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Summary

The development of carbon nanotube(CNT)-polymer composites advocates for a better un-
derstanding of their physical and mechanical properties that depend on the diameter of the
embedded CNTs. Given that the experimental assessment of size effects is extremely dif-
ficult, the use of numerical models can be enormously helpful. However, since size effects
might be observed both at the nano- and the macroscale, an adequate multiscale procedure
is required.

In this thesis, numerical techniques are explored to develop a multiscale approach for
the analysis of size effects in the elastic response of CNT-polymer composites. Atomistic
simulations, such a molecular mechanics and molecular dynamics, are used for the charac-
terization of the composites and their components at the nanoscale. The obtained results are
then used to investigate size effects in the macroscopic properties of CNT-polymer compos-
ites using continuum models and efficient finite element techniques.

Molecular mechanics simulations on tensile carbon nanotubes show that their axial stiff-
ness and axial strain field depend on the CNT diameter. Moreover, it is found that the axial
strain field can be accurately reproduced using nonlocal continuum models if optimal nonlo-
cal parameters, that vary with the nanotube diameter, and a suitable nonlocal kernel are used.
Although the numerical solution of nonlocal problems is typically challenging, higher order
B-spline finite elements overcome the issues encountered when standard approximation tech-
niques are employed. Further, molecular dynamics simulations on CNT-polymer composites
show that the CNT diameter alters the atomic structure and the mechanical properties of the
ordered layer of polymer chains forming around the nanotube —the interphase. Such a layer
has a significant impact on the mechanical properties of the composite. Although the role of
the nanotubes during elastic deformation of the composite is negligible due to the weak non-
bonded interface interactions, the interphase–thanks to its highly ordered atomic structure–is
shown to enhance its mechanical properties. Here, molecular mechanics simulations at the
nanoscale and the numerical solution of an equivalent continuum model at the macroscale
indicate that the composite stiffness increases when the diameter of the carbon nanotubes is
decreased.

When possible, the reliability of the results in this thesis has been assessed by means
of analytical models and experimental or numerical results in the literature. Therefore, this
study proposes a computational framework to improve our understanding of the mechanical
response of CNT-polymer composites and the size effects on their elastic properties.
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Sommario

Lo sviluppo di compositi polimerici rinforzati con nanotubi di carbonio (NTC) richiede una
maggiore comprensione degli effetti delle dimensioni degli NTC sulle proprietà fisiche e
meccaniche del composito. In questo contesto, l’impiego di modelli numerici è di fondamen-
tale importanza a causa dei limiti che si incontrano nella caratterizzazione di questi materiali
con prove sperimentali. Tuttavia, e’ necessario servirsi di un approccio multiscala in quanto
gli effetti delle dimensioni degli NTC sono osservabili sia alla nano- che alla macroscala.

In questa tesi, diverse tecniche numeriche sono utilizzate per l’analisi multiscala degli
effetti delle dimensioni degli NTC sulla risposta elastica dei compositi polimerici. Simu-
lazioni atomistiche, come meccanica molecolare (MM) e dinamica molecolare (DM), sono
impiegate per la caratterizzazione alla nanoscala dei compositi e dei loro singoli componenti.
Con i risultati ottenuti ed avvalendosi di modelli continui ed efficienti tecniche agli elementi
finiti, si sono analizzate le proprieta’ macroscopiche dei compositi.

Le simulazioni di MM su nanotubi in tensione mostrano che la rigidezza assiale ed il
campo di deformazione sono dipendenti dal diametro dell’NTC. Allo stesso tempo, si ev-
idenzia che modelli continui nonlocali possono riprodurre in maniera accurata il campo
di deformazione assiale nei nanotubi, se sono associati a idonei parametri nonlocali e un
adeguato kernel nonlocale. Sebbene la soluzione numerica di problemi nonlocali è solita-
mente onerosa, elementi finiti B-spline di ordine elevato permettono di superare i problemi
riscontrabili con tecniche di approssimazione classiche. Successivamente, le simulazioni di
DM su matrici polimeriche rinforzate con NTC mostrano che il diametro dei nanotubi al-
tera la struttura e le proprietà meccaniche dello strato di catene polimeriche circostanti (nota
come interfase) con effetto rilevante sulle proprietà del composito. Nonostante il ruolo del
nanotubo sulla deformazione elastica del composito sia irrilevante a causa delle deboli in-
terazioni all’interfaccia, è provato che l’interfase (grazie alla sua ordinata struttura atomica)
porta ad un miglioramento delle proprietà meccaniche del composito. In quest’ambito, simu-
lazioni di MM alla nanoscala e l’analisi numerica di un modello equivalente per il composito
alla macroscala indicano che la rigidezza del composito aumenta al diminuire del diametro
degli NTC.

Quando possibile, l’attendibilità dei risultati riportati in questa tesi è stata valutata con
l’ausilio di modelli analitici e risultati sperimentali e numerici presenti in letteratura. Per-
tanto, la metodologia computazionale adottata in questo studio accresce la conoscenza della
risposta meccanica dei compositi polimerici rinforzati con nanotubi in carbonio e dell’effetto
delle dimesioni degli NTC sulle loro proprietà elastiche.
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Samenvatting

De ontwikkeling van koolstof nanobuizen (KNB)-polymeren composieten pleit voor een
beter begrip van de fysische en mechanische eigenschappen van de composieten die afhan-
kelijk zijn van de diameter van de KNB. Gegeven dat de proefondervindelijke analyse van
afmetingseffecten extreem moeilijk is, kan het gebruik van numerieke rekenmodellen zeer
behulpzaam zijn. Afmetingseffecten zijn echter waarneembaar op zowel nano- als macro-
schaal, waardoor een geschikt multischaal algoritme noodzakelijk is.

In dit proefschrift worden numerieke technieken onderzocht voor het ontwikkelen van
een multischale aanpak voor de analyse van afmetingseffecten in het elastisch gedrag van
KNB-polymeren compositen. Atomistische simulaties, zoals moleculaire mechanica en mo-
leculaire dynamica, worden gebruikt voor het karakteriseren van de composieten en hun
onderdelen op nanoschaal. De verkregen resultaten worden gebruikt om de afmetingseffec-
ten van de macroscopische eigenschappen van KNB-polymeren composieten te onderzoeken
met behulp van continuümmodellen en efficiënte eindige-elemententechnieken. Moleculaire
mechanica simulaties op rekbare koolstof nanobuizen tonen dat hun axiale stijfheid en axiale
spanningsveld afhankelijk zijn van de diameter van de KNB. Ook is er getoond dat het axiale
spanningsveld nauwkeurig reproduceerbaar is met behulp van niet-lokale continuümmodel-
len als de optimale diameter-afhankelijke niet-lokale parameters en een geschikte niet-lokale
kern worden gebruikt.

Hoewel de numerieke oplossing van niet-lokale vraagstukken een uitdaging is, lossen
hogere-orde B-spline eindige elementen de problemen op die normaliter optreden bij het
gebruik van standaard benaderingsmethodes. Daarnaast tonen moleculaire dynamica simu-
laties van KNB-polymeren composieten dat de invloed van de diameter van de KNB op
de atomaire structuur en op de mechanische eigenschappen van de geordende polyerme-
renkettingenlaag om de nanotube —de interfase. Een dergelijke laag heeft een significante
invloed op de mechanische eigenschappen van het composiet. Hoewel de rol van KNB
tijdens de elastische deformatie van het composiet verwaarloosbaar is door de slappe onge-
bonden interface interacties, verbetert de interfase de mechanische eigenschappen door een
zeer geordende atomaire structuur. Moleculaire mechanische simulaties op nanoschaal en
de numerieke oplossing van een equivalent continuümmodel op macroschaal tonen aan dat
de stijfheid van het composiet toeneemt wanneer de diameter van de KNB wordt verkleind.

Waar mogelijk is de betrouwbaarheid van de resultaten in dit proefschrift geëvalueerd
door middel van analytische modellen en proefondervindelijke of numerieke resultaten uit
de literatuur. Daarom stelt deze studie een rekenkundig raamwerk voor om het verband
tussen de mechanische response en de afmetingseffecten op de elastische eigenschappen van
KNB-polymeren compositen beter te begrijpen.

xiii





Chapter 1

Introduction

1.1 Aims of the thesis

The exceptional mechanical and physical properties of carbon nanotubes (CNTs) make them
the ideal candidates for the design of high-performance polymer-based composite materials.
However, due to their small dimensions, the analysis of CNT-polymer composites is difficult
and, despite several works have been published during the last two decades, some funda-
mental issues need more investigation.

For instance, the effects of the nanotube diameter and chirality on the mechanical re-
sponse of CNT-polymer composites, crucial for their design, are still unclear. Since the
dimension of the CNTs circular cross section is comparable to the characteristic size of the
polymer chains, a variation of the nanotube diameter can lead to different CNT-polymer in-
teractions and alter the matrix atomic structure. Indeed, experimental observations indicated
the presence of nanotube-induced size effects in the mechanical properties of CNT-polymer
composites. However, the small size of the carbon nanotubes make the experimental charac-
terization of size effects extremely challenging. Nevertheless, this problem can be addressed
by means of computer simulations.

The main goal of this thesis is to develop an efficient computational procedure for mod-
eling size effects in CNTs and CNT-polymer composites. Atomistic simulations have been
used to provide fundamental insights about the nanoscale features of CNTs and CNT-polymer
composites and continuum models have been employed to efficiently assess size effects at
the macroscale.

In this first chapter, a brief presentation of the problems discussed in this work is given.
An overview of the main features and issues regarding the mechanical characterization of
CNTs and CNT-polymer composites is provided in Sections 1.2.1 and 1.2.2, respectively.
Finally, the outline of the thesis is presented in Section 1.3.

1.2 Background

1.2.1 Carbon nanotubes

Carbon nanotubes are hollow cylindrical structures formed by hexagonal rings of carbon
atoms (see Figure 1.1(a) and (b)) with a diameter of a few nanometers and length in the
micrometers range. When a CNT consists of a single tube the term single-walled carbon

1



2 1. INTRODUCTION

nanotube is used, while a CNT formed by multiple concentric nanotubes is called multi-
walled carbon nanotube. Then, CNTs are also identified according to their chirality, the
orientation of the hexagonal carbon rings with respect to the nanotube axis.

(a) (b)

Figure 1.1: (a) Scanning tunneling microscopy image [20], and (b) schematic representation
of single-walled carbon nanotubes.

Due to the small dimension of the nanotubes in the radial direction, their mechanical
properties can be dependent on diameter, length and chirality. However, experimental assess-
ment of effects of structural changes on the mechanical response of CNTs is extremely dif-
ficult. Due to the errors and uncertainties introduced by the measurements at the nanoscale,
experiments show large scatter in the results–typical experimental values for the Young’s
modulus vary between 0.6 and 2.4 TPa [10, 14, 17, 19, 21]. On the contrary, atomistic simu-
lations such as ab initio calculations, molecular dynamics, molecular mechanics and molec-
ular structural mechanics, that can accurately model nanoscale systems, provided values of
the Young’s modulus in a smaller range, spanning between 0.8 and 1.1 TPa [3, 9, 13, 18, 22].
Here, size effects have been observed, indicating that the Young’s modulus decreases when
the nanotube diameter is smaller than 1.5÷2 nm. Moreover, effects induced by the chirality
of the nanotubes have also been noticed.

Due to their high computational cost, atomistic simulations are limited to systems of
small dimensions. Therefore, the analysis of size effects in long CNTs, and consequently
in CNT-polymer composites, by means of atomistic simulations is prohibitive and several
attempts have been made to study CNTs with continuum models. In particular, nonlocal
continuum models, that can account for the long range interactions at the nanoscale and
reproduce size effects, are the natural choice for the modeling of carbon nanotubes. Two
nonlocal models commonly used for CNTs are the models proposed by Eringen [7] and
Aifantis [1]. Both approaches add a term to the classical constitutive equations such that the
stress at a given point depends on the strain field at surrounding points. In the Eringen model
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the additional term involves a weighted integral of the strain field while in the Aifantis model
it is defined by the Laplacian of the strain tensor. Moreover, the additional term includes one
or more so-called nonlocal parameters to account for the characteristic length of the material
atomic structure.

The finite element method is typically employed when studying nonlocal problems since
their analytical solution is usually difficult. However, the use of the finite elements for the
analysis of nonlocal problems present some issues that need be addressed. When the Eringen
model is used, efficient finite element approximations are required to overcome the compu-
tational burden as the stiffness matrix loses sparsity, while in the case of the Aifantis model
highly continuous finite elements are needed to satisfy requirements on the discretization.

Another important issue regarding the use of nonlocal formulations for the modeling of
CNTs focuses on the choice of the nonlocal parameters. Although several works on the
use of nonlocal models for the analysis of carbon nanotubes have been proposed, only few
papers tried to address this issue.

1.2.2 Carbon nanotube-polymer composites
Carbon nanotubes, besides their exceptional physical and mechanical properties, bring two
significant advantages over traditional reinforcements: high interface area, size effects in
the interfacial shear strength and enhancement of the mechanical properties of the polymer
matrix.

CNTs have very high aspect ratio. In typical short-fiber composites, the fiber aspect ratio
ranges between 100 and 500 [6] while that of carbon nanotubes is higher than 103. This
implies a higher interface area at small volume fraction of reinforcement (see Figure 1.2).

(a) (b) (c)

Figure 1.2: Schematic representation of the distribution of micro- and nanoparticles
((a) Al2O3 particles, (b) carbon fibers and (c) CNTs) in a homogeneous matrix having the
same 0.1 % volume fraction of reinforcement. This figure has been adapted from [15].

Moreover, since the diameter of the nanotubes is comparable to the characteristic size
of its atomic structure and that of the surrounding polymer chains, size effects might be ob-
served also in CNT-polymer composites. Barber and coworkers [2] were the first to observe
size effects in the interfacial shear strength of CNT-butane composites. Pull-out tests of indi-
vidual carbon nanotubes from the polymer matrix showed that the interfacial shear strength
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increases by decreasing the nanotube diameter (see Figure 1.3). Analogous results were later
obtained with similar experiments [4] and molecular dynamics simulations [5, 12]. However,
the effect of the diameter on the composite mechanical properties at the macroscale has not
been investigated.
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Figure 1.3: Diameter induced size effects on the interfacial shear strength from pull-out test
in CNT-butane [2].

Furthermore, experimental observations on a wide class of polymers confirmed the for-
mation of an ordered structure of polymer chains [11], surrounding the nanotubes as shown
in Figure 1.4. Nucleation of such a layer, usually referred to as the interphase, is greatly
beneficial as it offers additional reinforcement to composite. However, since the interphase
thickness is comparable to the diameter of the nanotubes, its experimental characterization
is difficult. Hence, atomistic simulations are typically employed since they allow for the
detailed investigation of the structure of the polymer chains. However, only few studies
investigated the size effects on the structure of the interphase [8] while size effects on its
mechanical properties are still not clear.

1.3 Objectives and outline of the thesis

The basic idea behind this thesis is to develop a computational procedure for the analysis
of size effects in CNT-polymer composites (only single-walled CNTs are considered in this
work). Since different length scales are involved, from few nanometers to several microme-
ters, a multiscale approach performing atomistic and continuum simulations is employed.

The approach here adopted consists in the analysis of CNT-polymer composites through
a detailed investigation of its single phases (i.e., carbon nanotubes, interface, interphase and
polymer matrix). Atomistic simulations are used for the characterization of the material at
the nanoscale and equivalent continuum models are further developed to examine size effects
at the macroscale. Nonlocal models have been initially considered for the assessment of size
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(a) (b)

Figure 1.4: Optical micrographs of crystallized (a) polypropylene [23] and (b) poly(vinyl
alcohol) [16] (the arrow indicates the crystallized coating around carbon nanotubes).

effects in the elastic response of carbon nanotubes and, consequently, the modeling of CNTs
as one-dimensional fibers when embedded in a polymer matrix.

Therefore, this thesis starts with the assessment of several finite element approximations
on the numerical solution of one-dimensional nonlocal problems (Chapter 2). The estimation
of the optimal nonlocal parameters required for modeling size effects in the elastic response
of tensile CNTs is further presented in Chapter 3. The reference solution of the strain field
in the carbon nanotubes is obtained by means of molecular structural mechanics atomistic
simulations (throughout the thesis, the CNTs atomic structure is assumed defect-free). Then,
a detailed analysis of size effects induced by the nanotube in the structural properties of
the interphase in CNT-polymer composites is carried out in Chapter 4 by using molecular
dynamics simulations. A coarse-grained amorphous monodisperse polyethylene-like model
is employed for the polymer matrix to provide general insights into a wide range of polymer-
based materials. Only non-bonded interactions between CNTs and polymer chains have
been considered. Finally, size effects in the micromechanical response of the CNT-polymer
composites are discussed in Chapter 5 where particular attention is devoted to the assessment
of the role played by the CNT, the interface, the interphase and the polymer matrix. Due to
weak interactions at the interface, the effect of the nanotubes in the mechanical response of
the composite is negligible. Hence, only the interphase is considered as reinforcement phase
when CNT-polymer composites are modeled at the microscale.
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Chapter 2

One-dimensional nonlocal and
gradient elasticity: Assessment of

high order approximation schemes∗

We investigate the application and performance of high-order approximation techniques to
one-dimensional nonlocal elastic rods. Governing equations and corresponding discrete
forms are derived for the integro-differential formulation proposed by Eringen and the laplacian-
based strain gradient formulation developed by Aifantis and coworkers. Accuracy and con-
vergence rate of the numerical solutions obtained with Lagrange, Hermite, B-spline finite
elements and C∞ generalized finite elements are assessed against the corresponding analyti-
cal solutions.

2.1 Introduction
Effective modeling of nonlocal problems is a challenging issue in computational mechan-
ics. In this context, high order approximation schemes are often required. Here, we com-
pare standard and high order approximation schemes with a high degree of continuity in the
analysis of one-dimensional nonlocal elasticity boundary value problems. In particular, we
consider problems whose solution fields present local area of high gradients at the boundary
or within the domain.

It is well known that classical continuum mechanics fails to predict deformation phenom-
ena at the nanoscale due to the absence of an internal material length scale in the constitu-
tive law. Therefore, nonclassical formulations have been proposed to model size-dependent
problems where the effect of material microstructure and long-range interatomic forces be-
comes predominant. In this context, one-dimensional nonlocal formulations have been used
to describe the mechanical response of nanostructures such as nanotrusses and carbon nan-
otubes [5, 40].

The finite element method is the de facto choice for the analysis of systems which show
a size-dependent mechanical response [7, 8, 24, 31], for the analytical solution of these
problems is usually difficult even in the most simple cases. Nevertheless, several issues arise
from the implementation of either computationally intensive algorithms or highly continuous
approximation schemes when derivatives of the strain field are included in the constitutive
∗Reproduced from: M. Malagù, E. Benvenuti, C.A. Duarte and A. Simone, One-dimensional nonlocal and gradi-

ent elasticity: Assessment of high order approximation schemes, Computer Methods in Applied Mechanics and
Engineering, 275:138–158, 2014.
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equations. In fact, the numerical solution of nonlocal elastic problems poses great chal-
lenges since most of the approaches in the literature show limitations. Equally important,
the finite element analysis of size-dependent systems depends on the constitutive equations
employed to represent the nonlocal medium. Among others, Eringen [22] suggested an
integro-differential formulation where the stress at a given point is made a weighted func-
tion of the strain at surrounding points. The corresponding finite element formulation leads
to significant computational effort since the stiffness matrix reflects the nonlocality of the
material [32] and looses sparsity. Aifantis and coworkers extended the classical elastic con-
stitutive equations with the Laplacian of the strain tensor [2], consequently increasing the
continuity requirements for the approximation schemes [4] which need to be C1-continuous
or higher.

In this work, non-conventional approximation techniques are tested on the aforemen-
tioned nonlocal elastic models and compared against traditional approaches. We consider
B-spline finite elements and C∞ generalized finite elements (C∞ GFEM) along with clas-
sical Lagrange and Hermite discretization techniques. The first method is widely used to
approximate smooth and free-form geometries [30] and employs high-order piecewise poly-
nomial basis functions. This technique can achieve a high degree of continuity through the
so-called k-refinement technique [27] as described in Section 2.2.1. Furthermore, B-spline
finite elements have been the subject of several publications, especially because of the inter-
est in the Isogeometric Analysis [11, 27, 28, 39]. The second approximation scheme uses
a C∞ partition of unity (PoU) and polynomial enrichments to build arbitrarily smooth basis
functions [19] as detailed in Section 2.2.2.

The main objective of this work is to present benchmark studies aimed at shedding some
light on the assessment of the accuracy of the aforementioned approximation schemes. Start-
ing from the governing equilibrium equations of the tensile rod, their discrete form is derived
for the integro-differential formulation and the strain gradient model described in Section 2.3
and 2.4, respectively. We discuss the main features which distinguish these approaches and
characterize implementation and continuity requirements on the discretization. We then con-
sider some practical applications. In particular, the case study of a tensile rod with constant
stress is used to compare the numerical results obtained with the two constitutive models em-
ploying the approximation schemes previously described. The performance of the approxi-
mation schemes is further assessed by means of two other examples: a homogeneous tensile
rod under the action of a body force with high gradient employing the integro-differential for-
mulation, and a strain gradient bimaterial rod with constant stress. The MATLAB R© scripts
used in the benchmark studies are freely available for download at the corresponding author’s
web site.

To the best of our knowledge, the work in this chapter represents the first attempt to
compare the accuracy of classical and novel approximation techniques in the solution of
nonlocal problems. In particular, we discuss the numerical results obtained from the integro-
differential and the strain-gradient approaches in great detail. Furthermore, for the first time
within the framework of the finite element method, high order approximations are used in
the discrete equations derived from the integro-differential approach. It is not possible to
say a-priori which method would be the most suitable to solve these equations. Hence,
this work may provide significant insight into the applicability of high order methods in
size-dependent problems which are for instance very useful for developers of nonlocal FE
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models for nanowires and nanotubes [1, 6, 9, 29, 35].

2.2 Approximation schemes
In the finite element method analysis of one-dimensional elasticity problems, the displace-
ment field u(x) and the corresponding strain field ε(x) are approximated at the element level
through

ue(x)' Ne(x)ue and ε
e(x)' dNe

dx
ue = Be(x)ue, (2.1)

where Ne is a vector containing element basis functions and ue is the vector of the unknown
displacement degrees of freedom (dofs).

The weak statement of the governing differential equation of a generic boundary value
problem poses continuity requirements on the solution fields. These continuity requirements
can be met by means of appropriate approximation schemes. The most popular approxi-
mation schemes in computational solid mechanics of one-dimensional objects are Lagrange
and cubic Hermite basis functions. Lagrange basis functions are interpolating polynomials
and are C0 functions whereas cubic Hermite basis functions are cubic polynomials which
are C1-continuous at interelement boundaries —in general, Hermite basis functions of or-
der p are C(p−1)/2-continuous at interelement boundaries. Hermite basis functions belongs
to the family of spline basis functions [26]. In the next sections, high-order B-spline basis
functions and C∞ GFEM are investigated and compared to traditional Lagrange and Hermite
finite elements in nonlocal problems.

2.2.1 B-spline basis functions
B-splines are piecewise polynomial functions which can be used to construct high-order
and highly continuous basis functions on compact supports. Each support is spanned by a
sequence of coordinates, known as knots, which is related to the basis functions number n and
order p. The knot set Ξ = {ξ1, ξ2, ..., ξn+p+1}, termed knot vector, subdivides the domain
into n+ p knot spans which are equivalent to the element domains of a standard finite element
mesh. Once the basis functions of order p and the knot vector Ξ are known, B-spline basis
functions Ni,p are defined by means of the Cox-de Boor recursion formula [12, 15]. Starting
from the constant basis function

Ni,0(ξ ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise,
(2.2)

B-splines basis functions of any order p are computed through

Ni,p(ξ ) =
ξ −ξi

ξp+i−ξi
Ni,p−1(ξ )+

ξi+p+1−ξ

ξi+p+1−ξi+1
Ni+1,p−1(ξ ). (2.3)

These basis functions form a partition of unity and they are non-negative over the whole
domain.

Figure 2.1 compares Lagrange, Hermite and B-spline basis functions on a one-dimensional
domain discretized into three equally-spaced subdomains (finite elements and knot spans).
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Figure 2.1: Approximation schemes: (a)-(b) linear and cubic Lagrange basis functions, (c)-
(d) cubic and quintic Hermite basis functions, and (e)-(f) quadratic and cubic B-spline basis
functions. The global domain is discretized into three equally-spaced subdomains.

Unlike Lagrange and Hermite basis functions, whose continuity decreases at the elements
boundaries, B-spline basis functions are usually Cp+1-continuous over their support which
is defined by p+ 1 knot spans. However, if a knot has multiplicity m, the continuity of the
basis functions will decrease to Cp−m at that knot. B-spline basis functions are interpolant at
the boundaries and at those knots where the continuity is C0 whereas they are approximant
elsewhere.

The quality of the approximation can be improved by employing h-refinement and p-
refinement which are similar to the corresponding techniques used in the traditional finite
element method. A combination of these two techniques, the so-called k-refinement, is a dis-
tinguishing feature of B-spline basis functions. With this refinement scheme, the polynomial
order is increased and new knots are inserted into the original knot vector. More details on
theoretical and computational aspects of B-splines can be found in References [16, 26, 30].
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2.2.2 C∞ generalized finite elements
The C∞ generalized finite element method (C∞ GFEM) was proposed by Edwards [19, 20]
in order to build finite elements with arbitrarily smooth basis functions. In the C∞ GFEM,
highly continuous basis functions, similar to those used in meshfree methods, have support
on a standard finite element mesh. All finite elements sharing node xα define a polygonal
region called cloud which is indicated by ωα . In a one-dimensional setting, cloud ωα reduces
to the domain between nodes xα−1 and xα+1. The construction of C∞ basis functions requires
several accessory functions and starts with the definition of the cloud boundary functions

Eα, j(x) =

{
e−ξ

−γ

j (x) if ξ j (x)> 0
0 otherwise,

(2.4)

which are defined on the support cloud ωα as a function of the parametric coordinate

ξ j (x) =
(

1−2γ

loge β

) 1
γ (x− x j)

hα j
(2.5)

where j is equal to α±1 and hα j is the distance between nodes xα and x j (here we assume
γ = 0.6 and β = 0.3 as in [18]). These cloud boundary functions are used to define the
weighting functions

Wα(x) = ecα

Mα

∏
j=1

Eα, j(x) =





e


cα−

Mα

∑
j=1

ξ
−γ

j




if ξ j > 0
0 otherwise,

(2.6)

where the parameter Mα indicates the number of cloud boundary functions supported on
cloud ωα and the factor

cα = Mα

(
1−2γ

loge β

)−1

(2.7)

stems from the condition Wα(xα) = 1. C∞ partition of unity functions ϕα(x) at node xα are
constructed through the Shepard’s formula using the weighting functions Wα(x) according
to

ϕα(x) =
Wα(x)

∑κ(x)Wκ(x)
with κ(x) ∈ {γ |Wγ(x) 6= 0}. (2.8)

As shown in [18], C∞ basis functions satisfy the Kronecker delta property

ϕα(xβ ) = δαβ . (2.9)

Finally, C∞ GFEM basis functions φαi(x) of order i at node xα are defined as the product of
C∞ partition of unity functions ϕα(x) and polynomial enrichments Lαi(x) as

φαi(x) = ϕα(x)Lαi(x) (2.10)

with

Lαi(x) =
(x− xα)

i

hα

(2.11)
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where hα is the cloud radius [14]. For one-dimensional uniform meshes, like those used
in this work, hα is the finite elements size. The basis functions φαi, shown in Figure 2.2
together with the weighting functions Wα(x) and the partition of unity functions ϕα(x), are
employed to approximate the displacement field according to

u(x) w
n

∑
α=1

pα

∑
i=0

uαiφαi(x) =
n

∑
α=1

pα

∑
i=0

uαiLαi(x)ϕα(x) (2.12)

in which pα is the order of the polynomial enrichment function and, at the same time, in-
dicates the number of degrees of freedom at node xα . Imposition of Dirichlet boundary
conditions is trivial as proved in [18]. Indeed, from (2.12),

u(x̄α) =
n

∑
α=1

pα

∑
i=0

uαiLαi(x̄α)ϕα(x̄α) (2.13)

at a boundary node x̄α and, considering (2.9) and (2.11) and assuming a prescribed value ū
at x̄α , it follows that

u(x̄α) =
pα

∑
i=0

uαiLαi(x̄α) = uα0 ·1 = ū. (2.14)

The above relation implies that a Dirichlet boundary condition can be enforced as in tra-
ditional finite element methods on the degree of freedom corresponding to the polynomial
enrichment of order zero.

2.3 Integro-differential elasticity
In an isotropic and homogeneous rod with constant Young’s modulus E and cross sectional
area A, integro-differential elasticity theory defines the stress σ at point x through a weighted
integral of the strain ε [22]. In this study, we adopt the constitutive law

σ(x) = Eξ1ε(x)+Eξ2

∫

Ω
α(x, x̃)ε(x̃)dx̃ (2.15)

proposed by Eringen [23]. The nonlocal kernel

α(x, x̃) = g0 e−
|x−x̃|
` (2.16)

is a weighting function in which the normalization factor g0 is equal to 1/(2`) and ` is
the material characteristic length. Furthermore, constitutive parameters ξ1 and ξ2 obey the
relations ξ1 ≥ 1 and ξ1 +ξ2 = 1 [10].

The governing equation is derived by setting the first variation of the total potential en-
ergy

Π(u) =Wi(u)−We(u) (2.17)

equal to zero, where Wi and We express the virtual work of internal and external forces,
respectively. According to [32], the total potential energy corresponding to the integro-
differential constitutive equation (2.15) is expressed as

Π(u) =
1
2

∫ L

0

[
ξ1EAε

2(x)+
ξ2

2`

∫ L

0
e−
|x−x̃|
` EAε(x̃)dx̃ ε(x)

]
dx−

∫ L

0
q(x)u(x)dx, (2.18)
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Figure 2.2: One-dimensional C∞ GFEM: (a) weighting functions, (b) partition of unity shape
functions, and shape functions enriched with (c) linear and (d) quadratic polynomials.

where q(x) is the distributed axial load. Setting ε(x) = u′(x), the first variation of the total
potential energy

δΠ(u) =
∫ L

0

[
ξ1EAu′(x)δu′(x)+

ξ2

2`

∫ L

0
e−
|x−x̃|
` EAu′(x̃)dx̃ δu′(x)

]
dx

−
∫ L

0
q(x)δu(x)dx = 0,

(2.19)

which holds for any kinematically admissible u(x) ∈S and δu(x) ∈ V . The two functional
spaces S and V are defined according to [37]

S = {u(x) | u(x) ∈ H1, u = ū on Γu} (2.20)

and
V = {δu(x) | δu(x) ∈ H1, δu = 0 on Γu} (2.21)

where the overbar refers to a prescribed value, and the boundary Γ is divided into a displace-
ment (Γu) and a traction (Γt ) part such that Γt ∪Γu = Γ and Γt ∩Γu = 0. Application of the
divergence theorem on (2.19) results into

δΠ(u) =−
∫ L

0

[
EA
(

ξ1u′′(x)+
ξ2

2`

∫ L

0
e−
|x−x̃|
` u′′(x̃)dx̃

)
+ q(x)

]
δu(x)dx

+

[
EA
(

ξ1u′(x)+
ξ2

2`

∫ L

0
e−
|x−x̃|
` u′(x̃)dx̃

)
δu(x)

]∣∣∣∣
Γ
= 0

(2.22)
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which, thanks to the fundamental lemma of the calculus of variations and the arbitrariness
of δu, yields the Euler equation

EA
(

ξ1u′′(x)+
ξ2

2`

∫ L

0
e−
|x−x̃|
` u′′(x̃)dx̃

)
+ q(x) = 0 ∀x ∈ [0,L]. (2.23)

Furthermore, since setting δu = 0 at the boundary is equivalent to specify u at the boundary
itself, (2.22) results into the boundary conditions

EA
(

ξ1u′(x)+
ξ2

2`

∫ L

0
e−
|x−x̃|
` u′(x̃)dx̃

)
= N̄ on Γt and (2.24a)

u(x) = ū on Γu, (2.24b)

where N̄ is a prescribed axial force. The discretized form of the governing equation, Ku = f,
with the stiffness matrix

K =
nel

A
e=1

∫ xe
2

xe
1

(
ξ1 BeT(x)EABe(x)+

ξ2

2`

∫ L

0
e
|x−x̃|
` BeT(x)EABē(x̃)dx̃

)
dx (2.25)

and the external force vector

f =
nel

A
e=1

[
fe
Ω + fe

Γ

]
=

nel

A
e=1

[∫ xe
2

xe
1

NeT(x)q(x)dx +
(

NeT(x)N(x)
)∣∣∣

Γ

]
, (2.26)

is derived following standard procedures. It bears emphasis that the computation of ele-
mental stiffness matrices is more complex than in traditional finite elements methods as it
requires the evaluation of contributions from the whole domain and the integration of prod-
ucts of high-order shape function derivatives with the exponential kernel —in the numerical
studies performed in the following sections, particular care has been taken in performing
an accurate integration of the stiffness matrix. The computational cost is also related to the
number of degrees of freedom involved and the type of approximation as shown in Table 2.1.

Lagrange Hermite B-splines C∞

finite elements finite elements finite elements GFEM
continuity C0 C(p−1)/2 Cp−1 C∞

dofs ne p + 1 (ne +1)(p+1)/2 ne + p (ne +1)(pα +1)

Table 2.1: Continuity and number of degrees of freedom in a one-dimensional analysis as a
function of the number of elements ne and the basis functions order p or enrichment order
pα (for C∞ GFEM we assume that all nodes are evenly enriched).

2.3.1 Homogeneous tensile rod under constant axial stress
The accuracy of the approximation schemes summarized in Section 2.2 is assessed by means
of the analysis of the elastic rod in Figure 2.3. With reference to (2.15), the equilibrium
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L = 1 mF = 103 N
A = 10-4 m2 E = 210 ·109 PaL

F

Figure 2.3: Homogeneous tensile rod under constant axial stress.

equation of the nonlocal rod is expressed as

ε(x)+
ξ2

2`ξ1

∫ L

0
e−

1
` |x−x̃|

ε(x̃)dx̃ =
ε̄

ξ1
, (2.27)

where ε̄ = F/AE = σ̄/E. Its analytical solution, derived in [10], is given by

ε(x) =C1 cosh(κx)+C2 sinh(κx)+
ε̄

ξ1
− ξ2ε̄

ξ1
(1− cosh(κx)) (2.28)

with

k =
1

`
√

ξ1
, C1 = C2k` and

C2 =
ξ2ε̄

ξ
3/2
1

1
k`
(
1− cosh(kL)

)
− sinh(kL)

[k2`2 sinh(kL) + 2k`cosh(kL) + sinh(kL)]
.

(2.29)

The analytical solution is shown in Figure 2.4 for different values of ` and ξ1. Despite the
constant axial stress σ̄ which obeys equilibrium in the horizontal direction, the strain field
exhibits boundary layers as a consequence of the assumed integro-differential model. In
particular, the boundary layers grow with ξ1 and become shaper as the material characteristic
length ` decreases. Thus, we observe that the nonlocal parameters ξ1 and ` affect the strain
field and, consequently, the stiffness of the rod. On the other hand, the stress field is identical
to that calculated with the local model because of equilibrium. Here and in the following,
numerical results are computed for ξ1 and `/L equal to 2 and 0.01, respectively, unless
mentioned otherwise.

The Lagrange approximations shown in Figure 2.5, being C0 continuous in the displace-
ment field, show discontinuities which disappear with mesh refinement and polynomial order
increase. Moreover, cubic and quartic basis functions i) lead to spurious and periodic oscil-
lations whose length corresponds to the finite element size, and ii) improve the accuracy
of the strain field approximations at the elements boundaries. As indicated in Figure 2.6,
Hermite finite elements yield oscillations similar to those just described for Lagrange finite
elements. Nonetheless, their higher continuity enhances smoothness and accuracy of the
numerical solution. On the other hand, high-order B-spline basis functions improve con-
siderably the results illustrated in Figure 2.7 thanks to their smoothness and wide support.
Indeed, it is noted that the oscillations are localized at the boundary area and vanish with
mesh refinement. As shown in Figure 2.8, despite the basis functions having a high de-
gree of continuity over the entire domain, periodic oscillations deeply affect the numerical
solutions obtained with the C∞ GFEM. Akin to Lagrange and Hermite finite elements, the
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(a) ℓ/L = 0.03 (b) ξ1 = 2

Figure 2.4: Homogeneous tensile rod under constant axial stress: exact solution for different
values of constitutive parameter ξ1 and material characteristic length ` (only half of the
solution is plotted due to symmetry). The strain field ε(x) is normalized by the maximum
value ε̄ of the local strain field.

amplitude of the oscillations slightly decreases with the order of the basis functions and their
period depends on the support of the basis functions as depicted in Figure 2.9. Finally, we
observe that the accuracy of the numerical results rapidly improves at the elements nodes.
The analysis of the source of the aforementioned oscillations is worth a deeper investigation
and is out of the scope of this chapter. A detailed discussion of this problem can be found in
References [13, 21, 25].

Figure 2.10 shows the relative error in energy norm. We observe that the error de-
creases with the order of the basis function (the polynomial enrichment in the case of the
C∞ GFEM). In particular, the relative error decreases with increasing the basis function or-
der for Lagrange, Hermite and B-spline approximations. Furthermore, C∞ GFEM curves
are comparable with those obtained by means of Lagrange approximations: by assuming the
same order of the polynomial enrichment and the Lagrange basis function, the relative error
is similar. Moreover, it is worth noting that the rate of convergence is only slightly influenced
by the polynomial order of the basis functions. This problem is studied in further detail in
Section 2.4.1 with the strain gradient approach.

2.3.2 Homogeneous tensile rod under body force with high gradient

In this example, we consider the tensile rod problem shown in Figure 2.11 under the action
of the body force

q(x) =
[

2
α2 −

(
L−2x

α2

)2]
exp
[
−
(

x−L/2
α

)2]
(2.30)
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(b) Lagrange basis functions (50 dofs)
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(a) Lagrange basis functions (25 dofs)

Figure 2.5: Integro-differential formulation: results from Lagrange approximations. The
strain field ε(x) is normalized by the maximum value ε̄ of the local strain field.
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(c) Hermite basis functions (100 dofs)

(b) Hermite basis functions (50 dofs)(a) Hermite basis functions (25 dofs)

Figure 2.6: Integro-differential formulation: results from Hermite approximations. The
strain field ε(x) is normalized by the maximum value ε̄ of the local strain field.
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(c) B-spline basis functions (100 dofs)
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Figure 2.7: Integro-differential formulation: results from B-spline approximations. The
strain field ε(x) is normalized by the maximum value ε̄ of the local strain field.
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Figure 2.8: Integro-differential formulation: results from C∞ GFEM approximations. The
strain field ε(x) is normalized by the maximum value ε̄ of the local strain field.
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Figure 2.9: Integro-differential formulation: approximations computed with 25 dofs (mark-
ers denote the finite element boundaries). The strain field ε(x) is normalized by the maxi-
mum value ε̄ of the local strain field.
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Figure 2.10: Integro-differential formulation: strain energy relative error.

which has a local area of high gradient [17]. The parameter α governs the strength of the
gradient. The solution of this problem in terms of the strain field is expressed as

ε (x) =
1
E

[
1 + 6

`2

α2 − `2
(

L−2x
α2

)2] L−2x
α2 exp

[
−
(

x−L/2
α

)2]
(2.31)

and has been derived from (2.15) by making use of the boundary conditions [10, 34]

ε
′ (0) − ε (0)

`
=

q′ (0)` − q(0)
ξ1`EA

and ε
′ (L) +

ε (L)
`

=
q′ (L)` + q(L)

ξ1`EA
. (2.32)

As shown in Figure 2.12, low values of α (assumed equal to `) yield sharper profiles of the
strain field about the center of the domain. In the following analysis, we assume α/L and
`/L both equal to 0.01 to assess the properties of the approximation schemes described in
Section 2.2 on a problem with a local area of high gradient.

As illustrated in Figures 2.13(a) and 2.13(b), Lagrange finite elements, being C0 continu-
ous, yield strong discontinuities and oscillations about the center of the domain. Despite the
higher continuity, Hermite approximations computed with 100 dofs (Fig. 2.13(c)) present
oscillations in a wide region. Nevertheless, Figure 2.13(d) shows a drastic improvement
when finer discretizations are employed. The results obtained with B-spline, depicted in
Figure 2.14(a) and 2.14(c), are similar to those related to Hermite approximations (a com-
parison is shown in Figure 2.15). Finally, Figures 2.14(b) and 2.14(d) show wide oscillations
in C∞ GFEM approximations irrespective of the element size.

As a general remark, this numerical study shows that basis functions with high continuity
tend to generate spurious oscillations on a large portion of the problem domain when em-
ployed on a coarse discretization. Such observation is in agreement with the results reported
by Dolbow et al. [17] who used meshless approximations for the corresponding local version
of the same problem.
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Figure 2.11: Homogeneous tensile rod under the action of a body force.
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Figure 2.12: Homogeneous tensile rod under body force with high gradient: normalized
(a) load distribution and (b) strain field solution (q̄ and ε̄ are the maximum value of q(x) and
ε(x) for α/L = 0.01 and ` = 0, respectively). Since the load distribution is symmetric and
the strain field is antisymmetric, only half domain is shown.
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(b) Lagrange basis functions (200 dofs)
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(a) Lagrange basis functions (100 dofs)

(c) Hermite basis functions (100 dofs)

Figure 2.13: Elastic tensile rod under body force with high gradient: results with Lagrange
and Hermite basis functions. The strain field ε(x) is normalized by the maximum value ε̄ of
the local strain field.
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Figure 2.14: Elastic tensile rod under body force with high gradient: results with B-spline
basis functions and C∞ GFEM. The strain field ε(x) is normalized by the maximum value ε̄

of the local strain field.
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Figure 2.15: Elastic tensile rod under body force with high gradient: (a) cubic and (b) septic
Hermite and B-spline approximation with 100 dofs. The strain field ε(x) is normalized by
the maximum value ε̄ of the local strain field.

2.4 Strain gradient formulation

In this section, we consider the procedure outlined by Vardoulakis and Sulem [38] to derive
the strain gradient governing equations of an elastic tensile rod. In a one-dimensional setting,
the total potential energy

Π(u) =
1
2

∫ L

0
σ(x)ε(x) dx+

(
µ(x)ε(x)

)∣∣∣
Γ
−
∫ L

0
q(x)u(x) dx, (2.33)

where the axial stress σ(x) and the higher-order stress µ(x) are defined by the constitutive
equations

σ(x) = E
(
ε(x)−g2 ∇2

ε(x)
)

and µ(x) = g2 E ∇ε(x), (2.34)

with g the length scale parameter related to the volumetric elastic strain energy. The first
variation of the total potential energy is then expressed as

δΠ(u) =
∫ L

0

[
EA
(
u′(x)−g2u′′′(x)

)
δu′(x)

]
dx +

(
EAg2u′′(x)δu′(x)

)∣∣∣
Γ

−
∫ L

0
q(x)δu(x) dx

= −
∫ L

0

[
EA
(

u′′(x)−g2u′′′′(x)
)
+ q(x)

]
δu(x)dx

+
[
g2EAu′′(x)δu′(x) − EA

(
u′(x)−g2u′′′(x)

)
δu(x)

]∣∣∣
Γ

(2.35)

and holds for any δu and δu′. Consequently, by means of the fundamental lemma of vari-
ational calculus and assuming δu and δu′ arbitrary and vanishing at the boundaries, the
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following governing equations are obtained:

EA
(
u′′(x)−g2u′′′′(x)

)
+q(x) = 0 ∀x ∈ [0,L], (2.36a)

EA
(
u′(x)−g2u′′′(x)

)
= N̄ on Γt , (2.36b)

u(x) = ū on Γu, (2.36c)

g2EAu′′(x) = N̄∗ on Γt∗ , and (2.36d)

u′(x) = ū′ on Γu′ , (2.36e)

where Γu′ and Γt∗ denote the boundary portions where axial strains and nonclassical (or
double) tractions are prescribed. In particular, Γu ∪ Γt = Γ, Γu ∩ Γt = 0, Γu′ ∪ Γt∗ = Γ and
Γu′ ∩ Γt∗ = 0 must hold. From (2.36b)-(2.36e), it is worth noting that, beside the prescribed
axial forces and displacements, either the nonclassical (or double) axial force N∗ or the axial
strain u′(x) need to be specified at the boundary. It follows that the enforcement of boundary
conditions in strain gradient model is complicated by the presence of higher-order stresses
whose value is not known a priori [8, 10, 33].

The equilibrium configuration of the one-dimensional rod can be found starting from (2.35)
and imposing δΠ(u) = 0 which implies

∫ L

0
EA
[
u′(x)δu′(x)+g2u′′(x)δu′′(x)

]
dx =

∫ L

0
q(x)δu(x) dx

+
[
EA
(
u′(x)−g2u′′′(x)

)
δu(x) − EAg2u′′(x)δu′(x)

]∣∣∣
Γ
. (2.37)

Hence, with reference to (2.37), the axial displacement u(x) and its first variation δu(x) are
kinematically admissible if [37]

u(x) ∈S with S = {u(x) | u(x) ∈ H2, u = ū on Γu, u′ = ū′ on Γu′} (2.38a)

and

δu(x) ∈ V with V = {δu(x) | δu(x) ∈ H2, δu = 0 on Γu, δu′ = 0 on Γu′}. (2.38b)

The discrete form of the governing equations can be easily obtained and yields the stiffness
matrix

K =
nel

A
e=1

∫ xe
2

xe
1

(
BeT(x)EABe(x) + g2 dBe

dx

T

(x)EA
dBe

dx
(x)
)

dx (2.39a)

and the force vector

f =
nel

A
e=1

[
fe
Ω + fe

Γ

]

=
nel

A
e=1

[∫ xe
2

xe
1

NeT(x)q(x)dx +
(

NeT(x)N(x) − BeT(x)N∗(x)
)∣∣∣

Γ

]
. (2.39b)

The numerical approximation of u(x) should be C1-continuous within the domain in order to
belong to the class of kinematically admissible displacements. Accordingly, standard C0 ba-
sis functions such as Lagrangian basis functions, cannot be employed. Cubic Hermite basis
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functions, quadratic B-spline basis functions and C∞ GFEM with quadratic enrichments are
the first approximations to satisfy such continuity requirement. Alternatively, mixed finite el-
ement formulations, which require only C0-continuity, could be employed [3, 36]. However,
these methods introduce the issue of the Ladyzenskaja-Babuška-Brezzi stability condition
which is not present in the formulation adopted here.

2.4.1 Homogeneous tensile rod under constant axial stress

In this example we reconsider the problem examined in Section 2.3.1. Seeking for the same
analytical solution, we set

g = `
√

ξ1 (2.40)

and use the following set of classical and nonclassical boundary conditions [10]:

u(0) = 0 , (2.41a)

N(L) = EA(u′(L)−g2u′′′(L)) = F , (2.41b)

u′′(0)− 1
`

u′(0) = −1
`

ε̄

ξ1
, and (2.41c)

u′′(L)+
1
`

u′(L) =
1
`

ε̄

ξ1
. (2.41d)

The problem is studied by means of Hermite and B-spline finite elements and C∞ GFEM.
As reported in Figure 2.16, oscillations appear close to the boundary and disappear with h-
and p-refinement of Hermite and B-spline approximations or with high-order enrichments
in the case of C∞ GFEM. In addition, as observed in Section 2.3.1, we notice that B-spline
basis functions yield oscillations with the lowest amplitude whereas C∞ GFEM lead to the
highest.

Figure 2.17 shows the relative error in energy norm with respect to the total number
of degrees of freedom. It is evident how high-order Hermite and B-spline approximations
considerably improve the accuracy of the numerical solution as compared to C∞ GFEM.
Furthermore, from the results obtained from Hermite and B-spline basis functions of the
same order, we observe that continuity has a positive influence on the absolute error as
discussed in Section 2.3.1.

2.4.2 Inhomogeneous tensile rod under constant axial stress

The strain gradient formulation has been widely used to model discontinuities such as those
related to material heterogeneity [7, 8, 33]. In this last example, we consider the bimaterial
rod depicted in Figure 2.18. We assume constant cross section A and length scale g along the
rod, whereas the Young’s modulus is chosen equal to E1 for x < L/2 and E2 for x≥ L/2. The
analytical solution of the problem [8] is obtained with reference to the following boundary
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(b) Hermite basis functions (50 dofs)
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Figure 2.16: Strain gradient formulation: results with Hermite basis functions, B-spline basis
functions and C∞ GFEM. The strain field ε(x) is normalized by the maximum value ε̄ of the
local strain field.
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Figure 2.17: Strain gradient formulation: strain energy relative error.

L

E1 E2 ū
L = 1 m
ū = 0.1 m

A = 10-4 m2
E2 = 1 ·106 Pa
E1 = 5 ·106 Pa

Figure 2.18: Strain gradient inhomogeneous tensile rod.
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conditions:

u(0) = 0 , (2.42a)
u′′(0) = 0 , (2.42b)

σ(L/2)− = σ(L/2)+ , (2.42c)

E1 u′′(L/2)− = E2 u′′(L/2)+, (2.42d)
u(L) = ū and (2.42e)
u′′(L) = 0 . (2.42f)

Due to (2.42c) and (2.42d), the displacement field is C1-continuous at the material interface.
The numerical approximation of the solution should therefore satisfies such continuity re-
quirement at x = L/2. Accordingly, we can use cubic Hermite basis functions since they are
C1-continuous at the element boundaries. In addition, as discussed in Section 2.2.1, B-spline
approximations can be C1-continuous at a given point by making use of p−1 multiple knots
at that position (p is the order of the basis functions). On the other hand, C∞ GFEM cannot
be used since they are C∞-continuous along the whole domain.

As depicted in Figures 2.19 and 2.20, the numerical approximations of u′(x) and u′′(x)
do not present oscillations even with coarse discretizations. However, high-order B-spline
basis functions yield much better results as compared to those obtained from Hermite fi-
nite elements. Indeed, this is consistent with the results illustrated in Figure 2.21 where the
numerical accuracy is assessed in terms the strain energy norm. Here, the basis function con-
tinuity significantly decreases the relative error and considerably increases the convergence
rate of the numerical results.

2.5 Discussion
The accuracy of high order approximation schemes in solving nonlocal elastic problems
has been examined in Section 2.3 and 2.4. Beside classical Lagrange and Hermite finite
elements, we have considered B-spline finite elements and C∞ GFEM. As described in Sec-
tion 2.2.1, B-spline basis functions are defined on a set of highly continuous polynomial basis
functions on wide supports. On the other hand, C∞ GFEM are built using C∞ Shepard PoU
functions with the same support as standard finite elements. However, the computational
cost of these GFEM basis functions is higher due to the difficulty in numerically integrating
functions based on Shepard PoU.

The numerical results obtained in this study show that the accuracy of the finite element
solution does not only depend on the approximation scheme used and on its continuity. In
fact, the constitutive assumptions play an important role. For the homogeneous tensile rod
with constant stress, the integro-differential model and the strain gradient model yield the
same analytical solution. However, both the algebraic structure of the constitutive mod-
els and the numerical issues associated with the corresponding approximation scheme are
different. In particular, for the integro-differential formulation, oscillations in the solution
obtained with Lagrange, Hermite and C∞ GFEM approximations have been observed along
the whole domain, whereas for the strain gradient case they were limited to the boundary
area. Furthermore, as indicated in Table 2.2, the convergence rate of Hermite and B-spline
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Figure 2.19: Strain gradient inhomogeneous tensile rod: strain field of the inhomogeneous
tensile rod obtained with cubic Hermite and B-spline finite elements. The strain field ε(x) is
normalized by the maximum value ε̄ of the local strain field.
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Figure 2.20: Strain gradient inhomogeneous tensile rod: second derivative of the displace-
ment field of the inhomogeneous tensile rod obtained with cubic Hermite and B-spline finite
elements. The solution field u′′(x) is normalized by its maximum value (u′′(x) is equal to
zero throughout the domain in the local case).
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Figure 2.21: Strain gradient inhomogeneous tensile rod: strain energy relative error.

approximations computed with the integro-differential formulation barely increases with the
order of the basis functions which is clearly in contrast with those obtained from the strain
gradient model. Therefore, the knowledge of the analytical solution alone is not sufficient
to decide a priori the best approximation scheme. Especially noteworthy is the similarity of
the C∞ GFEM convergence rates to those computed for the Lagrange finite elements —note
however that beside the polynomial enrichments considered in this chapter, better GFEM
convergence rates might be obtained from enrichments tailored to the problem being solved.

We have observed that the error in energy norm decreases with the continuity of the basis
functions. However, highly continuous approximations suffer from some drawbacks. Firstly,
as showed in Section 2.3.2, high order basis functions led to high oscillations when the exact
solution of the problem presents non-monotonic sharp gradients far from the boundaries.
For this class of problems, very fine discretizations are required in order to reduce these
oscillations. Secondly, C∞ GFEM and, in general, Hermite finite elements are not suitable
when the continuity of the exact solution decreases at a prescribed point. On the other hand,
arbitrarily continuous B-spline basis functions easily overcome this problem by means of
multiple knots insertion. Furthermore, for the example examined in Section 2.4.2, B-spline
convergence rates increase with the order of the basis functions as illustrated in Table 2.2.

2.6 Conclusions
A set of one-dimensional integro-differential and strain gradient boundary-value problems
was studied by means of the finite element method equipped with classical and high-order
basis functions. Accuracy and convergence properties of the approximation schemes were
assessed against analytical solutions.

The main conclusions of this study can be summarized as follows:

(i) in general, high-order basis functions lead to spurious oscillations in integro-differential
formulations although the relative error in energy norm decreases; and



2.6. CONCLUSIONS 37

order cont. IDH SGH SGN

L
ag

ra
ng

e 1 C0 1.85 - -

2 C0 3.84 - -

3 C0 5.66 - -

4 C0 4.95 - -

H
er

m
ite

3 C1 4.06 3.88 3.62

5 C2 4.06 7.84 -

7 C3 4.07 11.14 -

B
-s

pl
in

e 2 C1 4.10 2.00 2.01

3 C2 4.14 4.08 3.96

4 C3 4.20 5.90 4.68

C
∞

G
FE

M 1 C∞ 1.32 - -

2 C∞ 3.62 1.54 -

3 C∞ 4.20 3.16 -

Table 2.2: Convergence rates in energy norm for the integro-differential homogeneous rod
(IDH), the strain gradient homogeneous rod (SGH) and the strain gradient nonhomogeneous
rod (SGN) with constant stress studied in Sections 2.3.1, 2.4.1 and 2.4.2, respectively. The
convergence rate is calculated as −∆(log ||e||E)/∆(logN) using the last two data points of
each curve and by taking ||e||E as the relative error in energy norm and N as the total number
of degrees of freedom.
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(ii) among the basis functions considered here, B-spline basis functions are the most effi-
cient at modeling problems in the presence of nonlocal and gradient constitutive laws,
provided that a) the knots multiplicity is increased at material interfaces, and b) the
mesh is sufficiently refined in the case of sharp body forces.

Mesh refinement and enrichment functions based on a-posteriori error estimates could be
used to guarantee convergence of the finite element solutions instead of uniform refinement
which may not be practical to reach acceptable error levels.
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Chapter 3

One-dimensional nonlocal elasticity for
tensile single-walled CNTs:

A molecular structural mechanics
characterization∗

The parameters required for modeling tensile single-walled carbon nanotubes (CNTs) with
a nonlocal rod model are estimated. Molecular structural mechanics (MSM) simulations are
carried out for the mechanical analysis of single-walled CNTs with different diameter, length
and chirality. Representative axial strain fields are then used in a parameter estimation pro-
cedure as reference solutions to tailor a nonlocal rod model. Obtained nonlocal parameters
are further validated by comparing the total strain energy of MSM reference solutions and
corresponding nonlocal rod solutions. The effect of size and chirality on the optimal value
of the estimated parameters is discussed in details. Analytical relations between nonlocal
parameters and geometry of the single-walled CNTs are obtained.

3.1 Introduction

Fundamental insight into the behavior of carbon nanotubes (CNTs) is customarily obtained
with atomistic simulations [35]. Although accurate, these simulations are usually computa-
tionally intensive and not particularly suited for the analysis of long CNTs or more complex
systems such as CNT networks or composites. Here, we propose a one-dimensional nonlo-
cal rod model which is kinematically and energetically equivalent to a generic axially loaded
single-walled carbon nanotube (CNT).

The most used atomistic approaches for the analysis of carbon nanotubes (CNTs) include
ab initio calculations [41], molecular dynamics [24], and molecular mechanics [3]. Although
accurate, the application of these procedures is limited to small-scale atomistic systems. In
an effort to decrease the computational effort of atomistic simulations, Li and Chou [22] pro-
posed a simple and efficient approach, referred to as molecular structural mechanics (MSM),
which combines molecular mechanics and classical structural mechanics. In MSM, CNTs
are modeled as space frame structures in which beam and spring elements replace covalent

∗Reproduced from: M. Malagù, E. Benvenuti and A. Simone, One-dimensional nonlocal elasticity for tensile single-
walled carbon nanotubes: A molecular structural mechanics characterization, European Journal of Mechanics-
A/Solids, 54:160–170, 2015.
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bonds between carbon atoms. Based on this concept, Tserpes and Papanikos [46] developed
a three-dimensional finite element model to investigate the mechanical properties of arm-
chair, zigzag and chiral single-walled CNTs. The results obtained by these authors are in
good agreement with those provided by theoretical and experimental studies [25, 52, 53].
The computational effort of MSM is, however, still considerable for long nanotubes.

An alternative approach to atomistic simulations of CNTs relies on equivalent continuum
formulations which are relatively simpler and result in a reduced computational effort. In
modeling single-walled CNTs with a continuum mechanics model, the discrete atomic lattice
of the nanotube is replaced by a continuous and homogeneous solid. In general, either
isotropic and anisotropic shells [6, 53] or one-dimensional theories such as Euler-Bernoulli
and Timoshenko beam models [34, 55] as well as rod models [54] are employed.

The use of classical continuum formulations at the nanoscale, however, might be ques-
tionable [8]. Classical theories do not account for small length scale effects induced by the
discrete structure of single-walled CNTs. Promising approaches are those based on nonlocal
continuum mechanics which allows the consideration of size effects by introducing small-
scale parameters in the constitutive relation. The main advantage of a nonlocal formulation
lies on the possibility of accounting for interatomic long range interactions (in Eringen’s
nonlocal theory [11], the strain at a given point is a weighted average of the strain at sur-
rounding points). Applications of nonlocal continuum mechanics to the study of CNTs are
reported in several papers [1, 44, 56].

Although several studies on the modeling of single-walled CNTs with nonlocal formula-
tions have been carried out, only few attempts have been made to determine the value of the
nonlocal parameters. Duan et al. [10] and Hu et al. [14] calibrated the small-scale parameters
for the free vibration problem in single-walled CNTs by using molecular dynamics simula-
tions. They found that the estimated nonlocal parameters vary with the aspect ratio, mode
shapes and boundary conditions of the single-walled CNTs. A similar approach was used
in [19] to capture size effects in the dynamic torsional response of (6,6) and (10,10) arm-
chair single-walled CNTs with a nonlocal shell model. Naredar et al. [28], by using MSM,
derived an expression of the small scale parameters to study the ultrasonic wave propagations
in single-walled CNTs.

In this contribution, we estimate the nonlocal parameters for tensile armchair, zigzag
and chiral single-walled CNTs by comparing the axial strain field calculated with MSM and
a nonlocal elastic rod model. First, MSM is used to investigate size and chirality effects
on single-walled CNTs Young’s modulus and on the strain field in tensile simulations as
discussed in Section 3.2.3 and 3.2.4, respectively. Then, a two-component local/nonlocal
model [4, 12], a variant of the classical integro-differential Eringen’s formulation, is con-
sidered for the modeling of single-walled CNTs as continuum rods. The corresponding
one-dimensional constitutive equation is summarized in Section 3.3. Instead of the classical
Gaussian kernel, the atomistically-based kernel developed by Picu [32] is adopted. As in
atomic pair potentials [36], this kernel has a positive value at the origin and becomes neg-
ative at some distance. Finally, the identification of the nonlocal parameters is performed
by means of an optimization procedure by minimizing the discrepancy between MSM and
nonlocal axial strain fields as described in Section 3.4. To improve the agreement between
atomistic and nonlocal results, the quadratic penalty method [29] is used. The effect of di-
ameter and chirality on the value of the calculated parameters is further discussed. Hence, an



3.2. MSM SIMULATIONS OF SINGLE-WALLED CNTS 43

analytical relation between the nonlocal parameters and the nanotubes diameter and chirality
is derived.

To our knowledge, the work in this chapter represents a first attempt to estimate nonlocal
parameters for the modeling of single-walled CNTs subjected to static axial load by using
an atomistic (MSM) model. The results presented herein ensure the reliability of nonlocal
formulations to model tensile carbon nanotubes and, in particular, to predict their axial strain
field and strain energy.

3.2 Molecular structural mechanic simulations of single-
walled carbon nanotubes

3.2.1 Atomic model of single-walled carbon nanotubes
Molecular structural mechanics (MSM) is an atomistic modeling technique to study the me-
chanical properties of materials at the atomic scale. Similar to molecular mechanics (MM),
molecules in MSM are modeled as discrete systems of balls (representing atoms) and springs
(representing covalent and non-covalent bonds). Thus, knowing the position of the atoms and
the stiffness of the chemical bonds that hold them together allows to predict the mechanical
response of an atomic structure.

The constitutive equations for the structural elements depend on the mathematical rela-
tions describing the total potential energy Π of a molecule [21] which is expressed as:

Π = ∑
bonds

Πstretch (∆r) + ∑
angles

Πbend (∆ω) + ∑
dihedrals

Πtorsion (∆φ)

+ ∑
pairs

Πnonbond (∆r) .
(3.1)

Here, Πstretch, Πbend , Πtorsion and Πnonbond are the energy contributions corresponding to
bond stretching, angle bending, torsional motion around a single bond and stretching of non-
covalent bonds (van der Waals forces), while ∆r, ∆ω and ∆φ denote variations of covalent
or non-covalent bonds length and angles between three atoms and dihedral angles (see Fig-
ure 3.1 for a representation of these quantities). As observed in Refs. [22, 38], the energy
contribution from van der Walls interactions is negligible for covalent systems undergoing
small deformations. Therefore, we neglect the contribution of Πnonbond in (3.1) since the
small deformation hypothesis is adopted in this work.

Assuming the bond stretching and angle bending terms defined by the modified Morse
potential [3] and the torsional contribution described by a parabolic function [18], the energy
contributions in (3.1) are defined as:

Πstretch (∆r) = De

[(
1− e−β∆r

)2
−1
]
, (3.2)

Πbend (∆ω) =
kω

2
∆ω

2 [1+ ksextic∆ω
4] , and (3.3)

Πtorsion (∆φ) =
kφ

2
∆φ

2. (3.4)
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Figure 3.1: Interatomic interactions in molecular structural mechanics: (a) bonds stretching,
(b) angle bending, (c) torsion and (d) stretching of non-covalent bonds.

According to Refs. [3, 18], the constant parameters De, β , kω , ksextic and kφ are equal to
0.603105 nNnm, 26.25 nm−1, 0.9 nNnm/rad2, 0.754 rad−4, and 0.278 nNnm/rad2, respec-
tively.

To study the mechanical properties of single-walled CNTs with MSM, we consider a
frame finite element model geometry computed according to Ref. [20] with the constitutive
equations of each structural element derived from (3.2)–(3.4). More specifically, the covalent
bonds are defined as two-node space frame elements with the relation between axial force
and axial stretch expressed as

F (∆r) =
dΠstretch (∆r)

d∆r
= 2βDe

(
1− e−β∆r

)
e−β∆r. (3.5)

Since the C–C bonds remain straight during deformation, we assume corresponding flexural
and torsional stiffness values such that bending and torsional deformations are negligible
when compared to the axial strains. Bending and torsional terms are modeled by means of
torsional spring elements. Hence, according to (3.3) and (3.4), the constitutive equations
between moments and angle variations are defined as

Mb (∆ω) =
dΠangle (∆ω)

d∆ω
= kω ∆ω

(
1+3ksextic∆ω

4) and

Mt (∆φ) =
dΠtorsion (∆φ)

d∆φ
= kφ ∆φ .

(3.6)

3.2.2 Model geometry
The geometry of the model in the MSM simulations is built with reference to the atomic
structure of the nanotubes. Single-walled CNTs are periodic cylindrical cage-like structures
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of carbon atoms with high aspect ratio and diameter in the nanoscale range. The cylindrical
shape consists of a mono layer graphene sheet. Geometric and mechanical properties of
single-walled CNTs depends on the rolling angle, that is the orientation of the carbon lattice
with respect to the longitudinal axis of the nanotube.

The geometric properties of a single-walled carbon nanotube are usually expressed in
terms of diameter d, chiral angle θ , and length L. With reference to Figure 3.2(a), and de-
noting the distance of the carbon-carbon bonds with acc (here assumed equal to 0.1421 nm),
diameter and chirality are uniquely defined by the chiral vector

Ch = n1a1 + n2a2 (3.7)

in which n1 and n2 are a couple of integers, and a1 and a2 the basis vectors

a1 =

(√
3

2
,

1
2

)
√

3acc and a2 =

(√
3

2
,−1

2

)
√

3acc. (3.8)

The length of Ch specifies the circumference C of the nanotube. Therefore, the diameter of
a single-walled CNT can be calculated as

d =
C
π

=
acc

√
3
(
n2

2 + n2
1 + n1n2

)

π
. (3.9)

The angle between Ch and the basis vector a1 denotes the chiral angle

θ = arctan

( √
3n2

2n1 + n2

)
. (3.10)

Carbon nanotubes are named after the value assumed by the chiral angle θ . If θ = 0, n2 = 0
in (n1,n2) and the single-walled CNT is called zigzag. On the other hand, the single-walled
CNT is called armchair when θ = π/6 and n1 is equal to n2. For any other value in the range
(0;π/6], the nanotube is referred to as chiral.

Moreover, the chiral vector Ch can be used to identify the periodic unit cells of the
carbon nanotubes. Indeed, as indicated in Figure 3.2(b)–(c), a single-walled CNT is periodic
along both the longitudinal and the circumferential directions. In particular, the width of the
periodic unit cell along the nanotube axis is

T = |T| =
√

3 |Ch|
gcd(2n1 +n2,2n2 +n1)

, (3.11)

where |T| denotes the magnitude of the translational vector T (see Figure 3.2(a)) and gcd(a,b)
the greatest common divisor (gcd) of two integers a and b. Similarly, the width of the peri-
odic cell along the circumference is

S =
|Ch|

gcd(n1,n2)
. (3.12)

As shown in Figure 3.2, the widths T and S vary according to the chirality of the nanotube
while they are not affected by its diameter and length.

For more details on the periodicity and symmetry of single-walled CNT structure we
refer the reader to Ref. [37].
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Ch

(c) (14,0) zigzag(b) (8,8) armchair(a) graphene sheet
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Figure 3.2: (a) Honeycomb structure of graphene and atomic configuration of (b) an (8,8)
armchair and (c) a (14,0) zigzag single-walled CNT. Blue and red areas denote the portions
of single-walled CNT which are repeated periodically along the longitudinal axis and the
circumference, respectively.

3.2.3 Young’s modulus
By assuming the carbon nanotubes as continuum hollow cylinders, a set of single-walled
CNTs with different diameter and chirality has been employed to derive the Young’s modulus
Exx for the one-dimensional formulation in Section 3.3. One end of the nanotube was fully
constrained whereas an axial displacement ūx was applied to the opposite side where radial
displacements are also constrained. The value of ūx was set equal to 10−5 nm in order to
calculate the tangent elastic modulus of the nanotubes and to satisfy the small deformation
hypothesis. We stress that the nonlinear constitutive laws of the structural elements in the
MSM model, which are representative of the covalent bonds, do not account for plasticity
and damage.

Figure 3.4 shows the deformed configurations of a tensile single-walled CNT. The value
of the stiffness was determined through

Exx = FxL/Aūx, (3.13)

where Fx is the reaction force along the longitudinal direction at the fully constrained end,
and A is the cross sectional area of the single-walled CNT. This quantity is defined as the
area of an annulus with thickness t = 0.34 nm [16] and inner diameter d− t/2. The results,
shown in Figure 3.3 and in Tables 3.1 and 3.2, reveal a dependence on diameter and chirality.
Indeed, Exx increases with the diameter and reaches an almost constant value for d larger than
2 nm. The two sets of chiral single-walled CNTs yield the highest values of Exx, whereas
zigzag nanotubes have the lowest axial stiffness.

These results are in good agreement with experimental and numerical tests in the lit-
erature. Demczyk et al. [9] estimated a Young’s modulus equal to 900 GPa from pulling
individual carbon nanotubes with diameter of about 10 nm away from one fixed end in a
transition electron microscope. Values of Exx ranging between 940 and 1118 GPa have been
found with ab initio calculations in Ref. [23]. Based on molecular dynamics simulations,
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Figure 3.3: Young’s modulus of single-walled CNTs as a function of diameter and chirality.

Figure 3.4: Deformed configuration of a (28,28) armchair single-walled CNT with length
12.31 nm under tensile loading (blue atoms have constrained radial displacements).

WenXing et al. [49] showed that the Young’s modulus ranges between 918 and 941 GPa for
single-walled CNTs with different chirality and diameters ranging between 1.6 and 2.8 nm.
Belytschko et al. [3] calculated a value of Exx equal to 940 GPa for a (20,0) nanotube with
the modified Morse potential in molecular mechanics calculations. Meo and Rossi [27], by
employing an MSM approach similar to that presented in this chapter to single-walled CNTs
with diameter ranging between 0.4 and 2 nm, showed that the Young’s modulus varies from
910 to 923 GPa for the armchair configuration and from 899 and 920 GPa for the zigzag
configuration. Furthermore, similar effects of chirality on the elastic modulus have been
observed in Refs. [7, 45, 46, 51].

3.2.4 Strain field in single-walled CNTs under tensile load

To investigate the axial strain in tensile single-walled CNTs, we adopt the technique devel-
oped by Shimizu et al. [43] who calculate the strain field from atomistic simulations. The
idea behind this method is that strains are calculated through a least-squares fit of the de-
formation gradient Ji for each atom i. Accordingly, Ji is computed as the tensor which best
maps di j to d0

i j, where di j and d0
i j are the distances between atom i and its neighbor j in the

current and reference configuration, respectively. Therefore, minimization of

∑
i∈Ni

∣∣Jid0
i j−di j

∣∣2 ,
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(n1,n1) d [nm] Exx [GPa]
(4,4) 0.54 905.4
(8,8) 1.09 919.9
(12,12) 1.63 923.1
(16,16) 2.17 924.4
(20,20) 2.71 925.2
(24,24) 3.26 925.7
(28,28) 3.80 926.1
(32,32) 4.34 926.4
(40,40) 5.43 926.9

(a) (n1,n1) armchair

(n1,0) d [nm] Exx [GPa]
(6,0) 0.47 871.6
(14,0) 1.10 908.7
(20,0) 1.57 913.8
(26,0) 2.04 915.1
(32,0) 2.51 917.1
(38,0) 2.98 917.9
(44,0) 3.45 918.4
(56,0) 4.39 919.0
(64,0) 5.01 919.4

(b) (n1,0) zigzag

Table 3.1: Young’s modulus of (a) armchair and (b) zigzag single-walled CNTs with a length
of 12.31 and 12.36 nm, respectively.

(2n1,n1) d [nm] Exx [GPa]
(4,2) 0.41 892.1
(8,4) 0.83 920.5
(16,8) 1.66 929.5
(20,10) 2.07 930.8
(28,14) 2.90 932.2
(32,16) 3.32 932.7
(38,19) 3.94 933.2
(44,22) 4.56 933.6
(50,25) 5.18 933.7

(a) (2n1,n1) chiral

(3n1,n1) d [nm] Exx [GPa]
(6,2) 0.56 905.1
(12,4) 1.13 925.5
(18,6) 1.69 930.0
(24,8) 2.26 931.9
(30,10) 2.82 932.9
(39,13) 3.67 933.8
(45,15) 4.24 934.3
(54,18) 5.08 934.8
(60,20) 5.65 935.1

(b) (3n1,n1) chiral

Table 3.2: Young’s modulus for (a) (2n1,n1) and (b) (3n1,n1) chiral single-walled CNTs
with a length of 12.41 and 12.30 nm, respectively.

yields the deformation gradient

Ji =

(
∑
i∈Ni

d0T
i j d0

i j

)−1 (
∑
i∈Ni

d0T
i j di j

)
, (3.14)

in which Ni denotes the number of neighbors of atom i. The value of Ni depends on the cutoff
radius rco since it specifies the region of the nanotube to be considered in the calculation.
Here, we assume rco equal to the magnitude of the Burgers vector in carbon nanotubes [15],
namely

√
3acc. Therefore, with I denoting the identity tensor, the Lagrangian strain tensor

at atom i is defined as [43]

Ei =
1
2
(
JiJT

i − I
)
. (3.15)

Next, we will examine the influence of chirality on the axial component εxx of the strain field
derived from (3.15) and the circumferential strain field εr calculated as the ratio between the
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radial displacement ur and the nanotube radius. Here and throughout the chapter, εxx and εr
are normalized with respect to the local axial strain ε̄xx = ūx/L and the circumferential strain
at the middle section εr,x/L=0.5, respectively.

To investigate the effect of the chirality, the strain field is represented on the unrolled nan-
otube. The normalized strain field values at atoms aligned along the longitudinal direction
are interpolated by piecewise curves as depicted in Figure 3.5 where εxx and εr are shown for
three tensile nanotubes with different chirality but similar diameter and length. Furthermore,
all nanotubes show a boundary layer. In armchair and zigzag nanotubes, both axial and cir-
cumferential strain fields are represented by two different curves with similar trend which
repeat periodically along the circumference. Chiral nanotubes, on the other hand, present a
higher number of periodic curves and a more complex profile of the strain field due to the
rotation of the symmetry axis. Chirality-induced anisotropy in chiral single-walled CNTs
has been discussed in many works [5, 31, 50]. However, only few studies aimed at modeling
chiral nanotubes as anisotropic shells [2, 6, 40] instead of using the more common isotropic
models [13, 30, 39, 42, 47, 48, 53]. Unfortunately, none of these works has included a com-
parison of the strain field obtained with atomistic simulations and shell models. Moreover,
it is likely that continuum models cannot reproduce the complex profile of the strain field
reported in Figures 3.5(e) and 3.5(f) which is a consequence of the discrete structure of the
nanotube.

With regard to the diameter, we compare the strain field in nanotubes with equal chi-
rality and length but different diameter. Figure 3.6(a)-(b) shows that height and width of
the boundary layer increase with the diameter d in both armchair and zigzag single-walled
CNTs. A similar dependence of εxx on the diameter, as shown in Figure 3.6(c)-(d), is ob-
served in chiral nanotubes. With regard to the radial strain, Figure 3.7 shows that the width of
the boundary layer increases with the nanotube diameter, whereas its height barely changes.

Finally, the dependence of the strain profile on the nanotube length has been examined.
We observed that the effect of L on both εxx and εr is negligible (refer to the discussion in
Section 3.4).

The MSM results presented in this section have been verified with those obtained from
MM simulations performed with the LAMMPS software [33] (input files and supplemental
material are freely available for download at the authors’ web page).

3.3 Nonlocal integro-differential elastic model for
one-dimensional problems

According to the nonlocal theory of elasticity developed by Eringen [11], the strain at a point
is calculated as a weighted integral of the strain field at surrounding points. By accounting
for small-scale effects, nonlocal theories have been used to model nanostructures such as
carbon nanotubes [1, 56]. Hence, with the aim of modeling tensile single-walled CNTs as
one-dimensional rods with mechanical properties that can be related to those of single-walled
CNTs, the local/nonlocal constitutive law

σxx(x) = Exx

(
ξ1εxx(x)+ξ2

∫ L

0
g(x, x̄, `)εxx(x̄)dx̄

)
(3.16)
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(c) (20,0) zigzag

(a) (12,12) armchair

(e) (18,6) chiral

(b) (12,12) armchair

(f) (18,6) chiral

(d) (20,0) zigzag

Figure 3.5: Normalized axial and hoop strain fields in (a)-(b) (12,12) armchair, (c)-
(d) (20,0) zigzag and (e)-(f) (18,6) chiral single-walled CNTs. The strain field is repre-
sented over the unrolled single-walled CNTs surface. Only half of the axial domain is shown
due to symmetry, whereas the entire curvilinear abscissa s, related to the circumference of
the nanotubes, is considered. The atoms aligned along the x direction are connected with a
piecewise linear interpolation. Lines whose atoms are aligned along the s direction have the
same color. For illustration purposes, only the lines in the first periodic longitudinal strip of
width S have been highlighted (make reference to Figure 3.2 for the definition of S). The in-
sets provide a visual representation of the SWNTCs atomic structure and of the highlighted
lines of atoms: five in the armchair configuration, three in the zigzag configuration and 26 in
the chiral configuration.
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Figure 3.6: Normalized axial strain field for (a) armchair, (b) zigzag, (c) (3n1,n1) chiral and
(c) (2n1,n1) chiral single-walled CNTs.
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Figure 3.7: Normalized hoop strain field for (a) armchair, (b) zigzag, (c) (3n1,n1) chiral and
(c) (2n1,n1) chiral single-walled CNTs.
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proposed in Ref. [12] is adopted in this work. Parameters ξ1 and ξ2 are such that ξ1 +ξ2 =
1 (see [4]), and the nonlocal kernel g(x, x̄, `) is a weighting function which depends on
the distance |x− x̃| and the intrinsic length scale ` of the nanotubes (which is related to its
geometry).

The choice of a nonlocal kernel capable of representing long-range atomic interactions
is crucial for the accurate prediction of deformation phenomena at the nanoscale. In the
literature, Gaussian and exponential weight functions have been widely used [12]. With
these kernels, however, the nonlocal model used in this study was not able to accurately
reproduce the axial strain field obtained with MSM. Fortunately, this was possible with the
atomistically-based nonlocal kernel

g(x, x̄,mb) = α0

(
1−n(|x− x̄|/b)2

)
exp
[
−(|x− x̄|/mb)2

]
(3.17)

proposed by Picu [32], where the intrinsic length scale ` is defined as the product of the
nonlocal parameter m and the magnitude b of the Burgers vector b. A second dimensionless
nonlocal parameter, n, and the normalization factor α0 complete the set of parameters. In
the one-dimensional case, the condition

∫ ∞

−∞
g(x, x̄, `)dx̄ = 1 (3.18)

yields
α0 =

[√
πmb

(
1−0.5nm2)]−1

. (3.19)

3.3.1 Numerical solution
To understand the physical implications of the nonlocal parameters in (3.17), we make use
of a representative one-dimensional problem. We consider an elastic rod with length L, cross
sectional area A and Young’s modulus Exx equal to 20 nm, 1 nm2 and 900 GPa, respectively.
An axial displacement ū = 1 nm is applied at x = L while the opposite end at x = 0 mm is
fixed. This boundary value problem has been solved numerically since the analytical solution
is not available. As shown in Ref. [26], higher order B-spline basis functions are superior
to classical Lagrange and Hermite basis functions and C∞ generalized finite element ap-
proximations in modeling nonlocal integro-differential problems. In general, B-spline basis
functions avoid the presence of periodic oscillations which, on the contrary, characterize the
strain field approximated with the other techniques. Therefore, in this work, quintic B-spline
basis functions have been employed for the computation of εxx. The one-dimensional model
has been discretized using 107 equally-spaced elements (usually referred to as uniform knot
spans in the isogeometric analysis context [17]) which correspond to 100 degrees of free-
dom. The MATLAB R© scripts are freely available for download at the authors’ web page as
supplementary material.

As indicated in Figure 3.8(a), the discrepancy between nonlocal and local solution (which
corresponds to ξ1 = 1) increases with |1−ξ1|. For ξ1 > 1 the value of εxx at the boundaries
is smaller than the local strain ε̄xx, whereas ξ1 < 1 produces the opposite behavior. Fig-
ure 3.8(b) shows that the boundary layer becomes sharper by decreasing m as a consequence
of the smaller intrinsic length scale `. These results are similar to those derived by Benvenuti
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Figure 3.8: Normalized strain field for a one-dimensional nonlocal tensile rod by fixing
(a) m = 0.7 and n = 0 , (b) ξ1 = 1.2 and n = 0 , (c) ξ1 = 1.2 and m = 0.7, and by varying ξ1,
m and n, respectively.

and Simone [4] with of an exponential kernel. Nonetheless, the presence of the second non-
local parameter n leads to an interesting consequence. Indeed, as illustrated in Figure 3.8(c),
n increases the maximum value of the strain toward the boundary layers. Consequently, the
profile of εxx obtained from the one-dimensional nonlocal model recalls the results calculated
with molecular structural mechanics.

Hence, it might be interesting to provide a reliable estimate of the nonlocal parameters
ξ1, m and n in order to approximate the axial strain field of tensile single-walled CNTs with
the nonlocal model (3.16) equipped with the atomistically-based kernel (3.17). To achieve
this goal, we will make use of a parameter estimation procedure. This procedure is feasible
for the axial strain field in armchair and zigzag nanotubes due to the similarity of the strain
profiles in the periodic strip. As shown in Figure 3.6(c)-(d), a similar argument does not
hold for the response of chiral single-walled CNTs. Therefore, in the parameter estimation
procedure described in the next section we will derive ξ1, m and n only for armchair and
zigzag nanotubes.

3.4 Estimation of the nonlocal parameters

Based on the collection of results provided by the atomistic simulations described in Sec-
tion 3.2, we wish to determine the value of the parameters m, n and ξ1 for each single-walled
CNT such that the nonlocal model can accurately represents the axial strain field calculated
with MSM. This operation is performed by means of a parameter estimation procedure.
Given the parameter vector p = [ξ1,m,n], we aim to solve the least-square problem

min
p

f (p) , (3.20)
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where the objective function

f (p) =
1
2

N

∑
i=1

(
εNL

xxi
(p) − εMSM

xxi

ε̄

)2

(3.21)

measures the discrepancy between nonlocal and MSM results at the N points corresponding
to the atoms of the single-walled CNT. To improve the quality of the fit for the boundary
layers in εxx, we consider problem (5.16) subject to the inequality constraints

c(p) =

∣∣εNL (xm, p) − εMSM (xm)
∣∣

εMSM (xm)
≤ τ and

C (p) =

∣∣εNL (xM, p) − εMSM (xM)
∣∣

εMSM (xM)
≤ τ

(3.22)

where xm and xM denote the minimum and maximum values of the atomic strain field, and
the tolerance τ is assumed equal to 10−6.

Constrained parameter estimation problems can be solved with different numerical tech-
niques [29]. For our purposes, we used the quadratic penalty method. This simple technique
combines objective function (3.21) and constraints (3.22) into the unconstrained optimiza-
tion problem

min
p

{
Q(p,µ) = f (p) +

µ

2 ∑
(
c2 (p)+C2 (p)

)}
, (3.23)

in which the penalty parameter µ penalizes constraint violations —that is, the higher the
value of µ the closer to zero the constraints in (3.22). The quadratic penalty method may
lead to ill conditioning and unfeasible solutions. Nonetheless, as suggested in Ref. [29], it is
possible to avoid these issues by choosing a suitable sequence of positive values {µk} with
µk→ ∞ as k→ ∞ and to calculate the approximate minimizer pk of Q(p,µk) for each k.

Hence, for each nanotube a reasonable starting point p0 of the identification process was
carried out with a preliminary visual examination and the initial penalty parameter µ0 was
assumed equal to 1. The set of parameters {µk} has been chosen such that µk = 10µk−1.
At each k-th step an approximate minimizer pk of Q(p,µk) was derived by starting from
p = pk−1 and terminating either when the objective function Q(p,µk) was less than 10−4

or the infinity norm of the gradient ∇pQ(p,µk) was less than 10−6. By satisfying these re-
quirements, the minimizer of Q(p,µk) was reached. In particular, the Gauss-Newton method
was used to minimize the objective function in (3.23) avoiding the trouble of computing the
Hessian of Q(p,µk) [29]. In general, it was observed that a small number of iterations was
needed to attain the converged solution as reported in Figure 3.9. This iterative procedure
was repeated until the feasibility conditions (3.22) were satisfied.

To investigate the influence of the nanotube length on the nonlocal parameters, we have
considered several values of L. First, ξ1, m and n have been estimated for armchair and
zigzag nanotubes with a length of 12.31 and 12.36 nm, respectively. Quintic B-spline basis
functions, 400 degrees of freedom and uniform knot spans have been used while computing
εNL

xx . Then, we have considered SWNCTs whose length was two, four and eight times longer
then the previous ones. Accordingly, the nonlocal strain field has been calculated by increas-
ing the number of degrees of freedom involved in the analysis two, four and eight times (i.e.
by keeping the size of the knots spans constant).
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Figure 3.9: Convergence pattern of the initial k-th step (i.e. µk = µ1) for the (12,12) armchair
single-walled CNT: (a) normalized nonlocal axial strain field approximating the MSM results
(only few iteration steps are displayed), (b) normalized values of the nonlocal parameters ξ1,
m and n, (c) the cost function and (d) its derivatives with respect to p (i refers to the iteration
number).
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Figure 3.10 illustrates the calculated nonlocal parameters corresponding to armchair and
zigzag nanotubes with different diameters and lengths. As mentioned in Section 3.2.4, the
diameter has a marked effect in the characterization of the strain field of single-walled CNTs
whereas length effects are negligible. Furthermore, we can easily notice a clear trend in the
value of ξ1, m and n. Therefore, seeking for an analytical relation between the nonlocal
parameters and the nanotubes geometric characteristics we have considered the function

q(d,θ) = c1 (θ) + c2 (θ) d c3(θ) (3.24)

where q is a generic nonlocal parameter, equal to m, n or ξ1. The dimensionless parameters
c1, c2 and c3 have been determined for both armchair and zigzag nanotubes with the fit func-
tion from the MATLAB R© Optimization Toolbox. In particular, the Trust-Region algorithm
with randomly generated starting points has been chosen. The estimated set of parameters is
listed in Table 3.3 and the corresponding functions are depicted in Figure 3.10.

ξ1 m n
c1 1.48 -2.96 0.05
c2 -0.16 4.43 0.43
c3 -0.22 0.22 -1.83

RMSE 4.0e-7 5.1e-6 8.8e-5
R2 0.9995 0.9989 0.9980

(a) (n1,n1) armchair

ξ1 m n
c1 1.12 0.26 0.70
c2 0.11 1.17 -0.49
c3 0.31 0.42 0.14

RMSE 3.4e-6 1.4e-4 4.7e-5
R2 0.9864 0.9490 0.9922

(b) (n1,0) zigzag

Table 3.3: Parameter c1, c2 and c3 for (a) armchair and (b) zigzag nanotubes with diameter
ranging between 1 and 5.5 nm. The goodness of fit has been assessed by calculating the root
mean square error (RMSE) and the coefficient of determination (R2).

To conclude, we have assessed the effectiveness of the proposed model. As illustrated in
Figure 3.11, the one-dimensional nonlocal model (3.16), with ξ1, m and n derived from (3.24),
yields a good approximation of the axial strain field in tensile single-walled CNTs. However,
despite an accurate approximation of the boundary layers, a small discrepancy between dis-
crete and continuum profiles occurs in the central part of the domain as shown in the insets in
Figure 3.11. Nonetheless, it was observed that such discrepancy decreases by increasing the
length of the nanotubes. Furthermore, we have compared the total strain energy computed
with MSM (ΠMSM) and the nonlocal theory (ΠNL). As reported in Figure 3.12, the relative
error is small. This discrepancy does not lie only in the approximation provided by the non-
local formulation. Indeed, it can also be attributed to the deformation components involved
in the calculation of the strain energy. For the nonlocal one-dimensional model, ΠNL is de-
termined solely by the axial deformations. In contrast, for the atomistic simulation, ΠMSM is
expressed as a summation of different terms (see eq. (3.1)) from which it is not possible to
derive the components specifically related to axial deformations.

3.5 Conclusions
We have estimated the parameters required to model tensile single-walled CNTs as nonlocal
rods. With these parameters it was possible to correctly capture size and chirality effects
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observed in the axial strain profile computed with molecular structural mechanics. In par-
ticular, the optimal nonlocal parameters resulted to vary with the diameter and the chirality
of the nanotubes while the influence of the length was negligible. Nonlocal parameters have
been estimated for armchair and zigzag single-walled CNTs only. As the orthotropy axes in
chiral single-walled CNTs are not aligned with the chiral and roll-up axes, one-dimensional
theories are not suitable.

The choice of the nonlocal kernel was the key to the characterization of the equivalent
nonlocal rod model. By adopting an atomistically-based nonlocal kernel, the axial strain
profiles obtained with the integro-differential formulation were remarkably consistent with
those predicted with molecular structural mechanics. Classical Gaussian and exponential
kernels did not produce similar results.

The successful use of nonlocal models as a replacement for more sophisticated atomistic
models hinges on the reliable determination of the nonlocal parameters and the choice of
the constitutive relation. To our knowledge, this is the first time nonlocal parameters have
been derived from the axial strain field obtained from atomistic simulations of single-walled
CNTs. The adopted approach, although partially successful because applicable to “smooth”
axial strain profiles only, paves the way for the use of nonlocal formulations in studies of
CNTs and CNTs-based composites and all those applications in which axial deformation is
the predominant CNT deformation mode.
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Chapter 4

A molecular-dynamics study of
size and chirality effects on

glass-transition temperature and ordering in
carbon nanotube-polymer composites∗

We carry out molecular-dynamics simulations of single-walled carbon nanotubes (CNTs)
embedded in a coarse-grained amorphous monodisperse polyethylene-like model system.
The roles of nanotube diameter and chirality on the physical and structural properties of the
composite are thoroughly discussed for several CNTs with different diameter and chirality.
We show that the glass-transition temperature of the polymer matrix increases with the diam-
eter of the CNT while chirality effects are negligible. A denser and ordered layered region
of polymer matrix is found in the vicinity of the nanotube surface. The density and ordering
of this layer increases with the CNT diameter. All simulations indicate that chirality does
not affect the atomic structure of the highly ordered layer surrounding the CNTs. Despite
the simplicity of the polymer model, our results are qualitatively comparable with those
obtained from experiments and numerical simulations that consider a chemically-specific
polymer matrix.

4.1 Introduction

When carbon nanotubes (CNTs) are used as inclusions in polymeric materials, important
changes in the atomic structure of the hosting matrix can take place. Experimental evi-
dence on a large class of CNT-polymer composites indicates that nanotubes can promote
crystallization [1, 3, 8, 17, 19, 38, 39, 48, 59]. Despite the growing interest in carbon
nanotube-polymer composites, CNT-induced effects on the polymer structure are still not
well characterized due to the complexity of the interactions at the nanoscale [4, 28, 36, 52].
Several factors can influence the nucleating effect of CNTs [35]: nanotube diameter and
chirality, presence of surface functional groups, use of surfactants, CNT volume fraction,
and type of polymer (it is worth mentioning that, besides CNT-induced crystallization, neg-
ligible [25] and anti-nucleation [16, 23] effects have been observed in a small number of

∗Reproduced from: M. Malagù, A. Lyulin, E. Benvenuti and A. Simone, A molecular-dynamics study of size and
chirality effects on glass-transition temperature and ordering in carbon nanotube-polymer composites, Macro-
molecular Theory and Simulations, 25:571–581, 2016.
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polymer types).Here, by using molecular-dynamics (MD) simulations, we present a prelimi-
nary study of CNT-induced ordering with a focus on the roles of CNT diameter and chirality.

The nucleation of a crystallized polymer layer around a nanotube is highly beneficial to
the enhancement of the composite thermal and mechanical properties [14, 18, 30]. Although
changes in the structure of the polymer matrix are limited to the nanoscale, their influence at
the macroscopic level is significant [15, 24, 30, 42]. A detailed characterization of the atomic
structure of the crystallized polymer layer, however, is not trivial. Being the nanotube size
comparable to the characteristic length scale of the matrix atomic structure, the size of the
CNT diameter might influence the ordering of the polymer chains. As observed experimen-
tally from the analysis of crystallized polyethylene on different nanofillers [40] (single- and
multi-walled CNTs, carbon nanofibers and graphene), small-diameter fibers cause the poly-
mer chains to align along their axis. In addition, molecular crystallization might also be
influenced by the CNT chirality [35].

The experimental quantification of structurally-induced effects of the CNT on the poly-
mer matrix is very difficult to accomplish due to the small size of the crystallized layer [55].
Moreover, it would be extremely challenging to isolate effects from other sources (e.g.
preparation procedure and experimental technique). For these reasons, molecular-dynamics,
which is here used to study structure and mobility of the polymer chains surrounding the
nanotubes, has been typically employed. Minoia et al. [47] reported diameter effects on the
structure and adhesion of single polyethylene chains on single-walled CNTs and negligi-
ble chirality effects. In contrast, Wei [56] observed chirality effects from MD simulations
on single-walled CNTs surrounded by one layer of polyethylene chains. To investigate the
more complex structure of a composite having a large number of polymer chains, Falkovich
et al. [21] compared the ordering of an R-BAPB polyimide matrix in the vicinity of a flat
graphene layer and a small diameter single-walled CNT. Their results show higher ordering
in the case of the graphene sheet. However, their study does not provide a comprehen-
sive description of diameter-induced modifications (only one nanotube was considered) and
does not explore chirality effects. Furthermore, all the above results might be limited to the
specific polymer considered in the simulations. Hence, a detailed and more fundamental
understanding of CNT-induced effects and the interaction between polymer chains and filler
is still lacking.

The purpose of this study is therefore twofold: to assess nanotube-induced effects on
the atomic structure of the surrounding polymer matrix, and to provide a description of size
and chirality effects that can be observed in a wide range of single-walled CNT-polymer
composites. In the MD simulations we employ a simple model of a CNT-polymer composite
consisting of a single single-walled CNT embedded in a polymer matrix. We also avoid
polymer chemistry-specific effects by using a simplified polyethylene-like coarse-grained
(CG) model that has the added advantage of reducing the computational effort for the long
relaxation time of the system –this simplified CG model is intended for the investigation
of CNT-induced effects on an amorphous monodisperse polymer polyethylene-like matrix
rather than on a specific polymer matrix. Diameter and chirality effects are here explored by
means of a detailed fully-atomistic single-walled CNT model. Non-bonded interactions are
defined between nanotube and polymer chains and within the polymer chains.

To assess the influence of the nanotube-polymer interaction, the variation of the compos-
ite glass-transition temperature is discussed. Next, a comprehensive and detailed analysis of
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the structural properties of single-walled CNT-polymer composites is carried out by investi-
gating density profile and ordering of the polymer chains around the nanotube. Throughout
the chapter, we qualitatively compare our results with experimental and modeling literature
findings to validate the reliability of the atomistic model.

All the simulations and the corresponding results will help to elucidate nanotube-induced
diameter and chirality effects at the level of the structure of the interface of the hosting
polymer matrix. To the best of our knowledge, none of the previous studies in the literature
provides such an extensive investigation and a basic understanding of single-walled carbon
nanotube-effects in polymer-based composites.

4.2 Model and simulation details

Since we are interested in exploring features of an archetype single-walled CNT-polymer
composite, a CG model is adopted for the polymer chains. Effects induced by the specific
chemistry of the polymer matrix are therefore not considered. In view of the investigation
of size and chirality effects, a fully-atomistic representation of different single-walled CNTs
is employed. Despite its simplicity, this atomistic model yields results in agreement with
those from experiments and atomistic simulations with real polymers as discussed in the
next section.

In the simulations, each polymer chain consists of 300 identical monomeric units, here
referred to as beads. Assuming r as the distance between two beads, covalently bonded
interactions are described by the interatomic potential

U(r) = −0.5KR2
0 ln

[
1−
(

r
R0

)2
]
+ 4εp

[(
σp

r

)12
−
(

σp

r

)6
+

1
4

]
. (4.1)

The first term, which is attractive and defined according to the Finitely Extensible Nonlinear
Elastic (FENE) potential [34], depends on the stiffness K and the maximum elongation R0 of
the polymer bonds. The second term, which, conversely, is repulsive, is a truncated Lennard-
Jones (LJ) potential defined in terms of beads characteristic length-scale σp and energy εp
parameters. Although common practice suggests the use of dimensionless LJ units for the
quantities in (4.1), Kremer and Grest [34] suggested some values by comparing the dynamics
of entangled FENE chains melts and real polymers. Accordingly, we take parameters σp, εp,
K and R0 equal to 5.1 Å, 0.8903 kcal/mol, 30εp/σ2

p and 1.5σp, respectively. These values
were suggested for amorphous monodisperse polyethylene-like systems. The interatomic
potential (4.1) does not include bending and torsional contributions. Hence, the effect of the
polymer chains flexibility on the physical properties of the composite is not examined in this
work. The modified Morse potential [7] is employed to model the CNTs adopting the same
parameters defined in our previous work [44]. Further, the 12-6 Lennard-Jones potential
has been considered for polymer-polymer and polymer-CNT non bonded interactions. In
particular, the parameters σpc and εpc for the LJ interactions between polymer beads and
CNT carbon atoms are calculated with the Lorentz-Berthelot rules

σpc =
1
2
(
σp +σc

)
and εpc =

√
εp εc, (4.2)
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where σc and εc are the LJ parameters for CNT carbon atoms [11].
The starting configuration of a CNT-polymer composite was generated by randomly

packing stretched polymer chains in a large simulation box with one single-walled CNT at
the center aligned in the z-axis –the Packmol package [46] was used for this task. The num-
ber of polymer chains, which depends on the nanotube diameter, corresponds to a nanotube
volume ratio υCNT approximately equal to 0.6% [26, 30] at 100 K and to a weight fraction
wCNTof approximately 2% (see Tables 4.1 and 4.2). The initial configurations were relaxed
at the rather high initial temperature of 800 K in an NVT ensemble for 0.5 ns. Since the vol-
ume of the CNT and the density of polymer at 800 K are known, the approximated volume
of the composite at that temperature can be estimated. This information was used in the next
step where the size of the simulation box was reduced until the desired volume was reached.
Each system was further relaxed at 800 K in an NPT ensemble at 0 atm—indistinguishable
from 1 atm since pressure fluctuations are in the range of about ±50 atm—for 10 ns, a pe-
riod that was long enough to reach equilibration (checked by measuring the variation of the
energy). This initialization phase, used to reach the equilibrium volume of the composite,
was preferred over a single NPT ensemble since it leads to a shorter computational time
and equivalent equilibrated configurations. Finally, all systems were further cooled down in
an NPT ensemble at a cooling rate of 0.1 K/ps (see Figure 4.1 for a typical snapshot of an
(8,8)-polymer composite at 100 K).

(6,6)-polymer (8,8)-polymer (10,10)-polymer (12,12)-polymer
d [Å] 8.14 10.86 13.57 16.28

υCNT [%] 0.64 0.62 0.62 0.62
wCNT [%] 2.09 2.00 1.98 1.95

Table 4.1: Diameter d of the embedded armchair single-walled CNTs and nanotube volume
fraction υCNT and weight fraction wCNT in the (n,n)-polymer composites.

(10,0)-polymer (14,0)-polymer (17,0)-polymer (21,0)-polymer
d [Å] 7.83 10.97 13.32 16.45

υCNT [%] 0.63 0.62 0.62 0.62
wCNT [%] 2.08 2.00 1.98 1.95

Table 4.2: Diameter d of the embedded zigzag single-walled CNTs and nanotube volume
fraction υCNT and weight fraction wCNT in the (n,0)-polymer composites.

All simulations have been performed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software package [50]. We choose periodic boundary con-
ditions in all three directions. The Newton’s equations of motion were integrated with the
velocity Verlet algorithm using a time step of 1 fs. The Nosé-Hoover thermostat and barostat
were used. For each system, three different initial configurations were generated and the
corresponding results were averaged. The LAMMPS input scripts can be downloaded from
the authors’ website.

Next, four armchair ((6,6), (8,8), (10,10) and (12,12)) and four zigzag ((10,0), (14,0),
(17,0) and (21,0)) nanotubes with different diameters are used to assess chirality and size ef-
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Figure 4.1: Illustration of an (8,8)-polymer composite equilibrated at 100 K (part of the poly-
mer matrix has been removed for better visualization of the embedded nanotube). Polymer
chains are displayed in different colors, the nanotube in gray.

fects. Throughout the chapter, the standard notation employing the couple of integers (n,m)
to describe single-walled CNTs [20] is adopted. Moreover, the notation (n,m)-polymer de-
notes a polymer composite with an (n,m) single-walled CNT. The diameter of the nanotubes
was calculated as

d =
acc
√

3(n2 +m2 +nm)

π
+ t (4.3)

where acc = 1.421 Å is the length of the carbon-carbon bonds and t = 3.4 Å the nanotube
thickness [33].

4.3 Results and discussion

4.3.1 Glass-transition temperature
In nanocomposites, the glass-transition temperature (Tg) is one of the simplest way to char-
acterize the interaction between polymer chains and filler. Figure 4.2 shows the density-
temperature curves for the bulk material and an (8,8)-polymer composite. The bulk Tg was
estimated as 200.9 K and corresponds to the dimensionless quantity 0.448 εp/kB, with kB
the Boltzmann constant. This result is in good agreement with theoretical [51] and nu-
merical [2, 6, 13] estimates for FENE polymer melts –these values vary between 0.43 and
0.47 εp/kB. The obtained Tg, however, is lower than that for real polyethylene (between
220 and 280 K [9, 10, 22, 29, 45]). Nevertheless, a quantitative comparison between the
estimated glass-transition temperatures and those for real polyethylene is beyond the scope
of the this study and the model employed in our simulations. The coarse-grained model for
the polymer chains is employed to provide general insight into a wide range of polymer-
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Figure 4.2: Density-temperature curves for bulk polymer and an (8,8)-polymer composite.
Solid lines indicate linear fits to calculate the glass-transition temperature. Dashed lines
denote the estimated value of Tg.

based materials. Indeed, as discussed next, the obtained results are in line with those from
real composites. As depicted in Figure 4.2, the glass-transition temperature increases to
Tg = 206.0 K for the case of the (8,8)-polymer composite denoting attractive interactions
between the nanotube and the surrounding polymer chains [53]. More precisely, since the
glass-transition temperature of the composite is higher than that of the bulk matrix, CNT-
polymer interactions are stronger than those between polymer beads. Noteworthy, the varia-
tion of Tg is comparable with the variation obtained from experimental and numerical studies
on real single-walled CNT-polymer composites. Liang and Tjong [41] estimated the glass-
transition temperature of CNT-low density polyethylene composites about 10 K higher than
that for pure polymer matrix. Grady et al. [27], from experiments on CNT-polystyrene com-
posites with a nanotube weight fraction varying between 1 and 30%, reported Tg values 6-7 K
higher than those for pure polystyrene. Sterzyński et al. [54] obtained the Tg of polyvinyl
chloride matrix about 9 K lower than that of the corresponding CNT composite with a CNT
concentration of 0.01-0.02 wt%. For poly(methyl methacrylate) composites an increase of
about 2 K was observed with a content of CNTs of about 0.5 wt% [43]. Wei et al. [57], using
molecular dynamics simulations of single-walled CNT-polyethylene composites, estimated
Tg about 20 K higher than that of the bulk material.

The influence of the nanotube atomic structure on the glass-transition temperature was
investigated as well. In Figure 4.3a, size and chirality effects on Tg are depicted for all
simulated CNT-polymer composites.

Size effects

The composite glass-transition temperature, while remaining higher than the bulk Tg, clearly
increases with the curvature of the nanotube (Figure 4.3a). This can be explained by con-
sidering that the number of non-bonded interactions between polymer beads and nanotube
atoms increases with decreasing d [64] as shown in Figure 4.3b. Consequently, the mobility
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Figure 4.3: (a) Glass-transition temperature of (n,n) armchair and (n,0) zigzag single-walled
CNT-polymer composites as a function of the nanotube diameter d compared to the bulk
glass-transition temperature. (b) Schematic of the interaction region (blue) of a single-walled
CNT atom (red) with the surrounding polymer [64].

of the polymer chains surrounding the nanotubes decreases.
It is worth mentioning that also the value of the carbon nanotube weight fraction can

influence Tg. Nevertheless, as indicated in Tables 4.1 and 4.2, the variation of wCNT is small,
especially if compared with the changes in the CNT diameter. Therefore, it is reasonable to
assume that the trend of the composite glass-transition temperature Tg is mainly caused by
the variation of the nanotube diameter d.

Chirality effects

As depicted in Figure 4.3a, the estimated values of Tg for armchair and zigzag composites
differ by less than 1%. Since armchair and zigzag configurations represent the two extremes,
minimum and maximum value, respectively, in terms of chirality, these results suggest that
chirality-induced effects on Tg are negligible.

4.3.2 Density profiles
Typically, in confined geometries and polymer composites with particle inclusions, a better
packing of monomer units is observed around the interface [5, 53]. As depicted in Figure 4.4,
this is also the case for the single-walled CNT-polymer composites considered in this work.
Concentric wall-induced layers can be identified around the nanotube. A detailed investiga-
tion of the density profile was therefore carried out to understand structural changes in the
polymer matrix in the vicinity of the nanotube.

To start with, the evolution of the density profile at different temperatures has been ex-
amined. As illustrated in Figure 4.5, the number of wall-induced layers and their density
increase while cooling the system. The intensity of the peaks is higher close to the nanotube
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Figure 4.4: Snapshot of an (8,8)-polymer composite cross section at 100 K (monomer beads
in blue, single-walled CNT carbon atoms in gray).

surface and it decays until the composite density equals that of the bulk. Noteworthy, the
peak-to-peak distance remains constant and equal to about σp at all temperatures. This sug-
gests that the bonds connecting two polymer beads in different layers (whose equilibrium
distance is 0.97σp) are mainly orthogonal to the nanotube surface and to its longitudinal
axis. Consequently, a higher ordering of the monomers, which increases by decreasing the
temperature, is observed around the nanotube (this will be discussed in more detail in the
next section).

Size effects

Figure 4.6 shows a comparison of the density profiles for different armchair composites at
(a) 800 and (b) 100 K. Similar profiles are observed for all the examined armchair com-
posites. The number of layers and the peak-to-peak distance is the same. Moreover, the
thickness of the perturbed region of polymer matrix (i.e. the interphase) does not change
with the diameter of the nanotube—analogous results were obtained by Brown et al. [12]
with MD simulations on a polymer matrix with spherical inclusions—and is about 25 Å.
Therefore, as schematically shown in Figure 4.7, for CNT-polymer composites with equal
υCNT, the volume fraction of such interphase layer increases by decreasing the diameter of
the nanotube. This size effect might have a role in the trend of Tg observed in Section 4.3.1
since the glass-transition temperature of the highly ordered polymer region is higher than
that of the amorphous bulk polymer. Nonetheless, the density of the wall-induced layers in-
creases with the nanotube diameter –weaker maxima and minima can be noticed for smaller
nanotubes. This is in agreement with the results from Falkovich et al. [21] obtained with
MD simulations of R-BAPB composites with graphene and a (5,5) CNT.
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Figure 4.5: Density of an (8,8)-polymer composite at different temperatures as a function of
distance r from the nanotube wall (all curves have been normalized with respect to the bulk
density ρbulk at the corresponding temperature).

Chirality effects

Chirality effects on monomer packing are negligible. This can be deduced from Figure 4.8
where the density profiles of composites with single-walled CNT of comparable diameter
((12,12) armchair and (21,0) zigzag) are shown. Analogous conclusions hold for the other
composites.

4.3.3 Ordering of monomers
Based on the analysis of the density profile, a higher ordering of the polymer bonds was
observed in the vicinity of the nanotubes. However, the previous results do not provide
a comprehensive description of the changes that nanotubes induce in the matrix monomer
structure. In this section we carry out a detailed investigation into the orientation of the
polymer bonds with respect to the nanotube longitudinal axis and surface.

Similar to Falkovich et al. [21], we employed histograms showing the probability P of
the orientation of the polymer bonds as a function of the distance from the nanotube wall.
The monomer orientation is measured according to the angles φ and θ between the polymer
bonds and the nanotube axis and surface, respectively. The results are derived by averaging
the bond orientation sampled every 5 ps within a time interval of 10 ns. The bin size of the
histograms was chosen equal to 1◦ for both angles φ and θ and 1 Å for the distance r.

The ordering of the monomers was first assessed in a polymer matrix system without car-
bon nanotube. In this case, we estimated the probability of the bonds to align with the x-axis
of the simulation unit cell (analogous results were produced estimating P with respect to the
y- and z-axis). As depicted in Figure 4.9, the histogram evaluated at 100 K does not show
preferential orientations of the polymer bonds. Therefore, in absence of carbon nanotubes,
the matrix is amorphous. In contrast to this, as illustrated in Figures 4.10a and 4.11a for an
(8,8)-polymer composite, higher ordering is already visible at 800 K in the polymer interfa-
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Figure 4.6: Density profile for different armchair composites at (a) 800 K and (b) 100 K as
a function of distance r from the single-walled CNT wall (all curves are normalized with
respect to the bulk density ρbulk at the corresponding temperature).

(a) (b)

Figure 4.7: Schematic showing the region of polymer with higher ordering (highlighted in
brown) in (a) (6,6) and (b) (12,12) single-walled CNT-polymer composites with υCNT =
0.6%. Since the thickness of the perturbed polymer phase, about 25 Å, does not change with
the nanotube diameter d, its volume fraction increases by decreasing d.
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Figure 4.8: Density profile for (12,12) armchair and (21,0) zigzag single-walled CNT-
polymer composites at (a) 800 K and (b) 100 K as a function of distance r from the nanotube
wall (all curves are normalized with respect to the bulk density ρbulk at the corresponding
temperature).

cial layer (r∼4-5 Å). In particular, while the ordering with respect to the nanotube axis is
very mild, most of the polymer bonds are nearly parallel to the nanotube surface. By decreas-
ing the temperature, the ordering increases and more ordered layers form (see Figure 4.10b-d
and 4.11b-d). In the first layer, located between 4 and 5 Å from the nanotube wall, the prob-
ability of orientation along the nanotube axis presents a high peak between 0 and 5◦ and,
especially at low temperatures, lower peaks at larger values of φ . Regarding θ , we observe
only one peak at 0-10◦. This suggests that polymer bonds at the interface, while being paral-
lel to the nanotube surface, are preferentially aligned with the nanotube axis. Conversely, in
the second layer positioned at 6-7 Å, polymer bonds are mainly orthogonal to the nanotube
surface since the angle distribution peaks are at 70-90◦ for φ and θ . This pattern of alter-
nating layers of parallel and orthogonal bonds repeats while moving far from the interface.
However, the ordering decays with r since the influence of the nanotube over the polymer
atoms vanishes. These results indicate the nucleation of an ordered region that has been ex-
perimentally observed in several real single-walled CNT-polymer composites [35], as widely
reported for CNT-polyethylene [28, 38, 39, 61–63]. Analogous observations were made for
other semi-crystalline polymers such as isotactic polypropylene [3, 26, 49], poly(vinylidene
difluoride) [37, 58] and poly(vinyl alcohol) [14, 60]. Based on Raman spectroscopy on
CNT-poly(ε-caprolactone), Chatterjee and coworkers [15] showed the formation of an or-
dered polymer structure oriented along the surface of the nanotubes. Regarding amorphous
polymers, Dingemans and coworkers [30–32] reported the growth of a crystalline domain of
polyetherimide matrix along the CNT surface.



76 4. MD STUDY OF SIZE AND CHIRALITY EFFECTS ON Tg AND ORDERING IN CNT-POLYMER COMPOSITES

0 30 60 90
0

5

10

15

20

25

φ [◦]

r
[Å

]

0

0.02

0.04

0.06

0.08

0.10
P

Figure 4.9: Probability P of the angle φ between the polymer bonds and the x-axis of the
unit cell for a pure polymer matrix system at 100 K. Histograms at higher temperatures are
analogous, indicating no high ordering for the pure polymer matrix.

Size effects

A quantitative assessment of size effects on the monomer ordering is shown in Figure 4.12
based on the estimation of the fraction ψα(r) of polymer bonds not exceeding a given an-
gle α with the nanotube axis. The results have been reported only for (6,6)-polymer and
(12,12)-polymer composites. At 800 and 100 K, the fraction φα of monomer bonds shows
a high peak at r = 4− 5 Å and then decreases moving far from the nanotube surface. This
denotes the higher ordering of the polymer matrix in the vicinity of the nanotube as previ-
ously discussed. At 800 K size effects are minimal. On the contrary, at 100 K, stronger
ordering is noticed for the composite with the nanotube with larger diameter. Consequently,
increasing the nanotube curvature hinders the ordering of the surrounding polymer chains.
For temperatures between 800 and 100 K (e.g. 300 K) we observed results in between those
shown in Figure 4.12. Minoia et al. [47], performing MD simulations at 300 K of single
polymer chains on single-walled CNTs, related this diameter effect to the higher binding
energy observed in the case of nanotube with lower curvature as more bending of the poly-
mer chains is required to maintain their atoms in close contact with small diameter CNTs.
Although a bending contribution is not explicitly implemented in the FENE potential, the
repulsive term in (4.1) provides flexural stiffness to the polymer chains. Therefore, despite
the increase of CNT-polymer interaction for smaller nanotubes (as illustrated in Figure 4.3b),
higher ordering is observed when the curvature of the nanotube decreases.
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Figure 4.10: Probability P of the angle φ between the polymer bonds and the longitudinal
axis of an (8,8) single-walled CNT at (a) 800, (b) 500, (c) 300 and (d) 100 K: the nanotube
initiates high ordering at the interface. The ordering increases while cooling the system.
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Figure 4.11: Probability P of the angle θ between the polymer bonds and the surface of an
(8,8) single-walled CNT at (a) 800, (b) 500, (c) 300 and (d) 100 K: the nanotube initiates
high ordering at the interface. The ordering increases while cooling the system.
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Figure 4.12: Fraction φα of monomer bonds at a distance r from the nanotube wall and at
an angle θ < α to the axis of armchair (12,12) (solid lines) and (6,6) (dashed lines) single-
walled CNTs at (a) 800 and (b) 100 K. The angle α is equal to 2.5◦ (black lines), 5◦ (red
lines), 10◦ (blue lines) and 20◦ (green lines).

Chirality effects

Figure 4.13 shows that the ψα(r) profiles for (12,12) armchair single-walled CNTs are
closely akin to those obtained with (21,0) zigzag nanotubes. The small differences in ψα(r)
arise from the size effects –the (21,0) zigzag single-walled CNT, having a larger diameter,
leads to a slightly higher ordering. Therefore, as observed for the variation of Tg and the
density profile, chirality effects in armchair and zigzag composites are negligible.

4.4 Conclusions
We assessed diameter and chirality effects on physical and structural properties of single-
walled CNT-polymer composites by means of molecular-dynamics simulations. Attractive
non-bonded interactions between the polymer matrix and the carbon nanotube yield a com-
posite glass-transition temperature higher than that of the bulk matrix and a highly ordered
layer of polymer chains in the vicinity of the nanotube wall. In particular, our simulations re-
vealed that density and monomer ordering of the polymer matrix rapidly increase close to the
nanotube surface. The main conclusions regarding size and chirality effects are summarized
below.

Size effects The glass-transition temperature of the composite increases with the curvature
of the nanotube while the thickness of the highly ordered layer surrounding the nanotubes
does not change with the size of the nanotube. Nevertheless, the nanotube diameter influ-
ences its density profile and ordering. Namely, increasing the nanotube diameter increases
the ordering of the polymer chains around the nanotube surface. Therefore, the results show
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Figure 4.13: Fraction φα of monomer bonds at a distance r from the nanotube wall and at
an angle θ < α to the axis of (12,12) armchair (solid lines) and (21,0) zigzag (dashed lines)
single-walled CNTs at (a) 800 and (b) 100 K. The angle α is equal to 2.5◦ (black lines),
5◦ (red lines), 10◦ (blue lines) and 20◦ (green lines).

that higher glass-transition temperature Tg does not lead to higher ordering in the polymer.
The estimated values of Tg depend on the number of CNT-polymer interactions, while the
ordering of the polymer chains depends on their possibility to maintain the monomers in
close contact with the nanotube atoms.

Chirality effects The effects induced by the nanotube chirality, on the contrary, were neg-
ligible, with the results obtained for armchair and zigzag single-walled CNTs with similar
diameter showing only minor differences. Hence, our findings suggest that the orientation
of the periodic atomic structure of the nanotube along its longitudinal axis influences neither
the density profile nor the ordering of the highly ordered polymer layer.

The relevance of our results has to be considered in the light of the characterization and
design of CNT-polymer materials. Structural changes induced by nanotubes embedded in
a polymer matrix might have interesting implications for physical and mechanical proper-
ties of the composite. More specifically, as the ordering of the polymer chains around the
nanotube increases with its diameter, the role of size effects on the macroscopic mechanical
properties of CNT-polymer composites might be significant.

Although a direct and quantitative comparison between the proposed MD model and real
CNT-polymer composites was difficult and beyond the scope this work, the obtained results
were meaningful. Indeed, despite the simplicity of the atomistic representation employed for
the polymer chains and the composite, the results are in good agreement with experimental
and modeling literature findings that show nucleation of a crystallized or highly ordered
polymer layer around the nanotube surface.
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Chapter 5

Diameter dependent elastic properties of
carbon nanotube-polymer composites:

Emergence of size effects from
atomistic-scale simulations∗

We propose a computational procedure to assess size effects in nonfunctionalized single-
walled carbon nanotube (CNT)-polymer composites. The procedure upscales results ob-
tained with atomistic simulations on a composite unit cell with one CNT to an equivalent
continuum composite model with a large number of CNTs. Molecular dynamics simulations
demonstrate the formation of an ordered layer of polymer matrix surrounding the nanotube.
This layer, known as the interphase, plays a central role in the overall mechanical response
of the composite. Due to poor load transfer from the matrix to the CNT, the reinforcement
effect attributed to the CNT is negligible; hence the interphase is regarded as the only rein-
forcement phase in the composite. Then, the elastic properties of a one-dimensional equiva-
lent fiber are identified through an optimization procedure based on the comparison between
results from atomistic simulations and those obtained from an isogeometric analysis. Fi-
nally, the embedded reinforcement method is employed to determine the elastic properties
of a representative volume element of a composite with various fiber volume fractions and
distributions. We then investigate the role of the CNT diameter on the elastic response of
a CNT-polymer composite; our simulations predict a size effect on the composite elastic
properties, clearly related to the interphase volume fraction.

5.1 Introduction
The diameter of carbon nanotubes (CNTs) can induce size effects in the structural and me-
chanical properties of CNT-polymer composites [6, 7, 14, 16, 20, 49, 84]. Due to the high
aspect ratio of CNTs, these size effects can only be assessed using computational multi-
scale procedures. To this end, we present a computational procedure to upscale nanoscale
information, obtained with atomistic simulations, to a continuum micromechanical model at
the composite scale for the analysis of the size-dependent elastic properties of a nonfunc-
tionalized single-walled CNT-polymer composite. In the following, the term “continuum”
∗Reproduced from: M. Malagù, M. Goudarzi, A. Lyulin, E. Benvenuti and A. Simone, Diameter dependent elastic

properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations,
submitted.
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indicates a volume where a continuous distribution of material replaces the atomistic struc-
ture.

Diameter-induced effects were first noticed by means of pull-out tests that showed a
decrease of the interfacial shear strength between a CNT and the polymer matrix around
it with increasing nanotube diameter [7, 14]. Although a limited number of experimental
results is available [7, 14], the observed trend for the interfacial shear strength has been
confirmed by means of atomistic simulations [20, 49, 80]. This size effect was attributed
to the increasing number of non-bonded interactions between polymer and CNT atoms with
decreasing nanotube diameter [84]. It is however recognized that another phase in CNT-
polymer composites contributes to the overall mechanical response beside the CNT-polymer
interface.

Several works (see Reference [45] for an extensive review) indicate that the formation of
an ordered layer of polymer matrix around a nanotube is relevant for the enhancement of the
mechanical properties of the composite. Such a layer, usually referred to as the interphase,
has been identified in a wide class of CNT-polymer composites [45]. In particular, Coleman
and coworkers [18, 65] suggested that the reinforcement observed in CNT-polyvinyl alcohol
composites was mainly provided by the interphase while the load transfer from the matrix to
the CNT was poor. Similar results, emphasizing the reinforcement effect of the interphase
and the weakness of the interface in nonfunctionalized CNT-polymer composites have been
experimentally observed with various polymer matrices [3, 27, 35, 67, 76, 77].

The characterization of the interphase is usually performed with computer simulations
since they enable a detailed analysis of the polymer chain structure. Using molecular dy-
namics (MD) simulations, Falkovich et al. [26] showed that the ordering of the interphase in
CNT-polyimide composites increases with the nanotube diameter. Similar results were also
achieved with a generic amorphous polymer model [52]. The mechanical properties of the
interphase are typically assessed through a continuum model that is mechanically equivalent
to an atomistic reference model [15, 56, 82, 83]. In an alternative approach, proposed by
Choi et al. [16], the stiffness of the interphase in CNT-epoxy composites is studied through a
reverse engineering procedure by comparing the elastic response of the MD system with that
of an intermediate continuum micromechanical model. Results showed that the interphase
stiffness increases by decreasing the CNT diameter. However, their atomistic model con-
sidered periodic infinitely long nanotubes. Consequently, once the simulation cell is loaded
in tension along the CNT axis direction, matrix and nanotube are equally stretched while
in reality the CNT should deform according to the stresses transfered to it from the matrix
through the interface.

The multiscale procedure employed in this contribution for the characterization of size
effects in the elastic properties of the CNT-polymer composites is summarized in Figure 5.1.
As proposed in previous works [15, 16, 56, 82], we employed a) atomistic simulations to
investigate structural and mechanical features of CNT-polymer composites at the nanoscale,
b) an intermediate continuum micromechanical model to estimate the mechanical proper-
ties of the reinforcement phase, and c) a continuum micromechanical model to asses the
macroscopic elastic moduli of the composite.

As shown in Figure 5.1a, the atomistic models consider a short uncapped nonfunction-
alized single-walled CNT of finite length fully embedded into the simulation box. This
setup enables load transfer from a coarse-grained amorphous monodisperse polyethylene-
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like polymer matrix [52] to the nanotube. Rather than characterizing size effects for a spe-
cific composite, we aim to explore the influence of the CNT diameter for a wider range of
polymer matrices using a simple yet representative model for the polymer chains. CNT-
polymer composites with nanotubes of different diameter are generated in the molecular
dynamics setting described in Section 5.2.1. The equilibrated configurations are examined
in Section 5.2.2 to characterize the geometry of CNT, interface, interphase and bulk polymer
matrix. The roles of these four phases in the elastic response of the composite are explored
through uniaxial tensile tests performed with molecular mechanics (MM) in Section 5.2.3.
At the same time, MM uniaxial tensile tests are also performed on a pure polymer matrix
to calculate the elastic properties of the polymer. As discussed in Section 5.2.4, and ob-
served in the literature [3, 18, 27, 35, 65, 67, 76, 77] for real CNT-polymer composites, the
interphase is the true reinforcement phase in the composite while the effect of the embed-
ded CNT on the elastic response of the composite is negligible due to the weak interface
interaction (Sections 5.2.3 and 5.2.4). To take into account the effect of the interphase in a
computationally feasible manner at the composite level with a realistic number of CNTs, we
have defined an equivalent fiber. The approach consists in the definition of an intermediate
continuum micromechanical model that, as shown in Figure 5.1b, contains the bulk polymer
and a three-dimensional domain, referred to as equivalent fiber, whose geometry coincides
with that of the interphase derived in Section 5.2.2 in the atomistic model. The elastic prop-
erties of the equivalent fiber are determined through a parameter estimation procedure by
comparing the mechanical response of the one-fiber composite obtained with the atomistic
and the isogeometric analysis in Section 5.3.

With the interphase and bulk polymer mechanical properties at hand, a micromechanical
analysis of the CNT-polymer composite shown in Figure 5.1c is conducted. Elastic prop-
erties of several representative volume elements (RVEs) with unidirectional and randomly
oriented CNTs are derived by means of FEM simulations (see Section 5.4) to assess diame-
ter effects at different nanotube volume ratios. Akin to the intermediate continuum model in
Figure 5.1b, only the bulk polymer and equivalent continuum fibers (the interphases) are con-
sidered. Due to the high aspect ratio of real nanotubes and to their large number in an RVE,
each equivalent continuum three-dimensional fiber is modeled as a one-dimensional fiber by
means of the embedded reinforcement method [59] described in Section 5.4.1. The results of
the FEM analyses are finally compared with those obtained with classical micromechanical
models in Section 5.5.

The proposed computational procedure is not only intended for the assessment of size
effects. It also provides a strategy to understand the role played by the different phases in
the composite, a relevant question about CNT-polymer composites and other nanocomposite
materials [62, 78]. Despite the approximations of the polymer model at the atomistic level,
the results of our simulations are qualitatively comparable with literature findings using real
polymers as discussed in Section 5.6.

The standard notation (n,m) to describe single-walled CNTs [23] is adopted through-
out the paper. Moreover, the notation (n,m)-polymer is used to denote a polymer matrix
reinforced with (n,m) single-walled CNTs.
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Figure 5.1: Objectives of the multiscale procedure for the characterization of size effects
induced by the nanotube diameter d on the CNT-polymer composite elastic properties. In the
intermediate micromechanical model and the micromechanical model, only the bulk polymer
matrix and the interphase have been considered since the contributions of the nanotube and
the interface on the elastic response of the composite are negligible.

5.2 Atomistic modeling of CNT-polymer composites

Atomistic simulations of representative CNT-polymer composites are performed to char-
acterize the nanoscale features required to establish the intermediate continuum model in
Section 5.3. To this end, four composites embedding uncapped nanotubes of different diam-
eter are generated through MD simulations as detailed in Section 5.2.1. Here, we considered
CNT-polymer composites with the same nanotube volume fraction to explore the effects in-
duced by the CNT diameter. In particular, the effect on the interphase volume fraction and
the elastic properties of the CNT-polymer composites are investigated (see Sections 5.2.2
and 5.2.3, respectively). Furthermore, based on the results obtained from MM uniaxial ten-
sile tests, the roles of the CNT and the interphase in the mechanical response of the composite
are discussed in Section 5.2.4.

5.2.1 Method
The atomistic model for the CNT-polymer composite is identical to that used in Refer-
ence [52]. Fully-atomistic uncapped nonfunctionalized single-walled CNTs are modeled
with the modified Morse potential [8, 51, 74] while the amorphous monodisperse polyethylene-
like polymer is modeled with the coarse-grained Finite Extensible Nonlinear Elastic (FENE)
potential [43]. This allows for the analysis of CNT diameter-induced effects as well. Poly-
mer chemistry-specific effects are therefore avoided to explore the influence of the nanotube
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in a wide range of single-walled CNT-polymer composite.
The polymer matrix is modeled as a coarse-grained amorphous monodisperse polyethylene-

like system. Each polymer chain is defined by 300 identical monomeric units (referred to as
beads) covalently bonded through the FENE interatomic potential

U(r) = −0.5KR2
0 ln

[
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r
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]
+ 4εp
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where r is the distance between two beads. The constants K and R0 are the stiffness and
the maximum elongation of the polymer bonds, while εp and σp are the beads characteris-
tic length and energy constants. According to Kremer and Grest [43], for a monodisperse
polyethylene-like polymer model system, εp = 5.1 Å, σp = 0.8903 kcal/mol, K = 30σp/ε2

p
and R = 1.5σp. The model employed for the nanotubes is detailed in Reference [8]. Be-
tween polymer beads and CNT atoms only non-bonded Lennard-Jones interactions defined
by the potential
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are allowed. The constants εpc and σpc are calculated with the Lorentz-Berthelot rules

σpc =
1
2
(
σp +σc

)
and εpc =

√
εp εc, (5.3)

where σc and εc are the Lennard-Jones constants for single-walled CNT carbon atoms [11].
To explore diameter effects in CNT-polymer composites with the same nanotube volume

fraction υCNT, four different nanocomposites with υCNT ≈ 0.6% but with nanotubes of dif-
ferent diameter were generated. Since the variation of carbon nanotube weight fraction in
the generated CNT-polymer composites is small [52], we can assume that the trend for the
mechanical properties observed in the next sections is mainly caused by the changes in the
nanotube diameter. Effects induced by the nanotube chirality are not investigated because
assumed to be negligible: as observed by Malagù et al. [52], chirality does not influence
the atomic structure at the CNT-polymer interphase that determines the mechanical proper-
ties of the composite (later explained in Section 5.3.2). Here, only armchair ((6,6), (8,8),
(10,10) and (12,12)) single-walled CNTs are considered. As shown Figure 5.2a, the nan-
otubes, centered at x = 0 Å, are aligned along the x-axis. The length of the simulation box
in the x-direction (Lx ≈ 180 Å) is larger than that of the nanotubes (l ≈ 100 Å). This al-
lows for the assessment of the interface properties and the load transfer mechanism between
polymer matrix and CNT. The dimension of the unit cell in the y- and z direction (Ly and
Lz, respectively) is such that the interphase region is completely embedded in the simulation
box, hence to avoid any contact or intersection of the interphase with its periodic image. To
fully assess the nanotube reinforcement effects, a pure polymer matrix was also generated.

Seeking for the elastic properties under quasi-static deformation through molecular me-
chanics (MM), CNT-polymer composite and pure polymer matrix systems are investigated
in glassy state where the vibrational part of the free energy is negligible [36, 70]. Therefore,
all simulations have been performed on atomistic configurations below the glass transition
temperature (Tg ≈ 200 K [52]), specifically at 100 K. For each system, three different initial
configurations were generated and the corresponding results were averaged. The Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software package was
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used [61]. Newton’s equations of motion were integrated with the velocity Verlet algorithm
using a time step of 1 fs. The Nosé-Hoover thermostat and barostat were used. Energy
minimization was performed with the conjugate gradient method. In all simulations, peri-
odic boundary conditions in the three directions were applied. LAMMPS input scripts to
generate the results discussed in the next sections are available for download at the authors’
web-page.∗

5.2.2 Single-walled CNT and interphase volume fractions
In this section, the geometry of the phases in the CNT-polymer composite, required for the
development of the intermediate continuum micromechanical model in Section 5.3, is deter-
mined. The corresponding volume fractions are also provided since they play a significant
role in the macroscopic elastic properties discussed in Section 5.4.

Figure 5.2b shows the cross section of an (8,8)-polymer composite and highlights the
different phases characterizing single-walled CNT-polymer composites. Visual examination
reveals four distinct regions. The first (in gray), with a cylindrical shape, represents the
effective nanotube volume, also indicated as the effective reinforcement according to the
model proposed by Pipes et al. [60, Figure 2] and adopted by many others [28, 32, 85].
Here, the nanotube and the empty region inside it are replaced by an effective solid cylinder.
A nanotube is therefore considered as a solid beam of length l and circular cross section of
diameter d with volume

V CNT = π
d2

4
l. (5.4)

The diameter of the effective reinforcement related to an (n,m) single walled CNT is given
in Reference [60]:

d =
acc
√

3(n2 + m2 + nm)

π
+ t, (5.5)

where acc = 1.421 Å is the carbon-carbon bond length and t = 3.42 Å is the separation
distance of graphene sheets [38].

The second region (in green) is the interface. Its thickness t if is defined as the average
equilibrium distance between the CNT surface and the first layer of polymer atoms [60]. The
thickness t if can be determined from the analysis of the radial density profile ρ (r), where r
is the distance from the nanotube surface (i.e., at t/2 from the CNT atoms), obtained from
atomistic simulations. Here, t if has been assumed as the distance between the CNT surface
(r = 0 Å) and the first peak in ρ (r). As illustrated in Figure 5.3a, the interface thickness,
insensitive to the nanotube diameter, is approximately equal to 4.5 Å. This estimate is in line
with literature results obtained from MD models of CNTs embedded in real polymers [17,
20, 31, 79]. Analogously, examination of the density profile along the axis of the CNT (i.e.
in the x direction) provides the length of the interface. As shown in Figure 5.3b, the peaks in
ρ (r) quickly decay after the end of the nanotube (i.e. at |x| ≥ l/2), and the interface length
is assumed equal to that of the nanotube. Thus, the interface volume is calculated as

V if = π

(
d +2t if

)2−d2

4
l. (5.6)

∗Note to Reviewer: These scripts will be available in due time.
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The third region (in red) consists of the ordered layer of polymer matrix surrounding
the nanotube, the interphase. Its thickness and length are derived by comparing the density
profile in the CNT-polymer composite with that of the pure polymer matrix as previously
done for real CNT-polymer composites in [47, 83]. Due to statistical noise in ρ (r), it is dif-
ficult to provide a precise estimate of the interphase thickness t ip. Nevertheless, as depicted
in Figure 5.3a, for r ≥ 30.0 Å the oscillations in the density profiles for all CNT-polymer
composites resemble those in the pure polymer matrix. Therefore, t ip has been assumed
25.5 Å irrespective of the nanotube diameter. The independence of the interphase thickness
from the size of the inclusion was observed in atomistic models of CNTs embedded in real
polymers [26, 36] and other nanocomposite systems [12, 30]. It is however worth mention-
ing that t ip shows a temperature dependence as shown in [52, Figure 6]; in this work t ip has
been estimated at T = 100 K. Figure 5.3b shows that the interphase length can be set equal
to l, thus yielding the interphase volume

V ip = π

(
d +2t if +2t ip

)2−
(
d +2t if

)2

4
l. (5.7)

Figure 5.3a shows that nanotubes with bigger diameter lead to highest peaks in the interphase
density profile. As thoroughly discussed in [26, 52], this indicates that the ordering of the
interphase atomic structure increases with the diameter of the embedded CNT.

Finally, the fourth region (in blue) corresponds to the amorphous bulk polymer whose
structure is not affected by the CNT. Knowing the volume of the MD unit cell V cell (the
dimensions of the CNT-polymer composite unit cell at this temperature are in Table 5.1), the
volume of amorphous polymer is

V bulk = V cell −
(
V CNT +V if +V ip) . (5.8)

composite d Lx Ly Lz
(6,6)-polymer 8.14 66.9 66.9 181.2
(8,8)-polymer 10.86 91.9 91.9 175.9

(10,10)-polymer 13.57 114.7 114.7 177.9
(12,12)-polymer 16.28 136.3 136.3 181.7

Table 5.1: Dimensions of the (n,n)-polymer composites at 100 K.

From the volume of the aforementioned regions, the corresponding volume fractions are
easily calculated dividing (5.4)-(5.8) by V cell. For the particular case of the nanotube and the
interphase volume fractions we have

υ
CNT =

V CNT

V cell = π
d2l

4V cell (5.9)

and

υ
ip =

V ip

V cell = υ
CNT V ip

V CNT = υ
CNT

(
4t ip
)2

+4dt ip +8t ipt if

d2 , (5.10)
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Figure 5.2: (a) Snapshot of the atomistic model of an (8,8)-polymer composite (monomer
beads in blue, single-walled CNT carbon atoms in gray). Part of the polymer matrix has been
removed to reveal the embedded nanotubes. (b) Cross sectional view of the (8,8)-polymer
composite. On the right half of the image, colored regions denote the composite phases:
CNT (gray), interface (green), interphase (red) and bulk matrix (blue). These figures have
been adapted from Reference [52].
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Figure 5.3: (a) Density profile in the polymer matrix and in (n,n)-polymer composites at
100 K as a function of the distance r from the nanotube surface. All curves have been
normalized with respect to the average density of the polymer matrix ρ̄m = 0.818 g/cm3

(this figure is adapted from Reference [52]). (b) Density profile in the polymer matrix and
in an (8,8)-polymer composites evaluated at different position along the longitudinal axis of
the nanotube (i.e. x-axis).
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Figure 5.4: CNT volume fraction υCNT and interphase volume fraction υ ip calculated
with (5.9) and (5.7), respectively, for four different (n,n)-polymer composites.

respectively. As a direct consequence, Figure 5.4 shows that when composites with the same
CNT volume fraction υCNT but different CNT diameter are considered, the volume fraction
of the interphase υ ip decreases with d. This result has a considerable impact on the composite
mechanical properties discussed in Section 5.4. Moreover, as indicated in eq. (5.10), υ ip

increases linearly with the CNT volume fraction as observed experimentally [18].

5.2.3 Uniaxial tensile test simulations
Mechanical properties of CNT-polymer composites under uniaxial quasi-static loading are
determined with MM simulations. After each strain increment, consisting in a small uniaxial
deformation applied in the direction of the nanotube axis (i.e., the x axis), the total potential
energy of the system is minimized. More specifically, making use of the Voigt notation, the
strain increment defined by the macrostrain tensor

ε̄εε = [ε̄xx 0 0 0 0 0]T = [0.01% 0 0 0 0 0]T , (5.11)

with the superscript T denoting transpose, is applied to the periodic unit cell (in (5.11)
and throughout this work a bar above a symbol indicates a macroscopic quantity). After-
wards, the total potential energy of the system is minimized keeping the size of the box
fixed [4, 46, 54]. This procedure is repeated until the total axial strain is equal to 5% since
MM simulations on glassy polymers can be performed only under small deformation since
the adopted interatomic potentials are not suitable to model the nonlinear response of the
material.

The first significant insight concerning the deformation mechanism in CNT-polymer
composite is provided by the analysis of the strain energy contributions during deforma-
tion. Here, the total strain energy Πtotal is decomposed into the contribution of the CNT
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Figure 5.5: Analysis of the total strain energy Πtotal and its separate contributions from CNT
(ΠCNT), interface (Πif), interphase (Πip) and bulk (Πbulk) during uniaxial tension of two
CNT-polymer composites with an (8,8) nanotube of length (a) 10 and (b) 40 nm.

ΠCNT/Πtotal Πif/Πtotal Πip/Πtotal Πbulk/Πtotal

[%] [%] [%] [%]
l = 10 nm 1.55 1.40 24.15 72.60
l = 40 nm 1.15 1.14 24.90 72.81

Table 5.2: Normalized value of the strain energy contributions at ε̄xx = 5 %.

(ΠCNT), the interface (Πif), the interphase (Πip), and the bulk (Πbulk). As shown in Fig-
ure 5.5a for an (8,8)-polymer composite, Πip and Πbulk are the major contributions to Πtotal

while Πif and ΠCNT are negligible. However, since in classical short fiber composites the
reinforcement efficiency and, consequently, the axial strain in the fiber increases with its
length, we repeated these measurements for a composite embedding an (8,8) CNT four
times longer (l = 40 nm). Nevertheless, as shown in Figure 5.5b, the corresponding results
are analogous to those obtained with the shorter nanotube (see Table 5.2 for a comparison
of the strain energy contributions at ε̄xx = 5 %). This indicates that, due to poor adhesion
with the polymer matrix, negligible deformation occurs in the CNT. Thus, the mechanical
response of the composite can be determined to a good approximation by just considering
interphase and bulk polymer. An analogous conclusion has been reached by Coleman and
coworkers [18, 65] in their experiments on real CNT-polymer composites.

The results obtained from the MM uniaxial tensile tests have been used to estimate the
effect of the reinforcement induced by the inclusion of a nanotube into a polymer matrix.
Since the nanotubes are aligned along the x-direction, the generated CNT-polymer compos-
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ites are transversely isotropic and the elastic constitutive relations are expressed by
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, (5.12)

where Cc
i j and σ̄i j are the components of the elasticity tensor and the macroscopic stress

tensor in matrix form, respectively. The elasticity matrix CCCc in (5.12) is defined by five
independent elastic constants. In this work, however, we will determine only Cc

xx and Cc
xy

since, as shown in Section 5.3, the other components are not relevant for the mechanical
characterization of the interphase. Substituting (5.11) into (5.12), we obtain

Cc
xx =

σ̄xx

ε̄xx
and Cc

xy =
σ̄yy

ε̄xx
=

σ̄zz

ε̄xx
, (5.13)

where σ̄xx, σ̄yy and σ̄zz were derived from the MM simulations.
Similarly, the elastic properties were determined for the pure polymer matrix. As ex-

pected, tensile tests in all three directions yielded an isotropic response. Its stress-strain
relations is expressed as
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, (5.14)

where the superscript m identifies the elastic components of the polymer matrix. In particu-
lar, Cm

xx = 5.14 GPa and Cm
xy = 2.90 GPa. As shown in Figure 5.6, Cc

xx is always higher than
Cm

xx while the opposite is observed comparing Cc
xy and Cm

xy. Therefore, as shown in previous
works on real CNT-polymer composites [16, 36, 82], the presence of a CNT yields higher
elastic constants in the axial direction compared to those of the pure polymer matrix.

5.2.4 Interface versus interphase
Results from MM suggested that the reinforcement in the nonfunctionalized CNT-polymer
composites is merely determined by the interphase. The role of the nanotube, due to the
weak interface interactions, is limited to the nucleation of the interphase layer.

Although there is no consensus [62] about the reinforcement offered by the CNT through
the interactions at the interface and the interphase, some experimental results on nonfunc-
tionalized CNT-polymer composites support our findings. For instance, Coleman and cowork-
ers [18, 65] associated the reinforcement in CNT-polyvinyl alcohol composites to the forma-
tion of an ordered polymer layer around the nanotubes. Fitting their experimental results
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Figure 5.6: Normalized elastic components (a) Cc
xx and (b) Cc

xy of four (n,n)-polymer com-
posites. The results have been normalized with respect to the elastic components of the
polymer matrix Cm

xx = 5.14 GPa and Cm
xy = 2.90 GPa.

with micromechanical models, the authors deduced that the stress transfer between nan-
otubes and polymer matrix was poor. Hegde et al. [35], comparing results from different
amorphous polymer matrix reinforced with CNTs, found that the elastic properties of the
composite increase only when nanotubes nucleate crystallization. Watts and Hsu [77] in-
vestigated the strength of the interface through examination of the surface fracture in an
MPC-DEA polymer matrix reinforced with CNTs. TEM images at the crack surface showed
that the surface of the pulled-out nanotubes was clean (i.e. no polymer particles were at-
tached to them) denoting poor adhesion between CNTs and matrix. Similar results were also
reported for CNTs embedded in polystyrene [27] and epoxy [3, 67] matrices. Using Raman
spectroscopy, Wang et al. [76] suggested that the variation in the Young’s modulus of CNT-
epoxy composites induced by different degrees and types of functionalization groups on the
nanotubes surface was caused by changes of the interfacial molecular structure.

However, it is worth mentioning that other authors reported strong bond between poly-
mer matrix and nonfunctionalized nanotubes. Qian and coworkers [63, 64] observed frac-
tured nanotubes at the crack surface in CNT-polystyrene composites suggesting a good load
transfer between CNTs and polymer matrix. By using pull-out tests, good adhesion was also
reported in CNT-epoxy composites [19] and CNT-polyethylene butane composites [7]. How-
ever, in these cases the pull-out force was not always parallel to the nanotube axis. Thus, the
possible sliding of the embedded part of the nanotube along the interface surface during pull-
out might have induced an overestimation of the interfacial properties [77]. Moreover, the
elastic mechanical properties of the interface were not compared to those of the interphase.

Therefore, we limit the present study to nonfunctionalized CNT-polymer composites
where the CNT-matrix adhesion is poor and CNTs nucleate a highly ordered region of poly-
mer matrix. At the same time, this study allows for the assessment of the effect of the
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interphase on the composite elastic properties.

5.2.5 Size effect
As shown in Figure 5.6, the component Cxx of the elasticity tensor, characterizing the stiff-
ness of the composite in the axial direction, decreases by increasing the nanotube diameter.
A similar trend was observed with atomistic simulations of CNTs embedded in polypropy-
lene [82], polyvinyl chloride [36] and EPON 862r epoxy resin [16]. Here, the size effect
is solely determined by the interphase as the only component of the CNT-polymer compos-
ites having a reinforcement effect. In particular, the variation of Cc

xx and Cc
xy with respect

to the CNT diameter d can be motivated by the trend of the interphase volume fraction υ ip

with respect to d (this will be discussed in further details in Section 5.3). As shown in Fig-
ures 5.3-5.4, by increasing the diameter d, despite the increased ordering of the interphase
atomic structure, the volume fraction of the interphase (i.e. the reinforcement phase) de-
creases and, consequently, also the stiffness of the composite in the x-direction: the lower
the interphase volume fraction, the weaker the reinforcement.

5.3 Interphase as an equivalent continuum 3-D fiber
In this section we define a continuum model that is mechanically equivalent to the discrete
atomistic model shown earlier. This allows the estimation of the elastic properties of the
interphase, here modeled through an equivalent 3-D fiber, that are required for the microme-
chanical modeling of the nonfunctionalized CNT-polymer composites in Section 5.4. More-
over, CNT diameter-induced size effects on the elastic properties of the interphase are dis-
cussed in Section 5.3.2.

The previous MM simulations showed that only the interphase provides reinforcement.
Due to weak non-bonded interactions, the contribution of the CNT is negligible. Therefore,
as shown in Figure 5.1b, the proposed intermediate continuum micromechanical model con-
sists only of the bulk polymer, assumed as homogeneous, and an equivalent continuum 3-D
fiber (representing the interphase region) with homogeneous properties while interface and
CNT are not taken into account.

The Young’s modulus Em and the Poisson’s ratio νm of the bulk polymer matrix are
derived from the estimated Cm

xx and Cm
xy. Since the matrix is isotropic, following Milton [53],

Em =
Cm

xxC
m
xx + Cm

xxC
m
xy − 2Cm

xyC
m
xy

Cm
xx + Cm

xy
and ν

m =
Cm

xy

Cm
xy + Cm

xx
. (5.15)

Accordingly, Em and νm resulted equal to 3.04 GPa and 0.36, respectively, values in the
typical range for glassy polymers [10].

As illustrated in Figure 5.1b, the interphase is modeled by an equivalent continuum solid
fiber shaped as a hollow cylinder. Its dimensions coincide with those of the interphase region:
the length is equal to that of the embedded nanotube (l) while inner radius ri = d/2+ t if and
outer radius rf = d/2+ t if + t ip. Since in Section 5.4 we model the reinforcement provided
by the interphase through one-dimensional elements, the equivalent continuum fibers are
assumed isotropic and the mechanical properties are averaged through the thickness.
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Young’s modulus Ef and Poisson’s ratio ν f of the equivalent continuum solid fiber are
determined through an identification procedure where the axial stiffness of the atomistic
model and that of the intermediate continuum micromechanical model are compared. This
problem is formulated as

find min
p

f (p) , (5.16)

with p =
[
Ef, ν f

]
the vector of unknown parameters and f (p) the cost function

f (p) =
1
2 ∑

i=x,y

(
Cc

xi − C̃c
xi(E

f,ν f)

Cc
xi

)2

, (5.17)

where Cc
xi are the elastic components of the CNT-polymer composites derived from the

MM simulations (Section 5.2.3) and C̃c
xi those from the corresponding continuum models

in Figure 5.1b. The least-square problem (5.16) was solved using the Gauss-Newton algo-
rithm [55]. This iterative procedure was terminated when both f (p) and the infinity norm of
the gradient ∇p f (p) were lower than 10−10.

5.3.1 Numerical solution

The elastic components C̃c
xx and C̃c

xy of the continuum model in Figure 5.1b have been derived
with isogeometric analysis. Due to the hollow cylindrical shape of the equivalent contin-
uum three-dimensional fiber, isogeometric finite elements [39] were employed. Cubic Non-
Uniform B-spline (NURBS) basis functions were used to exactly represent the equivalent
continuum fiber and bulk matrix geometries, and at the same time to approximate the corre-
sponding displacement fields. As for the MM tensile tests, periodic boundary conditions in
all directions together with the macrostrain tensor (5.11) have been enforced. Due to sym-
metry with respect to planes xy, xz and yz, only an eight of the full model (see Figure 5.7a)
is considered and the corresponding boundary conditions are depicted in Figure 5.7b (see
Appendix 5.A for details).

A NURBS multi-patch code [25, 39] was employed to generate the isogeometric model.
As illustrated in Figure 5.7c, the model is defined by five patches: one for the equivalent
continuum fiber and four for the bulk polymer matrix. According to Hughes et al. [39], the
geometry of each patch is defined by

S (ξ ,η ,ζ ) =

nξ

∑
i=1

nη

∑
j=1

nζ

∑
i=k

Ni,p (ξ )M j,q (η)Lk,r (ζ )Bi, j,k, (5.18)

where ξ , η and ζ are coordinates in the so-called parameter space, Ni,p (ξ ), M j,q (η) and
Lk,r (ζ ) NURBS basis functions of degree p, q and r, respectively, and Bi, j,k the control
points (the reader is referred to Hughes et al. [39] for more details on NURBS geome-
tries and isogeometric analysis). NURBS basis functions Ni,p (ξ ), M j,q (η) and Lk,r (ζ )

are defined by the knot vectors Ξ =
[
ξ1, ξ2, ..., ξnξ+p+1

]
, H =

[
η1, η2, ..., ηnη+q+1

]
and

Z =
[
ζ1, ζ2, ..., ζnζ+r+1

]
, respectively. Parameters nξ , nη and nζ indicate the number of
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Figure 5.7: (a) NURBS isogeometric model of the equivalent continuum (only an eight of the
composite is considered due to symmetry). The bulk matrix is in blue, the equivalent con-
tinuum fiber in red. Quantities ri and rf refer to the inner and outer radius of the equivalent
continuum fiber, respectively, l its length and Lx and B denote the RVE size. (b) Schematic
of the applied boundary conditions (u⊥ denotes displacements orthogonal to the considered
face of the model). (c) Exploded view of the isogeometric model showing the five NURBS
patches and numbering of the different NURBS patches.
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degrees of freedom ndofs for an (8,8)-polymer composite.

Patch mξ mη mζ

1 21 8 8
2 21 8 8
3 8 8 8
4 8 8 8
5 8 8 8

Table 5.3: Number of knots along ξ , η and ζ (denoted by mξ , mη and mζ , respectively)
for the five NURBS patches used in the estimation of the Young’s modulus Ef and Poisson’s
ratio ν f of the equivalent continuum fiber.

basis functions Ni,p (ξ ), M j,q (η) and Lk,r (ζ ). Moreover, each control point Bi, j,k is associ-
ated to a weight wi, j,k. Therefore, each NURBS patch is defined by a set of knot vectors,
control points and weight. The full data structure is provided in Appendix 5.B.

The k-refinement approach [39] has been employed to increase the degree of the NURBS
basis functions to cubic and insert new knots along the ξ , η and ζ directions until conver-
gence in the values of Ef and ν f (see Figure 5.8). In particular, knots were inserted such
that the knot vectors were uniform (i.e. evenly spaced knots) and the dimensions of the ele-
ments in the three directions close to each others. The final number of knots along ξ , η and
ζ is reported in Table 5.3 (the same discretization has been used for all the CNT-polymer
composites).
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Figure 5.9: (a) Young’s modulus Ef and (b) Poisson’s ratio ν f of the equivalent continuum
fiber in (n,n)-polymer composites as a function of the nanotube d. Results have been nor-
malized with respect to the polymer Young’s modulus Em = 3.04 GPa and Poisson’s ratio
νm = 0.36. Since the ordering of the interphase atomic structure increases with the CNT
diameter [52], Ef increases with d while the opposite trend is observed for ν f.

5.3.2 Size effects

Figure 5.9 shows the Young’s modulus Ef and the Poisson’s ratio ν f of the equivalent con-
tinuum fiber obtained from the parameter estimation procedure described in the previous
section. The CNT diameter influences both Ef and ν f. The Young’s modulus increases with
the diameter d of the embedded nanotube while the Poisson’s ratio decreases. Therefore, the
overall stiffness of the interphase increases with d. This was expected as higher ordering in
the interphase was observed when increasing the nanotube diameter [26, 52].

Although the stiffness of the equivalent continuum fiber increases with the CNT diam-
eter, the opposite trend was observed in Section 5.2.3 for the components of the elasticity
tensor of the composite: the bigger the d, the weaker the CNT-polymer composite. Nev-
ertheless, this is a consequence of the decreasing volume fraction of interphase υ ip in the
composites reinforced with nanotubes of bigger diameters (see Figure 5.4). Therefore, the
results in Figures 5.4 and 5.9 indicate that υ ip plays a central role in the value of the me-
chanical properties of the CNT-polymer composites.

5.4 Micromechanical models for CNT-polymer composites
Having defined the elastic properties of bulk polymer and equivalent continuum fiber, we
can investigate the macroscopic mechanical response of CNT-polymer composites. Due to
the negligible effect of the CNT on the mechanical response of the composite, the microme-
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chanical model for the CNT-polymer composite considers only the polymer matrix and the
interphase as in the continuum model studied in the previous section. Moreover, with refer-
ence to real composites, the equivalent continuum fiber can be modeled as a one-dimensional
fiber due to the high aspect ratio of the real nanotubes –throughout the rest of the paper the
term “fiber” is used to refer to the one-dimensional equivalent continuum fiber. To model
CNT-polymer composites with realistic nanotube volume fractions, thus with a high number
of fibers as shown in Figure 5.1c, the Embedded Reinforcement Method (ERM) is adopted.
This numerical procedure is employed in the analysis of periodic RVEs with different CNT
volume fractions and to investigate CNT diameter-induced effects. The numerical results are
then compared to estimate from various analytical micromechanical models in Section 5.5.

5.4.1 The embedded reinforcement method
The embedded reinforcement method [22, 59] allows to efficiently incorporate fibers into
a discretized continuum without actually meshing them as shown in Figure 5.10a where a
discrete fiber is embedded into a 3-D element. Although this model can be modified to
incorporate fiber slip [5, 24], here fibers are perfectly bonded to the matrix since there is no
relative displacement between interphase and surrounding polymer.

For completeness, the derivation of the discrete set of equations governing the mechani-
cal response of an element with one embedded fiber is reported next. We consider an elastic
body with total volume Ω subdivided into matrix (Ωm) and fiber (Ωf) parts. In the absence
of the external load, the principle of virtual work can be written as

∫

Ωm
∇s

δuuum : CCCm : ∇suuum dΩm +
∫

Ωf

(
δuf

,s(E
f − Em)uf

,s
)

dΩf = 0, (5.19)

where CCCm is the elasticity tensor of the bulk polymer (see (5.14)), Ef and Em are the equiv-
alent continuum fiber and bulk polymer elastic moduli derived in Section 5.3, ∇s is the
symmetric-gradient operator, δ denotes variation, and we used subscript notation for dif-
ferentiation (a derivative with respect to the fiber local axis is indicated by the subscript
“,s”). We exclude bulk material in the fiber domain by using the effective elastic moduli(
Ef − Em

)
in the second term of (5.19). The displacement components uuum of a bulk ele-

ment with n nodes (for trilinear hexahedral elements, n is equal to 8) can be discretized at
any arbitrary point xxx through

uuum (xxx) =
n

∑
i=1

Nm
i (xxx)uuui (xxx) (5.20)

with Nm
i the shape functions of the bulk element and uuui the corresponding degrees of free-

dom. Thus, the discretized displacements and strains can be written in matrix form as

uuum (xxx) = NNNmuuu and (5.21a)
εεε

m (xxx) = BBBmuuu, (5.21b)

respectively, where NNNm and BBBm are matrices containing shape functions and correspond-
ing derivatives, and uuu is the element displacement vector. The scalar fiber displacement uf
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along the fiber local axis s is approximated using one-dimensional linear Lagrangian shape
functions as

uf (s) = Nf
s1
(s)as1 + Nf

s2
(s)as2 , (5.22)

where Nf
s1

and Nf
s2

are the shape functions attributed to the fiber end points s1 and s2, re-
spectively, while as1 and as2 are the corresponding local displacements (see Figure 5.10b).
The fiber displacement is transferred from the local fiber coordinate system (s) to the global
coordinate system (x, y, z) by means of

uf(s) =
[
Nf

s1
cos(θ s

x ) Nf
s1

cos
(
θ

s
y
)

Nf
s1

cos
(
θ

s
z
)

Nf
s2

cos(θ s
x )

Nf
s2

cos
(
θ

s
y
)

Nf
s2

cos
(
θ

s
z
)][uuuf

s1
uuuf

s2

]

with uuuf
si
=
[
af

xi
, af

yi
, af

zi

]T the global displacement vector at fiber endpoints and θ s
i (with i =

x , y, z) the fiber orientation angles. The derivatives of (5.23) with respect to the fiber axis
are expressed as

uf
,s (xxx) = BBBfHHHuuu, (5.23)

with

BBBf =
[
Nf

s1,s cos(θ s
x ) Nf

s1,s cos
(
θ

s
y
)

Nf
s1,s cos

(
θ

s
z
)

Nf
s2,s cos(θ s

x ) Nf
s2,s cos

(
θ

s
y
)

Nf
s2,s cos

(
θ

s
z
)]

and

HHH =




Nm
1 (sss1) 0 0 · · · Nm

n (sss1) 0 0
0 Nm

1 (sss1) 0 · · · 0 Nm
n (sss1) 0

0 0 Nm
1 (sss1) · · · 0 0 Nm

n (sss1)
Nm

1 (sss2) 0 0 · · · Nm
n (sss2) 0 0

0 Nm
1 (sss2) 0 · · · 0 Nm

n (sss2) 0
0 0 Nm

1 (sss2) · · · 0 0 Nm
n (sss2)



, (5.24)

where HHH is the transformation matrix mapping fiber displacements uuuf
si

into bulk element
displacements uuu, while sss1 and sss2 are the coordinates of the fiber endpoints in the bulk element
coordinate system. Finally, introducing the discretized interpolations of matrix (5.21b) and
fiber (5.23) derivatives into the weak momentum equation (5.19) yields the total stiffness
matrix of an element with an embedded fiber

KKK =
∫

Ωm
BBBmTCCCmBBBm dΩ + Af

∫

lf
HHHTBBBfT (

Ef − Em)BBBfHHH ds, (5.25)

where, since a uniform cross sectional area Af is assumed for the fiber, the fiber volume inte-
gral in (5.19) is replaced by an equivalent line integral over the portion of fiber lf embedded
in the solid element. In the case of multiple fibers embedded in a single element, the total
stiffness matrix

KKK =
∫

Ωm
BBBmTCCCmBBBm dΩ +

nf

∑
i=1

Af
i

∫

lf
i

HHHT
i BBBf

i
T (

Ef
i − Em)BBBf

iHHH i dsi, (5.26)
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Figure 5.10: (a) A hexahedral finite element with one embedded fiber: degrees of freedom
(blue circles) are located only at the nodes of the embedding element. (b) Global coordinate
system (x, y, z) and fiber local axis s (local displacements as1 and as2 at the fiber endpoints
in green).

in which nf is the number of fibers in the solid element. As shown in (5.25) and (5.26), the
total stiffness matrix of a solid element for the composite material is given by the sum of the
stiffness matrix of the bulk polymer matrix and the stiffness contribution(s) of the embedded
one-dimensional fiber(s).

Effective mechanical properties and periodic boundary conditions

The macroscopic elastic properties of the CNT-polymer composite are derived through com-
putational homogenization. For a generic RVE, Hooke’s law is expressed as




σ̄xx
σ̄yy
σ̄zz
σ̄xy
σ̄xz
σ̄yz



=




Cc
11 Cc

12 Cc
13 Cc

14 Cc
15 Cc

16
Cc

21 Cc
22 Cc

23 Cc
24 Cc

25 Cc
26

Cc
31 Cc

32 Cc
33 Cc

34 Cc
35 Cc

36
Cc

41 Cc
42 Cc

43 Cc
44 Cc

45 Cc
46

Cc
51 Cc

52 Cc
53 Cc

54 Cc
55 Cc

56
Cc

61 Cc
62 Cc

63 Cc
64 Cc

65 Cc
66







ε̄xx
ε̄yy
ε̄zz
ε̄xy
ε̄xz
ε̄yz



, (5.27)

where the parameters Cc
i j are the components of the homogenized effective elasticity tensor

for the composite material. These are determined imposing the six sets of boundary condi-
tions in Table 5.4 (the full set of constraint equations to be imposed on RVE faces, edges and
vertices are listed in Appendix 5.A). Then, for each boundary condition, the corresponding
local stress field σσσ in the composite is determined using the ERM described in Section 5.4.1.
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Boundary condition Macrostrain tensor ε̄εε Derived components of CCCc

Uniaxial tension
[0.1, 0, 0, 0, 0, 0]T Cc

i1
[0, 0.1, 0, 0, 0, 0]T Cc

i2
[0, 0, 0.1, 0, 0, 0]T Cc

i3

Transverse shear
[0, 0, 0, 0.1, 0, 0]T Cc

i4
[0, 0, 0, 0, 0.1, 0]T Cc

i5
[0, 0, 0, 0, 0, 0.1]T Cc

i6

Table 5.4: Macrostrain tensor and derived components of CCCc for uniaxial tension and trans-
verse shear boundary condition.

Consequently, the macrostrain tensor σ̄σσ is calculated as

σ̄σσ =
1
V

∫

V
σσσdV, (5.28)

where V is the volume of the RVE. Hence, knowing the macrostrain and macrostress tensors
ε̄εε and σ̄σσ , respectively, the effective elasticity tensor components Cc

i j are derived from (5.27).

Once the effective mechanical properties in (5.27) are known, we can provide an estimate
of the engineering constants (Young’s modulus, shear modulus and Poisson’s ratio). For
composites with perfectly aligned CNTs along the x axis, the RVE is transversely isotropic
and the elastic constitutive matrix is

CCCc =




Cc
xx Cc

xy Cc
xy 0 0 0

Cc
xy Cc

yy Cc
yz 0 0 0

Cc
xy Cc

yz Cc
yy 0 0 0

0 0 0 2Gc
xy 0 0

0 0 0 0 2Gc
yz 0

0 0 0 0 0 2Gc
yz



. (5.29)

Two of the five independent constants, the shear moduli Gc
xy and Gc

yz, are known from (5.29)
and, following Affdl and Kardos [2], the remaining three are expressed according to

Ec
xx = Cc

xx −
2Cc

xyC
c
xy

Cc
yy + Cc

yz
, (5.30a)

Ec
yy =

(
Cc

yy −Cc
yz
)(

Cc
yyC

c
xx + Cc

yzC
c
xx − 2Cc

xyC
c
xy
)

Cc
yyCc

xx −Cc
xyCc

xy
, and (5.30b)

ν
c
xy =

Cc
xy

Cc
yy + Cc

yz
. (5.30c)

For randomly oriented fibers, the RVE is isotropic and the elastic constitutive matrix is ex-
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pressed as

CCCc =




λ c +2µc λ c λ c 0 0 0
λ c λ c +2µc λ c 0 0 0
λ c λ c λ c +2µc 0 0 0
0 0 0 µc 0 0
0 0 0 0 µc 0
0 0 0 0 0 µc



, (5.31)

where λ c and µc are the Lamé parameters. The corresponding Young’s modulus and shear
modulus are

Ec =
µc (3λ c + 2µc)

λ c + µc and Gc = µ
c, (5.32)

respectively.

RVE generation

The ERM has been used for the analysis of cubic periodic RVEs with equally long and
randomly distributed fibers, here representing the interphases, either perfectly aligned along
the x direction or randomly oriented. The method used for the generation of the RVEs,
implemented in Matlab R©, followed the Random Sequential Adsorption algorithm [9, 42, 81].
Accordingly, fibers are added consecutively to the RVEs until a specific volume fraction is
reached. In unidirectional fiber composites, all fibers are aligned along the x-axis while
in randomly oriented fiber composites the orientation of each fiber is determined using the
Matlab R© function rand. For both unidirectional and randomly oriented fiber composites,
the rand function is used to define the coordinates of one of the end points of a fiber. As
the fiber length is a known parameter, the coordinates of the second end of a fiber can be
easily derived. If this point lies outside the RVE, the exceeding part of the fiber is cut and
shifted to the opposite boundary to enforce periodicity. To avoid fiber overlap, when a new
fiber is added to the RVE we check that the distance between its axis and that of the exiting
fibers is larger than twice the radius of the fibers (i.e., the outer radius of the interphase). If
this condition is not satisfied, the fiber is removed and a new one is created. This process is
repeated until the requirement for the minimum distance between fibers is fulfilled.

Assessment of fibers orientation distribution Fiber orientation has a strong influence
on the mechanical properties of the composite. Therefore, after the RVEs were created,
the overall orientation of the fibers, also known as the orientation distribution, has been
characterized. The orientation distribution was measured through the second order tensor of
fiber orientation [1, 48]. With reference to Figure 5.11a, the orientation of a single fiber is
defined by the unit vector ppp with components

p1 = sinθ · cosφ , (5.33a)
p2 = sinθ · sinφ and (5.33b)
p3 = cosθ , (5.33c)

where θ is the angle between the fiber axis and the z-axis, and φ is the angle between the
projection of the fiber on the xy-plane and the x-axis. Accordingly, the second order tensor
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(c)

ai j =




1 0 0
0 0 0
0 0 0




ai j =




1/3 0 0
0 1/3 0
0 0 1/3




z

y
θ

p1

φ p2
x

ppp

p3

(a)

(b)

Figure 5.11: (a) Definition of angles θ and φ used to calculate the orientation of a CNT
(thick solid line) through the unit vector ppp with components p1, p2 and p3. Composites with
CNTs perfectly aligned along the x-axis (b) and randomly oriented CNTs (c).

aaa of fiber order orientation is calculated as

aaa = ai j =
1

nCNT

nCNT

∑
k=1

pk
i pk

j =




a11 a12 a13
a12 a22 a23
a13 a23 a33


 (5.34)

with nCNT the number of fibers in the RVE. Only six of the nine components of ai j are in-
dependent due to its symmetry. Figures 5.11b and c show the second order tensor aaa for
composites with fibers perfectly aligned along the x axis and randomly oriented, respec-
tively. For an (8,8)-polymer composite with 6915 randomly oriented fibers, later used in our
simulations,

ai j =




0.330 −0.003 −0.003
−0.003 0.339 −0.003
−0.003 −0.003 0.331


 . (5.35)

The second order tensor in (5.35) is very close to that in Figure 5.11c, indicating that fibers
can be considered as evenly oriented in the three directions. Analogous results were derived
for all the RVEs used in our simulations. The second order tensor of fiber orientation was
calculated also for RVEs with unidirectional fibers and it coincided with that in Figure 5.11b.

RVE dimensions

The size of the RVE should be sufficiently large to be statistically representative of the
macroresponse of the composite and such that its mechanical properties do not depend on the
dimensions of the inclusions [33, 37, 57]. In this case it seems reasonable to require that the
RVE size should at least be larger than the nanotube length, typically in the range of some
micrometers [3, 19, 35, 63]. However, this would imply large RVEs with a very high number
of CNTs due to their high aspect ratio and, consequently, a prohibitive computational effort.
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Figure 5.12: Variation of Cc
xx with the length lf of the embedded fibers. These results, normal-

ized with respect to Cm
xx = 5.14 GPa, were derived with the ERM for different (n,n)-polymer

composites with fibers aligned along the x direction and υCNT = 1.5%. Similar results were
observed for Cc

xy.

To avoid this issue, before defining the size of the RVE, we determined the minimum
length of the embedded fibers above which the elastic properties of the RVEs do not change.
This allows for the generation of smaller RVEs with a lower number of fibers and, at the same
time, avoids length effects in the mechanical properties of the composites (in this work we
focus only on diameter-induced effects). Figure 5.12 shows that Cc

xx can be assumed constant
for lf ≥ 200 nm as previously observed through multiscale simulations on CNT-polyimide
composites [56].

Then, using lf = 200 nm we investigated the effects induced by the RVEs size. This was
performed through the analysis of Cc

xx changing the size L of the cubic RVE. For each value
of L, four different RVEs were created and the standard deviation from the mean value of
Cc

xx was calculated. This procedure was performed for CNT-polymer composites with υCNT

equal to 0.6 and 1.5%. As shown in Figure 5.13a and b, the dispersion is always lower than
2% and decreases when increasing L similarly to the results in Reference [41]. For L/lf

= 2, standard deviation further decreases and the averaged values of Cc
xx are more in line

with those obtained for larger RVEs. Therefore, in our simulations the size of the RVE was
assumed twice the length of the embedded fibers (i.e., 400 nm) as also suggested in other
works on short fiber reinforced composites [42, 71].

Meshing the RVEs

As mentioned in Section 5.4.1 the RVEs are discretized using hexahedral finite elements.
Since the fibers are uniformly distributed in the matrix and because of the modest stress
concentration at the fiber ends, we employed uniform meshes for all the RVEs.
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Figure 5.13: Variation of Cc
xx with the side L of cubic RVEs for (n,n)-polymer composites

with υCNT equal to (a) 0.6% and (b) 1.5%. The values of Cc
xx and L have been normalized

with respect to Cm
xx = 5.14 GPa and the fiber length lf = 200 nm, respectively. For each

case, four different samples were considered. Error bars indicate standard deviations from
the mean values of Cc

xx denoted by the symbols.

The size of the cubic hexahedral elements Le = L/nsub, where nsub is the number of
subdivisions per RVE side, was determined from the variation of the RVE elastic properties
while refining the mesh. This analysis was performed on the RVE with the highest number
of embedded fibers, a (6,6)-polymer composite with υCNT equal to 2% (12293 CNTs). The
length of the fibers and that of the RVE side were set equal to 200 and 400 nm according to
the results in the previous section.

Figure 5.14 shows that the difference between the estimated Ec and Gc with respect to the
values obtained with the finer mesh (i.e., nsub = 30) is negligible when nsub ≥ 20. Therefore,
for all the simulations we adopted a uniform mesh with cubic hexahedral elements of size Le
equal to L/20.

5.5 Elastic properties of the nanocomposite

In this section, we assess the influence of the reinforcement provided by the interphase on
the macroscopic properties of the CNT-polymer composites. As shown in Table 5.5, we
employed values of υCNT between 0.2 and 2.0% [27, 35, 64] to avoid intersections between
different fibers (i.e., the interphase regions). Accordingly, the number of embedded fibers in
the generated RVEs ranges from 307 to 12293 for both unidirectional and randomly oriented
CNTs (see Figure 5.15a and b, respectively) . Three different RVEs were created for each
configuration and results were averaged.
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Figure 5.14: Numerical convergence of Ec and Gc for a (6,6)-polymer composite with
υCNT = 2% (corresponding to 12293 CNTs).

vCNT 0.2% 0.6% 1.0% 1.5% 2.0%

(6,6)-polymer 1229 3688 6146 9220 12293
(8,8)-polymer 691 2074 3457 5186 6915

(10,10)-polymer 443 1328 2213 3319 4425
(12,12)-polymer 307 922 1537 2305 3073

Table 5.5: Number of embedded fibers in the RVEs.
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Figure 5.15: Periodic RVEs of (8,8)-polymer composites with (a) unidirectional and (b) ran-
domly oriented nanotubes with υCNT = 1% (i.e., 3457 CNTs).

The elastic properties of the composites are derived through the modeling approach in
Section 5.4 and some analytical micromechanical models discussed in the next section.

5.5.1 Analytical micromechanical models

Analytical micromechanical models are commonly used to estimate the mechanical prop-
erties of fiber reinforced materials. Some of the most frequently used micromechanical
models are briefly summarized below. In the next sections, their predictions are compared
with numerical results obtained with the embedded reinforcement method presented in Sec-
tion 5.4.1.

Shear lag models [40] are typically employed to provide an analytical solution for the
stress distribution in short fiber composites and an estimate of their mechanical properties.
The classical formulation proposed by Cox [21] examines the axial stress along a single short
fiber encased in a continuous solid matrix. The matrix, assumed void free, is considered elas-
tic and isotropic. The load is transfered from the matrix to the fiber through shear stresses at
their interface where matrix and fibers are perfectly bonded. Based on the results from [21],
for a composite reinforced with unidirectional perfectly aligned and equally spaced short
fibers, with equal length and stiffness, the Young’s modulus in the fibers direction (the x-axis
in this work) is estimated through the modified rule of mixture

Ec
xx = ηlυ

fEf +
(
1−υ

f)Em. (5.36)

The variable υ f is the fiber volume fraction (here coinciding with υ ip) and the coefficient ηl ,
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which takes into account the aspect ratio of the fibers [21], is calculated as

ηl = 1 − tanh(β l/2)
β l/2

with β =

√
2Gm

Ef (rf)
2 ln(R/rf)

, (5.37)

where Gm is the matrix shear modulus, R is half the distance between the axis of the
fibers [40], and rf is their radius. For randomly oriented fibers of equal length, Krenchel [44]
proposed a modified version of (5.36):

Ec =
1
5

ηlυ
fEf +

(
1−υ

f)Em. (5.38)

The Halpin-Tsai model [2] is based on the same assumptions of the shear lag model and
provides the following equation for the Young’s modulus in the direction of the fibers:

Ec
xx = Em 1+ξPηυ f

1−ηυ f (5.39)

with

η =
Ef/Em − 1
Ef/Em + ξ

and ξ = 2l/df. (5.40)

A modified version of (5.39), referred to as the Tsai-Pagano equation[69, 73], has been
proposed for the calculation of the Young’s modulus of composites with randomly oriented
fibers in 3-D:

Ec = Em

[
3
8

1+ξ η
(
1−υ f

)

1−ηυ f +
5
8

1+ξ η
(
1−υ f

)

1−ηυ f

]
. (5.41)

Further, we have considered the micromechanical model proposed by Pan [58] for com-
posite materials with randomly oriented fibers. Here, the Young’s modulus is defined as

Ec = Ef υ f

2π
+ Em

(
1− υ f

2π

)
. (5.42)

Finally, the numerical results have been compared to the Hashin-Shtrikman bounds [34]
derived through variational principles for statistically isotropic and nonhomogeneous com-
posite materials. For the present composites, the lower and upper bounds (denoted with the
superscripts (-) and (+)) for the bulk and shear moduli are

Kc(-) = Km +
υ f

1/(Kf − Km) + 3(1 − υ f)/(3Km + 4Gm)
, (5.43a)

Kc(+) = Kf +
1 − υ f

1/(Km − Kf) + 3υ f/(3Kf + 4Gf)
, (5.43b)

Gc(-) = Gm +
υ f

1/(Gf − Gm) + 6(1 − υ f)(Km + 2Gm)/(5Gm (3Km + 4Gm))
, (5.43c)

Gc(+) = Gf +
1 − υ f

1/(Gm − Gf) + 6υ f (Kf + 2Gf)/(5Gf (3Kf + 4Gf))
, (5.43d)
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respectively. Consequently, the lower and upper bounds for the composite Young’s modulus
are

Ec(-) =
9K(-)G(-)

3K(-) +G(-) and Ec(+) =
9K(+)G(+)

3K(+) +G(+) . (5.44)

5.5.2 Unidirectional reinforcement
Figures 5.16a-e show the variation of the Young’s moduli Ec

xx, Ec
yy, the Poisson’s ratio νc

xy
and the shear moduli Gc

xy and Gc
yz, respectively, for composites with CNTs perfectly aligned

along the x direction. Results indicate an overall improvement of the stiffness with increasing
CNT volume fraction. More specifically, Ec

xx, Ec
yy, Gc

xy and Gc
yz linearly increase with υCNT

while the opposite trend is observed for νc
xy. Due to the unidirectional orientation of the

embedded reinforcements, the major improvements are noticed in Ec
xx while the variation of

the other engineering constants is modest.
In the macroscopic model, unidirectional fibers are randomly located (i.e., not evenly

spaced) in the RVE, in contrast with the hypothesis of evenly spaced fibers adopted by the mi-
cromechanical models presented in Section 5.5.1. Nevertheless, as depicted in Figure 5.16a,
the values of Exx obtained with the numerical simulations are in good agreement with those
provided by the analytical micromechanical models, and especially with the Halpin-Tsai
model [29]. For the sake of completeness, we generated also RVEs with equally spaced
unidirectional fibers and the corresponding results (not shown here) were identical to those
reported in Figures 5.16a-e.

5.5.3 Random reinforcement
For the case of randomly oriented CNTs, the out of diagonal terms in the second order tensor
of fibers distribution ai j were not identically equal to zero (see (5.35)) implying that the
corresponding RVEs are not perfectly isotropic. By way of example, the elastic constitutive
matrix for an (8,8)-polymer composite is

CCC =




5.3700 2.9938 2.9939 0.0015 0.0027 0.0046
2.9938 5.3751 2.9943 0.0012 0.0011 0.0032
2.9939 2.9943 5.3747 0.0013 0.0003 0.0011
0.0015 0.0012 0.0013 2.4121 0.0032 0.0003
0.0027 0.0011 0.0003 0.0032 2.4111 0.0014
0.0046 0.0032 0.0011 0.0003 0.0014 2.4114



. (5.45)

Nevertheless, the off-diagonal terms in the 4th, 5th and 6th rows and columns are about three
orders of magnitude lower than the other entries. Moreover, since the matrix is symmet-
ric and the diagonal entries in top-left and right-bottom blocks are close to each others, it
is reasonable to assume that the RVE is isotropic. The two Lamé constants are therefore
calculated as

λ
c =

Cc
12 + Cc

13 + Cc
23

3
and µ

c =
Cc

44 + Cc
55 + Cc

66
3

, (5.46)

and the Young’s modulus Ec and shear modulus Gc are derived from (5.32).
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Figure 5.16: Normalized elastic properties (a) Ec
x , (b) Eyc, (c) νc

xy, (d) Gc
xy and (e) Gc

yz for
(n,n)-polymer composites with unidirectional CNTs. For the case of Ec

x , results are in good
agreement with those obtained with the Halpin-Tsai (HT) and Cox micromechanical models.
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As shown in Figures 5.17a-b, also for RVEs with randomly oriented CNTs, Ec and Gc

linearly increase with υCNT. Compared with the case where CNTs are perfectly aligned
along the x direction, the improvement in the elastic properties is lower while the opposite
is observed for the shear modulus (similar results were derived numerically in [72]). Here,
the estimated values of Ec and Gc provided by the Krenchel and Tsai-Pagano models are far
from those obtained with FEM simulations. Surprisingly, the trend of Ec obtained with the
Krenchel model is the opposite of the expected one: this is a consequence of the low Young’s
modulus of the interphase region (for higher values the usual trend would be observed). On
the contrary, the Pan model provides a good estimate. Moreover, the numerical results are
within the Hashin-Shtrikman bounds.

5.5.4 Size effects
Figure 5.16 shows that in unidirectional CNT-polymer composites an overall reinforcement
effect is noticed decreasing the diameter of the embedded nanotubes: Ec

xx, Ec
yy, Gc

xy and Gc
yz

decrease with d. The opposite trend is observed for νc
xy. Similarly, in CNT-polymer compos-

ites with randomly oriented fibers (see Figure 5.17), Ec and Gc increase by decreasing the
diameter of the nanotubes. In both cases, the reinforcement effect provided by (6,6) CNTs
on the mechanical properties of the pure polymer matrix is typically twice of that offered by
(12,12) CNTs.

Therefore, as discussed in Section 5.3, the role played by the interphase volume fraction
on the composite mechanical properties is crucial. Although the stiffness of the interphase
increase with d (Figure 5.9), those of the corresponding composites increase by decreasing
d (Figures 5.16 and 5.17).

5.6 Summary and concluding remarks
The computational procedure proposed in this work hinges on the characterization of the
roles played by the various phases of a CNT-polymer composite on its mechanical response.

The atomistic simulations of a generic polymer matrix embedding an uncapped non-
functionalized single-walled CNT in Section 5.2 have been fundamental for the geometrical
characterization of the different phases (i.e., single-walled CNT, interface, interphase and
bulk polymer) and for the definition of their roles in the mechanical response of the com-
posite. This task addressed a crucial issue concerning nanocomposites: the separate rein-
forcement effect of the CNT and the interphase [62]. The results of our simulations reveals
that the reinforcement in the nonfunctionalized CNT-polymer composites is solely exerted
by the interphase. Despite the simplicity and generality of the atomistic polymer model, our
results are supported by literature findings on some real nonfunctionalized CNT-polymer
composites obtained through experiments [18, 27, 35, 67, 76, 77] and numerical simula-
tions [16, 26, 36, 82].

This characterization justified the FEM model proposed in Section 5.3 that, at variance
with previous contributions [16, 50, 56, 68, 75], does not take into account the embedded
CNT and the interface. The elastic properties of the interphase were determined through a
parameter identification procedure by comparing the mechanical response of the atomistic
model and a mechanically equivalent intermediate continuum micromechanical model. Not
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Figure 5.17: Normalized elastic properties (a) Ec and (b) Gc for (n,n)-polymer-polymer
composites with randomly oriented CNTs. Results for the Young’s modulus Ec of the com-
posite are compared to those obtained with the Krenchel (K), Tsai-Pagano (TP), Pan (P)
micromechanical models and the Hashin-Shtrikman upper (HSU) and lower (HSL) bounds.
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surprisingly, the stiffness of the interphase increases with the CNT diameter d since the
ordering of the surrounding polymer layer improves with increasing values of d [26, 52].

Finally, the mechanical properties of the composite in Section 5.5 were calculated through
the computational homogenization procedure described in Section 5.4. Different RVEs em-
bedding one-dimensional discrete fibers, representing equivalent continuum CNT-induced
interphases, have been generated. The ERM was employed to efficiently take into account
the high number of fibers in the FEM simulations. The results show that the elastic prop-
erties can significantly increase when the nanotubes diameter decreases, clearly indicating
size-dependent effective elastic properties.

Due to the generality of the model for the polymer chains, it is difficult, and beyond the
scope of the paper, to quantitatively compare the estimated macroscopic elastic properties
with literature findings on real CNT-polymer composites. Nevertheless, similarities with
experimental results on composites showing CNT-nucleated crystallization can be found.
For instance, Coleman and coworkers [18, 65] observed that Young’s modulus and crys-
tallinity in CNT-polyvinyl alcohol linearly increase with υCNT as observed in the present
study. Hegde et al. [35] also noticed a linear increase in the Young’s modulus with the CNT
diameter d. Moreover, some experiments on CNT-polymer composites [13, 35, 65] showed
that the stiffness does not increase after a certain value of υCNT. This might suggest full
crystallization of the polymer matrix and supports, as discussed in Section 5.2.4, the rel-
evant role of the interphase beside the negligible one of the interface for composites with
nonfunctionalized CNTs.

5.A Periodic boundary conditions for three-dimensional RVE

For the RVE in Figure 5.18 with dimensions Lx, Ly and Lz, the periodic boundary condi-
tions [66] can be stated as

uk
i − ul

i = ε̄i jL j (5.47)

where uk
i and ul

i are the displacements in i-direction on the two opposite boundaries denoted
by indexes k and l while ε̄i j is the imposed macrostrain tensor. Therefore, with reference to
Figures 5.18b-d, the periodic boundary conditions for a generic macrostrain can be explicitly
written for all faces:

u11
x = u31

x + ε̄xxLx, (5.48a)

u11
y = u31

y + ε̄yxLx, (5.48b)

u11
z = u31

z + ε̄zxLx, (5.48c)

u21
x = u41

x + ε̄xyLy, (5.49a)

u21
y = u41

y + ε̄yyLy, (5.49b)

u21
z = u41

z + ε̄zyLy, (5.49c)

u61
x = u5

x + ε̄xzLz, (5.50a)

u61
y = u5

y + ε̄yzLz, (5.50b)

u61
z = u5

z + ε̄zzLz, (5.50c)

edges:

u21
x = u31

x + ε̄xxLx, (5.51a)

u21
y = u31

y + ε̄yxLx, (5.51b)

u21
z = u31

z + ε̄zxLx, (5.51c)

u31
x = u41

x + ε̄xyLy, (5.52a)

u31
y = u41

y + ε̄yyLy, (5.52b)

u31
z = u41

z + ε̄zyLy, (5.52c)

u11
x = u4

x + ε̄xxLx, (5.53a)

u11
y = u4

y + ε̄yxLx, (5.53b)

u11
z = u4

z + ε̄zxLx, (5.53c)
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u61
x = u71

x + ε̄xxLx, (5.54a)

u61
y = u71

y + ε̄yxLx, (5.54b)

u61
z = u71

z + ε̄zxLx, (5.54c)

u71
x = u81

x + ε̄xyLz, (5.55a)

u71
y = u81

y + ε̄yyLz, (5.55b)

u71
z = u81

z + ε̄zyLz, (5.55c)

u51
x = u8

x + ε̄xxLx, (5.56a)

u51
y = u8

y + ε̄yxLx, (5.56b)

u51
z = u8

z + ε̄zxLx, (5.56c)

u11
x = u10

x + ε̄xzLz, (5.57a)

u11
y = u10

y + ε̄yzLz, (5.57b)

u11
z = u10

z + ε̄zzLz, (5.57c)

u11
x = u12

x + ε̄xyLy, (5.58a)

u11
y = u12

y + ε̄yyLy, (5.58b)

u11
z = u12

z + ε̄zyLy, (5.58c)

u12
x = u9

x + ε̄xzLz, (5.59a)

u12
y = u9

y + ε̄yzLz, (5.59b)

u12
z = u9

z + ε̄zzLz, (5.59c)

and vertices:

u21
x = u11

x + ε̄xyLy, (5.60a)

u21
y = u11

y + ε̄yyLy, (5.60b)

u21
z = u11

z + ε̄zyLy, (5.60c)

u31
x = u21

x + ε̄xzLz, (5.61a)

u31
y = u21

y + ε̄yzLz, (5.61b)

u31
z = u21

z + ε̄zzLz, (5.61c)

u31
x = u4

x + ε̄xyLy, (5.62a)

u31
y = u4

y + ε̄yyLy, (5.62b)

u31
z = u4

z + ε̄zyLy, (5.62c)

u71
x = u81

x + ε̄xyLy, (5.63a)

u71
y = u81

y + ε̄yyLy, (5.63b)

u71
z = u81

z + ε̄zyLy, (5.63c)

u71
x = u61

x + ε̄xzLz, (5.64a)

u71
y = u61

y + ε̄yzLz, (5.64b)

u71
z = u61

z + ε̄zzLz, (5.64c)

u61
x = u5

x + ε̄xyLy, (5.65a)

u61
y = u5

y + ε̄yyLy, (5.65b)

u61
z = u5

z + ε̄zyLy, (5.65c)

u41
x = u81

x + ε̄xxLx, (5.66a)

u41
y = u81

y + ε̄yxLx, (5.66b)

u41
z = u81

z + ε̄zxLx. (5.66c)

If the RVE is symmetric with respect to the xy, xz and yz planes, displacements on oppo-
site faces are such that

u1
x = −u3

x , (5.67a)

u2
y = −u4

y , and (5.67b)

u5
z = −u6

z . (5.67c)

Substituting (5.67a)-(5.67c) in (5.48a), (5.49b) and (5.50c), respectively, for ε̄ = [ε̄xx 0 0 0 0 0]T

yields

u1
x = −u3

x = ε̄xx
Lx

2
, (5.68a)

u2
y = u4

y = 0, and (5.68b)

u5
z = u6

z = 0. (5.68c)

This implies that the displacements orthogonal to faces 4, 6, 2 and 5 are null. Therefore,
with reference to the equivalent continuum model in discussed in Section 5.3, derivation of
the boundary conditions in Figure 5.7b is straightforward.



5.A. PERIODIC BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL RVE 121

2
3

41

5

6 7

8

4

6

1

5

3

2

6

5

2

1

3

4

7
8

12

11

10

9

(b)

(d)

(a)

(c)

x

y

z

Lz

Ly

Lx

Figure 5.18: (a) Schematic representation of a three-dimensional RVE and numbering of
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Direction Degree Knot vector
ξ p = 1 Ξ = [0, 0, 1, 1]
η q = 2 H = [0, 0, 0, 1, 1, 1]
ζ r = 1 Z = [0, 0, 1, 1]

Table 5.6: NURBS degree and knot vectors used for the five NURBS patches in Figure 5.7.

j k B1, j,k w1, j,k B2, j,k w2, j,k

1 1 (0, B, 0) 1
( l

2 , B, 0
)

1
2 1

(
0, B

2 ,
B
2

)
1

( l
2 ,

B
2 ,

B
2

)
1

3 1 (0, 0, B) 1
( l

2 , 0, B
)

1
1 2

(
0, rf, 0

)
1

( l
2 , rf, 0

)
1

2 2
(
0, rf cos π

4 , rf sin π

4

) 1√
2

(
l

2
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2
, rf cos π

4 , rf sin π

4
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1√
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3 2
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1

( l
2 , 0, rf
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1

Table 5.7: Control points and weights of the NURBS patch 1 (see Figure 5.7c).

5.B Control data for the NURBS continuum equivalent model

The knot vectors and control points required for the multi-patch NURBS solid shown in
Figure 5.7 are reported in Table 5.6 and Tables 5.7 5.11, respectively.
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Table 5.10: Control points and weights of the NURBS patch 4 (see Figure 5.7c).
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Chapter 6

Conclusions and future perspective

The mechanical properties of carbon nanotubes are intimately linked to their structural fea-
tures (diameter and chirality). When used as reinforcement in polymer-based composites, a
change in their diameter leads to variations in the ordering and mechanical properties of the
surrounding layer of polymer chains—the interphase—and consequently on the mechanical
response of the composite. Therefore, the successful design of CNT-polymer composites re-
quires a thorough understanding of nanotube-induced size effects both at the nanoscale and
at the macroscale. In this context, this thesis proposes a computational framework that, by
exploiting advanced numerical tools, allowed for the characterization of size effects in CNTs
and CNT-polymer composites. Atomistic simulations are used for an accurate investigation
of CNTs and CNT-polymer composites at the nanoscale while continuum models are em-
ployed to efficiently assess size effects at the macroscale. Despite the initial hypothesis of
modeling the nanotubes in the CNT-polymer composites as one-dimensional nonlocal fibers
(see Section 1.3), only the interphase has been considered. Due to weak non-bonded inter-
action between CNT and polymer chains, the reinforcement in the CNT-polymer composites
is solely determined by the interphase.

The main conclusions of this study can be summarized as follows:

• An efficient numerical solution for nonlocal elastic problems, useful for the investiga-
tion of nanostructures such as carbon nanotubes, can be obtained using higher-order
B-spline approximation schemes (Chapter 2).

• The effectiveness of nonlocal formulations in modeling CNTs depends on the em-
ployed nonlocal kernel and nonlocal parameters. The choice of the former and the
estimation of the latter have been determined comparing the axial strain profile de-
rived with a continuum one-dimensional nonlocal model and a discrete atomistic one.
In particular, size effects in the estimated nonlocal parameters have been observed
varying the diameter and chirality of the nanotubes (Chapter 2).

• One-dimensional nonlocal formulations are not suitable for modeling chiral nanotubes
due to their anisotropic response (Chapter 3).

• Increasing the CNTs diameter improves the ordering and the stiffness of the interphase
(Chapters 4 and 5).

• The interphase layer has a crucial role in the stiffening effects observed in CNT-
polymer composites while the effect of the interface is negligible due to the weak
interaction between nanotubes and surrounding polymer chains (Chapters 5).
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• Although the stiffness of the interphase increases with the diameter of the embedded
CNTs, the composite stiffness increases by decreasing the CNT diameter as a result of
the higher interphase volume fraction (Chapters 5).

• State of the art analytical micromechanical models are poorly suited for the prediction
of the elastic properties of composites reinforced with randomly distributed CNTs (see
Chapters 5).

The computational procedure in this thesis is to be considered as a basic framework for
the characterization of CNT-polymer composites. Although it provides a methodology for
the assessment of size effects in the mechanical response of CNT-polymer composites at the
nano- and macroscale, further developments are still needed for a better understanding of
these materials.

Possible topics for future research are:

• The use of GFEM with ad-hoc enrichment functions for the nonlocal one-dimensional
problems in Chapters 2 and 3. The choice of an enrichment function that captures
the essence of the deformation profile along the nanotube can drastically decrease the
computational effort. However, this implies that the solution of the problem, depen-
dent on the imposed set of boundary conditions, must be known in advance.

• Accounting for the specific chemistry of a real polymer matrix for the atomistic simu-
lations of realistic CNT-polymer composites. Although this choice increases the com-
putational effort (i.e., higher number of atoms and complexity of the interatomic po-
tential field), it could facilitate the comparison between numerical results and new
experimental findings.

• Modeling chemical bonds between nanotubes and polymer matrix to improve the ad-
hesion at the interface. If such a functionalization leads to comparable deformations
in the CNTs and in the surrounding polymer matrix, nonlocal formulations might be
required to model the nanotubes at the microscale. In this case, a new set of nonlo-
cal parameters is needed since the boundary conditions on the nanotubes are different
from those considered in Chapter 3.

• Large deformation analysis of CNT-polymer composites. Since molecular mechanics
is limited to small deformations (Chapter 5), molecular dynamics simulations must be
performed.

• Investigation of the dynamic response of CNT-polymer composites. This represents a
challenging task since molecular dynamics simulations are limited to few nanoseconds
(i.e. extremely high strain rates). Therefore, comparison with experimental results
would be impossible. Nevertheless, coarse-grained models, accelerated molecular dy-
namics methods (e.g., hyperdynamics) or high-performance computational tools (e.g.,
parallelization on graphics processing units) might provide a possible solution to this
problem.
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