local minima

• The smoothly decreasing learning rate over time will result in stability during training and will allow
the model to find the best possible fit to the data

8.5. Configuration 85

The learning rateα starts with a warm-up rate of 0.0266 and this rate increases for a 1000 "warmup" steps
until it reaches the base learning rate of 0.08, which then gradually decreases to zero using a cosine decay until
it reaches 50,000 steps. However, the training can be stopped at any time when the performance is found to
be saturating. The average time per step is about 0.6 s, therefore training can take up to ≈ 8 hours.

Data augmentation
The relevance and importance of dataset augmentation was discussed in Section 5.5. The data augmenta-
tions are applied during the training process to improve the generalization performance of the network. The
generalization performance during training is evaluated on the validation set, which similar to the training set
consists solely of clean images. This removes the need to include augmentations, such as brightness changes,
as they do not occur in the validation or test sets. Moreover, for the Bennu+ dataset, these pixel-level augmen-
tation are already incorporated. Therefore, only the following affine data augmentations are used, namely
random scaling/cropping and random horizontal flip, where random cropping refers to randomly cropping
a part of the image with a certain aspect ratio and area and then rescaling it back to the original image size.
Data augmentations can be adapted, added, or removed within the train_config part of the configuration
file, Code Listing C.4.

The random cropping is used to make the network more invariant against the scale of the target object
within the image. The Bennu datasets consist of images of the asteroid taken from discrete distances and by
including this augmentation the network will learn to detect the asteroid on distances that were not explicitly
present in the original dataset. The random horizontal flip augmentation is commonly used within object
detection networks and creates new unique images, which results in more data for the network to learn from.

The details regarding the used settings can be found in the configuration file in Code Listing C.4. These
augmentations are applied through the Tensorflow Object Detection API, which automatically transforms the
annotations to align with the newly created image. For detailed information regarding the implementation
of these augmentations the reader is referred to the source-code, which is available on GitHub5 6.

Inference
The trained model is used in inference to detect the object within previously unseen images. The algorithm
can predict multiple detections of the same object in the image, with bounding boxes of different shapes
and sizes as shown in Figure 8.9, including misdetections. However, the final output should simply be one
bounding box for which the algorithm is most certain that it contains the target. Non-Maximum Suppression
(NMS) is used to achieve this and it works in the following way for a single class.

1. It looks at the probabilities associated with each detection pc . The algorithm then selects the most
confident detection (highest pc) and uses this as its prediction.

2. The remaining detected bounding boxes with an IoU value above a certain threshold, IoU ≥ x, are then
suppressed. The threshold value is set at 0.6.

The idea is that bounding boxes of the same class (asteroid) that have a high IoU are detecting the same
object multiple times. Therefore, the bounding box that has the highest class probability is selected and the
other ones detecting the same object are discarded, resulting in the output of a single predicted bounding
box. The output of the network is stored in a .json file format, which can then be fed to the subsequent
keypoint detection network.

5https://github.com/tensorflow/models/blob/master/research/object_detection/core/preprocessor.py, Date ac-
cessed: 25-11-2021

6https://github.com/tensorflow/models/blob/master/research/object_detection/protos/preprocessor.proto, Date
accessed: 25-11-2021

https://github.com/tensorflow/models/blob/master/research/object_detection/core/preprocessor.py
https://github.com/tensorflow/models/blob/master/research/object_detection/protos/preprocessor.proto

86 8. Object detection network

Figure 8.9: The predictions inferred by the object detection network trained on clean images only, on two
different sample images from the Bennu+ dataset

9
Keypoint detection network

This chapter discusses the keypoint detection network and the implementation. Firstly, an introduction to
keypoint detection is given in Section 9.1, followed by the selection of the architecture that will be used in this
work in Section 9.2. The chosen network will be discussed in more detail in Section 9.3. The implementation
of the network is then discussed in Section 9.4 after which the configuration is elaborated upon in Section 9.5,
demonstrating the settings used to achieve the results on the datasets.

9.1. Keypoint detection
The problem of keypoint estimation within machine learning generally can be described as predicting the co-
ordinates of n pre-defined keypoints on the object from a 2D image of size w ×h. Within literature, keypoints
are sometimes also referred to as features or landmarks. This is a challenging computer vision problem and
the research revolving around keypoint detection is mostly linked to human pose estimation. The research re-
garding human pose estimation focuses on detecting the joints, such as the ankles, knees, and hips of person
instances within images and subsequently estimate the pose of that person using these detected keypoints.
The seminal work of Toshev and Szegedy (2014) with DeepPose resulted in the onset of deep learning for
the problem of human pose estimation, as it showed much better performance compared to classical hand-
engineered approaches. The majority of research on keypoint detection still revolves around human pose
estimation, with increasingly more challenging datasets, such as COCO keypoint detection (Lin et al., 2014).

9.2. Architecture selection
As discussed in Section 6.2, it is best practice to use an open-source implementation of a network architec-
ture that has been optimized for keypoint detection. Similar to the object detection network, the most suit-
able network is selected based on the notion that the architecture should have low memory usage and FLOPs
allowing for future embedding in the spacecraft processing unit as discussed in Section 2.2. As aforemen-
tioned, the discussed networks are mostly applied to human pose estimation or general objects. However,
the problem of detecting pre-defined keypoints is essentially the same throughout different applications and
levels of abstraction. Therefore, these network architectures are deemed suitable for this work and will be
adapted to the purpose.

The selection of the CNN architecture determines the accuracy of the keypoint detections. Newell et al.
(2016) proposed an hourglass architecture that downsamples the input and subsequently upsamples the in-
put to detect features at different resolutions (scales). Chen et al. (2018) proposed the Cascaded Pyramid
Network (CPN), which uses a similar approach as the hourglass structure, but it concatenates the feature
maps from different scales to arrive at the final heatmap output, similar to the FPN neck discussed in Sec-
tion 8.3. Furthermore, Xiao et al. (2018) proposed a simple architecture based on the hourglass that replaces
the upsampling operations by deconvolutional layers, which combines convolution and upsampling, thereby
changing the way the high resolution feature maps are obtained. However, currently the state-of-the-art key-
point detection network on the COCO dataset is the High Resolution Network (HRNet) proposed by Sun et al.
(2019). This network uses certain sub-networks in parallel that each have a different resolution, compared to
the aforementioned networks that have different resolutions in series. The network then shares information
between the different resolution feature maps (multi-scale) fusion to improve the heatmaps precision. The

87

88 9. Keypoint detection network

Table 9.1: Comparison of the performance, size, and efficiency of the different commonly used networks for
keypoint detection on the COCO validation set for an input size of 256×192 pixels (h×w) (Zhang et al., 2019)

Network Average precision 1 Parameters [Mn] FLOPs [Bn]
HRNet-W48 76.3 63.6 32.9
HRNet-W32 74.4 28.5 7.1
SimpleBaseline (ResNet-152) 72.0 68.6 15.7
SimpleBaseline (ResNet-101) 71.4 53 12.4
LPN (ResNet-152) 71.0 7.4 1.8
SimpleBaseline (Resnet-50) 70.4 34 8.9
LPN (ResNet-101) 70.4 5.3 1.4
LPN (ResNet-50) 69.1 2.9 1.0
CPN (ResNet-50) 68.6 27 6.2
Hourglass (8-stage) 67.1 25.1 19.5

HRNet-W32 network has been used for keypoint detection on uncooperative spacecraft by Chen et al. (2019),
Barad (2020), and Pasqualetto Cassinis et al. (2021b).

However, these networks have a relatively large number of FLOPs and parameters, requiring a substan-
tial amount of memory, making them unsuitable for resource-limited devices. Currently, research is being
performed on the development of lightweight networks for keypoint detection, making them suitable for
embedded devices. However, this research is relatively new and not as established as for the object detection
networks. Bulat and Tzimiropoulos (2017) proposed the first lightweight design, however, the performance
loss was significant. Zhang et al. (2019) proposed the LPN, which is based on the architecture proposed by
Xiao et al. (2018). The LPN network replaced the convolutional layers with depthwise separable convolu-
tion (Section 5.4) resulting in a major reduction in the number of parameters and FLOPs, while achieving
good performance. The discussed networks are compared on their accuracy, size, and speed, as shown in
Table 9.1.

As can be observed in Table 9.1, the performance of LPN is comparable to other state-of-the-art networks
on the challenging COCO dataset, but it is able to achieve this with only a fraction of the parameters and
FLOPs. Therefore, from an accuracy-speed point of view, which is in line with the desired lightweight proper-
ties required for implementation on space hardware, the LPN (ResNet-101) network is selected.

9.3. Lightweight Pose Network
The LPN network is based on the simple network proposed by Xiao et al. (2018), SimpleBaseline. The network
consists of two parts, it first decreases the resolution through the use of convolutional layers after which the
resolution is recovered through upsampling to arrive at the final heatmap representation. This architecture is
graphically illustrated in Figure 9.1. The LPN uses the commonly used ResNet-101 architecture as its feature
extractor. The network then adds some deconvolutional layers at the end of the ResNet-101 architecture to
upscale the feature maps to the desired output size. This structure is used for its simplicity and generates
heatmaps from the deep, low-resolution feature maps, which have the most semantic meaning.

Most existing methods tend to use low-resolution feature maps to avoid increasing the computational
effort too much, however, HRNet (Sun et al., 2019) demonstrated that high-resolution representations allow
the CNN to produce more accurate and precise heatmaps. The LPN model therefore removes the last convo-
lutional layer of the SimpleBaseline model and its corresponding upsampling layer, to be able to use a higher
resolution feature map to make predictions while still adhering to the lightweight principles.

The improvements of LPN revolve around creating lightweight alternatives for commonly used build-
ing blocks of other networks. The lightweight bottleneck block was introduced when discussing lightweight
networks in Section 5.4. The lightweight bottleneck block replaces the standard convolutional block with
depthwise convolution, achieving a reduction in parameters and consequently computational cost of ≈ 2

17 .
Furthermore, a Global Context (GC) block is added to the lightweight bottleneck block to improve the capac-
ity of the model as it was found to improve the performance of the network (Zhang et al., 2019).

1Definition can be found on: https://cocodataset.org/#keypoints-eval

https://cocodataset.org/#keypoints-eval

9.4. Implementation 89

Figure 9.1: The architecture of the LPN model, which consist of several downsampling and deconvolutional
layers (Zhang et al., 2019)

9.4. Implementation
The LPN network is available through GitHub2 and is based on the repository of HRNet3. The HRNet reposi-
tory has created a structured format of files and functions, allowing for a structured approach in adapting the
network to keypoint detection on asteroids. Furthermore, it allows the adaptation of certain parameters and
settings, such as the input size, optimizer, learning rate, and mini-batch size through the use of a configura-
tion file, which is in .yaml format (Code Listing C.5). The LPN networks have been created using PyTorch,
which is an open-source machine learning platform built and maintained by Meta AI Research, which uses
a Python API. Within this work, PyTorch 1.9.0+cu111 and torchvision 0.10.0+cu111 have been used, however,
detailed information regarding the installation and required folder formatting can be found in the HRNet
repository3.

As discussed in Section 6.2, the network is trained and evaluated using Google Colaboratory (Colab) and
the NVIDIA Tesla P100-PCIE-16GB GPU. The model architecture, which specifies the number of convolu-
tional and pooling layers and other specifications is fixed. This architecture did not have to be adjusted and
only the input to the network, such as the COCO format had to be created for the Bennu datasets. Further-
more, some existing files had to be adapted to work for the Bennu datasets, where two major things had to be
adjusted among other things:

• The configuration file, which specifies the number of keypoints, training settings, and data augmenta-
tions used among others, which will be discussed in more detail in Section 9.5.

• The bennu_coco.py file, which processes the annotated data used for training and evaluation.

The bennu_coco.py file processes the annotated dataset for training and evaluation purposes and had
to be made suitable for the dataset format used in the creation of the Bennu dataset.

The training and validation of the network are performed simultaneously during training, and the respec-
tive dataset to use for each can be specified in the configuration file, Code Listing C.5. The network is trained
through the use of the train.py script and the configuration file containing the desired settings. The train-
ing process is graphically illustrated in Figure 9.2a. During training, after each epoch the current model is
evaluated on the validation dataset and if applicable the best model achieved up until that point is updated.
Furthermore, the network outputs training logs and checkpoint files, which contain the current model’s state
alongside other relevant information, such as the best model’s state and performance up until that epoch,
and the value of the learning rate. These checkpoint files allows the network to start (re)training from such a
checkpoint. Training can automatically resume from the last checkpoint by setting AUTO_RESUME = true in
the configuration file (Code Listing C.5).

2https://github.com/zhang943/lpn-pytorch, Date accessed: 25-11-2021
3https://github.com/leoxiaobin/deep-high-resolution-net.pytorch, Date accessed: 25-11-2021

https://github.com/zhang943/lpn-pytorch
https://github.com/leoxiaobin/deep-high-resolution-net.pytorch

90 9. Keypoint detection network

The trained model can subsequently be used for inference using Google Colab or on a local machine. This
is an independent process for which the test.py script has to be used. This can either be used to simply test
the keypoint detection network in isolation by using the ground-truth bounding box coordinates, or it can
be used to evaluate the keypoint detection network as part of the entire pipeline, i.e., OD and KD. For the
latter the detections by the OD network are fed to the keypoint detection network as will be discussed in
Section 9.5. The inference process is graphically illustrated in Figure 9.2b. The network predicts heatmaps
around the keypoint location, which are subsequently used to extract the keypoint coordinates that can be
used for evaluation of the performance of the network.

9.5. Configuration
The model architecture, which specifies the number of convolutional and pooling layers and other specifica-
tions is fixed. However, certain hyperparameters need to be set, adapted, or tuned as well as training settings,
such as selecting the loss function and optimizer. These parameters and settings specify the configuration of
the network and this will be discussed in more detail in this section. An example configuration file is given in
Code Listing C.5.

COCO
annotation

file
(.json)

Configuration
(.yaml)

Training the
network
train.py

Check
performance on

validation set

Better than
best model

Update best model
Yes

No Save checkpoint
file

Trained model
(.pth)

TensorBoard
- Training and validation
performance
- Training and validation loss
- Batch heatmaps and keypoint
detections

(a) The training process

OD
detections

(COCO
format)
(.json)

Configuration
(.yaml)

Confidence scores

Heatmaps
Running inference

test.py

Extracting
keypoint

coordinates
Keypoint

detections
(.json)

Trained model
(.pth)

(b) Inference

Figure 9.2: Graphically illustrating the implementation of the training and inference process, showing the
inputs and outputs

9.5. Configuration 91

Figure 9.3: Visualization of the designated keypoints on the asteroid surface for three different camera poses,
where points on the back of the asteroid are also plotted in the same plane. Furthermore, points can also lie
outside of the image dimensions as shown in the most right figure

Input and output
The input to the keypoint detection network is the cropped RoI, detected by the object detection network.
The aspect ratio of the input size of the network is used during the cropping to avoid deformations in the
cropped images. This means that for a network input size of 256×256 px, i.e., aspect ratio of 1, a bounding
box with a width and height of 500 px and 480 px, respectively, will be cropped to 500×500 px, around the
center of the bounding box. This cropped RoI is then rescaled to the desired input size. During the rescaling,
the scaling parameters, namely the center and scale, are preserved. The input size directly effects the compu-
tational demand of the network. During training, validation, and testing of the keypoint detection network
the ground-truth bounding boxes are used to optimize the network in isolation. However, when evaluating
the entire pipeline during inference, the cropped RoI is used as the input (Section 11.3), which would entail
to setting USE_GT_BBOX = False and specifying the path of the COCO_BBOX_FILE in Code Listing C.5, which
contains the object detections in the format given in Code Listing C.3. The required format can be created
through a created utility script that can be found on GitHub4

The standard input size of the keypoint detection networks is 256×192 px (h×w), this notation of h×w is
the convention for representing the size of the image in PyTorch and the literature surrounding human pose
estimation. The reason for this 4 : 3 aspect ratio of the input size is that the person instances (bounding box
around the persons) generally have this aspect ratio, as the height is larger than the width when a person is
standing up. Therefore, this input size was found to work the best for this type of problem, however, when
adapting this network to the asteroid dataset another input size might produce better results. The aspect
ratios of the ground-truth bounding boxes are predominantly between 0.8 and 1.0 as can be observed in
Figure 8.6. Therefore, the following input sizes were tested to see the effect of the input size on the accuracy,
namely 256×256 px and 256×192 px (h×w). The results are discussed in Section 11.2. Larger input sizes, such
as 384×384 would increase the number of FLOPs by 125%. Moreover, the GPU’s memory places constraints
on the maximum image size that can be used.

The ground-truth annotations as discussed in Subsection 7.4.2 are converted to the COCO format. This
annotation format is shown in Code Listing C.2 and is commonly used for keypoint detection networks, and
it therefore allows for easy adaptation. It contains the ground-truth keypoint locations and bounding boxes,
where examples of the ground-truth keypoints are given in Figure 9.3.

As the network uses a heatmap representation of the keypoints, the ground-truth keypoint locations have
to be converted to heatmaps. These ground-truth heatmaps are generated by the network using a Gaussian
distribution around each keypoint as given below, where Hk ∈ Rw×h and (xk , yk) represent the value of the
ground-truth heatmap and 2D coordinates of the k th keypoint, respectively. The standard deviation σ is set
to 2 px, following convention.

Hk (x, y) = exp

(
− (x −xk)2 + (

y − yk
)2

2σ2

)
(9.1)

The output of the network detecting k keypoints within an image, is k heatmaps per image. The heatmaps
are kept at one fourth of the size of the input image, which is common practice for these keypoint detection

4https://github.com/lvanderheijden

https://github.com/lvanderheijden

92 9. Keypoint detection network

(a) Confident detections (b) Less confident detections

(c) Bad detections

Figure 9.4: Visualization of different types of keypoint heatmap detections

networks and is done from a computational efficiency point of view (Chen et al., 2018; Newell et al., 2016;
Zhang et al., 2019). Xiao et al. (2018) found that this ratio improved the performance compared to using even
smaller heatmaps. Examples of different types of heatmap predictions by the network are given in Figure 9.4.
Confident detections closely resemble Gaussian distributed heatmaps as observed in Figure 9.4a, whereas
for less confident detections the heatmap is more smeared out (blob) as observed in Figure 9.4b. Figure 9.4c
illustrates scenarios in which the network is unable to accurately and confidently predict the location of the
keypoint.

The heatmap size for the specified input image sizes is 64×64 and 64×48 pixels, respectively. The key-
points extracted from the predicted heatmaps can be reprojected to the original image size, i.e., before rescal-
ing of the RoI, using the aforementioned scaling parameters.

Loss function
The loss function that is used is the Mean Squared Error (MSE), which calculates the squared L2-norm be-
tween the confidence values of the ground-truth and predicted heatmap, respectively. This loss function is
commonly used for keypoint detection. The loss function of the network for k heatmaps is given below, where
ci j and ĉi j are the ground-truth and predicted confidence value, respectively, for a pixel at location

(
i , j

)
in a

heatmap of size w ×h.

lk
(
ci j , ĉi j

)= 1

wh

∑
i , j

(
ci j − ĉi j

)2 ; Lk = {l1, . . . , lk }T (9.2)

L = 1

k

∑
k

Lk (9.3)

Training
As discussed in Section 5.5, transfer learning is almost always applied for computer vision applications due
to its many benefits. The finetuning approach is used in this case and the Bennu-LPN model is initialized
using the LPN model designed for the problem of human pose estimation. This model was trained on the
COCO train2017 dataset, consisting of 57,000 images and 150,000 person instances, labeled with 17 keypoints
(joints). An adaptation to the model and configuration file (FINAL_LAYER) was required to allow for this
initialization, as the model trained on COCO uses 17 keypoint, resulting in a dimension error for the last
layer.

This dataset is distinctly different from the Bennu asteroid dataset, however, the earlier layer of the net-
work perform low-level feature extraction, such as brightness changes, curves, and edges, which apply to the
space problem as well. Therefore, the model has already learned some aspects and this approach generally
produces favorable results in terms of overall accuracy and training time compared to a model that is trained
from scratch, i.e., weights and biases randomly initialized.

9.5. Configuration 93

The training parameters can be adjusted under the train part of the configuration file as shown in Code
Listing C.5. The model is trained using mini-batches (Section 5.5) consisting of 64 images from the training
dataset, whereas the model is validated after completion of one epoch using the images in the validation
dataset. The default mini-batch size of 32 images, used by the LPN model on the COCO dataset, was found
to result in subpar performance on the Bennu datasets, compared to a mini-batch size of 64 images. A mini-
batch of 128 images was too large for the single GPU’s memory for the input size of 256×256 px, although it
showed promising results for the 256×192 px input size. Therefore, whenever more GPU’s are available for
training it could be worth exploring the 128 mini-batch size further.

These mini-batches are reshuffled after every epoch to avoid the network overfitting on certain mini-
batches and to ensure that the network performs well on the entire dataset. The weights and biases of the
network are updated after each mini-batch using the Adam optimizer (Kingma and Lei Ba, 2015). This is a
commonly used optimizer for machine learning models due to its computational efficiency. This optimizer
combines techniques from other stochastic gradient descent methods, such as RMSprop and Gradient descent
with momentum (Goodfellow et al., 2016). The weights and biases of the nodes are updated after each mini-
batch. For mini-batch k,

(
X {k},Y {k}

)
and epoch t , the following equations are used to update the weights and

biases. Where the small v and s refer to the value of Vd w ,Vdb ,Sd w ,Sdb of the previous mini-batch, i.e., k −1.

Vd w =β1vd w + (1−β1)dw Sd w =β2sd w + (1−β2)dw2

Vdb =β1vdb + (1−β1)db Sdb =β2sdb + (1−β2)db2

V cor r
d w = Vd w

1−βt
1

Scor r
d w = Sd w

1−βt
2

V cor r
db = Vdb

1−βt
1

Scor r
db = Sdb

1−βt
2

(9.4)

w := w −α V cor r
d w√

Scor r
d w +ε

b := w −α V cor r
d w√

Scor r
d w +ε

(9.5)

The gradients dw and db are calculated through backpropagation using the current mini-batch. The
weights and biases are updated using Equation (9.5) and a new forward pass starts with the next mini-batch.

The hyperparameters of the Adam optimizer are the learning rate α and β1, β2, and ε. The following
values β1 = 0.9, β2 = 0.999, and ε= 10−8 are default values that are often used (and untuned) and are also in
line with what was used for training LPN (Zhang et al., 2019). The learning rate α is often problem specific
and is scheduled to decay at different epochs using a multi-step schedule. The learning rate scheduling starts
with a base learning rate of 1e−3 and is changed to 1e−4 at epoch 90 and to 1e−5 at epoch 120, which is
then kept constant until the end epoch of 150. These learning rates are in line with the learning rates used
by the LPN for the problem of human pose estimation (Zhang et al., 2019). This decreasing learning rate
is used to slow down progress, based on the assumption that the network is close to the minimum, and as
such avoid overshooting and allow convergence to the minimum. A larger learning rate of 0.01 was tested as
well, however, this showed volatile behavior of the loss and consequently accuracy of the network, indicating
that the learning rate was too large and the resulting update step of the weights and biases was too large
(Figure 5.3). The cut-off points of the scheduled learning rate is not an as important hyperparameter as the
learning rate α and the mini-batch size, therefore, these values were not tuned further.

A single epoch trained using the GPU specified in Section 6.2 takes around 13 min. Therefore, training
the network on a single dataset for 150 epochs can take up to 32 hours. This applies to every experiment that
is performed, e.g., different mini-batch size, input size, or learning rate, demonstrating that training neural
networks is not trivial.

The original authors of the LPN model (Zhang et al., 2019) proposed the use of an iterative training strat-
egy. The reasoning behind this was that the network might fall into suboptimal local minima during training
and then it might be difficult to cross the ridge when the learning rate is small. Therefore, the learning rate
has to be increased. The implementation of this approach is graphically illustrated in Figure 9.5. This means
that in the first stage the network is trained for 150 epochs, after which the best model determined in stage
0 is used to initialize the model for stage 1, which then restarts the training from epoch 60 using the same
hyperparameter settings, such as the scheduled learning rate.

This strategy was used to see whether this could result in an improvement of the models. When a model
was found to benefit from the iterative approach, it is mentioned in Section 11.2.

94 9. Keypoint detection network

Figure 9.5: Illustrating the iterative training strategy (Zhang et al., 2019)

Data augmentation
The relevance and importance of dataset augmentation was discussed in Section 5.5. The data augmenta-
tions are applied during the training process to improve the generalization performance of the network. The
generalization performance during training is evaluated on the validation set, which, similar to the training
set, consists solely of clean images for the Bennu dataset. This removes the need to include augmentations,
such as brightness changes, as they do not occur in the validation or test sets. Moreover, for the Bennu+
dataset, these pixel-level augmentation are already incorporated. Therefore, only the following affine data
augmentations are used, namely random scaling, random horizontal flip, and random rotation.

The random scaling refers to multiplying the scale parameter as discussed in Section 9.5 with a scaling
factor. The scaling factor is set to 0.3 meaning that the scale parameter is multiplied by a randomly selected
value within the range [0.7;1.3]. The random horizontal flip augmentation is commonly used within keypoint
detection networks and creates new unique images, which results in more data for the network to learn from.
The probability of this augmentation is set to 0.5. The random rotation randomly applies a rotation to the
original image orientation and the rotation factor is set to 40°, meaning that image is randomly rotated by an
angle within the range [−80°,80°]. The probability of this augmentation is set to 0.6.

The annotations are automatically transformed to align with the newly created augmented image. For de-
tailed information regarding the implementation of these augmentations the reader is referred to the source-
code, which is available on GitHub5. Data augmentations can be adapted, added, or removed under the
dataset part of the configuration file Code Listing C.5.

Keypoints extraction
Most existing methods use the argmax algorithm to extract the keypoint locations from the heatmap after
which they are transformed to the original image size, i.e., setting the keypoint position equal to the position
of the highest value of the heatmap. However, the result of the algorithm is discrete, thereby limiting the
accuracy of the predicted keypoints. An improved approach proposed by Sun et al. (2018) and Luvizon et al.
(2019) uses the (spatial) Soft-Argmax algorithm. This Soft-Argmax function is differentiable and therefore it
can be incorporated into the trainable network through backpropagation.

However, by normalizing the heatmaps to the domain [0,1] the majority of the values of the predicted
heatmap image will be close to zero, which can affect the accuracy of the (spatial) Soft-Argmax algorithm:

Sk (x, y) = eHk (x,y)∑
x
∑

y eHk (x,y)
(9.6)

By having a large number of zeros in the heatmap, the probability of the maximum is reduced, as e0 = 1,
thereby affecting the accuracy of the results. Therefore, the usage of a different approach is proposed that
tries to mitigate this, namely the β-Soft-Argmax algorithm, which is shown below (Zhang et al., 2019).

5https://github.com/zhang943/lpn-pytorch/blob/master/lib/dataset/JointsDataset.py, Date accessed: 25-11-2021

https://github.com/zhang943/lpn-pytorch/blob/master/lib/dataset/JointsDataset.py

9.5. Configuration 95

Figure 9.6: Demonstrating the effect of the keypoint encoding from a heatmap representation with one-fourth
input resolution (Barad, 2020)

Sk (x, y) = eβHk (x,y)∑
x
∑

y eβHk (x,y)
, (β> 1) (9.7)

The addition of the β parameter is used to suppress the impact of the heatmap values close to zero. The
remainder of the procedure is similar to the Soft-Argmax, where the regressed location of the predicted key-
point is determined as follows:

(x̂k , ŷk) = (
∑
x

∑
y

Wx Sk ,
∑
x

∑
y

Wy Sk)T (9.8)

where Wx and Wy are constant weight matrices defined as Wx = x
w and Wy = y

h , where x and y represent the
location and w and h represent the width and height of the image, respectively.

The keypoint coordinates are regressed using the β-Soft-Argmax algorithm where β = 160, which is in
line with the value resulting in the best performance found by Zhang et al. (2019). However, as previously
mentioned, the size of the heat map is one-fourth of the size of the original input image. Therefore, the
predicted keypoint location needs to be projected back to the input image size.

Furthermore, for training purposes the encoding of the keypoint location also needs to be projected to the
smaller image size. This is graphically illustrated in Figure 9.6a, where the true keypoint location represented
by the blue dot is projected to encoded keypoint location represented by the red dot. The implication of this
is that the network performs perfectly if it is able to estimate the location of the encoded keypoint. However,
in reality the true keypoint location before downsampling was located at the blue dot in Figure 9.6a. Conse-
quently, when projecting the predicted keypoint location from the heatmap size to the original image size, an
undesirable error arises, which is caused by the downsampling operation.

Therefore, to reduce this error, the predicted keypoint is shifted by a quarter of a pixel from the cen-
ter of the highest value pixel into the direction of the next highest value pixel. This is graphically shown in
Figure 9.6b. This approach was first proposed by Newell et al. (2016) and has been shown to significantly
improve the keypoint prediction by Zhang et al. (2020). This approach has also been applied in HRNet (Sun
et al., 2019). This procedure is mathematically represented as follows, where ps represents the coordinates
(u, v) of the shifted keypoint, whereas p1 and p2 represent the pixel coordinates with the highest and second
highest confidence in the predicted heatmap, respectively.

ps = p1 +0.25
p2 −p1∥∥p2 −p1

∥∥ (9.9)

Evaluation metrics
The predicted keypoint’s 2D location is given by (û, v̂), which is then compared to the ground-truth location
(u, v). The prediction can have an error in both u and v and therefore the total error is calculated using the
following (RMS error):

Epx =
√

|û −u|2 +|v̂ − v |2 (9.10)

96 9. Keypoint detection network

Equation (9.10) represents the pixel error for a single keypoint detection. However, the network outputs
68 detections for every image. Therefore, to get a sense of the general accuracy of the keypoint detection for
any given image, the mean error of the n predictions is taken, where n is kept general, as not necessarily all
68 keypoints are required.

The mean and median error over all images are used to evaluate the performance of the keypoint detec-
tion network, i.e., the mean and median of the mean keypoint detection errors of all images for n keypoint
detections per image (mean/median of means).

Furthermore, the order of the error of the keypoint detection network depends on the input size of the
original image. The image size used in this work is 1024×1024 px, however, to allow for comparison of the
performance of the network against different input sizes, the performance is normalized using the scaling
parameters as discussed in Section 9.5 (Input and output). This input-normalized error provides a consistent
reference of the keypoint detection network’s performance across datasets.

10
Verification

This chapter discusses the verification process of the parts of the developed dataset and algorithms. The
verification process is divided into three parts, namely the dataset generation in Section 10.1, which consists
of the image generation as well as the annotation of the dataset, the machine learning algorithms (OD and
KD) in Section 10.2, and the pose estimation pipeline evaluation in Section 10.3.

10.1. Dataset generation and annotation
The dataset generation and annotation can be divided into different parts:

1. Camera poses generation
2. Image rendering
3. Dataset annotation

Furthermore, underlying these different parts are several reference frame conversion and other utility
functions, which have been grouped within a Kinematics class in Python. The functions that have been writ-
ten to generate and annotate the datasets are grouped within their respective classes in thedataset_utils.py
and datasetGeneration.py files1. These utility functions have all been verified and an overview of these
low-level unit test are listed in Table 10.1.

The reference frames conversions, as shown in Table 10.1, have been verified using an input-output check,
verifying the expected result. Furthermore, C−1 = CT has been checked and it was verified that the output rB ,
determined using rB = CB ,ArA , results in the same input rA , determined using rA = C−1

B ,Ar B , i.e., CC−1 = I .

The orientation of the Blender camera w.r.t. the world axes, qW
B ,W , is described using the singularity free unit

quaternion parameterization and is converted into a DCM representing that rotation, CB ,W . The only trans-
formations that use Euler angles, which have a singularity at ±90° pitch angle θ, to create the transformation
matrix are CA,W , CB ′ ,B , and CC ,B . The transformation matrix CA,W is created using a single rotation (yaw, ψ)
around the ZW -axis (Equation (3.20)), CB ′ ,B is created using maximum rotation angles of ±5° (Equation (7.5)),
and CC ,B consists of a fixed rotation roll angle (ϕ) of −180° (Equation (3.22)). Based on the aforementioned,
singularities do not occur and throughout this work DCMs are used to represent rotations and where required
they are transformed back to unit quaternions.

10.1.1. Camera pose generation
As discussed in Subsection 7.2.3 and illustratively shown in Figure 7.4, the dataset generation pipeline con-
sists of several facets. The nominal pose is generated through a combination of two factors, namely the gen-
eration of the camera positions through the use of the vertices of an icosphere, and the corresponding camera
orientation is ensured through calculation of the out-of-plane rotation angles and a tracking constraint in
Blender. This makes sure that the Blender camera’s Y -axis is pointing up (aligned as much as possible with
the world’s Z -axis). The icosphere is generated using Python’s library PyMesh2. This is a library that is used
by many users throughout the world and therefore the chance of an error existing in the icosphere function is

1https://github.com/lvanderheijden
2https://pymesh.readthedocs.io/en/latest/, Date accessed: 7-10-2021

97

https://github.com/lvanderheijden
https://pymesh.readthedocs.io/en/latest/

98 10. Verification

Table 10.1: Table listing the low-level unit tests that have been performed to verify the required functionality

Index Part Functionality Method Passed

1 RotfromVertices
Calculating the out-of-plane
rotation angles (θ, ϕ) of a vertex (Subsection 7.2.3)

Input-output check X

2
Unit-axis
transformation matrices

Calculating the unit-axis transformation matrices
around the x, y, z axes respectively (Section 3.3)

Input-output check,
CCT = CC−1 = I

X

3 world2asteroid - CA,W
Converting from the world reference frame (W)
to the asteroid reference frame (A)

Input-output check,
CCT = CC−1 = I

X

4 world2Bcam - CB ,W
Converting from the world reference frame (W)
to the Blender camera reference frame (B)

Input-output check,
CCT = CC−1 = I

X

5 Bcam2camera - CC ,B
Converting from the Blender camera reference frame (B)
to the camera reference frame (C)

Input-output check,
CCT = CC−1 = I

X

6 Bcam2CamBearing - CB ′ ,B

Converting from the Blender camera reference frame (B)
to the intermediate off-nominal pointing Blender camera
reference frame (B

′
)

Input-output check,
CCT = CC−1 = I

X

7 asteroid2camera - CC ,A

Converting from the asteroid reference frame (A) to the
camera reference frame (C) through multiplication of the
intermediate conversions

Input-output check,
CCT = CC−1 = I

X

8 dcm2quat Converting a DCM to quaternions (Equation (3.10)) Input-output check X
9 quat2dcm Converting quaternions to a DCM (Equation (3.8)) Input-output check X

10 quatMultiply Multiplying two quaternions together Input-output check X
11 quatConj Creating the conjugate of a quaternions Input-output check X
12 dcm2euler Converting a DCM to Euler angles (3-2-1) Input-output check X

13 compute_relaxed_bbox Relaxing the ’raw’ bounding box coordinates by 5%
Visual inspection/
calculation

X

14 Retrieve the images
Retrieving the images from the respective folders
and writing them to new directory

Visual inspection/
Analysis

X

15 bbox_raw_data
Retrieving the bounding box coordinates and
rewrite to standard format

Visual inspection/
Analysis

X

16 Dataset partitioning
Randomly partitioning the dataset into
train/val/test

Analysis X

close to zero. Based on that, it is assumed that this function has been verified. Furthermore, the calculation of
out-of-plane rotation angles has also been verified and is listed in Table 10.1, as this is considered a low-level
test. The camera-up constraint uses the tracking constraint3 implemented in Blender. Along the same line as
PyMesh, it is assumed that the function has been verified. The remaining verification of the pose generation
revolves around the off-nominal pointing, as this is implemented from scratch. The verification procedure is
discussed in more detail.

Off-nominal pointing
This discusses the unit-test performed to verify the functionality of the creation of off-nominal pointing cases.
This consists of generating a quaternion parameterization representing the orientation of the Blender camera
(B) w.r.t. the world frame (W).
Input:

• The nominal pose of the Blender camera (B) w.r.t. world frame as shown in Table 10.3
• The number of off-nominal pointing cases N = 4
• The bearing angle combinations

(
α,β

)
Expected output: A positive combination of the bearing angles would result in the object moving to the bot-
tom right corner, in accordance with the definition shown in Figure 7.7 and the discussion on off-nominal
pointing (part 4) in Subsection 7.2.3. The same notion applies to the other combinations
Test passed: When through visual inspection it can be observed that the actual results are equal to the ex-
pected results for the different cases

The nominal pose as shown in Table 10.3 was used to apply the selected bearing angles. The follow-
ing combinations were tested

(
α,β

) = (4.0°,4.0°),
(
α,β

) = (4.0°,−4.0°),
(
α,β

) = (−4.0°,−4.0°) and
(
α,β

) =
(−4.0°,4.0°) to verify the four different possible quadrants. Furthermore, the zero-test was performed, show-

3https://docs.blender.org/manual/en/latest/animation/constraints/tracking/track_to.html#example, Date ac-
cessed: 7-10-2021

https://docs.blender.org/manual/en/latest/animation/constraints/tracking/track_to.html##example

10.1. Dataset generation and annotation 99

(a) The off-nominal pointing
pose using

(
α,β

)= (4.0°,4.0°)
(b) The off-nominal
pointing pose using(
α,β

)= (4.0°,−4.0°)

(c) The off-nominal
pointing pose using(
α,β

)= (−4.0°,−4.0°)

(d) The off-nominal
pointing pose using(
α,β

)= (−4.0°,4.0°)

Figure 10.1: The verification of the off-nominal pointing generation as discussed in Subsection 7.2.3 (part 4)
for a variety of bearing angle combinations

casing that no off-nominal pointing was applied. As can be observed in Figure 10.1, the output is in line with
the expected output. The same procedure was repeated for combinations of 8° and the cube had moved twice
as far, thereby demonstrating the expected behaviour. Based on this, the generation of off-nominal viewing
cases was deemed verified.

10.1.2. Image rendering
As discussed in Subsection 7.2.4, the images are rendered using Blender’s Python API. The main script in-
volved with rendering the images sets the object’s orientation w.r.t. world axes, it places the cameras accord-
ing to the pose data files in the expected orientation, it sets the illumination conditions, and renders the
images according to the desired settings. This test is designed to verify whether the script can correctly per-
form these steps resulting in the desired rendered images. The functionality of the functions underlying the
scripts (Blender functions) have been assumed to be verified as previously discussed.
Input:

• Three different cubes that form a distinctive object that appears different from different viewpoints.
This is shown in Figure 10.2, where the first cube has four Blender units of size, the second cube two
Blender units of size, and a third cube with one Blender unit of size.

• A data file consisting of the different camera poses to be used, which are listed in Table 10.2
• The desired illumination conditions, type, and strength, for the given experiment.

Expected output: The expected output images are taken from Magalhães Oliveira (2018), where the orienta-
tion and relative positioning of the cubes are the only things that are considered.
Test passed: When through visual inspection it can be observed that the actual output image is similar to
the expected output for the different poses. The relative size difference of the objects between the expected
and actual result is not important, as the focus lies on using the correct camera placement (orientation), i.e.,
perspective effects are ignored.

Table 10.2: Table listing the nine different poses used to verify the image rendering process in Blender

Pose number x [m] y [m] z [m] q0 q1 q2 q3

1 20 0 0 0.5 0.5 0.5 0.5
2 0 20 0 0.5 0.0 -0.707107 -0.707107
3 -20 0 0 0.5 0.5 -0.5 -0.5
4 0 -20 0 0.707107 0.707107 0.0 0.0
5 0 0 20 0.707107 0.0 0.0 0.707107
6 0 0 20 1.0 0.0 0.0 0.0
7 0 0 -20 0.0 0.707107 -0.707107 0.0
8 0 0 -20 0.0 0.382683 -0.923880 0.0
9 10 -20 0 0.707107 0.707107 0.0 0.0

100 10. Verification

Figure 10.2: A view of the 3D scene used to verify the image rendering

Table 10.3: The Blender camera pose w.r.t the world frame that has been used for verification, i.e., rW
B/W and

qW
B/W

x [m] y [m] z [m] q0 q1 q2 q3

7.3588914871 -6.9257907867 4.9583091736 0.7804827094 0.4835360348 0.2087036073 0.3368715942

The results can be seen in Figure 10.3 and it is observed that the output is in line with the expected output.
Therefore, the generation of the images is deemed verified. As aforementioned, the differences in size of the
cubes between the expected image and the actual result is irrelevant as well, as an orthographic projection is
used.

10.1.3. Dataset annotation
The images need to be annotated with their corresponding pose, bounding box, and keypoint coordinates
to be able to train the machine learning networks. The low-level reference frame conversions and the kine-
matic functions used in this process have been verified and are listed in Table 10.1. Furthermore, the pose
annotation simply consists of applying several reference frame conversion in a row to arrive at the desired
pose presented in the camera reference frame, CC ,A and rC

A/C , as shown in Subsection 7.4.1. This is, therefore,
also considered a low-level unit test. The emphasis is laid on the larger unit tests regarding the bounding box
and keypoint annotation, which will be discussed in more detail. The keypoint annotation consists of two
parts, namely the keypoint designation and annotation. As discussed in Subsection 7.4.2, the keypoints were
designated on the asteroid’s 3D model using the 3D SIFT algorithm. This algorithm is implemented in C++4

in the open-source PCL5. This library is maintained and regularly updated and is used by many around the
world for research projects or implementations in industry. Based on this, the chances of an error existing
within the functions that are part of this library are slim and therefore, it is assumed that it is verified. The
pose that is used for the verification of the bounding box and keypoint annotation is shown in Table 10.3.

Bounding box annotation
As discussed in Subsection 7.2.4, a script has been written, which interacts with Blender through its Python
API. This script determines and outputs the coordinates of the tightly fitted bounding box presented in the im-
age reference frame (P) around the target image for each image with the following encoding (xmi n , ymi n , w,h).
Therefore, this test is devised to ensure that this is performed correctly and that these ’raw’ coordinates can
then be transformed to a different encoding and reshaped to annotate the images.
Input:

• The bounding box coordinates xP = (xmi n , ymi n , w,h) presented in the pixel reference frame (P)
• The corresponding image

4https://github.com/sjtuytc/betapose, Date accessed: 7-10-2021
5https://pointclouds.org/, Date accessed: 7-10-2021

https://github.com/sjtuytc/betapose
https://pointclouds.org/

10.1. Dataset generation and annotation 101

(a) Expected for pose 1 (b) Result for pose 1 (c) Expected for pose 2 (d) Result for pose 2

(e) Expected for pose 3 (f) Result for pose 3 (g) Expected for pose 4 (h) Result for pose 4

(i) Expected for pose 5 (j) Result for pose 5 (k) Expected for pose 6 (l) Result for pose 6

(m) Expected for pose 7 (n) Result for pose 7 (o) Expected for pose 8 (p) Results for pose 8

(q) Expected for pose 9 (r) Result for pose 9

Figure 10.3: The verification of the image rendering process where the expected result is compared to the
actual output

102 10. Verification

0 200 400 600 800 1000

0

200

400

600

800

1000

(a) The tightly fitted bounding box us-
ing an object orientation of 0° w.r.t.
world frame

0 200 400 600 800 1000

0

200

400

600

800

1000

(b) The tightly fitted bounding box us-
ing an object orientation of 60° w.r.t.
world frame

0 200 400 600 800 1000

0

200

400

600

800

1000

(c) The tightly fitted bounding box us-
ing an object orientation of 120° w.r.t.
world frame

Figure 10.4: The verification of the bounding box calculation using Blender for three different orientations of
the target

Expected output: The expected output is an image in which the corresponding bounding box encompasses
the target object present within the image.
Test passed: The test is passed when through visual inspection it can be seen that the bounding box correctly
encompasses the target object.

As can be observed in Figure 10.4, the output is in line with the expected output for the three different
orientations of the cube and therefore the generation of the bounding box coordinates is verified.

3D to 2D keypoint conversion

The keypoint annotation consists of several steps as outlined in Subsection 7.4.2. However, the reference
frame transformations and kinematic functions required to attain CC ,A and rC

A/C have been verified indepen-
dently. Therefore, the remaining part of the chain consists of verifying the projection function, which projects
the 3D keypoints to 2D through the use of the PnP equation (Section 4.2), which is re-stated below.

 ui

vi

1

=
 fx 0 cx

0 fy cy

0 0 1

[
CC ,A | rC

A/C

]
xi

yi

zi

1

 (10.1)

This test can also be viewed as a sub-system test as it consists of several reference frame conversions, the
usage of kinematic functions, and the projection function, thereby testing their correct integration.
Input:

• The camera intrinsic parameter matrix K
• The pose of the camera w.r.t. the object presented in the camera reference frame, i.e., CC ,A and rC

A/C .

• The 3D keypoint locations designated on the object presented in the object reference frame, i.e., rA
p/A

Expected output: The expected output is an image in which the keypoints are in the correct location and the
object’s axes are in the expected orientation w.r.t. the camera.
Test passed: The test is passed when through visual inspection it can be seen that the keypoints are on the
expected location and that the object’s axis are in line with their respective selected orientation.

10.1. Dataset generation and annotation 103

0 200 400 600 800 1000

0

200

400

600

800

1000

 1

 2

 3

 4

 5

 6

 7

 8

(a) The 3D keypoints projected to 2D
using an object orientation of 0° w.r.t.
world frame

0 200 400 600 800 1000

0

200

400

600

800

1000

 1

 2

 3

 4

 5

 6

 7

 8

(b) The 3D keypoints projected to 2D
using an object orientation of 60° w.r.t.
world frame

0 200 400 600 800 1000

0

200

400

600

800

1000

 1

 2

 3

 4

 5

 6

 7

 8

(c) The 3D keypoints projected to 2D
using an object orientation of 120°

w.r.t. world frame

Figure 10.5: The verification of the 3D to 2D projection of the keypoints for three different orientations of the
target. Thereby testing the entire pipeline consisting of kinematic function, reference frame transformations,
and the projection function PnP

K =
1422.22 0 512

0 1422.22 512
0 0 1

 keypoints (x, y, z) =

−1 −1 −1
−1 −1 1
−1 1 −1
−1 1 1
1 −1 −1
1 −1 1
1 1 −1
1 1 1

(10.2)

An image of a cube, using the camera intrinsic matrix K shown in Equation (10.2), was generated in
Blender. The pose of the Blender camera w.r.t. the world frame that has been used is shown in Equation
(10.3), i.e., rW

B/W and qW
B/W . The 3D keypoints are the vertices of the cube and are shown in Equation (10.2),

the order matters and the first entry is the first keypoint and so on. The camera intrinsic matrix and the cam-
era pose are used to convert each i th 3D keypoint (xi , yi , zi) to its 2D counterpart (ui , vi). The result is shown
in Figure 10.5 and as can be observed the keypoints are in the expected location and aligned with the correct
vertices. Furthermore, the object’s axes are also in line with the expected orientations. Therefore, the function
projecting 3D to 2D is assumed to be verified.

Desired formatting
The aforementioned tests have verified the basic building blocks underlying the dataset generation and anno-
tation. However, for the training of the networks, several data formats were required as discussed in Sections
8.5 and 9.5, respectively. To train the object detection network the annotated data had to be converted to a
.TFRecord file. A standard conversion script was provided by the TensorFlow Object Detection API, which
was adjusted slightly. Furthermore, the annotations had to be converted to the COCO format (Code List-
ing C.2) to train the keypoint detection network. A script made available by Barad (2020) was adapted for
the Bennu datasets and used to convert the annotations into the COCO format. The annotation process of
linking the correct data with the correct image had been verified already. Therefore, a test was performed to
merely verify that the annotation format was successfully created. Random entries were selected and through
visual inspection of the bounding box and keypoints plotted on the image corresponding to the filename, it
was concluded that the data was correctly converted. Furthermore, a test run was performed on the keypoint
detection network using the annotated data format. The network shows the number of annotations it loads,
as illustrated in Figure 10.6, which corresponded to the size of the respective dataset. Furthermore, the results
outputted by the network were realistic, demonstrating that the annotation conversion was successful.

104 10. Verification

Figure 10.6: Example of the annotation print statement at the start of the training process of the keypoint
detection network

10.2. Machine learning
The models that are used for object detection and keypoint detection are existing architectures that have been
created using the open-source Python machine learning platforms TensorFlow and PyTorch, respectively.
These open-source machine learning platform are built and maintained by Google and Meta AI Research.
The source code of these architectures is made available on GitHub to foster a more inclusive research en-
vironment. These model architectures are made up of basic functions/building blocks, readily available in
either TensorFlow or PyTorch. A plethora of machine learning networks that have been applied to real-world
problems have been build using these machine learning platforms. Therefore, the functions that make up the
model architecture, namely convolutional layers and pooling layers, can be assumed to have been extensively
verified by the teams behind the creation of PyTorch and TensorFlow. Furthermore, these existing network
architectures have been applied to different problems and their results have been published. Based on this,
it is assumed that the selected network architectures and their building blocks are verified.

Object detection network
No changes were made to the network’s architecture, and changes regarding the configuration were specified
through a configuration file. The results outputted by the network are realistic and show good performance,
indicating that the conversion to the .TFRecord file was successful. Therefore, it was concluded that the
object detection network and its adaptations could be considered verified.

Keypoint detection network
In adapting the network to the asteroid dataset, several changes had to be made to the existing files. Two
major things had to adapted, firstly the configuration file specifying the number of keypoints, the data, and
configuration of the network. Secondly, the file that processes the annotated data used for training and eval-
uation (bennu_coco.py). Several functions within this file had to be adapted to make it suitable for the
asteroid dataset. Care was taken in making these changes and the network has been trained and evaluated
using the updated script. As previously discussed, the network shows the number of annotations it loads at
the start of the training process as seen in Figure 10.6. The loaded number of annotations per dataset were
equal to the actual number, demonstrating that the bennu_coco.py script had been successfully adapted.
Furthermore, the results outputted by the network are realistic. The chances of getting strange results instead
of realistic accurate results in the presence of an error caused by the adaptation of the bennu_coco.py script
are much higher. Therefore, it was concluded that the keypoint detection network and its adaptations could
be considered verified.

10.3. Pose estimation
The EPnP solver is available through OpenCV and it uses the same reference frame as the camera reference
frame (C), so no further conversion was required. This library is maintained and regularly updated, and is
used by many around the world for research projects or implementations in industry by companies, such as
Google and Microsoft. Based on this, the chances of an error existing within the functions that are part of this
library are slim. Therefore, it is assumed that it is verified. However, a test was performed to set a baseline
of the performance of the network having perfect keypoint detections (ground-truth). The keypoints and

10.3. Pose estimation 105

the camera intrinsic parameters matrix from Equation (10.2) are used and the pose of the image is given in
Table 10.3. The error between the actual pose and the predicted pose was in the order of 10−8, demonstrating
that the EPnP works well and that with perfect measurements, a perfect pose estimate can be achieved.

106 10. Verification

IV
Results

107

11
Results and experiments

This chapter discusses the performance that was achieved by the developed algorithms and discusses the
object detection, keypoint detection, and the pose estimation pipeline separately in Sections 11.1, 11.2, and
11.3, respectively. Furthermore, experiments that were performed to improve the results or allow for better
understanding are also discussed in the respective sections. The best model was used for evaluation on the
trajectories, which is discussed in Section 11.4. The chapter is concluded with a summary of the achieved
results in Section 11.5.

11.1. Object detection
This section discusses the achieved performance and robustness of the object detection network. The net-
work settings and training procedures that have been discussed in Section 8.5 were used to generate these
results, unless specified otherwise. The performance is evaluated using the Intersection over Union (IoU)
metric and the percentage of feasible detections (IoU > 0.75), Section 8.5. The IoU metric evaluates the simi-
larity between the ground-truth bounding box and the predicted bounding box. The feasible detection met-
ric is based on the COCO dataset, which evaluates object detection models, and refers to detections that can
effectively be used by the subsequent keypoint detection network (Lin et al., 2014). The object detection net-
work is the first part of the entire pose estimation pipeline, its performance is therefore crucial to allow for
subsequent keypoint estimation and eventual pose estimation.

11.1.1. Accuracy assessment
This subsection discusses the achieved performance of the networks on both the clean dataset Bennu and
the augmented dataset Bennu+. As discussed in Section 8.5, the network uses default anchor boxes that have
a certain aspect ratio. During inference the network uses these default anchor boxes to make a prediction,
and the aspect ratio and scale of these anchor boxes will always be slightly different than the ground-truth
bounding box, therefore the IoU values will never be exactly equal to 1.

Clean dataset: Bennu
The performance of the model trained and evaluated on the clean Bennu dataset (Bennu/Bennu) is shown
in Table 11.1. The test set of the Bennu dataset consisting of 4853 images was used for the evaluation. The
network has been trained for 50,000 steps and it could be observed that after the 7000th step the network

Table 11.1: Comparing the different inference results of the trained networks on the respective datasets

Network
Training/evaluation

dataset
Mean IoU Median IoU IoU > 0.75

SSD-MobileNetV2-FPN-Lite Bennu/Bennu 0.945 0.953 99.92%
SSD-MobileNetV2-FPN-Lite Bennu/Bennu+ 0.839 0.925 83.49 %
SSD-MobileNetV2-FPN-Lite Bennu+/Bennu 0.959 0.962 100%
SSD-MobileNetV2-FPN-Lite Bennu+/Bennu+ 0.956 0.961 100%

109

110 11. Results and experiments

0.6 0.7 0.8 0.9 1.0
Intersection-over-Union - IoU

0

200

400

600

800

Fr
eq

ue
nc

y

(a) A histogram showing the distribution of the IoU values on
the test dataset of the Bennu dataset

Ground truth
Predicted

(b) A detection with an IoU of 0.94, demonstrat-
ing what the IoU values imply

Figure 11.1: Showing the distribution of the IoU values and an image with an IoU detection of 0.94 of the
network trained and evaluated on the Bennu dataset (Bennu/Bennu)

showed signs of overfitting, as the training accuracy went up, while the validation accuracy went down. This
checkpoint was therefore used as the final model.

The following can be observed from Table 11.1 and Figure 11.1a:

• The object detection network performs almost perfectly, with 99.92% of the cases having an IoU above
0.75 and the mean and median IoU are around 0.95. This means that only 4 out of the 4853 images
may contain a bad detection. This good performance was expected, as this is a relatively simple object
detection problem, namely the detection of a single bright object on a black background with no aug-
mentations applied. Furthermore, the validation and test sets come from the same distribution as the
training set and contain no augmentations. Therefore, the network was expected to easily recognize
the patterns in the data and produce favorable results. Moreover, the majority of data points have an
IoU above 0.9, with only a few outliers, demonstrating consistent performance of the network around
the mean IoU.

The mean and median IoU of the predictions outputted by the network are around 0.94 and the meaning
of this value is visually represented in Figure 11.1b, indicating that this detection perfectly detects the target
within the image.

There are 4 images that have an IoU below 0.75 and they are shown in Figure 11.2. As can be seen, the
asteroid is viewed from the top or bottom in these cases, resulting in only half of the asteroid being illu-
minated. Furthermore, a sub-optimal anchor box (aspect ratio > 1) is allocated for the prediction by the
network, resulting in the incorporation of more background. However, the purpose of the object detection
network is to detect the object within the image. Even though the detected bounding box does not perfectly
match the ground-truth bounding box for the images shown in Figure 11.2, it still is able to detect the object
and thereby achieving this purpose. The inclusion of more background within the image or slightly cropping
a narrow strip of the asteroid will not influence the performance of the keypoint detection network, as the
asteroid is almost fully visible allowing for the detection of the designated keypoints.

Augmented dataset: Bennu+
The Bennu+ dataset, as discussed in Subsection 7.5.1, consists of image corruptions and is used to emulate
artifacts that may be present in real images. The performance of the model trained and evaluated on the
Bennu+ dataset (Bennu+/Bennu+) is shown in Table 11.1. The val+ set of the Bennu+ dataset consisting of
4853 images was used for the evaluation. The network has been trained for 50,000 steps and it could be ob-
served that after the 13,000th step the network showed signs of overfitting, as the training accuracy went up,
while the validation accuracy went down. This checkpoint was therefore used as the final model. The longer

11.1. Object detection 111

Ground truth
Predicted

(a) IoU = 0.724

Ground truth
Predicted

(b) IoU = 0.589

Ground truth
Predicted

(c) IoU = 0.695

Ground truth
Predicted

(d) IoU = 0.745

Figure 11.2: Detections of the asteroid by the object detection network trained and evaluated on the clean
Bennu dataset (Bennu/Bennu) with an IoU < 0.75

0.80 0.85 0.90 0.95 1.00
Intersection-over-Union - IoU

0

100

200

300

400

500

Fr
eq

ue
nc

y

(a) A histogram showing the distribution of the IoU values on the
val+ dataset of the Bennu+ dataset

Ground truth
Predicted

(b) The single detection with an IoU < 0.8

Figure 11.3: Showing the distribution of the IoU values and an image with an IoU detection of 0.79 of the
network trained and evaluated on the Bennu+ dataset (Bennu+/Bennu+)

112 11. Results and experiments

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Figure 11.4: Detections of the asteroid by the object detection network trained and evaluated on the aug-
mented dataset Bennu+ (Bennu+/Bennu+)

training duration compared to the clean dataset was expected, as the dataset is much more challenging and
therefore finding the patterns underlying the data is more difficult.

The following can be observed from Table 11.1 and Figure 11.3a:

• The network performs perfectly with a 100% of the detections having an IoU above 0.75 and a mean
and median performance around 0.96. This demonstrates that the network has learned to become in-
variant to the different image corruptions present in the Bennu+ dataset. Furthermore, the distribution
illustrates that the majority of the detections have an IoU above 0.90, demonstrating that the network
can consistently detect the asteroid within the image, with only a few outliers. Example detections are
shown in Figure 11.4, where it can be seen that even with challenging augmentations the network is
still able to properly detect the asteroid within the image.

11.1.2. Robustness assessment
As elaborated upon in Section 7.5, it is crucial that the networks are robust against image artifacts to allow
for deep-learning systems that can be deployed on actual space missions. The robustness of the networks
to unseen images from a different distribution is evaluated. This means that the network that was trained
solely on clean images of the Bennu dataset will be applied to the Bennu+ validation set and the network that
was trained on the Bennu+ dataset will be applied to the clean test dataset (Bennu). The results are shown in
Table 11.1 for (Bennu/Bennu+) and (Bennu+/Bennu) respectively.

The following can be observed from Table 11.1 for Bennu/Bennu+:

• The network performs poorly compared to the network trained on the augmented dataset Bennu+,
with only 83.49% (4052 images) resulting in feasible detections. These inaccurate detections will have
a detrimental effect on the keypoint detection accuracy of the subsequent KD network, emphasizing
the need for robustness. However, this drop in performance was expected as the network has been

11.1. Object detection 113

trained solely on clean images and affine data augmentations, possibly resulting in the network to over
rely on the pixel-level patterns present in the clean dataset. Examples of the failure cases are shown in
Figure 11.5, where it can be observed that under the influence of augmentations the network is unable
to accurately detect the asteroid within the image.

To get a sense of which augmentation effects the network the most, a new validation set was generated in
which only one augmentation is applied per image. This set consists of 4853 images of the validation set of
the Bennu dataset, and 70% of the images are randomly assigned one augmentation with the same severity
levels as illustrated in Appendix D. The mean and median IoU of the network’s performance to images con-
taining the augmentation is shown in Table 11.2. The network shows robustness against a variety of image
corruptions such as color jitter, speckle noise, random erase, shot noise, Gaussian blur, and motion blur. The
network has not been trained on these corruptions, but is still able to accurately detect the asteroid within im-
ages containing these corruptions. This robustness could be inherent to the network architecture of the SSD
detection head with the FPN neck, as Hendrycks and Dietterich (2019) proved that multi-scale networks are
more robust to image corruptions. These effects are likely to exists in real images and therefore the network
trained solely synthetic imagery would already bridge the domain gap rather well.

The performance of the network degrades when images contain defocus blur, Gaussian noise, spatter,
zoom blur, and impulse noise, with the last two being the most detrimental to the networks performance.
Spatter and impulse noise are especially relevant for space-applications as they can arise due to pluming ef-
fects or radiation. This further emphasizes the need to incorporate augmented images in the training process.

The following can be observed from Table 11.1 for Bennu+/Bennu:

• The network performs perfectly, with a 100% of the detections having an IoU above 0.75 and a mean
and median performance around 0.96, outperforming the model trained solely on clean images. The
network trained on the augmentations, has learned to become invariant to these corruptions and there-
fore rely less on the textures and more on the global shape. This could explain the better performance
on the clean dataset.

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Ground truth
Predicted

Figure 11.5: Detections of the asteroid by the object detection network trained and evaluated on the Bennu
and Bennu+ datasets, respectively (Bennu/Bennu+)

114 11. Results and experiments

Table 11.2: The performance of the model trained on Bennu on the single augmentation validations set

Augmentation Number of images Mean IoU Median IoU IoU > 0.75
None 1455 0.947 0.954 99.86%
Color jitter 315 0.946 0.955 100%
Speckle noise 300 0.946 0.955 100%
Random erase 308 0.943 0.953 100%
Shot noise 347 0.922 0.930 100%
Gaussian blur 304 0.917 0.928 99.34%
Motion blur 291 0.889 0.893 97.6%
Defocus blur 313 0.833 0.857 85.9%
Gaussian noise 281 0.801 0.845 79%
Spatter 321 0.772 0.846 77.26%
Zoom blur 293 0.690 0.689 27.65%
Impulse noise 325 0.506 0.622 40%

11.1.3. Robustness to real images
The performance of the object detection networks to five real images taken by the OSIRIS-REx spacecraft is
evaluated1. However, as aforementioned, this number of images is not enough to perform a rigorous evalua-
tion of the performance to real images and the so-called domain gap. Nonetheless, they do give some insights
into the networks performance and therefore opening the door to future research. The networks are ran in
inference and the performance can be observed in Figures 11.6 and 11.7.

The network trained solely on clean images and affine data augmentations was expected to perform
slightly worse than the model trained on the Bennu+ dataset, due to the fact that real images might con-
tain artifacts not present in the synthetic dataset. As can be seen when comparing Figure 11.6 and 11.7 this
notion is true, however, both networks perform well. The real images allow for easy detections, as they do
not contain challenging poses nor noticeable image corruptions, which explains why both networks perform
(almost) equally well. Furthermore, it was found in Table 11.2 that the network trained solely on clean images
is robust to a variety of image corruptions.

1https://www.asteroidmission.org/galleries/spacecraft-imagery/, Date accessed: 31-01-2022

Figure 11.6: Performance of the network trained on the augmented dataset Bennu+ to real images taken by
OSIRIS-REx

Figure 11.7: Performance of the network trained on the clean dataset Bennu to real images taken by OSIRIS-
REx

https://www.asteroidmission.org/galleries/spacecraft-imagery/

11.2. Keypoint detection 115

Table 11.3: Comparison of the performance of the same network with different input sizes on the test set of
the clean dataset Bennu. The errors are calculated using the predictions of the visible keypoints locations per
image.

Network
Input size

(h ×w) [px]
FLOPs [Bn] Mean error [px] Median error [px]

Normalized
mean error [px]

Normalized
median error [px]

LPN-101
256×192 1.451 3.98 ± 3.55 3.43 1.52 ± 1.08 1.40
256×256 1.935 3.69 ± 1.84 3.19 1.43 ± 0.48 1.33

11.2. Keypoint detection
This section discusses the different experiments that were carried out and the performance and robustness
achieved by the keypoint detection networks trained on the different datasets. The settings described in Sec-
tion 9.5 were used to generate these results, unless specified otherwise. The results discussed in this section
were obtained using the keypoint detection network in isolation, i.e., using the ground-truth bounding boxes
as the RoI. The evaluation metric used throughout this section is given in Equation (9.10). Furthermore, the
mean and median error used in the following discussions and reported in Tables 11.5 and 11.6 represent
the error on the original image size, i.e., before rescaling of the RoI to the input size. The normalized error
represents the input size agnostic error as discussed in the evaluation metrics part of Section 9.5.

The network predicts the location of all the 68 keypoints, however, some of these keypoint location are
not within the image dimensions, which can occur for off-nominal pointing scenarios in which part of the
asteroid is cut-off. The performance is listed for all the visible keypoints within the image, where visible refers
to all the points present within the image dimension, also referring to points on the back of the asteroid. This
can be observed in Figure 9.3. Firstly, the results of two experiments are discussed after which the achieved
accuracy and robustness of the networks are addressed.

1. Effect of the input size
As discussed in Section 9.5, the input size has an effect on the FLOPs, and it is crucial to evaluate the effect of
the input size to the network on the accuracy of the results. The following input sizes were tested to see the
effect of the input size on the accuracy, namely 256×256 px and 256×192 px (h ×w).

The LPN network with the ResNet-101 backbone is used for the experiment and the networks use the
same settings such as the data augmentations, learning rates, and optimizers as discussed in Section 9.5. The
networks have been trained for 150 epochs and evaluated on the test set of the Bennu dataset. The best model
obtained for each was taken for comparison and the results are shown in Table 11.3.

As can be observed in Table 11.3, the 256×256 px outperforms the 256×192 px input size. However, the
increase in FLOPs is negligible as the network still has considerably less FLOPs than the state-of-the-art HR-
Net (Table 11.4). The reason for the square input size outperforming the 4 : 3 aspect ratio can be attributed to
the bounding box aspect ratios of the Bennu dataset being predominantly between 0.8 and 1.0, as discussed
in Section 9.5. This would allow the network to make more accurate predictions as the cropped and rescaled
image is not elongated in any direction. This was therefore used for further experiments.

2. The effect of the capacity of the network
The LPN network used in this work has been selected based on its lightweight properties, allowing for fu-
ture embedding on the resource-constrained spacecraft processor. However, this model has significantly less
number of parameters (and consequently FLOPs) compared to the current state-of-the-art keypoint detec-
tion network HRNet used for keypoint detection on uncooperative spacecraft (Barad, 2020; Park et al., 2021;
Pasqualetto Cassinis et al., 2021b) as shown in Table 11.4. The general notion is that the more parameters,
the higher the capacity, i.e., the ability to estimate more complex non-linear functions. Therefore, the perfor-

Table 11.4: Comparison of the size and computational efficiency between LPN-101 and HRNet for the given
input size

Network Input size (h ×w) [px] Parameters [Mn] FLOPs [Bn]
LPN-101 256×256 5.37 1.94
HRNet 256×256 28.54 9.50

116 11. Results and experiments

Table 11.5: The accuracy of the average keypoint detections by the networks for all visible keypoints per image
with a maximum of 68 keypoints

Network
Training/evaluation

dataset
Mean error [px] Median error [px]

Normalized
mean error [px]

Normalized
median error [px]

LPN-101

Bennu/Bennu 3.69 ± 1.84 3.19 1.43 ± 0.48 1.33
Bennu/Bennu+ 59.0 ± 78.93 12.23 23.70 ± 30.35 5.02
Bennu+/Bennu 3.30 ± 1.60 2.84 1.28 ± 0.40 1.18
Bennu+/Bennu+ 3.70 ± 5.71 3.00 1.44 ± 1.96 1.23

HRNet

Bennu/Bennu 10.79 ± 3.04 10.18 4.25 ± 0.40 4.20
Bennu/Bennu+ 82.49 ± 99.58 15.86 32.71 ± 37.47 5.21
Bennu+/Bennu 12.80 ± 3.68 12.09 5.04 ± 0.52 4.96
Bennu+/Bennu+ 12.84 ± 3.73 12.01 5.08 ± 0.57 5.01

Table 11.6: The accuracy of the average keypoint detections by the networks for the 20 most confident key-
point detection per image

Network
Training/evaluation

dataset
Mean error [px] Median error [px]

Normalized
mean error [px]

Normalized
median error [px]

LPN-101

Bennu/Bennu 3.36 ± 1.66 2.92 1.31 ± 0.44 1.23
Bennu/Bennu+ 59.14 ± 86.66 10.15 23.77 ± 33.47 3.93
Bennu+/Bennu 3.07 ± 1.44 2.66 1.19 ± 0.36 1.12
Bennu+/Bennu+ 3.44 ± 6.40 2.82 1.34 ± 2.13 1.17

HRNet-W32

Bennu/Bennu 3.98 ± 1.28 3.65 1.56 ± 0.24 1.54
Bennu/Bennu+ 71.82 ± 100.66 6.57 28.57 ± 38.22 2.50
Bennu+/Bennu 4.82 ± 1.64 4.44 1.90 ± 0.33 1.85
Bennu+/Bennu+ 4.93 ± 1.72 4.51 1.95 ± 0.41 1.88

mance of the LPN is compared against this larger network to see whether the capacity of the network has an
effect on the performance, not only on the clean images, but also on the corrupted dataset. Furthermore, the
notion is that smaller models (simpler) are less prone to overfitting and therefore generalize better, i.e., more
robust to unseen images.

The HRNet has been trained using the iterative training strategy (Section 9.5) and the same hyperparam-
eter settings and training procedure as for the LPN model, discussed in Section 9.5. The results of HRNet
are shown in Table 11.5 and as can be seen the network has much worse performance compared to the LPN
model. There is a connection between the number of keypoints included in the analysis and the mean and
median error, meaning that the more points are included the higher the mean and median error. This comes
from the fact that the network may not able to accurately predict all the visible keypoints within an image,
resulting in a higher average detection error. This effect is, however, more pronounced for HRNet, which sees
a decrease of the mean and median error to 3.96± 1.26 px and 3.65 px, respectively, when the number of
keypoints is decreased to the 20 most confident ones. Therefore, both networks are also compared on the 20
most confident detections, which is shown in Table 11.6.

However, comparing Tables 11.5 and 11.6 it can be inferred that HRNet is not able to predict all keypoints
well and even more hyperparameter tuning could be required to achieve a model that is comparable to the
performance achieved by LPN. However, training a neural network is not trivial and there is no guarantee
whether the HRNet can achieve that comparable performance. Furthermore, this is not the main focus of
this work. The main idea was to illustrate the effect of the capacity of a model on the accuracy that can be
achieved on the Bennu datasets.

The LPN model is more consistent as it is able to output accurate predictions for almost all visible key-
points (Table 11.5). However, when comparing both the LPN and HRNet on the 20 most confident detections,
it can be observed that the LPN network and HRNet achieve similar performance, where the LPN is able to
achieve that with a fraction of the parameters and FLOPs, i.e., 81% less parameters and 80% less FLOPs.
This demonstrates that the lightweight LPN model outperforms the current state-of-the-art model within
keypoint detections on the Bennu datasets. This is immensely important for the application on embedded
devices. The HRNet network is therefore not considered further.

11.2. Keypoint detection 117

4.5 6.0 7.5 9.0
Distance [km]

0

5

10

15

20

25

30

35

40

E p
x

[p
x]

4.5 6.0 7.5 9.0
Distance [km]

2

3

4

5

6

7

E p
x

[p
x]

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

Figure 11.8: The performance of the LPN model trained and evaluated on the Bennu dataset (Bennu/Bennu)
in terms of pixel error of the predicted location versus the ground-truth location (Equation (9.10)) for all
visible keypoints within an image, shown per distance

11.2.1. Accuracy assessment
This subsection discusses the achieved performance of the networks on both the clean dataset Bennu and
the augmented dataset Bennu+. The 256×256 px image size is used for all the networks.

Clean dataset: Bennu
The performance of the LPN-101 model trained and evaluated on the Bennu dataset (Bennu/Bennu) is shown
in Table 11.5. The test set of the Bennu dataset consisting of 4853 images was used for the evaluation. The
LPN model has been trained using the settings specified in Section 9.5. The iterative training strategy did not
result in a better model.

The following can be observed from Table 11.5 and Figure 11.8:

• The mean error is around 3.7 px w.r.t the actual location, which is equal to about 0.36% of the total
image size (1024×1024), demonstrating that the network achieves highly accurate predictions for the
majority of the cases. Furthermore, the normalized mean and median error are around 1 px, which
is about the same normalized performance as was achieved by HRNet-W32 trained and evaluated on
the Envisat dataset by Barad (2020). Demonstrating that the keypoint detection is able to achieve good
detection performance on the Bennu dataset.

• The performance of the network improves with distance, as the median error from 9 km is about 2.3
px whereas the median error from 4.5 km is around 5.1 px. This could be explained by the fact that
from a shorter distance, the pixel area in which the keypoints can be found is larger, i.e., the spread
in the distribution of the keypoints on the image plane is larger. Therefore, the keypoints locations
are further apart and as such the predictions of the locations have to be more distinct. Whereas, for
further distances the actual keypoint location can be found within a smaller range and the network’s
predictions have to be less precise on the pixel level to achieve the desired accuracy. Normally, an

118 11. Results and experiments

4.5 6.0 7.5 9.0
Distance [km]

101

102

E p
x

[p
x]

4.5 6.0 7.5 9.0
Distance [km]

2

3

4

5

6

7

8

E p
x

[p
x]

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

Figure 11.9: The performance of the LPN model trained and evaluated on the Bennu+ dataset
(Bennu+/Bennu+) in terms of pixel error of the predicted location versus the ground-truth location (Equa-
tion 9.10) for all visible keypoints within an image, shown per distance

increase in distance would complicate keypoint detection, however, through the addition of an object
detection network in front of the keypoint detection network this is mitigated.

• There are 275 outliers (5.67%) out of the total of 4853 images. Approximately half of these, are from a
distance of 4.5 km to the asteroid. As elaborated upon in Subsection 7.2.3, the off-nominal pointing
cases are generated using a fixed range of allowed angles. However, when closer to the object, the same
angles cause the object to be cut off more as can be seen in Figure 11.20. This will not occur for distances
further away as the maximum angle will still allow the object to be fully within the image, resulting in
less challenging scenarios and therefore could result in better performance of the keypoint detection
network.

Augmented dataset: Bennu+
The performance of the LPN-101 model trained and evaluated on the Bennu+ dataset (Bennu+/Bennu+) is
shown in Table 11.5. The val+ set of the Bennu+ dataset consisting of 4853 images was used for the evaluation.
An iterative training strategy as discussed in Section 9.5 was used and was successful in improving the per-
formance of the network. The network was trained for one more stage using the best model of the previous
stage for the initialization. The LPN model has been trained using the settings specified in Section 9.5.

The following can be observed from Table 11.5 and Figure 11.9:

• The mean and median detection error of around 3.7 px and 3.0 px are similar to the model solely trained
and evaluated on clean image. This indicates that the network is able to accurately detect the keypoints
within the images, even when they contain a variety of image corruptions. This tends to indicate that

11.3. Pose estimation 119

the network has become invariant to these challenging illumination conditions, brightness/contrast
changes, and other image corruptions and relies more on the global shape of the object and the inher-
ent spatial relationship between the keypoints. This is desired behavior and would allow the network to
generalize well to different textures and corruptions. Furthermore, the normalized mean and median
error are around 1 px, which is about the same normalized performance as was achieved by HRNet
trained and evaluated on the augmented Envisat+IC dataset by Barad (2020). Demonstrating that the
keypoint detection is able to achieve good detection performance on the Bennu+ dataset.

• A similar trend of an improvement in the detections for larger distances can be observed as was dis-
cussed for the clean dataset.

• There are 403 outliers (8.3%) of the total of 4853 images. This increase was expected as the dataset is
much more challenging than the Bennu dataset, consisting solely of clean images. Furthermore, as
can be observed in Figure 11.9 there are a few very high errors, indicating that the keypoint detection
network was unable to accurately detect all the visible keypoints within the image resulting in a high
average keypoint detection error. This occurs on heavily augmented images, such as the top left image,
shown in Figure 11.18, which is unlikely to happen in reality. These large outliers result in the increase
of the standard deviation as shown in Table 11.5, which is heavily influenced by large deviations as it
takes the square of them. Pasqualetto Cassinis et al. (2021b) uses the Mean Average Deviation (MAD) for
this reason to indicate the spread of the data around the mean, which relies on the absolute difference
w.r.t. the mean. However, Figure 11.9 also serves as an illustration of the spread of the data.

11.2.2. Robustness assessment
The robustness of the networks to unseen images from a different distribution is evaluated. This means that
the network that was trained solely on clean images of the Bennu dataset will be evaluated on the val+ set of
the Bennu+ dataset, and the network that was trained on the Bennu+ dataset will be evaluated on the test set
of the clean Bennu dataset. The results are shown in Table 11.5.

The following can be observed from Table 11.5 for Bennu/Bennu+:

• The model trained solely on the clean images and with affine augmentations does not generalize well to
the corrupted dataset consisting of a variety of image corruptions. This can be concluded from the large
mean, median, and standard deviation of 59 px, 12 px, and 79 px, respectively, which points toward poor
keypoint detection accuracy, with many outliers on which the keypoint detection fails completely. This
can be attributed to the lack of corruptions in the training data that would make the network invariant
to things, such as texture and brightness/contrast changes. Whereas the network trained solely on clean
images has overfitted to the pixel-level patterns present in the clean dataset. This further emphasizes
the importance of the training procedure and dataset in creating robust models.

The following can be observed from Table 11.5 and Figure 11.10 for Bennu+/Bennu:

• The model trained on the Bennu+ dataset generalizes well to the clean images and achieves even better
performance on the clean images compared to the clean model, with a mean and median performance
of 3.3 px and 2.8 px, respectively. This can be attributed to the fact that the network has become more
invariant to a variety of factors such as texture, illumination conditions, and corruptions and therefore
it relies less on the texture and more on the global shape. There are 264 outliers (5.44%) out of the total
of 4853 images, which is a slight decrease compared to the clean model. Furthermore, the outliers are
less high as can be observed when comparing Figures 11.10 and 11.8.

The model trained solely on clean images is not taken forward for the pose estimation pipeline due to
poor robustness and generalization performance. Therefore, only the keypoint detection networks trained
on the corrupted dataset Bennu+ are analyzed. Detailed error analysis is performed during the evaluation of
the entire pipeline and is discussed in Section 11.3.

11.3. Pose estimation
This section discusses the evaluation of the performance of the entire pose estimation pipeline as shown in
Figure 11.11, which consists of the CNN-based feature detection part and the EPnP solver.

The object detection and keypoint detection networks make up the CNN-based feature detection parts,
which takes an image as the input and outputs the predicted 2D locations of the pre-defined keypoints. The

120 11. Results and experiments

4.5 6.0 7.5 9.0
Distance [km]

5

10

15

20

25

E p
x

[p
x]

4.5 6.0 7.5 9.0
Distance [km]

2

3

4

5

6

7

E p
x

[p
x]

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

Figure 11.10: The performance of the LPN model trained and evaluated on the Bennu+ and Bennu dataset, re-
spectively (Bennu+/Bennu), in terms of pixel error of the predicted location versus the ground-truth location
(Equation 9.10) for all visible keypoints within an image, shown per distance

object and keypoint detection networks have been trained and evaluated independently as discussed in Sec-
tions 11.1 and 11.2, respectively. However, the input to the EPnP pose solver consists of the detected keypoints
by the entire CNN-based pipeline (OD and KD together). Therefore, the pose estimation performance is eval-
uated using the entire pipeline meaning that the bounding box coordinates outputted by the object detection
network are used to crop the RoI, which is fed to the keypoint detection network. The KD network then pre-
dicts the locations of the keypoints and feeds those points to the EPnP solver alongside the corresponding 3D
points, based on which the distance of the asteroid w.r.t. camera is calculated.

EPnP

Predicted
2D

keypoint
locations

CNN-based feature detector

Object detection
network

Keypoint detection
network

cropped RoI

Corres-
ponding

3D points

Camera
distance to

asteroid

Figure 11.11: A schematic overview of the pose estimation pipeline consisting of the CNN-based feature de-
tector and the PnP solver

11.3. Pose estimation 121

The keypoint detection network outputs predictions for all 68 designated keypoints, however, as previ-
ously discussed, some of the keypoints locations are not within the image (Figure 9.3). The predictions for
the visible keypoints within the image are sent to the EPnP solver. The EPnP solver only needs a minimum of
6 keypoints to be able to produce a unique solution. The performance of the pose solver, however, increases
when more, accurate detections are available (> 6).

When using all the visible keypoints within the image, the performance was found to deteriorate slightly,
especially on the more challenging images of the Bennu+ dataset. The overall standard deviation of the mean
performance increased. This is caused by the keypoint detection network accurately detecting all the visible
keypoints within some images, whereas for other images this does not occur, resulting in the usage of inaccu-
rate detections by the pose solver leading to a poorer pose estimation. This effect of the number of keypoints
on the overall accuracy of the keypoint detection can be observed when comparing Tables 11.5 and 11.6.

Heuristic approach
Therefore, two heuristic approaches have been implemented and tested to see which resulted in the best
achievable performance of the EPnP solver. Both approaches are intended to mitigate the usage of bad de-
tections that would result in inferior pose estimates.

1. Threshold approach: This approach adaptively feeds keypoints and their corresponding 3D points to
the EPnP solver based on the confidence level of detection. This confidence level is equal to the peak
value of the heatmap as discussed in Section 9.5. All the detections with a confidence above a certain
threshold value are send to the pose solver, with a minimum desired number of keypoints of 8, which
has shown to improve performance of the EPnP compared to the bare minimum required 6 points.
Whenever only 7 or less keypoints detections surpass the threshold, the most confident keypoint is
added until it reaches the desired 8 keypoints. However, when all the detections have a confidence
value below the set lower bound, no new detections are added if 6 detections have already been found.

A drawback of this method is that not every detection is as accurate and depending on the difficulty of
the image, the heatmap detections do not have to be perfectly Gaussian but spread out blobs as shown
in Figure 9.4b. Consequently, the peak values of these blob heatmaps will also be lower, resulting in
the general confidence level for the keypoints to be lower as well, even though the accuracy of the
actual location can be high. This could result in only a few detections surpassing the general threshold,
whereas the solver would benefit from having more points of which the network is fairly sure as well.
Furthermore, the cut-off point may be sensitive to the number of detections that will be used, as several
detections may have approximately the same confidence value.

2. Confident keypoints approach: This approach uses the n most confident keypoint detections, where
as before the confidence level is equal to the peak value of the heatmap as discussed in Section 9.5.
This approach does not implement a ’general’ threshold for all the images, but bases the selection of
keypoints on the ’difficulty’ of the image. This tries to tackle the disadvantage of the threshold approach,
where the uncertainty in the detection influences the number of points that will be send to the pose
solver. A drawback of this method is that in essence still a general number for all images is set, i.e., the
n most confident keypoints.

These approaches could be further optimized or multiple other approaches could be devised, however,
that is not the main focus of this work. Furthermore, as discussed in Section 4.3, the CEPPnP solver could
possibly improve the performance of the pipeline. The usage of the CEPPnP pose solver deviates from the
aforementioned approaches in the way that the CEPPnP allows the individual assessment of each keypoint
detection per image, whereas the aforementioned approaches do set a general value for all images in their
respective ways. However, as aforementioned due to time-constraints this is not analyzed in this work, but it
will be elaborated upon in Section 12.2.

The best settings of the threshold and confident keypoints approach have been found by varying the
threshold and the n most confident keypoints, respectively. The threshold has been varied between 0.70
and 0.95 in 0.01 increments, whereas the n number of most confident keypoint detections have been varied
between 8 and 50, firstly in increments of five, after which the range was narrowed around the best performing
candidates and increments of one were used. The confident keypoints approach outperformed the threshold
approach. Comparing the threshold approach with the confident keypoints approach for the pipeline trained
and evaluated on the Bennu+ dataset, the following became clear:

122 11. Results and experiments

Figure 11.12: A histogram showing the distribution of the number of keypoints send to the EPnP solver, when
applying the threshold approach on the model trained and evaluated on the Bennu+ dataset with a threshold
value of 0.83

• By setting a general threshold, the number of keypoints used by the pose solver differ significantly
as can be observed in Figure 11.12. Furthermore, the threshold approach resulted in 8 failure cases
compared to zero failure cases for the confident keypoints approach. All these failure cases only have 7
or 8 keypoint detections because of the confidence levels regarding the detections. This demonstrates
the difficulty of finding a correct general threshold value that works well on the entire dataset. It was
found that for these images, about 20 keypoint detections that were fairly accurate had a confidence
value just below the threshold. Because the minimum amount of keypoints were achieved and these
confidence values were below the threshold, they were not included. However, challenging images
that contain difficult poses and augmentations may benefit from the inclusion of more (fairly accurate)
points.

Based on this, the confident keypoints approach was used for the final analysis.

11.3.1. Accuracy assessment
Only the performance of the pose estimation pipeline trained on the Bennu+ dataset is evaluated, as this
showed the best generalization and robustness performance of the object and keypoint detection. The pipeline
is evaluated by analyzing the translational error, which is calculated using the following, where tC and t̂C rep-
resent the ground-truth and predicted translational position vector, respectively (Figure 4.2).

Et =
∣∣∣t̂C − tC

∣∣∣ (11.1)

The results are shown in Table 11.7. The val+ set of the Bennu+ dataset and the test set of the Bennu
dataset, both consisting of 4853 images, were used for evaluation. Furthermore, Figures 11.13 and 11.15 show
the performance of the distance estimation as a function of the distance, to capture the trend of the decreas-
ing distance estimation accuracy for increasing relative distance. The percentage error is shown alongside
the absolute distance error to get more insights into the behavior of the pipeline, as the larger the distance,
the higher the allowable margin (%).

The following can be observed from Table 11.7 and Figure 11.13 for Bennu+/Bennu:

• The pipeline trained on Bennu+ is able to achieve great performance on the clean dataset Bennu, sat-
isfying the accuracy requirement (Section 2.3) in 100% of the cases. The pipeline is able to on average
estimate the line-of-sight distance within 43 m and a median performance of 30 m. The median per-
formance for the different distances lies between 21.5 m at 4.5 km and 42.6 m at 9 km.

11.3. Pose estimation 123

Table 11.7: The results of the pose estimation pipelines using the confident keypoints approach, where for
both pipelines the 39 most confident keypoints are used

Pipeline
Training/evaluation

dataset
Mean Et [m] Mean ‖Et‖ [m] Median Et [m] Median ‖Et‖ [m]

Failure
cases [#/%]

SSD-LPN-EPnP Bennu+/Bennu
(
2.608 2.065 42.53

)
42.82

(
1.709 1.358 29.62

)
29.86 0/0

SSD-LPN-EPnP Bennu+/Bennu+
(
3.077 2.501 47.96

)
48.32

(
1.889 1.469 31.09

)
31.36 1/0.021

4.5 6.0 7.5 9.0
 Distance [km]

10 2

10 1

100

101

E t
[%

]

100% 100% 100% 100%

4.5 6.0 7.5 9.0
 Distance [km]

100

101

102

103

E t
[m

]

100% 100% 100% 100%

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

10% error req.
% of data < 10% error

Figure 11.13: Performance of the SSD-LPN-EPnP pipeline that has been trained and evaluated on the Bennu+
and Bennu dataset, respectively, the outliers make up 5.23% (254 images) of the total of 4853 images

It can be observed that the performance decreases slightly with increasing distance. However, this is
in accordance with the behavior of pose solvers such as the EPnP and CEPPnP (Sharma and D’Amico,
2016). The performance of these pose solvers deteriorate when the distance along the optical axis is
increased and this has already been observed by Park et al. (2019) and Sharma and D’Amico (2017).
Estimating the range from 2D imagery is challenging and this is caused by the nonlinear relation exist-
ing between zC (Equation (4.4)) and the pixel location of the detected keypoints. This means that the
pose solver is sensitive to pixel errors persisting in the detection when the relative distance increases,
resulting in inaccurate pose estimates. This can also be observed in Figure 11.14, where the average de-
tection error Epx for larger distances are generally more accurate, as was also observed in Figures 11.8
and 11.9. However, a relatively large pixel error has a much larger effect on the resulting pose error for
these large relative distances. Furthermore, for all distances it can be observed that in general a lower
keypoint prediction error results in a lower pose estimation error.

• Comparing the performance of the pipeline on the clean images of the Bennu dataset, with the perfor-
mance obtained on the augmented val+ dataset, it can be seen that a lower mean and median transla-
tional error ‖Et‖ of 42.82 m and 29.86 m can be obtained. The images present in the clean dataset do
not contain augmentations and are therefore less challenging, resulting in improved performance of
the overall pipeline.

The following can be observed from Table 11.7 and Figure 11.15 for Bennu+/Bennu+:

• The pipeline is able to achieve great performance, satisfying the accuracy requirement for 99.979% of
the images present in val+. The pipeline is able to on average estimate the line-of-sight distance within
48.3 m and a median performance of 31.5 m. The median performance for the different distances lies
between 22.5 m at 4.5 km and 42.6 m at 9 km. The mean and median error of 48.3 m and 31.5 m, respec-
tively, are very accurate given the large relative range to the target (4.5 km to 9 km) and show that the

124 11. Results and experiments

5 10 15 20 25 30
Epx [px]

0

50

100

150

200

250

300

350

E t
[m

]

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

(a) Distance = 4.5 km

2 4 6 8 10 12
Epx [px]

0

50

100

150

200

250

300

350

E t
[m

]

0

100

200

300

400

Fr
eq

ue
nc

y

(b) Distance = 6 km

2 4 6 8
Epx [px]

0

50

100

150

200

250

E t
[m

]

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

(c) Distance = 7.5 km

2 4 6 8
Epx [px]

0

50

100

150

200

250

300

350

400

E t
[m

]

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

(d) Distance = 9 km

Figure 11.14: The relationship between the average keypoint detection error per image Epx and the resulting
pose estimation error ‖Et‖ evaluated using the test set of the Bennu dataset

CNN-based feature detection pipeline is able to achieve a desired performance. The percentage error
w.r.t. the ground-truth distance shows similar performance for the different distances. However, the
absolute distance error increases with relative distance. This trend follows the expected behavior of a
pose solver for which the performance deteriorate when the distance along the optical axis is increased,
as previously discussed.

Statistical certainty of the performance
The pipeline was shown to perform excellent, satisfying the accuracy requirement for all but one case. This
accuracy represents the skill of the CNN-based pose pipeline, however, the statistical certainty regarding that
expected accuracy also needs to be defined. This refers to determining the confidence intervals for that model
skill, representing the likelihood that the accuracy of the system will fall in between those ranges when ap-
plied to new data, i.e., the accuracy of the pipeline is x ± y at 90% confidence level. This is performed through
bootstrapping, which is a robust way to determine confidence intervals for machine learning models. Boot-
strapping is a general method that allows to quantify statistics regardless of the underlying distribution of
skill scores. The process of bootstrapping is briefly summarized below:

1. Randomly sample with replacement a population of 60-80% of the total dataset size n times, where for
n, values between 1000 and 10,000 are recommended. For each population sample n, calculate the
statistic of interest, which in this case is the mean and median ‖Et‖ expressed in the absolute distance
as well as the % difference w.r.t the ground-truth distance.

2. Calculate the confidence intervals around the median performance of all the samples, as no distribu-
tion is assumed. For a confidence level of 90% the lower bound is the 5th percentile and the upper
bound is the 95th percentile.

11.3. Pose estimation 125

4.5 6.0 7.5 9.0
 Distance [km]

10 2

10 1

100

101

E t
[%

]

100% 100% 100% 99%

4.5 6.0 7.5 9.0
 Distance [km]

100

101

102

103

E t
[m

] 100% 100% 100% 99%

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

10% error req.
% of data < 10% error

Figure 11.15: Performance of the SSD-LPN-EPnP pipeline that has been trained and evaluated on Bennu+,
the outliers make up 5.96% (289 images) of the total of 4853 images

Table 11.8: The confidence intervals of the respective pipelines for a 90% confidence level, where the absolute
error and the % error w.r.t. the ground-truth distance is given

Pipeline
Training/evaluation

dataset
Mean ‖Et‖ [%] Mean ‖Et‖ [m] Median ‖Et‖ [%] Median ‖Et‖ [m]

SSD-LPN-EPnP Bennu+/Bennu [0.644;0.646] [42.78;42.85] [0.461;0.463] [29.81;29.88]
SSD-LPN-EPnP Bennu+/Bennu+ [0.715;0.717] [48.10;48.29] [0.483;0.485] [31.32;31.38]

This procedure was applied to both the pipeline evaluated on the clean dataset Bennu as well as on the
augmented dataset Bennu+, and the results are shown in Table 11.8. Based on the accuracy requirement
formulated in Section 2.2 and restated below, a confidence level of 90% was used. Furthermore, use was
made of 1000 random samples consisting of 80% of the total population.

• SR06: The pose estimation pipeline shall have a relative line-of-sight distance to the center of mass
of the target with a knowledge error lower than 10% of real distance with 99.73% probability at 90%
confidence level.

As can be observed in Table 11.8, both pipelines achieve excellent performance (¿ 10%) and the confidence
intervals are small, meaning that the predicted performance is consistent. The pipeline is able to predict
the distance on average within 43 m and 48 m with a 90% confidence level, respectively, for the clean and
augmented datasets. Furthermore, the number of failure cases for the Bennu+/Bennu pipeline is zero and
for the Bennu+/Bennu+ is one (0.021%). Therefore, it can be concluded that the designed pipeline satisfies
the accuracy requirement with the required statistical certainty.

11.3.2. Outlier analysis
As can be observed in Figures 11.13 and 11.15, there are some outliers. The process of how the CNN makes it
predictions is hard to understand, as it operates as a sort of black-box. However, these outliers were inspected
further to understand the trends that underlie these predictions and to formulate hypothesis about what
might explain this behavior. Detailed analysis on the pipeline trained and evaluated on Bennu+ is discussed
first, as this is the most challenging dataset, after which the outlier trends of the pipeline evaluated on the
clean images are discussed. The camera poses of the images of the clean and augmented dataset are the

126 11. Results and experiments

4.5 6.0 7.5 9.0
 Distance [km]

101

102

E p
x

[p
x]

Whisker (max. 1.5 IQR)
Outliers (outside 1.5 IQR)

Median
IQR : 25%-75%

Figure 11.16: Boxplot of the average keypoint accuracy per image for the outlier images of the SSD-LPN-EPnP
pipeline trained and evaluated on the Bennu+ dataset

same, the only difference are the image corruptions that have been added.

Augmented dataset: Bennu+
The outliers as shown in Figure 11.15 make up only 5.96% (289 images) of the total number of predictions.
Their mean and median performance is 206.2 m and 180.3 m, respectively, and as observed in Figure 11.15,
all but one satisfy the accuracy requirement (Section 2.2). Firstly, it was found that 79.6% (230 images) of the
outliers were cases in which the camera was pointing off-nominally, meaning that the asteroid was not in the
center of the image. This off-nominal pointing could result in part of the asteroid being cut off as can be seen
in Figure 11.20, meaning that the network has less information, such as texture and global shape, to base its
predictions on and as such resulting in less precise keypoint predictions. This hypothesis is also strengthened
by the accuracy of the average keypoint predictions for the outliers, which is shown in Figure 11.16. The mean
and median are 8.71 ± 8.94 px and 6.82 px, respectively, with a maximum outlier of ≈ 120 px error. This per-
formance is above the mean and median of the entire dataset as listed in Table 11.7. This indicates that the
keypoint detection network struggles with these images, which consequently results in sending inaccurate
predictions to the EPnP solver, which leads to a less precise estimate of the distance. Furthermore, the me-
dian performance of the different distances are 10.4 px, 7.1 px, 5.5 px, and 5.3 px, respectively, and therefore
much larger than the medians of the entire dataset as shown in Figure 11.9. Even though the accuracy of the
keypoint detections increases with increasing distance, the relatively large pixel errors are especially detri-
mental to the eventual pose estimation for larger relative distances (7.5 and 9 km, Figure 11.14) as previously
discussed.

To provide more insights into why the keypoint detection network would struggle with these images, the
camera position w.r.t. the asteroid was analyzed and this is shown in Figure 11.17. The distribution of outliers
per distance is pretty similar, 27.3% (79 images), 20.8% (60 images), 28.4% (82 images), and 23.5% (68 images)
for the distance of 4.5 km, 6.0 km, 7.5 km, and 9.0 km, respectively. This demonstrates that the overall perfor-
mance for each distance is similar and that the network struggles with some of the most challenging images
for each distance. Figure 11.17 shows that the outliers are predominantly images taken from high inclina-
tions (below and above the asteroid) and about 27.7% (80 images) of the outliers have the position xW = 0,
meaning that the camera is on the concentric circle of xW = 0. This results in challenging images, as at most
half of the asteroid is illuminated. Furthermore, combining this with off-nominal pointing results in images
such as shown in Figure 11.20, again meaning that the network has little information to base it predictions
on, complicating the keypoint predictions. Furthermore, it was found that the network struggles with the

11.3. Pose estimation 127

XW

0
2

4
6

8
YW

5
0

5

Z
W

5
0
5

0

x

y

z

4.5 km 6 km 7.5 km 9 km

YW
5 0 5

Z
W

5
0
5

0x y

z

Figure 11.17: Distribution of the poses for the outlier images of the SSD-LPN-EPnP pipeline trained and eval-
uated on Bennu+

same camera orientation from a different distance as can be observed in Figure 11.20 (bottom two images
from the left). Moreover, the same was observed for different asteroid orientations, which points to the chal-
lenging camera orientation (high inclination and off-nominal pointing) as the possible reason for the lower
performance of the keypoint detection network.

Furthermore, images taken from this concentric circle around xW = 0 may show similarities when view-
ing the asteroid from the top or bottom. The symmetry problem is a common problem for keypoint detection
networks, as the keypoints that the network has to predict may appear the same as other keypoints, result-
ing in reduced detection accuracy (Zhao et al., 2018). Furthermore, the designated keypoints on the aster-
oid appear predominantly on the rim of the asteroid when viewed from high inclinations (including directly
above and below) as can be observed in Figures 11.19a, 11.19b, and 11.19c, whereas from different views the
keypoints are more spread over the asteroid as shown in Figure 11.19d. The combination of high inclination,
off-nominal pointing, and challenging illumination conditions could result in the slightly worse performance
of the network on these images.

Moreover, relevant for the pipeline evaluated on the augmented dataset Bennu+, 74% (214 images) of the
outlier images are augmented with the corruptions discussed in Subsection 7.5.1. The distribution of the
number of augmentations per image is: 71 images have one augmentation applied, 88 images have two aug-
mentations, 48 images have three augmentations, and 7 images have 4 augmentations applied. Challenging
combinations of augmentations can result in images shown in Figure 11.18, thereby resulting in images in
which the asteroid is severely affected, complicating the keypoint detection. However, in reality it is highly
unlikely that such combinations of effects will occur simultaneously.

Clean dataset: Bennu
Similar patterns that were found for the outliers of the Bennu+ dataset, were found for the outliers on the
clean images of the Bennu dataset. The outliers only make up 5.23% (254 images) of the total number of
predictions. Their mean and median performance is 165.82 ± 57.94 m and 164.69 m, and as observed in
Figure 11.13 they all satisfy the accuracy requirement. The off-nominal pointing cases made up 77.2% (196
images) of the outliers, indicating that even in the absence of corruptions, the network struggles with images
in which the global shape in not observable due to parts being cut-off (Figure 11.20). Furthermore, the mean
and median keypoint detection errors were also larger compared to the overall mean, 7.15 ± 3.98 px and 6.21
px, respectively, and 24.8% (63 images) were present on the concentric circle around xW = 0. Furthermore,
similar poses as shown in Figure 11.17 were found for the clean images that the network struggles with.

128 11. Results and experiments

Figure 11.18: A selection of outlier images to show how augmentations can change the original image and
thereby complicating the keypoint detection

Conclusion
Based on the outlier analysis performed on both the Bennu+ and Bennu dataset, it points to the hypothesis
that the network predominantly struggles with the challenging poses that have high inclinations and chal-
lenging illumination conditions in combination with off-nominal pointing cases. These challenges are com-
pounded when augmentations are applied to the images. However, the pipeline still produces satisfactory
results for these images, which satisfy the accuracy requirement and would still allow the spacecraft to nav-
igate safely, even under the influence of these challenging inclinations, off-nominal pointing, illumination
conditions, and image corruptions.

11.3.3. Possible improvements
As previously discussed, the network’s detections are not always perfect and for challenging images the net-
work can struggle with certain keypoints, which can influence the resulting pose estimation when these in-
accurate detections are sent to the pose solver. However, the PnP solver could be made robust to this by
combining the pose solver with RANSAC, which can reduce the effect of inaccurate detections (outliers) that
are sent to the pose solver. The performance of the respective pipelines when using RANSAC alongside the
EPnP solver is shown in Table 11.9

The following could be observed from Table 11.9 and analysis on the performance:

11.3. Pose estimation 129

 1

 2

 3

 4
 5

 6

 7 8 9

 10
 11

 12
 13

 14 15

 16
 17

 18
 19

 20

 21

 22
 23

 24 25

 26

 27
 28 29

 30

 31

 32

 33 34
 35

 36

 37

 38
 39

 40

 41

 42
 43

 44

 45

 46

 47

 48

 49

 50

 51
 52

 53
 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

(a)

 1

 2

 3

 4
 5

 6

 7 8 9

 10

 11
 12

 13

 14
 15

 16

 17

 18

 19

 20

 21

 22 23

 24 25

 26

 27

 28 29

 30

 31

 32

 33 34

 35 36

 37

 38 39

 40

 41

 42 43

 44

 45

 46

 47

 48

 49

 50

 51 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

(b)

 1

 2

 3

 4

 5

 6

 7 8
 9

 10

 11 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22 23

 24 25

 26

 27

 28 29

 30

 31

 32

 33 34

 35 36

 37

 38 39

 40

 41

 42 43

 44 45

 46

 47

 48

 49

 50

 51 52

 53

 54

 55

 56

 57

 58

 59

 60
 61

 62

 63

 64

 65

 66

 67

 68

(c)

 1 2 3

 4 5

 6 7 8 9

 10 11 12 13
 14 15

 16 17 18 19

 20 21

 22 23

 24 25

 26

 27 28 29
 30

 31

 32
 33 34 35 36 37

 38 39

 40

 41

 42 43

 44

 45

 46

 47

 48
 49

 50

 51 52

 53 54

 55

 56

 57 58

 59

 60

 61

 62

 63

 64 65

 66

 67

 68

(d)

Figure 11.19: Visualization of the distribution of the keypoints for high inclination poses with xW ≈ 0 (a,b,c)
alongside an example for a low inclination and far from xW = 0 (d)

Table 11.9: The results of the pose estimation pipelines using the confident keypoints approach alongside
RANSAC, where Bennu+ refers to the train+ and val+ dataset, respectively, and Bennu to the train and test
dataset, respectively. The 39 most confident keypoints are sent to the pose solver

Pipeline
Training/evaluation

dataset
Mean Et [m] Mean ‖Et‖ [m] Median Et [m] Median ‖Et‖ [m]

Failure
cases [#/%]

EPnP+RANSAC Bennu+/Bennu
(
2.619 2.081 42.80

)
43.09

(
1.741 1.366 30.35

)
30.45 0/0

EPnP+RANSAC Bennu+/Bennu+
(
3.005 2.425 47.13

)
47.49

(
1.915 1.490 31.53

)
31.69 0/0

• The performance for the respective pipelines is similar compared to the pipeline without RANSAC as
shown in Table 11.7. Therefore, the inclusion of RANSAC does not influence the overall accuracy that
much. This could be caused by the fact that the current outlier images are simply difficult and that the
majority of the keypoint detections for those images are inaccurate, meaning that the usage of RANSAC
will not be able to increase the accuracy of the detection. However, the usage of RANSAC removed the
failure cases for the augmented pipeline (Bennu+/Bennu+), indicating the benefit of using the RANSAC
method for those challenging images. Furthermore, it was found that the number of outliers for the
augmented pipeline decreased by 5 images. Moreover, it was found that the spread of the outliers had
decreased for some distances, meaning that the majority of the outliers moved closer to the whisker.

This shows that improvements to the distance estimates could be made by using a combination of dif-

130 11. Results and experiments

Figure 11.20: A selection of outlier images to showcase non-augmented images that the network struggles
with due to the challenging illumination conditions and poses caused by off-nominal pointing, high inclina-
tions and xW ≈ 0

ferent techniques. Furthermore, as previously discussed, the usage of a different pose solver, namely the
CEPPnP could possibly improve the performance even more. Pasqualetto Cassinis et al. (2021b) demon-
strated that the usage of the CEPPnP resulted in a more accurate mean performance and lower MAD, as the
CEPPnP is less sensitive to increases within the distance along the optical axis and performs equally well on
these different distances.

11.4. Trajectory simulations
The pipeline trained on the Bennu+ dataset is used to test its performance on the different trajectories. This
pipeline not only showed very accurate performance on the clean images, but also on the corrupted images
as shown in Table 11.7. The three different trajectories that have been generated were discussed in Section 7.6
and a montage of each trajectory is given in Figures 11.22 through 11.24. The results of the trained pipeline
on these different trajectories are shown in Table 11.10 and Figure 11.21.

The following can be observed from Table 11.10 and Figure 11.21:

• The performance of the pipeline for all three trajectories is excellent, as it satisfies the accuracy require-
ment for all images (100%).

11.4. Trajectory simulations 131

Table 11.10: The results of the pipeline on the different trajectories, where the 40 most confident detections
have been sent to the EPnP pose solver

Trajectory Mean Et [m] Mean ‖Et‖ [m] Median Et [m] Median ‖Et‖ [m]
Failure

cases [#/%]
1

(
1.996 0.612 23.35

)
23.55 ± 16.68

(
1.915 0.703 21.82

)
21.98 0/0

2
(
0.900 0.805 22.97

)
23.04 ± 15.70

(
0.883 0.734 18.30

)
18.47 0/0

3
(
2.000 0.710 42.47

)
42.67 ± 39.01

(
2.129 0.665 32.23

)
32.38 0/0

0 5 10 15 20
Sequence number

0

10

20

30

40

50

60

E t
[m

]

Trajectory 1

0 5 10 15 20
Sequence number

0

10

20

30

40

50

60

E t
[m

]

Trajectory 2

0 5 10 15 20
Sequence number

0

20

40

60

80

100

120

140

160

E t
[m

]

Trajectory 3

Figure 11.21: The distance estimation error displayed per image in each trajectory, for the different trajecto-
ries

• The pipeline is able to estimate the distance correctly within 0.3-0.5% of the actual distance, demon-
strating that the CNN-based pipeline is able to very accurately determine the distance of the spacecraft
w.r.t. the asteroid.

• The performance deviates between different images in the image sequence, however, it is always able to
estimate the distance below 0.8-2.0% for the respective distances of 6 km to 8 km. Furthermore, when
incorporating the CNN-based feature detector within a navigation architecture, the measurements are
fed to the navigation filter alongside heatmap-derived covariances regarding the certainty of the feature
detections. This reduces the effect of less accurate detections (varying measurements) on the state
estimation.

• The performance of the pipeline for each trajectory is in line with the performance observed in Fig-
ure 11.13 for the respective distances, with a median between 20-30 m for a distance of 6-7.5 km and
a median of around 45 m for a distance of 9 km. It was expected that the performance of the pipeline
on the trajectory would fall around or below the median of Figure 11.13 for the respective distances, as
the image sequences of the trajectory are not the most challenging images present within the dataset.
The camera is pointing nominally, however, they do all have images in which only part of the asteroid
is visible due to illumination conditions.

• The pipeline is able to generalize well to data it has not been explicitly trained on, which is demon-
strated by the performance of the pipeline on the third trajectory, which has a distance of 8 km from
the asteroid. The performance falls between the medians of 7.5-9 km, thereby illustrating that the net-
work is able to interpolate properly. This allows the dataset to be relatively small and only contain a
set of discrete distances while achieving accurate performance on the range of distances in between.
This was the main reason of including an object detection network in the pipeline, as this makes the
CNN-based feature extractor more robust against scaling of the target within the image.

132 11. Results and experiments

Figure 11.22: Montage of trajectory 1 with a distance of 6 km to the asteroid using a subset of the images,
where the first image is given in the lop left and the final image in the lower right

Figure 11.23: Montage of the polar orbit trajectory 2 with a distance of 7.5 km to the asteroid using a subset
of the images, where the first image is given in the lop left and the final image in the lower right

Figure 11.24: Montage of trajectory 3 with a distance of 8 km to the asteroid using a subset of the images,
where the first image is given in the lop left and the final image in the lower right

11.5. Conclusions 133

11.5. Conclusions
This chapter thoroughly evaluated the performance that was achieved by the CNN-based pose estimation
pipeline on the different datasets created within this work. The main take-aways are summarized below:

• The pipeline trained on the augmented dataset Bennu+ is able to achieve highly accurate performance
on both the clean and augmented dataset with a mean line-of-sight distance estimation of around 42
m and 48 m, respectively, and a median distance estimation of around 30 m and 31 m, respectively, at
a confidence level of 90%. This performance was achieved on the large relative range to the target of
4.5-9 km. The closer to the asteroid the more accurate the performance with a median error of around
22 m from a distance of 4.5 km. Furthermore, the developed system satisfied the accuracy requirement
of < 10% knowledge error w.r.t. the ground-truth distance in 99.979% and 100% of the cases for the
Bennu+ and Bennu dataset, respectively.

• This pipeline is able to accurately estimate the instantaneous position of the camera and does not de-
pend on an initial pose estimate, making it suitable for lost-in-space scenarios. This CNN-based ar-
chitecture can be used to accurately navigate at distances from 4.5 km to 9 km of the asteroid. Fur-
thermore, as it provides an instantaneous position estimate, it can also be used to (re)-initialize an
unknown feature tracking (relative navigation) approach that allows navigation from distances closer
to the asteroid.

• The outliers have been extensively analyzed and the hypothesis is that the network can struggle with
challenging poses that have high inclinations and challenging illumination conditions (at most half
of asteroid illuminated) in combination with off-nominal pointing cases. These challenges are com-
pounded when augmentations are applied to the images.

• The synthetically trained CNN-based feature extractor, consisting of the object and keypoint detec-
tion network, has proven to provide accurate distance estimates for a wide range of relative geometries
between the camera and the asteroid. Moreover, it has proven to be robust against illumination con-
ditions, occlusions, textures, and image corruptions. This is especially relevant for the application of
the CNN to space applications, as the space environment is characterized by extreme contrast and low
Signal-to-Noise ratio. Moreover, the pipeline has been shown to generalize well to data not explicitly
present in the dataset as demonstrated by the 8 km trajectory. This emphasizes the advantage of the
object detection network in the pipeline, as this makes the CNN-based feature extractor more robust
against scaling of the target within the image.

• The employed training procedure and datasets are crucial in achieving this robustness and the results
stress the importance of the data augmentations used in the Bennu+ dataset. The object and key-
point detection networks trained solely on clean images failed to generalize well to these corruptions,
i.e., lacking the robustness required for safety-critical applications. Through the use of an augmented
dataset, this robustness to illumination conditions, occlusions, textures, and image corruptions can be
achieved with a minimal effort, as it is not required to model the exact surface textures, encountered
illumination conditions, and sensors. Furthermore, this training procedure achieves the aforemen-
tioned highly accurate results without depending on the availability of accurate information regarding
the target body’s properties, which is often required for hand-engineered IP algorithms.

• The performance achieved by the CNN-based pipeline created in this work is similar to comparable
pipelines created for the pose estimation of uncooperative spacecraft. Barad (2020) created a simi-
lar pipeline, consisting of an object and keypoint detection network in sequence, where the state-of-
the-art HRNet-W32 (Table 11.4) has been used as the keypoint detection network. Furthermore, the
Maximum Likelihood Perspective-n-Point (MLPnP) solver was used to incorporate uncertainty of the
keypoint detection into the pose estimation process. This pipeline achieved a mean and median dis-
tance error estimate of 0.84 m and 0.47 m, respectively, on the clean dataset, and 1.38 m and 0.57 m,
respectively, on the augmented Envisat dataset. This dataset consists of a relative range between the
spacecraft and the target of 90-180 m. Furthermore, it achieved a mean distance error estimate of
0.14 m on a relative range of 3-30 m on the SPEED dataset. More detailed information regarding both
datasets can be found in Appendix B. However, when adjusting for the differences in relative range
between those datasets and the ones generated within this work, it can be concluded that the achieved
performance is similar or better, i.e., 0.84/90 = 42/4500 = 0.0093.

134 11. Results and experiments

• The pipeline is able to achieve accurate results with the EPnP solver, however, the uncertainty associ-
ated with each individual keypoint detection is not taken into account. The performance of the pipeline
is expected to increase even more when heatmap-derived covariance matrices associated with each
keypoint detection are utilized. This can be achieved using the manner proposed by Pasqualetto Cassi-
nis et al. (2020) and elaborated upon in Appendix A. By using the CEPPnP solver, which can take
into account the detection uncertainty through the covariance matrix, the accuracy of the CNN-based
pipeline could possibly be improved.

• Before this pipeline can be used on an actual spacecraft, the performance of the synthetically trained
CNNs against real images needs to be validated, i.e., bridging the domain gap. However, due to the
unavailability of large datasets consisting of actual space imagery of the target, the performance needs
to be validated on-ground, using lab generated real images of a mock-up of the asteroid.

• The pipeline developed within in this work needs to be tested within a larger navigation framework,
consisting of the developed CNN-based feature detector and a state estimator in sequence. The per-
formance of navigation architecture, i.e., the CNN-based feature and state estimator, needs to be thor-
oughly evaluated using more advanced trajectories.

• The CNN-based pipeline developed in this work achieved great performance, while using only a frac-
tion of the parameters and FLOPs of other state-of-the-art deep learning networks and pipelines, mak-
ing it suitable for implementation on space hardware. However, before it can actually be used on hard-
ware, the developed pipeline needs to be adapted/converted to allow for usage on embedded devices,
which can be done using libraries such as TensorFlow Lite2 or PyTorch3. This contains tools that apply
optimizations, such as quantization, that are able to reduce the model size and latency with a minimal
loss of accuracy. Furthermore, this allows the pipeline to be converted to a format that runs on C++
code, which is often the language of choice for production purposes.

2https://www.tensorflow.org/lite/guide#1_generate_a_tensorflow_lite_model, Date accessed: 25-01-2022
3https://pytorch.org/tutorials/advanced/cpp_export.html, Date accessed: 25-01-2022

https://www.tensorflow.org/lite/guide##1_generate_a_tensorflow_lite_model
https://pytorch.org/tutorials/advanced/cpp_export.html

V
Conclusion & Recommendations

135

12
Conclusions and recommendations

This chapter discusses the main conclusions of this work and recommendations for further research. Firstly,
in Section 12.1, the main conclusions are discussed and the answers to the research question and respective
subquestions are given. Secondly, in Section 12.2, the recommendations that allow for further development
of the CNN-based feature detector pipeline are discussed to allow for robust navigation around asteroids
using machine learning.

12.1. Conclusions
The research question that was formulated in Section 1.3 is restated:

How can accurate relative navigation be achieved in close-proximity operations around asteroids with limited
a-priori information using learning-based autonomous algorithms?

This work developed a first-of-a-kind CNN-based pose estimation pipeline suitable for autonomous nav-
igation around asteroids. The choice of a top-down feature based approach, consisting of an object detection
and keypoint detection network in sequence, with a pose solver proved to produce accurate results. This
means that a CNN is used to detect pre-defined keypoints on the 3D model within a 2D image after which the
2D-3D correspondence can be used to estimate the distance to the asteroid by solving the PnP problem. This
method only relies on the availability of a 3D model of the target and can provide accurate line-of-sight dis-
tance estimates for a range of 4.5 km to 9 km from the asteroid. Furthermore, this pipeline is able to produce
an estimate of the instantaneous position (pose initialization) and is as such useful for lost-in-space scenar-
ios. This demonstrates the efficacy of using CNN-based architectures for navigation around small bodies and
serves as a stepping stone for future research within this topic. The created and adapted software as well as
the datasets used within this work will be made publicly available to foster research within this field, as it is
expected to benefit the community as a whole.

The answers to the subquestions established in Section 1.3 are given below:

Research sub-question 1: How can a representative, realistic dataset of synthetic images of the asteroid
suitable for training and evaluating deep-learning networks be created?

• Due to the unavailability of deep-learning datasets suitable for the training and evaluation of CNN-
based systems, synthetic datasets had to be generated within this work. A model agnostic image gener-
ation and annotation pipeline was created using Blender and Python, which is suitable for generating
deep learning datasets. This demonstrated the efficacy of Blender for large-scale dataset generation
and this pipeline can be used for other targets as well. The generation of a first-of-a-kind publicly avail-
able dataset for vision-based navigation around asteroids, suitable for training and testing deep learn-
ing networks, was realized in this work. This dataset consists of 32,252 images containing a variety
of camera viewpoints and distances, and realistic illumination conditions to ensure that the pipeline
works for a variety of scenarios representative of an actual space mission. Moreover, image sequences
corresponding to three different trajectories have been created to be able to demonstrate the efficacy
of the developed algorithm to scenarios it could encountered in-orbit.

137

138 12. Conclusions and recommendations

Research sub-question 2: How can the pose estimation pipeline be made robust against a variety of factors,
such as illumination conditions and image corruptions, representative of the real space environment?

The pose estimation pipeline has been proven to produce accurate results for a variety of different camera
viewpoints and distances and has shown to be robust against illumination conditions, occlusions, textures,
and image corruptions. Due to the unavailability of a dataset consisting of real images of the target prop-
erly validating the performance of the synthetically trained CNN to real images was not possible within this
work. However, the network’s robustness against image corruptions representative of real image artifacts was
researched and evaluated. The robustness of the synthetically trained CNNs has been achieved in two ways.

• Robustness through the selection of the architecture: The usage of an object detection network in the
pipeline, making the CNN-based feature extractor more robust against scaling of the target within the
image. Moreover, by using the multi-scale SSD-MobileNetV2-FPN-Lite object detection network the
pipeline is more robust against image corruptions as was proven by Hendrycks and Dietterich (2019).
Furthermore, by selecting a keypoint detection network that outputs heatmap predictions, the pipeline
is more robust to the domain gap as proven by Park et al. (2021).

• Robustness through training procedure and datasets: The training procedure and datasets were found
to be crucial in achieving robustness against illumination conditions, occlusions, textures and image
corruptions. An augmented dataset Bennu+, consisting of a variety of image corruptions, has been
generated within this work and used to train the pipeline. By employing this training strategy of using
augmented datasets, this robustness is achieved with minimal effort without the need to model the
exact surface textures, encountered illumination conditions, and sensors. The approach proposed in
this work achieves highly accurate results without relying on accurate information regarding the target
body’s properties as required for hand-engineered IP algorithms. This demonstrates that the training
procedure plays an important part in bridging the domain gap persisting between synthetic and real
images.

Research sub-question 3: How can the pose estimation pipeline be improved compared to comparable
pipelines currently researched for satellites?

• Lightweight networks can achieve accurate performance at a fraction of the required memory and
computational costs: A major improvement of the developed CNN-based pipeline compared to other
pipelines, which were designed for pose estimation of uncooperative spacecraft, is the usage of
lightweight networks. The CNN-based pipeline has only a fraction of the parameters and FLOPs com-
pared to other state-of-the-art deep-learning networks and pipelines. This is a crucial contribution of
this work, showcasing that accurate and robust performance can be achieved using lightweight net-
works suitable for embedded devices. Furthermore, it was shown that the lightweight LPN model out-
performed the current state-of-the-art keypoint detection network HRNet on the Bennu datasets, while
having 81% less parameters and 80% less FLOPs.

12.2. Recommendations
This section discusses the recommendations for further research. The recommendations are split into four
areas, namely pose solver, bridging the domain gap between synthetic and real images, navigation architec-
ture, and the application of the developed pipeline. This also serves as a suggested order of importance for
future research.

The following recommendation revolves around possibly increasing the performance of the pose estima-
tion using the detected keypoints.

• CEPPnP solver: The pose estimation pipeline currently uses the EPnP solver alongside a heuristic ap-
proach that feeds the n most confident detections to the pose solver. However, the performance of
the resulting pose estimate could possibly be improved by using the CEPPnP pose solver, which as
discussed in Appendix A, can take into account the uncertainty of each detection through a covari-
ance matrix that can be derived from the heatmap associated with the detection. This approach and
pose solver allows the individual assessment of each keypoint per image, whereas the currently used
heuristic approach sets a general value for all images, i.e., the n most confident keypoint detections.
This is especially relevant for challenging images in which the keypoint detections are less accurate.

12.2. Recommendations 139

Pasqualetto Cassinis et al. (2021b) demonstrated that the distance estimation was improved using the
CEPPnP solver compared to the EPnP solver, i.e., more accurate mean and lower MAD. Furthermore,
the CEPPnP solver is less sensitive to the increase in distance along the optical axis and produces similar
performance for all distances.

The following recommendations are with regards to validating the performance against real images and
adjusting the training/pipeline to bridge the domain gap.

• On-ground validation (HIL): The CNN-based feature detector has been trained on synthetic imagery
and a robustness evaluation to image corruptions has been performed. However, to properly address
the domain gap that exists between synthetic and real images and validate the performance of the
CNNs to real images, on-ground validation is required. As addressed in Section 7.5, using actual space
imagery of the target is not possible due to the unavailability of images with varying conditions (poses
and illumination). Therefore, the robustness of the synthetically trained CNNs against real images has
to be tested using real camera images generated in a laboratory environment using a mock-up model
of the target asteroid, mimicking space-like illumination conditions.

• Adjusting the training procedure to increase robustness: This recommendation is part of the on-
ground validation and refers to the usage of algorithms during training to bridge the domain gap as
discussed in Section 7.5. The unsupervised domain adaptation as well as domain randomization can
be employed to evaluate whether this improves the performance of the synthetically trained CNNs
against the lab-generated images. The usage of these algorithms was not required within this work as
no dataset of real camera images was available.

The following recommendations are related to testing the CNN-based feature detector within a navigation
architecture:

• Incorporation in a navigation architecture: The CNN-based feature detector has been developed and
tested within this work alongside a pose solver and was shown to produce accurate estimates of the
line-of-sight distance to the asteroid. However, by incorporating it in a navigation architecture, the full
state of the spacecraft including the relative translational and rotational velocities can be estimated.
This navigation architecture can be a tightly or loosely coupled approach as the CNN-based feature
detector is suitable for both due to the heatmaps that are outputted by the network for the predictions,
allowing for the creation of a covariance matrix representing the uncertainty of detection.

• More advanced trajectories: The trajectories used in this work are simple image sequences without
consideration of the velocity of the spacecraft, sampling time between images, and the rotation of the
asteroid. Moreover, the camera is pointing towards the center of mass of the asteroid and no corrup-
tions are added to the image. More challenging image sequences are required to properly evaluate the
entire navigation architecture, i.e., the CNN-based feature detector and state estimator.

The following recommendation refers to the incorporation of the developed algorithm within a larger
navigation framework.

• Incorporation into an entire navigation scheme: As previously addressed in Section 2.3, the CNN-
based pipeline can be used to (re-)initialize an unknown feature tracking approach that can navigate
from distances closer to the asteroid. The developed pipeline within this work could be one link in the
chain of an entire navigation scheme that allows for accurate autonomous navigation around asteroids.
Future works could explore this and allow for seamless transitions between the different navigation
approaches while achieving desired performances.

140 12. Conclusions and recommendations

Bibliography

Alimo, R., Jeong, D., and Man, K., “Explainable Non-Cooperative Spacecraft Pose Estimation using Convo-
lutional Neural Networks,” AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics,
Reston, Virginia, 2020.

Barad, K. R., Robust Navigation Framework for Proximity Operations around Uncooperative Spacecraft (MSc
Thesis), Delft University of Technology, 2020.

Black, K., Shankar, S., Fonseka, D., Deutsch, J., Dhir, A., and Akella, M. R., “Real-Time, Flight-Ready, Non-
Cooperative Spacecraft Pose Estimation Using Monocular Imagery,” arXiv preprint arXiv:2101.09553, 2021.

Brochard, R., Lebreton, J., Robin, C., Kanani, K., Jonniaux, G., Masson, A., Despré, N., and Berjaoui, A., “Sci-
entific image rendering for space scenes with the SurRender software,” Conference: 69th International As-
tronautical Congress (IAC), 2018.

Bulat, A., and Tzimiropoulos, G., “Binarized Convolutional Landmark Localizers for Human Pose Estima-
tion and Face Alignment with Limited Resources,” 2017 IEEE International Conference on Computer Vision
(ICCV), Institute of Electrical and Electronics Engineers (IEEE), Venice, Italy, 2017, pp. 3726–3734.

Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., and Sun, J., “Cascaded Pyramid Network for Multi-person Pose
Estimation,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Institute of Electrical
and Electronics Engineers (IEEE), 2018, pp. 1703–1712.

Chen, B., Parra, , Cao, J., Parra, A., and Chin, T.-J., “Satellite Pose Estimation with Deep Landmark Regression
and Nonlinear Pose Refinement,” 2019 IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), Seoul, South Korea, 2019, pp. 2816–2824.

Chen, C., Wang, B., Lu, C. X., Trigoni, N., and Markham, A., “A Survey on Deep Learning for Localization and
Mapping: Towards the Age of Spatial Machine Intelligence,” arXiv preprint arXiv:2006.12567, 2020.

Cheng, Y., Johnson, A., Matthies, L., and Olson, C., “Optical Landmark Detection for Spacecraft Navigation,”
Proceedings of the 13th Annual AAS/AIAA Space Flight Mechanics Meeting, 2002.

Cheng, L., Wang, Z., Song, Y., and Jiang, F., “Real-Time Optimal Control for Irregular Asteroid Landings Using
Deep Neural Networks,” arXiv preprint arXiv:1901.02210, 2019.

Cybenko, G., “Approximation by superpositions of a sigmoidal function,” Mathematics of Control, Signals,
and Systems, Vol. 2, No. 4, 1989, pp. 303–314.

D’Amico, S., Benn, M., and Jørgensen, J. L., “Pose Estimation of an Uncooperative Spacecraft from Actual
Space Imagery,” International Journal of Space Science and Engineering, Vol. 2, No. 2, 2014, pp. 171–189.

Dementhon, D. F., and Davis, L. S., “Model-based object pose in 25 lines of code,” International Journal of
Computer Vision, Vol. 15, No. 1-2, 1995, pp. 123–141.

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image
database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 248–255.

DeTone, D., Malisiewicz, T., and Rabinovich, A., “SuperPoint: Self-Supervised Interest Point Detection and
Description,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
The Institute of Electrical and Electronics Engineers (IEEE), Salt Lake City, UT, 2018, pp. 337–33712.

Doppenberg, W., Autonomous Lunar Orbit Navigation With Ellipse R-CNN (MSc thesis), Delft University of
Technology, Delft, 2021.

Downes, L., Steiner, T. J., and How, J. P., “Deep Learning Crater Detection for Lunar Terrain Relative Naviga-
tion,” AIAA Scitech 2020 Forum, AIAA, Orlando, FL, 2020a.

141

142 Bibliography

Downes, L. M., Steiner, T. J., and How, J. P., “Lunar Terrain Relative Navigation Using a Convolutional Neural
Network for Visual Crater Detection,” 2020 American Control Conference (ACC), Institute of Electrical and
Electronics Engineers (IEEE), 2020b, pp. 4448–4453.

Ferraz, L., Binefa, X., and Moreno-Noguer, F., “Leveraging Feature Uncertainty in the PnP Problem,” Proceed-
ings of the British Machine Vision Conference, British Machine Vision Association, Nottingham, UK, 2014,
pp. 1–13.

Flandin, G., Polle, B., Lheritier, J., and Vidal, P., “Vision based navigation for autonomous space exploration,”
2010 NASA/ESA Conference on Adaptive Hardware and Systems, 2010, pp. 9–16.

Furfaro, R., Bloise, I., Orlandelli, M., Lizia, P. D., Topputo, F., and Linares, R., “Deep Learning for Autonomous
Lunar Landing,” AAS/AIAA Astrodynamics Specialist Conference, 2018.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., and Lempitsky,
V., “Domain-Adversarial Training of Neural Networks,” The Journal of Machine Learning Research, Vol. 17,
No. 1, 2016, p. 2096–2030.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., and Brendel, W., “ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves accuracy and robustness,” arXiv preprint
arXiv:1811.12231, 2018.

Gerth, I., Convex Optimization For Constrained and Unified Landing Guidance (MSc Thesis), Delft University
of Technology, Delft, the Netherlands, 2014.

Gil-Fernandez, J., and Ortega-Hernando, G., “Autonomous vision-based navigation for proximity operations
around binary asteroids,” CEAS Space Journal, Vol. 10, No. 2, 2018, pp. 287–294.

Gil-Fernandez, J., Casasco, M., Carnelli, I., Martino, P., and Küppers, M., “HERA autonomous Guidance, Nav-
igation and Control experiments: enabling better asteroid science & future missions,” 2019.

Girshick, R., Donahue, J., Darrell, T., and Malik, J., “Region-Based Convolutional Networks for Accurate Ob-
ject Detection and Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38,
No. 1, 2016, pp. 142–158.

Girshick, R., “Fast R-CNN,” arXiv preprint arXiv:1504.08083, 2015.

Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

Harvard, A., Capuano, V., Shao, E. Y., and Chung, S.-J., “Spacecraft Pose Estimation from Monocular Images
Using Neural Network Based Keypoints and Visibility Maps,” AIAA Scitech 2020 Forum, AIAA, 2020.

Hashimoto, T., Kubota, T., Kawaguchi, J., Uo, M., Shirakawa, K., Kominato, T., and Morita, H., “Vision-based
guidance, navigation, and control of Hayabusa spacecraft - Lessons learned from real operation -,” IFAC
Proceedings Volumes, Vol. 43, No. 15, 2010, pp. 259–264.

He, K., Zhang, X., Ren, S., and Sun, J., “Deep Residual Learning for Image Recognition,” 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

He, K., Gkioxari, G., Dollar, P., and Girshick, R., “Mask R-CNN,” Proceedings of the IEEE International Confer-
ence on Computer Vision, Vol. 2017-October, Institute of Electrical and Electronics Engineers Inc., 2017, pp.
2980–2988.

Hendrycks, D., and Dietterich, T. G., “Benchmarking Neural Network Robustness to Common Corruptions
and Perturbations,” arXiv preprint arXiv:1903.12261, 2019.

Hinterstoisser, S., Benhimane, S., Lepetit, V., Fua, P., and Navab, N., “Simultaneous Recognition and Homog-
raphy Extraction of Local Patches with a Simple Linear Classifier,” British Machine Vision Association, 2008,
pp. 10.1–10.10.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., and Navab, N., “Model Based Train-
ing, Detection and Pose Estimation of Texture-Less 3D Objects in Heavily Cluttered Scenes,” , 2013.

Bibliography 143

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H.,
“MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” arXiv preprint
arXiv:1704.04861, 2017.

Huang, X., and Belongie, S. J., “Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization,”
arXiv preprint arXiv:1703.06868, 2017.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama,
S., and Murphy, K., “Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Honolulu, HI, 2017, pp. 3296–3297.

Izzo, D., Märtens, M., and Pan, B., “A Survey on Artificial Intelligence Trends in Spacecraft Guidance Dynamics
and Control,” Astrodynamics, Vol. 3, No. 4, 2019a, pp. 287–299.

Izzo, D., Sprague, C. I., and Tailor, D. V., “Machine Learning and Evolutionary Techniques in Interplanetary
Trajectory Design,” Modeling and Optimization in Space Engineering, Springer Optimization and Its Appli-
cations, Vol. 144, edited by G. Fasano and J. Pintér, Springer, 2019b, pp. 191–210.

Jackson, P. T., Atapour-Abarghouei, A., Bonner, S., Breckon, T. P., and Obara, B., “Style Augmentation: Data
Augmentation via Style Randomization,” Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2019, pp. 83–92.

Jiao, Z., Liu, R., Yi, P., and Zhou, D., “A Point Cloud Registration Algorithm Based on 3D-SIFT,” 2019, pp. 24–31.

Jin, S., Ma, X., Han, Z., Wu, Y., Yang, W., Liu, W., Qian, C., and Ouyang, W., “Towards Multi-Person Pose Track-
ing : Bottom-up and Top-down Methods,” ICCV PoseTrack Workshop, Vol. 2, 2017, p. 7.

Kingma, D. P., and Lei Ba, J., “Adam: A Method For Stochastic Optimization,” Proceedings of the 3rd Interna-
tional Conference on Learning Representations (ICLR), 2015.

Kisantal, M., Sharma, S., Park, T. H., Izzo, D., Martens, M., and D Amico, S., “Satellite Pose Estimation Chal-
lenge: Dataset, Competition Design and Results,” IEEE Transactions on Aerospace and Electronic Systems,
Vol. 56, No. 5, 2020, pp. 4083–4098.

Krizhevsky, A., Sutskever, I., and Hinton, G. E., “ImageNet Classification with Deep Convolutional Neural
Networks,” Advances in Neural Information Processing Systems, Vol. 25, No. 2, 2012, pp. 1097–1105.

Kuipers, J. B., Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Vir-
tual Reality, Princeton University Press, 2002.

Lauretta, D. S., DellaGiustina, D. N., Bennett, C. A., Golish, D. R., Becker, K. J., Balram-Knutson, S. S., Barnouin,
O. S., Becker, T. L., Bottke, W. F., Boynton, W. V., Campins, H., Clark, B. E., Connolly, H. C., Drouet d’Aubigny,
C. Y., Dworkin, J. P., Emery, J. P., Enos, H. L., Hamilton, V. E., Hergenrother, C. W., Howell, E. S., Izawa, M.
R. M., Kaplan, H. H., Nolan, M. C., Rizk, B., Roper, H. L., Scheeres, D. J., Smith, P. H., Walsh, K. J., and Wolner,
C. W. V., “The unexpected surface of asteroid (101955) Bennu,” Nature, Vol. 568, No. 7750, 2019, pp. 55–60.

LeCun, Y., and Bengio, Y., Convolutional Networks for Images, Speech, and Time Series, MIT Press, Cambridge,
MA, USA, 1998, p. 255–258.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D., “Backpropaga-
tion Applied to Handwritten Zip Code Recognition,” Neural Computation, Vol. 1, No. 4, 1989, pp. 541–551.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y., “Unsupervised learning of hierarchical representations with
convolutional deep belief networks,” Communications of the ACM, Vol. 54, No. 10, 2011, pp. 95–103.

Lepetit, V., Moreno-Noguer, F., and Fua, P., “EPnP: An Accurate O(n) Solution to the PnP Problem,” Interna-
tional Journal of Computer Vision, Vol. 81, No. 2, 2009, pp. 155–166.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L., “Mi-
crosoft COCO: Common Objects in Context,” European Conference on Computer Vision (ECCV), Vol. 8693,
Springer, 2014, pp. 740–755.

144 Bibliography

Lin, Y., Tsung, Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S., “Feature Pyramid Networks for
Object Detection,” arXiv preprint arXiv:1612.03144, 2017.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P., “Focal Loss for Dense Object Detection,” arXiv preprint
arXiv:1708.02002, 2018.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C., “SSD: Single Shot MultiBox
Detector,” arXiv preprint arXiv:1512.02325, 2016.

Lorenz, D. A., Olds, R., May, A., Mario, C., Perry, M. E., Palmer, E. E., and Daly, M., “Lessons learned from
OSIRIS-REx autonomous navigation using natural feature tracking,” 2017 IEEE Aerospace Conference, In-
stitute of Electrical and Electronics Engineers (IEEE), Big Sky, MT, 2017, pp. 1–12.

Loshchilov, I., and Hutter, F., “SGDR: Stochastic Gradient Descent with Warm Restarts,” arXiv preprint
arXiv:1608.03983, 2017.

Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints,” International Journal of Computer
Vision, Vol. 60, No. 2, 2004, pp. 91–110.

Lu, C.-P., Hager, G., and Mjolsness, E., “Fast and globally convergent pose estimation from video images,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 6, 2000, pp. 610–622.

Luvizon, D. C., Tabia, H., and Picard, D., “Human pose regression by combining indirect part detection and
contextual information,” Computers & Graphics, Vol. 85, 2019, pp. 15–22.

Maass, B., Woicke, S., Oliveira, W. M., Razgus, B., and Krüger, H., “Crater Navigation System for Autonomous
Precision Landing on the Moon,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 8, 2020, pp.
1414–1431.

Magalhães Oliveira, A. B., Feature-based Optical Navigation for Lunar Landings (MSc thesis), Delft University
of Technology, Delft, 2018.

Manning, J., Langerman, D., Ramesh, B., Gretok, E., Wilson, C., George, A., Mackinnon, J., and Crum, G.,
“Machine-Learning Space Applications on SmallSat Platforms with TensorFlow,” Small Satellite Confer-
ence, 2018.

Mastrodemos, N., Rush, B., Vaughan, A., and Owen, W., “Optical Navigation For The Dawn Mission At Vesta,”
Advances in the Astronautical Sciences, Vol. 140, 2011, pp. 1739–1754.

Mooij, E., Re-entry Systems: Lecture Notes (2019-2020), Delft University of Technology, 2019.

Movshovitz-Attias, Y., Kanade, T., and Sheikh, Y., “How useful is photo-realistic rendering for visual learning?”
arXiv, Vol. arXiv:1603.08152, 2016.

Newell, A., Yang, K., and Deng, J., “Stacked Hourglass Networks for Human Pose Estimation,” Computer Vi-
sion - ECCV 2016. Lecture Notes in Computer Science, Vol. 9912, edited by B. Leibe, J. Matas, N. Sebe, and
M. Welling, Springer, 2016, pp. 483–499.

Oberkampf, D., DeMenthon, D. F., and Davis, L. S., “Iterative Pose Estimation Using Coplanar Feature Points,”
Computer Vision and Image Understanding, Vol. 63, No. 3, 1996, pp. 495–511.

Ogawa, N., Terui, F., Mimasu, Y., Yoshikawa, K., Ono, G., Yasuda, S., Matsushima, K., Masuda, T., Hihara, H.,
Sano, J., Matsuhisa, T., Danno, S., Yamada, M., Yokota, Y., Takei, Y., Saiki, T., and Tsuda, Y., “Image-based
autonomous navigation of Hayabusa2 using artificial landmarks: The design and brief in-flight results of
the first landing on asteroid Ryugu,” Astrodynamics, Vol. 4, No. 2, 2020, pp. 89–103.

Opromolla, R., Fasano, G., Rufino, G., and Grassi, M., “A review of cooperative and uncooperative spacecraft
pose determination techniques for close-proximity operations,” Progress in Aerospace Sciences, Vol. 93,
2017, pp. 53–72.

Park, T. H., Sharma, S., and D’Amico, S., “Towards Robust Learning-Based Pose Estimation of Noncoop-
erative Spacecraft,” 2019 AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Society
(AAS), 2019.

Bibliography 145

Park, T. H., Märtens, M., Lecuyer, G., Izzo, D., and D’Amico, S., “SPEED+: Next Generation Dataset for Space-
craft Pose Estimation across Domain Gap,” arXiv preprint arXiv:2110.03101, 2021.

Pasqualetto Cassinis, L., Fonod, R., and Gill, E., “Review of the robustness and applicability of monocular
pose estimation systems for relative navigation with an uncooperative spacecraft,” Progress in Aerospace
Sciences, Vol. 110, 2019, p. 100548.

Pasqualetto Cassinis, L., Fonod, R., Gill, E., Ahrns, I., and Gil Fernandez, J., “CNN-Based Pose Estimation
System for Close-Proximity Operations Around Uncooperative Spacecraft,” AIAA Scitech 2020 Forum, AIAA,
Orlando, FL, 2020.

Pasqualetto Cassinis, L., Fonod, R., Gill, E., Ahrns, I., and Gil-Fernández, J., “Evaluation of tightly- and loosely-
coupled approaches in CNN-based pose estimation systems for uncooperative spacecraft,” Acta Astronau-
tica, Vol. 182, 2021a, pp. 189–202.

Pasqualetto Cassinis, L., Menicucci, A., Gill, E., Ahrns, I., and Gil-Fernández, J., “On-Ground Validation of a
CNN-based Monocular Pose Estimation System for Uncooperative Spacecraft,” 8th European Conference
on Space Debris, 2021b.

Pavlakos, G., Zhou, X., Chan, A., Derpanis, K. G., and Daniilidis, K., “6-DoF Object Pose from Semantic Key-
points,” arXiv preprint arXiv:1703.04670, 2017.

Pellacani, A., Graziano, M., Fittock, M., Gil, J., and Carnelli, I., “HERA vision based GNC and autonomy,” 8th
European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 2019.

Razgus, B., Mooij, E., and Choukroun, D., “Relative Navigation in Asteroid Missions Using Dual Quaternion
Filtering,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 9, 2017, pp. 2151–2166.

Redmon, J., and Farhadi, A., “YOLOv3: An Incremental Improvement,” arXiv preprint arXiv:1804.02767, 2018.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A., “You Only Look Once: Unified, Real-Time Object Detec-
tion,” arXiv preprint arXiv:1506.02640, 2016.

Ren, S., He, K., Girshick, R., and Sun, J., “Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks,” arXiv preprint arXiv:1506.01497, 2016.

Rowell, N., Dunstan, M. N., Parkes, S. M., Gil-Fernández, J., Huertas, I., and Salehi, S., “Autonomous visual
recognition of known surface landmarks for optical navigation around asteroids,” The Aeronautical Jour-
nal, Vol. 119, No. 1220, 2015, pp. 1193–1222.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C., “MobileNetV2: Inverted Residuals and Lin-
ear Bottlenecks,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–
4520.

Schaub, H., and Junkins, J. L., Analytical Mechanics of Space Systems, Fourth Edition, American Institute of
Aeronautics and Astronautics, Inc., Washington, DC, 2018.

Schwartz, S., Nallapu, R. T., Gankidi, P., Dektor, G., and Thangavelautham, J., “Navigating to small-bodies
using small satellites,” 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS), IEEE, 2018,
pp. 1277–1285.

Scovanner, P., Ali, S., and Shah, M., “A 3-Dimensional Sift Descriptor and Its Application to Action Recog-
nition,” Proceedings of the 15th ACM International Conference on Multimedia, Association for Computing
Machinery, New York, NY, USA, 2007, p. 357–360.

Shalev-Shwartz, S., Shamir, O., and Shammah, S., “Failures of Gradient-Based Deep Learning,” Proceedings
of the 34th International Conference on Machine Learning, Proceedings of Machine Learning Research,
Vol. 70, PMLR, Sydney, Australia, 2017, pp. 3067–3075.

Sharma, S., and D’Amico, S., “Comparative assessment of techniques for initial pose estimation using monoc-
ular vision,” Acta Astronautica, Vol. 123, 2016, pp. 435–445.

146 Bibliography

Sharma, S., and D’Amico, S., “Reduced-Dynamics Pose Estimation for Non-Cooperative Spacecraft Ren-
dezvous using Monocular Vision,” 40th Annual AAS Guidance and Control Conference, Breckenridge, CO,
2017.

Sharma, S., and D’Amico, S., “Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Neural
Networks,” 29th AAS/AIAA Space Flight Mechanics Meeting, Ka’anapali, Maui, HI, 2019.

Sharma, S., Ventura, J., and D’Amico, S., “Robust Model-Based Monocular Pose Initialization for Noncooper-
ative Spacecraft Rendezvous,” Journal of Spacecraft and Rockets, Vol. 55, No. 6, 2018, pp. 1414–1429.

Sharma, S., Pose Estimation of Uncooperative Spacecraft Using Monocular Vision and Deep Learning (PhD
Thesis), Stanford University, Palo Alto, CA, 2019.

Shi, J.-F., Ulrich, S., and Ruel, S., “CubeSat Simulation and Detection using Monocular Camera Images
and Convolutional Neural Networks,” 2018 AIAA Guidance, Navigation, and Control Conference, AIAA,
Grapevine, TX, 2018.

Sierks, H., Keller, H. U., Jaumann, R., Michalik, H., Behnke, T., Bubenhagen, F., Büttner, I., Carsenty, U., Chris-
tensen, U., Enge, R., Fiethe, B., Gutiérrez Marqués, P., Hartwig, H., Krüger, H., Kühne, W., Maue, T., Mottola,
S., Nathues, A., Reiche, K. U., Richards, M. L., Roatsch, T., Schröder, S. E., Szemerey, I., and Tschentscher,
M., “The Dawn framing camera,” Space Science Reviews, Vol. 163, No. 1-4, 2011, pp. 263–327.

Simonyan, K., and Zisserman, A., “Very Deep Convolutional Networks for Large-Scale Image Recognition,”
arXiv preprint arXiv:1409.1556, 2014.

Soviany, P., and Ionescu, R. T., “Optimizing the Trade-off between Single-Stage and Two-Stage Object Detec-
tors using Image Difficulty Prediction,” 2018.

Sturm, P., “Pinhole Camera Model,” Computer Vision: A Reference Guide, edited by K. Ikeuchi, Springer US,
Boston, MA, 2014, pp. 610–613.

Sun, X., Xiao, B., Wei, F., Liang, S., and Wei, Y., “Integral human pose regression,” Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 529–545.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X., Liu, W., and Wang, J., “High-Resolution
Representations for Labeling Pixels and Regions,” arXiv preprint arXiv:1904.04514, 2019.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z., “Rethinking the Inception Architecture for
Computer Vision,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Institute of
Electrical and Electronics Engineers (IEEE), Las Vegas, NV, 2016, pp. 2818–2826.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A., “Inception-v, Inception - ResNet and the Impact of Residual
Connections on Learning,” Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI
Press, San Francisco, CA, 2017, pp. 4278–4284.

Tompson, J., Jain, A., LeCun, Y., and Bregler, C., “Joint Training of a Convolutional Network and a Graphical
Model for Human Pose Estimation,” Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 1, MIT Press, Cambridge, MA, USA, 2014, pp. 1799–1807.

Toshev, A., and Szegedy, C., “DeepPose: Human pose estimation via deep neural networks,” 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers (IEEE),
Columbus, OH, 2014, pp. 1653–1660.

Volpe, R., Sabatini, M., Palmerini, G. B., and Mora, D., “Testing and Validation of an Image-Based, Pose and
Shape Reconstruction Algorithm for Didymos Mission,” Aerotecnica Missili & Spazio, Vol. 99, No. 1, 2020,
pp. 17–32.

Wie, B., Space Vehicle Dynamics and Control, AIAA Education Series, 1998.

Woicke, S., Hazard Relative Navigation: Towards Safe Autonomous Planetary Landings in Unknown Haz-
ardous Terrain (PhD Thesis), Delft University of Technology, Delft, the Netherlands, 2019.

Bibliography 147

Xiao, B., Wu, H., and Wei, Y., “Simple Baselines for Human Pose Estimation and Tracking,” Computer Vision -
ECCV 2018, 2018, pp. 472–487.

Zhang, Z., Tang, J., and Wu, G., “Simple and Lightweight Human Pose Estimation,” arXiv preprint
arXiv:1911.10346, 2019.

Zhang, F., Zhu, X., Dai, H., Ye, M., and Zhu, C., “Distribution-Aware Coordinate Representation for Human
Pose Estimation,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 7091–7100.

Zhao, Z., Peng, G., Wang, H., Fang, H.-S., Li, C., and Lu, C., “Estimating 6D Pose From Localizing Designated
Surface Keypoints,” arXiv preprint arXiv:1812.01387, 2018.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A., “Learning Deep Features for Discriminative
Localization,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Institute of Elec-
trical and Electronics Engineers (IEEE), Las Vegas, NV, 2016, pp. 2921–2929.

148 Bibliography

A
Heatmap-derived covariance matrix

This appendix serves as a basic explanation of the covariance computation from the heatmap, quantifying
the uncertainty of the detection. This can be used as a guideline for future research. The covariance compu-
tation from the heatmap consists of several steps as outlined by Pasqualetto Cassinis et al. (2020), which are
enumerated below.

1. Thresholding
2. Weight allocation
3. Covariance computation

This process is performed for each keypoint (heatmap) present within an image and for all images. The
entire process is graphically illustrated in Figure A.1, where each step is discussed below.

Thresholding is a type of image segmentation, which can be used to select certain regions of an image
deemed relevant while ignoring other parts. This procedure is applied to the heatmap image outputted by
the keypoint detection network to extract the heatmap’s pixels. The weight allocation procedure refers to
giving each heatmap pixel a normalized weight wi based on the gray intensity at its location. This gives more
weight to pixels that are close to the confidence peak and therefore brighter, and gives less weight to pixels
that are far from the peak and therefore fainter. The weighted covariance can be computed using Equation
(A.1), where (û, v̂) represents the predicted keypoint location estimated using the highest confidence value
instead of the mean, which is used normally. This is so that a distribution around the peak can be found
instead of around the heatmap’s mean, which becomes even more relevant when dealing with asymmetric
heatmaps where the peak does not coincide with the mean. Furthermore, wi refers to the normalized weight
based on the gray intensity at that location.

cov(x, y) = 1

m

m∑
i=1

wi (ui − û) (vi − v̂) (A.1)

The resulting covariance matrix is shown below, where the covariance matrix can only represent Gaussian
(normal) distributions. The limitation of this is that asymmetric heatmaps as shown in Figure A.1 (far right)
might overestimate the dispersion of the heatmap over some directions.

Ci =
(

cov(x, x) cov(x, y)
cov(y, x) cov(y, y)

)
(A.2)

149

150 A. Heatmap-derived covariance matrix

Figure A.1: Illustrating the process used to derive the covariance matrices from the heatmaps outputted by the
keypoint detection network. The ellipses are determined using the computed covariances and the confidence
intervals σ= 0.68 and 3σ= 0.99 (Pasqualetto Cassinis et al., 2020)

B
Comparable deep-learning datasets

This appendix discusses the two datasets that have been used as a reference in generating the asteroid dataset.
The SPEED dataset is created by Sharma and D’Amico (2019) at Stanford University and the Envisat dataset is
created by Pasqualetto Cassinis et al. (2020) at the TU Delft. These deep-learning datasets are used for space-
borne applications and are related to uncooperative spacecraft pose estimation. The SPEED dataset consists
mainly of synthetic images and has a small number of real images that were generated in the TRON facility of
SLAB using a realistic satellite mockup. The Tango spacecraft was used as the target object and photo-realistic
images of this spacecraft with different poses were generated using OpenGL. Furthermore, random Earth im-
ages were used as the background for half of the images, where the illumination conditions were created to
best match those background images. The Envisat dataset was generated in Cinema4D and consists of syn-
thetic images of the Envisat spacecraft and of an image sequence that simulates close-proximity trajectories.
An accurate texture model of ESA’s Envisat was used. The properties of the datasets will be discussed, where
the focus will be on the size, the viewpoints, the illumination conditions, and the applied data augmentation,
which serve as a reference for the to-be created dataset.

• Size: The SPEED dataset consists of 15,000 synthetic images, which were randomly split 80/20 into
training and test data. The Envisat dataset consists of 54,000 synthetic images, which were randomly
split ≈ 60/20/20 into training, validation, and test data.

• Viewpoints: The SPEED dataset separately selects the attitude and the position. The relative attitudes
are created using a unit quaternion parameterization of uniformly random rotations in the SO(3) space.
The relative positions are determined by separately selecting the relative distance and the bearing an-
gles. The bearing angles control the location of the spacecraft within the image (off-center). The relative
distances are uniformly distributed between 3 m - 50 m.

The Envisat dataset also separately selects the attitude and the position. The relative attitudes were
created by discretizing the yaw, pitch, and roll (ψ,θ,ϕ) angles of the target w.r.t. the camera using 10°
increments. The relative distance is discretized in the interval 90 m - 180 m using 30 m increments.

• Illumination conditions: The SPEED dataset uses azimuth and elevation angles of the Sun that specif-
ically match the illumination conditions in the background images of the Earth. The Envisat dataset
uses constant azimuth and elevation angles of 30° to create favorable as well as adverse illumination
conditions.

• Data augmentation: The SPEED dataset applies Gaussian blurring and white noise to each image to
emulate depth of field and shot noise, whereas the Envisat dataset has no data augmentations applied.

151

152 B. Comparable deep-learning datasets

C
Dataset annotations format

Code Listing C.1: Dataset annotation file (.json)

1 [
2 ...
3 {
4 "id": 63,
5 "filename": "0_4.5_0095.jpg",
6 "bbox": [227.05 , 247.35 , 797.95 , 767.65] ,
7 "keypoints": [
8 {"ID": 0, "Coordinates": [311.8229960874263 , 616.867447376349] ,
9 "Visibility": 1},

10 {"ID": 1, "Coordinates": [450.75387910520016 , 699.4627574947973] ,
11 "Visibility": 1},
12 {"ID": 2, "Coordinates": [376.48776316752185 , 668.2631389556271] ,
13 "Visibility": 1},
14

15 ...
16

17 {"ID": 65, "Coordinates": [635.7146406522888 , 467.74024244163127] ,
18 "Visibility": 1},
19 {"ID": 66, "Coordinates": [487.5215207126556 , 709.8767655527533] ,
20 "Visibility": 1
21 }, {"ID": 67, "Coordinates": [475.99706669811314 , 319.9303895058466] ,
22 "Visibility": 1}
23],
24 "pose": {"r": [0.0, 0.0, 4.499999999999936] ,
25 "q": [0.1522561833159995 , -0.1522561833159995 , -0.6905200737581759 ,

0.6905201930581703]
26 }
27 },
28 ...
29]

Code Listing C.2: COCO format (.json)

1 {
2 "info": {
3 "description": "Bennu -1",
4 "url": "https :// tudelft.nl",
5 "version": "1.0",
6 "year": 2021,
7 "contributor": "Lars van der Heijden",
8 "date_created": "2021/08/01"
9 },

10 "licenses": {
11 "id": 0,
12 "url": "N/A",
13 "name": "N/A"
14 },

153

154 C. Dataset annotations format

15 "images": [
16 {
17 "license": 1,
18 "file_name": "0_4.5_0009.jpg",
19 "coco_url": "",
20 "height": 1024,
21 "width": 1024,
22 "date_captured": "",
23 "flickr_url": "",
24 "id": 450009
25 },
26 {
27 "license": 1,
28 "file_name": "0_4.5_0013.jpg",
29 "coco_url": "",
30 "height": 1024,
31 "width": 1024,
32 "date_captured": "",
33 "flickr_url": "",
34 "id": 450013
35 },
36 ...
37],
38 "annotations": [
39 {
40 "segmentation": [],
41 "num_keypoints": 68,
42 "area": 282965.76 ,
43 "iscrowd": 0,
44 "keypoints": [
45 308.6702660056609 , 646.7661919182307 , 2,
46 457.48837130483 , 630.2760834909972 , 2,
47 383.3427462194653 , 610.6900328801723 , 2,
48 ...
49 619.5316958892159 , 592.2540945871782 , 2,
50 481.7909390894226 , 724.4413819715895 , 2,
51 469.1477189840984 , 386.11767517215304 ,2
52],
53 "image_id": 450009 ,
54 "bbox": [224.9 , 261.6 , 574.2 , 492.79999999999995] ,
55 "category_id": 1,
56 "id": 1
57 },
58 {
59 "segmentation": [],
60 "num_keypoints": 68,
61 "area": 298516.68000000005 ,
62 "iscrowd": 0,
63 "keypoints": [402.5270717868648 , 675.321560029599 , 2,
64 417.42037021822216 , 679.8817894317076 , 2,
65 364.3848113607935 , 669.3804610892698 , 2,
66 ...
67 736.3252685426577 , 508.0718045702962 , 2,
68 543.5773480292133 , 725.5522610683839 , 2,
69 530.9154183571504 , 356.07794462766645 , 2
70],
71 "image_id": 450013 ,
72 "bbox": [223.3 , 255.9 ,587.4000000000001 , 508.20000000000005] ,
73 "category_id": 1,
74 "id": 2
75 },
76 ...
77],
78 "categories": [
79 {
80 "supercategory": "Asteroid",
81 "id": 1,
82 "name": "Bennu",
83 "keypoints": ["1","2","3","4","5","6","7","8","9","10","11","12","13","14",

"15","16","17","18","19","20","21","22","23","24","25","26","27","28","
29","30","31","32","33","34","35","36","37","38","39","40","41","42","

155

43","44","45","46","47","48","49","50","51","52","53","54","55","56","
57","58","59","60","61","62","63","64","65","66","67","68"]

84 }
85]
86 }

Code Listing C.3: Detections by OD network COCO format (.json)

1 [
2 {
3 "bbox": [
4 306.3857421875 ,
5 321.36151123046875 ,
6 565.94970703125 ,
7 523.72119140625
8],
9 "category_id": 1,

10 "image_id": 450876 ,
11 "score": 0.9999995231628418
12 },
13

14

15 ...
16

17

18 {
19 "bbox": [
20 464.2561340332031 ,
21 67.12730407714844 ,
22 559.7438659667969 ,
23 496.20960998535156
24],
25 "category_id": 1,
26 "image_id": 2451095 ,
27 "score": 0.9999922513961792
28 }
29]

Code Listing C.4: Example of the object detection configuration file (.config)

1 """ The configuration file for the SSD -MobileNetV2 -FPNLite object network used to train
the network on the Bennu+ dataset"""

2 model {
3 ssd {
4 num_classes: 1
5 image_resizer {
6 fixed_shape_resizer {
7 height: 320
8 width: 320
9 }

10 }
11 feature_extractor {
12 type: "ssd_mobilenet_v2_fpn_keras"
13 depth_multiplier: 1.0
14 min_depth: 16
15 conv_hyperparams {
16 regularizer {
17 l2_regularizer {
18 weight: 4e-05
19 }
20 }
21 initializer {
22 random_normal_initializer {
23 mean: 0.0
24 stddev: 0.01
25 }
26 }
27 activation: RELU_6
28 batch_norm {
29 decay: 0.997

156 C. Dataset annotations format

30 scale: true
31 epsilon: 0.001
32 }
33 }
34 use_depthwise: true
35 override_base_feature_extractor_hyperparams: true
36 fpn {
37 min_level: 3
38 max_level: 7
39 additional_layer_depth: 128
40 }
41 }
42 box_coder {
43 faster_rcnn_box_coder {
44 y_scale: 10.0
45 x_scale: 10.0
46 height_scale: 5.0
47 width_scale: 5.0
48 }
49 }
50 matcher {
51 argmax_matcher {
52 matched_threshold: 0.5
53 unmatched_threshold: 0.5
54 ignore_thresholds: false
55 negatives_lower_than_unmatched: true
56 force_match_for_each_row: true
57 use_matmul_gather: true
58 }
59 }
60 similarity_calculator {
61 iou_similarity {
62 }
63 }
64 box_predictor {
65 weight_shared_convolutional_box_predictor {
66 conv_hyperparams {
67 regularizer {
68 l2_regularizer {
69 weight: 4e-05
70 }
71 }
72 initializer {
73 random_normal_initializer {
74 mean: 0.0
75 stddev: 0.01
76 }
77 }
78 activation: RELU_6
79 batch_norm {
80 decay: 0.997
81 scale: true
82 epsilon: 0.001
83 }
84 }
85 depth: 128
86 num_layers_before_predictor: 4
87 kernel_size: 3
88 class_prediction_bias_init: -4.6
89 share_prediction_tower: true
90 use_depthwise: true
91 }
92 }
93 anchor_generator {
94 multiscale_anchor_generator {
95 min_level: 3
96 max_level: 7
97 anchor_scale: 4.0
98 aspect_ratios: 1.0
99 aspect_ratios: 1.1

100 aspect_ratios: 1.2

157

101 aspect_ratios: 0.7
102 aspect_ratios: 0.8
103 aspect_ratios: 0.9
104 scales_per_octave: 2
105 }
106 }
107 post_processing {
108 batch_non_max_suppression {
109 score_threshold: 1e-08
110 iou_threshold: 0.6
111 max_detections_per_class: 100
112 max_total_detections: 100
113 use_static_shapes: false
114 }
115 score_converter: SIGMOID
116 }
117 normalize_loss_by_num_matches: true
118 loss {
119 localization_loss {
120 weighted_smooth_l1 {
121 }
122 }
123 classification_loss {
124 weighted_sigmoid_focal {
125 gamma: 2.0
126 alpha: 0.25
127 }
128 }
129 classification_weight: 1.0
130 localization_weight: 1.0
131 }
132 encode_background_as_zeros: true
133 normalize_loc_loss_by_codesize: true
134 inplace_batchnorm_update: true
135 freeze_batchnorm: false
136 }
137 }
138 train_config {
139 batch_size: 32
140 data_augmentation_options {
141 random_horizontal_flip {
142 }
143 }
144 data_augmentation_options {
145 random_crop_image {
146 min_object_covered: 0.0
147 min_aspect_ratio: 0.75
148 max_aspect_ratio: 3.0
149 min_area: 0.75
150 max_area: 1.0
151 overlap_thresh: 0.0
152 }
153 }
154 sync_replicas: true
155 optimizer {
156 momentum_optimizer {
157 learning_rate {
158 cosine_decay_learning_rate {
159 learning_rate_base: 0.08
160 total_steps: 50000
161 warmup_learning_rate: 0.026666
162 warmup_steps: 1000
163 }
164 }
165 momentum_optimizer_value: 0.9
166 }
167 use_moving_average: false
168 }
169 fine_tune_checkpoint: "/content/gdrive/My Drive/TensorFlow/workspace/training_demo/

pre -trained -models/ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu -8/ checkpoint/ckpt
-0"

158 C. Dataset annotations format

170 num_steps: 50000
171 startup_delay_steps: 0.0
172 replicas_to_aggregate: 8
173 max_number_of_boxes: 100
174 unpad_groundtruth_tensors: false
175 fine_tune_checkpoint_type: "detection"
176 fine_tune_checkpoint_version: V2
177 }
178 train_input_reader {
179 label_map_path: "/content/gdrive/My Drive/TensorFlow/workspace/training_demo/

annotations/label_map.pbtxt"
180 tf_record_input_reader {
181 input_path: "/content/gdrive/My Drive/TensorFlow/workspace/training_demo/

annotations/train +. record"
182 }
183 }
184 eval_config {
185 metrics_set: "coco_detection_metrics"
186 use_moving_averages: false
187 batch_size: 1
188 }
189 eval_input_reader {
190 label_map_path: "/content/gdrive/My Drive/TensorFlow/workspace/training_demo/

annotations/label_map.pbtxt"
191 shuffle: false
192 num_epochs: 1
193 tf_record_input_reader {
194 input_path: "/content/gdrive/My Drive/TensorFlow/workspace/training_demo/

annotations/val+. record"
195 }
196 }

Code Listing C.5: Example of the keypoint detection configuration file (.yaml)

1 AUTO_RESUME: true
2 CUDNN:
3 BENCHMARK: true
4 DETERMINISTIC: false
5 ENABLED: true
6 DATA_DIR: ''
7 GPUS: (0,)
8 OUTPUT_DIR: '/content/gdrive/MyDrive/PyTorch/lpn -pytorch/output/Bennu +256 x256Stage1 '
9 LOG_DIR: '/content/gdrive/MyDrive/PyTorch/lpn -pytorch/log/Bennu +256 x256Stage1 '

10 WORKERS: 24
11 PRINT_FREQ: 100
12

13 DATASET:
14 COLOR_RGB: false
15 DATASET: 'bennu_coco '
16 ROOT: '/content/gdrive/MyDrive/PyTorch/lpn -pytorch/data'
17 TEST_SET: 'val'
18 TRAIN_SET: 'train '
19 FLIP: true
20 ROT_FACTOR: 40
21 SCALE_FACTOR: 0.3
22 MODEL:
23 NAME: 'lpn'
24 INIT_WEIGHTS: true
25 PRETRAINED: '/content/gdrive/MyDrive/PyTorch/lpn -pytorch/output/Bennu +/ bennu_coco/lpn

/lpn101_256x256_Bennu +/ model_best.pth' #Using the best model obtained in
previous stage to initialize the networks weights and biases

26 IMAGE_SIZE:
27 - 256
28 - 256
29 HEATMAP_SIZE:
30 - 64
31 - 64
32 SIGMA: 2
33 NUM_JOINTS: 68
34 TARGET_TYPE: 'gaussian '
35 EXTRA:

159

36 FINAL_LAYER:
37 - 'final_layer '
38 ATTENTION: 'GC'
39 FINAL_CONV_KERNEL: 1
40 DECONV_WITH_BIAS: false
41 NUM_DECONV_LAYERS: 2
42 NUM_DECONV_FILTERS:
43 - 256
44 - 256
45 NUM_DECONV_KERNELS:
46 - 4
47 - 4
48 NUM_LAYERS: 101
49 LOSS:
50 USE_TARGET_WEIGHT: true
51 TRAIN:
52 BATCH_SIZE_PER_GPU: 64
53 SHUFFLE: true
54 BEGIN_EPOCH: 60
55 END_EPOCH: 150
56 OPTIMIZER: 'adam'
57 LR: 0.001
58 LR_FACTOR: 0.1
59 LR_STEP:
60 - 90
61 - 120
62 WD: 0.0001
63 GAMMA1: 0.99
64 GAMMA2: 0.0
65 MOMENTUM: 0.9
66 NESTEROV: false
67 TEST:
68 BATCH_SIZE_PER_GPU: 1
69 COCO_BBOX_FILE: '/content/gdrive/MyDrive/coco/od+_val+Detections.json'
70 BBOX_THRE: 1.0
71 IMAGE_THRE: 0.0
72 IN_VIS_THRE: 0.2
73 MODEL_FILE: '/content/gdrive/MyDrive/PyTorch/lpn -pytorch/output/Bennu +256 x256Stage1/

bennu_coco/lpn/lpn101_256x256 -Bennu+-stage1/model_best.pth'
74 NMS_THRE: 1.0
75 OKS_THRE: 0.9
76 FLIP_TEST: false
77 POST_PROCESS: true
78 SHIFT_HEATMAP: true
79 USE_GT_BBOX: false
80 SOFT_ARGMAX: true
81 DEBUG:
82 DEBUG: true
83 SAVE_BATCH_IMAGES_GT: false
84 SAVE_BATCH_IMAGES_PRED: false
85 SAVE_HEATMAPS_GT: false
86 SAVE_HEATMAPS_PRED: false
87 SAVE_HEATMAPS_TEST_ALL: false

Code Listing C.6: Example of the dataset_processing.py script used to process the raw data and create a
fully annotated dataset

1 import sys
2 sys.path.insert(0, 'D:/ MscSpaceflight/Thesis/thesisCode/datasetCreation/python/utils ')
3 from dataset_utils import *
4 sys.path.insert(1, 'D:/ MscSpaceflight/Thesis/thesisCode/machineLearning/

keypointDetection/utils ')
5 from convert2COCO import COCOAnnotation
6

7 ### Process the raw dataset and create the annotations required for the subsequent ML
networks and PnP solver

8

9 # Specify the paths for the raw data [images , files]
10 source_blender_img = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\images\

Rendering\Bennu'

160 C. Dataset annotations format

11 dest_blender_img = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\images\
datasetBennu '

12 bb_root = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\dataFiles\boundingBox '
13

14 # The paths for the destination of the processed dataset
15 source_img = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\images\datasetBennu '
16 dest_img = r'D:\ MscSpaceflight\Thesis\dataset_ML_total '
17

18 # The path for the pose used for the generation of the images
19 blenderPose = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\dataFiles\

blenderPose\used'
20

21 ### Create the dataset class instance
22 data = processingDataset(source_blender_img ,dest_blender_img , source_img , dest_img ,

bb_root , blenderPose)
23

24 ### Partition the dataset
25 data.partition_dataset(train_ratio = 0.70, val_ratio = 0.15, val = True)
26

27 ### Annotate the bounding box in the OD format
28 data.annotateBBox('train ', relaxed_bb = True , margin = 5)
29 data.annotateBBox('val', relaxed_bb = True , margin = 5)
30 data.annotateBBox('test', relaxed_bb = True , margin = 5)
31

32 ### Import the designated 3D keypoints on Bennu
33 path = r'D:\ MscSpaceflight\Thesis\thesisCode\datasetCreation\dataFiles\keypoints\

keypointsBennu.ply'
34 points_3D = plyUtil.read_ply(path)
35 points_3D = points_3D['points ']
36 points_3D.drop(points_3D.tail (1).index ,inplace=True)
37 kp_coordinates = points_3D.values.reshape (-1,3)
38

39 ### Create and write the annotated json file
40 train_json , kp_list = data.annotatedJSONfile('train ',kp_coordinates)
41 val_json , kp_list_val = data.annotatedJSONfile('val', kp_coordinates)
42 test_json , kp_list_test = data.annotatedJSONfile('test', kp_coordinates)
43

44 ### Write to file
45 data.write2JSON('train ',train_json)
46 data.write2JSON('val', val_json)
47 data.write2JSON('test', test_json)
48

49 ### Create and write the annoted COCO format file
50

51 ### Define the basic arguments
52 dataset_name= 'Bennu -1'
53 n_kps = 68
54 base_args = {
55 "dataset":dataset_name ,
56 "size":(1024 ,1024) ,
57 "url": "",
58 "n_keypoints":n_kps ,
59 "skeleton": []
60 }
61

62 ### The training arguments
63 train_args = base_args
64 train_args["image_path"] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\train '
65 train_args['datafile '] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\train\train.json'
66 train_json_path = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\train\COCO_train.json'
67

68 train_COCO = COCOAnnotation (** train_args)
69 train_COCO.write2File(train_json_path)
70

71 ### The validation arguments
72 val_args = base_args
73 val_args["image_path"] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\val'
74 val_args['datafile '] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\val\val.json'
75 val_json_path = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\val\COCO_val.json'
76

77 val_COCO = COCOAnnotation (** val_args)

161

78 val_COCO.write2File(val_json_path)
79

80 ### The test arguments
81 test_args = base_args
82 test_args["image_path"] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\test'
83 test_args['datafile '] = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\test\test.json'
84 test_json_path = r'D:\ MscSpaceflight\Thesis\dataset_ML_total\test\COCO_test.json'
85

86 test_COCO = COCOAnnotation (** test_args)
87 test_COCO.write2File(test_json_path)
88

89 ### Visualize the keypoints , bounding box and pose for an image
90 image_set = 'val'
91 img_name = '5_4.5 _0527.jpg'
92 image = data.visualize_gt_kps(image_set ,img_name=img_name)

162 C. Dataset annotations format

D
Image corruptions specifications

This appendix specifies the settings used in the generation of the augmented dataset Bennu+. The ImageNet-
C dataset created by Hendrycks and Dietterich (2019), is a benchmark dataset that was created to evaluate
the robustness of neural nets. The dataset has applied 15 different corruptions types ranging from noise, blur,
weather, and digital effects to mimic real camera/sensor and environment artifacts. The algorithms used to
generate this dataset can be found in the Github repository1 and have been used in this work. The approach
proposed by Barad (2020) and the adapted software repository2 from the original (Hendrycks and Dietterich,
2019) were used in the generation of the dataset. This repository uses algorithms from open-source libraries,
such as Python’s skimage, OpenCV, scipy, Wand, and PyTorch. Because these libraries are maintained and
used by many users for different applications, it is assumed that the functions can be considered verified.
The severity levels used in the generation of these corruptions are based on the values used by Hendrycks and
Dietterich (2019) and Barad (2020) and are representative of real camera/sensor corruptions. Furthermore,
the augmentation applied to each image is unique to mimic real world corruptions, which also show variation
of the corruption values even at fixed levels of intensity.

• Gaussian blur: Gaussian blur is applied to the image by using a convolution operation whereby the pix-
els are multiplied with a Gaussian kernel. The severity specifies the standard deviation of the Gaussian
kernel and is set to 1.

• Motion blur: Motion blur is applied to the image through the use of the Wand Library3. The severity
specifies a tuple containing the radius of the aliasing disk and the standard deviation of the blur used
for the disk, and is set to (7,3).

• Defocus blur: Defocus blur is applied to the image by using a convolution operation whereby the pix-
els are multiplied by a created kernel that emulates an aliasing disk with Gaussian blur. The severity
specifies a tuple containing the radius of the aliasing disk and the standard deviation of the blur used
for the disk, and is set to (3;0.1).

• Zoom blur: Zoom blur is applied to the image by using scipy’s zoom function, which uses two zooming
overlays. Firstly, the image is zoomed in by a large factor and secondly the image is zoomed out by
a small zoom factor. The pixel values of the zoomed image are determined using a first order spline
interpolation. The severity specifies a tuple containing the zoom factor for the two operations and is
set to (1.11;0.01)

• Spatter: Spatter is applied to the image by simulating liquid droplets, however, the implementation is
quite extensive and not trivial. Therefore, the reader is referred to the original implementation4.

• Gaussian noise: Gaussian noise is applied to the image by adding pixel intensities drawn from a normal
distribution to the normalized original pixel intensities. The severity specifies the standard deviation
of the normal distribution and is set to 0.08.

• Impulse noise: Impulse noise is applied to the image by replacing normalized random pixels with 0
(dead pixels) or 1 (hot pixels). The severity specifies the proportion of the total pixels that are to be
replaced and is set at 0.015.

1https://github.com/hendrycks/robustness Date accessed: 4-11-2021
2https://github.com/kuldeepbrd1/image-corruptions Date accessed: 4-11-2021
3https://github.com/emcconville/wand, Date accessed: 3-12-2021
4https://github.com/hendrycks/robustness Date accessed: 4-11-2021

163

https://github.com/hendrycks/robustness
https://github.com/kuldeepbrd1/image-corruptions
https://github.com/emcconville/wand
https://github.com/hendrycks/robustness

164 D. Image corruptions specifications

• Shot noise: Shot noise is applied to the image by adding pixel intensities drawn from a Poisson distribu-
tion to the normalized original pixel intensities. The severity specifies the variance of the distribution
from which the noise for the pixel is generated and is set at 60.

• Speckle noise: Speckle noise is applied to the image by multiplying pixel intensities drawn from a nor-
mal distribution (Gaussian) with the normalized original pixel intensities, and adding it to the normal-
ized original pixel intensities. The severity specifies the standard deviation of the normal distribution
and is set at 0.15.

• Color jitter: Color jitter is a data augmentation that is available through PyTorch. The severity specifies
the range from which the brightness, contrast, and saturation values are uniformly chosen and is set at
0.5 for all parameters resulting in the following range [0.5,1.5].

• Random erase: Random erase is a data augmentation that is available through PyTorch. The severity
specifies the scale of the erased area w.r.t. the input image and is set at 0.02, i.e., 2% of the input size.

Probabilities
The probabilities used in the generation of the training and validation set of Bennu+ as shown in Figure 7.18
are listed in Table D.1.

Table D.1: The probabilities used in the generation of the augmented images for the training and validation
set

Probability Training Validation
P(C) 0.30 0.30
P(RE) 0.12 0.10
P(CJ) 0.45 0.50
P(B) 0.55 0.60
P(N) 0.45 0.40

	List of Abbreviations
	List of Symbols
	I Introduction and background
	Introduction
	Problem and relevance
	Research trigger
	Research questions
	Report structure

	Heritage
	Heritage
	Mission and system requirements
	Scope of the research

	II Theory
	Reference frames
	Reference frames
	State representation
	Coordinate systems
	Attitude kinematics

	Frame transformations
	Reference frame transformations

	Pose estimation framework
	Camera model
	Perspective-n-Points (PnP) problem
	Pose solvers

	Machine learning
	Deep Learning
	Neural Networks (NN)
	Convolutional Neural Networks (CNN)
	Lightweight networks
	General machine learning concepts

	III Algorithm Design & Methodology
	Algorithm's architecture overview
	Architecture overview
	Software overview

	Dataset
	Dataset generation overview
	Image generation pipeline
	Rendering software
	Target asteroid model
	Viewpoint sampling
	Rendering process

	Dataset properties
	Annotations
	Pose
	Keypoint designation and annotation
	Bounding box

	Bridging the domain gap from synthetic to real images
	Bennu+ dataset

	Trajectory generation
	Dataset api

	Object detection network
	Object detection
	Architecture selection
	SSD-MobileNetV2-FPN-Lite
	Implementation
	Configuration

	Keypoint detection network
	Keypoint detection
	Architecture selection
	Lightweight Pose Network
	Implementation
	Configuration

	Verification
	Dataset generation and annotation
	Camera pose generation
	Image rendering
	Dataset annotation

	Machine learning
	Pose estimation

	IV Results
	Results and experiments
	Object detection
	Accuracy assessment
	Robustness assessment
	Robustness to real images

	Keypoint detection
	Accuracy assessment
	Robustness assessment

	Pose estimation
	Accuracy assessment
	Outlier analysis
	Possible improvements

	Trajectory simulations
	Conclusions

	V Conclusion & Recommendations
	Conclusions and recommendations
	Conclusions
	Recommendations

	Bibliography
	Heatmap-derived covariance matrix
	Comparable deep-learning datasets
	Dataset annotations format
	Image corruptions specifications

